

INNOVATION IN MARINE FISH LARVICULTURE ACCOMPLISHMENTS AND THEIR IMPACT IN THE PRODUCTION CHAIN

Tania De Wolf R&D Manager, IARC, INVE Technologies

Larvi 2022

CARE FOR GROWTH

SHAPING AQUACULTURE TOGETHER

Benchmark

CONTENT

- Global aquaculture production
 - Numbers
 - Trends
- Innovation in Live Feed
 - Algae
 - Rotifers
 - Artemia and SEP-Art Tools
- Broodstock
 - Programming egg supply
 - Broodstock diets

- Co-feeding & early weaning diets
 - Diet optimizations
 - Changes in feeding protocols
- Sustainability and The Future
 - Sustainability
 - Certification
 - Outlook

CARE FOR GROWTH

SHAPING AQUACULTURE TOGETHER

GLOBAL AQUACULTURE PRODUCTION

Global aquaculture production
IN BRIEF
(2018)

114.5 million tons

50% of human fish consumption is from aquaculture

622 species, 387 finfishes

20.53 million people (>50% ♥)

263 billion USD

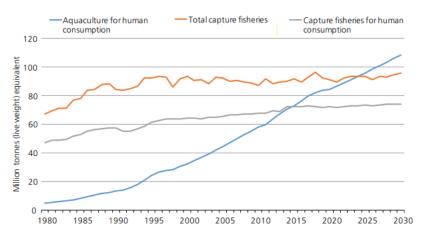
GLOBAL AQUACULTURE PRODUCTION TRENDS

Global aquaculture production

TRENDS

Annual growth rate between 2000-2018:

Freshwater: 5.7%


Brackish water: 7.7%

Marine water: 5.2%

Predictions until 2030:

- Steady increase in aquaculture production
- No increase in global capture fisheries

Global capture fisheries and aquaculture historic and projected production (excl. Aquatic plants)

Innovation in Live Feed

- Algae
- Rotifers
- > Artemia



IMPORTANCE OF LIVE FOOD

Live food remains a fundamental aspect to ensure **optimal survival** and **quality** marine fish juveniles

Eggs Hatched larvae Onset exogenous feeding

Algae Algae

Larval stages

Metamorphosed fry

LIVE FOOD ACHIEVEMENTS - ALGAE

Shift in algal production techniques ...shift in mentality

Outdoor extensive systems

Indoor

PBR

Fresh and frozen algal pastes

Dried algae or algal substitutes

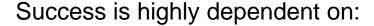
INCREASED BIOSECURITY

Increased consistency in fry performance

Easier use

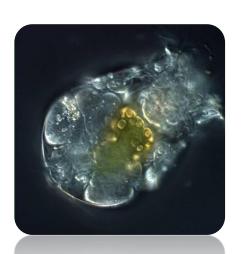
To achieve high survival rates and high-quality fry,

high-quality algae remain fundamental



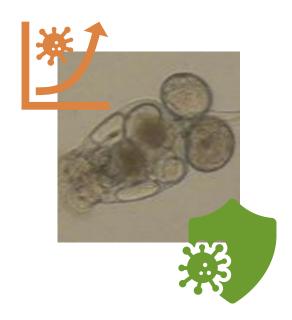
LIVE FOOD ACHIEVEMENTS - ROTIFER CULTURE

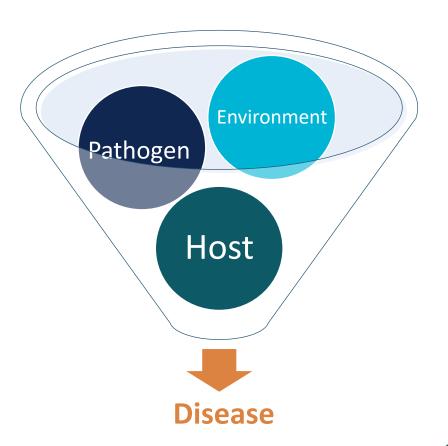
Rotifer culture consistency has evolved thanks to:


- More controlled and intensified culture systems
- Recirculation/semi-continuous/continuous systems for HD rotifer culture => shorter feed particle retention time => lower bacterial load

- Knowledge and personal skills
- Adaptation in the use of culture and enrichment products ifo local conditions

Evolution in rotifer culture and enrichment products





LIVE FOOD ACHIEVEMENTS - ROTIFERS

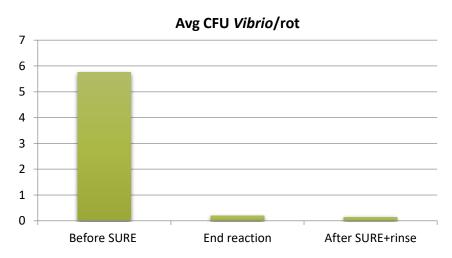
Attention towards microbial management:

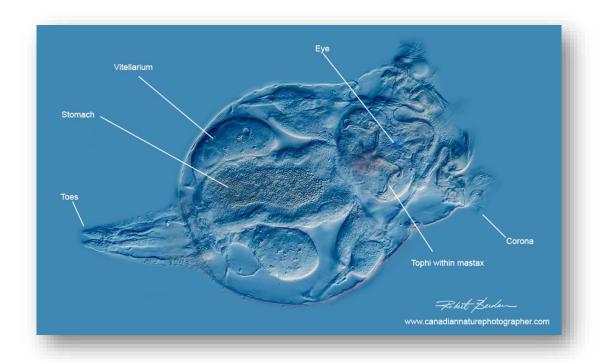
- Disinfection to reduce the transfer of potential pathogens and lower the Vibrio loads
- Use of probiotics to steer and control the microflora

ROTIFER DISINFECTION

Example: Disinfectant application for Vibrio reduction in rotifers

Application of a water conditioner containing herbal ingredients


- can be used at the end of a standard rotifer culture or enrichment
- directly in the rotifer tank or in the concentrator/rinser



USE OF PROBIOTICS

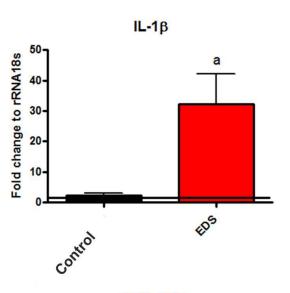
After reducing the *Vibrio* load in the live food, and especially in rotifers, it is advised to use **probiotics** to avoid the development of fast-growing opportunistic bacteria.

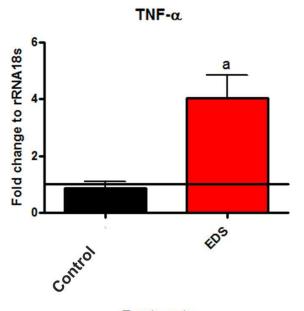
Rotifers can be used as a **vector** for the probiotics, as opposed to the direct use of probiotics in the larval rearing water.

ENRICHMENTS WITH NUTRACEUTICALS

The enrichment product "Easy DRY SELCO" has proven to **stimulate the immune system** of Seabream larvae in very early stages.

(De Wolf et al, EAS 2016)





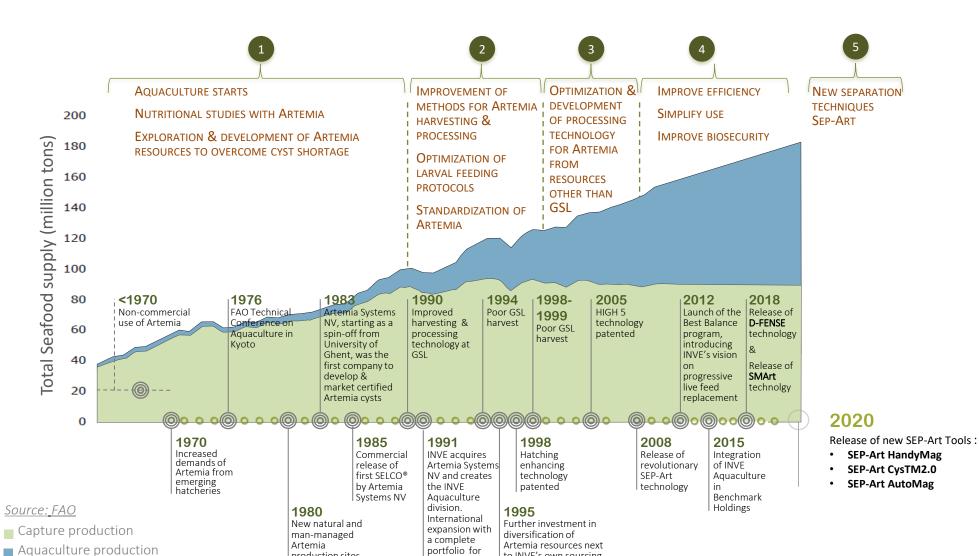
THE LONG-LASTING EFFECT OF IMMUNOSTIMULANTS ADMINISTERED IN EARLY LIFE ON THE IMMUNE SYSTEM OF SEABREAM *S.aurata L.* LARVAE

T. De Wolf*1, S.Picchietti², F. Proietti Serafini², S.Lenzi¹, E.Bequé³ and G.Rombaut³

Treatments

Treatments

INNOVATIONS


Ŵ

5

LIVE FOOD ACHIEVEMENTS - ARTEMIA

production sites

identified

larval nutrition

to INVE's own sourcing

at the GSL since 1991

SEP-Art HandyMag

SEP-Art CysTM2.0

SEP-Art AutoMag

LIVE FOOD ACHIEVEMENTS — HARVESTING TOOLS

How to separate empty cyst shells from the hatched nauplii?

Double sieve separation

Chemical decapsulation

SEP-Art technology

Instar I

Instar II

LIVE FOOD ACHIEVEMENTS - HARVESTING TOOLS

A **new generation** of separation tools facilitates the harvesting of Artemia nauplii from SEP-*Art* cysts – 3 types:

- The SEP-Art HandyMag is a manual tool
- The SEP-Art CysTM, SEP-Art CysTM 2.0 & Drum are semiautomated
- The SEP-Art AutoMag is a fully automated tool.

LIVE FOOD ACHIEVEMENTS — HARVESTING TOOLS

- SEP-Art technology simplifies
 and standardizes the use of Artemia, separating the cyst & cyst shells from the nauplii easily and efficiently
- The SEP-Art technology is an environmentally friendly technology, offering an alternative for the decapsulation process

LIVE FOOD ACHIEVEMENTS - ARTEMIA

Changes in the philosophy of Artemia enrichment:

Evolution from a "simple" HUFA enriched live prey into a biosecure, nutritionally complete, biochemically optimized live prey that still holds a secret for the success of larval rearing

LIVE FOOD ACHIEVEMENTS — ARTEMIA

Further trends

- Automation of feeding / dosing devices
- Automatic counting devices
- Simplified and more controlled enrichment systems
- Longer conservation techniques for the ready-to-feed Artemia

Broodstock

- ➤ Programming egg supply
- ➤ Broodstock diets

BROODSTOCK ACHIEVEMENTS

Controlled thermo-photoperiod

Consistent egg supply

Biosecurity

- Pathogen screening
- Preventive programs for bacterial infections and parasites

Nutrition

- Most species are fed successfully on 100% dry broodstock diets
- Diets optimized for spawning season recovery phase/rest phase

BROODSTOCK ACHIEVEMENTS

Genetics

- The backbone of fry performance and there is no doubt that we need to continue to work on broodstock genetics in the future
- Improvements towards growth, disease resistance, deformities

Trait	Average genetic gain per generation	No. of estimates
Body weight	12.7 %	61
Filet and meat yield	0.7 % units	3
Survival	6.4 % units	3
Disease resistance	12.5 % units	7

CO-FEEDING AND WEANING DIETS

- In the past, larval rearing performance mainly depended on the availability of high-quality live food
- Live food remains an indispensable factor for the success of larval rearing
- Trends in the use of dry diets:
 - Optimized formulas and physical behavior
 - Early introduction in the feeding protocol
- Last generation dry diets are giving the opportunity to further standardize the larval rearing production, reducing the risk of human errors
- Simplifying the larval rearing process and more importantly increasing the predictability of quality fry production unleashing the production potential of marine fish hatcheries

CO-FEEDING AND WEANING DIETS

Examples of adaptations of feeding protocols using last generation larval diets:

Gilthead seabream: Reduction of the rotifer consumptions by 50-80% without decreasing the larval performance

Sea bass larval rearing:

- Algae and Rotifer are not used
- Specialty Artemia is started by day 9 post-hatch

Now improved by using Greenwater and use of dry diets from 5dph resulting in **better survival rates and more resistant larvae**

ADAPTATIONS OF FEEDING PROTOCOLS FOR OTHER SPECIES

Introduction of early larval diets to complement live food are studied for different species among which:

- Asian Sea Bass
- Hybrid Grouper

Challenges:

- Adaptation to local conditions
- No pure oxygen supply
- Basic water and air filtration systems
- Basic biosecurity levels
- Need for mindset change for technology transfer

SUSTAINABILITY AND THE FUTURE

More attention toward sustainability, ethics and environmental awareness

- Quality labels Certified Artemia
- Welfare
- Sustainable raw materials and packaging
- Optimized use of the feed ingredients, improved FCRs and in general, work under more intensive and controlled environments
- Circular economy and re-use of byproducts
- Blue economy: reduced carbon footprint, LCA,... Increase sustainability through technological innovation

Automation for monitoring of water and performance parameters, improved data collection, artificial intelligence, predictive feeding programs

→ Precision Aquaculture

Legislation – common efforts needed: Regulations and legislation should follow and support the development of new aquaculture methods and technologies to make aquaculture more efficient and resilient.

CONCLUSIONS AND TAKE-AWAYS

- The Aquaculture sector has shown a positive growth trend with optimizations in the production of live food, formulations of dry feeds, microbial control and optimizations of the rearing protocols
- Disease prevention in all rearing stages is fundamental and can be influenced through genetics, biosecurity, microbial control and activation of the immune system
- Sustainable sources and resources need to be used under an ethical correct contest
- Technological improvements are being done but more must follow to drive the sector to an industrial level

GENETIC RESISTANCE IMMUNITY MINIMIZE CHALLENGE STRESS MICROBIAL MANAGMENT

A sustainable and efficient production benefits the entire value chain

