Nutritional quality assessment of traditional sheep products from the northern Spain (Cantabrian area)

Ph.D. candidate: Leire Bravo-Lamas

Supervisors: Noelia Aldai & L. J. R. Barron

Lipids in Ruminants
PhD project presentation

NAZIOARTEKO BIKAINTASUN CAMPUSA CAMPUS DE EXCELENCIA INTERNACIONAL

21 September 2016 - Ghent

Introduction

Latxa autochthonous dairy sheep → Semi-extensive production system.

Winter → fed by concentrates and conserved forages

→ lambs are born.

Milking period

→ February -

late June (late

lactation).

Grass availability increases

Gradual incorporation to pastures \rightarrow by May on \rightarrow almost completely grass fed.

Introduction

CHEESE

The milk is almost exclusively used to make Idiazabal P.D.O. cheese

LAMB

The lambs are slaughtered and commercialized at early age

Hypothesis

The characterization and differentiation of the nutritional and sensory quality of locally produced animal foods will contribute to the sustainability of local breeds and extensive production systems.

Objectives

Quality assesment of

- i) Latxa milk and 'Idiazabal' cheese extensively produced at different altitudes (valley & mountain grasslands)
- ii) lamb commercialized in Basque region (northern Spain)

Ph.D. structure

i) Dairy products

- Milk and cheese fatty acid
 (FA) profile as affected by pasture composition
- Sensory analysis of cheese

ii) Lamb

- Assesment of the variability of FA composition (Bravo-Lamas et al., 2016)
- Sensory analysis
- Volatiles & odour analysis

Ph.D. structure

i) Dairy products

- Milk and cheese fatty acid
 (FA) profile as affected by pasture composition
- Sensory analysis of chaese

ii) Lamb

- Assesment of the variability of FA composition (Bravo-Lamas et al., 2016)
- Sensory analysis
- Volatiles & odour analysis

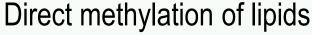
Milk 6 flocks x 3 collections (bulk milk) x 2 sampling months (May & June) → n=36

Pastures (valley/mountain)

Botanical sp. were collected in 2 samplings (May & June)

Aralar Natural Park


M & M



Lipid extraction

(Aldai et al., 2013)

Freeze-dried

(Alves et al., 2008)

GC (175°C) - total FAME

(Kramer *et al.*, 2008)

SP-2560, 100m

GC (175°C) - total FAME

GC (150°C) - trans-18:1

(Kramer et al., 2008)

SLB-IL111, 100m

GC - CLA & others

(Delmonte et al., 2012)

y = Pasture type + Sampling month + P*S

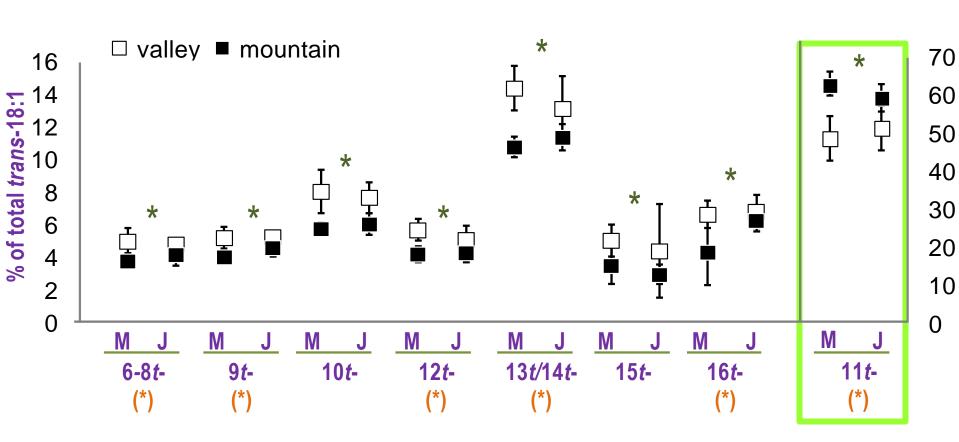
y = Pasture type + Sampling month + Flock(Pasture) + P*S

Results

PASTURE: Estimated FA composition (g/100g total FAMEs)

	Valley		Mountain			Sign.		
	May	June	May	June	SEM	Р	S	P*S
SFA	29.9	25.0	24.2	24.5	1.35	ns	ns	ns
16:0	20.7	18.0	16.7	16.2	1.02	ns	ns	ns
18:0	2.41	2.10	1.91	2.25	0.11	ns	ns	ns
MUFA	6.42	7.13	5.88	6.18	0.27	ns	*	ns
3 <i>t</i> -16:1	1.80	2.34	1.60	1.72	0.16	ns	*	ns
9 <i>c</i> -18:1	3.34	3.59	3.19	3.20	0.09	ns	ns	ns
PUFA	59.4	63.1	65.1	63.0	1.44	*	ns	ns
18:2n-6	18.2	16.6	17.1	17.0	0.33	ns	ns	ns
18:3n-3	40.9	46.1	47.5	45.5	1.44	*	ns	ns

10


MILK: Fat (%) and fatty acid composition (g/100g fat)

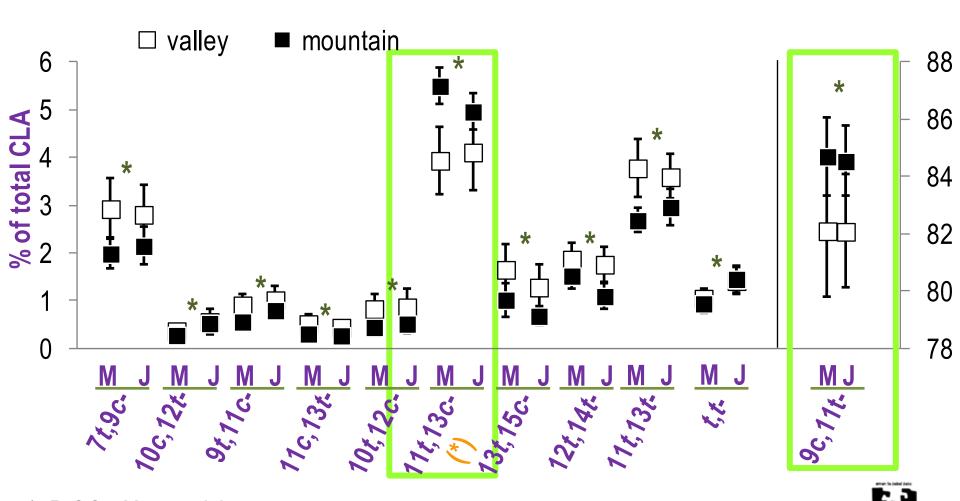
		Valley		Mountain			Sign.			
		May	June	May	June	SEM	Р	S	P*S	
	Fat	7.43	7.96	8.34	8.55	0.09	*	*	ns	
5	SFA	62.5	58.7	56.4	55.1	0.38	*	*	*	
Ŋ	ИUFA	26.1	29.4	29.6	31.1	0.27	*	* *		
	<i>t</i> -MUFA	5.58	6.18	7.95	7.21	0.10	*	ns	*	
	10 <i>t</i> -18:1	0.39	0.41	0.40	0.38	0.01	ns	ns	*	
	11 <i>t</i> -18:1	2.44	2.79	4.39	3.74	0.09	*	*	*	
	10 <i>t</i> -/11 <i>t</i> -	0.17	0.15	0.09	0.10	0.01	*	ns	*	
r	nc-dienes	1.31	1.45	1.77	1.71	0.03	*	ns	*	
nc-trienes		0.29	0.27	0.41	0.38	0.01	*	*	ns	

SEM, standard error of the mean; P, pasture type (valley, mountain); S, sampling month (May, June); P*S, interaction term; SFA, saturated fatty acid; MUFA, monounsaturated fatty acid; nc-, non conjugated. *, $P \le 0.05$; ns, not significant

Results

MILK: Trans-18:1 isomers (%) relative to the total trans-18:1 content

^{*,} *P*≤0,05; M, may; J, june.


MILK: Fatty acid composition (g/100g fat)

n 26	Valley		Mountain			Sign.		
n=36	May	June	May	June	SEM	Р	S	P*S
PUFA	3.32	3.45	4.02	4.22	0.05	*	*	ns
n-6	2.17	2.25	2.18	2.31	0.027	ns	*	ns
18:2n-6	1.72	1.70	1.69	1.81	0.024	ns	ns	*
n-3	1.15	1.20	1.84	1.91	0.030	*	ns	ns
18:3n-3	0.82	0.83	1.36	1.43	0.023	*	ns	ns
CLA	1.69	2.04	2.81	2.62	0.06	*	ns	*

SEM, standard error of the mean; P, pasture type (valley, mountain); S, sampling month (May, June); P*S, interaction term; PUFA, polyunsaturated fatty acid; CLA, conjugated of linolenic acid. *, *P*≤0,05; ns, not significant.

Results

MILK: CLA isomers (%) relative to the total CLA content

^{*,} *P*≤0,05; M, may; J, june.

Conclusions

 Milk from ewes reared in mountain pastures provided a higher fat content with a healthier fatty acid profile, with a characteristic biohydrogenation products from linolenic acid.

Ph.D. GENERAL CONCLUSION

 The results from this ph.D. Project will contribute to the added-value of animal foods with "quality labels" produced from local breeds and extensive production systems.

Acknowledgments:

Ghent University & Specialist course on Lipids in Ruminants organizers

EUSKO JAURLARITZA

HEZKUNTZA, HIZKUNTZA POLITIKA ETA KULTURA SAILA

GOBIERNO VASCO

DEPARTAMENTO DE EDUCACIÓN, POLÍTICA LINGÜÍSTICA Y CULTURA

NAZIOARTEKO BIKAINTASUN CAMPUSA CAMPUS DE EXCELENCIA INTERNACIONAL

