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Had iemand me in mijn kleuterjaren gezegd dat ik later in de bodem tussen de regenwormen
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Summary

During the last decades, manual felling and logging of forest trees by animals or small
tractors evolved towards mechanized harvesting, using heavy tractors or specialized forestry
machines with increasing masses. This development may cause soil degradation in forest
ecosystems as the resulting soil compaction modifies soil characteristics that are important
for the sustained provision of ecosystem services. Consequently, soil conditions may become
unfavourable to soil fauna, herb and tree layer and in the long-term it may lead to a loss of

biodiversity, soil fertility and stand productivity.

The impacts of site and stand characteristics, machine weight and traffic intensity on the
compaction degree were examined in a first field trial, performed in eight Flemish forest
stands. If based on bulk density and penetration resistance, we generally found low
compaction degrees, even on the vulnerable soil textures. Effects could be explained by high
soil water contents in the clayey soils (leading to clear rut formation) and a high
precompression stress (as indicated by the high initial bulk densities) on the sandy and
loamy to silt loamy soils. Results showed that soil water content and initial compaction
status (as an indicator for the precompression stress) should always be taken in
consideration when evaluating the influence of texture on the compaction degree. Higher
machine masses and traffic intensities increased the compaction degrees. Although
compaction degrees remained low, increased carbon dioxide concentrations within tracks on
the sandy soils showed that soil aeration was severely affected by machine traffic. These
results indicated that quantification of the soil impact based on bulk density and penetration
resistance may lead to an underestimation and should take more sensitive soil variables such
as soil carbon dioxide concentration into account. The vulnerability to compaction is often
regarded as negligible on sandy forest soils and was therefore examined in detail in a second
field trial. Significant increases of bulk density and penetration resistance and a positive
(logarithmic) relationship with traffic intensity were found. The application of a brash mat
reduced the compaction degree. The results of both field trials were combined with
international study results to draw general conclusions on the impact of mechanized

harvesting. A meta-analysis was performed to examine the effects of soil texture, machine



Summary

weight and traffic intensity. It showed clear compaction degrees for both clayey as sandy
textures and confirmed the significant impact of the initial compaction status and machine
mass. A lot of interesting studies could not be implemented due to lack of important

information. Recommendations for future research were therefore formulated.

Abiotic changes may yield biotic effects and these were examined in a second meta-analysis,
focussing on survival, height and diameter growth of seedlings of mainly light tolerant tree
species. The influence of soil compaction on seedling growth and survival was predominantly
insignificant, due to strong variation in the datasets. However, they indicated a different
response in accordance to soil texture, with negligible to slightly positive impacts on sandy
to loamy soils and more negative impacts on silty to clayey soils. Again a lot of the

performed studies lacked important information.

As soil compaction induces biotic effects, fast recovery is desired. Compaction status of nine
forest stands on three soil textures where the last harvesting activity took place seven to
nine years ago was determined by measuring penetration resistance along transects. In all
forest stands, traces of former machine traffic were found in the shape of locally increased
or overall high penetration resistance. This means that complete recovery of compacted
forest soils was certainly not achieved within seven to nine years after the last machine
impact. As this is a common period between two harvesting activities, effects will
accumulate and expand at subsequent harvests in case machine traffic is not restricted to
permanent skid trails. A fourth field trial examined whether stimulating biological activity by
means of a manipulation of litter quality, soil acidity and earthworm populations could
accelerate recovery. Liming and the application of calcium-rich litter positively influenced
the numbers of inoculated anecic earthworms that were retraced, with a positive feedback
on soil acidity and litter decomposition. Within the short study period, small reductions of
the compaction degree due to anecic worms could only be shown on the non-trafficked soil
beside the wheel tracks. Unfavourable soil acidity and nutrient status probably hampered
ecological restoration. We hypothesize that ecological restoration of compacted soils is
possible though time-consuming, stipulating that soil conditions are favourable, particularly
to anecic earthworms. An increase of their survival rate and activity is best achieved through
an admixture containing species with high quality litter, which induce lower soil acidity and a

better nutrient status.



Summary

In this thesis we gained insight into i) the abiotic and biotic effects of soil compaction as
influenced by stand, site and harvesting characteristics, ii) the compaction status of Flemish

forest soils, and iii) the potential of ecological restoration options for compacted forest soils.

Results showed that the risk for soil compaction should be taken into account for all texture
classes when planning and preparing harvesting activities. We recommend performing
harvesting activities on sandy soils at intermediate soil water contents, while on medium- to
fine-textured soils very dry conditions are optimal for limitation of the soil impact. The
machines used should always be tuned to the intensity and the demands of the harvesting
activity and the field circumstances. We emphasize to concentrate the traffic on designated
skid trails. In this way only a restricted portion of the area is damaged, enabling the soil
between trails to recover from the compacted status applied during previous harvesting
activities. A brash mat may be very effective to further reduce the degree of soil compaction
on these trails. Admixtures with tree species that provide good quality litter, perhaps
combined with liming may imply stimulation of biological activity and in the long-term a

decrease of the compaction degree.






Samenvatting

Tijdens de laatste decennia hebben manuele vellingen en uitsleepmethoden met dieren of
kleine tractoren plaats gemaakt voor gemechaniseerde houtoogst waarbij zware tractoren of
gespecialiseerde bosbouwmachines met toenemend gewicht gebruikt worden. Deze evolutie
kan bodemdegradatie veroorzaken in bosecosystemen aangezien de resulterende
bodemverdichting bodemkarakteristieken wijzigt die van belang zijn voor een duurzame
voorziening van ecosysteemdiensten. Hierdoor kunnen bodemcondities ongunstig worden
voor bodemfauna, kruid- en boomlaag wat op lange termijn kan leiden tot een verlies van

biodiversiteit, bodemvruchtbaarheid en standplaatsproductiviteit.

De invloeden van bodem- en bestandskarakteristieken, machinegewicht en
berijdingsintensiteit op de verdichtingsgraad werden onderzocht in een eerste veldproef,
uitgevoerd in acht Vlaamse bosbestanden. Op basis van bulkdensiteit en
indringingsweerstand vonden we algemeen lage verdichtingsgraden, ook op de gevoelige
bodemtexturen. Dit is het gevolg van hoge bodemvochtgehaltes op de clayey bodems
(resulterend in duidelijke spoorvorming) en sterke precompressie (zoals aangegeven door de
hoge initiéle bulk densiteiten) op de bodems met sandy en loamy tot silt loamy texturen. De
resultaten benadrukten dat bij het evalueren van de invloed van de bodemtextuur op de
verdichtingsgraad het bodemvochtgehalte en de initiéle verdichtingsgraad (als indicator voor
de precompressie) steeds in rekening moeten gebracht worden. Een toename van het
machinegewicht en de berijdingsintensiteit verhoogden de verdichtingsgraad. Hoewel de
verdichting algemeen beperkt bleef, toonden verhoogde koolstofdioxide concentraties in de
wielsporen op zandige bodems aan dat de aératie van de bodem ernstig gewijzigd was als
gevolg van machineverkeer. Dit geeft aan dat het bepalen van de bodemimpact op basis van
bulkdensiteit en indringingsweerstand kan leiden tot een onderschatting en dat gevoeligere
indicatoren, zoals de bodemconcentratie aan koolstofdioxide, in rekening moeten gebracht
worden. De kwetsbaarheid voor verdichting wordt op zandige bodems vaak beschouwd als
verwaarloosbaar en werd daarom meer gedetailleerd onderzocht in een tweede veldproef.
Significante toenames van bulkdensiteit en indringingsweerstand en een positieve

(logaritmische) relatie met berijdingsintensiteit werden vastgesteld. Het gebruik van een
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takkenmat reduceerde de verdichtingsgraad. De resultaten van beide veldproeven werden
gecombineerd met de resultaten van internationale studies zodoende algemene conclusies
te kunnen trekken over de impact van gemechaniseerde houtoogst. Een meta-analyse werd
uitgevoerd om de effecten van bodemtextuur, machinegewicht en berijdingsintensiteit te
onderzoeken. Resultaten gaven duidelijke verdichtingsgraden aan voor zowel clayey als
sandy texturen en bevestigden de significante invloed van de initiéle verdichtingsgraad en
het machinegewicht. Gezien heel wat interessante studies niet gebruikt konden worden als
gevolg van een gebrek aan belangrijke informatie werden aanbevelingen geformuleerd voor

toekomstig onderzoek.

De abiotische wijzigingen kunnen resulteren in biotische effecten, die onderzocht werden in
een tweede meta-analyse, waarbij gefocust werd op overleving, hoogte- en diametergroei
van zaailingen van voornamelijk lichttolerante boomsoorten. De invloed van
bodemverdichting op overleving, hoogte- en diametergroei was overwegend niet-significant
als gevolg van sterke variatie tussen de studieresultaten. Ze duidden echter wel op een
verschillende respons van overleving naargelang de bodemtextuur, met verwaarloosbare tot
licht positieve invloeden op textuurgroepen sand en loam en eerder negatieve effecten op
textuurgroepen silt en clay. Opnieuw vertoonden heel wat studies een gebrek aan

belangrijke informatie.

Aangezien bodemverdichting biotische effecten induceert, is snel herstel gewenst. In negen
bosbestanden verspreid over drie texturen, waar de laatste houtoogst zeven tot negen jaar
geleden plaats vond, werd de verdichtingsgraad bepaald door het opmeten van de
indringingsweerstand langsheen transecten. In alle bestanden werden sporen van vroeger
machineverkeer gevonden onder de vorm van lokaal of algemeen verhoogde
indringingsweerstanden. Dit betekent dat volledig herstel van verdichte bodems zeker niet
bereikt werd zeven tot negen jaar na de laatste berijding. Aangezien dit de normale periode
is tussen twee houtoogsten zullen effecten accumuleren en uitbreiden indien het
machineverkeer niet beperkt wordt tot vaste ruimingspistes. Een vierde veldproef
onderzocht daarom of een stimulans van de biologische activiteit door wijziging van
strooiselkwaliteit, bodemzuurtegraad en/of wormpopulaties kon leiden tot versneld herstel
van verdichte bodems. Bekalken en de applicatie van calciumrijk strooisel hadden een

positieve invloed op het aantal geinoculeerde anecische wormen dat teruggevonden werd,

Vi
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met een positieve feedback op bodemzuurtegraad en strooiselafbraak. Binnen de korte
studieperiode konden enkel lichte dalingen van de verdichtingsgraad door activiteit van
anecische wormen worden vastgesteld op de niet-bereden oppervlakte naast de sporen.
Ongunstige bodemcondities (zuurtegraad, nutriéntenstatus) hebben wellicht het ecologisch
herstelproces vertraagd. We veronderstellen dus dat ecologisch herstel van verdichte
bodems mogelijk maar langdurig is, en als voorwaarde stelt dat bodemcondities gunstig zijn
voor bodemorganismen, voornamelijk anecische wormen. Een betere overleving en
verhoogde activiteit van deze wormen kan verkregen worden door een groter aandeel
boomsoorten met een goede strooiselkwaliteit te voorzien, zodat een lagere

bodemzuurtegraad en een betere nutriéntenstatus bereikt wordt.

In dit doctoraat verkregen we meer inzicht in i) de biotische en abiotische effecten van
bodemverdichting, onder invloed van bestands-, standplaats- en houtoogstkarakteristieken,
ii) de verdichtingsgraad van Vlaamse bosbodemes, en iii) de opties voor ecologisch herstel van

verdichte bodemes.

De resultaten tonen aan dat het risico op bodemverdichting in rekening moet gebracht
worden voor alle textuurklassen wanneer houtoogsten gepland en voorbereid worden. We
raden aan om houtoogsten op zandige bodems uit te voeren bij intermediaire
bodemvochtgehaltes, terwijl op intermediaire tot fijne texturen heel droge bodemcondities
optimaal zijn voor een beperking van de bodemschade. De machines moeten steeds
aangepast zijn aan de intensiteit en de noden van de houtoogst en de
terreinomstandigheden. We benadrukken het belang om het machineverkeer te
concentreren op vaste ruimingspistes. Op deze manier wordt enkel een beperkt deel van het
bestand beinvloed, zodat de bodem tussen de pistes kan herstellen van de verdichting die
veroorzaakt werd tijdens voorgaande houtoogsten. Een takkenmat kan erg efficiént zijn om
de verdichtingsgraad op deze pistes verder te reduceren. Een menging van boomsoorten die
een goede strooiselkwaliteit bieden (eventueel gecombineerd met een bekalking) kan de
biologische activiteit stimuleren en op lange termijn een daling van de verdichtingsgraad

induceren.

Vii






List of abbreviations and symbols

Abbreviations

BD
CO,
d.f.
GLM
HSD
0,
PR
SD
SE

Symbols

a
n

p
pH(KCI)

bulk density

carbon dioxide

degrees of freedom

General linear model(ling)
honestly significant difference
oxygen

penetration resistance
standard deviation

standard error

significance level

number of samples or replications

significance of statistical test (p-value)

acidity, determined after suspension in a potassium chloride (KCl) solution (the
lower the pH values, the more acid is the soil)

weighted Pearson product-moment correlation coefficient

Definition of some terms used in the thesis

(Dry) bulk density ratio of the dry mass of the soil to its volume

Penetration resistance measure for the resistance that a soil exerts against the

growth of roots (measure for soil strength)

Precompression stress internal strength of soils, which resulted from

pedogenetic processes, anthropogenic effects, or
hydraulic site specific conditions. If the soil body is
stressed less than the precompression stress, soils react

elastic and no additional settlement occurs. Stresses



List of abbreviations and symbols

Soil contact pressure

Soil strength (or bearing capacity)

Traffic intensity

exceeding the precompression stress lead to plastic soil
behaviour and the soil body becomes deformed and
permanently compacted (Horn et al. 2007).

the amount of kg per square cm? contact area that is
exerted on the soil, or thus the ratio of the machine
mass to the contact area of the machine with the soil
the capacity of the soil to withstand forces without
experiencing failure

the number of machine passes or skidding cycles



1 Introduction

The intense deployment of heavy machinery during forest harvesting and their potentially
adverse effects on the soil due to soil compaction have received increasingly more attention
the last decades. It may lead to overall reduced ecosystem diversity, fertility and functioning
in the short or long-term and hamper the sustained provision of ecosystem services. In the
following sections, we briefly describe the change of harvesting techniques towards
mechanized harvesting (§1.1), the abiotic and biotic effects of soil compaction on the

ecosystem (§1.2) and the recovery of compacted forest soils (§1.3).

1.1 Changing of harvesting techniques

For centuries trees have been cut by means of axes and handsaws whereupon small tree
logs were removed from the stand by hand or using a barrow. Horses were also frequently
brought into action for the hauling of bigger logs or trees because of their high tractive
power, speed, intelligence, cheapness and their good performance on rough and stony
forest soils. However, their power and thus the dimensions of the logs they can pull are not
unlimited. Moreover, the duration of their efforts is restricted by the climate and the terrain
slope (Tack et al. 1993). Mechanized forest harvesting started at the beginning of the 20"
century, from the moment tractors were brought into action in forest stands for the removal
of logs or complete trees. First, agricultural tractors were used and adapted to fit the needs
for tree logging (Fig. 1.1). Subsequently, around 1950, specialized forestry machines, such as
harvesters, forwarders, skidders, feller-bunchers and knuckleboom loaders, were used for
felling and logging (Van Acker 2004). Nowadays, harvests in softwood stands pass off highly

mechanized, often deploying harvesters and forwarders.

The former cuts, delimbs and barks trees, cuts the stems at length and piles the logs in one
smooth motion, all by means of a processor unit that is attached to a crane arm with a reach
of approximately 10 m. Tree logs are removed by a forwarder that loads the logs in its
loading space. Cable or grapple skidders are often used for whole-tree logging after
chainsaw felling in hardwood stands and drag the trees or logs towards the forest edge. All

machine types can be equipped with wheels or tracks but wheeled machines are more often

1
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used as they are faster and more movable and they do not induce high soil disturbance to
soil or forest roads when turning. Tracked vehicles (and horses) are predominantly applied
on sensitive soils as they have a bigger bearing surface and thus lower soil contact pressure,
inducing an overall lower soil compaction degree. They can also be used on slopes due to
their higher stability. For very steep forests, where the application of the regular forestry
machines is no longer possible, special logging techniques have been developed, such as
cable or helicopter yarding, although very expensive and only applicable in exceptional

situations (e.g., Goris et al. 2005).

: >

Fig. 1.1 Changing of harvesting techniques from horse (A) and tractor logging (B) to specialized forestry machines such as
skidders (C), harvesters (D) and forwarders (E) [photographs: Robbie Goris, www.deere.com].

The trend towards mechanized harvesting and the recently developed techniques (such as
remote controlled synthetic cables) brought along several benefits, such as increased
productivity, higher safety and a decrease of the physical stress for the forest workers.
However, the masses of these machines easily mount up to 12-16 tonnes in unloaded state
and to more than 20 tonnes in loaded state (e.g., www.deere.com 2011), possibly inducing
adverse soil impacts. As a good soil structure is of great importance to soil fauna, tree, herb
and moss layer, serious concern has risen over the short and long-term ecosystem effects of
soil compaction induced by mechanized harvesting, within the context of sustainable forest

management.
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1.2 Ecosystem effects of soil compaction

1.2.1 Definition of soil compaction

Soil compaction, often accompanied by rutting, is a typical process that may result from
static and dynamic forces applied by machine traffic, especially with inappropriate use of
heavy machinery. Soil compaction refers to the process in which soil pores are compressed
or destroyed and surface aggregates are broken down (Fisher & Binkley 2000). Macropores
(diameter d >50 um) are transformed into meso- (0.2 um < d < 50 um) and micropores (d
<0.2 um). It may imply a reduction of the total porosity by 20% and a 50-60% decrease in the

amount of macropores in favour of smaller pores (Herbauts et al. 1996; Teepe et al. 2004).

1.2.2 Abiotic effects

Compression of soil pores results in an increase of bulk density (BD), defined as the
proportion of the dry mass of the soil to its volume (Cullen et al. 1991). Alban et al. (1994)
noticed a BD increase of 22%, which amounted up to 40% in the study of Miller et al. (1996).
As soil deforms when being compacted, the pore continuity is reduced, even when volume
reduction is insignificant. This was emphasized by Benthaus & Matthies (1993), Herbauts et
al. (1996) and Berli et al. (2003). Together with the decreasing total soil porosity it leads to
changes in the soil water retention capacity (Reicosky et al. 1981; Ballard 2000). It may lower
the saturated hydraulic conductivity by 80% or more (Benthaus & Matthies 1993) and
infiltration rates from 11.4 cm h™ for undisturbed soil to 1.1 cm h™ within wheel tracks
(Dickerson 1976). Cullen et al. (1991) and Ballard (2000) made similar findings. In general,
gas exchange is also hampered (Gaértig et al. 2002). Several studies indicated an increase of
soil carbon dioxide (CO,) concentration and decrease of oxygen (0O,) concentration due to an
unfavourable influence on soil aeration (e.g., Schaffer 2005; Gebhardt et al. 2009; Startsev &
McNabb 2009). The disruption of the air and water balance in the soil may lead to an
alteration of chemical processes (Woodward 1996; Arocena 2000; Ballard 2000), such as an
increased N,O emission (Teepe et al. 2004) and reduced mineralization and availability of
nitrogen (Van der Linden et al. 1989). Herbauts et al. (1996) found a decrease of redox
potential due to temporary waterlogging. Tan & Chang (2007) showed that soil compaction

had a negative impact on net nitrification rates, although Blumfield et al. (2005) did not
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notice a significant effect on nitrogen mineralisation or nitrification. Penetration resistance
(PR), which acts as a measure for soil strength (defined as the capacity of the soil to
withstand forces without experiencing failure) and indicates the resistance that a soil exerts
against the growth of roots, increases as pores become smaller and porosity decreases
(Shetron et al. 1988; Alban et al. 1994). Aust et al. (1998) and Nugent et al. (2003) found a

30-50% increase of PR, due to machine traffic.

1.2.3 Biotic effects

A good soil structure is of great importance to soil fauna (Jordan et al. 1999), herb and moss
layer (Buckley et al. 2003) and tree roots (Greacen & Sands 1980). Soil compaction has an
important influence on soil structural characteristics, soil aeration and the soil water
balance, and may considerably affect root development and soil organisms, possibly
inducing a reduction of ecosystem diversity and functioning. Since soil fauna have an
important role in ecosystem processes as decomposition, release of nutrients and the
creation of a good soil structure (Gobat et al. 1998), soil compaction may directly and

indirectly change the fertility and the productivity of the site.

1.2.3.1 Growth and survival in herb and tree layer

Root tips have to overcome soil strength to be able to elongate and penetrate through the
soil. Moreover, they need pores and do not penetrate compact soil volumes since their O,
demand limits their ability to enter these soil aggregates. Root growth may thus be
hampered in compacted soil (Greacen & Sands 1980; Heilman 1981) due to the lower pore
space, reduced oxygen supply and the high soil strength, possibly inducing a lower uptake of
nutrients and water (Heilman 1981; Kozlowski 1999; Jordan et al. 2003). Hampered gas
exchange possibly affects growth and activity of roots (Schumacher & Smucker 1981; Bathke
et al. 1992). Arshad et al. (1996) stated that BD is growth-limiting when the value exceeds
1470 kg m™ on clay, 1750 kg m™ on silt and 1800 kg m™ on loam and sand. The USDA Forest
Service determined that a BD increase of more than 15% is in general detrimental for the soil
ecosystem (Powers et al. 1998). Whalley et al. (1995) found that root growth slowed down
at a PR of 2 MPa and stopped when PR values exceeded 3 MPa. Seedling root growth is also
reduced when O, concentration drops beneath the 6-10% range (Grant 1993).

Macroporosity should be at least 10% in order to keep good air diffusion, microbial activity

4
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and root development (Koorevaar et al. 1983; De Bruycker 1984). It should be mentioned
that the impact of soil compaction on growth differs among species (cf Godefroid & Koedam
2004) and that thresholds for BD, PR and macroporosity provide no direct link to the
ecological processes that accompany soil compaction. For example, even though the
obtained BD may be much lower than stated above, soil aeration may already be influenced

and induce negative effects on root growth due to decreased O, concentration in the soil.

When critical limits are crossed, soil compaction may lead to higher seedling mortality
(Cheatle 1991; Simcock et al. 2006) and reduced tree growth (Maynard & Senyk 2004;
Bulmer & Simpson 2005; Gebauer & Martinkova 2005). Cheatle (1991) found that tree
survival and basal areas of Terminalia brasii were much lower on compacted areas.
Detrimental effects on growth of Pinus contorta on a sandy clay loam soil were observed by
Bulmer & Simpson (2005). Rhoades et al. (2003) showed that the mortality of Castanea
dentata seedlings due to the incidence of Phytophthora root rot was largest in wet,
compacted soils. However, the impacts of compaction on growth and survival are not
unequivocal and depend on soil type, water regime and species (Jones 1983; Gomez et al.
2002; Heninger et al. 2002; Dexter 2004). Compaction on sandy soils decreases sizes and
continuity of pores that are normally too wide to hold water against gravitational forces.
Therefore, water availability increases and this may positively influence root and seedling
growth (Agrawal 1991; Brais 2001; Gomez et al. 2002). Moreover, several studies indicated
that roots may still grow in compacted soils in case sufficient zones of weakness (e.g., soil
cracks, channels of dead roots...) are available (Greacen & Sands 1980; Jones 1983). Sanchez
et al. (2006) found that severe soil compaction had an insignificant impact on mean stand
volume of Pinus taeda. Nabe-Nielsen et al. (2007) showed that the regeneration of Ficus
boliviana and Terminalia oblonga even increased on compacted soils and Alameda & Villar
(2009) found a higher total biomass at higher compaction degrees possibly due to a greater
root-soil contact. According to Fleming et al. (2006), conifer survival and growth benefited

from soil compaction, regardless of climate and species.

The combination of soil churning, compaction and altered light availability that accompanies
traffic during harvests leads to higher habitat variation over the whole forest stand and
brings about a change of the diversity and composition of the herb layer (Small & McCarthy

2002; Decocq et al. 2004), due to species-dependent sensitivity to disturbances as soil
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compaction (Zwaenepoel 1989). On the skid trails particularly non-forest species are
favoured at the expense of interior forest species (Roberts & Zhu 2002; Buckley et al. 2003;
Ebrecht & Schmidt 2003, 2005; Zenner & Berger 2008), partially because of their higher

tolerance to soil compaction (Godefroid & Koedam 2004).

1.2.3.2 Soil fauna

As a result of soil compaction, soil fauna may be damaged physically, their movements may
be impeded and/or their food and O, supply may be changed (Smeltzer et al. 1982; Radford
et al. 2001; Battigelli et al. 2004). Bostrom (1986) found lower earthworm biomass and
lower ratio of juveniles to adults of Allolobophora caliginosa on compacted soil. The results
of Jordan et al. (1999) suggest that the degree of compaction was restrictive to Diplocardia
ornata but it affected D. smithii favourably. Pupin et al. (2009) found shifts from nitrifying
bacteria to fungal populations and denitrifying bacteria. The study of Schnurr-Piitz et al.
(2006) revealed that soil compaction favoured the occurrence of prokaryotes that are
capable of profiting from anoxic conditions. However, Busse et al. (2006) did not state an
effect on microbial community size or activity and Kara & Bolat (2007) also found that the
examined microfungal soil communities, which are significant for nutrient bioavailability

together with the microbial community, tolerated compaction.

1.2.4 Factors influencing the compaction degree

1.2.4.1 Characteristics of the forest site

It is generally assumed that medium- to fine-textured soils (clay, loam, silt and intermediate
textures) are more vulnerable to soil compaction from machine traffic than coarse-textured
soils (sand, sandy loam, loamy sand) (Larson et al. 1980; Hillel 1998; Fisher & Binkley 2000;
Smith 2003). Gomez et al. (2002) stated that the highest BD and the lowest porosities after
machine traffic were located on clay soils and Smith (2003) emphasized the important
influence of the clay content on the PR increase after machine traffic. However, Brais &
Camiré (1998) concluded that mechanized harvesting also increased soil BD in forest stands

on sandy soils. Soil porosity, and the average pore radius in particular, has a great influence
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in this process as smaller pores exert a greater resistance to deformation in comparison with

large pores (Greacen & Sands 1980).

When assessing the influence of soil texture on the degree of compaction, one should
certainly take the soil moisture content into account, as it determines the proportion
between soil compaction and plastic deformation (in the form of rutting) after the
application of machine forces (Abeels 1989). Hillel (1998) showed a graph, relating soil water
content to the maximum BD obtainable when applying a certain force with the Proctor test
(Proctor 1933) (Fig. 1.2), of which the shape applies to both medium- and fine-textured soils
(e.g., clay, clay loam, silt loam, loam). Howard et al. (1981), Smith et al. (1997) and
Williamson & Neilsen (2000) came to the same conclusion. The pore volume of a medium- to
fine-textured soil consists mainly of meso- and micropores that easily hold water against
gravitational forces. The smaller the pore diameter, the more the adhesion of water
molecules to soil colloids exceeds the force of gravitational capillarity. So in a saturated
state, all pores are filled with water that cannot be compressed (Froehlich & McNabb 1984)
and thus the soil is rather prevented from compaction in this case (Reicosky et al. 1981).
However, cohesion between particles is minimal (Al-Shayea 2001) and the soil has only a
very small ability to withstand applied machine forces. Therefore plastic deformation is the
dominant process (Howard et al. 1981; Williamson & Neilsen 2000), resulting in profile
disturbance and rut formation (Greacen & Sands 1980; Hillel 1998). Ruts may be deep and
show bulges at the edges that more or less compensate for the loss of soil within the ruts
(rut type 1; Fig. 1.3). Although almost no compaction takes place in these conditions,
machines may still impose a serious threat for the soil ecosystem as soil pores are closed off
and pore continuity is destroyed, leading to a hampered gas exchange and water infiltration.
A dry medium- to fine-textured soil typically resists compaction due to its stiff matrix and
high degree of particle-to-particle bonding, interlocking and frictional resistance to
deformation (Hillel 1998). This limits the compaction degree and more or less prevents
plastic deformation (McNabb & Boersma 1993). BD increases to a small extent and small ruts
are formed, without bulges at the edges (rut type 3; Fig. 1.3). At intermediate soil water
contents (optimum soil water content), the cohesion between the soil particles is smaller,
making the soil more sensitive and a combination of compaction and plastic deformation
takes place (Berli et al. 2003). BD increase may be large and intermediate ruts are formed

with small bulges at the edge that do not compensate for soil loss in the ruts (Howard et al.
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1981; Williamson & Neilsen 2000) (rut type 2; Fig. 1.3). The function that relates attainable
bulk density to soil moisture (Fig. 1.2) does not constitute a single characteristic curve for a
given soil but a family of curves, depending amongst others on the compactive effort (Hillel
1998) or the initial compaction status of the soil. It should also be remarked that especially
fine-textured soils can exhibit a high biological activity that leads to a second pore system
(earthworm tunnels, root canals) with wide soil pores that are easy to compact. This makes

the soils more prone to compaction than already mentioned above.
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Fig. 1.2 Typical relationship between gravimetric soil water content and maximum bulk density obtainable after
application of a certain compactive force for a medium-textured soil. The shape applies to both fine- to medium-textured
soils (Hillel 1998).

| 2 3

Fig. 1.3 Rut types (Abeels 1989): rut type 1 is caused by plastic deformation, rut type 2 by a combination of plastic
deformation and soil compaction and rut type 3 by soil compaction only.

Findings of Hillel (1998) do not apply to coarse-textured soils as these soil textures behave
differently in relation to soil water content. These soils have a lot of large pores which are
easily drained of gravitational water (Fisher & Binkley 2000) and thus are prone to
compaction. According to Langohr & Ampe (2004) cohesion is maximal at intermediate soil
water contents (critical soil water content), leading to minimal compaction degrees and
restricted rut formation. At very dry or very wet conditions cohesion between sandy soil

particles is much smaller and a combination of compaction and rutting may occur. Results of
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Smith et al. (1997) confirmed the presence of a local minimum in the compactibility of a
loamy sand soil. Panayiotopolous & Mullins (1985) suggested that the more closed packing
under a given load at air-dry and nearly saturated sands compared to intermediate water
contents was related to bridges being formed between sand particles. These bridges act like
elastic bonds when the soil is moist but are lost when the soil is saturated or air-dry and
hence the soil at these two extremes collapses. In contrast with medium- to fine-textured
soils compaction of sandy soils is still possible at high water contents. Namely, sandy
textures contain a lot of macropores that cannot hold water against gravitational forces,
even at very high soil water contents, and these are thus filled with air that can be

compacted (Fisher & Binkley 2000).

The precompression stress of the soil is another very important determinant for the
vulnerability of a certain soil. The precompression stress defines the internal soil strength,
which resulted from pedogenetic processes, anthropogenic effects (such as former machine
traffic) or hydraulic site specific conditions. When a soil is compacted, soil particles are piled
closer together and the mean pore size decreases. As smaller pores are less prone to
compaction it leads to higher soil strength and thus an increased precompression stress,
which (partially) protects the soil from further compaction (Shetron et al. 1988; Williamson
& Neilsen 2000). If the soil body is stressed less than the precompression stress at the next
machine pass, soils react elastic and no additional settlement occurs. Stresses exceeding the
precompression stress lead to plastic soil behaviour and the soil body deforms and compacts
further (Horn et al. 2007). This explains why loose soils, which are characterized by a high
amount of large pores and thus low soil strength and precompression stress, are very
vulnerable to soil compaction. However, machine traffic on a vulnerable soil type may result
in negligible compaction degrees in case this soil is initially characterized by a high
precompression stress. It must be remarked that other soil variables (such as soil aeration)

may still be influenced by machine traffic in this situation.

Soil organic matter content also influences the sensitivity of the soil to compaction. Several
studies indicate that the addition of organic matter to soil improved structure and reduced
compaction (Sands et al. 1979; Greacen & Sands 1980; Howard et al. 1981). Moreover, it is

suggested that soils are most susceptible to compaction in a pH-range of 4.5-5.5. Above and
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below this threshold soil structure is stabilized by calcium, respectively aluminium (von

Wilpert K, personal communication).

1.2.4.2 Characteristics of the harvesting activity

As mentioned above, there is an ongoing trend to use large sized logging machines with high
loads. Machine impact can be quantified using the soil contact pressure, defined as the
amount of kg per cm? contact area that is exerted on the soil by equipment, or thus the ratio
of the machine mass to the contact area of the machine with the soil (Febo et al. 2000). It
indicates the vertical or normal pressure and consequently the potential compaction. With
increasing soil contact pressure, the compaction process intensifies (McDonald et al. 1996).
It is determined by the axle weight and the size of the footprint (the area of the tyres or
tracks in contact with the soil). The soil contact pressure of a light machine standing on very
small tyres (small footprint) may be as high as a heavy machine, standing on very wide tyres
(big footprint). It is not clear, however, whether the relationship between soil contact
pressure and degree of soil damage is linear or rather logarithmic. In the latter case the
damage degree will stabilize from a specific soil contact pressure onwards. It must be
remarked that the real exerted pressure (dynamic load) often differs from the pressure that
is calculated using the theoretical contact area (static load), such as when the machine
drives over a stump (Chancellor 1994) or during felling and processing (Wehner 2003). This
can be attributed to the tree mass during processing, machine vibrations (Kairiukstis &
Sakunas 1989; Athanassiadis 1997) and shear stress (Kozlowski, 2000). The impact may be
reduced as some machine characteristics change the footprint. At a constant machine mass
the compaction degree is negatively correlated with the number of tyres (Alakukku et al.
2003) and tyre dimensions (Benthaus & Matthies 1993), and positively correlated with tyre
pressure (Abu-Hamdeh et al. 2000). At constant tyre characteristics, damage increases with
increasing machine mass (McDonald et al. 1996). Concerning the benefits of tracks over
normal tyres, no general conclusions can be drawn (Alakukku et al. 2003; Sheridan 2003). In
case of tracks, the contact area with the soil is in theory larger which could lead to less
compaction in comparison with normal tyres (Murosky & Hassan 1991), provided that the

whole track makes contact with the forest floor.
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The first pass of a machine exerts a pressure on the soil surface, affecting soil structure and
porosity in case the applied stress encompasses the precompression stress of the soils (Horn
et al. 2007). As pores become smaller, they exert a higher resistance to compaction (Shetron
et al. 1988; Williamson & Neilsen 2000), increasing soil strength and thus precompression
stress. The following passes of this machine will have a diminishing influence on the soil
structure until the applied stress no longer exceeds the constantly increasing
precompression stress (Horn et al 2007). Brais & Camiré (1998) and Seixas et al. (2003)
confirmed that the relationship between traffic intensity (number of machine passes or
skidding cycles) and the response of BD is logarithmic, with a high extra increase per pass at
low traffic intensities, approaching zero when the number of passes increases. The traffic
intensity at which the extra response starts to decrease depends amongst others on soil
texture. The cycle of half impact, defined as the number of passes at which half of the
potential impact has been reached, is lower for fine-textured soils in comparison with

coarse-textured soils (Brais & Camiré 1998).

Results on the impact of site and harvesting characteristics on compaction degrees were not
always unequivocal. Soil water content and precompression stress should always be taken
into account while evaluating the impact of soil texture on the compaction degree. Research
is needed to examine if the assumed higher vulnerability to soil compaction of medium- to
fine-textured soils compared to rough-textured soils is independent of the prevailing soil
water content and precompression stress. The strong variation between the results on the
biotic impact of soil compaction also shows that further research is necessary to be able to
draw more general conclusions. Moreover, studies seldom had an integrated approach,
examining several characteristics simultaneously. Further research should therefore be

extensive and integrated.

1.3 Recovery of compacted forest soils

1.3.1 Recovery rate

Harvesting activities are normally performed at regular time intervals. In Flanders a common
period between two harvesting activities is about eight years. In case soil compaction,

induced by a forest operation, persists beyond this period, effects may accumulate at trails
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that experience traffic at subsequent harvesting activities. Expansion of the compacted area

may also occur if machines do not follow the same tracks as in the previous forest operation.

Rab (2004) found no significant recovery of macroporosity and BD on a clay to silty loam soil
over a period of ten years. According to Tiarks et al. (1997) and Croke et al. (2001), complete
recovery is reached after a period of at least 20-30 years, provided that meanwhile no
disturbance takes place. Jakobsen (1983) and Anderson et al. (1992) found that BD on the
skid trails still differed significantly from the undisturbed soil 25-32 years after logging.
Hakansson & Reeder (1994) concluded that compaction at depths of more than 40 cm is very
persistent and virtually permanent even in clay soils in regions with annual freezing. Greacen

& Sands (1980) also stated that compaction of deeper layers may persist for 50-100 years.

As soil compaction may negatively influence soil biota, herbs and trees, fast recovery is
desired. However, only in exceptional cases, heavily compacted forest soils can be
mechanically loosened, for example by using a winged subsoiler (McNabb 1994) or a ripper
(Sinnett et al. 2008). These methods may induce severe direct damage to tree roots and soil
fauna and may also bring about a thorough churning of the upper soil layers, a disturbance
of the seed bank and a destruction of the present herb layer, possibly leading to shifts in the
composition of the herb layer. They should thus only be applied in case the forest soil is
heavily damaged, natural recovery processes work insufficient and fast recovery by
mechanical loosening is essential to preserve diversity and functioning of the forest

ecosystem. On all other forest soils, recovery depends on natural processes.

1.3.2 Natural processes controlling recovery rate

In the absence of additional machine traffic, soil compaction may disappear under the
influence of natural processes. The recovery process starts at the soil surface and then
spreads gradually deeper into the soil (von Wilpert & Schaffer 2006). In soils with an
adequate water holding capacity, the freezing and melting of soil water helps to increase
pore sizes and brings the total pore volume back to its undisturbed status (Alban et al. 1994;
Startsev & McNabb 2000). On soils with high clay content, the swelling and shrinking of clay
particles under the influence of soil water takes an important part in the recovery process
(Fisher & Binkley 2000; Cornelis et al. 2006). Biological activity may add greatly to the

recovery process. The penetration of roots increases total pore volume and leads to a higher
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pore continuity (Brais & Camiré 1998). Lister et al. (2004) found a better soil quality, i.e.
better aeration, lower BD, and higher aggregate stability, with increasing levels of vegetation
biomass. Soil fauna, especially anecic earthworms, are important ecosystem engineers that
contribute to the formation and stability of soil aggregates (Jastrow & Miller 1991).
Earthworms may induce a better soil structure by their burrowing activities, fragmentation
and burial of litter and their contribution in soil aggregation (Jones et al. 1994; Herbauts et
al. 1996; Jordan et al. 1999, Ponder et al. 2000; Jones et al. 2010). Capowiez et al. (2009)
provided experimental evidence that earthworm-mediated regeneration of compacted
zones is possible. A stimulation of biological activity by improvement of the soil conditions,
for example by manipulating litter quality, soil acidity and earthworm populations, could

result in an overall acceleration of the recovery of compacted forest soils.

Alluvial systems, characterized by a relatively low acidity and a large biological activity,
should recover relatively fast from soil compaction. However, a lot of forests are
characterized by soil conditions that are unfavourable to soil organisms and often even
prevent the survival of anecic earthworms (high acidity, poor litter quality). Moreover, sandy
soils have low nutrient, clay and water contents, which further reduce the diversity of soil
fauna and the herbaceous layer (Hansen & Rotella 1999). Recovery of such forest soils is
thus expected to pass off very slowly (Greacen & Sands 1980; Fisher & Binkley 2000). In
contrast, Page-Dumroese et al. (2006) found that five years after forest harvesting, recovery
of coarse-textured soils (in terms of BD) was higher compared to fine-textured soils.
Froehlich & McNabb (1984) and Croke et al. (2001) found no significant impact of soil type

on the recovery rate.

The available research results on recovery rate of compacted forest soil show strong
variation, perhaps due to differences in stand and site characteristics. It is interesting to
examine whether soil compaction may completely recover in the period between two
harvesting activities as effects will otherwise accumulate. Moreover, by our knowledge, no
study has yet been performed that unravelled the impacts of soil acidity, litter quality and
earthworm populations on the elimination of soil compaction. The potential of ecological

restoration of compacted forest soils should thus be examined in detail.
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1.4 Objectives and thesis outline

During the last decades, manual felling and logging by animals or small tractors have given
way to heavy tractors or specialized felling (harvester) and logging (skidder, forwarder)
machines with increasing masses. As mentioned previously, this evolution may cause soil
degradation in forest ecosystems as the passes of these machines modify soil characteristics
that are of critical importance for the sustained provision of ecosystem services. Due to soil
compaction, soil conditions may thus become unfavourable to soil fauna, herb and tree layer
and in the long-term it may lead to a loss of biodiversity, soil fertility and stand productivity.
Despite possible careful planning of field operations, concern remains over the potential

adverse impacts of mechanized forest harvesting on the forest ecosystem.

The main objective of this thesis is to quantify the ecological consequences of soil
compaction, induced by machine traffic, on the forest ecosystem. The focus lies on common
Flemish forest types that experience frequent harvesting activities, such as softwood stands
on sandy soils and beech forests on loamy soils. In accordance to the worldwide trend,
during the last decades the mass of the machines used in Flanders also gradually increased,
leading to concerns about the ecological impact. Moreover, in contrast to many other
countries the system of permanent skid trails is not yet well established in Flanders and
other rigorous instructions that aim to reduce soil compaction mostly lack, leading to a large
amount of potentially compacted forest areas. Harvests in vulnerable forest types, for
example forest stands on marshland, are delicate, stipulating exceptional harvesting
techniques, and were therefore not selected. As the use of tracked machines is
predominantly restricted to these vulnerable situations, the research was focussed on the

impact of widespread wheeled machinery.

Through the thesis, the impact of texture, overall known to influence compaction, was
examined in detail together with the effects of machine weight and traffic intensity which
are easy to control for by the forest management. Based on the previously mentioned

research gaps, the specific objectives of this thesis were:

1) To quantify the compaction degree (abiotic impact) after mechanized forest
harvesting in function of stand and site characteristics, machine weight and

traffic intensity;
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2) To examine to what extent compaction influences tree seedlings (biotic
impact);
3) To gain more insight into the compaction status of Flemish forest soils and the

potential of ecological restoration options for compacted forest soils.

The first part of the thesis deals with the quantification of the compaction degree or the
abiotic impact after mechanized harvesting (Fig. 1.4). Chapter 2 describes the results of a
field trial, performed in eight forest stands. This trial was intended to examine the impacts of
stand and site characteristics (especially texture), machine weight and traffic intensity on the
compaction degree after controlled machine traffic. Chapter 3 investigates the impact on
sandy forest soils in detail, based on the results of a field trial. The vulnerability of this soil
texture is generally regarded as negligible, although some studies provided evidence to the
contrary. The beneficial use of a brash mat in order to lower the soil impact was also
examined in this study. The obtained abiotic impacts of Chapters 2 and 3 were combined
with the results of international studies in a meta-analysis (Chapter 4) in order to draw
general conclusions on the abiotic impact of mechanized forest harvesting. We again

focussed on the influences of texture, machine weight and traffic intensity.

In a second part of the thesis a meta-analysis was performed to discuss the biotic
consequences of soil compaction on forest soils, as compaction may impose a threat to the
biodiversity and productivity of the forest stand. More specific the impacts on survival,

diameter and height growth of tree seedlings were examined (Chapter 5).

A third part considered the recovery of compacted forest soils. The field trial in Chapter 6
intended to retrace old skid trails by measuring penetration resistance along transects.
Chapter 7 discusses the results of a second field trail in which the impact of litter quality, soil
acidity and earthworm population on recovery of compacted soils was quantified, in the

view of ecological restoration of compacted forest soils.

The results of all field trials and meta-analyses are summarized and discussed in Chapter 8,

leading to general recommendations for forest management.
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Painted sticks indicated the centres of the experimental skid trails at the field trial in Meerdaal forest (Leuven) (Chapter
2), in order that the machines would follow the same tracks at subsequent passes. The photograph shows the skid trail
where a John Deere grapple skidder JD 640 made five passes back and forth in February [photograph: Lotte Van Nevel,
February 2007].



2 The effects of soil characteristics, machine mass and traffic intensity on
forest soil compaction: a field trial

After: Ampoorter E, Van Nevel L, De Vos B, Hermy M, Verheyen K (2010) Assessing the
effects of initial soil characteristics, machine mass and traffic intensity on forest soil

compaction. Forest Ecology & Management 260, 1664-1676

2.1 Abstract

An extensive field trial was set up in eight forest stands to examine the influence of soil
texture (two stands on sandy soils, four on loam to silt loam soils, two on clayey soils),
machine mass (light, heavy) and traffic intensity (one and five skidding cycles) (i.e. pass back
and forth on the skid trail) on soil compaction after mechanized harvesting. Dry bulk density,
penetration resistance, micro-topography and soil carbon dioxide concentration were
applied as response variables for soil compaction. Significant effects were nearly absent for
bulk density (<7% increase) and occurred occasionally for penetration resistance (60-70%
increase, up to 150% on clay soils). Especially for loam to silt loam and clay, this was in
contrast with the expectation. The negligible compaction degrees for loam to silt loam were
probably due to high initial compaction levels (leading to high precompression stress) that
prevented further compaction, as was found by General Linear Modelling for both bulk
density as penetration resistance. For clayey soils the small compaction degrees can be
explained by the high water contents that resulted in plastic deformation instead of strong
compaction degrees, as was confirmed by the micro-topographical measurements. General
Linear Modelling also revealed a significant impact of machine mass (bulk density) and soil
water content (bulk density, penetration resistance) on the compaction degree. Soil texture,
traffic intensity and position in relation to the wheel tracks generally turned out to have an
insignificant influence. With regard to clear interactions the influence of traffic intensity
depended on the position in relation to the wheel tracks and the machine that was used
(penetration resistance). Although soil compaction degrees were small to negligible,
machine passes apparently had a strong impact on soil carbon dioxide concentration
measured in a forest stand on sand. Values showed significant increases within and between
wheel tracks, even after one skidding cycle. Results showed that carbon dioxide
concentration is a more sensitive and thus better indicator to quantify machine impacts on
the soil.
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2.2 Introduction

In the last decades, manual felling and logging by animals or small tractors have given way to
mechanized harvesting, using heavy tractors or specialized felling (harvester) and logging
(skidder, forwarder) machines. Soil compaction, often accompanied by rutting, is a typical
process that may appear as a result of this machine traffic, especially when used
inappropriately. It involves the compression of pores, leading to a decreased porosity,
decreased pore continuity (Herbauts et al. 1996; Berli et al. 2003; Teepe et al. 2004), an
increase of dry BD (e.g., Alban et al. 1994; Miller et al. 1996), a reduction of the saturated
hydraulic conductivity (Benthaus & Matthies 1993), a hampered gas exchange (Gaértig et al.
2002) and an alteration of chemical processes (Herbauts et al. 1996; Woodward 1996;
Arocena 2000; Ballard 2000). As pores become smaller, soil strength (Shetron et al. 1988)
and thus PR increase (Aust et al. 1998; Nugent et al. 2003). As a result, root growth may be
hampered (Greacen & Sands 1980; Heilman 1981), the species composition of the herb layer
may experience changes (Buckley et al. 2003), and soil fauna may be negatively influenced
(Smeltzer et al. 1982; Radford et al. 2001; Battigelli et al. 2004). Since soil fauna contributes
to such processes as decomposition, release of nutrients and the creation of a good soil
structure (Gobat et al. 1998), soil compaction may result in a reduced ecosystem diversity,

fertility and functioning.

The degree to which a forest soil is compacted by mechanized harvesting, depends on
several variables and characteristics, typical of the forest site (soil texture, soil organic
matter content, slope), season (soil water content, soil temperature) or the harvesting

activity itself (machine type, machine mass, number of trees to be felled, traffic intensity:

1) Soil characteristics: medium- to fine-textured soils (loam, silt, clay and intermediate
textures) are assumed to be more sensitive to soil compaction than sandy soils
(Fisher & Binkley 2000; Gomez et al. 2002). Brais & Camiré (1998) and Ampoorter et
al. (2007, Chapter 3) however found that sandy soils may also be prone to
compaction. When assessing the influence of soil texture on the degree of
compaction, one should certainly take the soil precompression stress (indicated by
initial BD or PR) and the soil water content into account. A machine pass will induce
soil compaction on condition that the applied stress exceeds the precompression

stress (Horn et al. 2007). On medium- to fine-textured soils, the compaction degree
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is maximal at an optimum intermediate soil water content (Smith et al. 1997; Hillel
1998). On coarse-textured soils the soil impact shows a local minimum at a critical
intermediate soil water content and compaction degrees are higher at lower or
higher soil water contents (e.g., Smith et al. 1997; Langohr & Ampe 2004). The
function that relates attainable bulk density to soil moisture does not constitute a
single characteristic curve for a given soil but a family of curves, depending amongst
others on the compactive effort (Hillel 1998) and the precompression stress of the
soil. Soil organic matter content also influences the sensitivity of the soil to
compaction as it improves soil structure (Sands et al. 1979; Greacen & Sands 1980;

Howard et al. 1981).

2) Machine mass: the mean soil contact pressure of a machine indicates the vertical
pressure and consequently the potential compaction. The higher the soil contact

pressure, the higher the impact on the soil (McDonald et al. 1996).

3) Traffic intensity (referring to the number of machine passes or skidding cycles): at
successive passes, soil particles are piled closer together and the pore size
decreases through soil compaction, resulting in a higher soil BD. As smaller pores
are less prone to compaction, soil strength and consequently precompression stress
are increased, limiting the additional damage with future passes (Shetron et al.
1988; Williamson & Neilsen 2000). Amongst others, Brais & Camiré (1998) found
that the relationship between traffic intensity and BD increase is logarithmic.
Bearing this in mind, two hypotheses can be formulated: (a) the initial BD (and thus
precompression stress) influences the potential damage degree, in general leading
to smaller responses when initial BD is higher; (b) the relationship between the
number of passes (or traffic intensity) and the response of BD is logarithmic, with a
high extra increase per pass at low traffic intensities, approaching zero when the
number of passes increases. The cycle of half impact, defined as the number of
passes at which half of the potential impact has been reached, is lower for fine-

textured soils in comparison with coarse-textured soils (Brais & Camiré 1998).

Numerous studies have already focussed on forest soil compaction after mechanized
harvesting. The added value of this research is that it had an extensive and integrated

approach. It was executed in various forest stands, examining different factors (texture,
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machine mass, traffic intensity) and looking at the impact on several soil variables. In this
way, an overall view was obtained concerning the impact of mechanized harvesting on the
soil ecosystem. It was therefore possible to assess the influence of each factor on the

compaction degree. The aims of this study were:

a) To measure the extent to which selected key variables (BD, PR, micro-topography,
CO, concentration) are influenced by the treatments;
b) To determine which factors (site and harvesting characteristics) contribute to this

extent.

2.3 Materials and methods

2.3.1 Experimental design

Eight forest stands, distributed over the Flemish region of Belgium, were selected for this
field trial. Four (Sperwer, Goden, Havik, Renissart) are located in the Meerdaal forest (N
50.8040°, E 4.7013°) and Heverlee forest (N 50.8393°, E 4.6903°) close to Leuven on
Luvisols(-cambisols) (IUSS Working Group WRB 2006) with textures ranging from loam to silt
loam (loam to silt loam) (Soil Survey Staff 1999) (Table 2.1). The two (gleyic) Podzols in
Kapellen (Kapellen 1, Kapellen 2) have sandy textures (sand). Two other forest stands are
situated in an alluvial area in Walem on Gleysols (Walem 1, Walem 2) with clay loam and
sandy loam to sandy clay loam textures (clay) (Table 2.1). All forest stands were located on
loose soils. Rocks or rocky substrates were absent. Small stony fragments were occasionally
present but not at all to the extent that they could have buffered the impact of the machines
nor that they would have influenced the measurements. Therefore, stony fragment content
was not measured or taken into account to correct the measurements as this content was
negligible. Mean temperature for the region (1961-1990) is 2.5 °C in the coldest month
(January) and 17.2 °C for the warmest month (July) while mean annual temperature and
precipitation is 9.7 °C, respectively 821 mm (weather station Uccle at about 30 km from
Leuven). In all forest stands the previous mechanized harvesting dates back from at least 8
years ago. None of the selected stands has a history of permanent skid trails, so machines

had access to the whole stand during past harvesting activities.
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In each forest stand eight straight trails, approximately 40 m long and 5 m wide, were
marked (Fig. 2.1). These trails were used to examine the impact of machine mass and traffic
intensity in a 2x2 design, replicated at two different points in time. The experiment was
performed on half of the trails in summer conditions in September on normally dry soils and
on the other half in winter conditions in February when soils are normally wet but not frozen
(Table 2.2). However, winter conditions were drier than expected so that the difference in
soil water content (while performing the experiment) between the two points in time was
rather small (Table 2.1). In Walem, soils are capable of capillary rise of soil water, further
decreasing the difference in soil water content between February and September. The two
experiments were therefore considered as semi-replicates. Treatments were applied, using
two machines (Fig. 2.2): a New Holland TCE 50 tractor, weighted with a winch (0.420 tonnes)
to 1.88 tonnes to simulate typical Flemish small-scale fire wood harvest (light) (tyres front:
28 cm wide, tyre pressure 1.7 bar; tyres back: 36 cm wide, tyre pressure 1.9 bar), and a John
Deere grapple skidder JD 640, loaded to 14.3 tonnes by using a concrete block (2.5 tonnes),
hanging in the grapple, representative for Flemish machinery that is used to drag trees to
forest roads (heavy) (tyres front and back: 77.47 cm wide, tyre pressure 3.5 bar). These
machine types are also commonly used in other countries. Neither machine had information
on soil contact pressure (ratio of machine mass to contact area) available in the brochure.
However, roughly estimated, the soil contact pressure was around 65 kPa for the heavy
machine and 40 kPa for the light machine. The two levels for traffic intensity (or number of
skidding cycles) were one and five skidding cycles, with a skidding cycle defined as a pass
back and forth on the skid trail. The first level mimics traffic intensity deeper in the forest
stand. The second level represents intensity of machine traffic on the area close to the log
landing. Machines drove at walking pace. Four of the eight trails were used per experiment
(February and September), of which two were driven by the light machine and two by the
heavy machine (first skid trail: one skidding cycle; second skid trail: five skidding cycles). Tree
interdistance on the examined area was large enough to allow forest machines to follow the
marked trails during the experiment without the necessity of cutting extra trees. The trail
centre was marked with painted sticks to make sure the same wheel tracks were used as

much as possible, while making the subsequent skidding cycles.
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1 5 1 5 1 5 1 5

NN\ A4 A4
Light Heavy Light Heavy
February September

Fig. 2.1 Experimental design of the field trial. Eight skid trails were marked (grey lines) of which four were used in the
February experiment and four in the September experiment. At each experiment, both the light and the heavy machine
made one pass back and forth on one skid trail and five passes on another.

Fig. 2.2 Machines used during the field trial: (A) New Holland TCE 50 tractor, (B) John Deere grapple skidder JD 640
[photographs: Evy Ampoorter, Feburay 2007].

2.3.2 Data collection

Several soil variables were measured to quantify the impact of each machine on the forest
soil. BD was sampled using Kopecky soil cores (100 cm?) (Fig. 2.3A) from depth intervals O-
10, 10-20 and 20-30 cm. Namely, several study results showed that the strongest soil
impacts appear in these upper soil layers (Greacen & Sands 1980; Ampoorter et al. 2007,
Chapter 3). Before treatments were applied, samples were taken on locations where future
wheel tracks would approximately be situated (n = number of replications = 6 per skid trail,
thus n = 48 per stand). After applying treatments, they were taken within (n = 6 per skid trail)

and between (n = 6 per skid trail) the two wheel tracks, close to the locations of the initial
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measurements. Samples were oven dried (105 °C) for 48 h prior to weighing to evaporate all
water in the sample. The moment of soil sampling for the quantification of bulk density was

thus independent of weather conditions and the current soil water content.

Fig. 2.3 Devices used for quantification of soil compaction: (A) Kopecky soil core sampler [photograph: Evy Ampoorter,
February 2007], (B) penetrologger [photograph: www.eijkelkamp.com].

TR L LMEL NG
A - S a4
FEIETRCTE  RELIATE P TTI)
T W, R

PR was determined using a penetrologger (Eijkelkamp Agrisearch Equipment, the
Netherlands) (Fig. 2.3B), that measures to a maximum depth of 80 cm in depth intervals of 1
cm. Cones have an apical angle of sixty degrees, a basal area surface of 1 cm? and a nominal
diameter of 11.28 mm. Measurements of PR had to be carried out when soils were at or
near field capacity, because of the soil moisture dependence of the measurements (Smith et
al. 1997; §3.5.3). Current soil water content was determined as a routine check each time
measurements were made. Therefore, soil was sampled at about 10 locations spread over
the measurement area with a soil drill on depths 0-10, 10-20, 20-30,..., 60-70 cm. The
samples were weighed, then dried (100 °C) for 48 h and reweighed. Before treatments were
applied, PR was determined on each skid trail (12 measurements on each trail, thus n = 96
per stand) and on the area between all the trails (n = 120 per stand). After applying
treatments, measurements were made within (n = 12 per skid trail) and between the two
wheel tracks (n = 12 per skid trail) again in the neighbourhood of the initial measurements.
BD and PR were measured in all eight forest stands. The ratio of the BD and PR values after
applying treatments to the corresponding values before treatments were applied (semi-
paired samples) indicated the soil compaction degree (further called ratio or compaction
degree) at each measurement point. Average ratios per treatment (Tables 2.3 and 2.4) were
calculated by averaging the ratios of all measurement points for that specific treatment. In
Figs. 2.5 and 2.6 and Tables 2.3 and 2.4, treatment mean reference is an average of all values

before applying treatments on all treatments for that specific stand.
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Coarse- and medium- to fine-textured soils are contrasting texture groups concerning
vulnerability to soil compaction (Larson et al. 1980; Hillel 1998; Fisher & Binkley 2000).
Therefore, analysis of micro-topography was examined in Kapellen 1 (sand) and Walem 1
(clay). Loam to silt loam soils are also vulnerable to soil compaction. But results of the mean
reference for BD (see further) indicated that the forest stands on this texture were already
compacted to a considerable extent before the experiment took place, leading to small to
negligible compaction degrees. The micro-topography of the loam to silt loam soils was
therefore not discussed. To quantify rut depth, a horizontal slat (4 m wide) was placed
across the skid trails before and after treatments were applied at exactly the same place and
height (marks on the poles to which the slat was attached). The slat was centered over the
skid trail in order to enclose the area between and within wheel tracks and a part of the area
next to the wheel tracks that was not driven by the machines. PR and the distance between
soil and horizontal slat were measured at 10 cm intervals. These measurements were taken
before and after applying treatments on each skid trail for one clay loam (Walem 1) and one
sand stand (Kapellen 1) (n = 1 per skid trail). As with the other penetrologger measurements,
micro-topography was measured in very wet periods and soil samples were collected to

ensure comparable soil water content.

Finally, CO, concentration was measured 10 cm beneath the soil surface, using a portable
gas chromatograph (Gaertig et al. 2000; Gaertig 2001) (Fig. 2.4). This analysis is based on the
extraction of soil air through a perforated needle. The application of the device is not
advisable in wet conditions or on fine-textured soils, as water or small soil particles may be
sucked into the device, rendering it unserviceable. Whether these conditions are met or not,
has to be examined in the field, observing if water or soil particles are sucked out of the soil
and appear in the connecting pipe. As the soils in Leuven (loam to silt loam) were too wet
and the soils in Walem (clay) too wet and fine-textured, measurements were only performed
in Kapellen 2, a forest stand on a sandy soil. Measurements were conducted after applying
treatments on the skid trails where the heavy machine made one and five skidding cycles
during the experiment in February. Across both trails, two blocks of five parallel transects
(30 cm interspace, width 5 m) were placed (n = 5 per block). As with micro-topography,
transects were centered over the skid trail, so that both trafficked and non-trafficked soil
were included in the measurement area. Along each transect, measurements of CO,

concentrations were carried out at 25 cm intervals.
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Fig. 2.4 Quantification of soil CO, concentration: (A) portable gas chromatograph, (B) detail of needle [photographs: Evy
Ampoorter, June 2008].

In addition to these measurements, on the days of the experiment in February and
September the water content in the soil profile was determined. Therefore, in each forest
stand soil samples were taken on depths 0-10, 10-20, 20-30,..., 60-70 cm with a soil drill at
both ends of each skid trail (n = 2 per skid trail) (soil water content). Soil water contents on
the loam to silt loam soils and the sandy soils were clearly lower than in Walem on clay

(Table 2.1).

Table 2.2 summarizes the dates when measurements were performed. Before applying
treatments measurements were predominantly executed at the beginning of 2007. After
applying treatments, most variables were quantified within two months after the

experiment, except for CO, (16 months) and PR after the September experiment (6 months).

2.3.3 Data analysis

Measurements made on the skid trails prior to the experiment or in the neighbourhood of
the trails are considered as ‘reference’. As there was no tradition of permanent skid trails in
any of the forest stands, previous harvesting activities may have influenced the forest soil in
a way that the impact is still (partially) detectable (as was the case in all stands in Leuven and
Kapellen; see further). Thus the term ‘reference’ does not mean that the soil is totally
undisturbed but that the soil was not driven by machines during the experiment, nor during
at least 8 years before the experiment. The ‘reference’ values for BD and PR indicate the

precompression stress at the start of the experiment.

For dry BD and PR, data analysis involved a comparison of the impact of every treatment

within and between all forest stands. Depth intervals 0-10, 10-20 and 20-30 cm for BD and
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depths 5, 15 and 25 cm for PR were analysed separately. Results of PR contained some
extreme outliers (points beyond 3 times the interquartile range from percentile 25 or 75).
There were in total 78, 37 and 36 outliers for depths 5, 15 and 25 cm respectively (<5% of all
measurements). As these values were due to roots, rare coarse fragments or other soil
irregularities, they were omitted from the dataset. Outliers in BD were scarce, rather due to
normal soil variability, and were therefore retained. As mentioned in §2.3.2, due to the
contrasting vulnerability to soil compaction and the low to negligible compaction degrees on
loam to silt loam, the relationship between depth and BD or PR was examined more closely
for Kapellen 1 (sand) and Walem 1 (clay) in Figs. 2.5 and 2.6. As BD and PR are both
indicators of soil compaction, a Pearson correlation coefficient between the reference values

of the two variables (measured at the same measurement points) was determined.

Statistical analysis was started with a One-Way ANOVA comparison of the mean reference
values between the textures. Further, for each forest stand differences in absolute BD and
PR values between the treatments (combination of position in relation to the tracks,
machine mass, traffic intensity, time) were analysed applying One-Way ANOVA. Pair-wise
comparisons were conducted using Tukey’s honestly significant difference (HSD) test with a
= 0.05. GLM was then applied, based on the ratios of the values after applying treatments to
the values before applying treatments. The aim of GLM was to explore in detail the
contribution (alone or combined) of texture, machine mass, traffic intensity, forest stand,
position in relation to the wheel tracks, time, soil water content and initial compaction
status to the soil impact. Texture (clay - loam to silt loam - sand), machine mass (light -
heavy) and traffic intensity (1-5 skidding cycles) were considered as fixed factors, whereas
forest stand (nested in texture), position (within wheel tracks - between wheel tracks) and
time (February and September) were random factors. Soil water content (during the
experiments) and reference values (BD and PR values before applying treatments) were
covariables in the model. The model has been limited to the main effects of all the factors
and all two-way interactions between texture, machine mass, traffic intensity and position.
As a normal distributed dataset is a prerequisite for ANOVA and GLM, data of PR had to be

log transformed prior to both analyses. Data analyses were performed using SPSS 15.0.

Concerning the results of the micro-topography, distance and PR results were processed
graphically using Surfer 7.0. This was examined for Kapellen 1 (sand) and Walem 1 (clay) in

Fig. 2.7. Data were not analysed statistically, as there were no replicates. The CO,
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concentrations were also processed graphically. For the statistical analysis, a distinction was
made between the measurements beside the wheel tracks, within the wheel tracks and
between the wheel tracks. For each of these three zones, data were averaged over all five
transects per block. Next, per block average values for the three zones were compared using
One-Way ANOVA. Pair-wise comparisons were conducted using Tukey’s HSD test with a =

0.05.

2.4 Results

2.4.1 Dry bulk density

Mean BD values were higher for stands in Leuven (loam to silt loam) and Kapellen (sand) in
comparison with Walem (clay), as well for the reference as for the treatments (Table 2.3).
Moreover, except for Walem, mean references of all forest stands exceeded 1300 kg m>.
One-Way ANOVA concerning the difference in reference values between the soil textures
indicated significantly lower values for the forest stands on clay (p-values <0.001 for all three
depth intervals). However, looking at the ratios, the impact of the treatments was similar for
all forest stands. Ratios were overall low and did not exceed 1.07, meaning that the BD
increase was never higher than 7% of the initial value. Two thirds of all ratios did not differ
significantly from 1, meaning that no significant effect took place. In some cases ratios were
significantly lower than 1. There was no clear difference between the ratios between or

within wheel tracks.

The relationship between soil depth and BD within wheel tracks was examined more closely
for Kapellen 1 (sand) and Walem 1 (clay) (Fig. 2.5). Reference BD values were significantly
higher (p <0.001) for the sandy soil (1481 + 74 kg m™, 10-20 cm) than for the clay soil (1008 +
72 kg m, 10-20 cm) (Table 2.3). For Kapellen 1 (Fig. 2.5A), September treatments induced
similar BD increases with the heavy and the light machine (0-7% in the first two depth
intervals). In February, most BDs after applying treatments are somewhat lower than before
applying treatments. For the heavy machine, the impact after five skidding cycles in February
was higher than the impact after one skidding cycle (21%, 0-10 cm). In Walem 1 (Fig. 2.5B),
values of all treatments were similar to the reference values (<6% increase), except for the

September values in the third interval that were smaller than the reference.
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Fig. 2.5 Treatment effect on bulk density within wheel tracks, as a function of depth in Kapellen 1 (A) on sand and Walem
1 (B) on clay (mean ref = reference values for all treatments averaged, L.. = light machine, H.. = heavy machine, .1. = one
skidding cycle, .5. = five skidding cycles, ..S = September, ..F = February); n = 6, except for mean reference where n = 48.

Results of ANOVA for depth interval 10-20 cm (Table 2.3) showed for all stands that almost
no treatment induced a clear increase of BD with the mean reference, neither within wheel
tracks, nor between wheel tracks. Although comparison with the mean reference showed no
significant difference, L1S in Sperwer and Kapellen 1 seemed to induce a significant increase,
based on the ratio. In Walem 1, L5F induced a significant increase in BD. The remaining
significant ratios were due to lower BD values after the treatments in comparison with the

initial BD values.

According to GLM results, machine mass had a significant influence in the second (p <0.001)
and third (p = 0.036) depth interval (Table 2.5). Higher BD values were recorded using the
heavy machine compared to the light machine. Compaction degrees depended only in the
first depth interval on the traffic intensity (p = 0.018). The higher the traffic intensity, the
more severe the compaction was. Two other factors determining the compaction degree

considerably in all three soil intervals were forest stand (p <0.001 for all intervals) and time
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(p = 0.019, p <0.001 and p = 0.004 respectively at intervals 0-10, 10-20 and 20-30 cm).
Therefore, forest stands within the same texture group and the results of the two
experiments (replicated in time) should not be seen as pure replicates. Reference values (or
BD before applying treatments) also influenced vulnerability of the soil to compaction to a
great extent (p <0.001 for all soil intervals). Pearson correlation coefficients between
reference values and BD ratios were -0.414, -0.253 and -0.276 for the first, second and third
depth intervals respectively, with all three corresponding p-values <0.001. As the coefficients
are negative, it seems that the higher BD before applying treatments was the lower the
compaction degree was. Soil water content had also in the second depth interval a
significant influence on BD ratios (p <0.001). Pearson correlation coefficients between soil
water contents and BD ratios (all three texture groups and the two positions analysed
together) were 0.002, 0.108 and 0.063 for the first, second and third depth intervals
respectively, with only the second corresponding p-value being significant (p = 0.004). It
appeared that the ratio or compaction degree increased with increasing soil water content.
Looking at this relationship only for the results within tracks of each texture group
separately, it shows that most of the correlation coefficients were negative but insignificant.
Texture and position in relation to the wheel tracks did not influence BD in a significant way.
Apart from a small significant interaction between texture and position in the first (p =
0.050) and second (p = 0.035) depth interval, no strong significant interactions could be

discerned for BD.

2.4.2 Penetration resistance

As with BD, One-way ANOVA analysis indicated significantly lower mean reference values for
clay compared to the other soil textures (p <0.001 for all three depth intervals) (Table 2.4).
Based on the absolute PR values after applying treatments, it was not possible to distinguish
among the different soil textures. As with BD, the relationship between soil depth and PR
within wheel tracks was examined more closely for Kapellen 1 (sand) and Walem 1 (clay)
(Fig. 2.6). Only the first 50 cm of the soil profile is shown, as this interval is most important to
plant roots and animals and the impact is maximal in the upper soil layer. Reference values
in the whole soil profile were lower for clay (+ 1 MPa) than for sand (+ 1.5 MPa), as was
already concluded from the results in Table 2.4. At Kapellen 1 (Fig. 2.6A), treatments

executed in September (somewhat drier soils), especially L5S and H5S, led to an increase of
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Fig. 2.6 Treatment effect on penetration resistance within wheel tracks, as a function of depth in Kapellen 1 (A) and
Walem 1 (B) (mean ref = reference values for all treatments and area between trails averaged, L.. = light machine, H.. =
heavy machine, .1. = one skidding cycle, .5. = five skidding cycles, ..S = September, ..F = February); n = 12, except for mean
reference where n = 216.

PR values with 60-70%, and this is similar to the increase of BD. In February conditions, five
skidding cycles of the heavy machine (H5F) resulted in a steep increase in PR around 25 cm
depth. However, the impact of the other February treatments, especially L1F, was negligible.
It can be deduced for the February treatments that the light machine had a smaller impact
than the heavy machine. Additionally, both February and September treatments showed
that both machines induced higher PR values after five skidding cycles than after one
skidding cycle. At Walem 1 (Fig. 2.6B), all treatments increased PR values to a certain extent.
The September treatment H5S yielded a circa 90% increase of PR at 15 cm depth and
reached the highest values for the whole depth range. In the upper 20 cm, the impacts of
the other September treatments were similar (70-100% increase at 15 cm) and exceeded the
results of the February treatments to a small extent. Below 20 cm, results of the February
treatments H1F and H5F (heavy machine) kept increasing and exceeded the impact of the

September treatments L1S, L5S and H1S. The other two February treatments with the light
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machine (L1F and L5F) had a negligible effect. The results of the February treatments thus
showed that the light machine had a smaller impact than the heavy machine. The results of
the September treatments showed that the impact of five skidding cycles of the heavy
machine was most severe. Results of ANOVA for soil depth 15 cm (Table 2.4) showed almost
no significant differences between the absolute values of the treatments and the reference
for the forest stands on loam to silt loam (Leuven) and sand (Kapellen). Concerning the
ratios, only the forest stands growing on sand and clay showed several ratios that were
significantly higher than 1. The highest ratios were found on clay soils. For Walem 1 and 2 on
clay, almost all September treatments showed PR after applying treatments that differed
significantly from the mean reference values, as well within as between wheel tracks.
Moreover, in Walem 1, treatment H5S compacted soil significantly more than all February
treatments. For all stands, compaction degrees between wheel tracks were as high as within
wheel tracks. Ratios of September treatments are also predominantly higher than ratios of

February treatments.

Results of GLM (Table 2.5) showed no significant influences of texture, machine, traffic
intensity and position in relation to the wheel tracks. As with BD, forest stand and time have
a strong significant impact on the PR results (p <0.001). Results of the different forest stands
per texture group and the two different experiments should thus not be considered as pure
replicates. Water content has a significant impact in the second and third depth intervals.
Pearson correlation coefficients for the relationship between PR ratios (all texture groups
and positions analysed together) and soil water content (when treatments were applied) are
0.107 (p <0.001) at 5 cm depth, 0.094 (p <0.001) at 15 cm depth and -0.036 (p = 0.180) at 25
cm depth. This relationship indicates that ratios increase as soil water content increases, as
was already indicated by BD. However, looking closer at this relationship for the results
within tracks of each texture group separately, it shows significant p-values for sand (p =
0.011) and clay (p = 0.013) at 5 cm, for loam (p = 0.021) and clay (p = 0.007) at 15 cm and for
loam (p = 0.001) and sand (p = 0.010) at 25 cm. Each of these significant relationships is
negative, meaning that the compaction degree decreases with increasing soil water content.
At last, the reference values again determined the compaction degree to a large extent in a
negative way. Analysis of the correlations between PR ratios and reference values resulted in
significant Pearson correlation coefficients of -0.576, -0.598 and -0.579 at 5, 15 and 25 cm

depth respectively (p-values <0.001). The impact of traffic intensity seemed to depend on
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the machine mass for depths 15 and 25 cm (p = 0.005 and p = 0.003 respectively). For the
light machine, compaction degrees after one or five skidding cycles were similar, whereas
the heavy machine induced a clearly higher impact after five skidding cycles in comparison
with one skidding cycle. Position in relation to the wheel tracks was another term interacting
with the impact of traffic intensity at 15 (p = 0.020) and 25 cm (p <0.001) depth. Between
wheel tracks the compaction ratios after one and five skidding cycles were rather small.
However, within wheel tracks the impact after five skidding cycles was significantly higher in
comparison with one skidding cycle. As with BD, a small significant interaction existed
between texture and position in relation to the wheel tracks for the first (p = 0.032) depth
interval.

Table 2.5 Bulk density and penetration resistance as influenced by texture (Te), machine weight (Ma), traffic intensity

(Tr), forest stand (St, nested in Texture), position in relation to the wheel tracks (Po), Time (Ti), soil water content (Wa)
and reference values (Re): sources of variation, degrees of freedom (d.f.) and p-values, obtained with GLM.

Bulk density Penetration resistance
Source d.f. p-value for depthinterval (ecm) p-value for depth (cm) ___
0-10 10-20 20-30 5 15 25
Te 2 0.164 0.095 0.156 0.586 0.236 0.105
Ma 1 0.290 <0.001 0.036 0.773 0.059 0.241
Tr 1 0.018 0.762 0.965 0.159 0.304 0.424
St(Te) 5 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Po 1 0.351 0.446 0.229 0.311 0.479
Ti 1 0.019 <0.001 0.004 <0.001 <0.001 <0.001
Wa 1 0.362 <0.001 0.369 0.683 <0.001 0.018
Re 1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Te*Ma 2 0.135 0.744 0.564 <0.001 0.629 0.321
Te*Tr 2 0.171 0.918 0.654 0.283 0.020 0.018
Te*Po 2 0.050 0.035 0.921 0.032 0.111 0.354
Ma*Tr 1 0.237 0.261 0.548 0.820 0.005 0.003
Ma*Po 1 0.567 0.849 0.521 0.411 0.390 0.003
Tr*Po 1 0.668 0.394 0.936 0.206 0.020 <0.001

Significant p-values (p <0.05) are marked in bold.

2.4.3 Correlation between bulk density and penetration resistance

BD and PR are both indicators for the extent to which a soil is compacted. A positive
relationship existed between these two variables, although the shape (e.g., linear,
logarithmic) of the relationship was not clear. Pearson correlation coefficients were 0.469 (p
<0.001) at soil depth 0-10 cm, 0.391 (p = 0.001) at soil depth 10-20 cm and 0.226 (p = 0.073)
at depth 20-30 cm. As coefficients were significant for the first and second depth intervals,

we can conclude for these depths that PR reaches higher values as BD increases.

37



Chapter 2

2.4.4 Micro-topography

The micro-topography of Kapellen 1 (Fig. 2.7A) and Walem 1 (Fig. 2.7B) shows a vertical
section of the soil, perpendicular to the direction of the skid trail, before and after five
skidding cycles of the heavy machine in February. For Kapellen 1, in several parts of the soil
PR before applying treatments already exceeded 2 MPa, or even 3 MPa. However, the load
exerted by the machines did not enlarge these areas and rut formation was very restricted.
In Walem, before treatments were executed, the soil was loose, with very few areas where
PR was larger than 2 MPa. After the treatment, there was a clear formation of deep ruts with
bulges on the edges. PR also showed a clear increase under the wheel tracks. Large areas
could be detected where values exceeded 2 MPa, but they remained below 3 MPa for the

major part.

A. Kapellen 1 (sand

g
2
]
- £
g T T T T T T T 4 g
- 50 100 150 200 250 300 350 35 2
s 3 g
Q <> <>
Q c
a 25 O
=]
2 B
=]
15 @
o
T a
0.01
T T T T T T T 0
50 100 150 200 250 300 350
Position along slat (cm)
B. Walem 1 (clay)
0 L L
6 —
55 &
s 2
45 3
—_— 4 %
E T T T T T T T =
ICA 50 100 150 200 250 300 350 35 ‘»
N (]
= 3 =
: :
a 25 .9
2 O
@
15 2
-

T T T -
100 150 200 250 300
Position along slat (cm)

Fig. 2.7 Microrelief (rut depth and penetration resistance) on a sand (A) (Kapellen 1) and clay (B) (Walem 1) texture,
before (above) and after (below) five skidding cycles of the heavy machine in the experiment in February (n = 1). The
legend indicates values of the penetration resistance; the dotted line shows the isolines for 2 MPa, the full line shows the
isoline for 3 MPa. The black arrows indicate the position of the wheel tracks after traffic.
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2.4.5 CO, concentration

Soil CO;, concentration was measured in one forest stand on sandy texture (Fig. 2.8). Except
for block B, soil CO, concentration beside tracks was always higher than 1%. From the results
of block A, the location of the wheel tracks could not be deduced as values were generally
high (about 3%). These results contrast with block B where values were around 1%. Here, it
was easy to discriminate between wheel tracks and the area that was not driven in the
experiment, as values had clearly increased within tracks (30-100%). The area between
wheel tracks also showed a slight increase of CO, concentration. After five skidding cycles of
the heavy machine in February, the results were more pronounced. Both blocks C and D
showed strong increases of CO, concentration within wheel tracks and a somewhat smaller
increase between wheel tracks for block C. Traffic intensity obviously had a great influence
on the increase of the CO, concentration. CO, concentrations also clearly differed according
to the position in relation to the wheel tracks. In contrast with BD and PR, differences
between the locations (area beside wheel tracks, area within wheel tracks and area between
wheel tracks) were much more pronounced. This conclusion could be deduced from the
results of the ANOVA analysis (Table 2.6). The area beside tracks always had the smallest CO,
concentrations, mostly followed by the area between wheel tracks. The CO, concentration
of the area between wheel tracks did not always differ significantly from the area beside
tracks and was still significantly lower than the area within wheel tracks. Apart from these
measurements along the transects, a few extra measurements have been performed on an
area between trees that were standing very close to each other (<2 m). This area has
certainly not been disturbed by machines since at least five decades and therefore these
measurements can be seen as a true reference for an undisturbed situation. The mean CO,
concentration here was 0.54%. All blocks showed significantly higher values (except for block
B), not only within and between wheel tracks, but also on the area beside the wheel tracks.

Table 2.6 CO, concentration in a sandy soil (Kapellen 2) as influenced by the position in relation to the wheel tracks

(Kapellen 2) (One-Way ANOVA). Positions with significantly different CO, concentrations are marked with different
letters.

Block Treatment p-value

A One skidding cycle <0.001 Beside tracks’® < within tracks’ < between tracks”
B One skidding cycle <0.001 Beside tracks® < between tracks® < within tracks”
C Five skidding cycles <0.001 Beside tracks® < between tracks® < within tracks®
D Five skidding cycles <0.001 Beside tracks® < between tracks® < within tracks®

For each block, means of all positions are compared against each other after ANOVA using Tukey’s HSD test (p-values are
mentioned). Positions that have significantly different mean CO, concentrations are marked with different letters.
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Fig. 2.8 Mean CO, concentration in a sandy soil (Kapellen 2) after one (above) and five (below) skidding cycles of the
heavy machine in the experiment in February (blocks A and B as replications for one skidding cycle; blocks C and D as
replications for five skidding cycles) (within each block n = 5). The black horizontal arrows indicate the position of the
wheel tracks after traffic. Error bars represent the 95% percent confidence interval.

2.5 Discussion

2.5.1 Characteristics dominating the impact of traffic on bulk density, penetration
resistance and micro-topography

Fine textures, such as clay and silt to loam textures are considered to be more vulnerable to
compaction than coarse textures (Larson et al. 1980; Hillel 1998; Fisher & Binkley 2000).
However, overall compaction degrees measured with BD were low to negligible, both on
clay, loam to silt loam and sand. PR indicated increases after machine traffic of 60-70% on
sand and 50-100% on clay, especially after five passes of the heavy machine. Except for H5S
on clay, treatments induced similar PR increases for both textures. However, these increases
were low compared to the findings of Alban et al. (1998) and Smith & Du Toit (2005) for
sandy soils and Brais (2001) for silty clay to sandy loam soils, and PR values remained below
the threshold for root growth (3 MPa; Whalley et al. 1995). A possible explanation for the
rather low ratios of sandy soils, apart from the naturally lower vulnerability, and loam to silt
loam soils follows from the initial BD and PR in Tables 2.3 and 2.4. Mean references of

Sperwer, Goden and Kapellen 1 were higher than 1400 kg m™ while Havik, Renissart and
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Kapellen 2 had initial BD above 1300 kg m™. Forest soils where bulk density values exceed
1300 kg m™ can be considered as compacted, especially in case of medium- to fine-textured
soils (Von Wilpert K, personal communication). Lal & Shukla (2004) also indicated from an
agricultural perspective that the optimal range of soil bulk density is lower than 1400 kg m™.
Ampoorter et al. (2008) concluded that the initial BDs of the forest stands on loam to silt
loam of this field experiment (especially Sperwer and Goden) are higher than elsewhere in
Flanders. Mean reference values for PR in Leuven and Kapellen were all between 1 and 2
MPa, designated as ‘moderate’ according to the Soil Survey Division Staff (1993). The term
‘mean reference’ indicates that this part of the soil was left untrafficked at the last
harvesting activity but its high initial BD and moderate initial PR in forest stands in Leuven
and Kapellen suggest a strong underlying compaction, due to uncontrolled machine traffic
during past harvesting activities. Moreover, GLM and Pearson correlations showed a
significant negative influence of the initial BD and PR on the compaction degrees, as was also
stated by Powers et al. (2005). Loose soils contain an abundance of macropores that are
easy to compact, in contrast with compacted soils where macropores are scarce. Smaller
pores exert a higher resistance to compaction (Shetron et al. 1988; Hillel 1998; Berli et al.
2003), leading to higher soil strength and consequently higher precompression stress on
compacted soils. A machine pass will only result in soil compaction if the stress applied by
the machine exceeds the soil precompression stress (Horn et al. 1997). Machine traffic on an
already compacted soil thus results in a small to negligible additional impact (Incerti et al.
1987; Williamson & Neilsen 2000; Page-Dumroese et al. 2006). If the initial precompression
stress of the examined forest stands had been less, the soil impact due to the treatments
would probably have been much higher and maybe significant. The fact that the values after
applying treatments were sometimes significantly lower than those of the mean reference
(especially for Kapellen 2) was probably due to a high spatial variation in the topsoil, in part

dependent on the pattern of the precompression stress due to former harvesting activities.

The rather low compaction degrees on clay soils can be explained by means of the soil water
content. The very high water contents in Walem (Table 2.1) clearly exceeded the optimum
water content (Fig. 1.2; Smith et al. 1997; Hillel 1998), and thus most pores are filled with
water that cannot be compressed (Froehlich & McNabb 1984). Cohesion between particles is
low in this condition (Al-Shayea 2001) and the soil has only a small ability to withstand

applied machine forces. Therefore machine traffic resulted in strong plastic deformation (rut
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type 1) and relatively small compaction degrees as was shown by Tables 2.3 and 2.4 and Figs.
2.6 and 2.7. However, in spite of the low compaction, machines may still have imposed a
serious threat for the soil ecosystem as soil pores are closed off and pore continuity is

destroyed, leading amongst others to hampered soil aeration.

Looking at all three texture groups together, Pearson correlations showed that compaction
degrees seemed to increase with increasing soil water content. Compaction degrees were
overall limited and GLM did not show a significant influence of texture. However, the
significant correlation between compaction degree and soil water content is rather logic as
the forest stands in Walem showed overall slightly higher compaction degrees compared to
the other two soil texture groups, combined with overall much higher soil water contents.
Looking at the correlation between compaction degree and soil water content for each
texture group separately, most of the relationships were negative. As mentioned previously,
soil water contents of Walem (clay) were much higher than the optimum soil water content
(Hillel 1998) resulting in a decrease of the BD obtained after application of a force at
increasing soil water contents. In Leuven (loam to silt loam soils) soil water contents were
intermediate (September) to high (February), and probably on average higher than the
optimum soil water content for these soil textures, resulting in a negative correlation with
the compaction degree. The negative correlation between BD and soil water content at the
sandy sites in Kapellen could not be explained as soil water contents were probably higher
than the critical soil water content for these textures (Smith et al. 1997; Langohr & Ampe

2004) and thus a positive relationship was rather expected.

Compaction degrees are positively influenced by the machine mass, or rather the soil
contact pressure. The estimation of the soil contact pressure showed that the heavy
machine induced a higher soil pressure than the light machine and that soil compaction

would thus be more severe (McDonald et al. 1996).

The increase of BD was positively related to the traffic intensity in the first depth interval
and PR showed a similar effect for the heavy machine. The first pass of a machine exerts a
pressure on the soil surface, affecting soil structure and porosity when the applied stress
encompasses the precompression stress of the soil (Horn et al. 2007). As pores become
smaller, they exert a higher resistance to compaction (Shetron et al. 1988; Williamson &

Neilsen 2000), increasing soil strength and thus precompression stress. The following passes
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of this machine will have a diminishing influence on the soil structure until the applied stress
no longer exceeds the constantly increasing precompression stress (Horn et al. 2007). Brais
& Camiré (1998) and Seixas et al. (2003) confirmed that this relationship is logarithmic with
smaller compaction degrees approaching zero at higher traffic intensities. However, due to a

low number of traffic intensity levels, this logarithmic relationship could not be stated here.

When a machine makes a pass, not only is the soil under the tyres influenced, but indirectly
machine forces also partially influence the soil around it (both between and next to the
wheel tracks) due to lateral movement of soil from beneath the wheel tracks (Wronski 1984)
and shear stress caused by rotations of the tyres (Abeels 1989; Vossbrink & Horn 2004).
However, as the compaction degrees after most of the treatments were already negligible
within wheel tracks (Tables 2.3 and 2.4) due to the high precompression stress before the
experiment took place, no significant influence arises from the position in relation to the
wheel tracks (Table 2.5). However, GLM showed a significant interaction between position
and traffic intensity for PR at 15 and 25 cm. After one skidding cycle, the direct effect within
tracks did not differ very much from the indirect effect between tracks. However, after five
skidding cycles, the cumulated direct effect showed a significant difference with the

cumulated indirect effect.

Within one texture group, compaction degrees seemed to differ significantly between the
forest stands (Table 2.5), likely due to differences in organic matter content (Sands et al.
1979), precompression stress (Horn et al. 2007), soil water content (Smith et al. 1997; Hillel
1998;) or bioturbation. Moreover, slightly different soil water contents between September
and February may have led to small differences in compaction ratios, explaining the

significant impact of time.

2.5.2 Relationship between bulk density and penetration resistance

A positive relationship could be observed between the reference values of BD and PR. As BD
increases, the pore space is reduced, significant soil particle rearrangement hence becomes
problematic (Whalley et al. 2005) and the friction experienced by the penetrologger cone
increases rapidly. Henderson et al. (1988), Vaz et al. (2001) and Ampoorter et al. (2007,
Chapter 3) also stated this positive relationship, and reported a logarithmic shape, with

stabilization of BD at higher PR. The shape of the relationship between BD and PR in this
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study was not clear, probably due to high reference BDs at Leuven and Kapellen and high

variation.

2.5.3 Impact of mechanized harvesting on soil CO, concentration

The mean CO, concentration in the superficial layer of an undisturbed part of the forest soil
in Kapellen 2 was already more than tenfold higher (0.54%) than the natural atmospheric
CO; concentration (0.03-0.04%) due to decomposition of organic matter and respiration by
fauna and flora (Ameryckx et al. 1995). Soil CO, concentration beside tracks was even higher
(>1% in blocks A, C and D), indicating traces of the impact of former mechanized harvesting
activities on soil aeration, as was stated for BD. In contrast to BD and PR that showed small
to negligible impacts, CO, concentration was significantly increased by the skidding cycles of
the heavy machine. The impact increased with increasing traffic intensity, as was also found
by Brais & Camiré (1998) and by Seixas et al. (2003) for other soil variables. CO,
concentrations within tracks were significantly higher than the soil beside tracks, as was
stated by Conlin & van den Driessche (2000), reaching concentration levels over 4%.
Between tracks, values were lower but also clearly increased. Namely, as with compression
of soil pores destruction of pore continuity is largely realized by direct contact between soil
and tyres. The area between wheel tracks is only indirectly influenced by machine traffic and
therefore the impact on CO, concentration between tracks remained smaller than within
tracks. The impact on CO; concentration was not a consequence of pore compression, as the
impacts on BD and PR were negligible due to high precompression stress on the sandy soil in
Kapellen 2. It resulted rather from the destruction of pore continuity, hampering CO, efflux
towards the free atmosphere (Ponder 2005; Gebhardt et al. 2009) so that CO,, produced by
soil organisms and chemical processes, accumulated in the sealed pores. This may cause
problems at higher compaction degrees as root growth of seedlings is reduced when the O,
concentration drops beneath the 6-10% range (Schumacher & Smucker 1981; Grant 1993;
Fisher & Binkley 2000). Qi et al. (1994) and Gaertig et al. (1999) indicated a negative effect
on growth when soil CO, concentration exceeds 0.6-0.7%, due to a reduction of the root
respiration. The precompression stress beside tracks thus already constitutes a hazard that is

strongly intensified within and between wheel tracks.
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In soils with initially elevated compaction levels, BD and PR are thus not reliable compaction
indicators. Results showed that CO, concentration seems to be a better, more sensitive
indicator of soil damage. It was already used in several studies (e.g., Gaertig et al. 2000). The
overall use of soil CO, concentration would probably have resulted in a much higher amount
of significant differences between treatments in this field trial (and Chapters 3, 6 and 7).
However, we do not possess a device that is adapted to measure soil CO, concentration
accurately and efficiently. For the sandy forest soil in Kapellen 2, we could use the portable
gas chromatograph of the Forstliche Versuchs- und Forschungsanstalt (FVA) in Baden-
Wirttemberg. So, although we are fully aware of the importance of CO, concentration for
the assessment of soil damage, we could not make use of this indicator in the further work.
Moreover, we remark that the chapter order does not reflect the chronology in which the
field trials were executed. Measurements for Chapters 3 and 6 were already performed
before the suitability of the soil CO, concentration for quantification of the machine impact

became clear at measurements in Kapellen 2.
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A Timberjack 1070D harvester, processing a tree, in Putte (Chapter 3) [photograph: Robbie Goris, August 2004].



3 Compaction of sandy forest soils

After: Ampoorter E, Goris R, Cornelis W, Verheyen K (2007) Impact of mechanized
logging on compaction status of sandy forest soils. Forest Ecology & Management 241,

162-174

3.1 Abstract

The impact of skidding traffic on bulk density and penetration resistance of two sandy forest
soils was examined in Putte (the Netherlands). Different levels of compaction were applied
by varying the number of skidding cycles: one pass harvester (H), one pass harvester and
forwarder (H+F), multiple passes of both machines (Max). Bulk density and penetration
resistance were measured on the undisturbed surface (UD), between the wheel tracks (BT)
and within the tracks (WT). For WT, treatment H induced a clear increase of both soil
properties in the upper 30 cm of the soil profile compared to the UD. The continuation of
the passes to Max only resulted in a limited rise in bulk density. However, penetration
resistance was significantly higher for Max compared to H. BT values were situated between
UD and WT. Measurements taken within tracks where logging residues were piled up to 40
cm revealed that a brash mat could reduce the compaction level to a considerable extent.
The relationship between bulk density and penetration resistance appeared to be non-
linear, with bulk density becoming insensitive to penetration resistance changes at higher
penetration resistance values. On these sandy soils, we recorded significant increases of bulk
density and penetration resistance, but rarely exceeding growth limits for optimal root
elongation. However, certain soil characteristics such as soil oxygen concentration may
already be influenced at lower compaction levels, inducing negative effects on plants and
soil organisms. Moreover, sandy soils are expected to recover very slowly. Designated skid
trails should thus also be used on this soil type to minimize the influence on the ecosystem.
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3.2 Introduction

In forest harvesting, there is an ongoing trend to increase almost constantly the size, power
and load of logging machines, with weights that generally amount up to 12-16 tonnes in
unloaded state. This may cause soil degradation in forest ecosystems as the passes of these
machines modify important soil structural characteristics. It may imply a reduction of the
total porosity (Herbauts et al. 1996; Teepe et al. 2004) and pore continuity (Berli et al. 2003),
an increase of BD (Alban et al. 1994; Miller et al. 1996) and PR (Aust et al. 1998; Nugent et al.
2003), restricted gas exchange (Ballard 2000), lowered saturated hydraulic conductivity
(Benthaus & Matthies 1993) and infiltration rate (Dickerson 1976). Chemical processes may
also be altered, due to a changed air and water balance (Arocena 2000; Ballard 2000).
Machine traffic thus changes important soil structural characteristics and may therefore
influence root penetration (Heilman 1981), growth (Gebauer & Martinkova 2005) and
survival of seedlings (Brais 2001; Stone & Kabzems 2002; Maynard & Senyk 2004), diversity
of the herb layer (Small & McCarthy 2002; Decocq et al. 2004; Godefroid & Koedam 2004)
and soil fauna (Smeltzer et al. 1982; Radford et al. 2001; Battigelli et al. 2004). As soil fauna
play an important role in ecosystem processes such as decomposition (Gobat et al. 1998),

this may indirectly lead to reduced soil fertility.

It is assumed that traffic effects are most pronounced on clayey or loamy textures (Larson et
al. 1980; Fisher & Binkley 2000) and therefore, few studies have focused on compaction of
sandy soils until now. Nevertheless, Brais & Camiré (1998) stated compaction on sandy
forest soils. McNabb (1995) emphasized that texture has a relatively small impact on the
compactibility of forest soils, although texture still is an important factor determining how a
plant performs in compacted soil. Moreover, this is a relevant topic given the large surfaces
covered by forests on sandy soils, especially in the north-western European lowlands (Bohn
& Neuhausl 2000-2003), and the often strong mechanization with an intense use of heavy
machinery, like forwarders, harvesters and skidders, in the (pine) plantation forests that are
common on these soils (e.g., Larsson 2001). Furthermore, compacted sandy soils will recover
slowly (Greacen & Sands 1980; Fisher & Binkley 2000). Freezing and melting of soil water
(Alban et al. 1994; Startsev & McNabb 2000), the swelling and shrinking of clay particles
(Greacen & Sands 1980; Fisher & Binkley 2000; Cornelis et al. 2006) and biological activity

(Brais & Camiré 1998; Jordan et al. 1999; Ponder et al. 2000) generally make a great
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contribution to the recovery process. However, sandy soils lack the capacity to hold an
adequate quantity of water owing to their large amount of wide pores that drain
immediately, and a large amount of swelling clay particles is neither present. Moreover,
their generally low pH, nutrient and soil water content reduce the diversity of soil fauna and
the herbaceous layer (Hansen & Rotella 1999). Therefore, if sandy soils are proved to be
prone to critical compaction, particularly during the first pass of logging machines, within-
stand traffic should be minimized (Deconchat 2001; Teepe et al. 2004) and/or mitigating
measures should be taken, such as the use of brash mats. These are thick layers, made up of
tree remnants that are put in front of the machine during logging (Schafer & Sohns 1993;

McDonald & Seixas 1997; Hutchings et al. 2002).

Hence, the aims of this study were:

a) To measure the extent to which the BD and PR of sandy soils are affected by
heavyweight logging traffic;

b) To assess the potential of a brash mat to reduce the degree of soil compaction.

Results will be considered in the light of the discussion whether spreading the traffic or

concentrating the vehicles on designated skid trails is beneficial in case of sandy soils.

3.3 Materials and methods

3.3.1 Site description

Two ageing pine plantations (~6 ha each), a very common forest type on sandy soils, were
selected for this study. The stands are located in Putte, in the south of the Netherlands. In
this region, the mean temperature in the coldest month (February) is -0.6 °C and 21.7 °C in
the warmest month (July). Mean total annual precipitation is 804 mm. Geomorphologic
characteristics of site 1 comprise continental dunes accompanied by plains and depressions.
The soil in the area is classified as a Podzol (IUSS Working Group WRB 2006). However, at
the time of afforestation of the former heathland on site 1, the podzol was broken by
ploughing and hence, no clear horizons could be distinguished now. The texture of the soil is
ranging from sand to loamy sand (Soil Survey Staff 1999). The forest stand is composed of a

tree layer of first generation 75 years old Scots pine (Pinus sylvestris L.) with a shrub layer
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dominated by the invasic Black cherry (Prunus serotina Ehrh.). Site 2 lays on terrace
deposition vaults covered with eolian sand deposits. The soil is referred to as a Plaggic
Anthrosol (IUSS Working Group WRB 2006). This designation holds soils that were formed or
profoundly modified through human activities such as addition of organic materials or
household wastes, irrigation or cultivation (FAO 2001). The plaggic horizon is more than 50
cm thick and is the only horizon that could be distinguished. The texture is ranging from sand
to loamy sand (Soil Survey Staff 1999). The forest stand at site 2 is composed of a mixed tree
layer of first generation 75 years old Scots pine and Corsican pine (Pinus nigra Arnold subsp.
laricio Maire). The shrub layer is dominated by Black cherry with sparsely Silver birch (Betula
pendula Roth) and European mountain-ash (Sorbus aucuparia L.). For both sites the highest

groundwater level is always below a depth of 80 cm.

3.3.2 Experimental design and data collection

Careful mechanized thinning, using designated skid trails, took place between August and
October 2004. This was the first time ever that a mechanized exploitation was performed in
the selected stands. At time of harvesting on site 1, weather conditions had been very dry
and warm for over more than three weeks and these conditions remained more or less
constant during harvesting. When taking soil samples for BD, soil moisture content varied
between 9% at the surface and 3% at 50 cm depth. At site 2 weather conditions had also
been very dry for more than three weeks, but it frequently rained during the harvest period.
Soil moisture content was therefore higher in comparison with site 1, but data with regard

to this are not available.

The machinery consisted of standard cut-to-length equipment, being a middleweight
Timberjack 1070D harvester and a Timberjack 1110D forwarder. The tyres of the harvester
measured 700/45 x 22.5 on the front axle, 650/60 x 26.5 on the rear axle and were inflated
to a pressure of 300 kPa. Its total weight was 16 tonnes in the proportion of 60% on the
front to 40% on the rear axle. The forwarder weighed about 15 tonnes in unloaded state,

with a maximum of 25 tonnes in loaded state.

Different levels of compaction were applied by varying the levels of machine traffic (Fig. 3.1):
one harvester pass (H), one pass of both harvester and forwarder (H+F), and several passes

of both machines (at least three with a maximum in the order of seven) (Max). A pass
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implies a drive back and forth the selected strip, and fully loaded in the case of the
forwarder. The measurements for Max took place on the designated skid trails. For H and
H+F specific locations in the forest were chosen, where further traffic was prohibited after
the treatment. The sampling and measurement positions relative to skid trails were: within
the wheel tracks (WT), between the tracks (BT) and in the adjacent undisturbed area (UD).
For each site, UD measurements were the same for all treatments, and serve as a reference.
They were taken on places where the forest floor and the mineral soil were left undisturbed
after logging. In order to assess the influence of a brash mat (BM) on the degree of soil
compaction, supplemental measurements were carried out on positions in the wheel tracks
of the designated skid trails (Max (WT-BM)) where logging residues were piled up to at least
40 cm.
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Fig. 3.1 Sketch of the experimental set-up with the location of the pits within the two stands and a close-up of the
sampling method for bulk density (for abbreviations, see Table 3.1).

Sampling for dry BD was done by means of Kopecky soil cores (5 cm diameter, 100 cm?3). On
different locations within the harvested stand, small pits were dug on the undisturbed
surface and across the skid trails. In the WT, BT and UD parts of the skid trails, undisturbed

mineral soil samples were taken between 0 and 50 cm depth (measured from the surface) at
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depth intervals of 10 cm (Fig. 3.1), while sampling to study the influence of a brash mat was
limited to the upper 30 cm. As wheel rutting was confined to a few centimetres, sampling
depth per depth interval was equal in UD, WT and BT. Samples were oven dried (105 °C) for
24 h prior to weighing. PR was measured at 1 cm intervals until a depth of 80 cm using a
penetrologger (Eijkelkamp Agrisearch Equipment, the Netherlands). Sixty-degree cones were
used with a cone basal area surface of 1 cm? (nominal diameter 11.28 mm). The
penetrologger was driven into the soil at equal intervals along the treated area, thereby
accounting for the variability of the soil within the stands. Because of the dependency of PR
to soil water content (Smith et al. 1997; §3.5.3), measurements were carried out at the same
day in December when soil was near field capacity after a long rainy period. Table 3.1
summarizes the number of replications for each treatment for BD and PR. A total of 218 PR
measurements were carried out and 2464 soil samples were taken to estimate BD.

Table 3.1 Number of pit locations and n per pit per depth interval for bulk density and n per depth interval for

penetration resistance (UD: undisturbed area, H: one pass harvester, H+F: one pass of both harvester and forwarder,
Max: many passes of harvester and forwarder, WT: within tracks, BT: between tracks, BM: brash mat present).

Treatment Dry bulk density Penetration resistance
Site 1 Site 2 Site 1 Site 2
Pit (n per pit per depth Pit (n per pit per n n
locations interval) x locations depthinterval)x  per depth per depth
(number of depth (number of depth interval interval
intervals) intervals)
w 7 axs 7 4xs 20 28
H WT 5 8x5 5 8x5 No sampling 20
BT S . BX5_ S 6x5 Nosampling 20
H+F WT 5 8x5 5 8x5 No sampling 20
.. BT S ... 6xs5 . S 6x5 Nosampling 20
Max WT 5 8x5 5 8x5 20 20
BT 5 6 x5 5 6 x5 20 20
WT-BM No sampling 7 4x3 No sampling 10

3.3.3 Data analysis

Since the UD values of the two sites were clearly different and since harvesting was done
under different weather conditions, which could have affected the impact of the logging
activity, data analysis for sites 1 and 2 was done separately. The purposes of the statistical
tests were to search for important increases of BD and PR as a result of harvesting on these
two sites and to seek for factors which are important in determining the degree of the

increase. The following techniques were applied (using S-Plus and SPSS):
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(1) Differences in soil BD between the treatments were analysed for each distinct
depth interval using One-way ANOVA. For PR, although measured at 1 cm intervals,
analysis was done only for the values at 10 cm depth intervals. Therefore, the
average value was calculated for all measurements (replications) at 5 cm depth, at 15
cm depth and so on. Pair-wise comparisons were conducted using Tukey’s HSD test

with a = 0.05.

(2) We further applied GLM to relate BD and PR to pit location (only for BD), depth
(five levels for BD and eight levels for PR), treatment (H, H+F, Max, BM) and position
in relation to the tracks (WT, BT). UD-values were not incorporated in this analysis, in
order to obtain a correct interpretation of the importance of the interactions
between factors. Moreover, values of the undisturbed surface (UD) were already
compared with all other treatments performing ANOVA. Treatment and position
were considered as fixed factors, depth as a random factor. Location was regarded as
a random factor, nested within treatment. All two-way interactions, except for

combinations with location, were included.

(3) As BD and PR are both indicators for the extent to which a soil is compacted
(compaction degree), and BD is often used as a parameter to estimate PR (Whalley et
al. 2005), the correlation between the two variables was determined by means of a

Spearman’s rank correlation coefficient.

3.4 Results

3.4.1 Relationship between traffic level, position and compaction degree

3.4.1.1 Bulk density at site 1

In the undisturbed parts (UD) of site 1 (Fig. 3.2A), BD increased from 1309 kg m at the soil

surface (0-10 cm) to 1422 kg m~ in the interval 10-20 cm. From that depth interval onwards,

BD remained constant with depth. Within the tracks (WT), BD increased clearly in

comparison with UD, irrespective of the kind of treatment (H, H+F, Max) (Table 3.2). For all

treatments, except for H in the interval 0-10 cm, this increase was particularly pronounced
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and significant (p <0.001) up to 30 cm depth. The UD and Max (WT) values even differed
significantly within each depth interval, except for 30-40 cm. Deeper in the soil profile,
differences between UD and the treatments became smaller. With respect to H, Max only
resulted in a small extra BD increase. The difference increased with depth but remained
insignificant. The effect of H+F on BD was rather different compared to H and Max, showing
a maximum in the depth interval 20-30 cm. Further, H+F resulted in the highest BD, reaching
1565 kg m™. With respect to the BD between the tracks (BT), lower values were generally
observed compared to WT. For BT, a peak can also be seen in the depth interval 10-20 cm,

except for treatment H where values increased until the depth interval 30-40 cm.
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O 1 1 1 1 1 1 L
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Fig. 3.2 Treatment effect on bulk density in function of depth on site 1 (A) and site 2 (B) (for abbreviations, see Table 3.1).
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GLM indicated two significant interaction terms, being treatment x position (p <0.001) and
treatment x depth (p = 0.037) (Table 3.3). It can be noticed that BD values of H (WT) and H
(BT), summed over the total interval from 0 to 50 cm, are similar, contrary to H+F and Max
where WT values are clearly higher than BT values (Fig. 3.2A), which explains the first
significant interaction. Regarding the second interaction, values for the different treatments
(summed over WT and BT) vary widely in the first depth intervals but converge again
towards deeper layers. The interaction between position and depth was insignificant (p =
0.124). This can be attributed to the values of BT being generally lower than the WT values,
while the curves run roughly parallel to each other for the whole interval 0-50 cm. The
model also showed a strongly significant main effect for the factor location (p <0.001). In
other words, the variability of the soil within the stand is, irrespective of depth and

treatment, large enough to have an important influence on BD.

3.4.1.2 Bulk density at site 2

At site 2, reference values were lower than at site 1, although the maximum BD was
approximately similar (Table 3.2). The change of BD with depth was rather different
compared to site 1 (Fig. 3.2B). Again UD had the lowest BD values, which increased linearly
with depth from 1244 to 1329 kg m’>. Compared to UD, the increase of BD in terms of
percentage owing to Max, measured 22, 22 and 19% in depth intervals 0-10, 10-20 and 20-
30 cm respectively. BD at WT differed significantly from those at UD for all treatments within
each depth interval. This was also true for BT, except for the treatment H in the first two
intervals. BD values of BT were predominantly lower than the corresponding treatment BD
values from WT. For most treatments, a local maximum was apparent at depth interval 10-
20 or 20-30 cm. An increase in number of machine passes from H to Max resulted in a

considerable rise in BD not only for WT but also for BT.

GLM revealed that all twofold interactions treatment x position (p = 0.003), treatment x
depth (p <0.001) and position x depth (p < 0.001) are strongly significant (Table 3.3). Unlike
site 1, differences between the two positions varied strongly depending on the depth
interval. The differences were most pronounced in the surface layers and were markedly
reduced towards deeper intervals, which explained the significant interaction between

position and depth. With respect to the interaction treatment x position, bulk densities from
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WT and BT differed more clearly for Max in comparison with H and H+F. Again soil variability

within the stand resulted in a significant main effect of the factor pit location (p <0.001).

3.4.1.3 Penetration resistance at site 1

At site 1, PR was only measured for UD, and for Max at WT and BT. For UD, the value rose
steadily from 0.36 at the surface to 2.51 MPa at 80 cm depth, apart from a very local
increase between 5 and 15 cm and a small peak from 45 to 60 cm (Fig. 3.3A). Max caused a
sharp rise in PR at WT, particularly between the soil surface and 45 cm. The differences
between UD and Max (WT) were significant up to 35 cm (Table 3.4). PR reached its
maximum between 40 and 60 cm, with values of 3.5-4 MPa. For Max (BT) no significant
difference with UD was found. Since on site 1, PR was only measured for Max, GLM
contained only the factors position and depth (Table 3.5). A significant interaction existed
between the factors position and depth (p = 0.003). Measurements from WT and BT differed

clearly at 25 and 35 cm but were nearly equal at the surface and at 65 and 75 cm.

3.4.1.4 Penetration resistance at site 2

At site 2, PR was measured at UD, and for all treatments at WT and BT (Fig. 3.3B, Table 3.4).
PR at UD was lower than on site 1 and increased gradually from 0.24 to 2.46 MPa. For the
position WT, an increase in the number of machine passes resulted in a higher PR.
Treatment H caused a clear PR increase compared to UD from 5 to 25 cm, with significant
differences at 5 and 15 cm depth. Below 40 cm, no clear distinction could be made between
H (WT) and UD. An extra pass of the forwarder (H+F) induced an insignificant PR rise. Max
however, led to a strong PR increase, especially between 15 and 35 cm depth. The increase
is also apparent in the deeper soil layers. Values of Max (WT) differed significantly from the
other treatments from 15 cm to a depth of 65 cm. A local maximum PR of about 2.3 MPa

was reached at 15-25 cm depth for Max (WT).

PR from BT was also higher than UD values on site 2, except for H (Fig. 3.3B). The higher the
number of machine passes, the higher were the measured PR values. In contrast with BD, H
did not increase the PR for BT. Max, however, resulted in higher PR, which were significantly
different from UD at 5 and 15 cm depth (Table 3.4). Above 40 cm, values from BT were

clearly lower than WT, but below this depth all curves converged towards the UD curve.
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Fig. 3.3 Treatment effect on the penetration resistance in function of depth on site 1(A) and site 2 (B) (for abbreviations,

see Table 3.1).

The use of GLM revealed that twofold interactions treatment x position (p = 0.002),

treatment x depth (p = 0.017) and position x depth (p = 0.007) were all significant (Table

3.5). Measurements for Max varied greatly between the two positions, whereas the

corresponding values for H and H+F were less different. An analysis of the interaction

position x depth showed that the position in relation to the wheel tracks had a great

influence in the upper 35 cm, whereas differences were minimal in the deeper layers. The

significance of the interaction treatment x depth was due to a larger difference in PR

between the treatments on 15, 55, 65 cm in comparison with 55 and 65 cm.
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3.4.2 Influence of a brash mat on compaction

3.4.2.1 Bulk density

Results on BD and PR emphasized that skid trails that are not covered with sufficient logging
residues before they are driven over by logging traffic can be severely compacted. However,
a brash mat (Max (WT-BM)) reduced the degree of compaction, expressed in terms of BD,
considerably (Fig. 3.4A). Although there still was a significant difference with UD in the
intervals 10-20 cm and 20-30 cm (Table 3.6), the protective influence of the brash mat was
clearly noticeable over all depths. The brash layer restricted the increase in BD resulting

from Max compared to UD, to 1, 7 and 5% in the intervals 0-10 cm, 10-20 cm and 20-30 cm.

A Bulk density (kg m-3)

1200 1300 1400 1500 1600 1700
0 . . . .
—UuD
& Max (WT-BM)
~-Max (WT)
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-15 A
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-20 T

-25 1

-30

B Penetration resistance (MPa)
0 1 2 3 4
0 . ‘ .
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Fig. 3.4 Effect of a brash mat on the degree of compaction, estimated by bulk density (A) and penetration resistance (B)
on site 2 (for abbreviations, see Table 3.1).
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Table 3.6 Effect of a brash mat on the degree of compaction, estimated by bulk density and penetration resistance (t
standard deviation) (site 2).

Depth (cm) F-ratio p-value uD Max (WT-BM) Max (WT)
Bulk density (kgm™)
0-10 44,612 <0.001 1244 + 117 a 1259 + 162 a 1517 + 126 b
10-20 54.287 <0.001 1281 + 115 a 1365 = 108 b 1565 + 119 c
______ 2030 68334 <0001 1310+ 110 a 1369 +76 b 1560 £8 c
Penetration resistance (MPa) .
5 31.431 <0.001 0.65 + 0.29 a 0.82 +0.32a 1.61 + 0.60 b
15 80.507 <0.001 0.61 + 0.30 a 099 * 0.40a 233 +050b
25 35.807 <0.001 0.77 £ 0.29 a 091 * 0.47a 221 +0.82b
35 16.729 <0.001 094 £ 045 a 0.80 * 0.29 a 1.75 £ 0.80b
45 12.712 <0.001 0.90 £ 0.29 a 0.82 +0.19a 159 +0.82b
55 16.052 <0.001 1.18 + 0.41 a 1.13 + 0.61 a 231 £099b
65 10.478 <0.001 140 + 0.62 a 1.74 + 0.66 a 278 £ 129b
75 0.763 0.472 228 + 1.36 a 222 + 118 a 281 *136a

For each soil interval, means are compared against each other after ANOVA using Tukey’s HSD test (a = 0.05). Significant
differences between means within a row are marked with different superscript letters (for abbreviations, see Table 3.1).

GLM was applied with Max (WT) and Max (WT-BM) as different treatments on the same
position WT (Table 3.7). The term treatment x depth was insignificant (p = 0.150) because
the difference between the two treatments remained roughly the same across the whole
interval 0-30 cm. When the interaction term was removed from the model, the main effects
of treatment, depth and location changed to 0.001, <0.001 and <0.001 respectively. In other
words, the use of a brash mat significantly decreased the soil compaction degree, with the
strongest influence in the upper soil intervals. Again, a significant main effect was calculated

for the location of the pits.

Table 3.7 Effect of a brash mat on the degree of compaction on site 2, estimated by bulk density and penetration
resistance: sources of variation, degrees of freedom (d.f.), F-ratio and p-values obtained with GLM.

Source Bulk density Penetration resistance

d.f. F-ratio p- d.f. F-ratio p-value
Treatment 1 22.594 0.001 1 113.825 <0.001
Depth 2 8.047 0.111 7 12.731 0.002
Location (Treatment) 10 10.210 <0.001 - - -
Treatment x Depth 2 1.916 0.150 7 0.618 0.740

Significant terms are depicted in bold.

3.4.2.2 Penetration resistance

As with BD, the positive effect of a brash mat on the degree of compaction was noticed from
the PR measurements (Fig. 3.4B, Table 3.6). PR for Max (WT) was clearly higher compared
with UD and Max (WT-BM). ANOVA indicated significant differences to a depth of 65 cm.
Logging residues, however, seemed to protect the soil. Below 30 cm, differences in PR

between Max (WT-BM) and UD, were negligible. The small PR in the depth interval 5-25 cm

61



Chapter 3

associated with Max (WT-BM) compared to UD was, further, insignificant. With the
protective influence of slash, the increase of the PR in comparison with UD at 5, 15 and 25
cm was reduced from 148, 282 and 187% for Max (WT) to respectively 26, 62 and 18% for
Max (WT-BM).

Analysis of the PR data led to the same conclusions as for BD. After removing the
insignificant interaction term treatment x depth from GLM (p = 0.740), the p-values of the
main effects of treatment and depth both became <0.001. The same conclusions could be

made as for BD (Table 3.7).

3.4.3 Correlation between bulk density and penetration resistance

When plotting mean PR against mean BD, a non-linear relationship could be observed (Fig.
3.5). At relatively low PR, BD increased rapidly with PR. However, at higher PR values, BD
seemed to be insensitive to PR changes and remained more or less constant. The Spearman
correlation coefficient was 0.674 and 0.859, respectively for sites 1 and 2, and both were

significant at the 0.01 level.
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Fig. 3.5 Correlation between bulk density and penetration resistance on sites 1 and 2.
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3.5 Discussion

3.5.1 Relationship between traffic, position and compaction

Bulk density (and PR) of UD for site 2 showed lower UD values than site 1, probably due to a
higher organic matter content (§3.3.1), but data with regard to the organic matter content
were not available. Site 1 had a maximum BD at the interval 10-20 cm instead of a steady
linear increase with depth. A local increase of BD or PR in the interval 0-30 cm normally
indicates an artificial effect, for example due to machine impact. However, it was the first
mechanized harvesting activity in these stands. The local maximum was possibly induced by
the partial formation of a new podzolic horizon. Bulk density of UD for site 2 shows a normal
gradient, unaffected by former traffic or soil development. Higher BD values for UD at site 1
bring along a higher soil strength and soil precompression stress (Horn et al. 2007), and
therefore a higher resistance to soil compaction is expected. Indeed, both the absolute as
the relative increases compared to UD were lower at site 1. A similar maximum BD of about
1565 kg m~ was observed. This value probably corresponds to the potential maximum BD

value for the sandy soil under study (§4.5.2).

The number of passes had a positive influence on the compaction degree that was measured
by means of BD and PR. According to Schifer & Sohns (1993) and Williamson & Neilsen
(2000) this relationship is logarithmic with a strong impact of the first pass(es), approaching
zero at higher traffic intensities. As pores are compressed at successive machine passes they
exert a higher resistance to the applied forces and thus increase soil strength (Hillel 1998)
and precompression stress. Subsequent passes will induce a (diminishing) extra compaction
as long as the applied stress exceeds this precompression stress (Horn et al. 2007). This
positive logarithmic relationship between traffic intensity and compaction degree was also
emphasized by Brais & Camiré (1998). They indicated that on coarse textured soils the
increase of the compaction degree is more gradually spread over the first passes, as was
stated by the PR results. However, in our study the strongest BD increase within tracks
already appeared after one pass of the harvester (H), with limited (site 2) to negligible (site

1) additional BD increments due to the subsequent passes.

While the compacted soil layer is partially protected from further compaction (Incerti et al.

1987; Williamson & Neilsen 2000), an increasing proportion of the applied forces is
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transmitted to higher depths, as was observed by Shetron et al. (1988) and Balbuena et al.
(2002). This explains why differences between the effects of H and Max can normally also be
observed at deeper layers. However, BD and PR increased with traffic intensity in the upper
20cm of the soil but in deeper soil layers, the difference between the treatments was less
clear, leading to the significant interaction term treatment x depth for BD. Williamson &
Neilsen (2000) made similar findings. With increasing depth, the pressure of the machines
was dissipated over an enlarging area (Greacen & Sands 1980) and was eventually
insufficient to impact physical properties of the underlying higher density materials to a
considerable extent (Cullen et al. 1991). Treatment effects were therefore predominantly
restricted to the upper 30 cm of the soil, in accordance with Greacen & Sands (1980) with an
overall maximum impact at 10-20 cm. In the upper soil layer (0-10 cm), the shear forces,
which tend to loosen the soil in direct contact with the wheels, slightly counteract the
compactive forces, often leading to smaller compaction degrees compared to the soil

interval 10-20 cm.

BD and PR between tracks were also increased, in accordance with Brais & Camiré (1998),
also confirming the positive impact of traffic intensity on the compaction degree, though the
increase was smaller between the tracks compared to within the wheel tracks. This can be
explained by the simultaneous appearance of compaction and loosening of the soil. Wronski
(1984) stated that the lateral movement of soil from beneath the wheels induces slight
compaction between the wheel tracks on the one hand. On the other hand, rotations of the
tyres result in shear forces that tend to loosen the soil (Abeels 1989; Vossbrink & Horn
2004). As treatments all caused significant BD and PR increases within tracks in contrast to
the soil between tracks (where increases were small, absent or even negative), a significant

interaction between treatment and location was stated.

According to Lacey & Ryan (2000) and the USDA Forest Service, soil compaction becomes
harmful if BD rises more than 15%, as was the case on site 2. On site 1, BD increases after
Max (WT) in the upper 50 cm were restricted to 10%, in accordance with Alban et al. (1994).
Smith & Du Toit (2005) also found a maximal BD increase of 9%, in spite of higher initial BD
values. The relative increases of PR after Max (WT) were much higher than for BD at both
sites 1 (130% on average) and 2 (up to 280%), again in accordance with Alban et al. (1994)
and Smith & Du Toit (2005). According to Greacen & Sands (1980) and Whalley et al. (1995),
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root growth of many plants becomes restricted when soil PR exceeds 2 MPa and stops at PR
greater than 3 MPa. Within the wheel tracks of site 1, plant and tree colonization and
growth of roots could thus be hampered. Very high PR values are neither favourable for soil
fauna as most of these organisms do not possess a strong capability for burrowing. However,
only using thresholds or percentage of BD or PR change is ineffective because changes of BD
and PR may vary in its biological significance (Williamson & Neilsen 2000). For example,
Gaertig et al. (2002) showed that reduced root growth was rather due to lacking oxygen
supply. Hampered soil aeration may already occur at negligible compaction degrees, as was
shown in Chapter 2. Even a small increase of BD or PR on a sandy soil may therefore have
large consequences, considering the low biological activity that is present in undisturbed

conditions.

3.5.2 Influence of a brash mat on the compaction degree

Our results clearly showed a beneficial influence of a brash mat on the reduction of the
compaction degree after machine traffic. When enough slash residues are placed on the skid
trails, the machine weight is spread over a greater area than the actual footprint of the
machine, and hence the mean soil contact pressure declines. Schafer & Sohns (1993)
mentioned a clear relationship between the height of a brash mat and the degree of

compaction estimated by PR.

3.5.3 Correlation between bulk density and penetration resistance

Evidence for the non-linear relationship between PR and BD was also found by e.g.,
Henderson et al. (1988), Smith et al. (1997), Vaz et al. (2001) and Whalley et al. (2005), for a
wide variety of textural classes ranging from sand to clay. As BD increases the pore space is
being reduced. Eventually, the pore space becomes insufficient to accommodate the rigid
particles that are displaced by the intruding penetrologger cone. At high BD significant soil
particle rearrangement hence becomes problematic (Whalley et al. 2005) and the friction

experienced by the penetrologger cone strongly increases.

This effect was most pronounced on site 1, which can be attributed to the organic matter.
Although penetration resistance at both sites was measured during the same day at

approximate field capacity conditions, the lower organic matter content observed at site 1,
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could have resulted in a lower water holding capacity and thus a lower water content. Lower
water contents generally result in higher penetration resistances as was observed by many
researchers (Henderson et al. 1988; Hernanz et al. 2000; Vaz et al. 2001), due to the
dominance of frictional forces over interparticle cohesional forces. At field capacity, lower
penetration resistances can be stated as interparticle cohesional forces dominate frictional
forces, as was observed by Smith et al. (1997). The critical soil-water content corresponds
with the point where individual water wedges at the contact points between soil particles
begin to coalescence (Cornelis et al. 2004). Because of the higher frictional forces related to
the lower water content at site 1, the latter showed a more pronounced non-linear

behaviour of the relationship between bulk density and penetration resistance.

This non-linear relationship has some implications. Beyond a certain PR, BD maintains more
or less the same value. In our research, this value did not exceed growth limits for optimal
root elongation and so, from this point of view, the measured soil compaction status did not
seem to be a threat for the vegetation. PR however, kept increasing and in some cases even
exceeded limits for optimal root growth. As these two variables may affect the soil
ecosystem in a different way, it implies that it is best to use both BD and PR in order to
assess soil compaction. It must be remarked that soil CO, concentration is a more sensitive
indicator for machine traffic (e.g., Gaertig 2001) but could not be used here due to a lack of

appropriate devices.
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Four Kopecky cores, brought into the soil for determination of the bulk density of depth interval 0-10cm (Chapter 3)
[photograph: Robbie Goris, August 2004].



4 The effects of initial bulk density, machine mass and traffic intensity on
forest soil compaction: a meta-analysis

After: Ampoorter E, De Schrijver A, Van Nevel L, Hermy M, Verheyen K (2010) Impact of
mechanized harvesting on forest soil compaction: results of a meta-analysis. Forestry,

submitted

4.1 Abstract

A meta-analysis was performed to draw conclusions concerning the soil impact of
mechanized harvesting operations. The influences of initial bulk density, machine mass and
traffic intensity were studied, by means of absolute bulk density increases and log response
ratios, based on bulk density. In the first depth interval, the impact on clay was highest (18%
bulk density increase), but not significantly different from the impact on all textures classes
together and on sand (12-13%). For sand, clay and all texture classes together the impact
was maximal in the first depth interval, decreasing towards deeper soil layers (10-20 cm, 20-
30 cm) and the initial bulk density had a significant negative influence on the absolute bulk
density increase (p <0.01). For all texture classes together and for sand, a significant positive
relationship existed between the response ratio and the machine mass. No significant
relationship between the response ratio and traffic intensity was observed. The mean
response ratios for all texture groups (sand, clay, all texture classes together), the
compacted initial state of many forest soils and the long recovery period of compacted soils,
count in favour of designated skid trails. We also argue for the restriction of machines with a
high soil contact pressure and a specific adjustment of the machine type to the job.
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4.2 Introduction

In forest harvesting activities, heavy machines are often used, such as harvesters, skidders
and forwarders, with masses easily mounting up to 20 tonnes or more in loaded state.
Despite eventual careful planning of field operations, concern remains over the potential
adverse impacts on the forest ecosystem. Driving on a forest soil may cause soil compaction
in addition to soil rutting and churning, as a result of static and dynamic forces. Soil pore
volume decrease and a loss of pore continuity (Herbauts et al. 1996; Berli et al. 2003) is
obtained, inducing changes in soil aeration (Gaértig et al. 2002), soil water retention and
saturated hydraulic conductivity (Ballard 2000). The proportion of soil to pore space shifts
and consequently BD (Cullen et al. 1991; Miller et al. 1996) and PR (Alban et al. 1994; Aust et
al. 1998) increase. Heavy compaction may imply a serious risk for the soil ecosystem as a
good soil structure is of great importance to soil fauna (Jordan et al. 1999), herb and moss
layer (Buckley et al. 2003), tree roots (Greacen & Sands 1980) and their functionalities. It
should be mentioned that soil compaction is only detrimental when critical limits (e.g., for
BD or O, concentration) are crossed (e.g., Powers et al. 1998). A few studies indicate positive
effects resulting from soil compaction, mostly on sandy soils (Agrawal 1991; Brais 2001;

Gomez et al. 2002).

As mentioned in §2.2 the degree, to which the above-mentioned abiotic and biotic variables
are influenced, depends on several factors, such as (1) soil characteristics, (2) machine type,

number of tyres and (3) traffic intensity (number of machine passes):

1) It is generally assumed that medium- to fine-textured soils are more vulnerable to
soil compaction from machine traffic than coarse-textured soils (e.g., Larson et al.
1980; Hillel 1998), although the sensitivity of sandy forest soils to soil compaction
was emphasized by Brais & Camiré (1998) and Ampoorter et al. (2007; Chapter 3).
When assessing the influence of soil texture on the degree of compaction, the
impact of soil water content (e.g., Smith et al. 1997; Hillel 1998), precompression
stress (Horn et al. 2007) and organic matter content (Sands et al. 1979; Greacen &

Sands 1980; Howard et al. 1981) may not be underestimated.

2) Machine impact: the higher the soil contact pressure, the more intense the

compaction process. At a constant machine mass the compaction degree is
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negatively correlated with the number of tyres (Alakukku et al. 2003) and tyre
dimensions (Benthaus & Matthies 1993), and positively correlated with tyre
pressure (Abu-Hamdeh et al. 2000). At constant tyre characteristics, damage
increases with increasing machine mass (McDonald et al. 1996). However, the real
exerted pressure (dynamic) often differs from the pressure that is calculated using
the theoretical contact area (static), such as when the machine drives over a stump

(Chancellor 1994) or during felling and processing (Wehner 2003).

3) The first pass of a machine will affect soil structure and porosity in case the applied
stress encompasses the precompression stress of the soil. As a result, pores become
smaller and exert a higher resistance to further compaction (Shetron et al. 1988;
Williamson & Neilsen 2000), leading to higher soil strength and precompression
stress (Horn et al. 2007). Subsequent passes will have a diminishing influence until
the applied stresses no longer exceed the constantly increased precompression
stress. Brais & Camiré (1998) and Seixas et al. (2003) emphasized that this
relationship is logarithmic and that the traffic intensity at which the response starts

to mitigate depends amongst others on soil texture.

Soil damage caused by logging machinery has been studied frequently. However, most of the
studies only focus on one soil texture, one machine and/or one level of traffic intensity.
Seldom different levels of these factors are compared, enabling to make more general and
reliable conclusions about the impact of a specific factor on the compaction degree. In this
article, a meta-analysis, i.e. a powerful method to conduct an objective review of numerous
studies (e.g., Arngvist & Wooster 1995), was made to examine the impact of logging
machinery on forest soils. Available literature was reviewed to address the following specific

questions:

a) How strong does machine traffic alter BD of forest soils?
b) Are the results similar for contrasting soil texture classes?
c) To what extent is this relation influenced by initial BD, number of machine passes

and machine mass (as an indication of soil contact pressure)?
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4.3 Material and methods

4.3.1 Data collection

4.3.1.1

Search strategy and study inclusion criteria

Relevant studies were identified through searches of the bibliographic database ISI Web of

Science, and the cited references in these publications, with 1955-2007 as the search period.

Search terms used were forest, soil, compact*, machin*, harvest*, disturb*, skidder,

forwarder, traffic and effect, used in various combinations with each other. The search was

focussed on articles that studied the impact on abiotic soil characteristics, such as BD, PR

and hydraulic conductivity. Studies were initially filtered by title and obviously irrelevant

articles were not further considered. Subsequently, the abstracts were studied with regard

to possible relevance to the research questions. This process yielded 26 articles. Further

criteria, used for inclusion into the final stage of the meta-analysis, were:
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Machine type: commonly used logging machines, such as skidder, forwarder,
harvester... Experiments with rolling vibrators were, for example, not allowed (2

articles deleted from selection);

Outcome: as most of the articles examined the impact of traffic on soil BD, and
other variables were studied to a much lesser extent, this meta-analysis focused on
the BD change (2 articles deleted from selection) and thus on soil compaction.
Viscoplastic deformation, which leads to soil rutting, could not be examined using

this variable, thus the total soil impact was underestimated;

Data availability: a good meta-analysis requires three basic statistics: the mean of
the response variable (BD before as well as after traffic), a measure of the variance
and the number of replicates (Hedges et al. 1999). Despite the importance of
detailed information on set-up and results in publications, several articles lacked

information on necessary variables and could not be used (11 articles deleted).
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Finally, eleven articles, studying 37 different forest stands, contained the needed details and
were included in the meta-analysis. More information about this final selection of articles

used in the meta-analysis can be found in Table 4.1.

4.3.1.2 Data preparation

Information on soil type, soil texture or particle size distribution allowed to classify each
forest stand into a texture class of the USDA soil classification system (Soil Survey Staff
1999). In order to examine differences in response between texture classes, subsets were
created consisting of studies on Sand (including sand, loamy sand, sandy loam) and Clay
(including clay). An additional subset could not be delimited as textures of the remaining
studies were too heterogeneous (sandy clay loam, sandy clay, clay, silty clay, clay loam, silt
clay loam, loam, silt loam, silt). It is interesting to analyse differences between Sand and Clay
as it is expected that these subsets will have a contrasting response due to different
vulnerabilities to soil compaction (Hillel 1998; Fisher & Binkley 2000). Each analysis was
performed for all texture classes together (All) and for Sand and Clay separately. Table 4.2
shows that about 25% of the forest stands were located on soils with texture classes

classified in subsets Sand or Clay, the rest was located on other soil texture classes.

In most articles, measurements were carried out in the upper 30 cm of the soil. For the
meta-analysis, this interval was divided into three equal depth classes 0-10, 10-20 and 20-30
cm. Eventual measurements deeper in the soil were not considered as there were not
enough replications. In case a paper presented results for BD for different machine types,
data for each type were included as an individual study. Likewise, when different levels of
traffic intensity (number of passes) were compared, data for each level were treated as
individual studies (cf Jactel & Brockerhoff, 2007). Each combination of forest stand, machine
type, number of passes and soil depth class is further called a substudy. This yielded a total
of 98, 102 and 88 substudies for the soil depth classes 0-10 cm, 10-20 cm and 20-30 cm, so
288 substudies for all three depth classes together. Finally, data on measuring precision
(standard error (SE), standard deviation (SD), coefficient of variation,...) were all transformed

into SD.
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Chapter 4

4.3.2 Data analysis

Statistical analyses to test the impact of machine traffic on forest soils were carried out in
accordance with Hedges et al. (1999), using the log response ratio L as an index of effect. For
each individual substudy the log response ratio was calculated as the natural logarithm of

the ratio of the mean BD after traffic (XT) to the mean BD before traffic (Xi), thus

X _ _
L=In (%) As the smaller of \/E[()XC) or \/E[()Xe) (n = sample size) was larger than 3, the

X, |
set of L; had only little bias and the normal approximation to its sampling distribution should
have been quite good, with a mean approximately equal to the true log response ratio, a

(sD.)° _ (D)’
variance v; approximately equal to 1>~/ | °~t) and a 100(1-a)% confidence interval for the

nexe2 nCXC2
individual log response ratio parameter A, given by L — Za,zx/VS/ié L+ za,Z\/V with Z,,,

as the 100(1-a/2)% point of the standard normal distribution.

The first step in the meta-analysis was to check for publication bias. Studies with clear,
significant responses according to the expectations were more likely to be published than
studies without any significant effects or with a response that contradicted with general
assumptions. As a result, literature may have become biased. To approach the problem of
publication bias, we produced a funnel plot (Light & Pillemer 1984), in combination with a
statistical test (Begg & Mazumdar 1994). The funnel plot shows an index of study size or
precision on the vertical axis as a function of effect size (such as the log response ratio) on
the horizontal axis. According to Sterne & Egger (2001) the SE is likely to be the best choice
at the vertical axis. In this way the funnel plot emphasises smaller studies, being more
susceptible to bias. In the absence of bias, the sample points are distributed like a vertical
funnel symmetrically round the mean effect size. This means that the individual effect sizes
are close to the mean effect size at higher precision levels (generally big studies) but are
more spread when the precision level decreases (small studies). In the presence of bias, the
wider part of the funnel (small studies) shows a non balanced view. Interpretation of funnel
plots is facilitated by inclusion of lines representing the 95% confidence limits around the
mean effect size, showing the expected distribution of studies in the absence of bias. To
guantify the amount of bias depicted in the funnel plot, a statistical test has been developed

by Begg & Mazumdar (1994), based on the rank correlation (Kendall’s tau) between the
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standardized effect size and the variance of this effect. When L, is the estimated effect size
and v; the sampling variance from the k substudies in the meta-analysis, then, to construct a

valid rank correlation test, it was necessary to stabilize the variances by standardizing the

" ) _ 1L
effect sizes. The test correlates L; and v;, wheresz("\i/;L), L:(z%‘l'll") and where
v, Vi

i 1
v; =v,—(3v;*)" is the variance of L,-L. A value of zero signifies no relationship between

effect size and precision, while every departure from zero is indicative of the presence of a
relationship, such as publication bias. Namely, if in the publication of smaller studies (smaller
precision, larger v;) greater attention was given to studies with a larger than normal effect
size (larger Li*), then a positive relationship would be found between effect size and

precision.

In order to compare the effect sizes, for example between Sand and Clay, and thus to
calculate means and accompanying confidence intervals, the random effect model was used
(Gurevitch & Hedges 2001). Differences among these studies in the actual effect size
measured were assumed to be due to both sampling error (v;) and between-study variation
in the experiment-specific parameters Ay, ...,Ax (o;\z). The cumulated mean effect size or mean
response ratio L" was calculated as a weighted average for All, Clay and Sand per depth class,

using following formulas:

B Zwi*Li .

L = ':1k where k = number of substudies within this group, Wi*:—z,

Z . (v, +o3)

W
i=1
k
) Qo w *L)°
o Q-(k-1 _1 d - *(L)Y—_=L Th di
o =—————, W=—an Q=>w *(L) - . The corresponding
i =1

Loxw v >w
Zwi _ iT(l i=1

100(1-a)% confidence interval was given by f_za/ZSE(f)gﬂlgf+za/zs|5(f) where

_ e W) -w)
SE(L) = () 4y (1
T 5w

) and df; was the number of degrees

2w

i=1
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of freedom in the jth substudies (ne + n¢ - 2). As L' is a weighted mean, significant differences
between two groups could not be detected with t-tests using the original response ratios per
substudy. Instead, a (double sided) p-value had to be detected with a t-test using the means

and SD, calculated as mentioned above (o = 0.05).

The next step was to determine which factors were of influence on the response ratio. For
this purpose the correlation was calculated between the response ratio on the one hand and
the machine mass, machine mass per tyre (instead of soil contact pressure, see further) and
number of passes on the other. The correlation between the initial BD (or BD before traffic)
and the absolute BD increase after traffic was also examined. In order to take the size of
each study (number of replications) into account, the weighted Pearson product-moment
correlation coefficient was used (cf Honnay & Jacquemyn 2008). This number was calculated

as follows:

T, = W (Xi —X_w)(yi —y_W)
V \/ﬂ(xi - E)ZZ Wi (yi - y_w)2

where X_W = ZWiXi /Z:Wi and y_W = Zwi Y /Z:Wi . In these equations w; and x; denote the

number of replications per response ratio, respectively the response ratio (or the absolute
BD increase), and y; represents the BD before traffic, the machine mass, the machine mass

per tyre or the number of passes (Bills & Li 2005). The significance of r,, was tested by

calculating the value of tzr‘/zln_zzj (with n = number of substudies; d.f. = n-2) and
-7

comparing the absolute value with the table of Student’s t for a two-tailed test with a = 0.05
and a = 0.01. More information about the number of substudies for all correlations was
summarized in Table 4.3. For each substudy, information was available about the BD before
traffic and the absolute BD increase. However, not all studies contained details about the
machine mass, number of tyres or number of passes, and this information could not always
be found in literature, which explains the differences in n between the various
characteristics. In case of testing the correlation between the response ratio and the
machine mass per tyre, one study was also omitted as it concerned a tracked machine (Ares

et al. 2005).
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4.4 Results

The funnel plot showed that most of the studies are grouped at rather low SE (Fig. 4.1). A lot
of points were not located in the 95% confidence interval, but they were dispersed
symmetrical around the mean response ratio. Kendall’s tau, calculated for all textures
together (tau = -0.018, p = 0.647), was insignificant. However, when looking specifically at
subsets Clay (tau = 0.473; p = 0.019) and Sand (tau = -0.191; p = 0.017), Kendall’s tau was

significantly different from zero.
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Fig. 4.1 Funnel plot representing SE in function of the response ratio. Dotted vertical line indicates the overall mean
response ratio (= 0.0644). The diagonal lines show the expected 95% confidence interval around the mean response
ratio. ‘Other’ represents all textures apart from the soil textures in subsets Sand and Clay.

Most response ratios for depth classes 0-10, 10-20 and 20-30 cm were positive, indicating a
larger BD after machine traffic compared to the value before traffic (Fig. 4.2). In other words,
in most of the substudies, machine traffic resulted in soil compaction. It seems that all values
for Clay and most of the values for Sand were higher than zero. With increasing depth, the
positive response ratios decrease, meaning that the machine impact was largest at the

surface and decreased with depth.
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The same conclusions could be drawn when the mean response ratios were calculated per
depth class for all texture classes together (All) and for Clay and Sand separately (Fig. 4.3,
Table 4.2). All mean response ratios were higher than zero, indicating compaction. For the
first depth interval it seems that the impact was highest on Clay soils, but the differences
with the mean impact on Sand and All were not significant. The response ratio was 0.16, in
terms of percentage equivalent to a BD increase of 18%. Values were similar for All and Sand
(0.11 or 12%, respectively 0.12 or 13%; p >0.05). In depth intervals 10-20 cm and 20-30 cm,
the mean impact on Sand was highest (0.07-0.08) and significantly different from the mean
impact on All (p <0.001 for both depth intervals). The impacts on Clay and All were similar (p
>0.05). As could already be concluded from Fig. 4.2, the impact was largest at the surface
and decreased with depth and this decrease happened faster for Clay than for Sand and All.
For Clay, the differences between impacts in depth intervals 0-10 cm and 10-20 cm on the
one hand (p = 0.009) and 0-10 cm and 20-30 cm on the other (p = 0.032) were significant.
For Sand significant differences were stated between 0-10 cm and 10-20 cm (p <0.001),
between 0-10 cm and 20-30 cm (p <0.001) and between 10-20 cm and 20-30 cm (p = 0.004).

For All, all differences between the impacts on the three depth intervals were significant (p

<0.001).
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Fig. 4.3 Mean response ratio for All, Clay and Sand per depth class. Error bars indicate 95% confidence interval.
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Table 4.2 Number of forest stands, substudies and mean response ratios (with 95% confidence interval) for All, Clay and
Sand per depth class.

Depth class Texture Forest Stands Substudies Mean response ratio

All 35 98 0.11+0.01

0-10 cm Clay 2 4 0.16 £ 0.05
Sand 8 20 0.12£0.02

All 37 102 0.06+0.01

10-20 cm Clay 2 4 0.05+0.04
Sand 10 24 0.07 £0.01

All 28 88 0.05+0.01

20-30 cm Clay 1 3 0.04 £ 0.05
Sand 5 17 0.08 £0.01

The highest absolute BD increases were found on soils with the lowest bulk densities before
traffic (Fig. 4.4, Table 4.3). Looking at all depth classes together, as well for All as Clay the
correlation was negative and strongly significant (t = weighted Pearson product-moment
correlation coefficient = -0.23, p <0.01 for All; T = -0.77, p <0.01 for Clay), what means that
the absolute BD increase decreased as the BD before traffic increases. Looking at all texture
classes together (All) this significantly negative relationship occurred in the second (t =-0.29,
p <0.01) and third depth interval (t = -0.39, p <0.01). From a certain limiting value, the
absolute BD increases approached zero and were in some substudies negative, indicating
that the compaction process stopped and the soil rather seemed to loosen up as a result of

machine traffic.
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Fig. 4.4 Correlation between the bulk density before traffic and the absolute bulk density increase (kg m). ‘Other’
represents all textures classes apart from the soil texture classes in subsets Sand and Clay.
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Table 4.3 Correlation between the response ratio (or absolute bulk density increase) and bulk density before traffic,
machine mass, machine mass per tyre, number of machine passes) with n = number of substudies, T = weighted Pearson
product-moment correlation coefficient, * = significant value with a = 0.05, ** = significant value with o = 0.01.

Correlation Texture Depth class
All depth 0-10 cm 10-20 cm 20-30 cm

classes

n T n T n T n T
Absolute BD All 288 -0.23** 98 -0.14 102 -0.29** 88  -0.39**
increase - BD Clay 11 -0.77** 4 -0.65 4 -0.75 3 /
before traffic Sand 61 -005 20 042 24 029 17 015
Response ratio — All 260 0.48** 87 0.38** 91 0.55** 82 0.63**
machine mass Clay 11  0.19 4 0.77 4 0.77 3 /
__________________________ Sand 55 039** 17 042 21 025 17  0.66**
Response ratio—  All 255 0.11 86 0.09 88 0.11 81 0.17
machine mass Clay 11 -0.19 4 -0.10 4 -0.21 3 /
pertyre Sand 44 057** 14 004 16 017 14 018
Response ratio — All 275 0.06 92 0.07 96 0.13 87 -0.01
number of Clay 11  0.35 4 0.93 4 0.26 3 -0.91
machine passes  Sand 55 -0.13 17 0.08 21 -0.13 17 0.05

Significant correlation coefficients are marked in bold (* p <0.05, ** p <0.01).

The machine mass determines, together with a number of other factors such as tyre width,
tyre profile and pressure, the soil contact pressure, and thus the extent to which the soil is
compacted. However, unfortunately almost all articles lacked information on the soil contact
pressure of the machines used, nor was other information available to calculate this
pressure, such as weight distribution and tyre characteristics. No correlation could thus be
determined between the response ratio and the soil contact pressure. Therefore only
machine mass could be used as an indication of soil contact pressure. A significant, positive
relationship existed between the machine mass and the response ratio for all textures
together (1t = 0.48, p <0.01) and for forest stands on Sand (t = 0.39, p <0.01), indicating an
increased compaction degree with increasing machine mass (Fig. 4.5, Table 4.3). This
significantly positive relationship could also be discerned for each depth interval separately
for All. It has to be noticed that different machines with the same mass may have a different
number of tyres over which the machine mass is distributed, resulting in different soil
contact pressures. The machine mass per tyre was therefore correlated with the response
ratio. Only for Sand this relationship appeared significant when all depth classes were

analysed together (t=0.57, p <0.01) (Table 4.3).
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Fig. 4.5 Correlation between the machine mass (tonnes) and the response ratio. ‘Other’ represents all texture classes
apart from the soil texture classes in subsets Sand and Clay.

Looking at the relationship between the response ratio and the number of passes that the

machines made (traffic intensity) (Fig. 4.6, Table 4.3), it seemed that for neither All, Sand or

Clay the correlation coefficient was significant.
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Fig. 4.6 Correlation between the number of machine passes and the response ratio. ‘Other’ represents all texture classes
apart from the soil texture classes in subsets Sand and Clay.

4.5 Discussion

First of all, it should be noted that a lot of the articles found through the literature search
lacked necessary basic information and so could not be included in the final dataset. In

publications, attention should be given to the record of important characteristics such as
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number of replications and information about the precision of the measurements. This
information is necessary to perform a good and balanced meta-analysis using the method of
Hedges et al. (1999). The more study results that can be used in a meta-analysis, the more
general are the conclusions that can be drawn. Moreover, soil and machine characteristics,
such as soil water contents, soil acidity and the real soil contact pressure of the machines,
may influence compaction degrees due to machine traffic. As was stated by Hillel (1998) and
Smith et al. (1997) (§1.2.4.1), soil water content has a great influence on the soil compaction
degree. Moreover, it is suggested that soils are most susceptible to compaction in a pH-
range of 4.5-5.5. Above and below this threshold soil structure is stabilized by Ca,
respectively Al (von Wilpert K, personal communication). However, the dataset was not
further divided based on soil water content or soil acidity, as information on these
characteristics lacked in most cases. Therefore, although very interesting, we could not focus
on these aspects in the meta-analysis. As cases with completely different soil water content
and soil acidity were all present in the same dataset without further subdivision, this may
have led to high overall variation. Machines with the same total mass may have a totally
different impact due to other tyre dimensions, number of tyres, tyre pressure, or other
characteristics that change the contact area between soil and machine and thus the soil
contact pressure. The correlation between mean soil contact pressure (disregarding the
heterogeneous pressure distribution) and response ratio would already have been more
reliable and pronounced in order to evaluate machine impact than the correlation between
machine mass and response ratio. However, information to estimate soil contact pressure

was unfortunately lacking.

Based on the funnel plot one should conclude that publication bias is present, according to
Sterne & Egger (2001). However, looking at the symmetrical distribution around the mean
response ratio, it seems that the publication of studies with a larger than normal response
was not favoured above the publication of studies with a smaller than normal or even
negative response, and thus that publication bias is absent. The large number of points
outside the confidence interval could be due to heterogeneity, i.e. studies with similar
precision but clearly different response ratios (e.g. due to differences in machine mass,
traffic intensity, precompression stress, soil water content, soil acidity). Kendall’s tau,
calculated for all textures together, confirms the conclusion from the funnel plot that

publication bias is absent. However, for subsets Clay and Sand publication bias seems to be
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present. Conclusions drawn from the funnel plot and Kendall’s tau should be treated
carefully. On the one hand, the test has a low power unless there is severe bias or the meta-
analysis contains a large number of (sub)studies (more than 25). A non-significant Kendall’s
tau is indicative but should not be taken as proof that bias is absent. On the other hand,
some studies dealt with several textures, machines, traffic intensities to examine the impact
of these factors. In this analysis they were treated as different substudies, although they
were not independent from each other. This was necessary to be able to examine the impact
of machine, number of passes and texture based on the small number of usable articles. The
damage degree that was induced under these diverse conditions was not similar, but
showed a range of values. So, from one study as well low impact treatments as high impact
treatments could be present in the funnel plot, leading to a rather even distribution. One
could then conclude that publication bias is absent and that similar attention has been given
to the publication of high and low impact results. However, the even distribution could be
largely due to only a few articles, examining diverse conditions and the presence of true

publication bias could in this way be masked.

4.5.1 Vulnerability of soils with different texture to soil compaction

USDA Forest Service determined that a BD increase of more than 15%, corresponding to a
response ratio of 0.14, leads to detrimental soil compaction (Powers et al. 1998). The
individual response ratios per substudy showed that most of the cases had response ratios
smaller than 0.14. Looking at the mean response ratios (Table 4.2) it can be deduced that
this threshold has been crossed for Clay in the first depth interval, although the difference
between this threshold and the mean impact was not significant. For Sand and All, BD
increased 12-13% in this interval. If the above threshold is used to evaluate these soil
impacts in the first depth interval, it seems that machine traffic may have brought serious
threats to the soil ecosystem in some cases. At higher soil depths, BD increases were rather
limited for all soil textures. It should be noticed that evaluating the soil impact by means of
only the BD increase may lead to a serious underestimation of the real soil impact. Although
compaction degrees were rather restricted, machine traffic may have destroyed pore
continuity, amongst others leading to hampered gas exchange and water infiltration. This
may in turn affect growth and activity of roots and soil organisms (Schumacher & Smucker

1981; Bathke et al. 1992). Therefore, in order to estimate the total soil impact, all aspects of
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soil damage (such as compaction, rutting and especially the impact on gas exchange) should

be evaluated.

Some studies have pointed out that the clay content is positively correlated with the degree
of soil damage (Gomez et al. 2002; Smith 2003), explaining the higher positive response
ratios for the Clay soils. In general, it is assumed that compaction occurs especially on silty
and clayey soils, while sandy soils are often expected to be rather indifferent to traffic with
heavy machines (Fisher & Binkley 2000). However, here response ratios for Sand were as
high as the overall mean and not significantly different from the impacts on Clay. Brais &
Camiré (1998) found that the BD increase in terms of percentage was as high on a soil with a
coarse texture in comparison with medium- to fine-textured soils. Ampoorter et al. (2007;
Chapter 3) also stated that sandy soils can be compacted to a considerable extent. The
assumed higher sensitivity of medium- to fine-textured soils compared to coarse-textured
soils is partially true when the soil water content at the medium- to fine-textured soils is
close to the optimum soil water content (Smith et al. 1997; Hillel 1998) (§1.2.4.1). In this
case, low cohesion exists between clay or silt particles and compaction degrees are maximal.
At sandy soils, cohesion between soil particles is minimal at low or high soil water contents
and soil impact shows a local minimum at intermediate soil water contents (Smith et al.
1997; Langohr & Ampe 2004). Therefore it is possible that experiments on all textures took

place at rather low or rather high soil water contents.

The significant decrease of the compaction degree with depth, as was shown in Chapter 3,
was clear for All, Sand and Clay. The forces implied by the machine mass are transformed in
the compaction process. Pores are compacted in the first depth interval, in this way
intercepting the machine forces and protecting the layers below. However, this initial
compaction leads to higher soil strength in the upper soil layers, thereby preventing further
compaction in this layer. At the next passes the forces are shifted to deeper soil layers.
However, deeper in the soil, compaction passes of more slowly due to a dissipation of the

machine forces over a larger area (Shetron et al. 1988; Balbuena et al. 2002).

4.5.2 Impact of initial bulk density on compaction degree

The initial bulk density gives an indication of the precompression stress and influences the

absolute BD increase in a significantly negative way for All, Sand and Clay, as was also stated
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in Chapter 2 and Powers et al. (2005). Soils with a low initial bulk density and thus low
precompression stress contain a lot of macropores that are easy to compact. Compacted
soils have smaller pores which exert a higher resistance and are thus less prone to
compaction (Shetron et al. 1988; Hillel 1998; Berli et al. 2003), protecting the soil from
further compaction (Incerti et al. 1987; Williamson & Neilsen 2000). Only when the applied
machine stress exceeds this soil precompression stress, then soil structure is influenced
(Horn et al. 2007). The impact of a specific machine will this be higher at low precompression
stresses compared to high precompression stresses, explaining the negative correlation
between initial bulk density and the compaction degree. Results seem to suggest a limiting
BD for additional compaction to take place. For clay soils (+ 1100 kg m™) this limit is situated
at lower BD values compared to sandy soils (1400-1500 kg m). This finding is in accordance
with the results of Powers et al. (2005) who saw that soils with an initial BD of 1400 kg m? or
more did not compact anymore. Moreover, through the rotation of the tyres of a heavy
machine the compacted superficial soil layer may even churn and break up to a very small

extent.

4.5.3 Impact of machine mass on soil compaction

The significant positive correlation between the response ratio and the machine mass for
Sand and All should be explained using the mean soil contact pressure. When the machine
mass increases strongly and not in proportion to the increase of the contact area with the
soil, the soil contact pressure and thus the compaction degree grows. McDonald et al. (1996)
came to the same conclusion. A significant relationship between the mass per tyre and the
response ratio could only be discerned for Sand. This may partially be due to the fact that for
a lot of substudies information about the exact machine type and thus the number of tyres
was not available. As this could not always be deduced from literature, these substudies
were omitted for this analysis. Moreover, machines often have an uneven mass balance and
some axes carry more weight than others. In some cases, the real mass per tyre (and thus
also the soil contact pressure) may have been much higher than the value we obtained by
dividing the total mass by the number of tyres. Information on tyre pressure, size and profile
was for most cases unavailable although these characteristics also have a strong impact on

the soil contact pressure and thus the resulting response ratio. The obliged use of total
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machine mass and machine mass per tyre as a very rough estimation of soil contact pressure

instead of the actual contact pressure may have skewed the relationship.

4.5.4 Impact of traffic intensity on soil compaction

For neither All, Sand nor Clay the compaction degree increased significantly with the number
of machine passes. This would mean that soil compaction degree is independent of traffic
intensity. A rather low number of traffic intensity levels, and a large interstudy variation
within each level concerning site and harvest characteristics may have skewed the
relationship with traffic intensity. However, several studies (e.g., Brais & Camiré 1998; da
Silva et al. 2008) state a logarithmic relationship between traffic intensity and compaction
degree with a strong influence of the first passes and a stabilization of the response ratio at
higher levels traffic intensities. At subsequent passes pores become smaller and exert more
resistance to further compaction, as was mentioned in §4.5.2. This increases the soil
strength and thus the precompression stress, partially protecting the soil from further
compaction. Subsequent passes will induce a diminishing extra compaction degree until the

applied machine stress no longer exceeds the constantly increasing precompression stress.
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Water stagnation in deep ruts caused by five passes of the John Deere grapple-skidder JD640 at the field trial in Walem 1
(Chapter 2) [photograph: Evy Ampoorter, February 2007].



5 Impact of forest soil compaction on growth and survival of tree saplings:
a meta-analysis

After: Ampoorter E, De Frenne P, Hermy M, Verheyen K (2010) Effects of soil
compaction on growth and survival of tree saplings: a meta-analysis. Basic & Applied

Ecology, revised manuscript resubmitted

5.1 Abstract

Soil compaction due to mechanized harvesting operations in forests can have profound
effects on forest soils and, hence, can have a detrimental effect on subsequent forest
regeneration. We performed a meta-analysis to quantify the impact of soil compaction on
height and diameter growth and survival of tree saplings. The impact of soil compaction on
height growth, diameter growth and survival was predominantly insignificant, varied
strongly and was thus not unambiguously negative. Only on silty soils (and clayey soils to a
minor extent), growth and survival were significantly reduced by soil compaction, which
contrasted with sandy and loamy soils, where the impact of soil compaction was negligible
or even slightly positive. A weighted analysis revealed an overall decrease of height growth
on the compacted area, but this result should be interpreted with caution due to the limited
number of observations. Although results did not show an overall negative effect of soil
compaction, harvesting activities should focus on minimizing soil compaction degree and
extent to prevent a decrease of soil productivity. From a methodological point of view we
suggest providing more basic statistics in the articles and to include more shade tolerant tree
species in future experimental designs. These species are currently underrepresented.
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5.2 Introduction

The use of heavy machinery to perform forestry activities such as logging has increased
worldwide during the last decades. However, these machines may seriously influence the
soil ecosystem as they induce rutting, churning of the upper soil layers, and soil compaction.
The latter implies a decrease of soil pore continuity (Benthaus & Matthies 1993),
compression of soil pores, and an increasing soil bulk density (Cullen et al. 1991). Aust et al.
(1998) stated an increased penetration resistance after machine traffic, a measure for the
resistance that a soil exerts against root growth. Moreover, Ballard (2000) reported changes
in soil water retention and saturated hydraulic conductivity. Several studies indicated an
increase of soil CO, concentration and decrease of O, concentration due to an unfavourable
influence on soil aeration (e.g., Startsev & McNabb 2009). Tan & Chang (2007) showed that
soil compaction also had a negative effect on net nitrification rates, although Blumfield et al.

(2005) did not notice a significant effect on nitrogen mineralisation or nitrification.

Heavy soil damage may impose a serious threat to soil ecosystem functioning. Higher PR
reduces elongation and penetration of roots and thus lowers the uptake of water and
nutrients (Kozlowski 1999). A higher seedling mortality and reduced tree growth was
observed by Cheatle (1991), Gebauer & Martinkova (2005) and Bulmer & Simpson (2005), in
contrast with Fleming et al. (2006), Nabe-Nielsen et al. (2007) and Alameda & Villar (2009)
who found a beneficial impact of soil compaction on regeneration, respectively growth. The
level of these effects depends on soil type and examined tree species (Gomez et al. 2002;
Heninger et al. 2002). Several studies indicated that roots may still grow in compacted soils
through soil cracks and channels of dead roots (Greacen & Sands 1980). Apart from the
impact on tree growth and survival, soil compaction may also influence the performance and
diversity of understory plants (e.g., Zenner & Berger 2008), soil macrofauna such as

earthworms (e.g., Jordan et al. 1999), and microbes (e.g., Kara & Bolat 2007).

As shown above, results on the impact of soil compaction on tree growth and survival are
not unequivocal. For the most part, studies examined one compaction degree, one species,
taxonomic group or one soil type. To date, no general conclusions could be drawn. We
performed a meta-analysis to unravel the impact of soil compaction on tree sapling growth
and survival in a more general way across an array of climates, compaction degrees, soil

types and tree species. We specifically addressed:

92



Biotic impacts of soil compaction: a meta-analysis

(a) Whether machine traffic had a negative impact on sapling growth and survival on
average;
(b)Which experimental factors explained the variation in growth and survival

responses to soil compaction.

5.3 Materials and methods

5.3.1 Data collection: search strategy and study inclusion criteria

The bibliographic database ISI Web of Science (http://apps.isiknowledge.com) was searched
to find relevant studies on the overall biotic effects of soil compaction, published between
1955 and 2009. The Boolean search expression was compact®* AND forest* AND harvest* (*
= wildcard). This procedure yielded 207 articles, of which 69 treated the biotic effects of soil
compaction. The reference lists as well as citing articles were also examined, resulting in 30
and 10 additional articles on biotic effects respectively. Finally, Google (www.google.com)
was used for additional searching but only one new article was found. Of these 110 articles,
65 examined tree growth and survival, 30 studied the herb layer, and 25 looked at the
effects on soil biota (microbiota, earthworms, etc). In this meta-analysis we specifically
decided to focus on the impact on tree growth and survival. A lot of articles concerning herb
layer and soil biota lacked essential information or examined species or diversity indexes
were too different to be analysed together. Next, duplicate studies, studies where no clear
distinction was made between compacted and uncompacted soil and studies where a
combination of soil compaction and litter layer removal was examined, were deleted.
Laboratory or pot experiments were also excluded, as in these cases the soil was artificially
compacted, root growth was restricted by the pot boundaries, and the soil processes were
probably not comparable to the in situ situation. All remaining articles handled the impact of
soil compaction on planted seedlings, resprouts, or natural regeneration, further called
saplings. The effect of soil compaction on established, adult trees could thus not be
examined. Height growth, diameter growth and survival of the saplings were selected as
response variables as most articles quantified at least one of these variables. This resulted in
22 studies retained in the final dataset. Six were located in Canada, 11 in the USA, two in
South America, two in Oceania and one in Africa. Detailed information on the selected

studies is summarized in Table 5.1. Local climates were classified according to the Kbppen-
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Geiger classification (Kottek et al. 2006). Type of compaction treatment refers to the way
that soils were compacted. In several studies compaction was experimentally applied with
heavy machinery (skidder, loader, bulldozer...), aiming to simulate current traffic intensities
or compaction degrees (experiment). Other experimental studies were part of the Long-
Term Soil Productivity (LTSP) Study where nine combinations of organic matter removal and
soil compaction were applied. In the LTSP study compaction treatments were also intended
to simulate prevailing compaction degrees and were often applied using a compactor head
on an excavator or a heavy roller pulled by a tractor. In the remaining studies soils were

compacted by virtue of recent (harvest) or former (old wheel tracks) harvests.

5.3.2 Data preparation and analysis

5.3.2.1 Predictor variables

Because some studies examined the effect of several traffic or disturbance intensities,
harvesting regimes, locations or tree species, data for each combination was included as an
individual substudy. This yielded a total of 41 substudies for dataset Height, and a number of
19 and 23 substudies for datasets Diameter, respectively Survival. Each substudy was
classified in one of four texture subsets using the USDA classification system (Soil Survey
Staff 1999): sand (sand, loamy sand, sandy loam), silt (silt, silt loam), loam (loam, sandy clay
loam, silt clay loam) and clay (clay, silty clay, sandy clay, clay loam). Due to a lack of detailed
information on soil texture, a few substudies were assigned to more than one texture
subset. For instance, when soil texture information mentioned sandy loam-silt loam, the soil
was classified as both sand and silt. The examined tree species were subdivided into two
functional tree groups: deciduous broadleaved species and evergreen coniferous species.
Taking the morphological and functional differences between these two groups into
account, we hypothesized that there might also be a difference in response to soil
compaction. It should be noted that eight of the 14 examined species (around 65% of the
substudies for each dataset) were intolerant to shade, five displayed intermediate shade
tolerance (around 33% of the substudies) and only one species was shade tolerant (< 5% of

the substudies) (cf USDA & NRCS 2010) (Appendix 1).
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In each substudy, part of the area was compacted with forestry machines, tractors or a
rolling vibrator and another part was left untreated and was thus not influenced by the
machines. As an indication of the soil compaction degree, most articles mentioned
information on soil bulk density (68%, 79%, 70% of substudies for Height, Diameter, and
Survival, respectively). Information on other abiotic variables (e.g., penetration resistance,
CO, efflux) was not considered due to the limited number of substudies for which these
characteristics were available. The response ratio of bulk density (RRgens) of each substudy
was determined as the ratio of the mean bulk density on the compacted area for that

substudy to the mean bulk density on the uncompacted area for that substudy:

bulk density on compacted area
RRgens =

bulk density on uncompacted area

The bulk density on the uncompacted area is further in the text mentioned as Contrdens. If
no compaction took place, RRgens is equal to one, but the ratio increases with the
compaction degree. If information on the compaction degree was available for several soil
depths, only the results obtained in depth interval 10-20 cm were used in further analyses.
This depth interval normally holds relatively high root densities and compaction degrees are
often higher compared to depth interval 0-10 cm, thus giving a better indication of the soil
impact (e.g., Ampoorter et al. 2007). Finally, the last predictor variable was period,
representing the number of years between the start of the measurement period (moment of
planting for planted seedlings, moment of harvest or compaction treatment for resprouts

and natural regeneration) and the end measurements.

5.3.2.2 Response variables

In all substudies, on both the uncompacted and the compacted area, an equal number of
saplings with similar initial height and diameter were planted or selected from natural
regeneration or resprouts. After a certain period (Table 5.1), various combinations of height,
diameter, and survival were measured. In order to evaluate the response of height growth to
soil compaction, the response ratio RRyeight Was calculated for each substudy as the ratio of
the mean total height on the compacted area for that substudy to the mean total height on

the uncompacted area for that substudy:
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total height on compacted area

helght ™ total height on uncompacted area

Response ratios for diameter (RRgium) and survival (RRs,,) were calculated in a similar way.
One substudy was omitted from the survival dataset (Tan et al. 2009) since it was an
extreme outlier (survival rate on the compacted soil 2-3 times survival rate on the

uncompacted soil).

5.3.2.3 Analysis

Hedges et al. (1999) stated that a good and balanced meta-analysis requires three basic
statistics: the mean of the response variable, a measure of the variance and the number of
replicates. Their method determines weighted mean response ratios and correlation
coefficients, taking the number of replications and the variance of each substudy into
account. Giving greater weights to experiments whose estimates have greater statistical
precision (thus with smaller standard error) increases the precision and thus reliability of the
combined estimate. A detailed description of these analyses is given in Hedges et al. (1999).
In the present study the available information on the number of replicates and variances
shows strong variation and the use of the techniques of Hedges et al. (1999) would thus be
beneficial. However, a lot of the selected articles lacked information on the above
mentioned basis statistics and only for dataset Height an adequate number of studies (7
studies containing 20 substudies in total) contained the necessary information. Hedges’
method (Hedges et al. 1999) was used to calculate RRpeight, Hedges, defined as the weighted
mean of the natural logarithm of RRneight (value equals zero in case no difference exists
between compacted and uncompacted area). The weighted Pearson correlation coefficient
between RRpeight, Hedges aNd RRgens Was based on 4 of these studies (containing 13 substudies)
as the rest lacked information on the bulk density increase caused by the compaction
treatments. The techniques of Hedges et al. (1999) could thus not be applied to most
substudies in the datasets on diameter growth and survival and several substudies in dataset
Height. Unweighted analyses are not as accurate as the weighted analysis of Hedges et al.
(1999) but may provide an indication of the mean responses to soil compaction. Resampling
Stats v. 4.0 (http://www.resample.com) was used to calculate unweighted mean values and

95 % bootstrapping confidence intervals (dataset resampled 1500 times, randomly and with
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replacement) of RRheight, RRdiam, RRsurv @nd RRgens for all substudies together and for the

functional tree groups and textures separately.

The relative importance of the predictor variables functional tree group, texture, RRgens,
contrdens and period on RRpeight, RRgiam and RRg,r, Was tested with multilevel models in R
2.11.1 (R Development Core Team 2010). A random effect term study was added to the
models to address the likelihood that substudies obtained from the same study share
autocorrelated characteristics. First, a null model was constructed containing only the
random effect term, and the intraclass correlation (% vars,qy) was calculated according to

Hox (2002) as the proportion of the grouping level variance (asztudy) to the total variance

2 2 .
(Ustudy + Oresiduals )

Ustudy + Oresiduals

2
Jstudy
% varsyay = < > 3 x 100

Next, the null model was compared with a model that included one of the predictor
variables. Based on the -2 log Likelihood information criterion (i.e., deviance; Hox 2002) the
significance of each predictor variable was tested (2 test statistic; Zuur et al. 2009). To avoid
overfitting and for model simplification, only variables with p-value <0.05 were considered
for the final multilevel model. Subsequently, the remaining significant predictors were added
one-by-one to the model with the lowest deviance containing only one predictor. If the
deviance decreased significantly (y? test statistic with likelihood ratio test), this procedure

was repeated.

Finally, we estimated the proportion of the variation explained by adding the predictor
variables to the null model. For that purpose, the ratio of the difference in residuals between
the null model (o%,;,) and the final model (Ufzinaz) over the residuals of the null model (Hox
2002) was calculated:

2

o2, — 0f
.. null inal
% remaining varging = <Z—f> x 100
o
null
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5.4 Results

In general, mean RRg4ens values were significantly larger than one for the three response
variables (Table 5.2, Figure 5.1). Some subsets even had a mean RRgens significantly higher
than 1.15. Mean RRpeight, RRdiam and RRqy, and corresponding bootstrapping confidence
intervals for all subsets are represented in Table 5.2 and Figure 5.2. Few values,
predominantly in dataset Survival, were significantly different from one. Large interstudy

variation and thus relatively wide confidence intervals were present.

Table 5.2 Number of substudies (n), unweighted mean RRy.,s and unweighted mean RR of Height, Diameter and Survival
(95% bootstrapping confidence interval in square brackets) for all subsets in datasets Height, Diameter and Survival.

Group Respons Height Diameter Survival
n Mean n Mean n Mean
All RRgens 28 1.17 [1.08;1.27] 15 1.29 [1.18;1.44] 16 1.12 [1.06; 1.19]

RR 41 099 [0.92;1.07] 19 1.05 [0.86;1.26] 22 097  [0.90;1.04]

Broadleaved  RRyens 12 1.10 [1.00;1.21] 7 1.29 [1.20;1.37] 11 1.11 [1.04; 1.21]
RR 20 0.95 [0.82;1.11] 7 1.06 [0.8;1.43] 11 0.91 [0.80; 1.01]

Conifer RRgens 16 1.22 [1.10;1.36] 8 1.30 [1.10;1.54] 5  1.15  [1.05;1.28]
e RR__.21 103 [097;1.08] 12 1.04 [0.84,1.34] 11  1.02  [0.95,1.09] _
sand RRgens 9 125 [1.07;1.48] 7 132 [1.09;158] 8  1.06 [1.04;1.07]

RR 13 1.2 [0.99;1.33] 7 1.11 [0.84;145] 9 098  [0.92;1.03]
Loam RReens 7 1.44 [1.23;164] 6 1.48 [1.28;1.68] 4 135 [1.24;1.41]

RR 7 099 [0.93;1.06] 6 1.21 [0.851.73] 6 112 [1.06;1.17]
silt RRgens 6 0.99 [0.96;1.02] O / / 0 / /

RR 16 0.87 [0.76;0.97] 1 0.61 / 3 047 [0.11;0.76]
Clay RReens 8 1.15 [1.03;1.33] 4 1.23 [1.19;1.30] 4  1.02  [1.01;1.02]

RR 12 1.03 [0.96; 1.09] 6 0.96 [0.85;1.03] 6 0.85 [0.66; 1.05]
RR stands for the response ratio or the ratio of the value on the compacted area to the value on the uncompacted area.
In case RR equals one, no difference was stated between the two areas. Means that differ significantly from 1 (thus
indicating a significant effect) are marked in bold (p <0.05).

1.6
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1 1
—
—

1 A — — —

0.8
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0.2

0 . T

Height Diameter Survival

RRdens

Fig. 5.1 RR of bulk density (RRg.s) for datasets of height, diameter and survival of tree saplings (and 95% bootstrapping
confidence interval). RR stands for the response ratio or the ratio of the value on the compacted area to the value on the
uncompacted area. In case RR equals one, no difference was stated between the two areas.
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Looking at RRheight (Table 5.2), only the mean value for silty soils was significantly lower than
1, indicating lower height growth following compaction. Comparing texture groups, RRpeight
for silt was significantly lower than for sand that had a mean RRpeight higher than 1. No
significant difference was seen between functional tree groups. Multilevel modelling
indicated that the random factor study determined 79.3% of the variance in RRpeight and that
none of the predictor variables significantly influenced RRyeignt (Table 5.3). Seven studies
(representing 20 substudies) in the height dataset gave full information on number of
replications and a measure of variance, and thus met the requirements of Hedges et al.
(1999) for complete analysis. In contrast with the unweighted mean that was not
significantly different from 1 and thus indicated that height growth was not changed by soil
compaction (Table 5.2), the weighted mean RRpeightHedges fOr all substudies together was
significantly lower than zero (-0.037 + 0.015) and thus indicated slower growth as a result of
compaction. The relationship between RRpeight Hedges aNd RRgens had an insignificant weighted
Pearson correlation coefficient of 0.47. This was in accordance with the previous results (i.e.,

no significant effect of the predictor variables on RRpeignt).

Concerning RRgiam, None of the subsets showed a mean value significantly different from 1
(Table 5.2). Although the difference was insignificant, mean RRyam for silt and clay were
clearly lower compared to the values for sand and loam. Multilevel modelling indicated that
95.6% of the variance in RRgiam Was explained by the random factor study and no significant

influence of the predictor variables was detected (Table 5.3).

Results for RRy, Were predominantly insignificant (Table 5.2). Mean RRy,,, for silt (and clay
to a smaller extent) indicated significantly lower survival on the compacted soil while
compaction on loamy soils seemed to be beneficial to survival of tree seedlings. Results of
multilevel modelling indicated that 38.4% of the variance in RRy,v Was determined by the
random factor study and that none of the predictor variables had a significant influence on

RRsurv (Table 5.3).
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Table 5.3 Response of height growth (RRyigne) , diameter growth (RRgi.m,) and survival (RR;,,,) to five predictor variables:
RR of bulk density (RRs.s), bulk density on the uncompacted area (contrdens), functional tree group
(broadleaved/conifer), texture (sand/silt/loam/clay) and the number of years between initial and end measurements
(period). Reported results are derived from multilevel modelling with one predictor variable and the factor study as a
random effect term. The x? values are derived from likelihood ratio tests.

Predictor variable RRheight RRgiam RRgury

%2 p-value 1> p-value 1> p-value
RRgens 1.332 0.195 0.001 0.232 3.728 0.054
Contrdens 1.679 0.249 1.428 0.982 0.147 0.701
Functional tree group 0.111 0.739 1.687 0.194 1.418 0.234
Texture 0.647 0.421 1.423 0.233 1.310 0.252
Period 0.005 0.945 1.353 0.245 0.976 0.323

RR stands for the response ratio or the ratio of the value on the compacted area to the value on the uncompacted area.
Significant effects are depicted in bold.

5.5 Discussion

The increase in bulk density showed that an overall significant degree of compaction was
present. The experimental set-up of the selected articles was thus appropriate to examine
the effect of soil compaction on growth and survival. Moreover, for some subsets, bulk
density increased with more than 15%. This means that soil compaction degrees could be

detrimental for root growth according to Powers et al. (1998).

The application of Hedges’ method (Hedges et al. 1999) revealed that, in general, soil
compaction significantly hampered height growth. However, this result should be
interpreted carefully, as it is based on a small number of study results. Moreover, most
unweighted RR were not significantly different from one, except for silt soils, and multilevel
modelling did not indicate a significant effect of texture. Results only indicated that height
growth, diameter growth, and survival were slightly hampered by soil compaction on silty
soils, and survival to a smaller extent also on clay soils. On coarser-textured sandy and loamy
soils growth and survival were not affected or rather improved by soil compaction, although
compaction degrees were higher than on silt and clay soils. As was mentioned in the
introduction, soil compaction induces a lot of soil structural and physical changes, such as
decreased soil aeration, higher penetration resistance, lower saturated hydraulic
conductivity, and decreasing amount of soil available water. These changes may negatively
influence tree saplings, as was stated on the silt and clay soils. However, according to Dexter
(2004) and Lacey & Ryan (2000), soil compaction not always implies negative outcomes for
soil quality. Undisturbed coarse-textured soils contain many macropores that are too wide
to hold water against gravitational forces. This implies a low water retention capacity and

thus a low amount of plant available water. Compaction decreases the mean pore size and
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thus leads to better water retention. As the low amount of plant available water is one of
the limiting factors for growth of herbs and trees on coarse-textured soils, this higher water

availability may have compensated the negative effects of soil compaction.

A negative correlation was expected between the response ratios of bulk density (RRgens) On
the one hand and the response ratios of height, diameter and survival on the other. Higher
compaction degrees and thus greater changes in soil chemical and physical characteristics
were expected to impose a higher stress on saplings, leading to more retarded growth and
survival. However, information on bulk density increase lacked for several substudies. For
the remaining substudies with complete information, neither the use of multilevel models
nor Hedges’ method (in case of height) revealed a significant correlation between the soil
compaction degree and responses of growth and survival. At both low as high compaction
degrees, RRheight, RRgiam and RRgry varied strongly around 1, a threshold that indicates no
response to soil compaction. These response ratios were also assumed to decrease with
increasing value of period. The longer the period in which growth and survival were
monitored, the longer compaction could have exerted a negative influence on growth and
survival. However, relationships between RRpeight, RRgiam and RRgyy on the one hand and
period on the other also seemed to be insignificant, again due to high variation and the low

number of substudies.

Wide confidence intervals for biotic responses indicated that the effect of soil compaction
was ambiguous. Averaged responses of growth and survival predominantly showed no
significant effect of soil compaction on saplings. This shows that the impact of soil
compaction was not always detrimental for tree saplings but depended, amongst others, on
tree species (Miller et al. 1996; Kabzems 2000), compaction degree (Ehlers et al. 1983), and
other environmental characteristics. It must be remarked that only a limited number of
(sub)studies could be included in the dataset, especially for the weighted analyses. The
higher the number of substudies with complete information that are available, the more
reliable are the results that are obtained, and the more general are the conclusions that are
drawn. It is thus crucial for future publications to give attention to the detailed report of

basic statistics so that the results are valuable for meta-analyses.

It is possible that the long-term effect on tree saplings or the effect on adult trees differs

from the effect on tree saplings in the first years after soil was compacted. This should be
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examined through long-term monitoring and examination of the effect of soil compaction on
established, adult trees. Moreover, most of the examined tree species are not shade
tolerant. This is not surprising as most studies were performed on clearcut areas, with very
high light availability, where shade tolerant tree species that are adapted to low light levels
are generally not successful. However, this means that no conclusions could be drawn
concerning the tolerance to soil compaction of shade tolerant species. It is not certain that
the sensitivity to soil compaction is similar for both groups of tree species. For example,
compaction is often accompanied by a reduction of the plant available water amount (and
thus likely increases drought stress; Ballard 2000). Niinemets & Valladares (2006) examined
806 temperate shrub and tree species and observed significant negative correlations among
shade and drought tolerance, with less than 10 % of the examined species being relatively
tolerant to both stresses simultaneously. Small & McCarthy (2002) showed severe growth
and biomass reductions for Osmorhiza claytonii, a shade-tolerant perennial, after soil
compaction. Further research is needed to draw general conclusions concerning the effect of

soil compaction on seedling performance of shade tolerant tree species.
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Detail of the processor head of the Timberjack 1070D harvester, used in Putte (Chapter 3) [photograph: Robbie Goris,
August 2004].



6 Compaction status of Flemish forest soils seven to nine years after
mechanized harvesting

After: Ampoorter E, Van Nevel L, De Schrijver A, Hermy M, Verheyen K (2010)
Compaction status of Flemish forest soils seven to nine years after mechanized

harvesting. In preparation

6.1 Abstract

We examined whether traces of compaction due to former harvesting activities could still be
detected seven to nine years after the last harvest, a common period between two thinning
activities. If recovery from soil compaction is not achieved within this period, the effects of
successive thinning activities will accumulate at former trails that again experience machine
traffic, and may extend when no permanent skid trails are used. In nine Flemish forest
stands on three texture classes, where the last mechanized harvest took place seven to nine
years ago, compaction measurements were performed along three transects. In most forest
stands, old trails could still be detected with penetrologger measurements, especially close
to the forest road, where the highest traffic intensities were applied and where wood was
piled. Unrestricted machine traffic at former harvesting activities resulted for several forest
stands (e.g., Zoniénwoud RII-2 and RIlI-3) in overall compaction and higher precompression
stress. This protects the soil from further compaction and reduces the impact of new
machine passes. These sites showed large areas with overall high penetration resistance,
exceeding 2-3 MPa, where no separate skid trails could be discerned. Other sites showed a
lower influence of former harvesting activities, leading to overall low precompression stress.
On these sites old skid trails could be retraced by the presence of locally increased
penetration resistances. Each texture group contained forest stands of both types. As effects
of former harvests, that took place at least eight years ago, still persist, one can conclude
that on all examined textures recovery of soil compaction was incomplete after 7-9 years
and effects will accumulate at subsequent harvesting activities with unrestricted machine
traffic.
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6.2 Introduction

Soil compaction, due to traffic with heavy forestry machines, may affect soil fauna, such as
earthworms (e.g., Bostrom 1986), growth (e.g., Gebauer & Martinkova 2005) and survival of
seedlings (e.g., Simcock et al. 2006) and may induce shifts in the composition of the herb
layer towards more ruderal species (Roberts & Zhu 2002; Zenner & Berger 2008), due to
changed soil characteristics, such as PR (Aust et al. 1998; Nugent et al. 2003), soil aeration
(Gebhardt et al. 2009; Startsev & McNabb 2009) and hydraulic properties (e.g., Benthaus &
Matthies, 1993; Ballard 2000). As the soil ecosystem diversity and service may eventually be
reduced, it is important that recovery takes place relatively fast. Soil compaction may
disappear under the influence of natural processes in the absence of additional compaction.
The freezing and melting of soil water in soils with an adequate water holding capacity
increases pore sizes (Alban et al. 1994), just like the swelling and shrinking of clay particles
under the influence of soil water in soil with a high clay content (Fisher & Binkley 2000).
Biological activity, such as root growth and penetration (Brais & Camiré 1998; Lister et al.
2004) or earthworm burrowing (Jordan et al. 1999, Ponder et al. 2000; Capowiez et al. 2009),
may add greatly to the recovery process. Rich, alluvial systems are characterized by a large
biological activity and should thus recover relatively fast from soil compaction. Sandy sails,
on the other hand, often lack effective recovery processes as a consequence of their low
clay, nutrient and water content and often high acidity, reducing the diversity of the soil
fauna and the herbaceous layer (Hansen & Rotella 1999). Froehlich & McNabb (1984) and
Croke et al. (2001) found no significant impact of soil type on the recovery rate. Page-
Dumroese et al. (2006) even stated faster recovery for coarse textures compared to fine

textures.

Rab (2004) found no significant recovery of macroporosity and BD on a clay to silty loam soil
over a period of ten years. According to Tiarks et al. (1997) and Croke et al. (2001), complete
recovery is reached after a period of at least 20-30 years. Anderson et al. (1992) and
Jakobsen (1983) found that BD on the skid trails still differed significantly from the
undisturbed soil 25-32 years after logging. Hakansson & Reeder (1994) concluded that
compaction at depths of more than 40 cm is very persistent and virtually permanent even in
clay soils in regions with annual freezing. Greacen & Sands (1980) also stated that

compaction of deeper layers may persist for 50-100 years. It seems therefore that, in
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general, recovery of compacted soils is slow in the absence of ameliorative treatments, such

as ploughing.

When machine traffic is not restricted, in the long run a large part of the forest stand could
be disturbed. The latter can be spatially reduced by restricting machines to permanent skid
trails. Nevertheless, this system is not yet widely established in certain regions, including
Flanders (northern Belgium). Here, a common period between two harvesting activities is
about eight years. We performed a study to find out if traces of the last harvesting activity
(or former activities) could still be detected seven to nine years after the last harvest. In case
soil compaction, induced by a forest operation, persists beyond this period, effects may
accumulate at trails that experience traffic at subsequent harvesting activities. Expansion of
the compacted area may also occur if machines do not follow exactly the same tracks as in
the previous forest operation. We retraced old skid trails along transects in nine stands
spread over three different soil textures based on processed data on PR. This sampling
method using transects is frequently used for other aspects of forest monitoring (e.g.,
quantification of dead wood) but to our knowledge was never used before within the
framework of soil compaction. Here from we obtained a picture of the compaction status of
the examined forest stands, seven to nine years after the last harvest. We hypothesized that
traces of former harvesting activities are still detectable at least seven to nine years after the

last machine impact, indicating incomplete recovery.

6.3 Materials and methods

6.3.1 Experimental set-up

Nine forest stands were selected in 2008, spread over the Flemish region, where the last
mechanized activity took place seven to nine years ago. Three stands were chosen on sand,
three on loam to silt loam and three on silt (Soil Survey Staff 1999). Within each soil texture
group, characteristics (forest type, mean tree circumference, machines used) were
predominantly comparable to each other. The presence of a clear rut pattern was not a
determining factor in the selection. This would have skewed the results as in this case, stand
selection would be biased in the direction of seriously damaged forest stands or stands with

very low recovery potential. In all stands the last harvesting activity was carried out without
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the use of permanent skid trails as this method was not yet common in Flanders around
1998-2001. Information on the selected stands is summarized in Table 6.1. All sites carried
mature forest stands, especially on the sites with loam to silt loam and silt textures. Traces
of former harvesting activities may thus also be present in case recovery of the soil impact

due to these earlier activities was not yet complete.

Measurements were performed in 2008. A possible approach to quantify the compaction
status of forest stands could be to distribute individual measurement points equally over the
forest stand (cf Gaertig et al. 2000). However, in that way we would not be able to attribute
the compaction on a specific measurement point to the presence of a former skid trail as no
information on the compaction degree would be available for the area surrounding that
point. Instead, we used a transect design. Positioning of the transects was such that it
maximized the discovery rate of former skid trails (Fig. 6.1). Based on information
concerning the last harvesting activity, we selected the edge of the forest stand where most
of the wood was brought to be transported. A point, centrally situated along the length of
this edge, was the starting point for the marking of the transect design. It contained three
parallel transects of 37 m. Length was limited due to physical constraints as limited stand
dimensions and time needed for performing measurements. At about 10 m in the stand, the
first transect was located parallel to the edge and centred in accordance to the starting
point. Transects 2 and 3 were placed at about 50 m, respectively 100 m distance from and to
the right, respectively left of transect 1. We maximized the chance of crossing old skid trails
by i) placing the transects parallel to the forest edge as the main direction of the skid trails is
roughly perpendicular to the forest road; ii) subdividing total length into three equal parallel
transects that were distributed to the left and to the right to cover a wider area; iii) placing
the transects relatively close to the forest edge, as we expected traffic intensity to decrease

with distance to the forest edge.
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6.3.2 Penetration resistance

Along the transects, PR was measured by means of a 06.15 penetrologger of Eijkelkamp
Agrisearch Equipment (the Netherlands) to a depth of 80 cm in depth intervals of one cm.
The apical angle of the cone was sixty degrees, the basal area surface one cm?, and the
nominal diameter 11.28 mm. Because of the soil moisture dependence of the measurements
(Smith et al. 1997), we chose very wet days (April-May 2008) to ensure soils were at or near
field capacity, and performed all measurements within one stand on the same day. Along
each transect, measurement points for PR were located at regular intervals of 30 cm (125
measurement points per transect) (Fig. 6.1). At each point, four measurements (n = 4),
serving as replications, were performed in line with each other, perpendicular to the

transect direction and at a spacing of 30 cm to each other.

= Transect 3

I T Tt TTTT T mTm T A

50m

\ 30“? ] Transect 2 X

| : 37.2m

X measurement point ! i 50m
._penetrologger measurement

: Transect 1 ; X
10m

Forest edge i\(

Fig. 6.1 Transect design, used to perform measurements of penetration resistance in the forest stands. The star indicates
the starting point (centrally situated along the forest edge) for the positioning of the transects.

The results of the four replicated measurements per measurement point were averaged for
each depth interval of one cm, to enable graphical processing of data for each transect with
Surfer 7. Kriging was used as gridding method (linear variogram model, slope 1, anisotropy
ratio 1, anisotropy angle 0, point kriging type). The mean PR per measurement point

(horizontal axis) and per depth interval of 1 cm (vertical axis) were used as input data. This
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grid was used as input for the creation of a contour plot that was interpreted visually.
According to Whalley et al. (1995), root growth of many plants becomes restricted when soil
PR exceeds 2 MPa and stops at PR higher than 3 MPa. The percentage of measurement
points that crossed limits 2 MPa and 3 MPa per transect at depths 5, 15 and 25 cm were

summarized in this respect.

6.4 Results

PR is only considered for the upper 50 cm of the soil profile as artificial compaction due to
machine traffic is restricted to the upper soil layers (0-30 cm) and compaction in deep layers
(50-80 cm) is related to natural soil profile development rather than machine traffic. The
natural gradient of bulk density, i.e. a gradual increase with depth, is taken into account
while evaluating the PR values, by only considering clear deviations from this natural
gradient. At the forest stand Driehoekbos on a sandy soil, PR were highest for the first
transect but seldom exceeded 2 MPa at the second and third transect (Fig. 6.3A, Table 6.2).
Old skid trails could be located based on PR values for 9-13 m (ruts present) on the first
transect and 15-19 m on the second transect. The first transect also showed large areas
where PR exceeded 2 MPa in the upper soil layer. The first transect situated on the sandy
soil at Hoge Vijvers, had overall relatively high PR in the upper 50 cm of the soil profile (Fig.
6.3B). Almost the whole transect showed values over 2 MPa, in some places exceeding 3
MPa (Table 6.2). Compaction degree appeared to decrease gradually from transect 1 to
transect 3. In the upper 25 cm of the soil on transect 3, PR was only in a small area higher
than 2 MPa. Patterns of PR indicated traces of old skid trails for 27-31 m and 34-37 m (ruts
present) on transect 1. In contrast, at the third forest stand Riebosserheide on sand,
transects showed overall high PR and surprisingly the compaction degrees increased towards

the third transect (Fig. 6.3C, Table 6.2).

Results for Zoniénwoud RIII-3, on a loam to silt loam soil, pointed out that all three transects
were compacted (Fig. 6.4A, Table 6.2). Large areas had PR values above 3 MPa. Separate
machine tracks could not be discerned. Measurement results of transect 2 were not shown
because a locally high concentration of small stones hampered the measurements and
skewed the results. For Brakelbos 12, the second forest stand on loam to silt loam, an old

skid trail could be discerned on the basis of PR for 0-3 m on the second transect (Fig. 6.4B)
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but all transects showed areas where PR exceeded 2 MPa. Transects for Liedekerkebos
showed similar trends as Hoge Vijvers and Driehoekbos (Fig. 6.4C, Table 6.2). In general, the
compaction degree in the upper soil layers was restricted. The number of measurements
points where PR exceeded 2 MPa in the upper soil layers decreased from the first towards
the third transect. In Liedekerkebos, no skid trails could be discerned on the basis of PR
measurements in the superficial layer 0-50 cm. Nevertheless, PR was increased for 27-34 m
on transect 1, 33-36 m on transect 3, and several other smaller areas along transects 1 and

2.

Zoniénwoud RII-2 on a silt soil also showed severe compaction over the whole depth interval
for all three transects (Fig. 6.5A, Table 6.2). PR encompassed 2 MPa for almost the whole
transect and 3 MPa for a great part of it. Separate, old trails could not be discerned by
analysing penetrologger measurements. The PR values at Brakelbos, the second forest stand
on a silt soil, were much lower (Fig. 6.5B, Table 6.2). Here, PR seldom exceeded 3 MPa in the
superficial layer (0-25 cm). One machine trail was detected on the first transect for 0-4 m by
measuring PR, and this trail was accompanied by visually detectable ruts. The areas 0-7 m,
12-17 m, 32-37 m on the first transect and 10-14 m, 20-24 m and 31-37 m on the third
transect showed increased PR in the upper 40 cm. In Hallerbos, the third forest stand located
on a silt soil, one machine track was detected with PR for 34-37 m on the first transect (ruts
present), while the rest of the transects showed no clear traces of former traffic (Fig. 6.5C,

Table 6.2).
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A. Driehoekbos
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Fig. 6.3 Contour plot of penetration resistance (grayscale, in MPa) in function of depth along transects 1 (10 m from
forest road), 2 (60 m from forest road) and 3 (110 m from forest road) for forest stands on sandy soils (A) Driehoekbos,
(B) Hoge Vijvers, and (C) Riebosserheide (see Table 6.1 for more information). The dotted line shows the isolines for 2
MPa, the solid line represents the isoline for 3 MPa. The presented penetration resistance values are averages of 4
replications per measurement point (measurement points at 30 cm spacing).
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A.Zoniénwoud RIlI-3
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Fig. 6.4 Contour plot of penetration resistance (grayscale, in MPa) in function of depth along transects 1 (10 m from
forest road), 2 (60 m from forest road) and 3 (110 m from forest road) for forest stands on loam to silt loam soils (A)
Zoniénwoud RIlI-3, (B) Brakelbos 12, and (C) Liedekerkebos (see Table 6.1 for more information). The dotted line shows
the isolines for 2 MPa, the solid line represents the isoline for 3 MPa. The presented penetration resistance values are
averages of 4 replications per measurement point (measurement points at 30 cm spacing).
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A.Zoniénwoud RII-2
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Fig. 6.5 Contour plot of penetration resistance (grayscale, in MPa) in function of depth along transects 1 (10 m from
forest road), 2 (60 m from forest road) and 3 (110 m from forest road) for forest stands on silt soils (A) Zoniénwoud RII-2,
(B) Brakelbos 10, and (C) Hallerbos (see Table 6.1 for more information). The dotted line shows the isolines for 2 MPa,
the solid line represents the isoline for 3 MPa. The presented penetration resistance values are averages of 4 replications
per measurement point (measurement points at 30 cm spacing).
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Table 6.2 Percentage of measurement points per transect per depth where growth limits 2 MPa and 3 MPa were crossed
(125 measurement points per transect) for each forest stand.

Texture Forest Depth Transect 1 Transect 2 Transect 3
class (cm) >2 MPa >3 MPa >2 MPa >3 MPa >2 MPa >3 MPa
5 13 2 8 2 2 0
Driehoekbos 15 63 18 22 6 14 2
2 S s 20 19 2 v 0_____
5 54 10 14 0 3 0
Sand  Hoge Vijvers 15 86 19 31 6 10 0
SO - S 86 . 23 ! 62 . 25 ] 0.
5 29 4 28 5 58 21
Reibosserheide 15 72 19 74 25 91 70
25 82 28 78 26 94 77
Zoniénwoud > 21 3 30 2 40 9
RIII-3 15 78 32 81 41 84 45
O - S 81 38 oL 4 8 48
Loam- 5 14 2 13 0 8 0
silt Brakelbos 12 15 48 15 46 12 57 2
loam 25 44 “ 4713 57 5
5 2 1 0 0 1 0
Liedekerkebos 15 31 2 12 0 11 0
25 42 4 25 3 18 0
Zoniénwoud 5 38 6 37 4 64 15
RII-2 15 98 54 85 42 91 45
Y S o7 ! 56 87 .44 3 47
5 26 1 2 0 12 0
Silt Brakelbos 10 15 50 10 11 0 36 2
s 6 8 24 1 LR 1
5 7 1 17 0 2 0
Hallerbos 15 33 9 33 2 7 0
25 39 12 38 2 14 0

6.5 Discussion

6.5.1 Spatial pattern of soil compaction

PR was generally highest for the first transect, thus close to the forest road, and decreased
towards the third transect. During a harvest, trees spread over the whole stand are cut and
dragged or carried towards the forest road. Machines transporting logs from far within the
stand only make one pass or a few passes over the soil deeper in the stand meanwhile
influencing the soil close to the forest road that is also affected during the processing of
trees standing close to this road. Higher traffic intensities close to the road induce more
severe compaction degrees (Brais & Camiré 1998). Moreover, the area next to the forest
road is often used to pile stems or logs, again leading to soil compaction. The diverging result
at Riebosserheide may be due to the slight slope of the forest stand towards transect 3,

resulting in textural dissimilarities in the upper soil layer between transects 1 and 3.
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Transect results also showed high compaction degrees in deeper soil layers. This was on the
one hand due to the increasing weight of the soil layers above and on the other hand to
profile development with the formation of hard, impenetrable layers, such as spodic
horizons. The impact of machine traffic is in general restricted to the superficial soil layer
between the surface and 30-40 cm depth (Cullen et al. 1991; Nugent et al. 2003; Ampoorter
et al. 2007 (Chapter 3)).

6.5.2 Compaction status of Flemish forest soils

In all examined forest stands, traces of old skid trails could still be detected on the basis of
the PR pattern, showing locally (3-4 m wide) increased values in the upper soil layers.
Moreover, several forest stands, such as Zoniénwoud RIl-2 and RIll, showed large areas
where PR was overall increased above 2 or even 3 MPa, regarded as critical levels for root
growth (Whalley et al. 1995). This widespread soil compaction can be partially due to the
last harvest but is predominantly a remainder of the soil compaction induced at former
harvesting activities. Before the last harvesting activity took place, the soils in Zoniénwoud
RII-2 and RIlI-3 were certainly already strongly compacted. Namely, the impacts of intense
iron and charcoal extraction in the past, together with long-lasting and non-restricted high
recreation pressure (horses, pedestrian) accumulated and resulted in overall soil
degradation. Moreover, both forest stands have long been forested with beech with high
mean diameter classes implying the use of heavy machines with a high soil contact pressure
(McDonald et al. 1996). Compacted soils are characterized by higher precompression
stresses which protect the soil from further compaction. Only when the applied stresses at
the last harvesting activity exceeded the precompression stress, a small additional
compaction was induced (Horn et al. 2007). This explains why in soils with overall high
compaction degrees such as Zoniénwoud RII-2 and RIll (and to a smaller extent Hoge Vijvers
and Brakelbos 10 and 12), new machine passes resulted in only minor to negligible effects

and separate skid trails could therefore hardly be distinguished.

Within each texture group, stands with overall high penetration resistances and overall
lower penetration resistances were present. Stand and harvesting characteristics were
similar within one texture group and differences in compaction status within one texture

group can therefore not be due to different impacts of the last harvesting activity.
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Differences in compaction status within a texture group are due to different cumulated
impacts of machine traffic in the past. No differences could be stated between the texture
groups. Traces of former harvesting activities were still apparent for all texture groups and a

similar, high variation in compaction status was stated within each texture group.

Natural soil variability, influencing PR, may have been mistaken for old machine tracks.
However, local increases of PR in the soil profile clearly showed the former position of the
tyres. Moreover, on several places where old skid trails were assumed to be located due to
the PR pattern, visually detectable ruts were also present. The absence of ruts does not
mean that the soil surface was levelled out throughout the years. Organic material may have
accumulated in the wheel tracks, obscuring the ruts. It should be remarked that in case PR
would no longer show traces from former machine traffic, it does not necessarily mean that
the soil has completely recovered from the machine impact. Page-Dumroese et al. (2006)
emphasized that the examined soil variables (BD, soil strength and macroporosity) recovered

at a different rate.

Traces of former machine traffic were apparent in all examined forest stands in the shape of
locally increased or overall high penetration resistance. This means that complete recovery
of the examined compacted forest soils in all texture groups was not achieved within seven
to nine years after the last machine impact. As this is a common period between two
harvesting activities, effects will accumulate and expand at subsequent harvests in case

machine traffic is not restricted to permanent skid trails.
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Inoculated earthworms, at the start of their burrowing activities (Chapter 7) [photograph: Evy Ampoorter, November
2008].



7 Ecological restoration of compacted forest soils

After: Ampoorter E, De Schrijver A, De Frenne P, Hermy M, Verheyen K (2011)
Experimental assessment of ecological restoration options for compacted forest soils.

Ecological Engineering, submitted

7.1 Abstract

It is ecologically undesirable to solve forest soil compaction due to mechanized harvesting at
large spatial scales using agricultural mechanical soil loosening techniques. We therefore
examined whether a stimulation of biological activity through litter manipulation, liming
and/or inoculation of the anecic earthworm species Lumbricus terrestris could significantly
contribute to the ecological restoration of compacted forest soils by comparing the impact
of these treatments on soil within and beside compacted wheel tracks. The replacement of
native litter by litter with a better quality resulted in a faster litter decomposition, indicating
higher biological activity. However, maximal decay rates were obtained only when litter
manipulation, earthworm inoculation and liming were combined. Anecic worms were
initially absent as soils were probably too acid. Liming as well as litter manipulation had a
small positive influence on the numbers of retraced L. terrestris, inducing positive feedback
mechanisms on soil pH and litter decomposition. None of the treatments, however, induced
a significant decrease of the compaction degrees within tracks within the small study period.
Lumbricus terrestris realized a small decrease of bulk density beside the tracks, where bulk
densities were also relatively high. Within the tracks a similar number of L. terrestris was
retrieved, but effects on the compaction degree were negligible, probably due to a
combination of the high acidity, high compaction degrees and the short study period. Liming
slightly decreased penetration resistance, but only in the absence of anecic earthworms. We
hypothesized that liming stimulates the burrowing activities of earthworms, what
strengthens the soil matrix and induces higher penetration resistances. Endogeic worms
were overall more abundant than the anecics, especially within tracks where soil water
contents and pH values were higher. However, endogeics only had a marginal effect on litter
decomposition and although they positively influence soil structure, they could not realize a
reduction of the compaction degree, quantified by bulk density and penetration resistance,
due to different burrowing habits. Our results indicated that a positive impact of anecic
earthworms on the structure of compacted forest soils can be obtained in the long-term, at
least in case soil conditions (acidity, nutrient availability and moisture content) are
favourable. This can be achieved by conversion of forests towards tree species with high
quality litter, which induce lower acidity and a better nutrient status of the soil, increasing
the survival chances and activity of the anecic earthworm:s.
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7.2 Introduction

Mechanized harvesting operations may seriously impact soil structure in forests due to the
high soil contact pressure of often inappropriately used heavy forest machinery. Numerous
studies indicated the negative impact of forest traffic on important soil characteristics such
as pore continuity (e.g., Herbauts et al. 1996; Berli et al. 2003; Teepe et al. 2004), PR (e.g.,
Aust et al. 1998; Nugent et al. 2003) and gas exchange (e.g., Gaertig et al. 2002). These soil
changes may affect the herb layer (Buckley et al. 2003; Godefroid & Koedam 2004), tree
growth (Bulmer & Simpson 2005; Gebauer & Martinkova 2005) and soil fauna (Radford et al.
2001; Battigelli et al. 2004). Altogether, compaction due to mechanized harvesting can have
profound effects on forest soils, biodiversity and ecosystem functioning. Heavily compacted
forest soils can be mechanically loosened, for example by using a winged subsoiler (McNabb
1994) or a ripper (Sinnett et al. 2008). However, these methods may induce severe damage
to the soil ecosystem (fauna, roots, churning of soil layers) and should thus only be applied

in exceptional cases.

Soil characteristics such as pore volume and soil aeration can be seen as functional
ecosystem attributes that are of critical importance for the sustained provision of ecosystem
services (Kardol & Wardle 2010). Callaham et al. (2008) emphasized the central role of the
soil in achieving forest ecosystem restoration towards its initial structural and functional
condition (e.g., Van Andel & Aronson 2006; Clewel & Aronson 2007). The fast recovery of the
above mentioned initial soil characteristics is thus a prerequisite in restoration ecology. Soil
compaction is not permanent but disappears gradually over time under the influence of
natural processes, as the action of swelling clay particles (Fisher & Binkley 2000) and freezing
and thawing cycles of soil water (Alban et al. 1994). Biological activity may also offer a high
contribution to the recovery of compacted soils. Vegetation and soil fauna as earthworms
can act as ecosystem engineers, modulating the availability of resources to other species, by
causing physical state changes in materials such as the litter layer or the soil (e.g., Jones et
al. 1994; Jones et al. 2010). According to Jones et al. (2010) the structural changes caused by
the engineers (litter supply, litter fragmentation, burrows) induce abiotic changes. Plants are
autogenic engineers that may change the environment via root penetration and through the
quality and quantity of their litter. The penetration of plant roots opens pores, leading to

higher pore continuity (Brais & Camiré 1998), lower BD and higher aeration (Lister et al.
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2004). High quality litter, characterised by high nutrient but low carbon and lignin contents,
decomposes faster (Reich et al. 2005; Prescott 2010), inducing lower acidity (Neirynck et al.
2000) and consequently stable aggregates (Haynes & Naidu 1998). These structural and
abiotic changes may result in biotic changes (Jones et al. 2010). For example, lower soil
acidity due to better litter quality stimulates micro-organisms and macrofauna (Aubert et al.
2005), such as earthworms (most anecic and endogeic earthworm species are acid
intolerant; Muys & Granval 1997). Earthworms act as allogenic engineers by causing
structural changes through their burrowing activities and fragmentation and burial of litter
(Jones et al. 1994; Jones et al. 2010). Deep burrowing anecic earthworms feed on fresh litter
which is consumed along with soil mineral particles, mixed in the earthworm gut and then
egested as surface or subsurface casts (Bardgett 2005). Litter is thus intensely mixed with
mineral soil particles and gut secretions (Curry & Schmidt 2007), producing stable casts with
higher nutrient concentrations than the surrounding soil (Jordan et al. 1999), leading to
better soil aggregation (Herbauts et al. 1996; Ponder et al. 2000; Edwards 2004). Endogeic
earthworm species have a geophagous feeding behaviour with high consumption and low
assimilation of organic material incorporated in the soil, leading them to burrow
continuously to ingest enough soil (Felten & Emmerling 2009). Casts are excreted within
their burrows. The burrowing activity of both anecic and endogeic worms creates an
extensive and coherent sub-horizontal burrow network until 50 cm soil depth. The presence
of these burrows results in a higher macroporosity, better aeration, a faster drainage
(Ponder et al. 2000) and lower bulk densities (Binet et al. 1997), especially due to anecic
species, as their burrows are free of casts. An increased biological activity may consequently
lead to faster restoration of the compacted soil. Eventually, the structural, biotic and abiotic

changes may positively feedback to the engineer (Jones et al. 2010).

Most studies indicate that complete recovery of soil compaction may take several decades
(e.g., Jakobsen 1983; Anderson et al. 1992; Croke et al. 2001). The compaction degree of
deeper layers may even persist for 50 to 100 years (Greacen & Sands 1980) or may in some
cases be virtually permanent (Hakansson & Reeder 1994). A slow recovery might be due to
the absence of swelling clay particles or deep soil frost in temperate regions, but can in

many cases also be related to a poor biological activity.
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Many forest soils under tree species with low litter quality as Picea ssp, Pinus ssp, Fagus ssp
or Quercus ssp are characterized by a relatively high soil acidity and a consequently low base
saturation degree and high concentrations of bioavailable potentially toxic aluminium (e.g.,
Augusto et al. 2002; De Schrijver et al. 2006) lowering biological activity and often even

preventing the survival of anecic earthworm species (Muys et al. 1992; Reich et al. 2005).

In the present study, we hypothesize that ecological restoration of compacted forest soils
can only be obtained by a combination of the following three factors: (i) a tree species
change towards species with higher litter quality (nutrient rich and lignin poor), (ii) a
lowering of soil acidity and (iii) the occurrence of anecic earthworm species. To our
knowledge it is the first time that the sole and combined impact of the above factors on the
compaction degree is quantified in a field trial. Moreover, a lot of the former studies that
dealt with recovery of soil compaction only focussed on the quantification of the remaining
compaction degree or the recovery rate without knowledge of the initial compaction degree
or without focussing on the underlying processes. Our in-situ experiment was also
performed in forest stands on real skid trails, making our results more realistic and

applicable to management. Here, we assessed:

a) How and to what extent the abiotic and biotic soil characteristics (soil pH, bulk
density, penetration resistance, litter decomposition rate, numbers of L. terrestris
and endogeic earthworms) were stimulated by litter manipulation, liming and/or
earthworm inoculation on both compacted and non-compacted zones of the forest;

b) To what extent the compacted forest soils were ecologically restored (quantified as
changes in bulk density and penetration resistance) by application of the three

factors (sole or in combination).

7.3 Materials and methods

7.3.1 Experimental design

We executed a field trial in four forest stands (stand), located in the Meerdaal forest (N
50.8040°, E 4.7013°) and Heverlee forest (N 50.8393°, E 4.6903°) close to Leuven where the
experiment of Chapter 2 was performed (Table 2.1). Mean temperature for the region

(1961-1990) is 2.5 °C in the coldest month (January) and 17.2 °C in the warmest month (July)
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while mean annual temperature and precipitation is 9.7 °C, respectively 821 mm (weather
station Uccle at about 30 km from Leuven). Soils are Luvisols(-cambisols) (IUSS Working
Group WRB 2006) with textures ranging from loam to silt loam (Soil Survey Staff 1999). The
contribution of the swelling of clay particles to the recovery process is thus rather low and
frost periods are neither severe nor long enough to have a significant impact on the
compaction degree. Forest stands ‘Sperwer’ and ‘Havik’ were predominantly composed of
Fagus sylvatica (70 years) and Pinus nigra var. corsicana (60 years) respectively. Main tree
species in ‘Goden’ were Pinus sylvestris, Quercus rubra and Quercus petraea (50-120 years)
and in ‘Renissart’ Acer pseudoplatanus and Quercus robur (90-160 years). In 2007, a field
trial was performed (Ampoorter et al. 2010) in which a John Deere grapple-skidder JD 640,
loaded to 14.3 tonnes (tyres front and back: 77.47 cm wide, tyre pressure 3.5 bar), made 5
passes back and forth on two previously marked skid trails (trail), located next to each other
(Fig. 7.1). It must be mentioned that the precompression stress was already relatively high
before this field trial was performed, restricting the compaction degrees in the field trial
(Appendix 7.3; Ampoorter et al. (2010, Chapter 2)). The terms ‘compacted’ and ‘non-

compacted soil’ refer to the soil that was trafficked, respectively not trafficked, during this

field trial.
Beside tracks \:| |:| \:l |:| |:| I:l |:| D
Lit + lim Wo Lit + Lim + Wo Lim
Within tracks [ I 100 I | 0]
— Reference Wo Lit Lim+ Wo
.§<
P | withintracks L I NN I
Li Lit + Wo Lit +lim Lit + Lim + Wo
Beside tracks D D D D
Lit Lim+ Wo Reference Lit+ Wo
Beside tracks \:H:Hj |:||:||:| D\:‘D D\:‘
Wo Lim + Wo Lit Lit + Lim + Wo
Within tracks IR | T || | I
N Lit + Lim + Wo Reference Lit + [im Lim + Wo
.§<
Within tracks | [0 1] | [ 1] | 0 0] NI
i Wo Lim Lit + Wo
Beside tracks DDD D\:‘D DD\:‘ D
Lit + W Reference Lit + lim

Fig. 7.1 Sketch of the experimental set-up within each stand: 3 frames (squares) per treatment (Lim: lime addition, Lit:
litter change, Wo: earthworm inoculation), 8 treatments per location, 2 locations (within/beside tracks) per trail, 2 trails
per stand. Frames beside tracks were at least 2m apart from the wheel tracks.
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Wooden frames of 0.5 m by 0.5 m and 0.2 m high were constructed to mark out compacted
soil areas within the wheel tracks on the one hand and non-compacted soil areas beside the
wheel tracks on the other (track) (Fig. 7.2). Within the frames, several treatments were
applied, alone or in combination with each other. The /lime treatment consisted of dolomitic
lime (60% calcium carbonate, 30% magnesium carbonate, 2-10 mm granules) of which 150 g
(equivalent to 6000 kg ha™) (cf Hultberg et al. 1995; Duliére et al. 2000) was scattered per
frame on top of the litter layer. For the litter treatment, the existing loose L horizon was
replaced by an equal amount of fresh high quality litter of Populus x Canadensis, that was
collected from a pure Populus x canadensis stand (N 50.9721°, E 3.7865°), surrounded by
pastures and located close to Ghent. Populus sp. litter is known for its high nutrient quality
and is easily biodegradable (Muys 1993; Coté & Fyles 1994). Per frame, we placed four litter
bags of 10 cm by 10 cm under the loose litter layer. For frames where the litter treatment
was applied, litter bags were completely filled with litter of Populus x canadensis. For frames
where native litter was preserved, litter bags were filled with equal portions of the occurring
main tree species. Mesh size of the bags was 6 mm, allowing all macrofauna to contribute to
the decomposition process. The bags contained 3.5 g of oven dried litter (25 °C, 48 h) (cf
Aneja et al. 2006; Liu et al. 2007). Frames that were selected for the worm treatment were
inoculated with 20 individuals of the anecic L. terrestris (cf Muys et al. 2003). For each worm,
a small hole (few cm deep) was made to stimulate digging and to protect the worms from
immediate predation by birds. The top of the frames was fenced with a large-meshed gauze
(mesh size 1cm) to prevent litter from the surrounding trees to fall into the frames. Leaves

or needles that fell on the gauze were removed on a monthly basis(Fig. 7.2).

The frames were installed in February 2008 in series of three (frame) (Fig. 7.1). The bottom 5
cm was pressed into the forest floor to prevent inoculated earthworms to immediately
disappear out of the frame and to isolate the upper soil layer from the surrounding area.
This was performed in a careful way in order to leave the compacted forest soil undisturbed.
A first dose of 100 g lime per frame (equivalent to 4000 kg ha™) was applied in March 2008.
All other treatments (litter replacement, a second dose of lime of 150 g lime per frame,
earthworm inoculation) were applied at the beginning of November 2008. An extra
inoculation of 20 earthworms was performed in May 2009. Earthworms were scattered on
top of the litter layer within the frame, in order not to disturb the litter layer. Treatments

were applied both alone as in combination, resulting in eight different treatments (Fig. 7.1).
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On both skid trails, as well within as beside wheel tracks, each treatment was randomly
assigned to one series of three numbered frames (frame). For each treatment 6 frames were
thus available (n = 2 trails x 3 frames = 6), both within as beside tracks. This set-up resulted
in 384 frames spread in the four stands (6 frames x 8 treatments x 2 locations in relation to

the tracks x 4 forest stands).

Aj B C
2 T L — A

e LU e RS
Fig. 7.2 Application of worm + litter treatment (A) frame installed in February 2008, (B) litter removed and worms

inoculated, (C) positioning of litter bags, (D) addition of litter of Populus x canadensis, (E) installation of a gauze
[photographs: Evy Ampoorter, November 2008].

7.3.2 Data collection

Biological activity is of great importance to the formation of a good soil structure (ecological
restoration), but depends on a good soil nutrient status and acidity among other things. We
examined whether the treatments (alone or combined) could increase the litter
decomposition rate (improving the soil nutrient and acidity status), as an indication of
biological activity. We assessed the decomposition rate by means of the remaining mass of
the litter bags. After 26 and 75 days, one litter bag was removed from all frames (n=1x 6
frames = 6). After 147 and 355 days, respectively 236 and 389 days, one litter bag was
removed from each frame on the first skid trail, respectively second skid trail (n =1 x 3

frames). Removed litter bags were oven-dried (25 °C, 48 h) and weighed (accuracy 0.001 g).

From April to June 2010, measurements of BD, PR, earthworm abundance and soil acidity
(pH) were performed. PR was quantified by means of a penetrologger (Eijkelkamp Agrisearch

Equipment, the Netherlands) that measures to a maximum depth of 80 cm in depth intervals
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of 1 cm. Cones had an apical angle of 60 °C, a basal area surface of 1 cm? and a nominal
diameter of 11.28 mm. Per frame, four PR measurements were performed (n = 4 x 6 frames
= 24). All PR measurements within one stand were carried out in one day as changes in soil
water content would influence PR (Smith et al. 1997; §3.5.3). After PR measurements, soil
samples were taken on three locations within the frame from depth intervals 0-5 cm and 5-
10 cm for determination of pH. For each depth interval, the three samples per frame were
combined (n = 1 x 6 frames = 6), dried (40 °C, 48 h), grinded and sieved and pH(KCI) was
measured using a glass electrode (Orion, model 920A) after suspension of 14 ml soil in a 70
ml KCI (1 M) solution. Next, the litter layer (containing predominantly epigeic worms) was
removed. Subsequently, 5 litres mustard solution (7.5 g ") was poured out gently on the soil
in the frame (cf Lawrence & Bowers 2002; Zaborski 2003), in order to expel endogeic and
anecic earthworms by the irritating action of the solution. After 20 minutes, this procedure
was repeated. Earthworms coming to the surface were then collected. Subsequently, soil
samples were taken from depth intervals 0-10 cm and 10-20 cm on two positions per frame
by means of Kopecky soil cores (n = 2 x 6 frames = 12) for the determination of dry soil BD.
Finally, the soil in the frame was excavated to a depth of 30cm and hand sorted in search of
remaining earthworms (predominantly endogeic). All earthworms that were found were
immediately put in a 70% ethanol solution and transferred to a 5% formol solution for
fixation at the end of the day. After two weeks, they were transferred back to a fresh 70%
ethanol-solution for long-term preservation. Epigeics were (as good as) absent as they were
removed with the litter layer. Moreover, results of a presurvey (data not shown) showed
that anecic species were absent prior to the inoculation in all forest stands. Worms that
were found in the frames, using the mustard method and excavation, thus consisted of the
inoculated anecic L. terrestris and/or endogeic worm species. Individuals of both groups

were counted separately.

7.3.3 Data analysis

First, for each stand the average values were calculated for each combination of location in
relation to the tracks and treatment: mean pH-values for depth intervals 0-5 cm and 5-10
cm, mean number of L. terrestris and endogeic worms, mean BD of depth intervals 0-10 cm

and 10-20 cm, and mean PR at depths 5, 10, 15, 20 and 25 cm. For each stand and depth,
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pair-wise comparisons between all combinations of treatments and locations were

conducted using Tukey’s HSD test with a = 0.05

Next, to assess the impact of litter manipulation, liming and/or earthworm inoculation on
the biological activity, the relative importance of the factors litter, lime, worm and track on
the soil pH (0-5 cm and 5-10 cm), the numbers of L. terrestris and endogeic earthworms, and
the target variables BD (0-10 cm and 10-20 cm) and the PR (5, 10, 15, 20, 25 cm) was tested
with mixed models in R 2.11.2, using the Ime function of the Ime4 library (R Development
Core Team 2010). All main effects and twofold interactions between the predictor variables
were included in the model. The nested random effect of the terms stand and trail was
added to the models to address the likelihood that results obtained from the same stand
and/or trail were autocorrelated. Based on the -2 log Likelihood information criterion (Hox
2002), the significance of each random effect term was tested (x? test statistic; Zuur et al.
2009) and non-significant terms were deleted. For BD and PR, two, respectively four values
were obtained per frame and therefore, the nested random effect term consisted of stand,
trail and/or frame, that were first checked for significance (-2 log Likelihood information
criterion; Hox 2002). Once the optimal random-effects structure was selected, the multilevel
model was run and the significances of the main effects and interactions between the
predictor variables were interpreted. The proportion of variance explained by the random

structure (% var,gnaom) Was then calculated according to Hox (2002):

2
Orandom
% VaTrandom = ( 5 = * 100
Orandom aresiduals

The remaining mass of the litter bags after 389 days was divided by the initial mass (3.5 g) to
obtain the remaining portion of leaf litter. These results were analysed similarly with the
multilevel modelling procedure. Additionally, a double exponential decay model was fit to
the portions for each treatment on both locations in relation to the tracks for all four stands.
Single exponential decay models use a constant relative decomposition rate (Wieder & Lang
1982). A double exponential decay model assumes that litter can be partitioned into a
relatively easily decomposed or labile fraction (A), and a more recalcitrant fraction (1-A) and
therefore often fits data better than the single exponential decay model. Each fraction
decays exponentially at rates characterized by k; and k,, respectively. Using SPSS 15.0, this
decay model was fit to the data:

X =Axe k1t 4 (1 — A) x et
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with X as the remaining portion of leaf litter, A as a constant (0 < A < 1), k; and k, as decay
rates (both 20) and t as number of days (Wieder & Lang 1982; Bird & Torn 2006; Rovira &
Rovira 2010). The sequential quadratic programming method was used to estimate
parameters A, ki and k,. The adjusted R? (Rfldj) accounts for different degrees of freedom

and, hence, the extra regression parameters (z), and was used to evaluate the fit. It was

—R2)w(n—
calculated as RZ;; = 1 — %

], with n as the sample size (Zuur et al. 2009). Values
of Rﬁdj were predominantly higher than 0.750 and the double exponential model thus
provided a good fit for the data. Differences between treatments per stand were analysed

visually, based on a plot of the fitted curves that was created with Sigmaplot 11.

Finally, for each forest stand, Spearman’s rank correlation coefficients were determined for
the relations between pH values of depth interval 0-5 cm, remaining portions of litter after
389 days, numbers of L. terrestris and endogeic earthworms, BD (depth interval 0-10 cm)

and PR (depth 10 cm).

7.4 Results

Mean soil pH(KCI) values at depths 0-5 cm and 5-10 cm varied between 3.0 and 5.0 but were
predominantly smaller than 4 (Appendix 7.1). Reference values were similar for all stands,
for both compacted as non-compacted soil, with slightly higher values for depth interval 5-
10 cm compared to 0-5 cm. Lime addition (sole or in combination) resulted in a clear
increase of pH, especially at depth interval 0-5cm (Fig. 7.3). At first sight, none of the other
treatments seemed to have a significant influence on soil pH. Although this was not clear
from Fig. 7.3 nor Appendix 7.1, the results of our multilevel analysis (Table 7.1) showed that
values were significantly higher within tracks compared to beside tracks. It also confirmed
the significant positive impact of lime on pH at both soil depths (p <0.001). Worm addition (p
= 0.012 for 0-5 cm and p = 0.005 for 5-10 cm) and track (p = 0.002 for 0-5 cm and p <0.001
for 5-10 cm) also influenced pH in a positive way, with significantly higher pH-values after
inoculation of worms, respectively within tracks. The significant relation between soil pH at
0-5 cm and abundance of L. terrestris is also reflected in the significant, positive correlation
coefficient between both variables at three of the four studied forest stands (Sperwer,

Goden and Havik: p <0.001) (Table 7.2).
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Fig. 7.3 Mean pH(KCI) of depth interval 0-5 cm, averaged over all stands, as influenced by earthworm inoculation (worm),
liming (lime), litter change (litter) and location in relation to the wheel tracks. Error bars represent the 95% confidence
interval.

Eighteen months after the first earthworm inoculation, almost none of the 2 x 20 inoculated
individuals could be retraced (Appendix 7.2), especially when inoculation took place in the
absence of another treatment. The treatment combination worm + lime + litter
predominantly resulted in the highest anecic earthworm numbers. Measurements before
the start of our experiment deduced that L. terrestris was absent in all stands before
inoculation. However, in frames where no worms were inoculated, individuals of L. terrestris
were also found. Therefore, there were almost no significant differences between locations
in relation to the tracks. Our multilevel modelling revealed a significant positive impact of
lime, litter and worm applications on the numbers of L. terrestris (Table 7.1: all p <0.001).
This also resulted in a significant interaction between worm and lime (p = 0.003) on the one
hand and worm and litter on the other hand (p = 0.004). In the absence of lime or litter, the
numbers of L. terrestris were only a little higher in inoculated frames compared to non-
inoculated frames. However, in the presence of lime or litter, the numbers of L. terrestris
were clearly higher after inoculation compared to non-inoculated frames. The number of L.
terrestris was furthermore positively correlated with soil pH at 0-5 cm at Sperwer, Goden

and Havik (all p <0.001).
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Endogeic species were present in larger numbers, especially at Sperwer and Havik (Appendix
7.2). The endogeic earthworm abundance was generally higher within the tracks compared
to beside the tracks (Fig. 7.4, Table 7.1: p <0.001). As the position within tracks is
characterized by higher BD (Fig. 7.6) and PR (Fig. 7.7), this also lead to positive correlation
coefficients between BD at 0-10 cm and PR at 10 cm on the one hand and the number of
endogeic worms on the other (Table 7.2). In contrast with the results on L. terrestris, liming
seemed to negatively influence endogeic species (p = 0.006). This could also be deduced
from the significant interaction between lime and track (p = 0.011). On the non-compacted
area, the numbers of endogeic earthworms decreased slightly with liming while on the
compacted soil the numbers were much higher than on the non-compacted area without
lime, but were almost similar to the non-compacted area in case lime was applied. Here, it
must be remarked that 38.61% of the variation in the numbers of endogeics can be
explained by the random structure. Moreover, as mentioned above, liming clearly led to
higher pH values and the correlation coefficients between pH at depth 0-5 cm and the
numbers of endogeic species were clearly positive at Goden (p = 0.005) and Renissart (p

<0.001) (Table 7.2).
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Fig. 7.4 Mean number of endogeic worms averaged over all stands, as influenced by earthworm inoculation (worm),
liming (lime), litter change (litter) and location in relation to the wheel tracks. Error bars represent the 95% confidence
interval.

The fits of the double exponential decay models for litter decay for all locations in relation to

the tracks and treatments were similar for Sperwer, Goden and Havik (Fig. 7.5). Treatments
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lime (c, k) and worm + lime (e, m) resulted in the slowest decay. In Sperwer, more than 90%
of the initial mass in the litter bags remained after 389 days for these treatments. This
contrasted strongly with worm + litter (f, n) and worm + litter + lime (h, p) that induced the
highest decay rates. The other treatments, including the reference (a, i), showed
intermediate decay rates. For most treatments, decay rates were slightly higher on the
compacted soil compared to the non-compacted soil. The results of Renissart differed
somewhat from the other stands, as the remaining portion of leaf litter after 389 days was
lower than 60% for all treatments. In this stand the reference treatments on both locations
in relation to the tracks (a, i) resulted in the lowest decay rates, together with the lime
treatments (c, k). The influences of the other treatments on the decay rate all led to

remaining portions of leaf litter beneath 25% after 389 days.
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Fig. 7.5 Remaining portion of leaf litter in function of number of days that litter bags lied incorporated in the litter layer.
Curves represent double exponential decay models that were fit to the raw data. Characters to the right of the curves
indicate treatments (BT = beside tracks, WT = within tracks):

a) BT, reference; e) BT, worm+lime; i) WT, reference; m) WT, worm+lime;

b) BT, worm; f) BT, worm+litter; j) WT, worm; n) WT, worm+litter;

c) BT, lime; g) BT, lime+litter; k) WT, lime; o) WT, lime+litter;

d) BT, litter; h) BT, worm+lime+litter; 1) WT, litter; p) WT, worm+lime+litter.

The remaining portions of leaf litter after 389 days (based on the true end masses of the

litter bags, not on the model results) showed a strongly significant negative influence of litter
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(Table 7.1: p <0.001). The decay of litter of Populus x canadensis seemed to pass off faster
compared to the native litter, leading to smaller remaining portions. The inoculation of L.
terrestris also accelerated the decay process (p <0.001). This could also be concluded from
the significant negative correlation coefficient between the remaining portions of litter and
the numbers of L. terrestris at Sperwer (p <0.001), Goden (p = 0.016) and Havik (p = 0.039)
(Table 7.2). Again, a large part of the variation in the dataset (49.4%) was due to the random
structure. Moreover, for several litter bags that originated from frames that were limed,
lime powder was attached to the leaves and could not be removed. This may have led to an

underestimation of the decay rate of some limed frames.

In general, soil BD of depth intervals 0-10 cm and 10-20 cm were clearly higher within tracks,
compared to the soil beside tracks (Appendix 7.3, Fig. 7.6). None of the treatments induced a
clear decrease of the compaction degree, neither within nor beside tracks. Besides the
significant impact of track on BD at soil depths 0-10 cm and 10-20 cm (p <0.001), we only
found a significant effect of the interaction between worm and track at 0-5 cm soil depth (p
= 0.015; Table 7.3). Apparently, the difference in BD between the two locations in relation to
the tracks further increased by worm inoculation. BD beside the tracks decreased in the

presence of worms in contrast with the location within tracks.
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Fig. 7.6 Mean bulk density (kg m'3) of depth interval 0-10 cm, averaged over all stands, as influenced by earthworm

inoculation (worm), liming (lime), litter change (litter) and location in relation to the wheel tracks. Error bars represent
the 95% confidence interval.
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Table 7.3 The effects of earthworm inoculation (worm), liming (lime), litter change (litter) and location in relation to the
wheel tracks (track) on soil bulk density at depths 0-10 cm and 10-20 cm: sources of variation, F-ratio, p-value and
variation due to the random structure. Reported results are derived from multilevel models (see text for more details).

.. Bulk density 0-10 cm Bulk density 10-20 cm

Sources of variation - -

F-ratio p-value F-ratio p-value
Litter 0.730 0.393 0.83 0.361
Lime 0.726 0.395 1.09 0.296
Worm 0.045 0.832 0.05 0.828
Track 114.03 <0.001 129.69 <0.001
Litter x lime 0.04 0.837 0.99 0.319
Litter x worm 2.39 0.122 0.00 0.987
Litter x track 0.73 0.392 1.24 0.266
Lime x worm 1.69 0.194 0.20 0.654
Lime x track 0.09 0.766 0.18 0.669
Worm x track 591 005 003 0.871
Variation due to random structure 3.4% 5.3%

Significant effects are marked in bold (p <0.05).

Results on PR (Fig. 7.7, Table 7.4, Appendix 7.4) confirmed the presence of higher
compaction degrees within the tracks compared to beside the tracks and the lack of clear
effects after application of the treatments. At 15 cm, 20 cm and 25 cm depth, in the absence
of inoculated worms, PR was significantly lower in limed frames compared to unlimed
frames. When worms were inoculated, PR were intermediate, with or without lime addition
(worm x lime, p = 0.004 at 15 cm, p = 0.001 at 20 cm, p = 0.013 at 25 cm).
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Fig. 7.7 Mean penetration resistance of depth 10 cm (MPa), averaged over all stands, as influenced by earthworm
inoculation (worm), liming (lime), litter change (litter) and location in relation to the wheel tracks. Error bars represent
the 95% confidence interval.
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7.5 Discussion

7.5.1 Stimulation of biological activity by manipulation of litter, soil acidity and earthworm
populations

As expected, decay rates of litter of Populus x canadensis were higher compared to the
native litter. Higher calcium concentrations (Reich et al. 2005; Hobbie et al. 2006) as well as
low lignin to N ratios (Prescott 2010) were found to be good predictors for litter decay rates.
The calcium content of the litter of Populus x canadensis (25.8 g kg'l) was at least three
times as high as the calcium content of the native litter (3.9-8.2 g kg™). According to
Neirynck et al. (2000) and Aubert et al. (2005), good litter degradability litter stimulates
micro-organisms and macrofauna. The higher decay rates in Renissart were probably also
due to the better litter quality of Acer pseudoplatanus (calcium content = 14.4 g kg™).
Endogeic earthworms were abundant as soil acidity was within their pH-range (2.5 < pH(KCl)
< 10) (Sims & Gerard 1999). As these species seldom dwell the soil surface in search of food
(Felten & Emmerling 2009), the relationships between numbers of endogeics and the
remaining portions of litter were predominantly insignificant (Table 7.2). Conversely, anecic
worms intensively fragment litter at the soil surface for immediate digestion or they pull
pieces along in their burrows (Bouché 1977; Edwards & Bohlen 1996). However, before the
field trial, anecic worm species as L. terrestris were absent in all four stands. In frames where
no inoculation took place, decomposition was thus due to other macrofauna and micro-
organisms, such as epigeic earthworms that live in the litter layer (Sims & Gerard 1999).
Moreover, in the inoculated frames only a negligible number of L. terrestris was retraced.
Sims & Gerard (1999) emphasized that L. terrestris prefers a pH(KCI) range of 5.2 to 9. The
higher acidity in our forest stands may have resulted in high mortality rates and/or the
escape to the surrounding area and frames, as was stated by the results. The application of
lime slightly decreased the acidity of the soil, resulting in higher numbers of retrieved anecic
worms. Muys et al. (2003) also indicated a negative impact of soil acidity on L. terrestris.
Although replacement of the native litter by litter of Populus x canadensis did not result in a
higher soil pH, at least not within the time-span of our study, results showed that L. terrestris
was positively influenced, leading to a positive feedback on litter decomposition. It has
formerly been suggested that individuals of L. terrestris have well-developed calciferous

glands that produce calcium carbonate to reduce the blood CO, level and to regulate blood
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pH when faced with high soil CO, levels (Piearce 1972). Therefore they benefited from the
presence of the calcium-rich Populus x canadensis litter. Reich et al. (2005) also proved this
positive relationship between earthworm abundance, particularly L. terrestris, and litter

calcium concentration.

The highest decay rates were obtained by an overall synergetic effect between lime
application, earthworm inoculation and litter replacement. As the survival and activity of
anecic earthworm species was limited due to unfavourable soil conditions as a low pH,
liming increased their survival changes and activity and thus entailed an extra boost for
decomposition (Wolters et al. 1995; Schack-Kirchner & Hildebrand 1998). Deleporte & Tillier
(1999), Theenhaus & Schaefer (1995) and Ammer & Huber (2007) also found an overall
positive effect of liming on earthworm biomass. The presence of anecic earthworms also
resulted in higher pH-values (Raty 2004), what might be associated with the incorporation of
organic matter and the direct alkalinisation due to cutaneous mucus excreted by
earthworms (Haimi & Huhta 1990; Schrader 1994). This possibly induced a positive feedback
on their activity in accordance to Jones et al. (2010). Endogeic species were also found to be
positively influenced by higher pH values in the upper 10 cm of the soil. Several studies
already pointed to the beneficial effect of endogeic and anecic species on the dispersal of

lime by burrowing activities (e.g., Baker et al. 1999; Chan 2003).

The slightly higher decomposition rates within tracks were probably due to the higher soil
pH. The lower acidity may be due to the enhanced anaerobic proton-consuming processes,
such as the reduction of iron and sulphate (Schnurr-Pitz et al. 2006). Our results were also
consistent to the study of Makineci et al. (2007) who found that, in addition to physical
changes in the mineral soil layers, changes in the properties of the H and F forest floor layers
due to machine traffic can affect the acidity of the soil. Earthworms are very sensitive to
dehydration and are most active at moisture tensions approaching field capacity (Nordstrom
1975; Baker et al. 1993). Throughout our field trial the weather conditions were relatively
dry. As a compacted soil has a higher unsaturated hydraulic conductivity compared to a non-
compacted soil, it can sustain the evaporation process longer (Hillel 1998) and it remains
longer wet. Endogeic worms may therefore have found better survival probabilities within

the wheel tracks. The lower acidity together with the higher soil water contents within
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tracks, may thus have led to higher endogeic earthworm abundance within the tracks. The

drier conditions beside the tracks may have led to migration, mortality or quiescence.

7.5.2 Ecological restoration of compacted soils

Compaction degrees within tracks were still significantly higher compared to the soil beside
tracks. Contrary to the soil within the wheel tracks, anecic earthworm inoculation induced a
small BD decrease in the upper soil layer beside tracks. This beneficial effect of especially
anecic earthworms on BD was also stated by Fonte et al. (2010). Lumbricus terrestris is
detritivorous and ingests only in rare conditions deliberately large amounts of soil (Buck et
al. 2000). In relatively loose soils, this species pushes the soil particles aside in order to
construct its burrows, thereby slightly compacting the soil that surrounds the burrows
(Kretzschmar 1987). It results in a net increase of macroporosity and a decrease of BD by the
construction of their burrows, by mixing mineral soil and organic matter and by excreting
casts at the soil surface (constructing middens), containing mineral soil particles of deeper
soil layers (e.g., Edwards 2004). The rather small BD decreases after earthworm inoculation
in our study were probably due to the overall very low number of retrieved L. terrestris and
the rather short study period. Moreover, as indicated by Ampoorter et al. (2008), the
compaction degrees on the non-compacted soil beside tracks were also relatively high and
could have decelerated the burrowing activity. Rushton (1986), Kretzschmar (1991) and
Sochtig & Larink (1992) also found a reduced activity of L. terrestris as soil became more
compressed. As it becomes more and more difficult to push particles aside, L. terrestris is
forced to ingest a higher amount of soil to burrow in compacted soil (Buck et al. 2000). As
this process has high energy requirements, it leads to reduced activity which may stop at
high compaction degrees. The loosening effect was not observed for the soil within tracks
although no difference in number of individuals of L. terrestris between the two locations in
relation to the tracks was found. The absence of an effect within the tracks was thus not due
to a higher mortality or avoidance of the compacted zones for energy budget reasons, as
was stated by Stovold et al. (2004) and Capowiez et al. (2009), but probably also the result of
reduced or lacking burrowing activity as compaction degrees were even higher than beside
tracks. Despite the reduced activity, Ponder et al. (2000) noticed a significant decrease of BD
in compacted pot microcosms after six months. The number of endogeic worms was higher

within tracks. Although these worms also intensively burrow and positively influence soil
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structure (such as macroporosity), their impact on aeration, hydraulic conductivity and
certainly BD is probably much smaller compared to anecic species. Namely, endogeics
excrete their casts within their burrows, in contrast with anecic species that excrete their
casts (an intense mixture of organic material and soil particles from deeper layers) on the

surface, in this way keeping their burrows open.

In the absence of inoculated worms, PR showed overall clearly lower values after liming. Also
Kirkham et al. (2007) found reduced PR and increased saturated hydraulic conductivity
values after lime application. Chan et al. (2007) concluded that BD was decreased by liming,
due to reduced dispersion and slaking. Half of this effect was reached by inoculating worms
without lime application, as was observed for BD beside the compacted tracks. This
relatively smaller effect was in part due to the low number of survived inoculated worms.
Moreover, as mentioned above, within the compacted wheel tracks the activity of L.
terrestris is limited. Beside the tracks, L. terrestris compacted the soil surrounding the
burrows, in this way strengthening the soil matrix. These processes may have lowered the
beneficial effect of L. terrestris on PR. The extra application of lime did not result in a further
decrease of PR. We hypothesize that liming stimulated the activity of L. terrestris, resulting in

more burrows but also an extra reinforcement of the soil structure.

The loosening effect of biological activity, stimulated by litter manipulation, liming and
earthworm inoculation was thus not as high as expected, deduced from the BD and PR
results. This was probably due to the limited number of retrieved worms as anecic
earthworms are very important ecological engineers in the restoration process. It must be
emphasized that the study period was time limited due to practical reasons and probably
too short to be able to detect clear ecosystem responses. The effect of liming, litter
manipulation and earthworm inoculation on the examined soil characteristics (pH, BD, PR) is
probably only clear in the long-term after sustained application of these treatments for
several years. On the other hand the rather low loosening effects could be due to the
variables that were used to quantify restoration success. The chance to detect significant BD
changes depends on the presence or absence of burrows in the soil samples. As mentioned
above, PR is also affected by the compacted soil layer surrounding the burrows. Moreover,
by quantifying only BD and PR as indicators of soil restoration success, the overall positive

effect of both endogeic and anecic worms on soil structural development was
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underestimated. While burrowing, both endogeic as anecic earthworm species increase
macroporosity (e.g., Edwards 2004), resulting in higher saturated hydraulic conductivity
(Joschko et al. 1992) and better aeration (Lee & Foster 1991). The burrows form a
preferential pathway for root elongation in compacted soils (Edwards & Lofty 1980; Hirth et
al. 1997), as root tips cannot overcome high soil strengths in compacted soils and growth
would thus be hampered. Moreover, earthworms realize an intense mixture of mineral soil
particles with organic material and microbial organisms, as well on the surface as in their
burrows (Devliegher & Verstraete 1997; Binet & Le Bayon 1999). This results on the one
hand in high mineralization rates and thus fast nutrient release in the short term in the
drilosphere (Brown et al. 2000). On the other hand, it entails the formation of stable
macroaggregates (Beare et al. 1994; Mclnerney et al. 2001). Results of Chapter 2 already
showed that soil CO, concentration is more sensitive to soil structural changes and may

therefore give a better indication of the ecological restoration potential of earthworms.
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8 General discussion and conclusions

The deployment of forestry machines, such as harvesters and skidders, strongly increased
productivity and safety of forest harvests. However, their high masses induce changes of
important soil structural characteristics, such as porosity (e.g., Herbauts et al. 1996; Teepe et
al. 2004) and pore continuity (e.g., Benthaus & Matthies 1993; Berli et al. 2003). As the
activity and diversity of the soil biota, understorey and tree layer depends on the presence
of favourable soil conditions, compaction may result in reduced ecosystem functionality. A
lot of studies already discussed the problems that arise from mechanized forest harvesting,
however seldom integrating the influences of site and stand characteristics, machine weight
and traffic intensity on the compaction degree, and rarely focusing on sandy forest soils as
these are generally assumed to be insensitive to soil compaction. General conclusions on the
biotic impact are lacking, as most studies focus on the impacts on a single species or soil
type. Information on the recovery of compacted soils is available but scarce, rarely focusing
on factors that influence this process. With this thesis, we aimed to fill some gaps in the
knowledge concerning soil compaction after mechanized harvesting. We investigated (1)
abiotic effects of soil compaction as influenced by site and stand characteristics, machine
weight and traffic intensity in Chapters 2 and 4, paying special attention to sandy forest soils
in Chapter 3, (2) consequences of soil compaction for growth and survival of tree seedlings in
Chapter 5, and (3) the compaction status of Flemish forest soils (Chapter 6), paying special
attention to ecological restoration options in Chapter 7. The results of this study provide
more insight i) into the abiotic and biotic effects of soil compaction as influenced by stand,
site and harvesting characteristics, ii) into the compaction status of Flemish forest soils, and
iii) into the potential of ecological restoration options for compacted forest soils. In addition,
the findings allowed us to formulate suggestions for forest management and raised several

guestions to be addressed in further research.
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Chapter 8

8.1 Abiotic effects of soil compaction, as influenced by soil and machine
characteristics

8.1.1 Impact of soil characteristics

Texture

Several studies indicated that the compaction degree is positively correlated with the clay
content (Gomez et al. 2002; Smith 2003), indicating the highest vulnerabilities on medium to
fine textures such as silt and clay (Larson et al. 1980; Hillel 1998; Fisher & Binkley 2000). This
is confirmed by the higher compaction degrees in depth interval 0-10 cm on the clay soils

compared to the sandy soils in Chapter 4.

However, compaction degrees on clay and loam to silt loam soils in Chapter 2 were
negligible and comparable to the sandy soils. In Chapter 4 the impact on sand was as high as
the impacts on clay in depth intervals 10-20 and 20-30 cm and results on BD and PR of
Chapter 3 stated that sandy soils can be compacted to a considerable extent. It must also be
remarked that CO, concentrations of the sandy soil, examined in Chapter 2, showed a clear
impact of machine traffic, in contrast with the negligible impacts on BD and PR. The impact
of machine traffic on pore continuity (and soil CO, concentration as a result) was
independent of the compaction degree and determination of the soil impact solely based on
PR and BD seriously underestimated the true impact on the sandy soil. Brais & Camiré (1998)
and Smith & Du Toit (2005) also stated clear compaction degrees on sandy soils. While
evaluating the impact of texture on soil compaction, soil water content and precompression

stress should certainly be taken in account.

Soil water content

The low compaction degrees on clay in Chapter 2 can be explained by the soil water content
during traffic, using the findings of Smith et al. (1997) and Hillel (1998) for medium-to fine-
textured soils (§1.2.4.1). Water contents in Walem (clay loam and sandy loam to sandy clay
loam) clearly exceeded the optimum soil water content for soil compaction for these
textures (Table 2.1). A lot of pores were filled with water that cannot be compressed

(Froehlich & McNabb 1984). Cohesion between particles is low in this condition (Al-Shayea
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2001) and the soil has only a small ability to withstand applied machine forces. Therefore
machine traffic resulted in strong plastic deformation (rut type 1) and small compaction
degrees as was shown by Tables 2.3 and 2.4. Ruts were deep and showed bulges at the
edges that partially compensated for the loss of soil within the ruts (Fig. 2.7). This also
explained the negative correlations between soil water contents and compaction degrees in
Walem and on the loam to silt loam soils in Leuven. As mentioned, soil water contents of
Walem were much higher than the optimum soil water content for clayey soils, while soil
water contents in Leuven (loam to silt loam soils) were on average probably also higher than
the optimum soil water content for these textures (Smith et al. 1997), resulting in a decrease

of the compaction degree with increasing soil water content.

Soil water contents at the sandy soils of Chapter 3, especially at site 2, were probably higher
than the critical soil moisture content for this texture (Smith et al. 1997; Langohr & Ampe
2004; §1.2.4.1). As sandy soils lack coherence in these relatively wet conditions
(Panayiotopolous & Mullins 1985), they were vulnerable to soil compaction. The negative
correlation between BD and soil water content at the sandy sites in Leuven (Chapter 2) could
not be explained as soil water contents were probably higher than the critical soil water
content for these textures (Smith et al. 1997; Langohr & Ampe 2004) and thus a positive

relationship was rather expected.

Precompression stress

High precompression stress (indicated by high initial BD) due to former mechanized
harvesting activities or natural profile development, seemed to have a very important
influence on the compaction degrees in forest stands in Leuven and Kapellen (Chapter 2). A
significant negative influence of the initial compaction status or precompression stress on
the absolute BD increase was also found in Chapter 4, confirming the findings of Powers et
al. (2005). Loose soils contain an abundance of macropores that are easy to compact.
However, compacted soils contain a high amount of smaller pores that exert a higher
resistance to soil compaction (Shetron et al. 1988; Hillel 1998; Berli et al. 2003), and
therefore increase soil strength and precompression stress. A machine pass will only result in
soil structural changes in case the applied stress exceeds the precompression stress (Horn et

al. 2007). From a certain precompression stress additional compaction is therefore
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prevented (Chapter 4), in accordance with the results of Powers et al. (2005) who saw that
soils with an initial BD of 1400 kg m™ or more did not compact anymore. If the soils of the
examined forest stands on loam to silt loam and sand in Chapter 2 had been less compacted
initially, the soil impact due to the treatments would probably have been much higher and

significant, as they are regarded as sensitive to soil compaction (e.g., Fisher & Binkley 2000).

We conclude that the assumption of higher sensitivity of medium- to fine-textured soils is
too general. The impact of texture on soil compaction degree should be differentiated on
the basis of soil water content and precompression stress. Based on the outcomes of our
field trials and literature research, we conclude that sandy soils are most vulnerable in dry or
wet conditions, while the compaction potential on medium- to fine-textured soils is maximal
at intermediate soil water contents. A high precompression stress may restrict the
compaction degree of machine traffic on all textures. Though one should keep in mind that
even at low compaction degrees some soil structural variables may already be significantly

influenced by machine traffic, such as soil aeration (affecting soil O, and CO, concentrations).

8.1.2 Impact of harvest characteristics

First it should be mentioned that machine traffic not only influences the soil immediately
under the tyres, but also partially the soil around it. Our results also showed clear increases
of BD, PR (Chapter 3) and soil CO, concentrations (Chapter 2) next to the tracks, confirming
the findings of Brais & Camiré (1998). The compaction degree between wheel tracks is
normally lower than within wheel tracks, as this area is only influenced indirectly. This can
be explained by the simultaneous appearance of compaction and loosening of the soil.
Compaction between and outside the wheel tracks can be attributed to the lateral
movement of soil from beneath the wheel tracks (Wronski 1984). Rotations of the tyres

result in shear forces that tend to loosen the soil (Abeels 1989; Vossbrink & Horn 2004).

Machine mass

Results of Chapters 2 and 4 clearly emphasized a positively influence of machine mass on the
compaction degree. This positive correlation can be explained using the mean soil contact

pressure. When the machine mass increases strongly and not in proportion to the increase
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of the contact area with the soil (as is the case with the machines in Chapter 2), the soil
contact pressure and thus the compaction degree grows, as was stated by McDonald et al.
(1996). Several machine characteristics can be changed to increase the contact area and thus
to lower the soil contact pressure: number of tyres (Alakukku et al. 2003), tyre dimensions
(Benthaus & Matthies 1993), tyre pressure (Abu-Hamdeh et al. 2000) and use of tracks
(Murosky & Hassan 1991). However, one should keep in mind that the real exerted pressure
can be much higher than the static pressure due to vibration or weight of the processed tree

(Kairiukstis & Sakunas 1989; Chancellor 1994; Athanassiadis 1997; Wehner 2003).

Traffic intensity

A positive influence of traffic intensity on the compaction degree was stated in Chapters 2
(CO; concentration) and 3 (BD and PR). The impact was insignificant in Chapter 4, probably
due to the low number of traffic intensity levels and the high variation that blurred the
relationship between compaction degrees and traffic intensity. Results in Chapter 6 also
showed that PR was highest close to the forest road where compaction degrees were
highest due to higher traffic intensities and the presence of landings. The first machine pass
on a loose soil normally has a strong influence on the soil structure. This soil contains a lot of
large pores that are easy to compact, leading to a relatively low precompression stress.
When the stress, applied by the machine, exceeds this precompression stress, macropores
are transformed to meso- and micropores that exert a higher resistance to the applied
forces and increase the precompression stress, partially protecting the soil from further
compaction (Incerti et al. 1987; Williamson & Neilsen 2000). Subsequent machine passes on
this soil will result in diminishing extra compaction degrees until the applied stress becomes
lower than the precompression stress. No further compaction will be stated, unless the
applied stress is increased (such as heavier machine, higher load) (Horn et al. 2007). This
could lead to a logarithmic relationship, indicating a stabilization of the response ratio at
higher traffic intensities. This was stated by Brais & Camiré (1998) and Seixas et al. (2003).
BD results in Chapter 3 showed that the strongest impact resulted from the first pass, with
declining influences of the subsequent passes. However, the logarithmic trend of the
relationship could not be deduced from the results in Chapters 2 and 4, probably due to a

low number of traffic intensity levels, restricted compaction degrees and strong variation in
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the dataset. PR results in Chapter 3 also showed a more gradual increase with increasing

intensity of machine traffic.

Brash mat

When sufficient slash residues are available on the skid trails, the machine weight is spread
over a greater area than the actual footprint of the machine, and hence the mean soil
contact pressure declines. In Chapter 3, a clear relationship between the use of a brash mat
and the compaction degree was found, confirming the findings of Schafer & Sohns (1993)

and McDonald & Seixas (1997).

Concerning the impact of harvest characteristics, we conclude that the compaction degree
increases with increasing traffic intensity (for CO, in Chapter 2; Chapter 3) and soil contact
pressure (Chapter 2) or mass (Chapter 4) of the machine, while a brash mat reduces the
impact (Chapter 3). The first machine pass(es) often exerts the strongest influence, so that
unrestricted machine traffic on relatively loose soils may induce overall high compaction

degrees in a forest stand.

8.2 Effects of soil compaction on tree saplings

The change of important soil structural characteristics such as PR (Chapter 3), BD (Chapter 4)
and soil aeration (Chapter 2) due to soil compaction may influence root growth (e.g.,
Heilman 1981; Bathke et al. 1992). However, the impact of soil compaction is certainly not
unambiguously detrimental for tree saplings but depends, amongst others, on tree species
(Miller et al. 1996; Kabzems 2000), compaction degree (Ehlers et al. 1983) and other
environmental characteristics. Drawing general conclusions is thus hard, due to strong
variation in the available data (Chapter 5). However, our results showed that texture seemed
to influence the sensitivity of tree saplings to soil compaction. The rather negative impact of
soil compaction on growth and survival of light tolerant tree saplings on silt (and clay) soils
contrasted with sandy and loamy soils where growth and survival were unaffected or rather
improved by soil compaction (Table 5.2). The soil structural changes accompanying soil
compaction, such as higher PR, decreased aeration and lower saturated hydraulic

conductivity may negatively influence tree saplings, as was found for the silt (and clay) soils.
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However, according to Dexter (2004) and Lacey & Ryan (2000), soil compaction not always
implies negative outcomes for soil quality. Undisturbed sandy soils contain a lot of
macropores that are too wide to hold water against gravitational forces. This implies a low
water retention capacity and thus a low amount of plant available water. Compaction
decreases the mean pore size and leads to better water retention. As the low amount of
plant available water is one of the limiting factors for growth of herbs and trees on sandy
soils, this higher water availability may have compensated the negative effects of soil

compaction.

We conclude that soil compaction influenced the growth and survival of tree seedlings,
although results were not unequivocal, leading to predominantly insignificant impacts.
Results indicated that it is crucial to take the influence of soil texture into account in the

evaluation of biotic effects due to soil compaction.

8.3 Recovery of compacted forest soils

8.3.1 Compaction status of Flemish forest soils seven to nine years after the last harvesting
activity
In several forest stands, traces of old skid trails could still be detected on the basis of the PR
pattern. Moreover, certain sites, such as Zoniénwoud RII-2 and RIll, showed large areas
where PR was overall increased above 2 or even 3 MPa, regarded as critical levels for root
growth (Whalley et al. 1995). This widespread soil compaction can be partially due to the
last harvest but is predominantly a remainder of the soil compaction induced at former
harvesting activities. Before the last harvesting activity took place, the soils in Zoniénwoud
RII-2 and RIII-3 were already strongly compacted. Namely, the impacts of intense iron and
charcoal extraction in the past, together with long-lasting and non-restricted high recreation
pressure (horses, pedestrian) accumulated and resulted in overall soil degradation.
Moreover, both forest stands have long been forested with beech with high mean diameter
classes implying the use of heavy machines with a high soil contact pressure (McDonald et
al. 1996). Compacted soils are characterized by higher precompression stresses which
protect the soil from further compaction. Only when the applied stresses at the last

harvesting activity exceeded the precompression stress, a small additional compaction was
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induced (Horn et al. 2007). This explains why in soils with overall high compaction degrees
such as Zoniénwoud RII-2 and RIll (and to a smaller extent Hoge Vijvers, Brakelbos 10 and
12), new machine passes resulted in only minor to negligible effects and separate skid trails

could therefore hardly be distinguished.

No differences could be stated between the texture groups. Traces of former harvesting
activities were still apparent for all forest stands on all textures. Moreover, a similar, high
variation in compaction status was stated within each texture group, due to different
cumulated impacts of machine traffic in the past between the forest stands within each
texture group. It should be remarked that in case PR no longer showed traces from former
machine traffic, it does not necessarily mean that soil had completely recovered from soil
impact. Page-Dumroese et al. (2006) emphasize that the examined soil variables (BD, soil

strength, and macroporosity) recovered at a different rate.

Traces of former machine traffic were still apparent in all examined forest stands in the
shape of locally increased or overall high penetration resistance. We conclude that complete
recovery of compacted forest soils was certainly not achieved within seven to nine years
after the last machine impact. As this is a common period between two harvesting activities,
effects will accumulate and expand at subsequent harvests in case machine traffic is not

restricted to permanent skid trails.

8.3.2 Options for ecological restoration of compacted forest soils

Heavily compacted forest soils can be mechanically loosened but these methods may induce
severe damage to the soil ecosystem and should thus only be applied in exceptional cases,
where the forest soil is heavily damaged, natural recovery processes work insufficient and
fast recovery by mechanical loosening is essential to preserve diversity and functioning of
the forest ecosystem. On all other forest soils, recovery depends on natural processes, such
as freezing of soil water, swelling of clay particles or biological activity. Only the last process
may be altered by forest management and forms the basis of ecological restoration of
compacted forest soils. Within this framework, the activity of ecosystem engineers, such as
the anecic earthworm L. terrestris is very important. However, as many forest soils are acid

and most anecic earthworm are acido-intolerant (Edwards 2004; Sims & Gerard 1999), these
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species are mostly scarce or absent, as was the case in the examined forest stands of
Chapter 7 where anecic earthworms had to be inoculated to examine their effect on forest

soil compaction.

The composition of the tree layer can be changed to obtain better litter quality and thus a
stimulation of biological activity. Decay rates of litter of Populus x canadensis were higher
compared to the native litter in the examined forest stands of Chapter 7, amongst others
due to the higher calcium content (e.g., Hobbie et al. 2006) and low lignin to N ratios
(Prescott 2010) that stimulated the activity of micro-organisms and macrofauna (Neirynck et
al. 2000; Aubert et al. 2005). Although the replacement of the native litter by litter of
Populus x canadensis did not (yet) lead to lower soil acidity, results showed that the
numbers of retraced inoculated L. terrestris were positively influenced, leading to a positive
feedback on litter decomposition. Namely, their high calcium requirements (Piearce 1972)
are satisfied by the fragmentation and ingestion of the fresh calcium-rich Populus x
canadensis litter, in this way accelerating decomposition (Bouché 1977; Edwards & Bohlen
1996). A decrease of soil acidity by liming also increased the survival changes and activity of
L. terrestris (and probably also other soil organisms) and thus entailed an extra boost for
decomposition, as was also stated by Wolters et al. (1995) and Schack-Kirchner & Hildebrand
(1998). Moreover, the presence of the inoculated anecic worms also resulted in higher pH-

values, inducing a positive feedback on their activity.

Liming itself reduced PR due to reduced dispersion and slaking, as was also emphasized by
Kirkham et al. (2007) and Chan et al. (2007) for BD. Earthworm inoculation had a small
beneficial effect on BD in the upper soil layer beside tracks, as was also stated by Fonte et al.
(2010). Litter manipulation and liming increased the survival chances (and probably also the
activity) of inoculated anecic worms. However, none of the applied treatments could induce
a clear decrease of the compaction degree within tracks during the study period (1.5 years).
No significant differences were stated in the numbers of L. terrestris within and beside
tracks. The number of retraced inoculated L. terrestris was overall low, both within and
beside tracks, as soil conditions (acidity, nutrient status), even after ameliorating treatments,
were probably not favourable to L. terrestris, restricting the potential beneficial effect on the
compaction degree. Within the wheel tracks the activity of the scarce L. terrestris was

probably further reduced due to the high energy requirements while burrowing in
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compacted soil (Rushton 1986; Kretzschmar 1991; Sochtig & Larink 1992). We hypothesize
that continued liming and litter manipulation for several years would have had a more
thorough positive effect on soil conditions and thus survival and activity of L. terrestris. We
therefore emphasize that ecological restoration of compacted forest soils is only possible
when soil conditions (acidity, nutrient availability) are optimized for anecic earthworms. This
can be achieved by conversion of forests towards tree species with high quality litter, which
induce lower acidity and a better nutrient status of the soil, increasing the survival chances

and activity of the anecic earthworms.

It must be stated that the duration of the study was limited due to practical reasons and
probably too short to be able to detect clear ecosystem responses. Moreover, the use of
only BD and PR for the quantification of restoration success may have underestimated the
total soil impact of the treatments. Litter manipulation and liming had a beneficial effect on
anecic earthworms, increasing their burrowing activities, and this probably had a positive
influence on macroporosity (e.g., Edwards 2004), saturated hydraulic conductivity (Joschko
et al. 1992) and aeration (Lee & Foster 1991). The burrows form a preferential pathway for
root elongation in compacted soils (Edwards & Lofty 1980; Hirth et al. 1997), as root tips
cannot overcome high soil strengths in compacted soils and root growth would thus be
hampered. Earthworms realize an intense mixture of mineral soil particles with organic
material and microbial organisms, as well on the surface as in their burrows (Devliegher &
Verstraete 1997; Binet & Le Bayon 1999). However, these ameliorating effects on soil
structure could not be quantified using BD or PR. Moreover, results showed that endogeics
were also positively influenced by higher pH values. It is overall known that their burrowing
activities ameliorate soil structure, although this could not be stated by the quantification of
BD and PR, further leading to an underestimation of the effect of biological activity on soil

restoration.

We conclude that ecological restoration of compacted forest soils is possible though time-
consuming, as effects after the short study period were small to negligible. Moreover, it
stipulates that soil conditions (acidity, nutrients) are favourable to soil organisms, in
particular anecic earthworms, which can be achieved by an admixture containing species

that produce high quality litter, inducing a lower soil acidity and a better nutrient status. The
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real impact of ecological restoration is best quantified by means of an integrated set of soil

functional characteristics.

8.4 Recommendations for forest management

Results showed that the risk for soil compaction should be taken into account for all texture
classes when planning and preparing harvesting activities. Based on the outcomes of our
field trials and literature research, we recommend to perform harvesting activities on sandy
soils at intermediate soil water contents for this soil texture (Smith et al. 1997), while on
medium- to fine-textured soils very dry conditions are optimal for maximal limitation of the
soil compaction degree. Machine traffic on very wet medium- to fine-textured soils would
also lead to negligible compaction degrees. However, in these conditions, machine forces
are transformed into severe plastic deformation (Hillel 1998), resulting in very deep ruts that
may also have detrimental effects on the soil ecosystem (Stone & Elioff 2000; Lindo & Visser
2004) and different soil and climatic conditions may increase plant diversity (Alban et al.
1994; Buckley et al. 2003). One should keep in mind that even at these optimal soil water
contents, machine traffic will always have a certain impact on the soil. Independent of soil
texture and soil water content of the forest stand, preference should thus be given to
harvesting methods and machine characteristics that minimize the impact on the soil. The
already compacted status of a certain forest soil (high precompression stress) should not at
all be an incentive not to restrict machine dimensions nor to allow machines to drive the
whole forest stand. Certain soil characteristics, such as soil CO, concentration (due to the
sealing of soil pores) might still be significantly influenced even though compaction degrees

are small to negligible due to high precompression stress (Chapter 2).

The machines used should always be tuned to the intensity and the demands of the
harvesting activity and the field circumstances (soil, weather, slope, tree species...). Chapters
2 and 4 showed that lighter machines or machines with a smaller load (and a smaller soil
contact pressure) have a smaller effect than heavier machines. It is thus recommended to
use machines with a small soil contact pressure. This may be obtained by using light
machines, combined with decreasing tyre pressure, increasing the number of tyres and using
wider tyre dimensions (Benthaus & Matthies 1993; Alakukku et al. 2003; Ziesak 2003). Heavy

machines with a higher soil contact pressure should only be used in exceptional cases, for
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example for harvesting or logging of big sized trees on soils with a good bearing capacity. A
brash mat may also be very effective to reduce the degree of soil compaction (Chapter 3) as
the mean soil contact pressure of the machine declines. The construction of brash mats is
predominantly restricted to softwood stands, and is realized by harvesters, dropping the
residues of processed trees on the skid trail in front of the machine. A higher cover of dwarf

shrubs, possessing a dense root layer can have a similar effect.

Several studies indicated a logarithmic relationship between soil compaction degree and
number of machine passes, with the highest impacts resulting from the first passes (e.g.,
Nugent et al. 2003; Seixas et al. 2003), especially on fine-textured soils, and this logarithmic
effect was also observed for BD of sandy soils in Chapter 3. We therefore emphasize to
concentrate the traffic on designated skid trails. In this way only a restricted portion of the
area is damaged, leaving the rest undisturbed. Moreover, results in Chapter 6 showed that
traces of former machine traffic were still detectable on all soil textures eight years after the
last mechanized harvesting activity. Recovery of the compacted soils thus lasted longer than
the normal period of eight years between two harvesting activities. In case at future
harvesting operations machine traffic is not restricted, effects will accumulate and an
increasingly large area could be impacted. The use of permanent skid trails reduces the
extent of soil compaction and enables the soil between trails to recover from the compacted
status applied during previous harvesting activities. On these trails, compaction can be

further reduced using a brash mat of sufficient thickness.

The use of reduced impact logging techniques, such as permanent skid trails, lowered soil
contact pressure of machines or brash mats, is strongly recommended. However,
mechanized forest harvesting will always impose a certain impact on the forest soil that
cannot be prevented (such as sealing of soil pores). Forest soil compaction can not be
mechanically eliminated at large scale using agricultural loosening techniques (e.g.,
subsoiler). These methods may induce severe direct damage to the soil ecosystem and
should thus only be applied in exceptional cases. In general, soil compaction needs to
recover under the impact of natural processes, such as the freezing of soil water or swelling
of clay particles. The impact of biological activity on recovery is also important, especially
when soils lack the ameliorating influence of freezing water and swelling clay particles. A

smooth progress of this ecological restoration requires favourable soil conditions and the
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presence of anecic earthworms. Admixtures with tree species that provide good quality
litter, perhaps combined with liming may imply a stimulation of biological activity and a
decrease of the compaction degree (Chapter 7). The large-scaled introduction of
earthworms is not feasible. Although it poses a sound alternative to mechanical loosening in
case soil conditions are favourable, it should be remarked that restoration of compacted
soils based on biological activity is time-consuming. Forest management should therefore in
first place aim for a reduction of the soil area that is influenced by machine traffic and a

decrease of the compaction degrees.

8.5 Suggestions for further research

Results of Chapter 2 emphasized that quantifying the soil impact based on solely BD or PR
may lead to a serious underestimation of the real soil impact, especially in soils with high
precompression stress that leads to small to negligible increases of BD or PR. A change of
pore continuity (and thus the impact on soil aeration, saturated hydraulic conductivity,...) is
not necessarily correlated with the induced compaction degree and may, for example, be
serious although no impact was stated using BD or PR. Moreover, earthworms may have
beneficial effects on soil structure restoration that cannot be stated using only BD or PR. We
therefore argue to quantify impacts on soil structure not only based on BD or PR, but taking
into account results on variables that are more sensitive to soil structural change, such as
CO, concentration. More research is needed to evaluate the usefulness and feasibility of CO,
measurements in detecting and quantifying soil compaction. Results in Chapter 2 showed
that CO, concentration is a better, more sensitive indicator of soil damage. The overall use of
soil CO, concentration would probably have resulted in a much higher amount of significant
differences between treatments in Chapters 2, 3, 6 and 7. Moreover, soil CO, concentration
can be directly related to potential ecological consequences of machine traffic. However, we
do not possess a device that is adapted to measure soil CO, concentration accurately and
efficiently. For the sandy forest soil in Kapellen 2 (Chapter 2), we were able to use the
portable gas chromatograph of the Forstliche Versuchs- und Forschungsanstalt (FVA) in
Baden-Wiirttemberg. So, although we are fully aware of the importance of CO,
concentration for the assessment of soil damage, we unfortunately could not further make
use of this indicator. Moreover, we remark that the chapter order does not reflect the

chronology in which the field trials were executed. Measurements for Chapters 3 and 6 were
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already performed before the suitability of the soil CO, concentration for quantification of
the machine impact became clear at measurements in Kapellen 2. Comparing numbers of
roots in skid trails and untrafficked soil (e.g., Schaffer et al. 2009) would also provide a better

image of the direct ecological impact of machine traffic.

Several studies examined compaction degrees in function of traffic intensity, and several
indicated a logarithmic relation (e.g., Brais & Camiré 1998). However, it would be interesting
to sort out if a similar logarithmic relation also exists between machine mass (or better soil
contact pressure) and compaction degree, with a stabilization of the impact at higher masses

or soil contact pressure.

Literature review concerning the impact of soil compaction on tree growth and survival
showed that predominantly shade intolerant species were examined. This is not surprising as
most studies were performed on clear cut areas, with high light availability, where, in
general, light demanding species occur more frequently. However, this implies that no
conclusions could be drawn concerning the tolerance to soil compaction of shade tolerant
species. It is not certain that the sensitivity to soil compaction is similar for both groups of
tree species. For example, compaction is often accompanied by a reduction of the plant
available water amount (and thus likely increases drought stress; Ballard 2000) while
Niinemets & Valladares (2006) showed that shade tolerant tree species had a lower
tolerance to drought and water logging. Small & McCarthy (2002) showed severe growth and
biomass reductions for Osmorhiza claytonii, a shade-tolerant perennial, after soil
compaction. Further research is needed to draw general conclusions concerning the effect of
soil compaction on performance of shade tolerant tree species. Moreover, it is possible that
the long-term impact differs from the impact on tree saplings in the first years after soil was
compacted, as was examined in Chapter 5. This should be examined through long-term

monitoring.

Recovery of compacted forest soils formed the object of several studies. However, by our
knowledge, none of these studies was performed in an integrated way, comparing different
textures under different forest types, starting from a well-documented compaction degree.
Texture determines the recovery resulting from the freezing process of soil water and the
swelling process of clay particles. Site and stand characteristics also have a strong influence

on biological activity, such as the burrowing of anecic earthworms (Chapter 7), that may
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contribute to the restoration of compaction forest soils and induce significant differences in
recovery rate between forest sites. The actual relative contributions of these processes to
the recovery of compacted forest soils have not been quantified so far. Moreover, it is
assumed that higher precompression stresses induce a longer recovery process, but it is not
clear whether this is only due to a higher absolute difference in, for example, BD between
the tracks and the non-disturbed area, needing more time to recover, or whether the higher
initial compaction degrees really slowed down the recovery processes, for example by a
negative influence on biological activity. Short-term monitoring of the effect of litter quality,
soil acidity and burrowing of anecic earthworms on the recovery of compacted forest soils
could not indicate clear beneficial effects on the compaction degree, probably due to the
short study period. However, based on the obtained results we speculated that recovery of
compacted forest soils by biological activity is possible, provided that soil conditions are
improved. The potential of ecological restoration of compacted forest soils should be
examined by means of long-term monitoring, for example after eight years as this is a

common period between two harvesting activities.

Finally, it must be remarked that a lot of the studies examining the abiotic or biotic effects of
soil compaction lacked necessary basic information such as number of replications and
information about the precision of the measurements. This information is necessary to
perform a good and balanced meta-analysis. The higher the number of studies with
complete information that can be used, the more reliable are the results, the clearer are the
relationships and the more universally applicable are the conclusions. It is thus crucial for
future publications that attention should be given to the detailed reporting of basic statistics
so that the results can be used in meta-analyses. Moreover, information on soil
precompression stress, water content, acidity and the real soil contact pressure of the
machine is also necessary in order to make more reliable conclusions. Results of Chapter 2
clearly indicated the importance of soil water content and precompression stress to the
obtained soil compaction degree. Machines with the same total mass may have a totally
different impact due to other tyre dimensions, number of tyres, tyre pressure, or other
characteristics that change the contact area between soil and machine and thus the soil
contact pressure. However, information about these characteristics was absent or not
available in great detail in most studies and could thus not be controlled for in the analysis,

resulting in extra sources of unexplained variation.
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