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Summary 

The European landscape is characterized by small forest remnants due to a long 

history of land-use change, particularly in the lowlands. Forest edges differ from forest 

interiors in terms of e.g. microclimate, atmospheric deposition and biodiversity. Despite 

several directives and policies aiming to reduce the use and emission of nitrogen (N), 

anthropogenic activities still give rise to high atmospheric N deposition levels. Forest 

edges are subjected to higher atmospheric deposition levels compared to forest 

interiors, making them potentially more prone to eutrophication, acidification, N loss 

(via leaching or in gaseous forms) and species loss. However, forest edges challenge 

the current N-saturation paradigm, as Wuyts et al. (2011) measured a local decline in 

nitrate (NO3
-) seepage within the first 20 m from the edge. 

 

It is still unclear how elevated atmospheric N deposition specifically affects N and 

carbon (C) stocks and cycling at temperate forest edges. The specific aims of this 

thesis were (i) to assess the edge effect on N stocks, C stocks and their sequestration 

and (ii) to determine which processes of the forest N cycle differ between forest edge 

and interior. An edge-to-interior transect was laid out in six temperate oak (Quercus 

robur L.), pine (Pinus nigra ssp. nigra Arnold and P. nigra ssp. laricio Maire) and spruce 

(Picea sitchensis (Bong.) Carr.and P. abies (L.) Karst) forests in northern Belgium 

(Flanders) and Denmark growing on acid, sandy quartz-dominated Podzols from which 

data on N throughfall and leaching were available from previous research. All forest 

edges border arable land dominated by intensive livestock production and have 

experienced several decades of elevated N deposition. 

 

Total N stocks, total C stocks and soil C sequestration were increased at the forest 

edge compared to the interior. More specifically, N and C stocks in wood, roots (coarse 

and fine) and mineral soil were increased at the forest edge. As N deposition is higher 

in coniferous forests compared to deciduous forests, a more pronounced edge effect 

in the pine and spruce stands than in the oak stands was expected. However, this was 

not the case in this study, signifying that the edge effect is not solely driven by forest 

type, but more likely the result of an interplay of several factors (landscape matrix, 

edge structure, height, age, leaf area index (LAI)). We hypothesized that the lower N 

and C stocks in the forest floor but higher N and C stocks in mineral soil at the edge 
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were due to a faster litter degradation (as a result of differences in microclimate and 

soil micro- and macrofauna at edge vs. interior) hereby transferring nutrients to deeper 

soil layers. 

 

Litter decomposition and nutrient release were assessed via the litterbag technique. 

Increased litter mass loss and nutrient release were observed at the edge compared 

to the interior in the oak stands, which were governed by soil acidity and forest floor 

C/N ratio. In the pine stands, only release of N and exchangeable cations (EC, sum of 

calcium, Ca2+, magnesium, Mg2+ and potassium, K+) was higher at the edge compared 

to the interior. Several factors can drive litter decomposition, such as litter position, 

litter quality and presence of the soil decomposer community. The influence of litter 

position and litter quality was examined via the interchange of edge and interior litter, 

while the influence of the specific edge arthropod detritivores was assessed via placing 

interior litter in open top chambers (OTC), which create a warmer ‘edge’ microclimate 

in the interior. Edge conditions (microclimate, atmospheric deposition, soil fauna and 

soil physicochemical properties), litter quality and edge arthropod detritivores all 

influenced litter decomposition and nutrient release, but the contribution of each driving 

factor depended on the specific edge characteristics of each site. 

 

The microbial community was mapped via the extraction of phospholipid fatty acids 

(PLFA) and aminosugars (AS) from the upper mineral soil layer (0 – 10 cm). Biomass 

of Gram positive (Gram+) bacteria was higher at the forest edges compared to the 

forest interiors. Nitrogen cycling rates (mineralization and nitrification) were assessed 

via the 15N pool dilution technique in mineral soil. Gross mineralization rates were 

stimulated at the warmer forest edges and were associated to the higher bacterial 

biomass at the forest edges. Nitrification rates were not affected by edge proximity, but 

differed between forest types, as the oak stand was characterized by higher nitrification 

rates than the pine and spruce stands. A 15N tracer study was used to explore N 

retention in the different soil layers (litter, fermentation and humus layer and mineral 

soil) over time. In all forest types, the forest interior retained more N in the litter layer, 

while N was stored in deeper soil layers at the edge.  

 

Automatic measuring chambers were used to monitor fluxes of N and C trace gases 

during a two-week measurement campaign in the oak and pine stand. Forest edges 
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emitted on average 60 % less nitric oxide (NO) and took up 177 % more methane 

(CH4) at the oak site. Fluxes of nitrous oxide (N2O) did not differ between forest edge 

and interior. Contrary to the postulated hypotheses, increased N deposition at the 

edges did not stimulate emission of NO or N2O and did not inhibit uptake of CH4. 

Instead, the contrasting microclimate at the forest edge influenced N and C trace gas 

fluxes as soil moisture variation between forest edge and interior was a key variable 

explaining the magnitude of NO, N2O and CH4 fluxes. 

 

In conclusion, forest edges significantly influenced N and C stocks, cycling and 

sequestration. The studied forest edges stored large amounts of N and C (in above- 

and belowground biomass and soil) and showed increased N cycling rates, while the 

oak forest edges also emitted less NO and took up more CH4 than forest interiors. 

Forest edges can play a currently still overlooked role in climate change mitigation via 

surplus C and N sequestration compared to forest interiors. However, it remains 

unclear for how long forest edges can sequester additional N and C under ongoing 

high N deposition and to what extent the sequestration depends upon the 

environmental context (soil type, climate, etc.). Therefore, more research in temperate 

forest edges is needed to provide an adequate knowledge of their N and C storage 

capacity and long-term behavior, which is imperative to obtain correct present and 

future forest N and C budgets on a larger (regional, national or global) scale. 
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Samenvatting 

Door verandering van landgebruik beslaan bosfragmenten en bosranden een groot 

deel van het huidige Europese landschap, vooral in lager gelegen gebieden. 

Bosranden verschillen van boskernen op vlak van o.a. microklimaat, atmosferische 

depositie en biodiversiteit. Ondanks verscheidene beleidsmaatregelen die het gebruik 

en de uitstoot van stikstof (N) willen beperken, kunnen antropogene activiteiten nog 

steeds aanleiding geven tot hoge atmosferische N-depositiewaarden. Bosranden 

worden gekenmerkt door een hogere atmosferische depositie dan boskernen. Deze 

verhoogde input van N aan de bosrand kan de interne N-cyclus verstoren en potentieel 

zorgen voor eutrofiëring, verzuring, N-verliezen (via uitspoeling of gasvormige 

verliezen) en verlies aan biodiversiteit. In bosranden wordt de verhoogde doorval 

echter niet gereflecteerd in de N-verliezen, want Wuyts et al. (2011) maten een lagere 

uitspoeling van nitraat (NO3
-) binnen een afstand van 20 m van de bosrand ondanks 

de verhoogde N-depositie. 

 

Het is nog onduidelijk hoe de verhoogde N-depositie aan de bosrand van gematigde 

bossen de N- en koolstof (C) cyclus beïnvloedt. De specifieke doelen van deze thesis 

waren (i) het onderzoeken van het bosrandeffect op de N-voorraden, C-voorraden en 

hun vastlegging en (ii) bepalen welke processen van de N-cyclus verschillen tussen 

bosrand en boskern. Een rand-kern transect werd hiervoor uitgelegd in zes gematigde 

eiken- (Quercus robur L.), dennen- (Pinus nigra ssp. nigra Arnold and P. nigra ssp. 

laricio Maire) en sparrenbestanden (Picea sitchensis (Bong.) Carr.and P. abies (L.) 

Karst) in Vlaanderen en Denemarken, De bossen kwamen allemaal voor op arme, zure 

zandgronden waarvan reeds data over N-doorval en -uitspoeling beschikbaar waren. 

De bosranden grensden aan landbouwgronden, beheerd door veeteeltbedrijven en 

worden reeds enkele decennia gekenmerkt door een hoge N-depositie.  

 

De totale N- en C-voorraden waren hoger aan de bosrand ten opzichte van de boskern, 

net als de C-vastlegging in de bodem. Wanneer we naar de verschillende 

compartimenten van het bos kijken, waren de voorraden van het hout, de wortels 

(grove en fijne) en de minerale bodem significant verhoogd aan de bosrand. Omdat de 

depositie van N hoger is in naaldbossen ten opzichte van loofbossen, werd een meer 

uitgesproken randeffect verwacht in de onderzochte dennen- en sparrenbestanden in 
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vergelijking met de eikenbestanden. Dit was echter niet het geval, waardoor duidelijk 

werd dat het randeffect niet enkel van het bostype afhangt, maar eerder van een 

interactie van verscheidene factoren (het omliggende landschap, de structuur van de 

bosrand, de boomhoogte, de leeftijd, de bladoppervlakte). We stelden als hypothese 

dat de lagere N- en C-voorraden in de organische bodemlaag, maar hogere N- en C-

voorraden in de minerale bodemlaag te wijten waren aan een snellere strooiselafbraak 

aan de bosrand (als gevolg van de verschillen in microklimaat en bodemfauna tussen 

bosrand en –kern), waarbij nutriënten sneller in diepere bodemlagen terecht komen. 

 

De strooiselafbraak en het bijhorende verlies aan nutriënten werd opgevolgd via 

strooiselzakjes (litterbags) en verliep sneller in de bosrand ten opzichte van de kern in 

de eikenbestanden. Strooiselafbraak en het bijhorende verlies aan nutriënten bleek 

gerelateerd te zijn aan de zuurtegraad van de bodem en de C/N ratio van de 

organische bodemlaag. In de dennenbestanden was enkel de vrijstelling van N en 

uitwisselbare kationen (de som van calcium, Ca2+, magnesium, Mg2+ en kalium, K+) 

hoger aan de bosrand ten opzichte van de kern. Verschillende factoren, zoals de 

locatie, de kwaliteit van het strooisel en de aanwezigheid van bodemfauna 

beïnvloeden strooiselafbraak. De impact van locatie en strooiselkwaliteit werd 

onderzocht via de uitwisseling van rand- en kernstrooisel. De invloed van de specifieke 

arthropodengemeenschap aan de bosrand werd achterhaald via het plaatsen van 

kernstrooisel in open top kamers, die een warmer ‘bosrand’ microklimaat creeëren in 

de boskern. De condities aan de bosrand (microklimaat, atmosferische depositie, 

bodemfauna en fysicochemische bodemcondities), de strooiselkwaliteit en de 

arthropodengemeenschap aan de rand hadden elk een impact op de strooiselafbraak 

en het nutriëntenverlies, maar de bijdrage van elke factor hing af van de specifieke 

randkarakteristieken van elk bestand. 

 

De microbiële gemeenschap werd in kaart gebracht via de extractie van vetzuren (uit 

fosfolipiden, PLFA) en aminosuikers (AS) uit de minerale bodem (0 – 10 cm). De 

biomassa van Gram positieve (Gram+) bacteriën was hoger aan de bosrand. De 

transformatie van N (via mineralisatie en nitrificatie) werd bestudeerd via de dilutie van 

het zwaardere 15N-isotoop (15N pool dilution technique) in de minerale bodem. 

Mineralisatie verliep sneller aan de warmere bosrand en was geassocieerd met de 

hogere bacteriële biomassa die er opgemeten was. Nitrificatie bleek niet beïnvloed te 
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zijn door het randeffect, maar wel door bostype, aangezien nitrificatie hoger was in de 

eikenbestanden in vergelijking met de dennen- en sparrenbestanden. Via het sproeien 

en opvolgen van 15N in de tijd (15N tracer study) kon de retentie van N in de 

verschillende bodemlagen (strooisel, humuslaag en minerale bodem) opgevolgd 

worden. Stikstof werd in de boskern vastgehouden in de strooisellaag, terwijl N vooral 

teruggevonden werd in diepere bodemlagen aan de bosrand.  

 

Het bosrandeffect op de uitstoot van N- en C-gassen werd bestudeerd via 

automatische meetkamers tijdens een meetcampagne van twee weken in een eiken- 

en dennenbestand. In het eikenbestand stootte de bosrand minder stikstofmonoxide 

(NO) uit en nam meer methaan (CH4) op dan de boskern. De uitstoot van 

distikstofoxide (N2O) verschilde niet tussen bosrand en –kern. In tegenstelling tot de 

gestelde hypotheses heeft de verhoogde N-doorval aan de rand de uitstoot van N-

gassen niet gestimuleerd en de opname van CH4 niet geïnhibeerd. Het contrasterende 

microklimaat van bosrand en –kern bleek de fluxen van N- en C-gassen sterk te 

beïnvloeden, aangezien het bodemvochtgehalte een sterke drijver was van de 

gemeten NO-, N2O- en CH4-fluxen. 

 

Uit dit onderzoek bleek dat bosranden een significante invloed hebben op de N- en C-

cyclus in bossen. De bestudeerde bosranden sloegen meer N en C op (zowel in 

bovengrondse als ondergrondse biomassa en in de bodem) en vertoonden snellere N-

transformaties (via decompositie en mineralisatie). Bovendien stootte de rand van het 

eikenbestand minder NO uit en nam meer CH4 op dan de boskern. Bosranden kunnen 

een belangrijke rol spelen in het tegengaan van de klimaatverandering via de hogere 

C- en N-vastlegging in vergelijking met de boskern, wat tot nu toe nog onvoldoende 

onderzocht werd. Het blijft echter onzeker in hoeverre bosranden extra N en C kunnen 

opslaan onder aanhoudende hoge N-deposities en hoe sterk deze vastlegging 

afhankelijk is van de omgeving (bodemtype, klimaat, enz.). Meer onderzoek in 

gematigde bosranden is nodig om de correcte opslagcapaciteit voor N en C te 

berekenen en inzicht te verkijgen in hun lange termijn gedrag. Deze data zijn 

noodzakelijk om niet alleen de huidige, maar ook de toekomstige N- en C-budgetten 

correct in te schatten op grotere (regionale, nationale of globale) schaal.
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1. Introduction 

Central and Western Europe are characterized by small forest remnants resulting from a 

long-term history of land-use change (Decocq et al., 2016; Hofmeister et al., 2013). A co-

occurring trend during the last decades was the considerable increase in atmospheric 

nitrogen (N) load as a result of anthropogenic activities (Duprè et al., 2010). This increased 

N deposition can have harmful effects on natural ecosystems, such as eutrophication 

(Gundersen et al., 1998a, 1998b), acidification (De Schrijver et al., 2012) and species loss 

(De Schrijver et al., 2011). Moreover, forest edges are subjected to higher atmospheric and 

throughfall deposition levels compared to forest interiors (e.g. De Schrijver et al., 2007; 

Wuyts et al., 2008a, 2008b) and therefore more subject to the effects listed above. 

 

Since the 1990’s, several directives and policies aimed to reduce the use and emission of 

gaseous N compounds (www.eea.europa.eu). However, in severely anthropized 

landscapes, N deposition levels can still be high. It is still unclear how this elevated 

atmospheric deposition specifically affects N and carbon (C) stocks and cycling at temperate 

forest edges. Therefore, the aim of this study is to scrutinize the effect of edge proximity on 

N and C biogeochemistry.  

 

In this introductory chapter, facts and figures on landscape fragmentation and N deposition 

in Europe and Flanders (northern Belgium) are shown. Furthermore, the effects of elevated 

N input on forests are discussed, together with the different soil processes within the forest 

N cycle. Next, the characteristics of forest edges, i.e. how they differ from the forest interior, 

are specified. The link between the N and C cycle is addressed to clarify the role of forests 

as N and C sinks or sources. Finally, a schematic overview of the aims of this thesis is 

presented. 

 

1.1. Forest fragmentation in Europe and Flanders 

1.1.1. Forest fragmentation in Europe 

The European Union (EU) currently contains 5 % of the world's forests, which equals an 

area of 155 million ha. As a result of afforestation programmes and natural succession of 

abandoned farmland, the area covered by forests in the EU-27 (27 member states) has 

increased at a rate of approximately 0.4 % per year since 1990 (http://europa.eu, Memo 

European Commission, 2013). However, within the EU-27, 40 % of the forests are within a 

distance of 100 m from other land use types and are therefore not regarded as forest interior 
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but as forest edges. When looking at the whole EU (38 countries), the percentage of forests 

within a distance of 100 m from other land use types ranges from 20 to 70 % depending on 

the country (Estreguil et al., 2013). Forest connectivity can be defined by the distance 

between forest patches, as it refers to the degree to which landscapes facilitate or impede 

the movement of species. Forest fragmentation leads to isolation of different forest patches, 

reducing the capability of organisms to move from one patch to the other and interfering with 

pollination, seed dispersal, wildlife migration and breeding. The European-wide map in 

Figure 1.1 provides the degree of forest connectivity per landscape unit of 25 by 25 km and 

for forest species with an average dispersion of 1 km. Forest patches as small as 1 ha were 

accounted for in the connectivity assessment. A value of 100 % indicates all forests are 

maximally connected and a percentage lower than 30 % represents isolated, poorly 

connected forests (light green colour code in Fig. 1.1). Landscapes with isolated, poorly 

connected forests represent up to 70 % of the European territory and are potentially more 

vulnerable to further fragmentation in the future. Consequently, forest edges and small forest 

remnants have become important features in the landscape (Decocq et al., 2016; Harper et 

al., 2005).  

 

 

Fig. 1.1: Forest connectivity in Europe (38 countries) based on landscape units of 25 by 25 km and 
for forest species with an average dispersion of 1 km (Estreguil et al., 2013). 
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1.1.2. Forest fragmentation in Flanders (northern Belgium) 

In Flanders, forest covers an area of 145 000 ha (Fig. 1.2) and most forests occur on poor, 

sandy soils in the Campine region, in the provinces of Antwerp and Limburg (Afdeling Bos 

& Groen, 2001).  

 

 

Fig. 1.2: Belgium (dark grey) with Flanders delineated by the black box. The red area indicates 

forested area since 1775, the green area indicates the current area occupied by forests, but was not 

permanently forested between 1775 and 2004 (adapted from Hermy and Vandekerkhove, 2004). 

 

Flanders is a highly urbanized region with an average population density of about 355 

inhabitants per square kilometer (NSI, 2010). The impact of urbanization, agriculture and 

transport infrastructure upon the landscape is severe (Van Eetvelde and Antrop, 2011), 

resulting in small, scattered forests diverse in composition and structure. About 85 % of the 

forests in Flanders is smaller than 5 ha (Hermy and Vandekerkhove, 2004). De Schrijver et 

al. (2007) calculated that 58 % of the forested area in Flanders consists of external forest 

edges (bordering non-forested land), when considering a distance of 50 m into the forest to 

represent the forest edge. 

 

1.2. Nitrogen deposition in Europe and Flanders 

In Europe, highest mineral N deposition values (> 35 kg ha-1 year-1 of N) coincide with 

intensive livestock breeding areas (MIRA 2011), such as Flanders. The modelled N (NHx + 

NOx) deposition for Europe in 2009 can be seen in Fig. 1.3, where northern Belgium 

(Flanders), the Netherlands, northern Germany, Brittany (France) and northern Italy are 

subjected to the highest N deposition levels.  
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Fig. 1.3: Modelled N (NHx + NOx) deposition (kg N ha-1) for Europe in 2009 (Erisman et al., 2015).  

 

In Flanders, the total yearly mineral N deposition (wet and dry, see § 1.3) was as high as 49 

kg ha-1 in 1990. It has decreased since then, but still averaged to no less than 32 kg ha-1 in 

2011. Most forests of mid to high latitudes were N-limited until the 1950's, but due to a high 

atmospheric N load during the last decades this has changed considerably (Duprè et al., 

2010). Erisman et al. (2015) presented an overview of the achievements and the current 

state of knowledge on reactive N in Europe, focusing on deposition, exceedances, and 

modelled and measured trends. Between 1990 and 2014, nitrogen oxides (NOx) and 

ammonia (NH3) emissions in Europe’s EEA member countries (EU-28 and Iceland, Norway 

and Liechtenstein) declined by 51 and 11 %, respectively (Fig. 1.4). These decreases are 

mainly due to policies that enforced measures in transport and fuel switching, improvement 

in the energy and production industries, and the Nitrate Directive reducing the use of N 

fertilizers (EEA technical report 2014). 

N deposition (kg ha-1) 
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Fig. 1.4: Emissions trends of the air pollutants sulphur oxides (SOx), nitrogen oxides (NOx), ammonia 

(NH3), non-methane volatile organic compounds (NMVOCs) and primary fine particulate matter 

(PM2.5) from 1990 to 2014 (2000 to 2014 for PM) in the EEA member countries (EU-28 and Iceland, 

Norway, Liechtenstein). PM2.5 emissions are shown on the secondary y-axis (EEA technical report 

2014). 

 

The 'quantitative estimate of an exposure to one or more pollutants below which significant 

harmful effects on specified sensitive elements of the environment do not occur according 

to present knowledge' (Nilsson and Grennfelt, 1988) is defined as the critical load (CL). 

Figure 1.5 shows the exceedance of the critical load due to N deposition in Europe for 2010, 

proving a high exceedance of the CL (more than 1 200 equivalents or 16.8 kg N ha-1 yr-1) in 

northern Belgium. The exceedance of the CL is expressed in equivalents, which is a way of 

expressing the amount of an element by taking into account its atomic weight and valence. 

The results were computed using the 2015 Critical Loads database hosted by the 

Coordination Centre for Effects (CCE, www.eea.europa.eu). Empirical critical loads for N 

deposition (kg N ha-1 yr-1) to natural and semi-natural ecosystems have been established 

by Bobbink et al. (2015), with a CL of 10 to 20 kg of N ha-1 yr-1 on mixed temperate 

forests. Overall, using the 2015 CL database, the European ecosystem area at risk of 

excessive N deposition is 75 % in the EU (Slootweg et al., 2015). Wuyts et al. (2009a) have 

shown that when only forest interior deposition was considered the average exceedance of 

the CL for N was 18 to 26 % lower than when edge deposition was accounted for in five 

regions of Flanders.  
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Fig 1.5: The average accumulated exceedance by total mineral nitrogen (N) deposition in 2010 using 

the European critical loads (CL) database of 2015 (www.eea.europa.eu). 

 

In 1992, the Habitats Directive was adopted to conserve natural habitats and wild fauna and 

flora. Together with the Birds Directive, it forms the basis of Europe's nature conservation 

policy by establishing the Natura 2000 ecological network of protected areas 

(www.natura2000.vlaanderen.be). In 2014, the Flemish government agreed on 36 targets 

(Dutch: ‘instandhoudingsdoelstellingen’, IHD) necessary to protect sensitive habitats and 

species in designated Special Areas of Conservations and Special Protection Areas, as 

respectively instructed by the Habitats and Birds Directive. Each activity with possible 

negative effects on the protected habitats or species needs a license. Especially licenses 

for agricultural activities are needed, as husbandry is the main contributor to NH3 emission. 

As N deposition exceeds the CL of at least one habitat in all Flemish Habitats Directive 

areas, the Flemish government also agreed to implement a program for the reduction of N 

emissions (Dutch: ‘Programmatische Aanpak Stikstof’, PAS). In the first phase, a consistent 

tool to evaluate polluting activities will be developed. In a second phase (until January 2019), 

reduction targets per protected area and per sector (agriculture, industry, traffic) will be fixed. 

In the final phase, specific measures reducing N emission and a restoration management of 

the protected areas will be implemented (www.natura2000.vlaanderen.be). 
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1.3. Nitrogen deposition on forests 

Atmospheric deposition to forests has been monitored with sampling and analyses of bulk 

precipitation and throughfall at several hundred plots for more than 15 years, within the 

International Cooperative Programme on Assessment and Monitoring of Air Pollution Effects 

on Forests (ICP Forests). The overall decreasing trend for inorganic N in throughfall was 

about 2 % during 2000 - 2010 in Level II monitoring plots1, with the strongest decreasing 

trends observed in western central Europe in regions where deposition fluxes are highest 

(Waldner et al., 2014). In unpolluted temperate forest ecosystems an almost closed internal 

N cycle between plants, microbes, and soil organic matter (SOM) is assumed, with litter 

production, decomposition, mineralization, immobilization and plant uptake as the main 

processes involved (Gundersen et al., 2006, Fig. 1.6). As a consequence, decomposition 

and mineralization are limiting plant and microbial N uptake in undisturbed forests. However, 

increased N input via atmospheric pollution may disrupt this internal cycle.  

 

The main N compounds polluting the atmosphere are NH3, its reactive form ammonium 

(NH4
+) and NOx, originating from agriculture, industry and road traffic (Ferm, 1998). Nitrogen 

can be deposited on the forest canopy in dissolved forms in precipitation droplets (wet 

deposition) or directly deposited from the atmosphere as gaseous forms and particles, i.e. 

dry deposition (Harrison et al., 2000). Occult deposition, the deposition via cloud and fog 

water, is considered negligible in lowland forests compared to wet and dry deposition 

(Vermeulen et al., 1997).  

 

                                                           
1 Level II monitoring plots (around 800) are intensively surveyed to understand complex ecosystem processes, 

with measurements of forest condition, soil and foliar analyses and additional measurements of tree growth, 
stand structure, lichens, ground vegetation, litter fall, atmospheric deposition, soil solution chemistry, ambient 
air quality, meteorology and phenology. Level I monitoring plots are assessed annually on forest condition, 
and soil and foliar analyses based on a 16 x 16 km grid net covering around 6000 plots in Europe. (http://icp-
forests.net/) 
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Fig. 1.6: Simplified model of the N cycle in forests (partly adopted from Davidson et al., 2003, 

Guerrieri et al., 2015, Gundersen et al., 2006, Rennenberg et al., 1998, Schimel and Bennett, 2004). 

SOM stands for soil organic matter, DON for dissolved organic nitrogen, and DNRA for dissimilatory 

reduction of nitrate (NO3
-) to ammonium (NH4

+). Black dotted arrows indicate gaseous N forms, blue 

dotted arrow indicates minor seepage of NH4
+, compared to DON and NO3

-. Green arrows indicate 

N assimilation by plants, brown arrows indicate abiotic immobilisation of NH4
+ and NO3

- into SOM 

and purple arrows refer to biotic immobilisation, i.e. the uptake of NH4
+ and NO3

- by the microbial 

community. 

 

1.3.1. Soil processes 

Depolymerization of peptides, proteins and other components of detritus and litter produces 

free amino acids (FAA, Mooshammer et al., 2012). Mineralization transforms organic N to 

inorganic N and is performed by a whole array of microorganisms (Jansson and Persson, 

1982; Fontaine and Barrot, 2005). Gross N mineralization depends on the FAA production 

rate as FAA mineralization is the main pathway of NH4
+ production (Geisseler et al., 2012). 

Next to inorganic N (NO3
- and NH4

+), plants are also able to take up organic N, especially 

FAA, via symbiosis with mycorrhiza (Näsholm et al., 2009). Nitrification converts the less 

mobile NH4
+ to mobile NO3

- that is easily leached out of the soil profile. Moreover, during 

N trace gases

Microbial 

community

Litter decomposition

DON NH4
+ NO3

-

Denitrification

NitrificationMineralization
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-

Litterfall

DNRA
Biotic 

immobilisation

Abiotic immobilisation

Seepage

AssimilationRoot litter and

exudates



9 
 

nitrification protons (H+) are produced, acidifying the soil via the following reactions (Eq. 1.1 

and 1.2) 

𝑁𝐻4
+ +

3

2
𝑂2  →  𝑁𝑂2

− + 2𝐻+ + 𝐻2𝑂        (Eq. 1.1) 

𝑁𝑂2
− +

1

2
𝑂2  →  𝑁𝑂3

−          (Eq. 1.2) 

Nitrification is predominantly carried out by autotrophic bacteria and Archaea, but to a small 

extent also by heterotrophic bacteria and fungi (Margesin et al., 2014; Wessén et al., 2011). 

Equations 1.1 and 1.2 are carried out by different microorganisms. The first step converts 

NH4
+ to nitrite (NO2

-) and is performed by bacteria (genera Nitrosomonas and Nitrosococcus) 

and Archaea (Crenarchaeota phylum). The second step, converting NO2
- to nitrate (NO3

-) is 

driven by bacteria of the genus Nitrobacter (Gomez, 2014). 

 

Nitrogen can leave the forest soil via leaching (as NH4
+, NO3

- or dissolved organic N) or in 

gaseous forms, i.e. as nitric oxide (NO) and nitrous oxide (N2O) formed as by-products 

during nitrification and denitrification, as nitrogen gas (N2) which is the end-product of 

denitrification or as NH3, which can be volatized from alkaline soils. Denitrification occurs 

where oxygen is depleted and NO3
- is used as a substitute terminal electron acceptor 

(Eq. 1.3) (Smith, 2012). 

2𝑁𝑂3
− + 10𝑒− + 12𝐻+ → 𝑁2 + 6𝐻2𝑂       (Eq. 1.3) 

Complete denitrification consists of four reaction steps (Eq. 1.4) in which NO3
- is reduced 

into N2 by the metallo-enzymes nitrate reductase, nitrite reductase, nitric oxide reductase 

and nitrous oxide reductase (Philippot, 2002) 

𝑁𝑂3
−

𝑁𝑎𝑟
→   𝑁𝑂2

−

𝑁𝑖𝑟
→  𝑁𝑂 

𝑁𝑜𝑟
→   𝑁2𝑂 

𝑁𝑜𝑠
→   𝑁2       (Eq. 1.4) 

Denitrifiers are a phylogenetic heterogeneous group of microbes, comprising bacteria, 

Archaea and fungi (Butterbach-Bahl et al., 2013). For instance, nirK and nirS genes, 

encoding the key enzyme nitrite reductase, have been assigned to unrelated affiliations 

(Philippot, 2002).  
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1.3.2. Effects of increased N deposition  

Since forests are generally N limited, N deposition may have a fertilizing effect by increasing 

forest growth and litter fall (Mol Dijkstra et al., 2009). A range of studies has shown positive 

forest growth and C sequestration responses under low to moderate N additions (e.g. 

Franklin et al., 2003). However, high or long-term N addition may negatively impact forest 

ecosystems by affecting microbial biomass and activity and therefore alter rates of important 

microbial processes such as net N mineralization and nitrification (Wallenstein et al., 2006). 

Bahr et al. (2013) showed that moderate N deposition levels were sufficient to reduce growth 

of ectomycorrhizal mycelia and increase N leaching. Several studies have shown that 

increased atmospheric N deposition stimulates N2O emission from forest soils (e.g. 

Butterbach-Bahl et al., 2002). Nitrous oxide and NO are important greenhouse gases 

(GHGs), since N2O has a long residence time and leads to ozone (O3) destruction in the 

stratosphere, while NO will lead to ozone production in the troposphere (IPCC, 2013). 

However, due to its reactivity, part of the emitted NO will react with O3 to form NO2, which 

can again be deposited on or taken up by the forest canopy (Dorsey et al., 2004).   

 

Nitrogen saturation will occur when “the N availability is in excess of total plant and microbial 

nutritional demand” (Aber et al., 1989) and is indicated by elevated N losses (via leaching 

and gaseous emission). Beside eutrophication, other harmful effects of increased N inputs 

include soil acidification, i.e. increasing loss of exchangeable cations and mobilizing 

aluminum (Al3+) and other potentially toxic metals (Mulder et al., 1987; Wilpert et al., 2000), 

pollution of groundwater reserves (Koopmans et al., 1995), increased susceptibility of insect 

attack (Pitman et al., 2010) and species loss (De Schrijver et al., 2011). For instance, De 

Schrijver et al. (2000) measured NO3
- concentrations in the soil solution under a pine forest 

in Flanders exceeding the CL for drinking water (50 mg l-1, WHO, 1985b). Bobbink et al. 

(2010) showed that N accumulation is the main driver of changes in species composition 

across ecosystem types by altering competitive interactions, favouring nitrophilic species 

and hereby decreasing species richness.  

 

However, Wuyts et al. (2011) found higher N deposition but lower inorganic N leaching at a 

depth of 90 cm in the first 10 to 20 m of the forest edge of oak, birch and pine monocultures 

in Flanders. As such, forest edges challenge the current N-saturation paradigm that, in N-

saturated forests, high N deposition is generally associated with increased inorganic N 

leaching, providing the incentive for conducting this study. 
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1.4. Characteristics of forest edges 

A forest edge can be viewed as a transition zone with functional and structural gradients 

between the forest and the adjacent landscape (Schmidt et al., 2017). Forest edges differ 

substantially from forest interior zones, where we can distinguish primary effects, e.g., on 

microclimate and fluxes of nutrients (Weathers et al., 2001), and secondary effects or 

ecosystem responses, e.g., effects on forest structure and biodiversity (Harper et al., 2005; 

Broadbent et al., 2008). Solar radiation is a key factor in modifying the microclimate at these 

transition zones (Schmidt et al., 2017). Dignan and Bren (2003) measured a rapid decrease 

in radiation (wavelengths of 250-3000 nm) that nearly vanished within 100 m from the forest 

edge. Furthermore, wind velocity is higher in transition zones, increasing conductivity of heat 

and gases and consequently transpiration rates (Cienciala et al., 2002). Due to increased 

solar radiation, higher wind velocity and higher evapotranspiration rates, forest edges often 

have higher soil temperatures and lower soil and litter moisture content (Herbst et al., 2007; 

Marchand and Houle, 2006). Riutta et al. (2012) measured higher litter decomposition rates 

in the forest interior compared to the forest edge, due to moisture limitation at the drier forest 

edge. Crockatt and Bebber (2015) observed an increased decomposition rate of decaying 

wood with distance from the edge, correlated with increasing humidity and moisture content 

of the decaying wood. Mean air temperature decreased slightly with distance from the edge 

in their study. The magnitude of the edge effect on microclimate depends among others on 

orientation, forest structure and management, as Matlack (1993) measured strong 

microclimatic gradients in recently created edges facing south, west and east. However, 

these gradients receded over time as forest edges developed a continuous side canopy. 

 

In general, forest edges are steep transitions of vegetation height, which drastically disrupt 

air flow (Wuyts, 2009b). Due to obstruction of the wind profile, local advection and turbulent 

exchange cause an increased atmospheric deposition at forest edges (Draaijers, 1993). The 

edge effect on atmospheric deposition spans from 15 to more than 100 m from the edge to 

the forest’s interior and causes an up to five-fold increase in throughfall deposition compared 

to the forest interior (De Schrijver et al., 2007, Wuyts et al., 2008a, 2008b, see Fig. 1.7). 
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Fig 1.7: Forest edge effect on the throughfall deposition flux of atmospheric cations and potentially 

acidifying ions with a constant interior level (area B) and increased deposition flux due to the 

presence of the forest edge (area A). The “forest edge distance” is a distance that varies with tree 

species, edge structure, forest management and the ion considered (Wuyts et al., 2009b). 

 

The magnitude and depth of the edge effect depend on tree species, edge structure, forest 

management and is ion-specific (Draaijers, 1993; De Schrijver et al., 1998; Devlaeminck et 

al., 2005; Wuyts et al., 2008a, 2008b, 2008c, 2009b). Devlaeminck et al. (2005) measured 

an elevated deposition of Cl-, Na+, K+, Ca2+ and Mg2+ at the forest edge (0 – 50 m) of a 

beech forest in Flanders. Hansen et al. (2007) and Wuyts et al. (2008b) found pronounced 

gradients in N deposition at the edges of Norway spruce (0 – 25 m) and Corsican pine forests 

(0 – 15 m), whereas the gradients were less pronounced at the edge of oak and silver birch 

forests. De Schrijver et al. (2000) attributed the higher N deposition in coniferous forests 

compared to deciduous forests to the higher Leaf Area Index (LAI), their evergreen character 

and the higher collecting efficiency of needles compared to leaves.  

 

Furthermore, Wuyts et al. (2009b) showed that gradual forest edges can mitigate edge 

effects on throughfall deposition if their size and shape are well considered. When 

incorporating the atmospheric deposition on the gradual edge itself, throughfall fluxes were 

on average 60 % lower in winter and 74 % lower in summer compared to a steep forest 

edge, without a herbaceous fringe, shrub belt or forest mantle. Forest edges can act as local 

biodiversity hotspots, as they harbour both forest species and species from the adjacent 

landscape (Magura, 2002; Ohwaki et al., 2007, 2015). Due to their role as transition zones, 

forest edges can act as refuge habitats or stepping stone biotopes. Wermelinger et al. (2007) 

found a higher insect species richness in gradual edges which provide more resources such 

as food and shelter compared to steep edges. Bird communities are also strongly affected 
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by forest patch size and the edge effect (Banks-Leite et al., 2010). Batáry et al. (2014) 

observed a higher abundance of tree and shrub breeders at edges of the Hainich National 

Park in Germany. However, the higher bird density at forest edges might lead to higher nest 

predation and parasitism rates (Batáry and Báldi, 2004). 

 

1.5. Forests as nitrogen and carbon sinks/sources 

Nitrogen and C cycles in the forest soil are tightly related as N plays an important role in the 

C balance and vice versa (Bonan, 2008). As mentioned in the sections above, fragmentation 

leads to altered solar radiation, temperature, wind, microclimate, and N deposition, all of 

which have the potential to impact forest N and C cycling either directly or indirectly. At 

edges, higher N deposition and irradiation could increase C sequestration by increased 

growth and increased accumulation of soil organic matter (SOM) (Janssens et al., 2010), 

but higher soil temperatures could increase respiratory losses of microbes. On the other 

hand, N sequestration in the soil can be enhanced if the supply of labile C from litter turnover 

to soil microbes is not limited (Huntington, 2005). De Vries et al. (2009) reviewed the impact 

of N deposition on C sequestration in temperate forests and obtained an average response 

of 20 to 40 kg C/kg N in aboveground biomass and soil. However, these results may not 

apply to forests in high N deposition areas. With increasing N-enrichment, N immobilization 

will decrease and consequently less C will be sequestered per unit of N deposited (De Vries 

et al., 2009) as soil and microbial biomass C and N concentrations are well-constrained at 

the global scale via consistent stoichiometry (Cleveland and Liptzin, 2007). Furthermore, 

Gundersen et al. (2006) showed that the forest floor C/N ratio is a good indicator of the N 

status of a forest, where NO3
- leaching has been found beneath a threshold C/N ratio of 25 

and N retention above this threshold, emphasizing the importance of soil C content on N 

retention. 

 

Forests play an important role in climate change mitigation as they are recognized as major 

C sinks by removing carbon dioxide (CO2) from the atmosphere (IPCC, 2013). However, 

massive deforestation has been taking place, reducing storage capacity for C and also 

releasing additional C into the atmosphere through decay and burning (Ryan et al., 2010). 

Recent global C analyses have estimated a net global forest C sink of 1.1 ± 0.8 Pg C yr–1, 

(Pan et al., 2011). De Vos et al. (2015) estimated soil organic C stocks of the forest floor 

and mineral soil at the European scale and obtained 3.5 – 3.9 Gt C in forest floors and 21.4 

– 22.7 Gt C in mineral soil down to 1 m. Vande Walle et al. (2005) estimated the C stock of 

above- and belowground forest biomass in Flanders and obtained a mean C stock of 85.2 
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Mg ha-1. Next to CO2, forest soils can also take up atmospheric methane (CH4) and are now 

recognised as a major CH4 sink in terrestrial ecosystems (Dutaur and Verchot, 2007). 

Methane has the second highest radiative forcing of all GHGs and its atmospheric 

concentration has increased by 150 % since pre-industrial times (IPCC, 2013). Major 

biogenic sources of CH4 are rice agriculture, ruminants and wetlands (> 50 Tg yr-1), while 

landfills, coal mines, biomass burning, urban areas, sewage disposal, lakes, oceans and 

tundra are considered minor sources of CH4 (Khalil, 2013). 

 

In the long term, the soil is the key N sink in temperate forest ecosystems, and N 

sequestration is believed to become an increasingly important ecosystem service 

(Castellano et al., 2012). However, we do not know how and to what extent forest edges 

affect N and C sequestration and cycling in general. Because of the uncertainty in the forest 

sink strength and the possible change in magnitude over time, constraining these estimates 

is important to support future climate mitigation actions. However, the actual estimated sink 

strength of forests does not differentiate between forest edge and interior. Therefore, the 

importance of incorporating forest edges when monitoring N and C storage on a landscape 

scale should be investigated. Moreover, there is a need for studies that generate knowledge 

on how global environmental changes (including higher N deposition, higher temperatures, 

and land-use changes) affect ecosystem N cycling to take into account the role of N in the 

C cycle and climate feedback mechanisms (Bonan, 2008). 

 

1.6. Aims and schematic overview of the thesis 

Forest edges are increasingly important landscape features worldwide, but they have largely 

been ignored in assessments of forest ecosystem functioning. Ruffell and Didham (2016) 

stated that predicting and managing edge effects requires an understanding of the 

mechanisms that drive them. Wuyts et al. (2011) made some counterintuitive observations 

at forest edges, as they found higher N deposition but lower inorganic N leaching in the first 

10 to 20 m of oak, birch and pine monocultures in Flanders. Their study focused on N 

throughfall and leaching, where no clear hydrological patterns could be distinguished along 

the edge-to-interior transects. They did not include measurements of mineralization or 

nitrification rates, microbial biomass and N allocation to trees in their study. To explain the 

decreased inorganic N leaching at the edge, they hypothesized that increased N retention, 

gaseous N emissions and dissolved organic N (DON) leaching in the soil were the main 

processes involved in the altered N cycle at the N enriched forest edge. Therefore, the 

overall aim of this work is to scrutinize the effect of edge proximity on N and C cycling and 
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sequestration in temperate forest ecosystems. More specifically, this thesis aims to answer 

two main research questions: 

1) Are N and C stocks and sequestration affected by edge proximity? 

2) Which processes of the forest N cycle differ between forest edge and interior? 

A schematic overview of the thesis is given in Fig. 1.8. The experiments were executed in 

six temperate forests in Flanders and Denmark growing on acid, sandy quartz-dominated 

Podzols with a low base saturation, from which data on N throughfall and leaching were 

available from previous research (Wuyts et al., 2008a, 2008b, 2009a, 2011; Ginzburg, 

2014). A schematic representation of the soil profile can be found in Fig. A-I. The L layer 

comprises the Oi horizon and the FH layer comprises Oe and Oa horizons. In the studied 

forests, a thin A horizon covered the eluvial E horizon. The B horizon was typically found 

below a depth of 35 cm. As soil pH was low (pH-H2O ≤ 4.5), soils would have reached the 

Al3+ buffering range (Bowman et al., 2008). An overview of the Al3+ concentration within the 

mineral topsoil (0 – 5 cm, 5 -10 cm and 10 – 30 cm) of the Belgian stands can be found in 

Table A-I. The selected forest edges comprised tree species relevant for their respective 

region. Four forest stands are situated in Belgium: a pedunculate oak (Quercus robur L.) 

forest in Wortegem, West Flanders (Qr1), a second pedunculate oak forest in Ravels, 

Antwerp (Qr2), an Austrian pine (Pinus nigra ssp. nigra Arnold) forest in Zedelgem, West 

Flanders (Pn1), and a Corsican pine (P. nigra ssp. laricio Maire) forest in Ravels, Antwerp 

(Pn2). Two spruce forest stands are situated in Denmark on the peninsula of Jutland: one 

in Sonder Omme (Ps, Picea sitchensis (Bong.) Carr., central Jutland) and another in Lemvig 

(Pa, Picea abies (L.) Karst, western Jutland). All the forest edges bordered arable lands 

dominated by intensive livestock production (pig, poultry and cattle farms) and have 

experienced several decades of elevated N deposition. Mean yearly NH3 concentrations 

were between 6.01 – 7.0 µg m-3 for Qr1 and Pn1, between 7.01 – 8.5 µg m-3 for Qr2 and 

Pn2 (www.vmm.be), between 1.0 – 1.5 µg m-3 in Ps and between 1.5 and 2.0 µg m-3 in Pa 

(Geels et al., 2012). In Belgium, mean NH3 concentrations were measured from June 2015 

until June 2016, while Danish mean NH3 concentrations apply for the year 2007. In each 

forest, an edge-to-interior transect was laid out and experiments were conducted at the edge 

(0 – 8 m), at 16, 64 and 128 m. An overview of the stand and physicochemical characteristics 

can be found in Table 1.1. Previous land use (extracted from topographic maps) was in all 

cases heathland until afforestation in last century. The considered forest edges are facing 

the locally prevailing wind direction (west to southwest). Mean wind speed was 3.7 m s-1 in 

Qr1 and Pn1, 2.6 m s-1 in Qr2 and Pn2 and 6 m s-1 in Ps and Pa. 



16 
 

Table 1.1: Characteristics of the six selected forest edges. Values between brackets represent 

standard deviations. 

  
Oak  

(Q. robur) 
Pine  

(P. nigra) 
               Spruce 
(P. sitchensis)    (P.abies) 

Stand 
characteristics             

Code Qr1 Qr2 Pn1 Pn2 Ps Pa 

Region 
Belgium        
(West 

Flanders) 

Belgium 
  

(Antwerp) 

Belgium        
(West 

Flanders) 

Belgium 
 

 (Antwerp) 

Denmark      
(central 
Jutland) 

Denmark 
 (western 
Jutland) 

Coordinates 50°52'08"N 
03°27'59"E 

51°24'44"N 
05°02'45"E 

51°08'26"N 
03°06'36"E 

51°26'37"N 
05°05'14"E 

55°51'04"N 
08°55'56"E 

56°29'54"N 
08°19'16"E 

Age (year)§ 98 76 73 51 63 68 

Orientation§ SW SW SW SW W W 
Stem density 
(n trees ha-1)a 117 130 109 504 705 688 
Basal area 
(m² ha-1)b 21.5 22.0 11.9 36.4 75.9 45.0 
Average height 
(m) 31.9  (4.0) 24.8 (5.8) 24.9  (3.4) 22.6  (4.9) 30.7 (4.2) 20.5 (2.4) 

Soil classification PZc PZ PZ PZ PZ PZ 

Physicochemical 
characteristics             

N TF deposition 
edged  
(kg ha-1 year-1)§ 18.5 30.2 60.7 51.5 27.0 43.0 
N TF deposition 
interiore  
(kg ha-1 year-1)§ 17.5 23.4 31.0 39.6 17.0 25.0 

pH (KCl) FHf layer 3.5 3.0 3.0 3.0 2.8 3.6 
pH (KCl) 0-5 cm 
mineral soil§ 3.4 2.9 2.9 2.9 2.9 3.4 
C/N ratio 
FH layer§ 18.1 (1.9) 17.8 (1.1) 22.9 (1.5) 25.5 (2.0) 29.3 (1.0) 28.2 (2.5) 
C/N ratio 0-5 cm 
mineral soil 17.6 (1.4) 19.0 (1.8) 22.1 (2.8) 26.9 (4.4) 19.3 (2.5) 22.2 (3.8) 

§ Data obtained from Wuyts et al. (2008b) for the Belgian stands (Qr1, Qr2, Pn1 and Pn2) and from Ginzburg 

(2014) for the Danish stand Pa. For Pa, pH (H2O) was converted to pH (KCl) according to the European Soil 

Data Center (ESDAC, esdac.jrc.ec.europa.eu). For Ps, fresh FH and mineral soil (0-5 cm) samples were 

analyzed for pH (KCl). pH values were measured at the forest interior. 

a Stem density averaged over the whole transect, obtained by dividing the number of trees by the inventoried 

area. 

b Basal area averaged over the whole transect, obtained by dividing the total basal area by the inventoried 

area. Basal area of each tree was obtained via the inventory of the diameters at breast height (𝐴 = 𝜋𝑟2) and 

summed to obtain total basal area. 

c PZ = Podzol: soils characterized by subsoil accumulation of humus and/or oxides (WRB, 2014). 

d Nitrogen throughfall (TF) deposition values for the first 2 meters of the forest edges. 

e Nitrogen throughfall (TF) deposition values for the 64 and 128 m plots. 

f FH = fermentation and humus layer of the ectorganic horizon. 
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Relative humidity was in all stands between 80 and 85 %. The mean annual air temperature 

in Belgium is 10.5°C and 7.4°C on the peninsula of Jutland (Denmark). Mean annual 

precipitation in Belgium is 800 mm and 900 mm in Jutland, Denmark (data on mean wind 

speed, mean relative humidity, mean air temperature and mean annual precipitation were 

obtained from the Royal Meteorological Institute and from the Danish Meteorological 

Institute respectively for the Belgian and Danish forests, 1981 - 2010). The understory 

vegetation is composed of ferns (Dryopteris dilatata and Dryopteris carthusiana) and 

grasses (Molinea caerulea and Holcus sp.) in the pine stands and in the edge of the spruce 

stands. The understory vegetation in the edges of the oak stands is characterized by 

brambles (Rubus fruticosus agg.).  

 

To solve the two research questions, N and C stocks of above- and belowground forest 

compartments and soil were calculated along the edge-to-interior transects. This is 

presented in Chapter 2, together with an estimate of the soil C sequestration in forest edge 

and interior. In the following chapters, different pathways of the N cycle (Fig. 1.6) in forest 

soils were investigated. 

 

In Chapter 3, fluxes of N and C trace gases (NO, N2O and CH4) were measured at the forest 

edge and interior via an automated system of static and dynamic measuring chambers, in 

collaboration with the Karlsruhe Institute of Technology (KIT). 

 

Next, the microbial community was mapped via the extraction of phospholipid fatty acids 

(PLFA) along edge-to-interior transects and amino sugars (AS) in forest edge and interior. 

Gross nitrogen mineralization, nitrification and immobilization rates were obtained via an in 

situ 15N pool dilution technique in the forest edge and interior and linked to the microbial 

community structure. Furthermore, we assessed 15N recovery in simulated throughfall via 

the 15N tracing method in the edge and interior as a proxy for the long-term dynamics of the 

N cycle. The results of these important components of the N cycle are presented in 

Chapter 4. 

 

In Chapter 5, we present the results of litter decomposition along edge-to-interior transects, 

monitored during 18 months. Secondly, litter of edge and interior was interchanged to focus 

on the effect of the microclimate and substrate quality during decomposition. Thirdly, litter 

of the forest interior was placed in Open Top Chambers (OTC), which create edge conditions 

(warmer) in the forest interior in the absence of the edge soil decomposer community. These 
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experiments allowed us to further elucidate the underlying mechanisms of the edge effect 

on litter decomposition. 

 

Chapter 6 links the results of the previous chapters into a general discussion, finalizing with 

some concluding remarks and future research. The processes involved in the altered N cycle 

at the edge are summarized in the conceptual figure of the N cycle in forests (see Fig. 6.1). 

 

This thesis was conducted in six temperate forest edges, bordering agricultural activities 

and oriented in the prevailing wind direction to insure maximal N deposition. In this way, the 

edge effect could be studied under a ‘worst case scenario’. Moreover, these forest stands 

were already extensively studied prior to this research, ensuring the availability of data on 

N throughfall deposition, N leaching, forest floor and mineral soil C/N ratios and soil acidity. 

Unfortunately, a severe storm hit one of the Danish forests (Pa) in winter 2014 and 

experiments ceased at this site. The equipment used in Chapter 3 (the automatic measuring 

chambers for N and C trace gases) was expensive and involved months of preparation to 

acquire all necessary permits from the Federal Agency of Nuclear Control (FANC) of 

Belgium. Therefore, it was only conducted in one oak and one pine forest in Flanders (Qr2 

and Pn2). Due to the limited length of the tubing, the interior position was fixed at 64 m from 

the edge in this experiment. The stable 15N isotope, used to measure mineralization and 

nitrification rates and N recovery in Chapter 4, is also an expensive tool and these 

experiments were therefore restricted to one forest of each forest type (Qr2, Pn2 and Ps) 

and to forest edge versus interior (64 m). In Chapter 5, the litter decomposition data of the 

spruce forest (Ps) were omitted from the analysis as the remaining litter weight in the 

litterbags was biased due to the weight of freshly fallen needles. 
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Fig. 1.8: Schematic overview of the thesis
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2. Edge effect on N stocks, C stocks and sequestration 

 

After: Remy E., Wuyts K., Boeckx P., Ginzburg S., Gundersen P., Demey A., Van Den 

Bulcke J., Van Acker J., Verheyen K. (2016). Strong gradients in nitrogen and carbon stocks 

at temperate forest edges. Forest Ecology and Management 376: 45-58. 

 

 

Abstract 

Due to forest fragmentation, forest edges have become dominant features in landscapes 

around the world. Forest edges are exposed to a different microclimate in terms of air and 

soil temperature, light availability, soil moisture and wind speed than the forest interior. 

Furthermore, forest edges catch more atmospheric deposition, due to obstruction of the wind 

profile causing advection and turbulent exchange. Coniferous forest types are subjected to 

higher N deposition due to their higher Leaf Area Index (LAI), evergreen character and 

higher collecting efficiency of needles compared to leaves. In Europe, highest deposition 

values coincide with intensive livestock breeding areas, such as northern Belgium. It is still 

unclear how this elevated atmospheric deposition affects N and C stocks at temperate forest 

edges.  We assessed the N and C stocks of the aboveground (leaves/needles, wood) and 

belowground (forest floor, coarse and fine roots, mineral soil) forest pools along edge-to-

interior transects in six forests, located in Belgium (two oak and two pine stands) and in 

Denmark (two spruce stands) on acid, sandy Podzols. The total stocks increased towards 

the forest edge by 30 % for N and 43 % for C, averaged over all forests, within a confidence 

interval of 95 % (which was in some cases rather wide). The aboveground wood stocks 

increased by 56 % for N and C, the root stocks by 48 % for N and C and the mineral soil 

stocks increased by circa 30 % for N and C. Soil C sequestration (calculated via a static N 

balance based on N throughfall and leaching) increased at the forest edges, being on 

average 646 and 289 kg ha-1 yr-1 in the forest edge and interior, respectively. Forest type 

effects were less prominent than edge effects, with no amplified edge effect on N and C 

stocks in the coniferous forest types. Nevertheless, our results show the importance of 

incorporating forest edges when monitoring C storage on a landscape scale. The question 

arises, however, how much longer such forest edges will continue to accrue additional C 

when subjected to continuously high atmospheric N deposition. 
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2.1. Introduction 

Central and Western Europe are characterized by small forest remnants resulting from a 

long-term history of land-use change (Hofmeister et al., 2013). Consequently, forest edges 

have become important features in the landscape (Harper et al., 2005). Forest edges differ 

substantially from forest interior zones as shown in the general introduction (§ 1.2). Firstly, 

edge proximity affects microclimate via air and soil temperature, light availability, soil 

moisture and wind speed (Marchand and Houle 2006).  Secondly, forest edges catch more 

atmospheric deposition, due to obstruction of the wind profile causing local advection and 

turbulent exchange (Draaijers, 1993). The edge effect on atmospheric deposition spans 15 

to more than 100 m from the edge to the forest’s interior and causes an up to five-fold 

increase in throughfall deposition (De Schrijver et al., 2007). Its magnitude and depth of 

edge influence depend on tree species, edge structure, forest management and the ion 

considered (Draaijers, 1993; De Schrijver et al., 1998; Devlaeminck et al., 2005; Wuyts et 

al. 2008a, 2008b, 2008c, 2009b). Furthermore, in § 1.3 we showed that intensive livestock 

breeding areas such as Flanders, (northern Belgium) and Jutland (Denmark) still receive 

high N deposition levels. 

The N cycle is closely linked to the C cycle, since C-N interactions constrain the amounts, 

distributions and turnover rates of C (Agren et al., 1991; Rastetter et al., 1991). For instance, 

N deposition may increase forest growth and litterfall, hereby augmenting biomass C 

sequestration (Mol Dijkstra et al., 2009). However, when the photosynthetic capacity of trees 

is reached, litterfall may remain unchanged or even decrease (Fleischer et al., 2013). On 

the other hand, increased N deposition reduces fine root biomass and mycorrhizal 

abundance (Treseder, 2004; Kjoller et al., 2012). Several authors have observed reduced 

activity of heterotrophic microbes under N addition, slowing down decomposition (DeForest 

et al., 2004; Ramirez et al., 2012). Forests of mid to high latitudes on the northern 

hemisphere store most of their C in the organic layer and mineral soil and this stock has a 

much lower turnover rate than the aboveground C stock (Mol Dijkstra et al., 2009). At present 

most forests act as sinks for C (De Vries et al., 2006), mitigating CO2 emission and 

attenuating global warming (Bonan, 2008). Ziter et al. (2014) point out that the impact of the 

edge effect on C storage in temperate forests is largely unknown compared to tropical 

forests. This highlights the need to understand the effects of N deposition on the potential 

long-term C sequestration in temperate forests.  
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In this study, the effect of increased N deposition on N and C stocks (aboveground and 

belowground) at temperate forest edges in an agricultural landscape in Belgium and 

Denmark was investigated. N and C stocks along edge-to-interior transects were examined 

in two deciduous and four coniferous monocultures, while controlling for possible 

confounding factors such as soil type, land-use history, forest age (51 – 98 years) and N 

deposition. We hypothesized that (i) the increased atmospheric N deposition is associated 

with increased N and C stocks at the forest edges compared to the forest interiors. 

Furthermore, due to differences in functional traits between coniferous and deciduous tree 

species (LAI, evergreen character, collecting efficiency) we expected a forest type effect, 

namely that (ii) differences in N and C stocks between forest edge and forest interior are 

more pronounced in the pine and spruce stands compared to the deciduous oak stands. 

Finally, as the strong link between the N and C cycle has previously been demonstrated, we 

hypothesized that (iii) there exists an edge effect on soil C sequestration values in 

association with N deposition. 

 

2.2. Material and methods 

2.2.1. Site description 

Six forest edges, embedded in an agricultural landscape, were selected for detailed 

characterization. The latitudinal and longitudinal coordinates of the selected forest edges 

can be found in Table 1.1, together with an overview of the stand and physicochemical 

characteristics. Briefly, all forest stands (two oak; Qr1 and Qr2, two pine; Pn1 and Pn2 and 

two spruce stands Ps and Pa) are even-aged monocultures and grow on acid, quartz-

dominated Podzols. Previous land use was in all cases heathland until afforestation in last 

century. The considered forest edges are facing the locally prevailing wind direction (west 

to southwest). Mean wind speed was 3.7 m s-1 in Qr1 and Pn1, 2.6 m s-1 in Qr2 and Pn2 

and 6 m s-1 in Ps and Pa. Relative humidity was in all stands between 80 and 85 %. The 

mean annual air temperature in Belgium is 10.5°C and 7.4°C on the peninsula of Jutland 

(Denmark). Mean annual precipitation in Belgium is 800 mm and 900 mm in Jutland, 

Denmark (data on mean wind speed, mean relative humidity, mean air temperature and 

mean annual precipitation were obtained from the Royal Meteorological Institute and from 

the Danish Meteorological Institute respectively for the Belgian and Danish forests, 1981 - 

2010). The understory vegetation is composed of ferns (Dryopteris dilatata and Dryopteris 

carthusiana) and grasses (Molinea caerulea and Holcus sp.) in the pine stands and in the 
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edge of the spruce stands. The understory vegetation in the edges of the oak stands is 

characterized by brambles (Rubus fruticosus agg.).  

 

2.2.2. Experimental set-up 

In each forest one transect was established perpendicular to the forest edge and parallel to 

the prevailing wind direction. All samples were taken along this transect at four distances: 

at the edge front (0-2 m), and at 16 m, 64 m and 128 m from the edge. At each distance, 

two trees were selected from which leaf (or needle), root and wood samples were taken. 

Soil samples were taken within a 10 m range perpendicular to the transect at each distance. 

The experimental set-up is shown in Figure 2.1. Samples were taken from July 2013 until 

May 2014. By selecting temperate forests with the same land-use history and on similar acid 

sandy soils, we can focus purely on edge and forest type effects.  

 

 

Fig. 2.1: Experimental set-up and sampling overview. 
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2.2.3. Sampling and analysis 

Leaves/needles 

Per tree, one branch was selected at a height of at least 10 m and not oriented towards the 

edge or a gap and sawed after projecting a flexible saw over the branch with a slingshot. 

From the branch, we took five samples, which consisted of 20 g fully developed, undamaged 

leaves or of 40 g needles from the previous year’s cohort. Leave and needle samples were 

dried at 65 °C for 2 days and milled (ZM1, Retsch, Germany). Nitrogen and C stocks were 

calculated based on Eq. (2.1) 

𝑆𝑡𝑜𝑐𝑘 (𝑘𝑔 ℎ𝑎−1) = (𝑁 𝑜𝑟 𝐶 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑘𝑔 𝑘𝑔−1) 𝑥 𝐿𝐴𝐼 (𝑚2 𝑚−2) 𝑥 𝐿𝑀𝐴 (𝑘𝑔 𝑚−2))/

 10−4             (Eq. 2.1) 

where all variables are mean values per distance. LAI stands for Leaf Area Index (the leaf 

area per unit ground area) and LMA for Leaf dry Mass per Area (the oven-dry leaf mass 

divided by the leaf area). The LAI was determined by analyzing six hemispherical 

photographs per distance with Gap Light Analyzer (GLA version 2.0 1999). The photographs 

were taken with a fisheye lens (Sigma circular fisheye 8 mm f/4 EX DG), with the following 

manually adapted camera settings: frame quality JPEG NORM, frame width L (3008 x 2000 

pixels), no flash, a shutter time of 1/125 s and an infinite focusing. The aperture was first 

determined in open field in front of the forests and two stops were subtracted for the use in 

the forest. Hemispherical photographs were registered in GLA by entering the coordinates 

of the initial point (north) and the final point (south) of the photograph. When the upper part 

of the camera is facing north and camera settings are as mentioned above, these 

coordinates equal 1504 and 2000 (x and y) and 1504 and 0 (x and y), respectively of initial 

and final point. Next, a threshold pixel value was set visually. The partition of leaves/needles 

and air on the obtained black and white working image should equal as best as possible the 

partition of leaves/needles and air on the original color image. Based on these threshold 

pixel values, the GLA program calculated LAI values. Leaf surface area was measured with 

LI-3000 Portable Area Meter (LICOR) and needle surface area was estimated from needle 

length, as described in Wuyts et al. (2011). 

 

Wood 

From each selected tree, two wood samples were taken, perpendicular to each other in the 

horizontal plane, with an increment borer of 30 cm long at a height of 40 cm above the root 

collar. In the lab they were dried at 40 °C for 2 days to prevent molding. Prior to analysis the 

wood samples were dried for 24 h at 103 °C. Instead of using mean wood density values 
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from literature, exact data of the wood density of the six selected forest edges were obtained. 

Wood samples were x-rayed at intervening steps of 112 µm with a Nanowood micro-CT 

scanner, installed at the Ghent University Centre for X-ray Tomography 

(www.ugct.ugent.be). Afterwards the scans were analyzed with Fiji, developed by Schindelin 

et al. (2012) to extract wood density values. This software program is a variant of ImageJ 

software, an open tool for the analysis of scientific images (Schneider et al. 2012). An extra 

set of reference samples were x-rayed to obtain a calibration curve between the wood 

density obtained via x-ray tomography and the gravimetric wood density. The oven-dry wood 

density and volume of the reference samples (obtained via the software package Octopus 

Analysis © 2014) were used to obtain green volume values, based on the volumetric swelling 

percentages at the fibre saturation point (i.e. a moisture content of 30 %), derived from Jonas 

et al. (2005) (i.e. 16 %, 14 % and 13 % for respectively oak, pine and spruce). The wood 

samples were milled (SM2000, Retsch, Germany) and N and C stocks present in the wood 

were calculated based on Eq. (2.2)  

𝑆𝑡𝑜𝑐𝑘 (𝑀𝑔 ℎ𝑎−1)  =

(𝑁 𝑜𝑟 𝐶 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑘𝑔 𝑘𝑔−1) 𝑥 𝑡𝑟𝑒𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 (𝑚3 𝑡𝑟𝑒𝑒−1) 𝑥 𝑠𝑡𝑒𝑚 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑛 𝑡𝑟𝑒𝑒𝑠 ℎ𝑎−1) 𝑥  

 𝑤𝑜𝑜𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑘𝑔 𝑚−3))/103         (Eq. 2.2) 

where all variables are mean values per distance. Tree volume is calculated with the volume 

equations of Zianis et al. (2005) (based on mean diameter at breast height, dbh and average 

height at each distance, Eq. 2.3) 

𝑇𝑟𝑒𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 (𝑚3) = (𝑚𝑒𝑎𝑛 𝑑𝑏ℎ (𝑐𝑚) ^ 𝑎 𝑥 ℎ𝑒𝑖𝑔ℎ𝑡 (𝑚) ^ 𝑏 𝑥 exp(𝑐)) /1000   (Eq. 2.3) 

where a, b and c are 2.00, 0.86 and -2.86; 1.96, 0.89 and -2.17; 1.78, 1.13 and -2.91, 

respectively for oak, pine and spruce. The height of three trees at each distance was 

measured with a Vertex (Vertex III, Haglöf, Sweden). For Qr1, Qr2 and Pn1, inventory data 

are available from previous measurements (Wuyts et al., 2008b) and were updated with re-

measurements of the diameters at breast height.  The total inventoried area was 7908 m², 

3165 m² and 9754 m², respectively in Qr1, Qr2 and Pn1. In Pn2, Ps and Pa, tree inventories 

were performed on an area expanding 5 m to the left and 5 m to the right of the transect, 

resulting in a total inventoried area of 1300 m².  The number of trees occurring in a zone 

around each sampling distance (0-10 m, 10-30 m, 30-80 m and 80-130 m from the edge) 

were counted to obtain stem density per distance. The wood density is the average value at 

each distance (0, 16, 64 and 128 m).  

 

http://www.ugct.ugent.be/
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Roots 

Roots were collected at each selected tree by digging out the forest floor and mineral soil in 

an area of 20 cm x 20 cm to a depth of 30 cm, at a distance of 1 m from the tree trunk. Roots 

were extracted from this organic and mineral soil layer in the field. In the lab, roots were 

subsequently rinsed to remove all soil particles. Afterwards they were cut, dried at 65° for 

two days and milled (ZM1, Retsch, Germany). Coarse and fine roots (< 2 mm) were 

analyzed separately. Nitrogen and C stocks were calculated based on Eq. (2.4) for the 

coarse roots and based on Eq. (2.5) for the fine roots. 

𝑆𝑡𝑜𝑐𝑘 (𝑀𝑔 ℎ𝑎−1) =

(𝑁 𝑜𝑟 𝐶 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑘𝑔 𝑘𝑔−1)𝑥 𝑠𝑡𝑒𝑚 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑛 𝑡𝑟𝑒𝑒𝑠 ℎ𝑎−1) 𝑥 𝑟𝑜𝑜𝑡 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 (𝑘𝑔 𝑡𝑟𝑒𝑒−1))/

103             (Eq. 2.4) 

𝑆𝑡𝑜𝑐𝑘 (𝑘𝑔 ℎ𝑎−1) =

𝑁 𝑜𝑟 𝐶 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑘𝑔 𝑘𝑔−1) 𝑥 𝑠𝑡𝑒𝑚 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑛 𝑡𝑟𝑒𝑒𝑠 ℎ𝑎−1) 𝑥 𝑟𝑜𝑜𝑡 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 (𝑘𝑔 𝑡𝑟𝑒𝑒−1)                          

             (Eq. 2.5) 

Stem density was measured per zone (0-10 m, 10-30 m, 30-80 m and 80-130 m from the 

edge) as described above in the calculation of the wood stocks and root biomass was 

calculated via allometric relations, based on mean diameter at breast height per distance for 

coarse (Eq. 2.6) and fine roots (Eq. 2.7), taken from respectively Jenkins et al. (2003) and 

Liski et al. (2002). 

𝐶𝑜𝑎𝑟𝑠𝑒 𝑟𝑜𝑜𝑡 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 (𝑘𝑔 𝑡𝑟𝑒𝑒−1) = 𝑎𝑏𝑜𝑣𝑒𝑔𝑟𝑜𝑢𝑛𝑑 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝑥 𝑐𝑜𝑎𝑟𝑠𝑒 𝑟𝑜𝑜𝑡 𝑟𝑎𝑡𝑖𝑜  

= exp(−2.0127 + 2.4342 𝑥 𝑙𝑛(𝑑𝑏ℎ)) 𝑥 exp(−1.6911 + (0.816/𝑑ℎ))    (Eq. 2.6) 

𝐹𝑖𝑛𝑒 𝑟𝑜𝑜𝑡 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 (𝑘𝑔 𝑡𝑟𝑒𝑒−1) = 𝑎𝑏𝑜𝑣𝑒𝑔𝑟𝑜𝑢𝑛𝑑 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝑥 𝑠𝑡𝑒𝑚 𝑟𝑎𝑡𝑖𝑜 𝑥 𝑓𝑖𝑛𝑒 𝑟𝑜𝑜𝑡 𝑟𝑎𝑡𝑖𝑜  

=  exp(−2.0127 + 2.4342 𝑥 𝑙𝑛(𝑑𝑏ℎ)) 𝑥 exp(−0.3065 + (−5.424/𝑑𝑏ℎ))  𝑥 0.02   (Eq. 2.7) 

where coarse root ratio is the ratio of the coarse root biomass to total aboveground biomass, 

stem ratio is the ratio of the stem wood to total aboveground biomass for trees with a 

diameter at breast height of minimum 2.5 cm, and fine root ratio is the ratio of the fine root 

biomass to the stem biomass. 

 

Forest floor 

The biomass of the fermentation and humus (FH) layer of the ectorganic horizon was 

determined by collecting all FH material in a square of 0.39 m by 0.39 m (Belgium) or 0.25 

m x 0.25 m (Denmark). Three (Belgium) or four (Denmark) FH samples were taken at each 

distance along the transect (Fig. 2.1). The samples were dried at 65°C during two days, 
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weighed and milled (ZM1, Retsch, Germany) for further analysis. Nitrogen and C stocks of 

the forest floor were calculated based on Eq. (2.8)  

𝑆𝑡𝑜𝑐𝑘 (𝑀𝑔 ℎ𝑎−1) = 𝑁 𝑜𝑟 𝐶 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑘𝑔 𝑘𝑔−1) 𝑥 𝑓𝑜𝑟𝑒𝑠𝑡 𝑓𝑙𝑜𝑜𝑟 𝑚𝑎𝑠𝑠 (𝑘𝑔 𝑚−2)𝑥 10  

             (Eq. 2.8) 

Mineral soil  

Mineral soil density was measured by means of Kopecky rings at three different depths (0 

to 5 cm, 5 to 10 cm and 10 to 30 cm, Fig. 2.1) and at three different locations per distance. 

After being dried at 105°C for two days and weighed, soil density was calculated based on 

Eq. (2.9) 

𝑆𝑜𝑖𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑔 𝑐𝑚−3) = 𝑊𝑑 (𝑔) 𝑉𝑘⁄  (𝑐𝑚3)       (Eq. 2.9) 

where Wd is the weight of the dried soil and Vk is the volume of the Kopecky rings (100 cm³). 

This has been done during each season, where the average soil density value was used for 

the calculation of soil N and C stocks. Soil moisture was determined from the same samples. 

To measure the N and C concentration, the mineral soil from 0 to 5 cm, from 5 to 10 cm and 

from 10 to 30 cm was sampled with a soil auger at two locations at each distance along the 

edge-to-interior transect. The samples were dried for two days at 40°C, sieved over a 2 mm 

mesh and ground to a size of 0.25 mm (ZM1, Retsch, Germany). Nitrogen and C stocks in 

soil were calculated based on Eq. (2.10) for the three depths and summed afterwards. 

𝑆𝑡𝑜𝑐𝑘 (𝑀𝑔 ℎ𝑎−1) =

𝑁 𝑜𝑟 𝐶 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑔 100 𝑔⁄ ) 𝑥 𝑠𝑜𝑖𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑔 𝑐𝑚−3) 𝑥 𝑠𝑜𝑖𝑙 𝑑𝑒𝑝𝑡ℎ (𝑐𝑚)           (Eq. 2.10) 

All samples (leaves/needles, wood, forest floor, roots and mineral soil) were kept cool during 

transport. Nitrogen and C concentrations of all samples were measured by the same CNS 

elemental analyzer (vario Macro Cube, Elementar, Germany).  

 

2.2.4. Soil carbon sequestration 

Soil carbon sequestration (ΔC) was estimated via Eq. (2.11), derived from Gundersen et al. 

(2006) 

∆𝐶 =  ∆𝑁 𝑥 (𝐶/𝑁)𝑓𝑜𝑟𝑒𝑠𝑡 𝑓𝑙𝑜𝑜𝑟                 (Eq. 2.11) 

where net soil N immobilisation (∆N) as an average for a forest rotation can be calculated 

from a N budget as 

Δ N = deposition + fixation – harvesting – leaching – denitrification            (Eq. 2.12) 



29 
 

given that the budget terms are constant over time. In these static N balance calculations 

only vertical percolation, i.e. deposition and leaching, was considered. Yearly N throughfall 

deposition and inorganic N leaching in Qr1, Qr2, Pn1 and Pn2 were obtained from a previous 

study in the same forest stands and at exactly the same distances from the edge (Wuyts et 

al., 2008b, 2011). Since then, systematic decreases in inorganic N deposition have been 

observed in north central Europe (including Flanders and Denmark) (Waldner et al., 2014), 

and these were comparable for all study sites (Staelens et al., 2012b). In Ps and Pa, yearly 

N throughfall deposition and soil solution NO3
- concentrations were obtained as described 

in Ginzburg (2014). Monthly throughfall volumes were collected by three polyethylene 

funnels located at increasing distances from the edge (10 m, 20 m, 40 m, 60 m and 100 m) 

during one (2010 - 2011 for Pa) or two years (2011 - 2013 for Ps). The funnels were located 

on poles about 1-1.5 m above the ground, while the plastic bottles collecting the water were 

placed in a plastic cylinder underground to reduce any effects of temperature or light on N 

processes in the water. Samples were kept cool before NO3
- and NH4

+ content in the 

throughfall water were determined by ion chromatography and flow injection analysis, 

respectively. The N deposition was calculated by multiplying the N concentration in the sub-

sample by the throughfall volume collected in the three funnels divided by the surface area 

of the funnels. At Ps and Pa, soil solution NO3
- concentrations were measured by KCl 

extraction of mineral soil, sampled in spring 2010 and November 2012 using a soil corer 

(diameter of 3 cm). Annual mean NO3
- concentrations (mg l-1) were converted to an annual 

N leaching flux (kg ha-1 yr-1) via an empirical relationship, Eq. (2.13), derived by Gundersen 

et al. (2009) 

𝑁 𝑙𝑒𝑎𝑐ℎ𝑖𝑛𝑔 (𝑘𝑔 ℎ𝑎−1 𝑦𝑟−1) = 2.06 𝑥 𝑎𝑛𝑛𝑢𝑎𝑙 𝑚𝑒𝑎𝑛 𝑁𝑂3
− 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑚𝑔 𝑙−1) + 2 

                     (Eq. 2.13) 

This relationship was obtained via intensive monitoring of three coniferous and five 

deciduous stands in Denmark during 3 to 4 years. Monthly N output by seepage water was 

calculated as the concentration of NO3
- in the soil water samples from 0.9 m soil depth 

(collected via porous PTFE suction cups) multiplied with the seepage water flux, modelled 

with the CoupModel (Jansson et al, 1999). Since biological fixation, harvesting and 

denitrification contribute little to the N budget on the selected acid, sandy soils these 

processes were neglected (Akselsson et al., 2007). Estimated yearly N trace gas emission 

for Qr2 and Pn2 amounted to respectively 0.6 and 0.2 kg N2O ha-1 and 1.5 and 1.3 kg NOx 

ha-1 (unpublished data). Hence, N losses via denitrification were minimal and omitted from 

Eq. (2.13). Soil (organic layer and mineral soil) carbon sequestration values were divided by 
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N throughfall deposition values to obtain the amount of C sequestered per unit (kg) of N 

deposited, which will be further termed as the C sequestration response to N deposition 

(Cresp). Since data on N allocation to other forest pools lack, we do not attempt to calculate 

C sequestration for the whole forest ecosystem, but focus on the impact of N deposition on 

soil C sequestration. 

 

2.2.5. Statistical analyses 

All statistical analyses were performed in R (version 3.1.2.), using the lme4 package. We 

tested if variations in N and C stocks, and in the variables used to calculate N and C stocks, 

were associated with the examined forest type and distance to the forest edge. We used the 

following variables as response variables: N and C stock, and N and C concentration of all 

forest pools, stem density, LAI, LMA, wood density, wood volume, root biomass, forest floor 

mass, soil density and soil C sequestration. Predictor variables were distance to the forest 

edge, forest type (oak, pine, spruce), the interaction of distance to the forest edge and forest 

type and region. Firstly, the need of a linear mixed effect model, including the forest location 

(six stand locations) as a random factor, was tested for each stock (2 replicates at each 

distance in each stand). In this way, the non-independence of samples from the same stand 

has been taken into account. This linear mixed effect model was compared with a linear 

model, where both models contained distance to the forest edge, forest type (oak, pine, 

spruce), their interaction and region as predictor variables. The appropriate model was 

chosen based on the lowest AIC (Akaike Information Criterion) value. When a linear mixed 

effect model was needed, the Intraclass Correlation Coefficient (ICC) was calculated via 

Eq. (2.14) 

𝐼𝐶𝐶 =  𝜎0
2 (𝜎0

2⁄ +  𝜎𝜖
2)                  (Eq. 2.14) 

where σ0
2 is the variance of the intercept and σϵ² is the variance of the residuals. The ICC 

indicates how much of the overall variation in the response variable is explained by the 

hierarchy of the model, i.e. by clustering the data within the different forest stands. The 

contribution of each predictor variable to the model was tested with one-way analysis of 

variance (ANOVA) and presented in Table 2.1, 2.2 and 2.3. The relationship between the 

fitted values and the residuals of each model was checked to ensure normality and 

homoscedasticity. The x-axis of Figures 2.2, 2.3, 2.4, 2.5 and 2.6 has a logarithmic scale to 

improve the spread of the data in the observed range of the distance to the forest edge (0 – 

128 m). 
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2.3. Results 

2.3.1. Biomass, forest floor and soil properties 

On the foliage properties, no significant edge effects were observed although significant 

interactions with forest type occurred for LAI (Table 2.1). Forest type effects were significant 

for all foliage properties, with higher N concentration but lower C concentration in oak leaves 

than pine or spruce needles and higher LAI and LMA in spruce stands (Table 2.1).  

From all wood properties, only stem density and wood volume were significantly affected by 

the distance to the edge, decreasing with distance (Table 2.1). Forest type significantly 

influenced the wood C concentration, wood density, wood volume and stem density, 

showing highest C concentration in pine, higher wood volume and stem density in spruce 

and highest wood density in the oak stands. 

In the coarse roots, the root biomass decreased with distance to the edge. Forest type also 

affected coarse root biomass, being highest in the oak stands. N and C concentration of the 

coarse roots were only affected by forest type, being lowest in the spruce trees.  In the fine 

roots, the root biomass also decreased with distance to the edge, while the C concentration 

increased with distance to the edge. Both fine root biomass and C concentration were 

affected by forest type and were highest in the oak stands.  

In the forest floor, the N and C concentration increased with distance to the edge. The forest 

floor mass differed between forest type (Table 2.1), being highest in the spruce stands. In 

the mineral soil, the N concentration was higher at the edge than in the interior plots. Soil 

density increased with distance to the edge (Table 2.1). The C concentration of the mineral 

soil was also higher at the edge (except for the outliers at the 16 m plots in the spruce 

stands). Nitrogen and C concentrations were affected by forest type, being higher in the 

spruce stands. 
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Table 2.1: Effects of distance to the forest edge and forest type on the variables used to calculate 

the N and C stocks of the forest pools.  

Stand characteristic Variable R² 
Distance to 
forest edge 

Forest 
type 

 
Interaction ICC 

 Stem density (n ha-1) 0.76 
< 0.01  

< 0.001 
s > o,p 

0.095 - 

Forest pool         
 

  
 

Leaves/needles 

N concentration (kg kg-1) 0.86 0.166 < 0.001 
o > p,s 

0.286 - 

C concentration* (kg kg-1) 0.68 0.349 < 0.001 
o < p,s 

 0.080  - 

LAI (m² m-2) 0.69 0.062 < 0.001 
s > o,p < 0.001 - 

LMA (kg m-2) 0.99 0.291 < 0.001 
s > o,p 

0.095 - 

Wood 

N concentration (kg kg-1) 0.07 0.194 0.089  
0.401 - 

C concentration§ (kg kg-1) 0.62 0.827 < 0.001 
p > o,s 

0.366 0.66 

Wood density (kg m-3) 0.64 0.337 < 0.001 o > p,s 0.150 - 

Wood volume* (m3 ha-1) 0.68 < 0.01 < 0.01 s > o,p 0.147 - 

Coarse roots 

N concentration§ (kg kg-1) 0.42 0.407 < 0.001 
s < o,p 

0.556 0.51 

C concentration* (kg kg-1) 0.38 0.106 < 0.001 
s < o,p 

0.099 - 

Root biomass* (kg tree-1) 0.92 
< 0.01 

< 0.001 
o > p,s 

0.059 - 

Fine roots 

N concentration (kg kg-1) 0.01 0.177 0.404 
 

0.401 - 

C concentration (kg kg-1) 0.49 < 0.001 < 0.001 
o > p,s 

0.118 - 

Root biomass* (kg tree-1) 0.93 
< 0.01 

< 0.001 
o > p,s 

< 0.05 0.94 

Forest floor 

N concentration§ (kg kg-1) 0.19 < 0.01  
0.865 

 < 0.01  0.46 

C concentration§ (kg kg-1) 0.22 < 0.001 0.063  < 0.01  0.60 

Forest floor mass (kg m-2) 0.28 0.786 < 0.001 
s > o,p 

0.179 - 

Soil 

N concentration (kg kg-1) 0.16 
< 0.001 < 0.001 s > o,p 

0.321 - 

C concentration* (kg kg-1) 0.14 
< 0.001 < 0.01 s > o,p 

0.214 - 

Soil density§* (g cm-3) 0.10 < 0.001 0.177 
 

< 0.001 0.46 

In case of a linear model, no random term is needed, in case of a linear mixed effect model (indicated with §) 

the forest location was used as a random term. The * indicates a significant effect (p < 0.05) of region. R² is 

the coefficient of determination, indicating the proportion of variation explained by the model. The R² and p 

values of the best fitting model (based on the AIC value) are presented. The forest type effect is specified, 

where o = oak, p = pine and s = spruce. The ICC indicates how much of the overall variation in the response 

is explained by the random term of the mixed model. Bold values are significant (p < 0.05). The arrow indicates 

if values increase (  ) or decrease (  ) with distance to the edge. When all forest type increase  with distance to 

the edge, the interaction is positive (  ), when all forest type decrease with distance to the edge, the interaction 

is negative (  ) and when the interaction term differs between forest type (meaning that for some forest type 

values increase with distance to the edge, while they decrease for other forest type), the interaction is neutral 

(     ). 
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2.3.2. Nitrogen stocks 

The amount of N stored in leaves and needles ranged from 12 kg ha-1 to 53 kg ha-1 (Fig 

2.2a). The effect of distance from the edge was not significant, but interacted with the forest 

type effect (Table 2.2), as the oak and pine forests showed weak decreasing trends and the 

spruce stands a strong increasing trend (Fig. 2.2a). The N stocks of leaves and needles 

were 21 % and 38 % higher at the edge (0 m) of the oak and pine stands, while at the spruce 

stands it was 48 % lower than in the interior (128 m). The N stock in spruce needles was 

higher than in oak leaves and pine needles, resulting in a significant forest type effect. 

The amount of N stored in wood ranged between 0.07 Mg ha-1 and 3.6 Mg ha-1 (Fig. 2.2b). 

Distance to the edge and the interaction with forest type were significant (Table 2.2). The N 

stock at the edge (0 m) was 77 % higher than in the forest interior (128 m) in the oak and 

pine stands and 28 % higher in the spruce stands, leading to an average increase of 61 % 

at the edge (with upper and lower 95 % confidence intervals of 5 and 115 %).  

The values of the N stock of the coarse roots lay between 0.08 Mg ha-1 and 3 Mg ha-1 (Fig. 

2.2c). Distance to the forest edge was significant (Table 2.2). The N stock at the edge (0 m) 

was 53 %, 66 % and 24 % higher than in the interior (128 m) respectively for oak, pine and 

spruce, resulting in an average increase of 44% at the edge (with upper and lower 95 % 

confidence intervals of 21 and 99 %). The fine roots stored N within the range of 7 kg ha-1 

to 184 kg ha-1 (Fig. 2.2d). Distance to the forest edge and forest type contributed most to 

the model (Table 2.2). At the edge (0 m), the fine root N stock was 64 %, 70 % and 31 % 

higher than in the interior (127 m) respectively for oak, pine and spruce, resulting in an 

average increase of 53 % at the edge (with upper and lower 95 % confidence intervals of 26 

and 106 %). 

The N stock in the forest floor ranged from 0.1 Mg ha-1 to 3 Mg ha-1 (Fig. 2.3a). Adding 

distance to the edge to the model had no significant effect, nor adding forest type (Table 

2.2). 

The N stock in the mineral soil ranged from 0.7 Mg ha-1 to 9 Mg ha-1 (Fig. 2.3b). Distance to 

the forest edge, forest type and their interaction influenced the N stock significantly (Table 

2.2). The N stock at the edge (0 m) was 39 %, 43 % and 22 % higher than in the forest 

interior (128 m) for the oak, pine and spruce stands. Averaged over all forest type, the N 

stock was 33 % higher at the edge (with upper and lower 95 % confidence intervals of 12 

and 54 %). 
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Table 2.2: Effects of distance to the forest edge and forest type on the N and C stocks of all forest 

pools.  

 N stocks 

Forest pool R² 
Distance to 
forest edge 

Forest 
type 

 
Interaction ICC 

Leaves/needles 0.79 0.904 < 0.001 s > o, p < 0.001 - 

Wood§* 0.49 < 0.001 0.312  < 0.001 0.46 

Coarse roots* 0.50 < 0.001 0.196  0.109 - 

Fine roots* 0.51 < 0.001 < 0.05 o > p, s 0.060 - 

Forest floor§ 0.07 0.140 0.284  0.306 0.40 

Soil§ 0.28 < 0.001  < 0.05 s > o, p < 0.01 0.49 

Aboveground* 0.65 < 0.001 < 0.001 s > o, p < 0.05 - 

Belowground§ 0.29 < 0.01 < 0.05 s > o, p < 0.05 0.59 

Total§ 0.35 < 0.001 < 0.05 s > o, p < 0.001  0.61 

 C stocks 

Leaves/needles 0.93 0.249 < 0.001 s > o, p < 0.001 - 

Wood§* 0.54 < 0.001 0.338  < 0.001 0.46 

Coarse roots* 0.63 < 0.001 < 0.001 o > p, s 0.096 - 

Fine roots* 0.60 < 0.001 < 0.001 o > p, s < 0.05 - 

Forest floor§ 0.12 < 0.05 < 0.05 s > o, p 0.057 0.63 

Soil§ 0.26 < 0.001 0.848  < 0.001 0.35 

Aboveground* 0.68 < 0.001 < 0.001 s > o, p < 0.05 - 

Belowground§ 0.21 < 0.001  0.070  < 0.01 0.39 

Total§ 0.54 < 0.001  0.137  < 0.001 0.42 

In case of a linear model, no random term is needed, in case of a linear mixed effect model (indicated with §) 

the forest location was used as a random term. The * indicates a significant effect (p < 0.05) of region. R² is 

the coefficient of determination, indicating the proportion of variation explained by the model. The R² and p 

values of the best fitting model (based on the AIC value) are presented. The forest type effect is specified, 

where o = oak, p = pine and s = spruce.The ICC indicates how much of the overall variation in the response 

is explained by the random term of the mixed model. Bold values are significant (p < 0.05). The arrow indicates 

if values increase (  ) or decrease (  ) with distance to the edge. When all forest type increase  with distance to 

the edge, the interaction is positive (  ), when all forest type decrease with distance to the edge, the interaction 

is negative (  ) and when the interaction term differs between forest type (meaning that for some forest type 

values increase with distance to the edge, while they decrease for other forest type), the interaction is neutral 

(     ). 
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a                                        Leaves/needles b                                        Wood 

  
c                                          Coarse roots d                                        Fine roots 

 
 

Distance to forest edge (m) 

Fig. 2.2: N stock in a) leaves and needles, b) wood, c) coarse roots and d) fine roots (n = 4 at each distance,). Grey shading shows the 95% confidence 

interval. For readability, x-axes show distance to forest edge in m and not as the logarithm of distance to forest edge. Significant effects of distance to 

forest edge, forest type and their interaction are presented in Table 2.2.
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a                                         Forest floor 

 
b                                          Mineral soil 

 
Distance to forest edge (m) 

Fig. 2.3: N stock in a) forest floor and b) mineral soil until a depth of 30 cm (n = 4 at each distance, 

in a) n = 6 in Belgium). Grey shading shows the 95% confidence interval. For readability, x-axes 

show distance to forest edge in m and not as the logarithm of distance to forest edge. Significant 

effects of distance to forest edge, forest type and their interaction are presented in Table 2.2. 

 

The total aboveground N stock was significantly affected by distance to the edge, the forest 

type and their interaction and was, on average, increased by 53 % at the edge (0 m). The 

total belowground N stock was influenced by distance to the edge, forest type and their 

interaction and was on average 24% higher at the edge (0 m) compared to the forest interior 

(128 m). The same applied for the total N stock (Fig. 2.6a), which was on average 29 % 

higher (with upper and lower 95 % confidence intervals of 11 and 47 %) at the edge (0 m) 

compared to the forest interior (128 m), and respectively 38 %, 33 % and 20 % for oak, pine 

and spruce.  
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2.3.3. Carbon stocks 

The C stock of the leaves and needles ranged between 0.3 and 1.9 Mg ha-1 (Fig. 2.4a). The 

variation in this stock was explained by the interaction between distance to the edge and 

forest type and forest type (Table 2.2). The C stocks of oak leaves and pine needles were 

respectively 15 % and 32 % higher at the edge (0 m), while the C stock of spruce needles 

was 56 % lower at the edge compared to the interior (128 m). 

The C stock of the wood ranged between 22 and 400 Mg ha-1 (Fig. 2.4b) and was affected 

by distance to the edge and the interaction with forest type (Table 2.2). The C stock at the 

edge (0 m) was higher than in the interior (128 m), respectively with 75 %, 74 % and 30 %, 

in the oak, pine and spruce stands resulting in an average increase of 60 % at the edge 

(with upper and lower 95 % confidence intervals of 9 and 109 %). 

The C stock of the coarse roots ranged between 4 and 55 Mg ha-1 (Fig. 2.4c) and could be 

explained by distance to the forest edge and forest type (Table 2.2). The C stock was 60 %, 

71 % and 13 % higher at the edge (0 m) of the oak, pine and spruce stands, while the 

average C stock at the edge was 43 % higher (with upper and lower 95 % confidence 

intervals of 3 and 109 %) than in the forest interior (128 m). The C stock of the fine roots 

ranged between 0.2 and 3.7 Mg ha-1 (Fig. 2.4d). Again distance to the forest edge and forest 

type were significant. The fine root C stock was 64 %, 70 % and 10 % higher at the edge (0 

m) of the oak, pine and spruce stands, while the average C stock at the edge was 44 % 

higher (with upper and lower 95 % confidence intervals of 2 and 112 %) than in the forest 

interior (128 m). 

The C stock of the forest floor ranged between 2 and 90 Mg ha-1 (Fig. 2.5a) and in this case 

the linear mixed model comprising of distance to the forest edge and forest type was the 

most appropriate model (Table 2.2). The stocks were 28 %, 48 % and 4 % lower at the edge 

(0 m) of the oak, pine and spruce forests than in the forest interior (128 m), resulting in an 

average stock which was 45 % lower at the edge than in the forest interior. The large 

variability in the C stock was shown in the boundaries of the 95 % confidence interval, 

ranging between an increase of 16 % at the edge and a decrease of 70 % at the edge. 

The mineral soil C stock ranged between 32 and 202 Mg ha-1 (Fig. 2.5b). The best fitting 

model comprised of distance to the forest edge and the interaction with forest type (Table 

2.2). The C stock was respectively 32 %, 30 % and 27 % higher at the edge (0 m) of the 

oak, pine and spruce stands than in the interior (128 m). When averaged over all species, 
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the soil C stock was 30 % higher at the edge (with upper and lower 95 % confidence intervals 

of 24 and 35 %). 

The aboveground C stock was affected by distance to the edge, forest type and their 

interaction (Table 2.2), with an increase at the forest edge (0 m) of 56 % compared to the 

forest interior (128 m). The belowground C stock was steered by distance to the edge and 

the interaction with forest type, with an increase at the edge (0 m) of 20% compared to the 

forest interior (128 m). The total C stock (Fig. 2.6b) was also affected by distance to the 

edge and the interaction with forest type, with an average increase at the edge of 43 % (with 

upper and lower 95 % confidence intervals of 0 and 81 %), and respectively 62 %, 50 % and 

19 % for oak, pine and spruce.  
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a                                             Leaves/needles b                                               Wood 

 
 

c                                                 Coarse roots d                                             Fine roots 

  

Distance to forest edge (m) 

Fig. 2.4: C stock in a) leaves and needles, b) wood, c) coarse roots and d) fine roots (n = 4 at each distance,). Grey shading shows the 95% confidence 

interval. For readability, x-axes show distance to forest edge in m and not as the logarithm of distance to forest edge. Significant effects of distance to 

forest edge, forest type and their interaction are presented in Table 2.2. 
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a                                         Forest floor 

 

b                                          Mineral soil 

 

Distance to forest edge (m) 

Fig. 2.5: C stock in a) forest floor and b) mineral soil until a depth of 30 cm (n = 4 at each distance, 

in a) n = 6 in Belgium). Grey shading shows the 95% confidence interval. For readability, x-axes 

show distance to forest edge in m and not as the logarithm of distance to forest edge. Significant 

effects of distance to forest edge, forest type and their interaction are presented in Table 2.2. 
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Distance to forest edge  (m) 

Fig. 2.6: Total stocks for a) nitrogen and b) carbon. Grey shading shows the 95% confidence interval 

(n = 4 at each distance). For readability, x-axes show distance to forest edge in m and not as the 

logarithm of distance to forest edge. Significant effects of distance to forest edge, forest type and 

their interaction are presented in Table 2.2. 

 

 

 

a 
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2.3.4. Soil carbon sequestration 

When calculating soil carbon sequestration (Cseq) based on N throughfall deposition, values 

ranged between -254.6 and 1197.7 kg ha-1 yr-1 of C (Table 2.3). Soil Cseq did not differ 

significantly between forest edge and interior according to the selected mixed model (Table 

2.3). The forest edges (0 m) sequestered on average 646 kg ha-1 yr-1 of C, while the forest 

interiors (128 m) sequestered on average 289 kg ha-1 yr-1 of C. The interaction between 

distance to the forest edge and forest type significantly affected soil Cseq values (p < 0.05), 

while forest type did not (p > 0.05). In the pine and spruce stands soil Cseq decreased with 

distance to the forest edge, while the oak stands showed opposite patterns. The oak stand 

Qr1 was also characterized by a decrease in soil Cseq with distance to the forest edge, while 

in Qr2 soil Cseq increased with distance to the forest edge. Soil Cseq response to N deposition 

(Cresp) ranged between -8.2 and 27.3 kg of C per kg of N. Positive values indicate that soils 

work as C sinks, while negative values infer that soils act as C sources. 

 

Table 2.3: a) Net nitrogen immobilization (Δ N), soil carbon sequestration (soil Cseq) and C 

sequestration response to N deposition (Cresp) and b) Effects of distance to the forest edge and forest 

type on soil carbon sequestration. 

a Δ N (kg ha-1 yr-1) 

Distance Qr1 Qr2 Pn1 Pn2 Ps Pa 

Edge 18.5 -4.9 40.2 45.5 17.6 40.1 

Interior 11.3 3.2 -10.5 26.8 11.6 22.4 

  Soil Cseq (kg ha-1 yr-1) 

Edge 316.1 -83.3 897.6 1197.7 496.4 1049.5 

Interior 204 55.4 -254.6 697.6 348.1 681.8 

 
Cresp (kg of C kg-1 of N) 

Edge 17.1 -2.8 14.8 23.3 18.4 24.4 

Interior 11.7 2.4 -8.2 17.6 20.5 27.3 

b R² 
Distance to 
forest edge 

Forest 
type Interaction ICC 

Soil Cseq
§           

(kg ha-1 yr-1) 
0.84 0.065 0.120 < 0.05 0.22 

The § indicates a linear mixed effect model was used, with the forest location as random term. R² is the 

coefficient of determination, indicating the proportion of variation explained by the model. The ICC indicates 

how much of the overall variation in the response is explained by the random term of the mixed model. Bold 

values are significant (p < 0.05). The (    ) indicates that the interaction term differs between forest type 

(meaning that for some forest type values increase with distance to the edge, while they decrease for other 

forest types). 
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2.4. Discussion 

In this study, we investigated the N and C stocks along an edge-to-interior transect in six 

temperate forests, comprising of monocultures of oak, pine and spruce. Nitrogen and carbon 

stocks were increased at the forest edge, confirming our first hypothesis, where we 

hypothesized that the increased atmospheric N deposition and contrasting microclimate at 

the forest edge are associated with increased N and C stocks at the forest edges compared 

to the forest interiors. However, the edge effect was not greater in the selected pine and 

spruce stands than in the deciduous oak stands. Hence, the second hypothesis, stating that 

differences in N and C stocks between forest edge and forest interior are more pronounced 

in the pine and spruce forests compared to the deciduous oak forests can not be confirmed. 

Ideally, we wanted to disentangle the edge and forest type effect on N and C stocks as they 

would occur in an unmanaged forest edge. Unfortunately, this was not the case, since the 

Danish forest edges were subjected to stronger winds than the Belgian forest edges, 

resulting in a different forest structure at the forest edge. The increased N and C stocks of 

wood, roots and soil at the forest edge lay in the same range, showing that N and C stocks 

followed the same patterns. Soil C sequestration values were larger at the forest edge 

compared to the forest interior (except for Qr2), supporting the third hypothesis, stating that 

there exists an edge effect on soil C sequestration values in association with N deposition. 

The close link between N and C is further elaborated in section 2.4.2. 

 

2.4.1. Edge and forest type effect on the N and C stocks of the forest pools 

The leaf N and C stocks decreased with distance to the edge in the oak and pine stands, 

but increased in the spruce stands. This trend can be explained by the LAI, since it 

decreased as a function of distance to the edge in the oak and pine stands, probably due to 

more favorable light conditions at the edge, as found by McDonald and Urban (2004), 

Bowering et al. (2006) and Sherich et al. (2007), but not in the spruce stands. The strong 

winds in Denmark caused more damage to the spruce trees at the edge than in the interior, 

thereby lowering the LAI at the edge. The opposite trend in LAI can also be due to the fact 

that spruce is a shade-tolerant forest type (Seymour and Kenefic, 2002), while pine and oak 

are more light-demanding forest types. Furthermore, in the Picea sitchensis site there was 

a management road at 130 m from the edge insuring higher light availability for the 

surrounding trees and thinning debris was deposited along this management road. Needles 

also had a higher LMA, since the leaf volume per area of needles is larger than leaves (due 

to larger cell walls and more mesophyll tissue) (Poorter et al., 2009), contributing to the high 
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N and C stocks (especially in spruce needles) compared to the N and C stocks of the oak 

leaves. 

Nitrogen and C stocks of wood were influenced by the edge effect and its interaction with 

forest type. Variables that explained the trends in N and C stocks were wood volume and 

stem density, which were both decreasing with distance to the edge. The forests had a 

higher wood volume at the edge, indicating that edge characteristics such as increased 

atmospheric deposition and favorable light conditions positively influenced growth 

conditions. All forest stands were planted as even-aged monocultures with a constant stem 

density. The higher stem density at the edge resulted from lower tree mortality rates, but 

was less pronounced in the spruce stands due to the strong winds and shade-tolerance of 

spruce trees. Ziter et al. (2014) calculated aboveground C stocks in temperate forest 

fragments in Quebec, Canada. They obtained constant C stocks, with no effect of edge 

proximity and attributed this to the interplay of increased tree mortality at the edge due to 

abiotic stressors and increased tree productivity at the edge due to the contrasting 

microclimate compared to the forest interior. We can only confirm the latter statement on 

increased productivity based on our results. 

The gradient in the N and C stocks of the coarse and fine roots along the transect can be 

explained by the gradient in stem density, which contributed in the calculation of the root 

biomass per surface area and which was highest at the edge and in the spruce stands. The 

forest type effect was reflected by the root biomass, being highest in the oak stands, due to 

the higher diameter at breast height used in the allometric relationship of Jenkins et al. 

(2003). The high ICC values (Table 2.1) showed that variables such as root biomass were 

dependent on local site characteristics e.g. diameter at breast height. The fine root biomass 

was calculated based on an estimate of the fine root ratio (0.02 according to Liski et al., 

2002), which seems unlikely to apply for all studied forest types. Therefore, the fine root ratio 

should be used with caution. However, few data exist on fine root biomass. Recently, 

Jagodzinski et al. (2016) calculated the fine root biomass of 22 Quercus robur stands in 

Poland and obtained a mean fine root biomass of 3.71 Mg ha-1. Their value coincides well 

with our mean value of the oak fine root biomass (3.59 Mg ha-1), proving the reliability of the 

fine root ratio for the oak stands in our study. To our knowledge, variations in root biomass 

along edge-to-interior transects have not been assessed yet. 

The forest floor N and C stock were steered by the nutrient concentrations and by the forest 

floor mass. Nitrogen and carbon concentrations increased with distance to the edge. A 

possible explanation is that litter degradation was faster due to microclimatic gradients and 
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a different microbial and invertebrate abundance and community at the edge (De Smedt et 

al., 2016) and nutrients were transferred to deeper soil layers. Vesterdal et al. (2008) 

measured C stocks under different temperate forests and found low C stocks in forest floors, 

where C stocks were high in mineral soil, showing proportional differences in C distribution. 

The forest floor mass differed between forest type, where the spruce stands had the highest 

forest floor mass. Their litter is characterized by more recalcitrant components and lower 

calcium concentrations than broadleaf litter, resulting in lower forest floor turnover (Reich et 

al., 2005), litter accumulation in the forest floor and formation of acid compounds (Berg, 

2000; Hobbie et al., 2007). Furthermore, conifers have shallower rooting systems and tend 

to accumulate more organic carbon in the forest floor (Jandl et al., 2007). 

 

2.4.2. Edge and forest type effect on soil stocks and C sequestration 

Both distance to the edge and forest type influenced soil N and C stocks. The higher N and 

C stocks at the edge were due to the higher N and C concentrations in the upper 30 cm of 

the mineral soil (Table 2.1), caused by the possible interplay of higher atmospheric N 

deposition, microclimatic gradients, higher LAI and changes in microbial and invertebrate 

abundance and structure (Bowden et al., 2004; Heithecker and Halpern 2007; Hobbie et al., 

2007; Sherich et al., 2007). We did not sample deeper soil layers (B horizon, see Fig. A-I), 

which could affect the soil N and especially soil C stocks, as the B horizon of Podzols is 

characterized by a high organic matter content (WRB, 2014). Increasing the input of N to a 

N-limited forest increases initially the photosynthetic capacity of trees (Högberg, 2012) and 

microbial biomass (Zhang and Zak, 1998). However, over the longer term, these positive 

effects on growth fade (Ingerslev, 2001) and microbial biomass generally decreases 

(DeForest et al., 2004). This lack in growth response can be explained by N leaching 

(Johannisson et al., 1999), storage of excess N in needles, leaves and soil (Persson et al., 

2000), but also due to shortages of other essential nutrients such as phosphorus (P) and 

potassium (K+) (Eugster and Haeni, 2013). Recent research has shown that stabilization of 

soil organic matter in recalcitrant forms occurs under N rich conditions (Janssens et al., 

2010; Hobbie et al., 2012). The lower soil density at the edges could be explained by a 

higher organic matter content, as this will inherently also increase soil pore space 

(Arvidsson, 1998). Ginzburg (2014) also measured the effects of N deposition on C stocks 

at a finer spatial resolution in the two Danish spruce stands Ps and Pa. These forests were 

not characterized by nitrate leaching and had higher C stocks near the edges (although not 

significant), indicating a positive effect on C stocks when forest are exposed to moderate 

rates of N deposition (Thomas et al., 2010). We found a significant edge effect in the six 
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investigated forest edges. Strong microclimatic gradients exist in recently exposed forest 

edges, according to Matlack (1993), but these effects recede over time. The impact of edge 

orientation was controlled for by selecting forest edges which are all facing west, the 

dominant wind direction. Along the transects in our well-developed forest edges small, but 

significant differences in soil temperature and moisture existed (unpublished data). Forest 

edges (0 - 2 m) tended to be warmer and drier than forest interiors (64 - 128 m) (except for 

the Picea sites, which were wetter at the edge due to lower interception of rain) affecting 

decomposition rates of soil organic matter (Conant et al., 2011) and contributing to the 

differences in N and C stocks between forest edges and interiors. Decomposition rates in 

spruce forests are low compared to hardwood species (Berg 2000), explaining the higher N 

and C stocks in the spruce forests. 

Magnani et al. (2007) found a very strong correlation between N deposition and net C 

sequestration of forest ecosystems, where several hundreds of kg of C were sequestered 

per kg of N deposited on the forest. The potential C fixation response to N deposition is 

restricted by the C/N stoichiometry of the forest ecosystem pools (De Vries et al., 2009). The 

results of Magnani et al. (2007) imply that deposited N would solely lead to an increase in 

stem wood, which is the only C sink with a C/N ratio around 500 (de Vries et al., 2008). 

However, 15N-labelled tracer experiments in temperate forests indicated that most N 

retention occurs in soil (Nadelhoffer et al., 1999). Furthermore, Magnani et al. (2007) 

overlooked the internal N supply and attributed the high C retention only to wet N deposition 

(Högberg, 2012) and did not take N losses, such as N leaching and N trace gas emission, 

into account (De Schrijver et al., 2008). De Vries et al. (2008) obtained a soil response of 10 

to 30 kg C per kg N under a total N deposition of 10 to 25 kg ha-1 yr-1 of N. Since the C and 

N cycle are closely linked, the N accumulation can be used to approximate C sequestration, 

i.e. the ‘N balance method’ (Gundersen et al., 2006). In our calculation, N trace gas emission 

(which is expected to be low, as was the case in Qr2 and Pn2, see Chapter 3) and organic 

N leaching were neglected. According to Sleutel et al. (2009) the leaching losses of 

dissolved organic N can be substantial (9-28% of the total amount of N leached).  

Vanguelova et al. (2010) also measured high DON leaching (30 % of the total amount of N 

leached) in 10 Level II monitoring plots in the UK. It should be noted that yearly inorganic N 

leaching of the spruce stands Pa and Ps was obtained via an empirical relationship (Eq. 

2.13), which might deviate from the actual leaching losses. This relationship was based on 

intensive monitoring of 8 forest plots during 3 to 4 years. The observed correlation showed 

to be very strong (R² = 0.88). Equation 2.13 consists of an intercept, which statistically gave 

the best fit. However, it would have been better to force the correlation through zero. The C 
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sequestration response to N deposition lay in the range reported by de Vries et al. (2008), 

except for two low values in Qr2 and Pn1 (Table 2.3). The edge of Qr2 and interior plots of 

Pn2 were characterized by high N leaching values, which could be linked to the vicinity of a 

ditch, facilitating losses of dissolved N. Our soil C sequestration values were higher at the 

edge, explaining the higher C stocks. However, it is unclear what the fate of this accumulated 

C is on the long-term.  

When looking at a broader scale, i.e. Flanders (northern Belgium), De Schrijver et al. (2007) 

showed the importance of incorporating forest edges in the evaluation of surpassing critical 

pollutant loads. They considered 58 % of the total forested area in Flanders as external 

forest edges, bordering a non-forested area, based on forest inventory data of the 

Bosreferentie and a median forest edge distance of 50 m (Aminal afdeling Bos en Groen 

2001). De Schrijver et al. (2007) calculated that surpassing critical load values of N 

deposition was underestimated by 31 % when forest edge effects were not included. When 

looking at the total mean N and C stock in the forest interior, excluding the influence of forest 

edge, we obtained 5.8 Mg ha-1 of N and 251 Mg ha-1 of C. However, when taking the forest 

edge effect into account, using the same forest edge area as De Schrijver et al. (2007), we 

obtained a mean N and C stock of 7.5 Mg ha-1 of N and 365 Mg ha-1 of C showing an 

underestimation of respectively, 22 % and 31 % when N and C stocks are calculated on 

regional or national scales based on data from forest interiors only. Our findings underline 

the need to include forest edges in programs monitoring forest C changes, since huge 

amounts of C can potentially be stored in these edges. Additional research in temperate 

forest edges is needed to provide an adequate knowledge of their N and C storage capacity 

and long-term behavior.  
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2.5. Conclusion 

The forest edges of our study sites in Belgium and Denmark stored more N and C than 

forest interior zones. Based on our results, the edge effect on N and C stocks was not more 

pronounced in forest edges of the coniferous pine and spruce stands than of the deciduous 

oak stands. Our results confirmed the strong link between the N and C cycle, showing the 

association between N deposition and soil C sequestration. Up till now, the increased N and 

C stocks at forest edges were stored in all forest pools (except the forest floor) and mainly 

in the mineral topsoil and woody biomass, but it is unclear for how long this will last. Forest 

edges are a dominant feature in many landscapes of Central and Western Europe. Hence 

more research should be conducted to gain better insight in nutrient cycles at forest edges. 

The capacity of higher C retention at the edge can influence the rates and balances of C 

storage and, hence, correct C sequestration assessments.  
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3. Edge effect on fluxes of N and C trace gases 

 

 

After: Remy E., Gasche R., Kiese R., Wuyts K., Verheyen K., Boeckx P. (2016). Edge effects 

on N2O, NO and CH4 fluxes in two temperate forests. Science of the total environment 575: 

1150-1155. 

 

Abstract 

Forest ecosystems may act as sinks or sources of nitrogen (N) and carbon (C) compounds, 

such as the climate relevant trace gases nitrous oxide (N2O), nitric oxide (NO) and methane 

(CH4). Forest edges, which catch more atmospheric deposition, have become important 

features in European landscapes and elsewhere. Here, we implemented a fully automated 

measuring system, comprising static and dynamic measuring chambers determining N2O, 

NO and CH4 fluxes along an edge-to-interior transect in an oak (Q. robur) and a pine (P. 

nigra) stand in northern Belgium. Each stand was monitored during a 2-week measurement 

campaign with continuous measurements every 2 hours. NO emissions were 9-fold higher 

than N2O emissions. The fluxes of NO and CH4 differed between forest edge and interior, 

but not for N2O. This edge effect was more pronounced in the oak than in the pine stand. In 

the oak stand, edges emitted less NO (on average 60 %) and took up more CH4 (on average 

177 %). This suggests that landscape structure can play a role in the atmospheric budgets 

of these climate relevant trace gases. Soil moisture variation between forest edge and 

interior was a key variable explaining the magnitude of NO and CH4 fluxes in our 

measurement campaign. To better understand the environmental impact of N and C trace 

gas fluxes from forest edges, additional and long-term measurements in other forest edges 

are required.  

 

 

 

 

 



52 
 

3.1. Introduction 

Atmospheric trace gases, such as carbon dioxide (CO2), methane (CH4), carbon monoxide 

(CO), nitrous oxide (N2O) and nitric oxide (NO), are defined as minor constituents of the 

atmosphere, occurring at smaller mixing ratios than nitrogen (N2) and oxygen (O2) (Conrad, 

1994). Nitrous oxide, NO and CH4 are important greenhouse gases (GHGs), with N2O and 

CH4 being direct GHGs and NO contributing indirectly to climate change. Deposition of 

reactive nitrogen (N) species has increased worldwide owing to anthropogenic activities, 

such as the use of fossil fuels and agricultural production (Aardenne et al., 2001). Ammonia 

(NH3) and N oxides (NOx) are emitted from agricultural systems, traffic and industry and may 

be transported off-site and fertilize other systems which can lead to enhanced production of 

N2O (Pilegaard et al., 2006). Oxic soils (e.g. forests, grassland) are regarded as the only 

biological sink of atmospheric CH4 (Dutaur and Verchot, 2007). From these soils, forests 

consume the most atmospheric CH4 (Dutaur and Verchot, 2007) and are now recognised 

as a major contributor to CH4 oxidation in terrestrial ecosystems (Wang and Ineson, 2003).  

Forest edges have become important features in European landscapes (Hofmeister et al., 

2013) and differ substantially from forest interior zones in terms of microclimate via air and 

soil temperature, light availability, soil moisture and wind speed, and atmospheric deposition 

(e.g. Marchand and Houle 2006; Wuyts et al. 2008a, 2008b, see § 1.1 and 1.4). Most studies 

on N and C trace gases so far have been conducted in the forest interior. However, edge 

effects generating gradients in N deposition and microclimate may bias regional estimates, 

especially in highly fragmented landscapes. 

Regarding microclimate, soil moisture is a key variable affecting the emission rates of N and 

C trace gases (Firestone and Davidson, 1989). Soil water acts as a transport medium for 

nitrate (NO3
-) and ammonium (NH4

+) and influences the rate of O2 supply, thereby controlling 

whether aerobic processes such as nitrification and methane uptake or anaerobic processes 

such as denitrification and methane production dominate within the soil profile. At a water 

filled pore space (WFPS, the ratio of volumetric soil water content to total soil porosity) below 

50 %, an increase in soil moisture will increase NO emission, while at a WFPS higher than 

60 %, NO emission decreases due to the reduced diffusion efficiency of the gas and 

increasing dominance of denitrification (Davidson et al., 2000; Fig. 3.1). Other soil 

physicochemical factors such as pH, temperature, mineral N and organic matter content are 

also considered to influence trace gas fluxes (Wang and Ineson, 2003; Rütting et al., 2013). 
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Fig. 3.1: Conceptual figure of the relative contribution of nitrification (grey area) and denitrification 

(white area) to NO, N2O and N2 emissions in function of soil water filled pore space (WFPS, %) 

(adapted from Davidson et al., 2000). 

Many studies have investigated the effects of elevated atmospheric N deposition on forest 

biogeochemistry. Butterbach-Bahl et al. (2002) measured an increase in NO and N2O fluxes 

at higher N-affected sites (22 kg N ha-1 yr-1) as compared to sites with moderate atmospheric 

N input (15 kg N ha-1 yr-1). Skiba and Smith (2000) identified the interacting effects of 

substrate supply (as N additions or mineralisation of organic N), soil moisture and 

temperature as the key drivers of N2O emission. In addition, Butterbach-Bahl et al. (2002) 

demonstrated that in pine forest sites with moderate atmospheric N deposition CH4-uptake 

rates were two- to five-fold higher than at the sites with high atmospheric N input. It has 

generally been accepted that the consumption of CH4 in soils is inhibited by nitrogenous 

fertiliser additions (Smith et al, 2000; Jassal et al., 2011). Besides the oxidation of CH4, the 

enzyme methane monooxygenase also has the ability to convert ammonia to nitrite (Bodelier 

and Laanbroek, 2004). However, depriving methane-oxidising bacteria of a N-source 

hampers their growth and activity. Hence, in N-limited conditions the oxidation of CH4 can 

be stimulated by the addition of N (Papen et al., 2001; Bodelier and Laanbroek, 2004). 

In this study, we investigated the fluxes of N2O, NO and CH4 along an edge-to-interior-

transect in an oak (Q. robur) and a pine (P. nigra) stand, which are common tree species in 

the studied region. We hypothesized that due to the enhanced atmospheric N deposition, 

contrasting microclimate (soil moisture and temperature) and soil physicochemical variables 

(pH, C/N) at the forest edge versus interior, nitrogen oxide emissions are increased and CH4 

uptake is decreased while moving from the forest edge to the interior. 
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3.2. Material and methods 

3.2.1. Study site and experimental set-up 

The study was performed in two (Qr2 and Pn2) of the six selected forest edges, described 

in chapter 1 (§ 1.6). An overview of the stand and physicochemical characteristics of the oak 

stand Qr2 and the pine stand Pn2 can be found in Table 1.1. Briefly, mean annual air 

temperature is 10.5°C and mean annual precipitation is 800 mm (data obtained from a 

nearby weather station operated by the Royal Meteorological Institute of Belgium, 1981 - 

2010). Both forest stands are even-aged monocultures and grow on acid, quartz-dominated 

Podzols (Wuyts et al., 2008b). Previous land use was heathland until afforestation in last 

century (1939 for Qr and 1964 for Pn2). The considered forest edges are facing the locally 

prevailing wind direction (west to southwest), which creates the steepest throughfall 

deposition gradients (Draaijers et al., 1988). Leaf area index (LAI) (± standard deviation) in 

the oak stand is 2.1 ± 0.5 and 1.9 ± 0.1, respectively in the edge and interior, and is 2.8 ± 

0.2 and 1.8 ± 0.1, respectively in the edge and interior of the pine stand (Wuyts et al., 2011).  

In each stand, four blocks were delineated: two blocks (block 1 and 2) were situated in the 

edge (0 – 5 m) and two blocks (block 3 and 4) were in the forest interior (64 m, Fig. 3.2). In 

total, twenty chambers for measuring gas fluxes were divided over the four blocks, so that 

each block consisted of five chambers: three static chambers for N2O/CH4 flux measurement 

and two dynamic chambers for NOx flux measurement. The minimum distance between the 

chambers within each block was 3 m. Understory vegetation was naturally absent at the 

chamber positions.  

Reference chambers were used for determination of ambient air concentrations of N and C 

trace gases. The steering boxes, controlling opening, closing and air sampling of the 

chamber headspace, were placed in a central position between the edge and interior blocks 

(at 32 m from the edge). Due to the novel and explorative character of this study, each stand 

was monitored continuously for only two weeks (from 23 April until 8 May 2014 in the oak 

stand and from 9 to 23 May 2014 in the pine stand). Additional soil moisture (TDR probe CS 

625-L, Campbell Scientific, United Kingdom) and temperature (iButton DS1921G, Fondriest 

Environmental, USA) measurements were executed every 2 hours at a depth of 5 cm on an 

edge-to-interior transect parallel to the measuring chambers. By using these measuring 

chambers we focused on soil fluxes of N and C trace gases, as it was not our aim to obtain 

an inventory of the GHG emissions of the whole ecosystem. 
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Fig. 3.2: Experimental set-up used to measure N2O, NO and CH4 fluxes. Black = reference chamber, 

white = N2O/CH4 static chamber, grey = NO dynamic chamber, white cross = N2O/CH4 steering box, 

grey cross = NO steering box. Numbers 1 to 4 refer to the respective blocks (block 1 and 2 = edge, 

block 3 and 4 = interior). In total 12 static chambers (numbers 1 to 12) and 8 dynamic chambers 

(numbers 1 to 8) were used in each forest.  = soil moisture measurement,  = soil temperature 

measurement. 

 

3.2.2. Measurement of N2O, NO and CH4 fluxes  

For determination of N2O, CH4 and NOX fluxes a fully automated measuring system was 

used, described in detail by e.g. Papen and Butterbach-Bahl (1999), Rosenkranz et al. 

(2006) and Wu et al. (2010). Gas samples for N2O and CH4 were taken at a rate of 

200 ml min-1 and water vapour and CO2 were removed prior to analysis. Air samples were 

analyzed by a Shimadzu GC 17A gas chromatograph (GC) equipped with an electron 

capture detector (ECD) for detection of N2O and flame ionization detector (FID) for detection 

of CH4. For NOX flux measurements, ambient air was sucked at a constant rate (54 l min-1) 

across the surface of the chambers by a sampling pumps and transported via PTFE tubings 

to a NOx analyser consisting of a chemoluminescence detector CLD 88p and a photolysis 

converter PLC 860 (both Ecophysics AG, Switzerland). All PTFE sampling tubings were 

surrounded by black, light impermeable PE tubing, in order to exclude photolysis of NO2 

within the tubings. The IFU data acquisition system for Windows (IDASw) was used to 

govern and control the automatic measuring system and to acquire and store all data. Both 
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detectors of the gas chromatograph were automatically calibrated every 18 minutes 

analyzing standard gas (0.4 ppm N2O and 4.0 ppm CH4 in synthetic air, Air Liquide, 

Germany). Calibration of the NOX analyzer was performed weekly using 40 ppb NO in 

synthetic air produced by dilution of recalibrated standard gas (4 ppm NO in N2, Air Liquide, 

Germany) with synthetic air (Air Liquide, Germany) using a computerized multi-gas 

calibration system (Environics 6100, Environics Inc., USA). 

The static chambers within blocks 1 and 2 (edge) or 3 and 4 (interior) were closed for 96 

minutes each during which 4 air samples were taken and analysed for N2O and CH4 

concentration changes over time and used for linear flux calculation. Every dynamic NOX 

chamber was closed and measured for 6 minutes and thereafter opened, and before each 

sampling of a measuring chamber, the reference chamber was sampled. Within each 6 

minutes sampling time, concentrations of NO, NO2 and O3 were determined two times. 

Corrections for initial concentrations of NO, NO2 and O3 at the outlet of each chambers and 

calculation of fluxes of NO and NO2 were performed according to Butterbach-Bahl et al. 

(1997). Ozone concentrations were determined simultaneously to NO and NO2 using an 

infrared ozone analyzer (TE49C, Thermo Environmental Instruments Inc., USA). All 

instruments and computers used were located inside a measuring truck and electrical power 

was provided by a power generator (12 kW) placed 150 meters away (downwind) from the 

actual measuring sites. 

 

3.2.3. Soil analysis 

At the end of the trace gas flux measuring campaigns, ectorganic layer and mineral soil 

samples were taken at each chamber position. Mineral soil samples were taken with a soil 

auger to a depth of 30 cm. A subsample of 5 g sieved fresh soil was extracted with 10 ml 1 

M KCl, shaken for 1 h (150 rpm), and filtered (Schleicher & Schuell Microscience 598 ½) 

prior to analysis of NH4
+ and NO3

- concentrations. Ammonium was determined 

colorimetrically by the salycilate-nitroprusside method (Mulvaney, 1996) on an auto-

analyzer (AA3, Bran & Luebbe, Germany). Nitrate was determined colorimetrically using the 

same auto-analyzer after reduction of NO3
- to nitrite (NO2

-) in a Cu-Cd column, followed by 

the reaction of NO2
- with N-1-napthylethylenediamine to produce a chromophore. The 

remainder of the mineral soil samples at each chamber position were pooled, dried for 48 h 

at 40 °C and analysed for N and C concentration with a CNS elemental analyzer (Vario 

Macro Cube, Elementar, Germany). Ectorganic layer (including litter, fragmented and 

humified litter) samples were dried for 48 h at 65 °C and ground (ZM1, Retsch, Germany), 
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before being analysed by the same CNS elemental analyzer. All samples were analysed for 

pH-H2O (pH meter Orion 920A with pH electrode model Ross sure-flow 8172 BNWP, 

Thermo Scientific Orion, USA) by using a 1:5 ratio and shaking the diluted samples for 5 

min at 300 rpm. At each chamber position, thickness of the ectorganic layer was determined 

with a folding rule. The WFPS was calculated as described in Haney and Haney (2010). 

 

3.2.4. Statistical analysis 

Spatial variability of the gas fluxes within one forest was determined by calculating the 

coefficient of variation (cv) via Eq. (3.1) 

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 (𝑐𝑣 )(%) =  𝜎 𝑥⁄ ∗ 100       (Eq. 3.1) 

where σ is the standard deviation and 𝑥 is the mean flux (both expressed as µg m-2 h-1) 

calculated from the data of all chambers within one stand. The oak and pine stand were 

analysed separately. All statistical analyses were performed with R using package lme4. A 

linear mixed-effect model was used to assess the effect of the discrete predictor variable, 

edge proximity (edge/interior), on trace gas fluxes. The model comprised a random term 

where measuring chamber was nested within block, representing the hierarchy of the set-

up. The need for a mixed-effect model was verified by comparison with a linear model, 

comprising edge proximity as predictor variable. The appropriate model was chosen based 

on the Akaike Information Criterion (AIC) values. The influence of the soil physicochemical 

variables (soil moisture, soil temperature, N throughfall, C/N ratio and pH of litter layer and 

mineral soil, NH4
+ and NO3

- concentrations of mineral soil and litter depth) on N and C trace 

gas fluxes was also tested via mixed-effect models. The relationship between the fitted 

values and the residuals of each model was checked to ensure normality and 

homoscedasticity. 

 

3.3. Results 

3.3.1. Soil physicochemical variables 

In both stands, the edge was significantly drier (p < 0.05) than the interior throughout the 

measurement campaign. Mean water filled pore space (WFPS) was 18 and 27 % 

respectively, at the edge and interior of the oak stand and 11 and 29 %, respectively, at the 

edge and interior of the pine stand. During the experiment, soil temperature differed 

significantly between edge and interior of both stands (12.5 and 10.5 °C, respectively at the 

edge and interior of the oak stand, p < 0.001 and 14.0 and 13.0 °C at the edge and interior 
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of the pine stand, p < 0.001). Total rainfall during the experiment amounted up to 88 mm 

and 189 mm, in the oak and pine stand, respectively. Correlation analyses (data not shown) 

revealed that soil moisture positively influenced NO emission in both stands (r = 0.76, p < 

0.05, n = 16), while it negatively influenced CH4 uptake (r = 0.31, p < 0.01, n = 24). Nitrous 

oxide emissions were unaffected by soil moisture (p > 0.05). Soil temperature did not affect 

N and C trace gas fluxes (p > 0.05). Carbon to N ratios, soil pH values, soil NH4
+ and NO3

- 

concentrations and litter depth and their influence on the measured N and C trace gas fluxes 

are shown in Table 3.1. 

 

Table 3.1: a) Mean physicochemical variables (± standard deviation) of the ectorganic layer (el) and 

the mineral soil (ms) in the oak and the pine stand and b) significance of the effects of these 

physicochemical variables on the N and C trace gas fluxes according to the linear mixed-effects 

model outcome. Bold values are significant (p < 0.05), (+) positive correlation, (-) negative 

correlation. 

 

 

 

 

 

 

 

 

 

 

 

a Location 

C/N ratio 

el 

C/N ratio 

ms 

NH4
+ 

concentration 

(mg kg-1) ms 

NO3
- 

concentration 

(mg kg-1) ms 

pH   

(H2O)  

el 

pH 

(H2O) 

ms 

Ectorganic 

layer (cm) 

Oak Edge 16.4 ± 0.5 13.8 ± 0.8 10.4 ± 0.9 5.9 ± 3.2 4.3 ± 0.2 4.2 ± 0.1 4.4 ± 1.5 

 

Interior 17.0 ± 0.8 14.4 ± 1.0 9.7 ± 0.8 9.5 ± 3.5 4.1 ± 0.2 4.0 ± 0.1 7.2 ± 1.1 

Pine Edge 25.3 ± 2.1 18.5 ± 1.5 9.4 ± 0.8 1.0 ± 0.4 4.0 ± 0.2 3.9 ± 0.1 5.6 ± 2.6 

  Interior 24.9 ± 2.4 19.5 ± 1.7 8.8 ± 1.2 0.6 ± 0.2 4.0 ± 0.1 4.1 ± 0.2 5.8 ± 1.6 

b 

        
N2O emission 0.734 < 0.001 (-) < 0.001 (+) < 0.01 (+) 0.972 0.391 0.136 

NO emission 0.274 0.057 0.176 0.056 0.827 0.285 0.191 

CH4 uptake 0.538 < 0.01 (+) 0.148 0.877 < 0.01 (-) 0.052 < 0.05 (+) 
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3.3.2. Nitrous oxide emission 

There was no significant effect of edge proximity in the oak stand (p > 0.05, Fig. 3.3a), i.e. 

N2O emissions of forest edges (mean ± standard deviation 6.8 ± 2.4 µg N m-2 h-1) did not 

differ from forest interiors (7.7 ± 2.3 µg N m-2 h-1). The spatial variability of N2O emission 

between measuring chambers was high, with a cv of 50 % over all blocks. A significant effect 

of edge proximity was also lacking in the pine stand (p > 0.05), with a mean N2O emission 

of 2.6 ± 1.4 µg N m-2 h-1 at the edge and 1.7 ± 1.5 µg N m-2 h-1 at the interior (Fig. 3.3b). The 

spatial variability of N2O emission between measuring chambers in the pine stand was very 

pronounced, with a cv of 124 % over all blocks.  

 

3.3.3. Nitric oxide emission 

Nitric oxide emissions differed significantly between the edge and interior of the oak stand 

(p < 0.01, R² = 0.55, Fig. 3.3c), with higher NO emission in the forest interior. The mean NO 

emission (± standard deviation) was 43.5 ± 11.4 µg N m-2 h-1 at the edge and 105.9 ± 38.6 

µg N m-2 h-1 at the interior, being on average 60 % lower at the forest edge. The cv over all 

blocks is of the same magnitude as the spatial variability in N2O emission, i.e. 49 %. There 

was no effect of edge proximity in the pine stand, with a mean NO emission of 35.5 ± 21.6 

µg m-2 h-1 at the edge and 11.7 ± 14.9 µg m-2 h-1 at the interior (p > 0.05, Fig. 3.3d). The 

spatial variability of the NO emission between measuring chambers in the pine stand was 

high, with a cv of 79 % over all blocks. In both stands, the NO emissions were approximately 

9 times higher than N2O emissions. 

 

3.3.4. Methane uptake 

In the oak stand, edges took up more CH4 than interior sites (p < 0.05, R² = 0.60, Fig. 3.3e). 

The mean CH4 uptake (± standard deviation) was -59.6 ± 19.2 µg m-2 h-1 at the edge and -

21.4 ± 10.8 µg m-2 h-1 at the forest interior, being on average 177 % higher at the forest 

edge. There was no significant effect of edge proximity in the pine stand, since mean CH4 

uptake was -22.7 ± 7.8 µg m-2 h-1 at the edge and -16.6 ± 5.3 µg m-2 h-1 at the forest interior 

(p > 0.05, Fig. 3.3f). Among the trace gases studied, the spatial variability of CH4 uptake 

rates was the least pronounced (indicated by the low cv, i.e. 31 % in the oak stand and 38 

% in the pine stand). 
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Fig. 3.3: Mean daily N2O emission, NO emission and CH4 uptake at the edge and interior of the oak 

(a,c,e) and pine stand (b,d,f). Error bars indicate standard deviations. 
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3.4. Discussion 

In this study, we investigated N and C trace gas fluxes along an edge-to-interior transect in 

two temperate forest stands, comprising monocultures of oak and pine. Most studies on N 

and C trace gases measure several year-round fluxes to observe intra- and inter-annual 

fluctuations. However, we preferred to perform an explorative measurement campaign at 

high temporal resolution to get a first insight in the - up to now - unexplored edge effect on 

N and C trace gas fluxes, and therefore chose to measure continuously (every two hours) 

during two weeks in each stand. As the number of measurement chambers was limited, the 

experimental set-up (Fig. 3.2) could not be used in the oak and pine stand within the same 

monitoring period. Therefore, we did not aim at comparing N and C trace gas fluxes from 

the oak and the pine stand. High coefficients of variation (cv) of the N and C trace gases, 

inherent to trace gas fluxes, were observed. Nevertheless, clear signals were detected. 

 

3.4.1. Edge effects on NO and N2O emission 

In the oak stand, there was an edge effect on NO emission, with lower NO emissions at the 

forest edge. Although edges in the pine stand emitted on average more NO than the interior, 

the edge effect on NO emission was not significant in the pine stand due to the large 

variability. In the forest interior, LAI was lower and understory vegetation was less dense, 

causing less rainfall interception, leading to higher throughfall volumes in the interior in the 

oak stand (Wuyts et al., 2011). Therefore, higher soil moisture values in the forest interior 

probably led to more optimal conditions for NO emissions. In this study, NO emissions were 

approximately 9 times higher than N2O emissions. The oak stand was monitored from the 

end of April until the beginning of May, which coincides with the period of oak leaf 

development. Therefore, the maximum LAI was probably only reached at the end of the 

monitoring period, which could have influenced our results.  

There was no effect of edge proximity on N2O emission rates in the oak stand, nor in the 

pine stand, although we hypothesized that enhanced atmospheric N deposition and 

contrasting microclimate at the forest edge versus interior would increase N2O emissions. 

In our studied stands, N2O emissions were rather low. The WFPS values were probably too 

low to obtain substantial N2O emissions (Fig. 3.1). Nitrous oxide emissions might increase 

in wetter and warmer conditions, as a rise in soil temperature increases the rates of 

enzymatic processes as long as other factors, such as substrate availability or moisture have 

no limiting effect (Szukics et al., 2010). Higher availability of inorganic N (NH4
+ and NO3

-) 

stimulated N trace gas emission, as this is the substrate of nitrification and denitrification 
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(Firestone and Davidson, 1989). Several authors did find significant differences in substrate 

availability between forest edge and interior. Spangenberg and Kölling (2004) measured 

lower C/N ratios of the forest floor due to enhanced N deposition in the edge of a spruce 

forest, exposed to high NH3 emission in Germany. Wuyts et al. (2008b) also measured 

higher N deposition at the edges of the oak and pine stand used in this research, compared 

to the forest interior.  

 

3.4.2. Edge effects on CH4 uptake 

Methane uptake was higher in the edge of the oak stand than in the forest interior, while 

there was no significant edge effect in the pine stand. This contradicts our hypothesis, that 

due to the enhanced atmospheric N deposition and contrasting microclimate at the forest 

edge, CH4 uptake would be lower in the forest edge than in the forest interior. Many reports 

have shown that CH4 uptake is inhibited by N that is added to soils (King and Schnell, 1998; 

Bodelier and Laanbroek, 2004). Instead, we found higher CH4 uptake in the edges, where 

N deposition is increased. This has also been observed by Bodelier et al. (2000) and De 

Visscher and Van Cleemput (2003), who attributed this increase to the type of 

methanotrophic bacteria, who became N limited after the depletion of inorganic N due to 

their cell synthesis. Furthermore, soil moisture negatively influenced CH4 uptake, as beyond 

a soil moisture optimum more soil moisture will limit O2 and CH4 diffusion (Wang and Ineson, 

2003), favouring CH4 uptake at the drier oak forest edge. Hütsch (2001) found that 

methanotrophic activity decreased with low soil pH, while this was linked to the acidifying 

effect of NH4
+ deposition. A dense litter layer may also limit CH4 uptake as gas transport is 

determined by diffusion (Adamsen and King, 1993). Methane emission from litter induced 

by UV radiation (Bruhn et al., 2012; Vigano et al., 2008) might have slightly impacted the 

CH4 flux. 
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3.5. Conclusion 

The fluxes of NO and CH4 differed between forest edge and interior, and this edge effect 

was more pronounced in the oak than in the pine stand. Our results at the oak stand 

indicated that forest edges emitted less NO and took up more CH4 (on average respectively 

60 % and 177 %). Consequently, landscape structure can play a role in the atmospheric 

budgets of these climate relevant trace gases. Soil moisture variation between forest edge 

and interior was a key variable explaining the magnitude of NO and CH4 fluxes. However, 

since soil moisture is characterised by large microsite variation, results cannot be 

generalized to other forest edges. To better understand the environmental impact of N and 

C trace gas fluxes from forest edges, additional and long-term measurements in other forest 

edges are required. Given the stated importance of forest soils in global N and C budgets 

and continuing fragmentation trends, it is clear that more information on edge effects is 

required. 
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4. Edge effect on microbial community structure and N cycling  

 

After: Remy E., Wuyts K., Verheyen K., Gundersen P., Boeckx P. Nitrogen cycling and 

microbial community structure at temperate forest edges (submitted). 

 

 

Abstract 

 

Due to forest fragmentation, forest edges have become dominant features in landscapes 

around the world. Forest edges are exposed to a different microclimate and to higher 

atmospheric nitrogen (N) deposition compared to the forest interior. It is still unclear how this 

elevated N deposition affects N cycling at temperate forest edges. In this study, the microbial 

community was mapped via the extraction of phospholipid fatty acids (PLFA) along edge-

to-interior transects and amino sugars (AS) in forest edge (0 – 5 m) and interior (64 m) in 

two oak (Quercus robur) stands, two pine (Pinus nigra) stands and one spruce (Picea 

sitchensis) stand in northern Belgium and Denmark. Nitrogen mineralization, nitrification and 

immobilization rates were obtained via the in situ 15N pool dilution technique in the forest 

edge and interior and linked to the microbial community structure. Furthermore, we 

assessed 15N recovery in simulated throughfall via the 15N tracing method in the edge and 

interior as a proxy for the long-term dynamics of the N cycle. Biomass of Gram+ bacteria 

was higher at the forest edges compared to the forest interiors and was associated to the 

observed higher mineralization rates. The oak stand was characterized by higher nitrification 

rates than the pine and spruce stands. In all forest types, the forest interior retained more N 

in the litter layer, while N was stored in deeper soil layers at the edge. Overall, our results 

indicated that the specific characteristics of the forest edge (atmospheric deposition, 

microclimate and soil physicochemical characteristics) increased microbial biomass, N 

turnover and storage capacity of soil layers beneath the litter layer and changed soil 

microbial community structure. Given the omnipresence of forest edges, more research 

should be conducted to validate our observations for other forest and soil types. Moreover, 

it is unclear how long these forest edges will be able to store additional N beneath the litter 

layer under ongoing high atmospheric deposition. 
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4.1. Introduction 

Central and Western Europe are characterized by small forest remnants resulting from a 

long-term history of land-use change (Decocq et al. 2016; Hofmeister et al., 2013). 

Consequently, forest edges have become important features in the landscape (Harper et 

al., 2005). Forest edges differ substantially from forest interior zones, via changes in air and 

soil temperature, light availability, soil moisture and wind speed (e.g. Marchand and Houle 

2006). Microclimatic gradients of soil temperature and moisture, among others, may cause 

altered decomposition and mineralization rates (Hobbie et al., 2007). Secondly, forest edges 

receive more atmospheric deposition, due to obstruction of the wind profile causing local 

advection and turbulent exchange (Draaijers, 1993). The edge effect on atmospheric 

deposition spans ca. 15 m to more than 100 m from the edge to the forest’s interior and 

causes an up to five-fold increase in throughfall deposition (De Schrijver et al., 2007). The 

magnitude and depth of edge effects depend on several forest characteristics, including tree 

species, stand density and stand structure (Draaijers, 1993; De Schrijver et al., 1998; 

Devlaeminck et al., 2005; Wuyts et al. 2008a, 2008b, 2008c, 2009b). 

Most forests of mid to high latitudes on the northern hemisphere were N limited until the 

1950s, but due to a high atmospheric N load during the last decades this has changed 

considerably (Dupré et al., 2010). For example, in Europe, very high N deposition values (> 

35 kg N ha-1 yr-1) are observed in intensive livestock breeding areas (de Vries et al., 2011; 

MIRA 2011). Characteristics of N limitation are strong N recovery and efficient recycling of 

available N (Perakis et al., 2005). However, when forests become N saturated, excess N 

can be lost from the ecosystem via leaching and denitrification (Templer et al., 2012). 

Besides eutrophication, other harmful effects of increased N inputs include soil acidification, 

i.e. loss of exchangeable cations and the mobilization of aluminum and other potentially toxic 

metals (Wilpert et al., 2000), pollution of groundwater reserves (Dise et al., 2009) and 

biodiversity loss (De Schrijver et al., 2011). However, in forest edges, higher N deposition 

does not always lead to enhanced N losses, since Spangenberg and Kölling (2004) and 

Wuyts et al. (2011) found higher N deposition but lower inorganic N leaching in the first 30 

m of forest edges of oak, birch, beech, spruce and pine monocultures compared to the forest 

interior. Moreover, Remy et al. (2016a) showed that gaseous N losses of nitric oxide (NO) 

were lower at the forest edge compared to the interior (see Chapter 3). Therefore, improved 

understanding of how ecosystem N pools and fluxes respond to increased N deposition is 

needed (Lu et al., 2011). 
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The 15N tracing method is used to study the fate and recovery of N input (Schlesinger, 2009). 

By labelling N input with 15N, the distribution of this N to the different ecosystem pools can 

be traced over time (Dörr et al., 2012). Furthermore, the 15N pool dilution technique has 

been widely used to quantify gross N transformation rates (Dannenman et al., 2006; 

Staelens et al., 2012a). The principle is based on the dilution of a product pool that has been 

labelled with 15N (Hart et al., 1994). However, many pool dilution experiments have been 

conducted via laboratory incubations, altering the in situ N transformation rates, as soil 

disturbance promotes gross N mineralization (Booth et al., 2006). Here, we used the in situ 

15N soil-labelling method, developed by Rütting et al. (2011), called the ‘virtual soil core’ 

injection, which enables the study of undisturbed soils with live roots and their associated 

microbial communities. Soils are only disrupted at sampling, insuring that soil temperature, 

water and gas exchange, as well as plant root and microbial activity remain under field 

conditions during the experiment. 

The soil microbial community plays an essential role in the regulation of N cycling (Balser 

and Firestone, 2005). Scheu and Parkinson (1994) showed that fungi dominate in acid 

coniferous forest soils, although a shift to bacterial dominance may occur under the influence 

of high N deposition (Nilsson et al., 2007; Kjøller et al., 2012). Phospholipid fatty acids 

(PLFA) and amino sugars (AS) can both be used to determine the relative contribution of 

bacteria and fungi to the production of microbial derived organic matter (Frey, 2004; Nilsson 

et al., 2007). While PLFA are primarily derived from cell membranes, AS are released from 

cell wall biopolymers chitin and peptidoglycan (Zelles, 1999; Amelung, 2001). Lipid profiles 

can quantify presence and relative abundance of Gram- bacteria, Gram+ bacteria, 

actinobacteria and fungi in soil communities (Zogg et al., 1997). While PLFA are found in 

living organisms and decompose quickly after cell death (Zelles, 1999), AS are found in 

living and dead microbial biomass, reflecting historical microbial community changes and 

current community structure (Glaser et al., 2004). Of the more than 26 identified AS, only 

three occur in considerable amounts in soil, namely glucosamine, galactosamine and 

muramic acid (Griepentrog et al., 2014). Liang et al. (2008) stated that there is a lack of 

studies considering both PLFA and AS analysis to provide knowledge on the role of the 

microbial community in soil nutrient cycling. 

 

The specific aims of this study were (i) to link soil microbial community structure along the 

edge-to-interior transects to N cycling rates, (ii) to quantify mineralization and nitrification 

rates, and N recovery in function of distance to the forest edge, and (iii) to interpret the 15N 

recovery as an indicator for N retention, where low recoveries indicate an open N cycle. We 
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investigated the structure and abundance of the microbial community by extracting PLFA 

and AS from mineral soil in oak, pine and spruce stands, situated in agricultural landscapes 

in Belgium and Denmark. We used analytical pool dilution equations, originally developed 

by Kirkham and Bartholomew (1954), to quantify gross and net mineralization and 

nitrification rates in forest edges and interiors. Finally, we estimated N retention by following 

the fate of 15N in simulated throughfall and measuring the percentage of added 15N that was 

recovered over a period of 10 months in the organic and mineral soil layers. Due to the 

higher N deposition and contrasting microclimate at the forest edge, we hypothesized: (i) 

dominance of bacteria over fungi and (ii) higher mineralization and nitrification rates at the 

forest edge; consequently (iii) higher nitrification rates would be expected to lead to higher 

N losses and thus lower 15N recovery in the forest edge. 

 

4.2. Material and methods 

4.2.1. Study sites 

The study was performed in the oak stand near Ravels (Qr2), in the pine stand in Poppel 

(Pn2), both situated in the province of Antwerp (Belgium) and in the spruce stand in Sonder 

Omme, Denmark (Ps, Table 1.1). The microbial community was identified in two more forest 

stands, the oak stand (Qr1) in Wortegem and the pine stand (Pn1) in Zedelgem, both in the 

province of West-Flanders (Belgium). The mean annual air temperature and precipitation in 

1981 - 2010 are 10.5°C and 800 mm in Belgium and 7.4°C and 900 mm on the peninsula of 

Jutland (Denmark; data obtained from the nearest weather station operated by the Royal 

Meteorological Institute of Belgium and the Danish Meteorological Institute respectively for 

the Belgian and Danish forests). Monospecific forest stands of pedunculate oak (Quercus 

robur L.), Corsican pine (P. nigra ssp. laricio Maire) and Sitka spruce (Picea sitchensis 

(Bong) Carr.) were selected with similar soil type, stand history and edge orientation (Table 

1.1). All forests are even-aged monocultures growing on acid, quartz-dominated Podzols. 

Previous land use was heathland before the afforestation last century. The considered forest 

edges are facing the locally prevailing wind direction (west to southwest), which creates the 

steepest throughfall deposition gradients (Draaijers et al., 1988). Yearly N throughfall 

deposition fluxes are available from previous studies in the same forest stands at exactly 

the same distances from the edge (Wuyts et al., 2008b, 2011; Ginzburg, 2014, Table 1.1). 

Average yearly N leaching fluxes were 27 kg ha-1, 17 kg ha-1 and 9 kg ha-1, respectively at 

the edge (0 – 20 m) of Qr2, Pn2 and Ps. Average yearly N leaching in the interior amounted 

to 25 kg ha-1, 16 kg ha-1 and 5 kg ha-1, respectively in Qr2, Pn2 and Ps. 
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4.2.2. Soil microbial community 

4.2.2.1. Sampling and extraction 

For the PLFA analysis, three replicate samples in all five forests were taken (September 

2015) with a soil auger from the upper 10 cm of the mineral soil (Fig. A-I), at the forest edge 

(0 - 5 m) and at 16, 64 and 128 m from the forest edge. Soil samples were frozen until further 

analysis. Phospholipid fatty acids (PLFA) were extracted following a procedure explained in 

detail by Moeskops et al. (2010). Eight g of mineral soil from each sample was sieved (2mm) 

in order to homogenize and remove the root fragments and stones. This sieved soil was 

subjected to different extraction procedures for three days. On the first day, total lipids were 

separated from other soil components using a multi-phase extraction mixture of P buffer (0.1 

M, pH 7.0, mixture of K2HPO4 and KH2PO4), chloroform (CHCl3) and methanol (CH3OH) in 

volume ratios of 0.8:1:2, in a separation funnel. On the second day, the extracted lipids were 

fractionated into neutral, glyco- and phospholipids using silica Solid Phase Extraction (SPE) 

cartridges (Chromabond, MachereyeNagel GmbH, Germany), after which only 

phospholipids were kept for further analysis. The separated PLFA were transformed into 

fatty acid methyl esters (FAMEs) by mild alkaline methanolysis. After drying the FAMEs 

under N2 gas, the FAMEs were re-dissolved in hexane containing nonadecanoic acid methyl 

ester (C19:0) as an internal standard FAME. Finally, individual FAMEs were identified and 

quantified by Gas Chromatography-Mass Spectrometry (GC-MS) on a Thermo Focus GC 

combined with a Thermo DSQ quadrupole MS (Interscience BVBA, Belgium) in electron 

ionization mode. The PLFA i15:0, a15:0, 15:0, i16:0, 17:0, i17:0 and a17:0 were indicators 

of Gram+ bacteria, while PLFA 16:1w7c, 16:1w9c, cy17:0 and cy19:0 were indicators of 

Gram- bacteria. Fungal PLFA were 18:1w9c, 18:2w6c and 18:3w6c. 

Amino sugar analysis was performed on three replicate samples of the 0 - 10 cm mineral 

soil at the forest edge (0 – 5 m) and at the forest interior (64 m) collected in September 2015. 

Extraction of amino sugars from bulk soil samples was adapted from the method described 

by Zhang et al. (1998) and Bodé et al. (2009). Mineral soil (0.5 g) was hydrolyzed by adding 

10 ml 6 M HCl and an internal standard (myo-inositol) and subsequently heated for 8 h at 

105 °C. Samples were filtered over glass fiber filters (GF/C, Whatman, Dassel, Germany) 

and the filtrate was evaporated to dryness at 40–45 °C under reduced pressure to remove 

HCl. Dried filtrate was redissolved in Milli-Q water (Direct-Q 3 System, Millipore, Billerica, 

MA, USA), transferred in a 2 ml tube (Eppendorf, Hamburg, Germany) and centrifuged. The 

supernatant was added onto a cation exchange resin (AG 50W-X8, Bio-Rad Laboratories, 

Hercules, CA, USA). After rinsing the resin with Milli-Q water to remove neutral and 
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negatively charged compounds, the fraction containing amino sugars was eluted with 0.5 M 

HCl and again evaporated to dryness to remove HCl. Dried amino sugars were redissolved 

in Milli-Q water and transferred in a 2 ml tube. After desiccation using a centrifugal vacuum 

concentrator (SpeedVac, Thermo Scientific, Langenselbold, Germany), samples were 

stored at -18 °C until analysis. Compound-specific stable isotope analysis of amino sugar 

extracts was performed according to the method described by Bodé et al. (2009). Therefore, 

we used a high pressure liquid chromatography (HPLC) system existing of an autosampler 

(Surveyor Autosampler Plus, Thermo Electron, Germany) and a HPLC pump (Surveyor MS-

Pump Plus, Thermo Electron, Germany) with an analytical anion-exchange column (PA20 

CarboPac, 3 9 150 mm, 6.5 lm) that was coupled through a wet oxidation interface (LC 

Isolink, Thermo Electron, Germany) to an IRMS (DELTAPLUS XP, Thermo Electron, 

Germany). The AS muramic acid is derived exclusively from peptidoglycan of bacterial cell 

walls, while glucosamine is present in fungal and bacterial cell walls, respectively as part of 

chitin and peptidoglycan. Galactosamine is predominantly from bacterial origin (Frey et al., 

2004). Ratios of glucosamine to muramic acid (GluMur) and of glucosamine to 

galactosamine (GluGal) are used as indicators of the relative contribution of fungi versus 

bacteria to the microbial community structure (Amelung, 2001).    

  

4.2.2.2. Statistical analysis 

All statistical analyses were performed using the software package R (version 3.3.1.) 

including package lme4 (Bates et al., 2015). We tested if variations in PLFA and AS 

concentrations and the fungal to bacterial ratios were associated with distance to the forest 

edge and the examined forest type via linear mixed effect models. We used the following 

variables as response variables: total PLFA concentrations, total fungal PLFA, total bacterial 

PLFA, ratio of fungal to bacterial PLFA, Gram+ PLFA, Gram- PLFA, total AS, GluMur and 

GluGal. Predictor variables were distance to the forest edge, forest type (oak, pine, spruce) 

and the interaction of distance to the forest edge and forest type. Firstly, the need of a linear 

mixed-effect model, including the forest location (five stand locations) as a random factor, 

was tested for each response variable. In this way, the non-independence of samples from 

the same forest has been taken into account. The linear mixed-effect model was compared 

with a linear model with the same predictor variables. The appropriate model was chosen 

based on the lowest AIC (Akaike Information Criterion) value. The contribution of each 

predictor variable to the model was tested against the null model with one-way analysis of 

variance (ANOVA). Normality, homoscedasticity and the relationship between the fitted 

values and the residuals of each model was checked via diagnostic plots. 
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Next, we used Spearman rank correlation analyses (rs = correlation coefficient) to examine 

correlations between PLFA and AS concentration (total PLFA, fungal PLFA, bacterial PLFA, 

ratio of fungal to bacterial PLFA, total AS, GluMur and GluGal) and environmental and soil 

physicochemical variables (soil moisture, soil temperature, N deposition, C/N ratio of forest 

floor and mineral soil and pH-KCl of mineral soil). Soil moisture (TDR probe CS 625-L, 

Campbell Scientific, United Kingdom) at the edge, 16 m, 32 m and 64 m and temperature 

(iButton DS1921G, Fondriest Environmental, USA) measurements at the edge, 16 m, 64 m 

and 128 m from the edge were executed every 2 hours at a depth of 5 cm from November 

2013 until November 2015. Nitrogen deposition, soil and forest floor C/N ratios and soil pH 

values were extracted from previous studies by Wuyts et al. (2008b, 2013) and Ginzburg 

(2014) in the same forest stands. 

 

4.2.3. Nitrogen transformation in mineral soil 

4.2.3.1. Plot installation and N addition 

In Qr1, Pn1 and Ps, ten 1 x 1 m² plots were selected at the edge (0 – 5 m) and interior (64 

m) with an inter-distance of 8 m. One week prior to 15N addition, the fresh litter layer (L) and 

fermentation and humus layer (FH) were carefully removed over an area of 40 x 40 cm². 

Two separate nylon meshes (12 x 20 cm², 1 mm mesh size), indicating the two injection and 

sampling locations (§ 4.2.3.2.) were put on top of the mineral soil before putting back the FH 

and L layer. The mesh allowed distinguishing the top of the mineral layer (Fig. A-I) in the 

following 15N label injection and soil sampling steps. The 15N treatments were applied to five 

sites each, both at the edge and interior. Each treatment consisted of a water solution with 

ammonium (NH4
+) and nitrate (NO3

-) in which one of the N moieties was labelled with 15N at 

99 atom % excess. The 15N was applied as 15NH4Cl and Na15NO3 and added concentrations 

were based on actual measured concentrations of NH4
+ and NO3

- in soil, one week prior to 

the injections. Briefly, a subsample of 5 g sieved fresh mineral soil was extracted with 10 ml 

1 M KCl, shaken for 1 h (150 rpm), and filtered (Schleicher & Schuell Microscience 598 ½) 

prior to analysis of NH4
+ and NO3

- concentrations. Ammonium was determined 

colorimetrically by the salycilate-nitroprusside method (Mulvaney, 1996) on an auto-

analyzer (AA3, Bran & Luebbe, Germany). Nitrate was determined colorimetrically using the 

same auto-analyzer after reduction of NO3
- to nitrite (NO2

-) in a Cu-Cd column, followed by 

the reaction of NO2
- with N-1-napthylethylenediamine to produce a chromophore. In Qr1, 

Pn1 and Ps 30.9 mg NH4-N l-1 and 23.6 mg NO3-N l-1, 32.5 mg NH4-N l-1 and 2.7 mg NO3-N 

l-1 and 43.6 mg NH4-N l-1 and 38.3 mg NO3-N l-1 was added, respectively. To assure an even 
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distribution of the applied N in the mineral topsoil (0 – 10 cm), the solutions were injected 

four times using a holder consisting of four 1.5 ml needles (10 cm length), spaced 3 cm from 

each other, into the soil surface covered by the nylon mesh, resulting in a grid of 16 injection 

points. Short-term experiments of 2 days were used to avoid remineralization of immobilized 

15N (Takahashi, 2001). Moreover, 15N was injected in a larger area than the area that would 

be sampled, to avoid 15N dilution from non-labelled soil, as recommended by Rütting et al. 

(2011).  The applied 15N label was homogenously injected into the virtual soil cores. The 15N 

treatments (15NH4
+ and 15NO3

-) were applied concurrently, after which the locations were 

immediately covered with the nylon mesh, FH and L layers.  

 

4.2.3.2. Sampling and chemical analysis 

Before soil sampling, the L and FH layers and the nylon mesh were removed. The 15N 

labelled mineral soil was sampled with a PVC tube (5 cm inner diameter) that was pushed 

10 cm into the soil in the middle of the soil surface injected with15N. The 0-10 cm mineral 

soil was sampled 15 min and 2 days after label injection. The experiment was conducted 

during clear, sunny days in June. Care was taken to keep the same time lag between soil 

injection, sampling and processing (within 1.5 h after the sampling) for each of the five spatial 

replicates per location (edge-interior), treatment and time step. A subsample of 60 g fresh 

soil was sieved, extracted with 120 ml 1 M KCl, shaken for 1 h (150 rpm) and filtered 

(Schleicher & Schuell Microscience 598 ½) prior to the analysis of 15N contents of NH4
+ and 

NO3
-. The 15N contents of NH4

+ and NO3
- were analysed after conversion to N2O using a 

trace gas preparation unit (ANCA-TGII, Sercon, UK) coupled to an IRMS (20-20, Sercon, 

UK). Ammonium was converted by adding MgO to soil extracts and absorbing NH3 into 

H2SO4, after which N2O was produced by reaction with NaOBr (Saghir et al., 1993). Nitrate 

was reduced by Cd-Cu at pH 4.7 to produce nitrite and NH2OH as intermediates of N2O 

(Stevens et al., 1998). Nitrate concentrations were very low in the spruce forest Ps, therefore 

conversions to N2O were done by bacterial denitrification, as described by Xue et al. (2013). 

This method allows for the determination of δ15N of N2O produced from the conversion of 

NO3
- by denitrifying bacteria, which naturally lack N2O-reductase activity (Xue et al., 2010). 

Gross mineralisation (m) was calculated via the dilution of 15NH4
+ (Eq. 4.1) and gross 

nitrification (n) via the dilution of 15NO3
- (Eq. 4.2), taken from Griffin (2007), but based on the 

original equation from Kirkham and Bartholomew (1954). 

𝑚 (𝑚𝑔 𝑁 𝑘𝑔−1 𝑠𝑜𝑖𝑙 𝑑−1) =
[𝑁𝐻4

+]
0

−[𝑁𝐻4
+]

𝑡

𝑡
 𝑥 

log (
𝐴𝑃𝐸0
𝐴𝑃𝐸𝑡

)

log [𝑁𝐻4
+]

0
/[𝑁𝐻4

+]
𝑡

    (Eq. 4.1) 
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𝑛 (𝑚𝑔 𝑁 𝑘𝑔−1𝑠𝑜𝑖𝑙 𝑑−1) =  
[𝑁𝑂3

−]0−[𝑁𝑂3
−]𝑡

𝑡
 𝑥 

log (
𝐴𝑃𝐸0
𝐴𝑃𝐸𝑡

)

log [𝑁𝑂3
−]0/[𝑁𝑂3

−]𝑡
    (Eq. 4.2) 

where [𝑁𝐻4
+]0 and [𝑁𝐻4

+]𝑡 are soil NH4
+ concentrations at time zero (15 min. and time t (2 

days), [𝑁𝑂3
−]0 and [𝑁𝑂3

−]𝑡 are soil NO3
- concentrations at time zero and time t and APE0 and 

APEt are atom percent excess (APE) of the respective N species at time zero and t, 

respectively. Immobilisation rates (i) were calculated based on Eq. (4.3) and (4.4), 

respectively for NH4
+ and NO3

-. 

𝑖𝑁𝐻4
+ =  

𝑚 −([𝑁𝐻4
+ ]

𝑡
−[𝑁𝐻4

+]
0

)

𝑡
         (Eq. 4.3) 

𝑖𝑁𝑂3
− =

𝑛−([𝑁𝑂3
−]𝑡−[𝑁𝑂3

−]0)

𝑡
         (Eq. 4.4) 

Net mineralisation and nitrification rates were obtained by subtracting immobilisation from 

gross mineralisation and nitrification rates. The remaining soil was weighed and dried for 48 

h at 105 °C to determine soil moisture content. 

 

4.2.3.3. Statistical analysis 

Firstly, the need of a linear mixed effect model, including the forest location (five stand 

locations) as a random factor, was tested for each response variable (mineralization, 

nitrification and immobilization). This linear mixed effect model was compared with a linear 

model, where the latter had the lowest AIC (Akaike Information Criterion) value. Two-way 

analysis of variance (ANOVA) was used to test the influence of edge proximity (edge, 

interior), forest type (oak, pine, spruce) and their interaction on mineralization, nitrification 

and immobilization, followed by a post hoc Tukey’s honestly significant difference (HSD) test 

with significance for p < 0.05. We used Spearman rank correlation analyses to examine 

correlations between gross and net mineralization rate and environmental and soil 

physicochemical variables (soil moisture, soil temperature, N deposition, C/N ratios of forest 

floor and mineral soil, and pH-KCl of mineral soil) on the one hand and PLFA and AS 

concentration (total PLFA, fungal PLFA, bacterial PLFA, ratio of fungal to bacterial PLFA, 

Gram+, Gram-, total AS, GluMur and GluGal) on the other hand. The same correlations 

were checked for the gross and net nitrification and immobilization rates.  
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4.2.4. Nitrogen recovery 

4.2.4.1. Plot installation and N addition 

Per forest stand, six 1 x 1 m² plots with an inter-distance of 10 m were selected at the edge 

(0 – 5 m) and in the forest interior (64 m). The application of 15N was done in summer (August 

2014) using a hand sprayer (Gardena comfort hand sprayer 1.25 l, Germany). Per stand, 

three plots received 15NH4Cl and three plots Na15NO3 (with 15N at 99 atom % excess). The 

total added 15N amount was 30 mg m-2. First 500 ml of the 15N-solution was added on top of 

the forest floor of a plot, followed by 500 ml of distilled water to insure a swift infiltration of 

the 15N-solution. 

 

4.2.4.2. Sampling and chemical analysis 

Litter (L), fermentation and humus (FH) and mineral soil (Fig. A-I) sampling took place one 

day (T1), one month (T2) and ten months (T3) after the first 15N addition. In each plot, two 

forest floor samples were collected using a wooden frame (20 x 20 cm2). The litter layer was 

sampled separately from the fermentation and humus layer. Where the forest floor was 

removed, two samples of two mineral soil layers (0-10 cm, MS10 and 10-20 cm, MS20) were 

sampled using sharpened PVC tubes (5 cm inner diameter). The litter and FH samples were 

dried at 65°C for 48 h and milled (ZM1, Retsch, Germany), while soil samples were dried at 

40 °C for 48 h and thereafter ground by a planetary ball mill (PM400, Retsch, Germany) for 

total N and 15N analysis by an elemental analyzer (EA) (ANCA-SL, SerCon, UK) coupled to 

an isotope ratio mass spectrometer (IRMS) (20-20, SerCon, UK). Natural abundance of 15N 

in mineral soil had previously been determined for each forest (unpublished data). Percent 

of 15N tracer recovery was calculated based on a 15N mass balance (Nadelhoffer et al., 

1999): 

𝑁𝑟𝑒𝑐 (%) =  
𝑚𝑓 (𝑎𝑡𝑜𝑚% 𝑁𝑓

15 −𝑎𝑡𝑜𝑚% 𝑁𝑖)15

𝑚𝑡(𝑎𝑡𝑜𝑚% 𝑁𝑡
15 )

  𝑥 100 15           (Eq. 4.5) 

where 15Nrec = percent of 15N tracer recovered; mf = N pool of each ecosystem compartment 

(t N ha-1); atom% 15Nf = atom percent 15N in the N pool; atom% 15Ni = atom percent 15N in 

the reference N pool (i.e. natural 15N abundance); mt = the mass of tracer applied and atom% 

15Nt = atom percent 15N in excess in the added tracer. Atom percent excess values indicate 

the abundance of a stable nuclide in a sample expressed in terms of the excess, in atom 

percent, over that naturally present (= 0.37 at%).  
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4.2.4.3. Statistical analysis 

A linear mixed-effect model was used to assess the effect of the discrete predictor variables: 

edge proximity (edge, interior), time of sampling (1 day, 1 month, 10 months), layer (L, FH, 

mineral soil) and their interactions on 15N recovery. The treatments of 15NH4Cl and Na15NO3 

were analysed separately. The model comprised a random term, i.e. plot, to account for 

dependency between samples taken from the same plot. We included the function varIdent 

into the model, to correct the residuals for heteroscedasticity. The significance of the 

different predictor variables was assessed by analysis of variance (ANOVA) with a 

significance level of p < 0.05. The relationship between the fitted values and the residuals 

of each model was checked to ensure normality and homoscedasticity. We used Spearman 

rank correlation analyses to examine correlations between 15N recovery and environmental 

and soil physicochemical variables (soil moisture, soil temperature, N deposition, C/N ratios 

of forest floor and mineral soil, and pH-KCl of mineral soil), PLFA and AS concentration (total 

PLFA, fungal PLFA, bacterial PLFA, ratio of fungal to bacterial PLFA, Gram+, Gram-, total 

AS, GluMur and GluGal).   

 

4.3. Results 

4.3.1. Soil microbial community 

4.3.1.1. Phospholipid fatty acids 

Total PLFA concentrations were on average higher in the oak stands (11.6 ± 8.6 µg g-1 soil) 

than in the pine stands (5.3 ± 0.6 µg g-1 soil) and the spruce stand (3.3 ± 0.8 µg g-1 soil). 

Distance to the forest edge, forest type and the interaction of distance to the forest edge and 

forest type significantly affected total PLFA concentrations (Table 4.1). Total PLFA 

decreased with distance to the edge in the oak and pine stands. In Qr2, Pn1 and Pn2, total 

PLFA concentrations were 63 % higher at the forest edge, while in Qr1 total PLFA 

concentrations were 3 times higher at the forest edge compared to the interior. Fungal PLFA 

concentrations were only influenced by forest type, being higher in the oak stands than in 

the pine and spruce stands. Bacterial PLFA (Gram+) were influenced by distance to the 

forest edge, being higher at the edge. In the oak stands, Gram+ PLFA concentrations were 

3 (Qr1) and 2 (Qr2) times higher at the forest edge compared to the interior. In the pine 

stands, Gram+ PLFA concentrations were 65 % higher at the forest edge, while Gram+ 

PLFA concentrations were similar for edge and interior in the spruce stand. Fig. 4.1 shows 

the Gram+ PLFA concentrations for the oak, pine and spruce stands, where the warmer and 
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more N-rich edge plots can be distinguished from the interior plots. Gram- bacteria were 

significantly influenced by the interaction of distance to the forest edge and forest type. With 

increasing edge distance, the PLFA concentration of Gram- bacteria decreased in the oak 

stands and stayed rather constant in the pine and spruce stands. The ratio of fungal to 

bacterial PLFA was not significantly different between forest edge and interior. The 

correlations between the microbial community and the environmental and soil 

physicochemical variables can be seen in Fig. 4.2a. The correlations among the 

environmental and soil physicochemical variables can be seen in Table 4.2. Total and 

bacterial PLFA concentrations were negatively correlated to the C/N ratio of the forest floor 

(L and FH, with respectively rs = -0.75, p < 0.001, n = 20 and rs = -0.68, p = 0.001, n = 20) 

and positively to the soil temperature (respectively rs = 0.46, p < 0.05, n = 20 and rs = 0.49, 

p < 0.05, n = 20) and pH of mineral soil (respectively rs = 0.68, p < 0.001, n = 20 and rs = 

0.70, p < 0.001, n = 20). Fungal PLFA concentrations were negatively correlated to the C/N 

ratio of the forest floor (rs = -0.83, p < 0.001, n = 20) and positively to the pH of mineral soil 

(rs = 0.55, p < 0.05, n = 20). The ratio of fungal to bacterial PLFA was negatively correlated 

to N deposition (rs = -0.47, p < 0.05, n = 20) and positively to soil moisture (rs = 0.78, p < 

0.01, n = 12). Covariation of N deposition and C/N ratio of mineral soil (Table 4.2) probably 

led to a negative correlation with C/N ratio of the forest floor (rs = -0.58, p < 0.01, n = 20) 

and C/N ratio of mineral soil (rs = -0.46, p < 0.05, n = 20). An overview of the bacterial, 

Gram+, Gram- and fungal PLFA concentrations and their ratio can be found in Table A-II. 

 

4.3.1.2. Amino sugars 

Total AS concentration was on average 1500 ± 687 µg g-1 soil in the oak stands and differed 

from the concentrations in the pine stands (675 ± 235 µg g-1 soil) and the spruce stand (337 

± 106 µg g-1 soil). Total AS concentration was not affected by distance to the forest edge, but 

differed by forest type (Table 4.1). An overview of the concentrations of glucosamine, 

muramic acid and galactosamine and the ratios of GluMur and GluGal can be found in Table 

A-II. Total AS concentration was negatively correlated to the C/N ratio of the forest floor (rs 

= -0.93, p < 0.001, n = 10). The ratio of GluMur (fungi/bacteria) was positively correlated to 

the pH of mineral soil (rs = 0.77, p < 0.01, n = 10) and the ratio of GluGal (fungi/bacteria) 

was positively correlated to N deposition (rs = 0.68, p < 0.05, n = 10). 
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Table 4.1: Effects of distance to the forest edge and forest type on phospholipid fatty acid (PLFA) 

and aminosugar (AS) concentration. Bold values are significant (p < 0.05).  

PLFA 
Distance to 
forest edge 

Forest 
type 

 Interaction R² 

Total < 0.05 < 0.05 o > p, s < 0.05 0.55 

Fungi 0.999 < 0.05 o > p, s 0.999 0.34 
Bacteria < 0.05 < 0.05 o > p, s < 0.01 0.62 

Gram+ < 0.01 < 0.05 o > p, s < 0.01 0.66 

Gram- 0.071 < 0.05 o > p, s < 0.05 0.59 
Ratio 
Fungi/Bacteria 0.075 < 0.01 

o > p, s 
0.505 0.55 

AS  
 

  

Total 0.199 < 0.05 o > p, s < 0.01  0.83 

Ratio GluMur  0.611 0.208     0.768    - 

Ratio GluGal 0.180 0.290  0.867 - 
Glu = Glucosamine, Mur = Muramic acid, Gal = Galactosamine. R² is the coefficient of determination, indicating 

the proportion of variation explained by the model. The forest-type effect is specified, where o = oak, p = pine 

and s = spruce. The arrow (  ) indicates that values decrease with distance to the edge. The neutral interaction 

(    ) indicates that the edge effect differs between forest types. 

 

 

Fig. 4.1: Non-metric multidimensional scaling (NMDS) ordination diagram (with Bray-Curtis 

dissimilarity) of the PLFA concentrations related to Gram+ bacteria (i15:0, a15:0, 15:0, i16:0, 17:0, 

i17:0 and a17:0) along the edge-to-interior transects for the oak, the pine and the spruce stands with 

fitted environmental and soil physicochemical variables. The grey ellipse indicates the edge plots 

and the black ellipse the interior plots (= 128 m). soilM = soil moisture at a depth of 5 cm, soilT = soil 

temperature at a depth of 5 cm, Ndep = N deposition (kg N ha-1 yr-1), CNff = C/N ratio of the forest 

floor (L + FH layer), CNms = C/N ratio of the mineral soil, pHms = pH-KCl of the mineral soil. 
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Table 4.2: Spearman rank correlation coefficients (rs) between environmental and soil 

physicochemical variables.  

 rs soilM soilT Ndep CNff CNms 

soilM -     
soilT -0.047 -    
Ndep -0.164 0.627 ** -   
CNff -0.421 -0.398 0.121 -  

CNms -0.413 0.296 0.717 *** 0.412 - 

pHms -0.704 * 0.204 -0.287 -0.255 -0.277 
soilM = soil moisture at a depth of 5 cm, soilT = soil temperature at a depth of 5 cm, Ndep = N deposition (kg 

N ha-1 yr-1), CNff = C/N ratio of the forest floor (L + FH layer), CNms = C/N ratio of the mineral soil, pHms = 

pH-KCl of the mineral soil.*p < 0.05, ** p < 0.01, *** p < 0.001. 

 

 

 

4.3.2. Nitrogen transformation 

4.3.2.1. Mineralization 

Gross mineralization rates were on average 0.88 ± 0.96 mg N kg-1 soil d-1 in the oak stand 

(Qr2), 0.84 ± 0.91 mg N kg-1 soil d-1 in the pine stand (Pn2) and 0.10 ± 0.03 mg N kg-1 soil d-

1 in the spruce stand. Gross mineralization rates were higher in the forest edge than in the 

forest interior and differed between forest types (Table 4.3). In the oak and pine stands, 

mineralization rates were on average 7 times higher at the forest edge, while in the spruce 

forest mineralization rates were on average 66 % higher at the forest edge compared to the 

interior. The spruce stand had lower gross mineralization rates than the oak and the pine 

stands. Ammonium immobilization and net mineralization differed neither between edge and 

interior, nor between forest types (Table 4.3). The correlations between gross mineralization, 

NH4
+ immobilization and net mineralization and the environmental and soil physicochemical 

variables can be seen in Fig. 4.2b. Gross mineralization rates were positively correlated with 

the soil temperature (rs = 0.94, p < 0.05, n = 6). Correlations between the soil microbial 

community and N transformation rates can be seen in Fig. 4.2d. Gross mineralization rates 

were positively correlated with total, fungal and bacterial PLFA concentrations (rs = 0.94, p 

< 0.05, n = 6).  
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4.3.2.2. Nitrification 

Gross nitrification rates were on average 0.53 ± 0.05 mg N kg-1 soil d-1 in the oak stand 

(Qr2), 0.10 ± 0.05 mg N kg-1 soil d-1 in the pine stand (Pn2) and 0.02 ± 0.006 mg N kg-1 soil 

d-1 in the spruce stand. Gross nitrification rates did not differ significantly between forest 

edge and interior, but differed between forest types (Table 4.3). Nitrate immobilization rates 

differed neither between forest edge and interior, nor between forest types. Net nitrification 

was not influenced by edge proximity, but differed between forest types (Table 4.3). The oak 

stand was characterised by higher gross and net nitrification rates than the pine and spruce 

stands. The correlations between gross nitrification, NO3
- immobilization and net nitrification 

and the environmental and soil physicochemical variables can be seen in Fig. 4.2b. Gross 

and net nitrification rates were negatively correlated with the C/N ratio of the forest floor (L 

and FH layer) (rs = -0.88, p < 0.05, n = 6). Gross nitrification rates were positively correlated 

with total AS concentration (rs = 0.94, p < 0.05, n = 6, Fig. 4.2d). 
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Table 4.3: Gross and net mineralization, NH4
+ and NO3

-
 immobilization, and gross and net nitrification rates (mg N kg-1 soil d-1) in the oak (Qr2), pine 

(Pn2) and spruce stand. Standard errors are presented between brackets (n = 5). Bold values indicate a significant edge effect (p< 0.05), different 

letters indicate significant differences between forest types (p < 0.05). 

 

  Oak Pine Spruce 

N transformation Edge Interior Edge Interior Edge Interior 

Gross mineralization 1.56 (1.22)a 0.20 (0.03)a 1.49 (1.01)a 0.20 (0.07)a 0.12 (0.04)b 0.07 (0.01)b 

NH4
+ immobilization 0.73 (0.61) -0.21 (0.15) -0.58 (0.89) 0.28 (0.12) 0.28 (0.20) -0.19 (0.27) 

Net mineralization 0.83 (0.62) 0.41 (0.15) 2.07 (1.88) -0.08 (0.08) -0.15 (0.17) 0.27 (0.27) 

Gross nitrification 0.56 (0.14)a 0.49 (0.22)a 0.06 (0.02)b 0.14 (0.26)b 0.01 (0.002)b 0.02 (0.01)b 

NO3
- immobilization -0.13 (0.22) -0.23 (0.33) -0.07 (0.06) -0.16 (0.14) 0.01 (0.03) 0.03 (0.01) 

Net nitrification 0.69 (0.35)a 0.71 (0.23)a 0.13 (0.05)b 0.30 (0.22)b 0.004 (0.03)b -0.01 (0.01)b 

Edge = 0 – 5 m, Interior = 64 m 
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4.3.3. Nitrogen recovery 

In the oak stand (Qr2), recovery of 15NH4
+ in the litter layer was consistently lower (on 

average 60 %) at the edge compared to the interior (p < 0.01, Table 4.4), while there were 

no significant differences between edge and interior in the other soil layers. Recovery of 

15NO3
- after 1 day was high in the litter layer (i.e. 69 ± 23 %), but lowered after 1 month to 

on average 13 ± 8 % both at the forest edge and forest interior. Recovery of 15NO3
-  was 

higher in the forest edge compared to the interior in the fermentation and humus (FH) layer 

(on average 76 %, p < 0.01) and in both mineral soil layers (respectively 3 times higher at 

the forest edge for MS10 and 9 times higher at the forest edge for MS20, p < 0.01, Table 

4.3). Due to low enrichments and high variability in mineral soil, average 15Nrec values were 

sometimes negative. 

In the litter layer of the pine stand, recovery of 15NH4
+

 lowered over time (p < 0.001), while 

in the FH layer the edge effect was significant (p < 0.05, Table 4.4).  After 1 day and 1 month, 

recovery of 15NH4
+

 was 2 times higher in the forest edge than in the interior, but after 10 

months the recovery was 64 % higher in the FH layer at the forest edge. In the mineral soil 

layers, recovery of 15NH4
+ was lower at the forest edge compared to the forest interior after 

1 day and 1 month (2 times lower at the forest edge, p = 0.001 and p < 0.01, respectively 

for MS10 and MS20), but equalled after 10 months. The recovery of 15NO3
- in the litter layer 

differed between edge and interior in function of time (p < 0.05, Table 4.4). After 1 day, 

recovery of 15NO3
- was 60 % higher at the forest edge compared to the interior, but after 1 

month, recovery of 15NO3
- was 16 % lower at the edge and after 10 months it was 63 % 

lower at the forest edge. In the other soil layers, there were no significant edge effects on 

the recovery of 15NO3
-. Due to high enrichments and variability, average 15Nrec values were 

sometimes > 100 % in the litter layer of the pine and spruce stand. 

In the spruce stand there was no significant effect of edge proximity on the recovery of 

15NH4
+ (p > 0.05). For 15NO3

-, recovery was significantly lower in the forest edge than in the 

interior in the FH layer (p < 0.01, Table 4.4). After 1 day, recovery of 15NO3
- was 68 % lower 

at the edge, after 1 month, recovery of 15NO3
- was 38 % lower at the edge and after 10 

months recovery of 15NO3
- equalled between edge and interior. An overview of all mean 

15Nrec (%) at the different times of sampling at the edge and interior of the oak, pine and 

spruce forest can be found in Table A-III. Recovery of 15N lowered throughout the different 

soil layers, i.e. from litter to mineral soil, being very low in the mineral soil layers. There were 

no significant correlations between the total recovery of 15NH4
+ and 15NO3

- and  
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Table 4.4: a) Mean 15Nrec (%) values after 10 months (T3) at the edge and interior of the oak (Qr2), pine (Pn2) and spruce stand. Standard errors are 

presented between brackets (n = 6). b) Effects of distance to the forest edge, layer and time on the 15Nrec (%) values in the oak, pine and spruce stand.  

 

a   Oak Pine Spruce 

Layer Treatment Edge Interior Edge Interior Edge Interior 

L 15NH4
+ 9.8 (2.9) 23.5 (15.5) 31.4 (16.5) 29.5 (19.6) 119.8 (45.4) 42.7   (8.1) 

  15NO3
- 10.6 (5.0) 5.3 (4.8) 44.1 (30.9) 120.6 (28.4) 66.2 (28.2) 52.9 

    
(20.6) 

FH 15NH4
+ 25.9 (13.8) 10.2 (5.5) 29.8 (30.3) 18.1 (12.3) 16.3 (6.9) 30.7 (16.7) 

  15NO3
- 17.7 (9.8) 7.6 (7.7) 35.7 (28.4) 35.2 (11.9) 25.9 (8.9) 27.2 (11.3) 

MS10 15NH4
+ 2.1 (12.1) -4.9 (1.7) 2.3 (1.2) 3.7 (1.2) 10.2 (6.4) 5.8 (14.1) 

  15NO3
- 5.2 (2.8) -3.2 (3.6) -0.6 (1.0) 1.3 (1.9) 5.0 (12.9) 5.8 (13.3) 

MS20 15NH4
+ 1.5 (8.7) -2.6 (2.3) -1.2 (2.2) 2.5 (3.6) 0.4 (1.8) 2.8 (5.5) 

  15NO3
- 8.2 (5.1) -0.9 (1.8) -0.8 (2.1) 7.9 (9.7) 3.5 (5.0) 0.1 (2.5) 

b                           

Forest 
type Treatment Distance to edge Layer Time Distance to edge : Layer Distance to edge : Time 

Oak 15NH4
+ 0.054 < 0.001 < 0.05 < 0.001 0.440 

 
15NO3

- < 0.001 < 0.001 < 0.01 0.220 0.600 

Pine 15NH4
+ < 0.05 < 0.001 0.053 < 0.001 < 0.001 

 
15NO3

- < 0.001 < 0.001 < 0.01 < 0.001 0.740 

Spruce 15NH4
+ 0.240 < 0.001 < 0.001 < 0.001 0.300 

  15NO3
- < 0.01 < 0.001 < 0.001 < 0.001 < 0.01 

 L = Litter, FH = fermentation and humus layer, MS10 = Mineral soil 0 - 10 cm, MS20 = Mineral soil 10 - 20 cm; Edge = 0 – 5 m, Interior = 64 m. 
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Fig. 4.2: Spearman rank correlations between a) the soil microbial community structure and environmental and soil physicochemical variables, b) N 

transformation rates and environmental and soil physicochemical variables, c) total 15N recovery and environmental and soil physicochemical variables 

and d) the soil microbial community structure, N transformation rates and total 15N recovery. rs = correlation coefficient, * p < 0.05, ** p < 0.01, *** p < 

0.001. SoilM = soil moisture at a depth of 5 cm, soilT = soil temperature at a depth of 5 cm, Ndep = N deposition (kg N ha-1 yr-1), CNff = C/N ratio of 

forest floor (L + FH), CNms = C/N ratio of mineral soil, pHms = pH-KCl of mineral soil. 
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environmental and soil physicochemical variables as can be seen in Fig. 4.2c. Correlations 

between the soil microbial community structure, N transformation rates and total 15N 

recovery can be seen in Fig. 4.2d. Total recovery of 15NH4
+ was negatively correlated to total 

AS concentration (rs = -0.88, p < 0.05, n = 6) and gross nitrification rates (rs = -0.94, p < 

0.05, n = 6), while total recovery of 15NO3
- was not related to the microbial community nor to 

mineralization or nitrification rates. 

 

4.4. Discussion 

Significant differences in N cycling were observed between the edges and the interiors of 

the forest stands in our study. Gross mineralization rates were higher at the forest edges 

compared to the forest interiors in all forest types. Based on the 15Nrec values, litter at the 

edge retained less N than the interior, while the FH layer and mineral soil captured more of 

the added inorganic N at the forest edge. Furthermore, differences in N cycling were 

associated with changes in the soil microbial community structure along the edge-to-interior 

transects.  

 

4.4.1. Edge effects on microbial community structure and N cycling  

The oak and pine stands hosted a larger microbial community at the forest edges than in 

the interior based on the PLFA and AS concentrations. The total living bacterial biomass 

(and more specifically of Gram+ bacteria) was higher at the forest edges, which received a 

higher atmospheric N load, and were drier and warmer than the forest interiors as measured 

by the soil moisture and temperature sensors (water filled pore space (WFPS) and soil 

temperature of 18 % and 11.5 °C at the edge of Qr2, WFPS of 27 % and 10.6 °C in the 

interior of Qr2, WFPS of 10 % and 12.1 °C at the edge of Pn2 and WFPS of 19 % and 11.3 

°C in the interior of Pn2 averaged over 2 years), confirming our first hypothesis of bacterial 

dominance at forest edges. In general, most desiccation tolerant bacteria tend to be Gram+ 

due to their thicker cell wall (Schimel et al., 2007), which may help explaining their higher 

abundance at the forest edges. Nilsson et al. (2005), Demoling et al. (2008) and Kjøller et 

al. (2012) found that fungal biomass was negatively affected by N deposition. Also 

Zechmeister-Boltenstern et al. (2011) investigated the impact of N deposition on the soil 

microbial community in European forests and found that, N deposition was highly correlated 

with the ratio of fungi to bacteria, where sites with the highest N deposition were depleted in 

fungal PLFA. We could confirm these findings as the ratio of fungal to bacterial PLFA 

concentrations was negatively correlated to atmospheric N deposition. Högberg et al. (2013) 
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stated that bacteria, which commonly have lower C/N ratio than fungi, will be favoured over 

the ectomycorrhizal fungi in N-rich ecosystems, explaining bacterial dominance at high N 

deposition. The higher bacterial biomass might also be linked to the higher abundance of 

arthropod detritivores in these forest edges (De Smedt et al., 2016), increasing the 

accessible surface area of dead organic material for the microbial community (Harper et al., 

2005). Furthermore, in our study, PLFA concentrations increased with an increasing pH of 

the mineral soil. Bacteria and fungi each have their optimum pH range, where bacteria often 

have a narrower pH range than fungi (Rousk et al., 2010). Malmivaara-Lämsä et al. (2008) 

also found that PLFA concentrations were positively related to soil pH in a study on edge 

effects in urban forest fragments. With a decreasing soil pH, the availability of biologically 

toxic aluminium increases, which affects the microbial community structure and the microbial 

activity (Bååth and Anderson, 2003). The upper mineral soil layers of the oak and pine 

forests were characterized by higher pH values at the edge than in the forest interior (Wuyts 

et al., 2013), favouring microbial presence at the forest edges.  

Mineralization rates were higher at the forest edge compared to the forest interior, as stated 

in our second hypothesis.  Staelens et al. (2012a) measured N transformation rates via a 

15N tracing model in an oak and a pine forest in northern Belgium. They obtained a gross 

mineralization rate of 1.1 and 0.4 mg N kg-1 day-1 and a gross nitrification rate of 0.28 and 

0.6 mg N kg-1 day-1, respectively for the oak and pine forest. Their N transformation rates for 

the oak forest are comparable to our values at the oak forest edge, while their N 

transformation rates of the pine forest are compatible to the values of the pine forest interior. 

The immobilization, net mineralization and net nitrification rates were characterized by large 

uncertainties. Our set-up was probably not adequate in covering the large spatial variation 

in inorganic N pools to obtain a reliable estimate of these rates. Therefore, we focused the 

discussion on the gross mineralization and nitrification rates. Högberg et al. (2013) 

suggested that fungi have a high immobilisation capacity and are less important as 

mediators of N mineralization as, in their study, mineralization was low when the 

fungi/bacteria ratio and soil C/N ratios were high. Their findings are consistent with our 

observations of higher gross mineralization rates and a higher abundance of Gram+ bacteria 

at the forest edges compared to the interior. Where mineralization is performed by 

generalists, autotrophic nitrification is attributed to a specific set of bacteria and Archaea 

(Wessén et al., 2011) and heterotrophic nitrification may be carried out by a wide range of 

microorganisms including fungi (Zhang et al., 2011). Nitrifying bacteria (genera of 

Nitrosomonas and Nitrobacter) are Gram- bacteria (Withers et al., 2001). There was no edge 
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effect on nitrification, contradictory to our expectations, which could be a reflection of the 

lack of an edge effect on Gram- bacteria. As mineralization was increased at the forest 

edges, but nitrification was not, this might be a possible bottleneck in the N cycle, preventing 

increased N leaching at the forest edge. Nitrate can be transformed to N2 via denitrification 

if enough water accumulates in the subsoil (B horizon, see Fig. A-I) and sufficient organic C 

is available. However, we did not encounter water stagnation when sampling mineral soil of 

these well-drained sandy Podzols.  

Nadelhoffer et al. (2004) and Wessel et al. (2013) found that forest floor and soil remained 

the dominant sinks of N even seven years after 15N addition, with highest tracer recoveries 

in organic soil, followed by mineral soil (0 - 20 cm), in temperate oak stands at Harvard 

Forest (USA). We focused on the soil (organic and mineral layers), since we wished to 

monitor the movement of external 15N entering the forest soil via throughfall. In the sprayed 

plots, no trees or understorey vegetation were present. However, roots were present in the 

injected mineral soil and could have contributed to uncontrolled uptake and removal of 15N 

from the soil. Recovery of 15NH4
+ in litter was higher in the interior, but recovery of 15NO3

-
 

was higher in the FH and mineral soil layers at the oak forest edge. Templer et al. (2012) 

suggested that N recovery can be used as a proxy of ecosystem N retention. We 

hypothesized that higher nitrification rates would be expected to lead to higher N losses and 

thus lower 15N recovery in the forest edge. However, as Wuyts et al. (2011) measured lower 

inorganic N leaching in the first 10 to 20 m of the forest edge, 15Nrec percentages could also 

be higher at the forest edge. Indeed, in the oak stands, recovery of 15NO3
- was higher at the 

edge than in the forest interior, providing a buffer for additional N input. The higher recovery 

of 15NO3
- at the oak forest edge was consistent with the higher N stocks in the mineral soil 

layer found by Remy et al. (2016b, see Chapter 2) and the lower leaching losses observed 

by Wuyts et al. (2011) at the forest edge compared to the interior. The pine and spruce 

stands showed 15Nrec values above 100 %. Recoveries of > 100 % could be due to sampling 

and analytical errors (Dail et al., 2001) or overlap of ecosystem pools (Templer et al., 2012). 

The latter was not the case in our study, since we sampled four distinct soil layers (L, FH 

and mineral soil from 0 – 10 and from 10 – 20 cm deep). In the pine stand, both 15NH4
+ and 

15NO3
- were stored in the litter layer of the forest interior, while 15NH4

+ was retained in the 

FH layer at the forest edge. In the spruce stand, more 15NO3
-  reached the FH layer at the 

edge and 15NH4
+ was stored in the mineral soil at the edge (although not significant). Remy 

et al. (2016b) suggested that lower N stocks in the forest floor were linked to faster litter 

degradation at the edge due to microclimatic gradients and a different microbial and 

invertebrate abundance and community at the edge (De Smedt et al., 2016), hereby 
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transferring nutrients to deeper soil layers (see Chapter 2, § 2.4.1.). Transportation towards 

soil layers below the sampled soil depth and uptake of 15N by other forest compartments 

(e.g. roots, trees) could also have contributed to the observed 15Nrec values. However, 

Staelens et al. (2012a) found that 15Nrec in the roots contributed < 2 % to the total 15Nrec of 

the sampled soil-root system. N retention mechanisms might be abiotic as correlation 

analyses per soil layer (FH and MS) confirmed the lack of a link between 15Nrec and PLFA 

concentrations (data not shown). Inorganic N in soil might be chemically or physically 

protected from microorganisms via one of the following pathways: selective preservation 

due to recalcitrance, spatial inaccessibility of decomposer organisms due to occlusion, 

intercalation, hydrophobicity and encapsulation, or stabilization by interaction with mineral 

surfaces and metal ions (Lützow et al., 2006). However, the sampled mineral soil of these 

sandy Podzols is characterized by low amounts of clay minerals. Therefore, the most likely 

stabilization mechanisms are biochemical stabilisation via the formation of recalcitrant 

phenolic compounds and microbial immobilisation. 

 

4.4.2. Forest type effects on microbial community structure and N cycling   

In the oak forests, microbial biomass decreased strongly with distance to the edge, while 

microbial biomass decreased slightly with distance to the edge in the pine stands, and 

stayed rather constant in the spruce stand. Phospholipid fatty acid (total, fungal, bacterial 

and ratio of fungal to bacterial PLFA) and total AS concentrations were negatively correlated 

to the C/N ratio of the forest floor (L and FH layer). Deciduous oak forests are characterized 

by lower C/N ratios than evergreen pine and spruce forests, due to the lower lignin and 

higher N content in oak leaves than in needles (Cools et al., 2014). Increased N deposition 

lowers C/N ratio, stimulating microbial growth and especially bacterial growth as fungi have 

higher C/N ratios than bacteria and therefore are expected to have lower N demands 

(Strickland and Rousk, 2010). Griepentrog et al. (2014) showed that a low C/N ratio and 

high N availability retards the decomposition of AS residues in soil, as microorganisms are 

no longer forced to use organic N sources when N limitation ceases. The link between the 

C/N ratio and PLFA might also be indirect as the C/N ratio reflects the quality of the soil 

organic matter. Consequently, organic matter with a high C/N ratio will favour the occurrence 

of fungi.  

Furthermore, the PLFA concentration of Gram- bacteria was highest in the oak stands, 

coinciding with the highest nitrification rate of the three forest types. Gross nitrification was 

positively correlated with total AS concentration, as dead microbial biomass may provide a 
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substrate for nitrification and living microbial biomass might contain nitrifying bacteria and 

fungi. Gross nitrification rates were negatively correlated to the recovery of 15NH4
+, as 

nitrification converts NH4
+ to NO3

-, hereby decreasing NH4
+ concentrations in soil. 

Nitrification was also negatively correlated with the C/N ratio of the forest floor (L and FH). 

Christenson et al. (2009) found that gross mineralization and nitrification rates were 

negatively related to C/N ratio in deciduous forests in north-eastern USA, which was 

confirmed in our study for the nitrification rates. The higher nitrification rate in the oak stand, 

compared to the pine and spruce stands, will presumably lead to a higher availability of  

NO3
-. Indeed, in a previous study, Wuyts et al. (2011) have shown that the oak stand (Qr2) 

lost high amounts of N via leaching, i.e. 35 and 20 kg N ha-1 yr-1 in the edge and in the 

interior. 

Staelens et al. (2012a) hypothesized that the microbial community could explain the 

differences in mineralization and nitrification rates, found in adjacent oak and pine stands as 

C/N ratio, soil type, stand history, tree age and soil temperature were similar. Bengtsson et 

al. (2003) also found that differences in gross N mineralization rates in three deciduous 

forests were strongly related to the microbial community. Buurman et al. (2007) observed 

mottling in all horizons of some well-drained Podzols on quartz sands in the Netherlands, 

Belgium and Germany due to the selective removal of organic matter. Phospholipid analysis 

suggested that the removal of organic matter was due to a combination of bacteria, fungi, 

and actinomycetes. However, in our study sites we did not observe this white mottling within 

the sampled soil. 

In our study, mineralization rates were also positively correlated to soil temperature, as the 

oak and the pine stands were characterized by higher soil temperatures than the spruce 

stand (averaged soil temperature of 11.3 °C in the oak and pine stands and 8.6 °C in the 

spruce stand over 2 years). Temperature is recognized as a key factor regulating many 

terrestrial biogeochemical processes, such as soil respiration and mineralization (Rustad et 

al., 2001). Guntiñas et al. (2012) showed that nitrogen mineralization increased with soil 

temperature, where the sensitivity to temperature was maximal at 25 °C. 

Dise et al. (2009) found that N retention varied between forests in Europe, with high N 

retention at low atmospheric N deposition rates (< 8 kg N ha-1 yr-1) and lower retention at 

higher N deposition. Templer at al. (2012) showed that N retention decreased from > 90 % 

at sites receiving < 7 kg N ha-1 yr-1 to < 60 % at sites receiving > 11 kg N ha-1 yr-1. Moreover, 

above a fertilization rate of 46 kg N ha-1 yr-1, N addition decreased 15N retention. The oak 
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forest edge received less atmospheric N deposition than the edge of the pine stand and was 

characterized by stronger N retention at the edge. The pine forest edge was subjected to 

higher N deposition values than the threshold value of 46 kg N ha-1 yr-1, set by Templer et 

al. (2012) and the litter layer lost more N at the forest edge compared to the interior, but 

retention of N still occurred in the FH layer, where N is probably immobilised via abiotic 

pathways.  

 

4.5. Conclusion 

Biomass of Gram+ bacteria was higher at the forest edges compared to the forest interiors 

and was associated to higher N mineralization rates. There was no significant impact of 

edge proximity on Gram- bacteria, which was reflected in the lack of an edge effect on the 

nitrification rates. Furthermore, forest type additionally affected microbial N cycling through 

differences in atmospheric N deposition, and quality and quantity of the released organic 

material. Gross and net nitrification rates differed between the forest types, where the oak 

stands were characterized by higher nitrification rates than the pine and spruce stands. 

Despite the high mineralisation and nitrification rates, the oak stand retained N in the FH 

layer and mineral soil at the edge. In all forest types, the forest interior retained more N in 

the litter layer, while N was stored in deeper soil layers at the edge. Our results contribute 

to elucidating the changes in N cycling at forest edges, as they are compatible with previous 

research at the same forest stands, showing higher arthropod abundance, higher mineral 

soil N stocks and lower leaching losses at forest edges. Overall, our results indicated that 

the specific characteristics of the forest edge (atmospheric deposition, microclimate and soil 

physicochemical characteristics) increased microbial biomass, N turnover (gross 

mineralization) and storage capacity beneath the litter layer and changed the microbial 

community structure. Forest edges are a dominant feature in many landscapes of Western 

Europe. Hence, more research should be conducted to validate our observations for other 

forest and soil types. Moreover, it is unclear how long these forest edges will be able to store 

additional N beneath the litter layer under ongoing high atmospheric deposition. 
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5. Edge effect on litter decomposition and nutrient release 

 

After: Remy E., Wuyts K., Van Nevel L., De Smedt P., Boeckx P., Verheyen K.. Driving factors 

behind litter decomposition and nutrient release at temperate forest edges (submitted). 

 

 

Abstract 

Forest edges have become important features in landscapes worldwide. Edges are exposed 

to a different microclimate and higher atmospheric nitrogen (N) deposition compared to 

forest interiors. It is, however, unclear how microclimate and elevated N deposition affect 

nutrient cycling at forest edges. We studied litter decomposition and release of N, 

phosphorus (P), exchangeable cations (EC), and C/N ratios during 18 months via the 

litterbag technique along edge-to-interior transects in two oak (Quercus robur L.) and two 

pine (Pinus nigra ssp. laricio Maire and ssp. nigra Arnold) stands in Belgium. Secondly, litter 

from edge and interior was interchanged to test the impact of litter position and litter quality. 

Thirdly, litter from the interior was placed in Open Top Chambers, to scrutinize the role of 

edge soil fauna on litter decomposition. Increased litter mass loss and nutrient release were 

observed at the edge compared to the interior in the oak stands and were governed by soil 

acidity and forest floor C/N ratio. In the pine stands, N and P release was higher at the edge 

compared to the interior. The contribution of each driving factor (litter position, litter quality 

and edge soil fauna) depended on the specific characteristics of the forest edge. We 

demonstrated an edge effect on litter decomposition and nutrient release, caused by an 

interplay of the edge microclimate, atmospheric deposition, soil characteristics, litter quality 

and soil fauna. Consequently, edge effects must be accounted for when quantifying 

ecosystem processes, such as litter decomposition and nutrient cycling in fragmented 

landscapes. 
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5.1. Introduction 

Central and Western European landscapes are characterized by small forest remnants 

resulting from a long history of land-use change (Hofmeister et al., 2013). Consequently, 

forest edges have become important features in the landscape (Decocq et al., 2016). These 

edges differ substantially from forest interior zones in regard of, amongst other factors, 

microclimate, atmospheric deposition, physicochemical soil conditions, nutrient and carbon 

(C) stocks and fluxes, forest structure and faunal and floral species composition and 

dynamics (e.g., Matlack 1993; Chen et al., 1995; De Schrijver et al., 2007; Wuyts et al., 

2008a, 2008b; Remy et al., 2016a, 2016b, see Chapters 2 and 3). Decomposition of leaf 

litter is a major source of nutrients in forest ecosystems and influences the proportion and 

persistence of nutrient and C retention in soil (Cotrufo et al., 2013). However, the effects of 

forest fragmentation on litter decomposition in temperate forests are poorly understood 

(Herbst et al., 2007).  

 

The rate of litter decomposition is affected by soil temperature, soil moisture, soil chemical 

conditions, the composition of the decomposer community, and the litter quality (Sariyildiz, 

2008). Due to increased solar radiation, wind and higher evapotranspiration rates, forest 

edges generally have higher soil temperatures and a lower soil and litter moisture content 

than interiors (Herbst et al., 2007; Riutta et al., 2012). Ritter et al. (2005) observed 

considerable microsite variation in soil moisture content of forest edge versus interior. In 

temperate regions, moisture content is often a stronger regulator of litter decomposition than 

temperature (Aerts, 2006). Decomposers also play a critical role in nutrient cycling in forests, 

as they drive the soil C cycle by mineralizing organic matter for their growth (Manzoni et al., 

2012; David, 2014). Malmivaara-Lämsä et al. (2008) found decreased microbial biomass 

and activity at forest edges (i.e. a decrease of 30 to 45 % up to 20 m from the forest edge) 

and implied that this would lead to decreased litter decomposition rates and consequently 

to altered nutrient cycling. In the majority of terrestrial ecosystems, earthworms represent 

the largest soil fauna biomass (Lavelle and Spain, 2001). Zeithaml et al. (2009) found higher 

earthworm density and biomass at the forest edge in oak and mixed oak-pine forests in the 

Czech Republic. However, in temperate forests growing on acid sandy soils, the most 

abundant macrofauna groups are woodlice (Isopoda) and millipedes (Diplopoda) (David and 

Handa, 2010), which are sensitive to changes in temperature and moisture (Edwards et al., 

2010). De Smedt et al. (2016) showed that woodlice abundance decreased exponentially 

from the forest edge towards the forest interior, while millipede abundance showed an 



93 
 

optimum after the first 10 m from the forest edge, between edge and interior. They attributed 

these trends to the specific desiccation tolerance of the different species.  

 

Litter chemistry and stoichiometry with regard to C, nitrogen (N) and phosphorous (P) is an 

important regulator of litter decomposition, as higher litter C/N and C/P ratios negatively 

affect N and P mineralization, respectively (Mooshammer et al., 2012).  Cools et al. (2014) 

showed that the C/N ratio of the organic layer (litter and fragmented litter and humus) and 

mineral topsoil mainly depends on tree species, where deciduous tree species are 

characterized by lower C/N ratios than evergreen tree species. Moreover, Spangenberg and 

Kölling (2004) and Wuyts et al. (2011) measured lower C/N ratios of the organic layer at the 

edge, which was exposed to higher N deposition levels than the forest interior. Furthermore, 

the litter concentration of exchangeable cations, such as Ca2+, also affects decomposition 

rates (e.g. Hobbie et al., 2006). 

 

The sparse studies on the effects of forest fragmentation on decomposition mainly report on 

observations in (sub)tropical forests (Didham, 1998; Vasconcelos and Laurance 2005; 

Moreno et al., 2014;) or on wood decomposition (González et al., 2008; Crockatt and 

Bebber, 2015). Experimental studies that reveal the driving factors of litter decomposition in 

temperate forest edges are lacking. Up to now, only Riutta et al. (2012) investigated edge 

effects on litter decomposition rates in temperate deciduous forests and experimentally 

tested the moisture limitation hypothesis. They observed lower decomposition rates in the 

edge compared to the interior, which was attributed to moisture limitation at the drier forest 

edge.  

 

We wanted to further elucidate the knowledge gap on litter decomposition and nutrient 

cycling in the highly fragmented landscapes of Western Europe. Therefore, we designed a 

unique tripartite experimental set-up to determine edge influence on leaf litter decomposition 

in temperate forests and elucidate the role of litter quality, litter position and macrofauna 

therein. The study was performed in two oak and two pine stands, situated in an agricultural 

landscape in northern Belgium. Firstly, edge effects on litter decomposition and nutrient 

release were assessed during 18 months along edge-to-interior transects using the litterbag 

technique. Secondly, litter of edge and interior (128 m) was interchanged to determine the 

importance of edge conditions (microclimate, atmospheric deposition, soil decomposer 

community and soil physicochemical conditions) and litter quality on the decomposition rate. 

Thirdly, litter of the forest interior was placed in Open Top Chambers (OTC), which simulated 
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edge microclimate (warmer) in the forest interior in absence of the specific forest edge 

community of litter and soil-dwelling fauna.  We hypothesized that (i) due to the higher N 

deposition and contrasting microclimate at the edge, initial leaf/needle litter decomposition 

and nutrient release would be faster at the forest edge than in the interior, (ii) the edge 

conditions would stimulate leaf/needle litter decomposition, irrespective of the litter quality,  

(iii) edge leaf/needle litter would break down faster than interior litter, irrespective of its 

location (edge/interior), due to the improved litter quality (lower C/N ratio, more EC) of edge 

litter compared to interior litter, and (iv) due to the absence of the specific edge decomposer 

macrofauna, leaf/needle litter decomposition of interior litter in the OTC would be slowed 

down compared to interior litter at the forest edge. 

 

5.2. Material and methods 

5.2.1. Study area 

Four forest edges were selected for detailed characterization, comprising tree species 

relevant for their respective region. The forests are situated in Belgium and comprise of a 

pedunculate oak (Quercus robur L.) stand in Wortegem, West Flanders (Qr1), a second 

pedunculate oak stand in Ravels, Antwerp (Qr2), an Austrian pine (Pinus nigra ssp. nigra 

Arnold) stand in Zedelgem, West Flanders (Pn1), and a Corsican pine (P. nigra ssp. laricio 

Maire) stand in Ravels, Antwerp (Pn2). All stands are even-aged monocultures and grow on 

acid, sandy quartz-dominated Podzols. Previous land use was in all cases heathland until 

afforestation in last century. The considered forest edges are facing the locally prevailing 

wind direction (southwest), which creates the steepest edge gradients in throughfall 

deposition (Draaijers et al., 1988). An overview of the stand and physicochemical 

characteristics can be found in Table 1.1. Mean annual air temperature is 10.5°C and mean 

annual precipitation is 800 mm in Belgium (data obtained from the nearest weather station 

operated by the Royal Meteorological Institute of Belgium, 1981-2010). The understory 

vegetation is composed of ferns (Dryopteris dilatata and Dryopteris carthusiana) and 

grasses (Molinea caerulea and Holcus sp.) in the pine stands, with brambles (Rubus 

fruticosus agg.) in Pn1. The understory vegetation in the edges of the oak stands is 

characterized by brambles (Rubus fruticosus agg.).  

 

5.2.2. Experimental set-up 

Decomposition of leaf and needle litter was studied via the litterbag technique. In a first 

experiment (litterbag series A, Fig. 5.1), litter decomposition was followed over time along 
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the edge-to-interior transects. Litterbags were placed at the edge (0 m), at 16 m, at 64 m 

and at 128 m from the edge to detect differences in the rate of litter decomposition in function 

of edge proximity. In a second experiment, fresh litter of the forest interior and forest edge 

were interchanged to test the impact of the edge conditions (microclimate, atmospheric 

deposition, soil decomposer community and soil physicochemical conditions) and litter 

quality (litterbag series B, Fig. 5.1) on litter decomposition. In a third experiment (litterbag 

series C, Fig. 5.1), litter of the forest interior was placed in the forest interior in Open Top 

Chambers (OTC), which creates an edge microclimate (warmer than in the forest interior, 

De Frenne et al., 2010) in the absence of the edge decomposer macrofauna. Soil moisture 

was not significantly affected by the OTCs (De Frenne et al., 2010), nor the arthropod 

community as they were able to crawl under the OTCs (pers.comm.).The litterbags were 20 

by 20 cm in size and consisted of a wire mesh (5 x 5 mm), fitted with a nylon mesh (mesh 

size of 1 x 1 mm) at the bottom, which makes contact with the soil. In this way, litter loss 

was prevented, but horizontal entry of most soil fauna was still allowed. In total, 420 

litterbags were manufactured by hand. In all stands, falling leaves and needles were 

intercepted during winter 2013 on nets placed at the four distances (0, 16, 64 and 128 m). 

The intercepted leaves and needles were air-dried during 7 days. Litterbags were filled with 

10 g of air-dried leaves or needles. In the pine forest Pn2, very low amounts of litter had 

fallen at the forest edge. Hence, the B series in this forest contained only 5 g of litter. 

Litterbags were anchored into the litter layer of the forest floor by means of a bended iron 

wire coated with a layer of synthetic material. All experiments were conducted from 

November 2014 until June 2016.  

 

Fig. 5.1: Schematic overview of the set-up of litterbag series A, B and C. 
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16 m
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5.2.3. Sampling and chemical analysis 

Two litterbags were collected from each distance and from each series (A, B and C) every 

3 months (after 3, 6, 9, 12, 15 and 18 months). Retrieved litter samples were dried at 25°C 

for 2 days and weighed. Hereafter, they were dried at 65 °C for 2 days, analyzed for oven-

dry mass and milled (ZM1, Retsch, Germany). In this way, the correction for the difference 

in mass loss between air-dried litter and oven-dried litter was known (Bärlocher, 2005). 

Nitrogen and carbon (C) concentrations were measured by a CNS elemental analyzer (vario 

Macro Cube, Elementar, Germany). Leaf and needle samples were destructed (by addition 

of 2 ml HNO3 and 0.4 ml of HClO4 to 75 mg of sample in Teflon pots, followed by a dilution 

up to 50 ml) prior to phosphorus (P), potassium (K+), magnesium (Mg2+) and calcium (Ca2+) 

concentration measurements. P concentration was measured colorimetrically on 5 ml of 

destructed sample (Cary 50 Spectrophotometer, Agilent Technologies, USA) by addition of 

2 ml of a mixture of H2SO4, NH4 para-molybdate, polyvinyl alcohol and malachite green. K+, 

Mg2+ and Ca2+ concentrations were measured on the remaining destructed sample by 

atomic absorption spectrometry (SpectrAA 240FS, Agilent Technologies, USA) after a 10 % 

addition of CsCl modifier (25 mg CsCl in 50 ml HCl 37 %, diluted to 1 l). Lignin concentrations 

were measured at the Institute for Agriculture and Fisheries Research (ILVO), according to 

the methods of Van Soest et al. (1991) on a bulk sample of air-dried litter of each litter type 

at each distance.  

 

5.2.4. Statistical analyses 

When strong curvatures are observed in the decomposition dynamics, the single exponential 

curve, developed in detail by Olson (1963, Eq. 5.1) can be less appropriate  

𝑥𝑡 𝑥0 = 𝑒−𝑘𝑡⁄            (Eq. 5.1) 

where xt is the remaining amount of litter at time t (g), x0 is the initial amount of litter (g), t is 

the time (yr) and k is the decomposition rate (yr-1). Therefore, we used the conceptual 

approach of Rovira and Rovira (2010) comparing three possible patterns in which the 

decomposition rate varies with time: (1) exponential rate decrease, (2) wave-form dynamics, 

simulating seasonal rhythms, and (3) rational-type dynamics, involving a rate increase in the 

initial phase, followed by a gradual decrease. Next to these equations, our dataset was also 

fitted to Olson’s single exponential model (Eq. 5.1), to ensure that the considered equations 

improved the fit. The most appropriate model was chosen based on the adjusted coefficient 
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of determination (Eq. 5.2) and the corrected Akaike Information Criterion (AICc) value (Eq. 

5.3 and Eq. 5.4) 

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = 1 −
(1−𝑅2) (𝑛−1)

𝑛−𝐾−1
        (Eq. 5.2) 

where R² = 1 – residual sum of squares/corrected sum of squares, n is the sample size and 

K is the number of parameters involved in the model.  

𝐴𝐼𝐶 = 𝑛 𝑙𝑜𝑔(𝜎2) + 2𝐾         (Eq. 5.3) 

𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +  
2𝐾 (𝐾+1)

𝑛−𝐾−1
         (Eq. 5.4) 

 

where AICc is the corrected AIC value for a small dataset (low n values) and σ2 is the residual 

variance. The adjusted R² values did not differ much between Olson’s single exponential 

equation and the equations described by Rovira and Rovira (2010). Moreover, if any of the 

proposed equations by Rovira and Rovira (2010) is preferable over the classic Olson’s 

model, then AICOlson > AICEq. Consequently, the difference in AIC values (ΔAIC = AICEq - 

AICOlson) would be negative. As both ΔAIC and ΔAICc were positive, the replacement of 

Olson’s model by any of the proposed equations was not justified, in spite of the possible 

increase in the adjusted R². The values of the decomposition rate k are presented in Table 

5.1.The relative remaining litter mass in the litterbags is presented in Fig. 5.2. 

 

Significant differences in initial litter concentrations and the decomposition parameter along 

the edge-to-interior transects were assessed via one-way ANOVA for each forest type 

(Table 5.3). Pearson correlation coefficients were calculated between initial litter 

concentrations (N0, C0, mass based C/N0 ratio, lignin0, P0 and EC0, Table 5.2), relative litter 

mass loss and the decomposition parameter (k) of series A for each forest type to explore 

which litter characteristics influence litter decomposition dynamics (Table 5.4).  

 

Absolute masses of the elements in the litterbags (mg) were calculated by multiplying 

element concentrations with the remaining dry mass at each collection date, enabling us to 

make statements on nutrient release (Fig. 5.3). Concentrations of K+, Mg2+ and Ca2+ (mg 

kg-1) were converted to amounts in milliequivalents (meq) and their sum is further referred 

to as exchangeable cations (EC). Nutrient releases, i.e. differences between remaining 

nutrient masses after 18 months and the initial mass were calculated absolutely (in mg or 

meq) and relatively (in %, Table 5.5).  
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Next, a two-way analysis of variance (ANOVA) was performed on the mass loss and nutrient 

release data of series A of each stand to assess the influence of the discrete predictor 

variables distance to the forest edge (4 levels: 0, 16, 64 and 128 m), time of sampling (6 

levels: 3, 6, 9, 12, 15 and 18 months) and their interaction on relative mass loss, nutrient 

release of N, P and EC and relative changes in C/N ratios. A Tukey’s HSD post-hoc test 

was performed to explore differences between the distances along the edge-to-interior 

transects (0, 16, 64, 128 m), at a significance level of p < 0.05 (Table 5.6).  

 

To assess the role of litter position (microclimate, atmospheric deposition, decomposer 

community and soil physicochemical conditions inherent to the edge and interior) and litter 

quality (edge, interior) in decomposition edge effects, two-way ANOVA’s were performed on 

data of mass loss (in %), nutrient release (in %) and relative changes in C/N ratios of series 

A, B and C after 18 months for each stand. A Tukey’s HSD post-hoc test was performed to 

explore differences between the litter positions (edge, interior, OTC), with a significance 

level of p < 0.05.  

 

Correlations (Pearson correlation coefficients) were assessed between relative changes in 

litter mass and nutrient amounts on the one hand, and soil physicochemical and 

environmental characteristics (pH of mineral soil, C/N ratio of forest floor and mineral soil, 

atmospheric N deposition, soil temperature and moisture (previously determined by Wuyts 

et al. (2009, 2013) and Remy et al. (2016) along the same edge-to-interior transects) on the 

other hand, for each forest type. Model fitting was performed in SPSS Statistics 24 for 

Windows, while the other statistical analyses were performed in R 3.3.1 (R Development 

Core Team, 2016). 

 

5.3. Results 

5.3.1. Mass loss and nutrient release along edge-to-interior transects 

Mass loss 

The relative remaining mass in the litterbags, fit with Olson’s single exponential model (Eq. 

5.1), decreased over time (Fig. 5.2). This decrease in mass loss was more pronounced in 

the oak stands compared to the pine stands, where litter mass loss was more or less 

constant over a time period of 18 months. In the oak stands, litter mass at 16 m, 64 m and 

128 m stayed rather constant at first and decreased only after 12 months, while litter mass 

at the edge decreased continuously. The mean decomposition rate k ranged between 0.3 
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and 1.0 yr-1 and was highest at the edge of the oak stand Qr1 (Table 5.1), coinciding with 

the lowest relative remaining mass (Fig. 5.2a). A high mean decomposition rate will lead to 

a low mean residence time (MRT), as k and MRT are inversely related. However, as 

decomposition of the recalcitrant oak and pine litter was not finished after 18 months, the 

MRT has no significant biological meaning yet. In the oak stands, Tukey HSD post-hoc tests 

revealed that relative remaining litter mass at the edge was significantly lower than litter 

mass at 16 m, 64 m and 128 m over the whole period of 18 months (Table 5.6). The 

remaining litter mass after 18 months was 7.3 ± 1.2 % and 28.5 ± 2.1 % of initial mass, 

respectively at the edge of Qr1 and Qr2, and 56.2 ± 4.2 % and 45.7 ± 5.6 % in the forest 

interior (128 m) of, respectively, Qr1 and Qr2 (Fig. 5.2a and 5.2b). In the pine stands, litter 

mass loss was rather constant along the edge-to-interior transects (Table 5.6). Remaining 

litter mass after 18 months was 47.3 ± 9.6 % and 33.6 ± 12.2 %, respectively at the edge of 

Pn1 and Pn2 (Fig. 5.2c and 5.2d) and 40.5 ± 4.5 %  and 47.3 ± 2.2 % of the initial mass in 

the interior (128 m) of Pn1 and Pn2, respectively.  

 

Table 5.1: Decomposition parameter k (average ± standard deviations) obtained with Olson’s single 

exponential model (Eq. 5.1, n = 12) applied to litter mass data of series A and adjusted R² of the fits. 

 

  Oak 

  Qr1 Qr2 

Distance (m) k (yr-1) R² k (yr-1)  R² 

Edge (0 - 5) 1.009 ± 0.550 0.72 0.683 ± 0.145 0.81 

16 0.556 ± 0.337 0.56 0.354 ± 0.252 0.21 

64 0.471 ± 0.216 0.60 0.418 ± 0.178 0.71 

Interior (128) 0.402 ± 0.125 0.65 0.425 ± 0.158 0.80 

  Pine 

  Pn1 Pn2 

Edge (0 - 5) 0.479 ± 0.203 0.76 0.455 ± 0.169 0.83 

16 0.591 ± 0.387 0.61 0.391 ± 0.146 0.89 

64 0.542 ± 0.333 0.60 0.453 ± 0.241 0.82 

Interior (128) 0.644 ± 0.225 0.77 0.438 ± 0.126 0.92 
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Fig. 5.2: Relative remaining mass (relative to initial mass, Mt/M0) in the litterbags of series A during 18 months of litter decomposition and modelled 

data according to Olson’s single exponential model (Eq. 5.1) for the four distances (0, 16, 64, 128 m) along the edge-to-interior transects in the oak a) 

Qr1 and b) Qr2 and pine stands c) Pn1 and d) Pn2; see decomposition parameter k in Table 5.1. 
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Nutrient release 

Initial concentrations of N, C, lignin to N, P and exchangeable cations (EC) and initial C/N 

ratios in intercepted litter are presented in Table 5.2. Only the initial concentrations of EC of 

pine litter decreased significantly with distance to the edge (Table 5.3). Lignin to N ratios 

were significantly lower (t = -4.32, p = 0.001, n = 8) in the oak stands compared to the pine 

stands, while EC amounts were significantly higher (t = 6.43, p < 0.001, n = 8) in the oak 

stands compared to the pine stands. 

Table 5.2: Initial litter concentrations of nitrogen (N0), carbon (C0), lignin to N ratio (lignin/N0), 

phosphorus (P0) and exchangeable cations (EC0), and initial C/N ratios (C/N0) intercepted at the four 

distances along the edge-to-interior transects in the oak (Qr1 and Qr2) and pine (Pn1 and Pn2) 

stands. 

Species stand 
Distance 

(m) 
N0 
(%) 

C 0 
(%) 

 lignin/N0 
P0 

(mg kg-1) 
EC0 

(meq kg-1) 
C/N0 

Oak 

Qr1 0 1.3 49.9 19.6 825.1 792 37.0 

Qr1 16 1.3 49.7 23.5 696.1 799 37.1 

Qr1 64 1.7 50.5 16.3 878.3 636 29.1 

Qr1 128 1.3 51.6 22.4 752.5 572 38.4 

Qr2 0 1.7 50.5 16.4 493.1 646 31.5 

Qr2 16 1.6 51.5 20.2 489.6 519 31.5 

Qr2 64 1.5 51.4 22.2 656.3 532 33.4 

Qr2 128 1.4 50.5 22.5 728.4 502 35.7 

Pine 

Pn1 0 0.7 53.0 37.6 222.6 382 72.5 

Pn1 16 0.9 53.8 32.9 221.4 299 62.0 

Pn1 64 0.8 53.3 36.1 237.6 256 67.7 

Pn1 128 1.0 52.7 25.2 276.8 217 54.7 

Pn2 0 1.2 53.0 20.4 654.0 459 45.6 

Pn2 16 1.0 53.2 29.5 382.5 265 54.8 

Pn2 64 0.9 53.3 30.8 307.8 215 57.4 

Pn2 128 1.1 53.4 27.8 319.5 199 50.7 

 

Table 5.3: P-values of the One-way ANOVA testing the effect of the predictor variable distance to 

the forest edge on the response variables initial litter concentrations (N0, C0, mass based C/N0 ratio, 

P0, Lignin0, EC0) and the decomposition parameter (k) for the oak and pine stands (n = 8), * p < 0.05. 

  Oak Pine 

N0 0.539 0.611 

C0 0.279 0.680 

C/N0 0.498 0.546 

Lignin/N0 0.311 0.627 

P0 0.359 0.486 

EC0 0.110 0.019* 

k 0.127 0.437 
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Correlation analyses between initial litter characteristics (N0, C0, mass based C/N0 ratio, P0, 

Lignin0, EC0; see Table 5.2), and litter mass loss and the decomposition parameter k for oak 

and pine separately, revealed a significant positive correlation between the decomposition 

parameter k and the initial concentration of EC for the oak stands. In the pine stands, litter 

mass loss was negatively correlated to initial lignin concentration (Table 5.4).  

 

Table 5.4: Pearson correlation coefficients between initial litter concentrations (N0, C0, mass based 

C/N0 ratio, P0, Lignin0, EC0), and absolute litter mass loss and the decomposition parameter (k) for 

the oak and pine stands (n = 8), * p < 0.05. 

Oak 
 k Mass loss 

N0 -0.232 -0.191 

C0 -0.673 -0.663 

C/N0 0.195 0.153 

Lignin0 -0.311 -0.272 

P0 0.237 0.312 

EC0 0.764* 0.665 

Pine 

N0 -0.229 0.608 

C0 -0.087 -0.085 

C/N0 0.261 -0.616 

Lignin0 0.075 -0.725* 

P0 -0.442 0.488 

EC0 -0.161 0.666 

 

Absolute and relative nutrient releases, i.e. differences between remaining nutrient masses 

after 18 months and the initial mass can be found in Table 5.5. At the edge of the oak stands, 

N amounts remained constant until one year of decomposition and decreased after this 

sampling moment (November 2015, Fig. 5.3a). After 18 months of litter decomposition, N 

loss was significantly higher at the oak edges compared to the interiors (Table 5.6). Nitrogen 

loss at the edge was increased by 2 orders of magnitude (or 124 mg) and by 80 % (or 56 

mg), respectively in Qr1 and Qr2. The significant interaction term showed that N loss 

fluctuated along the edge-to-interior transect over time in Qr2 (Table 5.6). In Pn1, N loss 

was 40 % (or 9.5 mg) lower at the edge compared to the interior (Table 5.6). At the edge of 

Pn2, the N amounts dropped in the first 3 months, stayed rather constant in the following 12 

months and decreased again in the last 3 months of the experiment, whereas the interior 

(128 m) showed a slow continuous decrease in pine litter N amount (Fig. 5.3a). In Pn2, N 

loss of edge litter was twice as high as N loss of interior litter (or 33 mg, Table 5.6). 
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In the oak stands, litter C/N ratios decreased during the first 6 months and stayed constant 

hereafter, while pine litter C/N ratios showed the opposite pattern: a constant C/N ratio 

during the first 6 months and a slow decrease over the remaining course of the experiment 

over all distances (Fig. 5.3b). Litter C/N ratios were significantly higher at the edge of the 

pine stands (on average respectively 18 % for Pn1 and 15 % for Pn2) compared to the 

interior (Fig. 3b, p < 0.05 for Pn1 and Pn2, n = 28). Relative changes in litter C/N ratios were 

significantly affected by distance to the forest edge with higher relative changes in litter C/N 

ratios at the oak edge of Qr2 (40 %) and pine edge of Pn2 (40 %), but lower relative changes 

at the pine edge Pn1 compared to the interior (28 %, Table 5.6). 

 

In the oak stands, the amounts of P decreased during the first 3 months at all distances, 

followed by an increase (but not at the edge of Qr1) during the following 9 months. After 12 

months, P amounts decreased again at all distances in both stands (Fig. 5.3c). In the oak 

stands Qr1 and Qr2, there was a significant effect of distance to the forest edge on P loss 

(Table 5.6). P loss at the oak edges was increased by 72 % (or 4.9 mg) and 30 % (or 2.1 

mg), respectively for Qr1 and Qr2. In the pine stands, P amounts stayed constant, except at 

the edge of Pn2, where a sharp decrease in P amount occurred in the first 3 months (Fig. 

5.3c). In the pine stands, P loss was significantly higher (twice as high or 0.7 mg) at the edge 

of Pn2 compared to the interior (Table 5.6).  

 

Amounts of EC decreased steadily over all distances in both forest types (Fig. 5.3d). Loss 

of EC was significantly higher at the oak edges compared to the interiors (Table 5.6). Loss 

of EC after 18 months was increased by 52 % (or 2.5 meq) and by 20 % (or 0.9 meq), 

respectively for Qr1 and Qr2. In the pine stands, EC amounts at the edge could be clearly 

distinguished from EC amounts in the interior (Fig. 5.3d). There was no significant effect of 

edge proximity on EC loss in the pine stands (Table 5.6).  
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Fig. 5.3: Average absolute nutrient amounts in decomposing litter over time per litterbag at the edge (= 0 – 5 m) and interior (= 128 m) for a) nitrogen 

(N, in mg), b) C/N ratio, c) phosphorus (P, in mg) and d) exchangeable cations (EC, in meq) for litterbag series A (n = 2 per sampling moment). 
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Table 5.5: Absolute average changes in litter mass and releases of nutrient amounts in litterbags of series A after 18 months of litter decomposition 

(average of n = 2) in the oak (Qr1 and Qr2) and pine (Pn1 and Pn2) stands, relative changes (% of initial mass or amount) are presented between 

brackets. At 16 m of Qr2, only 1 litterbag was retrieved and omitted from the table due to disturbance by wild boars. 

 

  Oak 

  Qr1 Qr2 

Distance (m) Mass loss (g) N (mg) C (mg) P (mg) EC (meq) 
Mass loss 

(g) N (mg) C (mg) P (mg) EC (meq) 

Edge (0-5) -9.3 (-93) -119.8 (-89) -4667.0 (-93) -7.7 (-93) -7.2 (-91) -7.1 (-71) -94.5 (-57) -3689.2 (-73) -2.9 (-58) -5.1 (-78) 

16 -5.8 (-58) -41.2 (-31) -3148.2 (-63) -3.0 (-44) -4.6 (-57) - - - - - 

64 -5.5 (-55) -62.1 (-36) -2868 (-57) -5.2 (-59) -4.0 (-63) -6.0 (-60) -47.6 (-31) -3193.0 (-62) -2.9 (-45) -3.4 (-63) 

Interior (128) -4.4 (-44) -0.02 (0) -2402.5 (-46) -2.1 (-27) -2.5 (-43) -5.4  (-54) -18.6 (-13) -2825.5 (-56) -3.1 (-42) -2.6 (-52) 

  Pine 

  Pn1 Pn2 

Edge (0-5) -5.3 (-53) -9.5 (-13) -2856.8 (-54) -0.6 (-30) -1.9 (-51) -6.6  (-66) -74.8 (-64) -3500.7 (-66) -5.4 (-82) -3.2 (-69) 

16 -6.1 (-61) -31.0 (-36) -3335.4 (-62) -0.5 (-22) -1.6 (-53) -5.6 (-56) -33.4 (-34) -2936.9 (-55) -2.3 (-59) -1.7 (-64) 

64 -5.0 (-50) -5.5  (-7) -2623.3 (-49) -0.2  (-7) -0.9 (-37) -5.8  (-58) -25.3 (-27) -3091.8 (-58) -1.3 (-42) -1.2 (-57) 

Interior (128) -5.9 (-59) -42.3 (-44) -3092.1 (-59) -1.0 (-35) -1.0 (-47) -5.3 (-53) -32.5 (-31) -2826.6 (-53) -1.3 (-40) -1.1  (-53) 
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Table 5.6: Effects of distance to the forest edge and time of sampling on mass loss, nutrient release of nitrogen (N), phosphorus (P), exchangeable 

cations (EC) and change in C/N ratio of decomposing litter in litterbags of series A over the whole period of 18 months. Bold values indicate significance 

(p < 0.05). The arrow indicates the direction of the effect of distance to the forest edge, i.e. increase with distance to the edge (  ) or decrease with 

distance to the edge (  ). Results of the Tukey HSD post-hoc tests are specified in case of a significant effect of distance to the forest edge.  

 

  Oak 

  Qr1 Qr2 

  
Distance to 
forest edge   Time Interaction 

Distance to 
forest edge   Time Interaction 

Mass loss 
0.001 

0 > 16 = 64 = 128 8.6 e-13 0.096 
0.002 

0 > 16, 64, 128 6.7 e-14 0.013 

N loss 
5.92 e-13 

0 > 16 > 64 > 128 < 2 e-16 8.48 e-07 
4.15 e-07 

0 > 16 = 64 = 128 2.10 e-07 0.008 

P loss 
1.43 e-12 

0 > 16 = 64 > 128 < 2 e-16 6.75 e-05 
3.32 e-05 

0 > 16 > 64 = 128 8.06 e-09 0.135 

EC loss 
1.51 e-06 

0 = 16 > 64 = 128 1.32 e-12 0.0002 
7.33 e-07 

0 > 16 > 64 = 128 1.47 e-10 0.005 
C/N 
change 0.227  1.30 e-10 3.89 e-06 1.81 e-06 0 = 16 > 64 = 128 3.13 e-14 0.334 

  Pine 

  Pn1 Pn2 

Mass loss 0.539  3.3 e-12 0.889 0.660  < 2 e-16 0.439 

N loss 
0.0001 

0 = 16 < 64 < 128 0.001 0.943 8.22 e-08 0 > 16 > 64 < 128 0.0004 0.596 

P loss 0.450  0.007 0.841 
4.55 e-10 

0 > 16 > 64 = 128 0.0035 0.398 

EC loss 0.316  2.06 e-05 0.987 0.079  3.56 e-07 0.493 
C/N 
change 

2.89 e-07 
0 = 16 < 64 < 128 3.52 e-11 0.464 4.84 e-10 0 > 16 > 64 = 128 1.12 e-08 0.597 
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Pearson correlation analyses between litter mass loss after 18 months and soil 

physicochemical and environmental characteristics showed that in the oak stands litter mass 

loss was higher at higher pH values of mineral soil and at lower C/N ratios of the forest floor 

(respectively p < 0.05 for pHms and CNff, Table 5.7). The decomposition rate k of the oak 

stands was also positively correlated with the pH of the mineral soil (p < 0.01) and negatively 

correlated to the C/N ratio of the forest floor (p < 0.05, Table 5.7). Losses of N and EC after 

18 months were negatively correlated to the C/N ratio of the forest floor in the oak stands     

(p < 0.01 and p < 0.05 respectively for N and EC, Table 5.7), while loss of P was positively 

correlated to pH of the mineral soil (p < 0.05, Table 5.7). In the pine stands, k was negatively 

correlated to the C/N ratio of the mineral soil and P loss was positively correlated with the 

C/N ratio of the forest floor (p < 0.05, Table 5.7). 

 

Table 5.7: Pearson correlation coefficients between litter mass loss, decomposition parameter k  and 

nutrient release of nitrogen (N), phosphorus (P) and exchangeable cations (EC), and change in C/N 

ratio of litter after 18 months of litter decomposition (litterbag series A), and soil physicochemical and 

environmental characteristics (pHms = pH of mineral soil, CNff = C/N ratio of forest floor, CNms = 

C/N ratio of mineral soil, Ndep = N deposition in kg N ha-1 yr-1, soilT = soil temperature at a depth of 

5 cm and soilM = soil moisture at a depth of 5 cm, n = 16) for the oak and the pine stands separately. 

  Oak  

  
Mass 
loss 

k N loss P loss EC loss C/N change 

pHms 0.741* 0.872** 0.687 0.723* 0.651 0.165 

CNff -0.802* -0.745* -0.843** -0.648 -0.807* -0.259 

CNms -0.172 -0.337 -0.059 -0.155 -0.019 0.308 

Ndep -0.301 -0.214 -0.187 -0.475 -0.262 0.065 

soilT 0.385 0.567 0.371 0.269 0.451 0.596 

soilM -0.617 -0.947 -0.712 -0.561 -0.654 -0.972 

  Pine  

pHms -0.001 -0.549 0.041 0.504 0.445 0.211 

CNff 0.337 -0.539 0.533 0.749* 0.630 0.565 

CNms 0.056 -0.717* 0.225 0.482 0.582 0.155 

Ndep 0.163 -0.252 0.111 0.262 0.328 0.141 

soilT 0.469 -0.096 0.390 0.412 0.312 0.484 

soilM -0.901 -0.928 -0.683 -0.475 -0.307 -0.630 

*p < 0.05, ** p < 0.01, *** p < 0.001. 
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5.3.2. Effect of litter quality, litter position and edge decomposer macrofauna on mass loss 

 and nutrient release 

Analysis of mass loss and nutrient release in series B and C was significantly affected by 

litter quality, litter position and the edge decomposer macrofauna (Fig. 5.4, Table 5.8). 

Averaged over the four stands, the temperature of the litter layer in the OTC was 0.73 (± 

0.26) °C higher than outside the OTC. The temperature increase in the OTC was 

comparable to the soil temperature increase at the forest edge compared to the interior, as 

the temperature difference between edge (0 – 2 m) and interior (128 m) ranged between 

0.42 and 1.28 °C at a depth of 5 cm in the mineral soil. In Qr1 and Pn1, litter quality, litter 

position and the interaction of litter quality and position, i.e. the interchange of edge and 

interior litter significantly affected mass loss (Table 5.8). In Qr1, edge litter lost more mass 

than interior litter, irrespective of its position, and litter at the edge lost more mass than litter 

in the interior or in OTC (Fig. 5.4a). Also in Qr2, litter at the edge lost more mass than litter 

in the interior (Fig. 5.4a), irrespective of its quality, but the effect was marginally insignificant 

(Table 5.8). In Pn1, edge litter lost more mass compared to interior litter and litter in the 

interior lost more mass than litter at the edge or in the OTC. No significant influence of litter 

position or quality was observed on mass loss in Pn2. 

 

Loss of N was governed by litter quality in both oak stands and Pn2, where edge litter lost 

more N than interior litter (Fig. 5.4b, Table 5.8). In Qr1 and Pn1, litter position affected N 

loss in the same way as mass loss (i.e. litter at the edge lost more N than litter in the interior 

of Qr1, whereas in Pn1 litter in the interior lost more N than litter at the edge). 

 

Edge litter lost more P than interior litter in Qr1 and Pn2 (Fig. 5.4c, Table 5.8). In both oak 

stands, litter at the edge lost more P than litter in the interior or OTC. In Pn1, the Tukey post-

hoc test revealed that the interchange of litter significantly affected P loss, as P loss of 

interior litter in the interior differed from interior litter at the edge and P loss of edge litter at 

the edge differed from edge litter in the interior. 

 

Edge litter of Qr1 and Pn2 lost more EC than interior litter in these stands (Fig. 5.4d, Table 

5.8). In Qr1, litter at the edge lost significantly more EC than litter in the forest interior or 

OTC. 

 

Relative changes in C/N ratios were significantly influenced by litter quality (Fig. 5.5, Table 

5.8), with larger relative changes in C/N ratio in edge litter compared to interior litter in Qr2 
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and Pn2, but larger relative changes in C/N ratio in interior litter compared to edge litter in 

Pn1. In Pn2, litter at the edge had larger relative changes in C/N ratios than litter in the 

interior. 

 

Table 5.8: Effects of litter position (edge, interior, OTC), litter quality (edge, interior) and their 

interaction on relative mass loss, nutrient release of nitrogen (N), phosphorus (P) and exchangeable 

cations (EC), and relative change in C/N ratio after 18 months of litter decomposition. Bold values 

are significant (p < 0.05). Results of the Tukey HSD post-hoc tests are specified: e = edge, i = interior. 

 

 Stand Variable 
Litter 

position 
  

Litter 
quality 

  Interaction 

Qr1 

Mass loss 3.07 e-6 e >  i 0.004 e > i 0.013 

N loss 4.96 e-7 e > i 8.69 e-5 e > i 0.554 

P loss 1.61 e-5 e >  i 0.0002 e > i 0.057 

EC loss 0.0004 e > i 0.0002 e > i 0.459 

C/N 
change 

0.388 
  

0.394 
  

0.417 

Qr2 

Mass loss 0.067   0.987   0.641 

N loss 0.142  0.006 e > i 0.091 

P loss 0.001 e > i 0.027 i > e 0.021 

EC loss 0.254  0.248  0.124 

C/N 
change 

0.203   0.0002 e > i 0.057 

Pn1 

Mass loss 0.020 i > e 0.028 e > i 0.022 

N loss 0.037 i > e 0.791  0.029 

P loss 0.091  0.111  0.004 

EC loss 0.180  0.113  0.449 

C/N 
change 

0.307   0.009 i > e 0.496 

Pn2 

Mass loss 0.438   0.177   0.224 

N loss 0.336  0.036 e > i 0.185 

P loss 0.084  0.001 e > i 0.100 

EC loss 0.612  0.044 e > i 0.763 

C/N 
change 

0.049  e > i 0.001 e > i 0.059 
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Fig. 5.4: Results of the two-way ANOVA’s for litterbag series B and C showing the effect of litter position (e = edge, i = interior, = OTC; specified on 

the left) and litter quality (edge, interior; specified on the right) on litter mass loss and nutrient release of nitrogen (N), phosphorus (P) and exchangeable 

cations (EC) for the oak (Qr1 and Qr2) and pine stands (Pn1 and Pn2). * p < 0.05, ** p < 0.01, *** p < 0.001, ns= not significant.

Qr1 Qr2 Pn1 Pn2

M
a
s
s
 l
o
s
s
 (
%

)

Litter position

e       i e         i e         i e         i

100 

50

0 

***     ** *     *ns     ns ns     ns

Qr1 Qr2 Pn1 Pn2

N
 l
o
s
s
 (
%

)

Litter position

e       i e         i e          i e          i

100 

50 

0 

***   *** ns ** *        ns ns       *

Qr1 Qr2 Pn1 Pn2

P
lo

s
s
 (
%

)

Litter position

e       i e          i e         i e          i

100 

50 

0 

***     *** **         * ns     ns ns      **

Qr1 Qr2 Pn1 Pn2

E
C

 lo
s
s
 (

%
)

Litter position

e       i e         i e          i e          i

100 

50 

0 

***    *** ns *ns     ns ns     ns

Litter quality

Edge litter
Interior litter

Litter position

e       Litter at edge
i Litter in interior

Interior litter in OTC

a 

d 

b 

c 



111 
 

 

 

Fig. 5.5: Results of the two-way ANOVA’s for litterbag series B and C showing the effect of litter 

position (e = edge, i = interior, = OTC; specified on the left) and litter quality (edge, interior; 

specified on the right) on the relative change in C/N ratio for the oak (Qr1 and Qr2) and pine stands 

(Pn1 and Pn2). ). * p < 0.05, ** p < 0.01, *** p < 0.001, ns= not significant. 

 

 

5.4. Discussion 

In this study, we explored the edge effects on litter decomposition in four temperate forest 

stands in northern Belgium, Flanders, by monitoring litter mass loss, nutrient losses (N, P 

and EC) and C/N ratio along edge-to-interior transects during 18 months. The remaining 

litter mass was lower at the edge compared to the interior in the oak stands, but not in the 

pine stands. Nutrient release was higher at the edge compared to the interior for all nutrients 

in the oak stands, but only for N and EC in the pine stands. Furthermore, the roles of edge 

conditions (edge-specific microclimate, atmospheric deposition, soil fauna and soil 

physicochemical conditions), litter quality and edge decomposer community were 

investigated as underlying driving factors for litter decomposition at temperate forest edges 

by interchanging edge and interior litter (focusing on the influence of the edge conditions on 

the one hand and litter quality on the other hand) and placing litter in OTC (focusing on the 

role of the edge decomposer macrofauna). We found significant effects of the edge 

conditions, litter quality and the edge decomposer macrofauna on litter decomposition and 

nutrient release. In the next sections, the edge effect and its underlying driving factors on 

litter mass loss and nutrient release are discussed.  
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5.4.1 Litter mass loss along edge-to-interior transects 

Our first hypothesis, stating faster litter decomposition at the edge compared to the interior, 

held true for the oak stands but not for the pine stands. Litter at the edge lost 87 % and 37 

% more mass than litter in the interior, respectively in Qr1 and Qr2. In Qr2, relative remaining 

litter mass fluctuated in time along the edge-to-interior transects, probably due to the 

disturbance by wild boars (pers. obs.). Faster decomposition at the edge (0 - 50 m) was also 

observed in tropical forest fragments of 100 ha (Didham, 1998), but, in contrast, no edge 

effect on decomposition was observed in (sub)tropical forests (Vasconcelos and Laurance, 

2005; Moreno et al., 2014) and even slower decomposition was found in the edge of mixed 

deciduous temperate forests in the UK (Riutta et al., 2012). Based on the data of this and 

previous studies, it seems that litter decomposition is not affected by a single general edge 

effect in all forests. Instead, the edge influence varies from site to site, probably resulting 

from the site-specific complex interaction of multiple factors involved in litter decomposition 

and affected by edge proximity (e.g. microclimate, atmospheric deposition, physicochemical 

soil conditions, decomposer community and litter quality). It is therefore important to identify 

the underlying driving factors for litter decomposition at forest edges. 

 

Interchanging litter from edge and interior confirmed the influence of edge conditions on litter 

decomposition for Qr1, Pn1 and to a lesser extent also for Qr2. The pattern of relative 

remaining litter mass in the oak stands shows a ‘time lag’ of 6 months, after which the effect 

of edge conditions became apparent and larger litter mass losses were observed at the 

edge, irrespective of the litter origin (data not shown). This ‘time lag’ of 6 months coincides 

with the period of spring where temperatures and biological activity are rising (Baldrian et 

al., 2013). 

 

We found no significant correlation between litter decomposition and soil moisture (Table 

5.7), suggesting that soil moisture was not the driving factor for the edge effects. This is in 

contrast with the observation by Riutta et al. (2012) that litter decomposition was moisture-

limited with slower decomposition at the drier forest edges. In agricultural soils, it is common 

practice to use RothC, developed by Coleman and Jenkinson (1996) to model the turnover 

of organic C in the topsoil. The model comprises a non-linear rate modifying factor for 

temperature and soil moisture. The lack of a correlation between mass loss and soil 

moisture/soil temperature in this study could have been due to the non-linear relationship 

between both types of variables.  
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Placing interior litter in OTC, creating a warmer ‘edge’ microclimate in the absence of the 

edge decomposer macrofauna, led to more remaining litter in one oak (Qr1) stand compared 

to interior litter at the edge (Fig 5.4a). Hence, in this stand, arthropod detritivores at the edge 

probably had a relatively large influence on the increased litter decomposition, as stated in 

our fourth hypothesis. It was also possible that the temperature in the OTC did not reach the 

temperature at the edge, resulting in lower decomposition rates. However, the relative 

increase in the litter layer temperature within the OTC fell within the range of the relative 

increase of the mineral soil temperature at the edge versus the interior. Many studies have 

shown an increased decomposition rate in the presence of macro-detritivores (Vasconcelos 

and Luizão, 2004; Slade and Riutta, 2012). Using two mesh sizes for their litterbags (5 mm 

to allow macrofauna and 1 mm to exclude macrofauna from the litterbags), Riutta et al. 

(2012) observed that the presence of macrofauna accelerated the decomposition rate 

(irrespective of soil moisture level or distance to the forest edge), and particularly for the oak 

leaves. Other studies, e.g. Hättenschwiler and Gasser (2005) have shown that the influence 

of soil fauna is strongest on the decomposition of recalcitrant litter types, such as pine and 

oak. The design of our litterbags was meant to minimize ‘fall-through’ of litter and still allow 

accessibility of soil macrofauna. Previous research in the same stands as our study, has 

shown an overall edge effect on woodlice and millipedes, with a higher abundance at the 

forest edge (De Smedt et al., 2016). They partly attributed their higher abundance due to 

more favourable soil chemical conditions (pH, exchangeable cations) at the forest edge, as 

higher abundances were found at higher pH values, higher Mg content and lower C/N ratio 

of the forest floor litter. The decomposer community could help explain the faster litter mass 

loss at our oak forest edges, as arthropod detritivores increase the accessible surface area 

of dead organic material for further breakdown by the microbial community (Harper et al., 

2005).  

 

Physicochemical soil conditions and litter stoichiometry influenced the litter decomposition 

in our forest stands. Correlation analyses revealed that litter mass loss was positively linked 

to the soil pH and negatively to the C/N ratio of the forest floor (litter and fermentation and 

humus layers) in the oak stands (Table 5.7). Indeed, the oak and pine stands were 

characterized by higher upper mineral soil pH values and lower forest floor C/N ratios at the 

edge than in the forest interior (Wuyts et al., 2011, 2013). The oak stands, characterized by 

lower lignin to N ratios and higher EC amounts than the pine stands, lost most litter mass at 

the edges. We also measured a negative relationship between the initial lignin concentration 

and litter mass loss in the pine stands, irrespective of the distance to the forest edge (Table 
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5.4). Faster decomposition rates have been observed for leaf litter of higher quality (low 

lignin and high nutrient concentrations) (Cornwell et al., 2008).  

In our third hypothesis, we expected that if litter quality was the primary driver of litter 

decomposition, edge litter would lose more litter mass even in the forest interior. We 

observed this pattern in Qr1 and Pn1 (Fig 5.4a). However, the specific conditions of edge 

and interior (microclimate, atmospheric deposition, physicochemical soil conditions and 

decomposer community) were likely stronger regulators of litter mass loss than intraspecific 

variability in litter quality. For instance, in the pine forest Pn1, edge litter in the forest interior 

lost more mass compared to litter at the edge (Fig 5.4a). This could be due to the specific 

characteristics (such as understory vegetation, light availability and soil micro- and 

macrofauna) of the forest interior, which was relatively open, and edge, where the 

understory vegetation was dominated by grasses. In the study of De Smedt et al. (2016) this 

pine stand showed no decrease in millipede abundance and only a moderate decrease in 

woodlice abundance in function of distance to the forest edge, in contrast to the other 

investigated oak and pine stands (pers. comm.). This could indicate a less favourable 

microclimate at this forest edge and a more favourable forest interior (because of the open 

canopy) compared to the other sampled forest stands.  

 

5.4.2. Nutrient release from litter along edge-to-interior transects 

Nitrogen and P were released faster from decomposing litter at the forest edge than in the 

forest interior. Also EC release was higher at the edge, but only in the oak stands (Fig 5.3, 

Table 5.6). This confirms our first hypothesis. Generally, N and P dynamics in decomposing 

litter are characterized by an initial phase of leaching of soluble substances, followed by an 

increase in concentration (or immobilization phase), and a subsequent decrease (or 

mineralization phase)  irrespective of distance to the forest edge (e.g. Berg and Staaf, 1981; 

Manzoni et al., 2008; Marklein et al., 2016). As the different litter compounds are not 

decomposed at the same rate, readily available nutrients decrease rapidly, while more 

recalcitrant compounds show a relative increase (Berg and McClaugherty, 2003). We 

observed the pattern of net N and P immobilization and release in the oak stands, but 

declining or constant N and P amounts in the pine stands, irrespective of distance to the 

forest edge (Fig 5.3a & 5.3c). The pattern of net N and P immobilization and release can be 

explained by the chemical composition of litter and the stoichiometric requirements of the 

microbial decomposer community that colonizes the litter during degradation (Jacob et al., 

2009; Cline and Zak, 2014;). At low litter C/N ratios (N excess), homeostatic bacteria and 

fungi have a low nitrogen use efficiency (NUE), i.e. low immobilization and high N release 

http://onlinelibrary.wiley.com/doi/10.1111/mec.13739/full#mec13739-bib-0008
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to the environment, but a high carbon use efficiency (CUE). In contrast, at high litter C/N 

ratios they are expected to lower their CUE while increasing their NUE (Sterner and Elser, 

2002). The threshold elemental ratio (TER) expresses the ratio at which an ecological 

system switches from C limitation to nutrient limitation.  Berg and McClaugherty (2003) 

proposed a TER ranging between 20 and 25 for the forest floor C/N ratio and between 20 to 

30 for the litter C/N ratio based on a review of decomposition studies in temperate and boreal 

forests. During the first 6 months of the experiment, litter C/N ratio of the oak stands was 

higher than 25 (Fig 5.3b) and N may have limited microbial growth. After 6 months, oak litter 

C/N ratio was lower than 25 and consequently NUE decreased, leading to N release 

(Mooshammer et al., 2014). In the same way, the pattern of P release is negatively related 

to initial litter ratios of C/P and N/P (Jacob et al., 2009). Mooshammer et al. (2012) confirmed 

the negative relationship between P mineralization and litter C/P ratio for beech litter. We 

observed an uptake (immobilisation) of P between February 2015 and November 2015 in 

the oak stands, except at the edge (Fig 5.3c). Starting from December 2015, P was released 

at all distances, as P was probably no longer limiting microbial growth. In the pine stands, 

litter at the edge of Pn2 lost most N and P during the first 3 months (Fig 5.3a & 5.3c), 

probably via mechanical leaching of soluble compounds. During the remainder of the 

experiment and at other distances, N and P amounts decreased slowly (Fig 5.3a & 5.3c). 

Pine litter C/N ratios and C/P ratios were respectively above 25 (Fig 5.3b) and 1000 (data 

not shown) during the whole experiment, retarding decomposition. However, Manzoni et al. 

(2008) showed that decomposer communities are able to lower their CUE to obtain nutrients 

from recalcitrant substrates.  

 

The release of P after 18 months was positively related to the pH of the mineral soil in the 

oak stands, which was higher at the forest edges compared to the interior and consequently 

could have favoured nutrient release. Nitrogen release was negatively correlated to the C/N 

ratio of the forest floor (litter and fermentation and humus layers) in the oak stands (Table 

5.7), which was lower at the edges. Deciduous oak forests are characterized by lower forest 

floor and mineral topsoil C/N ratios than evergreen pine forests, due to the lower lignin and 

higher N content in oak leaves than in needles, which is preferred by soil macrofauna (David 

and Handa, 2010; Gerlach et al., 2013) and results in a faster breakdown and nutrient 

release (Cools et al., 2014). The higher initial EC concentrations in oak leaves compared to 

pine needles could be an extra stimulus for population development of soil macrodetritivores 

since these nutrients are essential components of the exoskeleton and haemolymph of soil 

macrofauna (Hopkin and Read, 1992; Kime, 1992). Vesterdal et al. (2008) found smaller C 
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pools in the organic horizon but larger C pools in mineral soils under tree species with low 

C/N ratios in leaf litter. Mueller et al. (2015) hypothesized that the negative effect of litter 

quality on organic horizon C stocks (via losses of litter derived C during decomposition) was 

counteracted by a positive effect of litter quality on mineral soil C stocks (via increased 

microbial CUE and subsequent retention of microbial-derived C in mineral soil). Our findings 

confirm their hypothesis and corroborate previous statements of Remy et al. (2016b, see 

Chapter 2, § 2.4.1.) and Wuyts et al. (2011), where faster litter degradation and transfer 

towards deeper soil layers was suggested as a possible explanation for lower N and C 

concentrations in the forest floor, but higher N and C concentrations in mineral soil at the 

edge compared to the interior.  

 

The effect of the litter position (edge conditions) was apparent in the oak stands, where litter 

lost more N, P and EC at the edge of Qr1 and more P at the edge of Qr2 than litter in the 

interior (Table 5.8), confirming our second hypothesis (which stated that more nutrients 

would be released at the forest edge irrespective of litter origin). Nutrient release was also 

significantly affected by the OTC treatment in Qr1, as N, P and EC losses of interior litter at 

the edge were higher than interior litter in the OTC (Fig 5.4). Thus, the absence of the edge 

decomposer macrofauna significantly reduced nutrient release, as stated in our fourth 

hypothesis. The pine stand Pn1 behaved differently from the other stands, with higher losses 

of N when edge litter was placed in the forest interior compared to litter at the edge (Fig 

5.4b). The pattern of nutrient release followed the observed pattern for litter mass loss in 

Pn1 (see § 5.4.1. for possible explanations).  

 

Effects of litter quality were also measurable in Qr1 and Pn2, as edge litter lost more N, P 

and EC amounts than interior litter both at the edge and in the interior (Fig 5.4). Therefore, 

our third hypothesis, where the favourable litter quality of edge litter stimulates nutrient 

release irrespective of its location (edge/interior) held true in these stands. 
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5.5. Conclusion 

Increased litter mass loss was observed at the forest edge compared to the interior in the 

oak stands, but not in the pine stands. Leaf litter mass loss was positively correlated to soil 

pH and negatively to the C/N ratio of the forest floor in the oak stands, but not in the pine 

stands. These favourable soil chemical conditions (higher pH values and higher atmospheric 

deposition of N and exchangeable cations (i.e. K+, Mg2+, Ca2+)) probably promoted the 

abundance of the decomposer macrofauna (woodlice, millipedes) and microfauna (see 

Chapter 4) at the edge, which may contribute to increased litter breakdown. Nutrient release 

was higher for all nutrients (N, P, EC) at the oak forest edges compared to the interior, but 

only for N and P in one pine stand and was also governed by the pH of mineral soil. We 

could confirm previous hypotheses of Mueller et al. (2015) and Remy et al. (2016b) that 

faster litter degradation at the edge lay at the base of lower C stocks in the organic layer 

and was counteracted by increased mineral soil C stocks (see Chapter 2). Litter position, 

litter quality and edge soil macrofauna all influenced litter decomposition and nutrient 

release, but the contribution of each driving factor depended on the specific edge 

characteristics of each site. Overall, we demonstrated an edge effect on litter decomposition 

and nutrient release, caused by the complex interplay of edge microclimate, atmospheric 

deposition, physicochemical soil characteristics, litter quality and soil decomposer 

community. Consequently, such edge effects must be taken into account when quantifying 

ecosystem processes, such as litter decomposition and nutrient cycling in highly fragmented 

landscapes, dominating Western Europe.
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6. General discussion and conclusions 

Due to a long history of land-use change, forest edges and small forest remnants have 

become important features in the European landscape (Decocq et al., 2016; Harper et al., 

2005; Hofmeister et al., 2013). Despite several directives and policies aiming to reduce the 

use and emission of N, anthropogenic activities still give rise to high atmospheric N 

deposition levels. Enhanced N deposition in forests gives rise to eutrophication (Gundersen 

et al., 1998a, 1998b), acidification (De Schrijver et al., 1998) and species loss (De Schrijver 

et al., 2011). Forest edges are subject to higher atmospheric deposition compared to forest 

interiors (e.g. Devlaeminck et al., 2005; De Schrijver et al., 2007; Wuyts et al., 2008a, 

2008b), potentially making them more prone to these negative effects. Increased N input via 

atmospheric pollution may disrupt the forest N cycle, as N saturated forests are 

characterized by increased N losses (Butterbach-Bahl et al., 2002; Gundersen et al., 2006). 

However, forest edges may challenge the current N-saturation paradigm, as Wuyts et al. 

(2011) measured a local decline in nitrate (NO3
-) seepage within the first 20 m from the edge. 

As there were no significant differences in throughfall and leaching fluxes along the edge-

to-interior transects, hydrology alone could not be the explanatory factor. They hypothesized 

that increased N retention, gaseous N emissions and dissolved organic N (DON) leaching 

in the soil are the main processes involved in the altered N cycle at the N enriched forest 

edge. However, their assumptions on the processes involved in the fate of N at forest edges 

needed thorough verification. 

 

As previous studies suggested changes in microclimate, N deposition, N leaching and soil 

physicochemical characteristics at forest edges (e.g. Matlack, 1993; De Schrijver et al., 

1998; Wuyts et al., 2008b), more insight into N and C cycling and sequestration is needed. 

Therefore, six temperate forest stands in northern Belgium (Flanders) and Denmark growing 

on acid, sandy quartz-dominated Podzols with a low base saturation were selected to deliver 

more insight in the mechanisms that drive the edge effect on the forest N cycle. All the forest 

edges bordered arable lands dominated by intensive livestock production (the main source 

of ammonia emission) and have experienced several decades of elevated N deposition. The 

selected forest edges comprised tree species relevant for their respective region, i.e. two 

oak (Quercus robur L., Qr1 and Qr2) and two pine (Pinus nigra ssp. nigra Arnold and Pinus 

nigra ssp. laricio Maire, Pn1 and Pn2) stands in Flanders and two spruce (Picea sitchensis 

and Picea abies, Ps and Pa) stands in Denmark. An overview of the stand and 

physicochemical characteristics can be found in Table 1.1. 
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In this chapter, a general and integrated discussion of the most relevant results of the four 

previous chapters is provided (§ 6.1) together with some implications for forest policy and 

global change mitigation (§ 6.2) and recommendations for future research (§ 6.3). 

 

6.1. Main findings 

The major aims of this thesis were (i) to assess the edge effect on N stocks, C stocks and 

their sequestration and (ii) to determine which processes of the forest N cycle differ between 

edge and interior. Therefore, different processes of the N cycle were investigated in 

Chapters 2, 3, 4 and 5, as shown in Fig. 1.8. The results of Chapters 2 to 5 are summarized 

in Fig. 6.1 and Table 6.1, where the relative increases/decreases of stocks and fluxes at the 

edge (0 - 20 m) compared to the interior are presented. In the following paragraphs, the 

edge effect on N deposition and microclimate, the N and C stocks and sequestration, the 

microbial community and the different processes of the N cycle is discussed. 

 

Edge effect on N deposition and microclimate 

Inputs of atmospheric N to forests often exceed that to low vegetation, such as grasslands 

and heathlands, due to the filtering effect of the canopy (Erisman and Draaijers, 2003; 

Bobbink et al., 2010). Moreover, forest edges are recognized as traps or ‘hot spots’ for 

atmospheric pollutants (Weathers et al., 2001). Erisman and Draaijers (2003) stated that 

there are two methods to estimate deposition: micrometeorological methods, used for dry 

deposition processes and throughfall. They estimated that dry deposition of acidifying 

compounds to forest edges in the Netherlands is increased by approximately 5 to 10%. In 

this thesis, N input into the forest ecosystem was quantified via N throughfall data of Wuyts 

et al. (2008b) and Ginzburg (2014). Nitrogen throughfall fluxes of the six selected stands 

were on average 34 % higher at the forest edge (0 - 20 m) compared to the interior (Fig. 6.1, 

Table 6.1). Ginzburg reflected that N throughfall data are likely an underestimation of the 

total atmospheric N input owing to the canopy uptake of atmospheric N and by neglecting N 

input by stem flow. However, stem flow constituted only 0.6 and 0.5 % of gross precipitation 

in temperate pine and oak stands in Mexico (Silva and Rodriguez, 2001). Although N input 

by stem flow was shown to be less than one percent of the throughfall N input in a Norway 

spruce stand (Christiansen et al., 2006), increased wind turbulence at the edge (Saunders 

et al., 1991) may increase the contribution of N input by stem flow. Fenn et al. (2013) stated 

that the major limitation of throughfall deposition methods is the uncertainty of pollutant 

interactions with the canopy. Adriaenssens et al. (2011) measured foliar N uptake from wet  
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Fig. 6.1: Conceptual representation of the N cycle at the forest edge (0 – 20 m). Black: stocks and fluxes studied in this thesis, bold: stocks and fluxes 

studied in this thesis that differ between edge and interior, the relative difference is indicated by the thickness of the arrows (full = increase at the edge 

vs. interior, open = decrease at the edge vs. interior). Fluxes in grey were taken from other studies in the same forest stands (Sleutel et al., 2009; Wuyts 

et al. 2008b, 2011), fluxes in grey italic are assumptions based on our data and available literature. SOM stands for soil organic matter, DON for 

dissolved organic nitrogen, and DNRA for dissimilatory reduction of nitrate (NO3
-) to ammonium (NH4

+). Data on DNRA at forest edges are lacking. 

Differences in N and C stocks of the forest compartments and mineral soil at the edge vs. the interior are specified in the black box on the right.
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Table 6.1: Overview of the mean relative increase (+) or decrease (-) (in %) of the different N and C 

stocks and fluxes at the edge (0 - 20 m) versus the interior. FH stands for the fermentation and 

humus layer, DON for dissolved organic nitrogen and DNRA for dissimilatory nitrate reduction to 

ammonium. The N and C stocks of leaves/needles are specified per forest type (o =oak, p = pine 

and s= spruce). 

Variable 

Mean relative increase (+) or 
decrease (-) at the edge vs. the 

interior (%) Source 

Total N deposition + 0 - 25 Erisman and Draaijers (2003) 

N throughfall + 25 - 50 Wuyts et al. (2008b), Ginzburg (2014) 

Canopy uptake - 25 - 50 Wuyts et al. (2008b) 

Total N and C stocks + 25 - 50 Remy et al. (2016b), Chapter 2 

     Leaves/needles o: + 0 – 25, p: + 25 - 50, s: - 25 - 50 Remy et al. (2016b), Chapter 2 

     Wood + 50 - 75 Remy et al. (2016b), Chapter 2 

     Roots + 25 - 50 Remy et al. (2016b), Chapter 2 

     Forest floor - 25 - 50 Remy et al. (2016b), Chapter 2 

     Mineral soil (0 - 30 cm) + 25 - 50 Remy et al. (2016b), Chapter 2 

Soil C sequestration + > 100 Remy et al. (2016b), Chapter 2 

Litterfall + 0 - 25 Remy et al. (2016b), Chapter 2 

Litter decomposition + 50 - 75 Chapter 5 

Root litter and exudates + 0 - 25 Remy et al. (2016b), Chapter 2 

N assimilation in trees + 25 - 50 Remy et al. (2016b), Chapter 2 

Biomass of Gram+ bacteria + > 100  Chapter 4 

Mineralization + > 100  Chapter 4 

Nitrification 0 Chapter 4 

N retention   

    Litter - 50 - 75 (NH4
+ and NO3

-) Chapter 4 

    FH + 50 - 75 (NH4
+ and NO3

-) Chapter 4 

    Mineral soil (0 - 10 cm) + > 100 (only NO3
-) Chapter 4 

    Mineral soil (10 - 20 cm) + > 100 (only NO3
-) Chapter 4 

NO3
- seepage - 25 - 50 Wuyts et al. (2011) 

DON seepage + 25 - 50 Sleutel et al. (2009) 

N2O emission 0 Remy et al. (2016a), Chapter 3 

NO emission - 50 - 75 Remy et al. (2016a), Chapter 3 

CH4 uptake + > 100 Remy et al. (2016a), Chapter 3 

Denitrification 0 Rich et al. (2003) 

DNRA - no data 

 

deposition for silver birch, European beech, pedunculate oak and Scots pine. Uptake rates 

for NH4
+ were higher than uptake rates of NO3

-, especially for the deciduous tree species 

(Adriaenssens et al., 2011). In remote or low polluted areas, several authors found lower 

NH4
+ and NO3

- fluxes in throughfall than in bulk precipitation, suggesting uptake of N by the 

canopy, whereas higher N fluxes in throughfall than in bulk precipitation have been reported 

at strongly polluted areas (Ignatova and Dambrine, 2000; Kristensen et al., 2004). Based on 

ion deposition fluxes in open field, at the edge and in the interior, measured during one year 



123 
 

by Wuyts et al. (2008b), the increase in N concentration during passage through the canopy 

could be calculated for the oak and pine stands in Belgium. The open field inorganic N (NH4
+ 

and NO3
-) deposition was on average 12.2 ± 0.7 kg N ha-1 yr-1, while the edges of the oak 

and pine stands received on average 24.4 ± 8.3 kg N ha-1 yr-1 and 56.1 ± 6.5 kg N ha-1 yr-1, 

respectively via throughfall. The interiors of the oak and pine stand received 20.4 ± 4.1 kg 

N ha-1 yr-1  and 35.3 ± 6.0 kg N ha-1 yr-1, respectively via throughfall. As passage through the 

canopy increased N fluxes in throughfall (on average by 36 %), the canopy uptake of 

inorganic N at the edge was therefore set at a decreased rate of 30 to 60 % compared to 

the interior (Fig. 6.1, Table 6.1). Sleutel et al. (2009) also measured an increase in dissolved 

inorganic N (DIN) during passage through the forest canopy, which was highest at the forest 

edge (21.4 kg ha-1 yr-1 compared to 16.6 kg ha-1 yr-1 in the interior) while the ratio of dissolved 

organic C (DOC) and dissolved organic N (DON) substantially increased (from 2.1–2.4 in 

bulk precipitation to 11–16 below the canopy). They postulated that biogeochemical cycles 

are probably still influenced by the large historical N inputs, especially at forest edges where 

N deposition is increased compared to the interior.  

 

Due to increased solar radiation, higher wind velocity and higher evapotranspiration rates, 

forest edges often have higher soil temperatures and lower soil and litter moisture contents 

than forest interiors (Marchand and Houle, 2006; Herbst et al., 2007; Schmidt et al., 2017). 

Soil temperature and moisture (at a depth of 5 cm) were monitored with a high temporal 

resolution (every 2 hours) along the edge-to-interior transects within the six selected forest 

stands. Along the transects in our well-developed forest edges small, but significant 

differences in soil temperature and moisture existed. Forest edges (0 - 2 m) tended to be 

warmer and drier than forest interiors (64 - 128 m), except for the spruce sites, which were 

wetter at the edge due to lower interception of rain. The contrasting microclimate at edge 

versus interior may affect cycling rates of soil organic matter (Conant et al., 2011) and 

contribute to differences in N and C stocks between forest edges and interiors.  

 

Edge effect on N and C stocks 

Total N and C stocks were increased at the forest edge compared to the interior, 

confirming the first research question. Total N and C stocks were respectively increased by 

30 % and 43 %, when averaged over all forest types (Chapter 2). When looking at the 

different forest compartments, wood N and C stocks were on average increased by 56 %, 

root N and C stocks by 48 % and mineral soil N and C stocks by 30 % (Fig. 6.1, Table 6.1). 

Forest growth rates were not assessed in this thesis. However, due to the contrasting 
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microclimate at the edge (including increased solar radiation, higher soil temperatures, 

higher wind velocity, higher evapotranspiration rates,…) and increased availability of 

resources, such as light and nutrients, tree growth is likely enhanced at the edge compared 

to the forest interior (Reinmann and Hutyra, 2017). Increased growth rates at the edges 

would presumably coincide with increased nutrient uptake rates, increased N and C stocks 

and increased above- and belowground litter input. Indeed, coarse and fine root biomass 

(kg tree-1) was on average 13 % higher at the forest edge compared to the interior, from 

which we assumed that root litter and exudates were also increased by 0 to 25 % at the 

edge (Fig. 6.1, Table 6.1). Increased root and wood N and C stocks at the forest edge were 

both affected by the higher stem density at the forest edges. Based on the increased root 

and stocks, we assumed that N uptake would be increased in the same order of magnitude 

(25 – 50 %, Fig. 6.1, Table 6.1). The favourable growth conditions at the edge were further 

confirmed by increased wood volumes (m³ ha-1) at the edge compared to the interior. The 

basal area (BA) along the edge-to-interior transects in this study was additionally calculated 

via the inventory of the diameter at breast height (dbh), but the BA was only significantly 

higher (37 %) at the edge (0 - 10 m) of one spruce stand (Ps) compared to the interior (80 

– 130 m). Reinmann and Hutyra (2017) measured the BA of temperate oak forest fragments 

in southern New England (USA) and the basal area increment, which were on average 

increased by respectively 64 % and by 89 % at the edge (0 – 10 m) compared to a forest 

segment 20 to 30 m from the forest edge. In contrast, they observed no effect of edge 

proximity on total C and N content and root biomass in the top 10 cm of the soil. However, 

they also found that forest growth near the edge declined three times faster than that in the 

interior in response to heat stress during the growing season. Ziter et al. (2014) attributed 

constant aboveground C stocks in temperate forest fragments to the interplay of increased 

tree mortality at the edge due to abiotic stressors and increased tree productivity due to the 

contrasting microclimate compared to the forest interior. As the root biomass and wood 

volume in this thesis, were higher at the edge compared to the interior, we speculated that 

the studied forest edges are not (yet) subjected to negative effects of abiotic factors. 

 

 As N deposition is higher in coniferous forests compared to deciduous forests, a more 

pronounced edge effect on the pine and spruce stands than in the oak stands was expected. 

However, this was not the case in this study, signifying that the edge effect is not solely 

driven by forest type, but more likely the result of an interplay of several factors (landscape 

matrix, edge structure, height, age, leaf area index (LAI)). The N and C stocks in leaves 

were higher at the edges of the oak and pine stands, but not in the spruce stands due to 
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opposite patterns in LAI. The LAI was higher at the oak and pine forest edges, but lower in 

the spruce forest edges compared to the interior, probably due to stronger winds in 

Denmark, the shade tolerance of spruce trees and the management road in the forest interior 

(see § 2.4.1.). In all stands, the LAI was measured via hemispherical photographs, taken 

with the same lens (Sigma circular fisheye 8 mm f/4 EX DG) and analysed with the same 

software, i.e. Gap Light Analyzer (GLA version 2.0 1999) as Wuyts et al. (2008b) to avoid 

errors originating from different measuring techniques. However, hemispherical photograph-

based measurements of LAI near forest edges are difficult due to the incoming light from the 

edge. Therefore, a smaller field of view was used and the LAI was integrated over the zenith 

angles of 0 to 60°. 

 

In the forest floor, N and C stocks increased with distance to the edge, while N and C stocks 

decreased with distance to the edge in the mineral soil. Vesterdal et al. (2013) also 

measured proportional differences in C distribution under different temperate forests, with 

low C stocks in forest floors, where C stocks were high in mineral soil. We hypothesized that 

higher soil stocks at the edges could be linked to increased litter input (above- and 

belowground litter and root exudates) and faster litter degradation, due to microclimatic 

gradients, an increased growth rate and a different microbial and invertebrate abundance 

and community at the edge (De Smedt et al., 2016). Consequently, at the edge, less N and 

organic matter would be retained in the forest floor (i.e. the ectorganic layer) than in the 

forest interior. Wuyts et al. (2011) collected on average 7.5 ± 1.1 kg m-2 of FH layer at the 

edges (0 – 20 m) of the oak and pine stands, which was significantly lower than the 9.8 ± 

0.4 kg m-2 of FH layer in the interiors of the oak stands and 11.0 ± 2.0 kg m-2 of FH layer in 

the interiors of the pine stands. Sleutel et al. (2009) also suggested a faster turnover of 

organic material at the forest edge of a Corsican pine stand as more DOM was released 

compared to the interior although there was less forest floor material at the edge position. 

 

Edge effect on litter input and decomposition 

The LAI was on average increased by 20 % in the first 10 m of the forest edges of the 

Belgian (oak and pine) stands and thus presumably also the flux of organic material to the 

forest floor. Consequently, litterfall at the edge was assumed also to be increased by 0 to 

25 % compared to the interior in Fig. 6.1 and Table 6.1. It can be expected that the increased 

N deposition and altered microclimate at the edge not only stimulated LAI, but also earlier 

leaf development, earlier flowering and increased seed production. This could contribute to 

an altered and increased N and C input to the forest floor at the edge. 
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We could confirm the statements on increased litter degradation at the edge, as litter mass 

loss in the oak stands was on average 62 % higher at the forest edges versus the interior. 

The increased litter mass loss and nutrient release observed at the oak forest edges 

compared to the interior (Chapter 5) were governed by soil acidity and forest floor C/N 

ratio. In the pine stands, only release of N and exchangeable cations (EC, sum of Ca2+, Mg2+ 

and K+) was higher at the edge compared to the interior. A unique tripartite experimental 

set-up was used to determine the influence of the underlying driving factors litter quality, 

edge conditions (microclimate, atmospheric deposition, edge soil fauna and 

physicochemical properties) and edge arthropod detritivores on litter decomposition. The 

contribution of each driving factor depended on the specific characteristics of each forest 

edge. Litter quality mainly affected mass loss and nutrient release in both oak stands and 

one pine stand (Pn2), while litter position played an important role the second studied pine 

stand (Pn1), due to the relatively open forest interior. Arthropod detritivores had the 

strongest influence on litter mass loss and nutrient release in the oak stand Qr1. According 

to Reich et al. (2005) and Hobbie et al. (2006) higher soil temperatures and higher Ca2+ 

concentrations in litter increase the abundance of earthworms and forest floor turnover rates. 

In this thesis, mineral soil temperature and moisture (at a depth of 5 cm) were monitored 

during 2 years along the edge-to-interior transects. Oak and pine forest edges (0–2 m) 

tended to be warmer and drier than forest interiors (64–128 m). Although Riutta et al. (2012) 

demonstrated lower decomposition rates at forest edges due to moisture limitation, soil 

moisture was not a limiting factor for litter decomposition in this study. Moreover, earthworms 

were rare in the acid, sandy forest soils of this study. Instead, woodlice and millipedes were 

the dominant macrofauna present. These arthropods also benefit from high EC litter 

concentrations, as these are essential components of the exoskeleton and haemolymph 

(Hopkin and Read, 1992; Kime, 1992). De Smedt et al. (2016) found highest woodlice and 

millipede abundance in the first 7 m of the same forest edges.  

 

Edge effect on microbial community and N cycling 

The edge characteristics (warmer, higher pH, higher atmospheric deposition, lower forest 

floor C/N ratios, higher litter input) favoured the presence of arthropod detritivores (De 

Smedt et al., 2016), but also affected the microbial community. Biomass of Gram+ bacteria 

was higher at the forest edges compared to the forest interiors (Chapter 4), where the 

abundance of Gram+ bacteria was increased by 65 to 300 % at the forest edge (Fig. 6.1, 

Table 6.1). The higher abundance of microfauna probably contributed to the higher litter 

mass loss and nutrient release at the oak forest edges. Furthermore, the microbial 
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community structure was linked to mineralization and nitrification rates obtained via the in 

situ 15N pool dilution technique (Chapter 4). The higher biomass of Gram+ bacteria at the 

forest edges compared to the forest interiors was associated to higher mineralization 

rates. Gross mineralization rates were also stimulated at the warmer forest edges, 

with an increase of 66 to 700 % at the edge (Fig. 6.1, Table 6.1). Nitrification rates were 

not affected by edge proximity, but the oak stand was characterized by higher nitrification 

rates than the pine and spruce stands. As mentioned above, the favourable edge conditions 

were expected to increase the flow of organic material via the forest floor to the mineral soil. 

Indeed, in this thesis, forest edges of all forest types (oak, pine and spruce) were 

characterized by higher mineralization rates compared to the interior. Additionally, recovery 

of 15N via the 15N tracing method in the edge and interior was assessed as a proxy for the 

long-term dynamics of the N cycle. In all forest types, the forest interior retained more N 

in the litter layer, while N was stored in deeper soil layers at the edge. After 10 months, 

retention of 15N in the litter layer was on average 60 % and 63 % lower at the edge, 

respectively for 15NH4
+ and 15NO3

-, while retention in the FH layer was on average 64 % and 

76 % higher at the edge, respectively for 15NH4
+ and 15NO3

- (Table 6.1, separate soil layers 

not shown on Fig. 6.1). Retention of 15NO3
- in the mineral soil was substantially higher at the 

edge than in the forest interior (> 300 %), but this was not the case for 15NH4
+. Wuyts et al. 

(2011) hypothesized that increased N retention was one of the main processes differing 

between forest edge and interior, next to gaseous N emissions and dissolved organic N 

(DON) leaching. Consequently, more N could potentially be adsorbed onto the organic 

matter and be retained in the soil (Kaiser and Zech 2000), which was measured for DON 

and dissolved organic C (DOC) by Vandenbruwane (2008) and Sleutel et al. (2009) for forest 

ecosystems under long-term N deposition on sandy soils in Flanders. The findings of 

Vandenbruwane (2008) indicated that microbial degradation was not the main mechanism 

responsible for the high retention of DOM, but physical sorption to the mineral soil probably 

was. Sleutel et al. (2009) measured increased DOC retention in the mineral soil (84 kg ha-1 

yr-1 additional DOC retention) of a Corsican pine stand in the state forest of Ravels, Flanders 

(close to one of the Corsican pine stands of this study, Pn2) at the edge compared to the 

interior sites of their study. Adsorption of DOC to mineral soil material rich in iron or 

aluminum was suggested as the most important process responsible for C retention. As 

there was no correlation between N recovery and the living microbial biomass in this study, 

N retention could have occurred via increased abiotic immobilisation at the forest edges 

compared to the interiors. However, as recovery percentages were not completely reliable 

(sometimes negative or > 100 %) we do not want to emphasize this result. Moreover, the 
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sampled mineral soil of these sandy Podzols is characterized by low amounts of clay 

minerals. Thus, fixation onto clay minerals can be excluded as a major pathway of N 

retention. Therefore, the most likely stabilization mechanisms are biochemical stabilisation 

via the formation of recalcitrant phenolic compounds and microbial immobilisation. 

 

Edge effect on N losses 

Wuyts et al. (2011) measured that seepage of NO3
- (at a depth of 90 cm) was decreased by 

32 % at the edge (0 – 2 m) compared to the interior (64 – 128 m, Fig. 6.1, Table 6.1) of the 

oak and pine stands. In the oak stand Qr1, seepage of NO3
- was measured at a depth of 30 

cm due to the high ground water level. The spruce stands in Denmark (Ps and Pa) had low 

NO3
- leaching losses that were sometimes even beneath the detection limit (< 0.01 mg/l), 

but in one of the spruce stands (Ps) NO3
- leaching decreased with distance to the edge. 

Ginzburg (2014) attributed the low soil solution NO3
- concentrations at the spruce stands to 

a high N retention capacity. Seepage of NH4
+ was very low compared to seepage of NO3

-  

(i.e. two orders of magnitude lower for the oak and pine stands) and was not indicated on 

Fig. 6.1. Data on DON seepage were taken from Sleutel et al. (2009), where DON leaching 

was 34 % higher at the forest edge of a Corsican pine stand (close to one of the Corsican 

pine stands of this study, Pn2) compared to the interior (Fig. 6.1, Table 6.1).   

 

Forest edges also affected the fluxes of N and C trace gases, as fluxes of nitric oxide (NO) 

and methane (CH4) differed between forest edge and interior, while the flux of nitrous oxide 

(N2O) did not during our measuring campaign (Chapter 3). This edge effect was more 

pronounced in the oak than in the pine stand. Forest edges emitted less NO and took up 

more CH4 (on average respectively 60 % and 177 %) at the oak stand (Fig. 6.1, Table 6.1). 

Contrary to the postulated hypotheses, increased N deposition at the edges did not stimulate 

emission of NO or N2O and did not inhibit uptake of CH4 during the measurements in April 

and May 2014. Instead, the contrasting microclimate at the forest edge influenced N 

and C trace gas fluxes as soil moisture variation between forest edge and interior was 

a key variable explaining the magnitude of NO and CH4 fluxes. Davidson et al. (2000) 

explained the trade-off between nitrification and denitrification in function of soil moisture, 

as in dry, well-aerated soil, the oxidative process of nitrification dominates, and the more 

oxidized gas, NO, is the most common nitrogen oxide emitted, while in wet soils, much of 

the NO is reduced before escaping the soil, and more N2O is emitted. Nitrous oxide 

emissions have their optimum in the range of 70 to 80 % water-filled pore space (WFPS) 

depending on soil type (Davidson et al., 2000). However, WFPS values were never this high 
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in the studied stands and N2O emissions were consequently low (< 10 µg m-2 h-1), without 

any significant effect of edge proximity. Higher soil moisture values in the forest interior 

probably led to more optimal conditions for NO emissions. Methane uptake was favoured at 

the drier oak forest edge as beyond a soil moisture optimum more soil moisture will limit CH4 

diffusion (Wang and Ineson, 2003). Rich et al. (2003) studied communities of denitrifying 

bacteria from adjacent meadow and forest soils at two sites in Oregon (USA). They 

measured a significant decline in denitrifying enzyme activity at the transition of the 

meadows into the forest edges at both sites and an increase in denitrifying enzyme activity 

further away from the forest edge (30 to 40 m) at one site. The denitrification rate in Fig. 6.1 

was set equal for edge and interior, but could be lower at the forest edge compared to the 

interior, due to the lower soil moisture levels.  

 

Most studies on N and C trace gases measure several year-round fluxes to observe intra- 

and inter-annual fluctuations. However, as the aim was to get a first insight in the - up to 

now - unexplored edge effect on N and C trace gas fluxes, an explorative measurement 

campaign at high temporal resolution with continuous measurements (every two hours) was 

performed during two weeks in one oak and one pine stand (Qr2 and Pn2). Papen and 

Butterbach-bahl (1999) measured pronounced seasonal and interannual variations in N2O 

emissions during a 3-year continuous measurement campaign in the Höglwald forest in 

Germany. Highest N2O emissions were observed during frost periods and soil thawing, due 

to the high microbial N turnover rates in these periods. The edge effect on N and C trace 

gases will most likely also show interannual fluctuations, owing to the contrasting 

microclimate between edge and interior. 

 

Edge effect on C sequestration 

In Chapter 2, the link between the N and C cycle was made and the obtained soil C 

sequestration values were on average 155 % higher at the edge compared to the forest 

interior (Fig 6.1, Table 6.1). The findings of this thesis underline the need to include 

forest edges in programs and models monitoring forest C changes, since substantial 

additional amounts of C can potentially be stored in forest edges. De Vries et al. (2009) 

assumed that less C will be sequestered per unit N deposition with increasing N-enrichment. 

They estimated an average response of 5 to 35 kg C kg-1 N in soil, whereas the C 

sequestered per unit N deposition (Cresp) values of this study ranged between -8.2 and 27.3 

kg C kg-1 N. The highest value was found in the interior of a spruce stand (Pa), which was 

characterized by moderate atmospheric N deposition levels. Reinmann and Hutyra (2017) 
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calculated the forest edge effect on aboveground C storage of the 2.2 million ha of forest 

that remains in southern New England (USA) and obtained an increase of 10 ± 1%. A 

drawback of their study is that they only considered aboveground C uptake, while forests of 

mid to high latitudes on the northern hemisphere store most of their C in the organic layer 

and mineral soil (Mol Dijkstra et al., 2009). Furthermore, they defined the first 10 m of the 

forest as the forest edge, while in most studies the forest edge effect is not receded within 

the first 10 m of the forest (e.g. De Schrijver et al., 2007; Devlaeminck et al., 2005, Wuyts et 

al., 2008b, 2009b). Therefore, the actual impact of the forest edge might be considerably 

underestimated in their study. 

 

In summary, the edge characteristics (increased solar radiation, higher soil temperatures, 

higher pH, higher atmospheric deposition, lower forest floor C/N ratios, higher litter input) 

probably stimulated forest growth, increasing wood, root and mineral soil N and C stocks 

and soil C sequestration (Chapter 2). The favourable edge conditions stated above may 

have contributed to the increased abundance of arthropod detritivores (De Smedt et al., 

2016) and Gram+ bacteria (Chapter 4). The soil macro- and microfauna at the edge 

stimulated N cycling processes, via increased decomposition rates in the oak stands 

(Chapter 5) and mineralization rates in all forest types (oak, pine and spruce, Chapter 4). 

Released N (mainly NO3
-) was retained beneath the litter layer at the edge (Chapter 4), 

contributing to the high mineral soil N stocks at the edge compared to the interior. 

Furthermore, oak forest edges affected N and C cycles via a decreased emission of NO and 

an increased uptake of CH4 (Chapter 3).  

 

6.2. Implications for forest policy and global change mitigation 

The studied forest edges stored large amounts of N and C (in above- and belowground 

biomass and soil) and showed increased N cycling rates, while the oak forest edges also 

emitted less NO and took up more CH4 than forest interiors. However, it remains unclear for 

how long forest edges can sequester additional N and C under ongoing high N deposition.  

 

In Chapter 2, we looked at a broader scale, by estimating the total forest N and C stock of 

Flanders (northern Belgium). De Schrijver et al. (2007) considered 58 % of the total forested 

area in Flanders as external forest edges, bordering a non-forested area, based on a digital 

forest cover map for Flanders (“Bosreferentielaag”, Aminal Afdeling Bos en Groen 2001) 

and a median forest edge distance of 50 m. When looking at the total (sum of biomass, 

forest floor and mineral soil until a depth of 30 cm) mean N and C stock in the forest interior, 
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excluding the influence of forest edge, we obtained 5.8 Mg ha-1 of N and 251 Mg ha-1 of C. 

However, the forest edge effect can be taken into account for Flanders via Eq. 6.1, 

% 𝐹𝐼𝑎𝑟𝑒𝑎 𝑥 𝐹𝐼𝑠𝑡𝑜𝑐𝑘(𝑀𝑔 ℎ𝑎−1) + % 𝐹𝐸𝑎𝑟𝑒𝑎 𝑥 𝐹𝐸𝑠𝑡𝑜𝑐𝑘(𝑀𝑔 ℎ𝑎−1)      (Eq. 6.1) 

where FIarea is the percentage of forest interior area in Flanders, FIstock is the mean N (or C) 

stock of the forest interior (Mg ha-1), FEarea is the percentage of forest edge area in Flanders 

and FEstock is the mean N (or C) stock of the forest interior (Mg ha-1). When including the 

edge effect, the mean total N and C stocks were respectively 7.5 Mg ha-1 of N and 365 Mg 

ha-1 of C showing an underestimation of respectively 22 % and 31 % when N and C stocks 

are calculated on regional scales based on data from forest interiors only. Even when 

considering a median forest edge distance of only 20 m, the mean N and C stocks were 

underestimated by 10 % and 15 %, respectively when calculating stocks based on data from 

forest interiors alone. Vande Walle et al. (2005) estimated the C stock of above- and 

belowground forest biomass in Flanders and obtained a mean C stock of 85.2 Mg ha-1 based 

on data of forest interiors. When subtracting the forest floor and mineral soil C stocks of the 

total mean C stock, we obtained a mean C stock of above- and belowground biomass of 

138.1 Mg ha-1 in the forest interior, which is higher, but still in the same order of magnitude 

as the estimation of Vande Walle et al. (2005). Reinmann and Hutyra (2017) used the 2011 

National Land Cover Database (NLCD) land cover maps (Homer et al., 2015) to scale up 

their data on C uptake to southern New England (USA) to stress the landscape-scale 

implications of the forest edge effect on growth and C storage in the temperate broadleaf 

forest. This region of the United States consists for 64 % of forest, from which 9.6 % is within 

10 m of the forest edge. They calculated that the forest edge effect could increase 

aboveground C storage in southern New England by 10 % or from 81 Mg C ha-1 to 89 Mg C 

ha-1. 

 

On a global scale, both the ocean and terrestrial ecosystems remove a large fraction of 

anthropogenic emissions (Le Quéré et al., 2016) and soils are recognized as the major 

terrestrial C sink (Ogle and Paustian, 2005; Lal, 2008). Any significant change in the function 

of C sinks is of great importance to climate policymaking, as it affects the level of CO2 

remaining in the atmosphere. Vice versa, policy frameworks influencing land use and land 

use change could possibly trigger large changes in C storage capacity (Le Quéré, 2016). 

The size of the global forest C sink has increased together with rising atmospheric CO2 and 

N deposition levels. However, a quantified understanding of how these drivers shape the 

forest C sink is lacking (Bellassen and Luyssaert, 2014). Pan et al. (2011) estimated a net 

global forest C sink of 1.1 ± 0.8 Pg C yr–1, while Le Quéré et al. (2016) estimated the total 
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terrestrial sink to be 3.1 ± 0.9 Pg C yr–1, both showing a rather large uncertainty. 

Contemporary data sets are needed to better constrain C cycle models and make future 

projections more accurate (Le Quéré et al., 2016). More robust and transparent data sets 

could be obtained via large-scale remote sensing, combined with frequent monitoring of 

local sites, such as the permanent plots of national forest inventories (Bellassen and 

Luyssaert, 2014). For instance, de Brogniez et al. (2015) created a map of the organic C 

content of the topsoil (0 – 20 cm) within the EU-25 (excluding Romania, Bulgaria and 

Croatia) by applying digital soil mapping techniques to a database arising from the Land 

use/Cover Area frame statistical Survey (LUCAS). The comparison of their map with the 

previous dataset on soil organic C (SOC) in Europe (Jones et al., 2005) underlined the 

influence of land cover on C content in soils. Furthermore, these maps provide policy-

makers with baseline data for developing strategies for soil protection and may be used to 

estimate projected changes in SOC (Jones et al., 2005). De Brogniez et al. (2015) took into 

account forest type when mapping the organic C stock of the topsoil, but did not include 

edge effects in their study. We have shown that including edge effects in the calculation of 

C (and N) stocks can have a significant impact. Therefore, future maps and models aiming 

to estimate temperate forest C and N storage capacity should not ignore the edge effect but 

at least quantify the relative contribution of forest edges to the total forest area to avoid 

underestimations. Consequently, edge proximity (extracted from land cover maps) should 

be an additional variable in assessments of C and N stocks on national or regional landscape 

scales particularly for the European lowlands where the forests are fragmented and receive 

additional N from agricultural pollution. 

 

Storage of C and N in forests is an important pathway in climate change mitigation (Nabuurs 

et al., 2007). However, as disruptions of internal forest N and C cycles arise from an 

increased concentration of atmospheric pollutants a more sustainable solution would be the 

reduction in the use and emission of polluting N and C compounds. The Flemish Institute 

for Technological Research (VITO) and the Flanders Environment Agency (VMM) calculated 

that the costs due to N pollution in Flanders ranged between 2.3 and 6.8 billion euro in 2009 

alone. Recently (in 2014), the Flemish government agreed to implement a program for the 

reduction of N emissions (PAS), which will be fully operational in 2019. This should enable 

the conservation of natural habitats and wild fauna and flora within the Natura 2000 network, 

together with sustainable economic developments in agriculture, industry and traffic. As 

increased N deposition hampers the conservation of biodiverse natural habitats, reducing 

its negative effects is currently on the agenda of policy makers. This thesis aids in 
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understanding the consequences of increased N deposition on N and C cycling and 

sequestration in temperate forest edges. 

6.3. Recommendations for future research 

The experiments of this thesis were executed in temperate oak, pine and spruce stands in 

Flanders and Denmark growing on acid, sandy quartz-dominated Podzols. The conducted 

experiments could be repeated in forests comprising other tree species and growing on 

other soil types, to validate our findings. Acid, sandy soils are characterized by a low base 

saturation and are consequently more sensitive to acid buffering via Al3+ (De Schrijver et al., 

2006). On richer soils with a higher cation exchange capacity and base saturation it will 

presumably take more time before discrepancies in the forest N and C cycle between edge 

and interior can be observed. 

 

In this study, we sampled mineral soil to a depth of 30 cm. In quartz-dominated Podzols, the 

B horizon, rich in organic matter and oxides is typically below this depth. Therefore, our 

results only hold true for the upper soil layers of Podzols. Future research could focus on 

sampling the whole soil profile of Podzols, as potentially large C and (to a lesser extent) N 

stocks could be accumulated in the subsoil. 

 

Reinmann and Hutyra (2017) also stated that forest age, forest type, and land cover 

adjacencies may be important factors in determining the magnitude of the forest edge effect. 

Firstly, the forest fragments studied here, and the forests of southern New England in their 

study are still relatively young (i.e. < 100 years old). Age-related decline in forest growth is 

a widely observed phenomenon, but the underlying mechanisms and timing of growth 

decline are complex (Smith, 2001), and it is unclear how forest edge growth rate and storage 

capacity will evolve with stand age. Secondly, all the forest edges in this thesis bordered 

arable lands dominated by intensive livestock production (i.e. high NH3 emission) and have 

experienced several decades of elevated N deposition. Temperate forest edges in more 

remote areas and adjacent to other land use types will probably be characterized by a less 

severe edge effect.  

 
Furthermore, additional research in temperate forest edges is needed to provide an 

adequate knowledge of their N and C storage capacity and long-term behavior. As forests 

play a role in climate change mitigation it is imperative that correct forest N and C budgets 

can be calculated. However, data are still lacking to obtain forest N and C budgets in which 
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edge effects can be incorporated. From Fig. 6.1, it is clear that for several fluxes of the N 

cycle the magnitude of the edge effect was roughly estimated. Therefore, additional 

measurements of litter fall, root litter and exudates, N assimilation and denitrification at forest 

edges are needed. To better understand the environmental impact of N and C trace gas 

fluxes from forest edges, additional and long-term measurements in other forest edges are 

necessary. To our knowledge, the process of dissimilatory nitrate reduction to ammonium 

(DNRA) has not been studied yet at forest edges. Our results indicated that the microbial 

community plays a major role in the altered N and C cycles at the edge. In this thesis, the 

microbial community structure was assessed via the extraction of phospholipid fatty acids 

(PLFA) and aminosugars (AS), as these techniques gave a fairly quick and broad overview 

of the microbial biomass present in the studied forest edges. However, a more detailed study 

of the microbial community at forest edges could be conducted by means of DNA 

sequencing. For instance, the data on N and C trace gases could be extended by looking 

into a specific subset of the microbial community, i.e. methane oxidizing bacteria, 

autotrophic and heterotrophic nitrifiers (bacteria, fungi and archaea), denitrifying bacteria 

and other N2O oxidizing bacteria (owning an atypical nosZ enzyme system catalyzing the 

conversion of N2O to N2). Forest hydrology can also play a role in the N and C cycles. Data 

on throughfall and leaching fluxes showed no consistent increase or decrease along the 

edge-to-interior transects in this study. Therefore, gradients in N throughfall and leaching 

could not be attributed to hydrology alone. However, to obtain a full hydrological balance at 

the forest edge, data on transpiration, evaporation, stem flow, canopy storage and run-off 

are lacking. 

 

Several authors (e.g. Devlaeminck et al., 2005; Wuyts et al., 2008a) measured increased 

deposition of the exchangeable cations (EC) Ca2+, Mg2+ and K+ up to 50 m from the forest 

edge. We measured increased concentrations of EC in pine needles at the edge compared 

to the interior and high EC concentrations in the oak leaves. High nutrient concentrations 

have a stimulating effect on litter decomposition rates (Cornwell et al., 2008). However, it 

remains unclear what the effect of increased EC concentrations in the forest floor and 

mineral soil is on nutrient cycling at temperate forest edges. 

 

Finally, we observed strong linkages between the N and C cycle at forest edges. However, 

N and C are also linked to P via stoichiometric relationships. Cleveland and Liptzin (2007) 

examined global-scale patterns of C:N:P ratios in soil and in soil microbial biomass and 

found well-constrained element ratios with significant variation between vegetation types 
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(i.e. forest vs. grassland). Based on our results, we assume that there is an edge effect on 

the P cycle in temperate forests under elevated N deposition. 
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Fig. A-I: a) Schematic representation of the typical profile of a Podzol, showing the different horizons and the depth at which they occur. L stands for 

the litter layer and FH for the fermentation and humus layer, which is the terminology used in this study. Density of the black dots represents the 

concentration of organic matter (Chapin et al., 2002). b) Soil profile of the forest interior (64 m) of the pine stand Pn2. 
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Table A-I: Concentration of aluminium (Al3+) in the Belgian oak (Qr1 and Qr2) and pine (Pn1 and Pn2) stands along the edge-to-interior transects within 

different mineral soil layers (0 – 5 cm, 5 – 10 cm and 10 – 30 cm). Standard deviations are presented between brackets (n = 3). 

 

 Al3+ concentration (meq kg-1)  

 Oak  

 Qr1 Qr2 

Distance (m) 0 - 5 cm 5 - 10 cm 10 - 30 cm 0 - 5 cm 5 - 10 cm  10 - 30 cm  

0 3.18 (4.43) 8.93 (8.45) 15.56 (10.03) 42.78 (7.71) 37.18 (7.11) 59.67 (6.20) 

2 24.42 (4.97) 17.08 (3.00) 4.11 (2.06) 32.02 (8.48) 27.93 (8.81) 47.62 (1.13) 

4 15.65 (5.85) 13.08 (2.73) 5.82 (4.34) 32.20 (2.83) 26.24 (3.74) 40.80 (1.06) 

8 16.32 (1.32) 10.97 (2.11) 6.34 (1.06) 35.36 (3.28) 32.60 (2.33) 40.47 (3.14) 

16 16.81 (2.60) 12.49 (0.51) 6.63 (1.11) 25.53 (3.17) 21.08 (0.93) 38.65 (4.33) 

32 21.30 (4.83) 16.79 (2.61) 12.82 (1.51) 34.20 (3.16) 28.91 (3.97) 49.81 (5.56) 

64 29.89 (7.33) 19.27 (1.30) 16.16 (2.02) 22.95 (4.86) 19.70 (9.29) 39.28 (6.72) 

128 23.84 (2.67) 15.75 (1.33) 14.23 (2.90) 28.60 (7.01) 29.35 (5.79) 46.47 (2.02) 

 Pine 

 Pn1 Pn2 

Distance (m) 0 - 5 cm 5 - 10 cm 10 - 30 cm 0 - 5 cm 5 - 10 cm  10 - 30 cm  

0 41.27 (4.89) 31.22 (3.35) 33.09 (1.58) 26.15 (4.17) 18.77 (4.16) 24.50 (12.55) 

2 22.55 (5.85) 15.36 (4.93) 23.20 (3.95) 27.48 (3.27) 17.65 (2.54) 36.21 (3.44) 

4 31.71 (8.85) 16.16 (3.05) 20.34 (2.32) 28.73 (1.60) 21.04 (3.68) 34.13 (2.98) 

8 28.37 (4.09) 21.46 (8.38) 26.13 (5.10) 31.04 (6.25) 20.90 (4.81) 37.80 (8.50) 

16 28.33 (3.36) 22.46 (0.29) 28.50 (7.74) 34.16 (6.59) 17.79 (6.57) 36.43 (4.37) 

32 24.68 (8.08) 21.24 (10.36) 23.26 (11.83) 38.60 (1.82) 20.68 (7.40) 33.13 (10.20) 

64 19.65 (2.46) 20.31 (5.74) 19.12 (1.79) 25.35 (4.88) 27.53 (6.88) 44.03 (7.29) 

128 22.41 (4.26) 22.31 (3.52) 21.79 (2.61) 15.52 (7.30) 5.78 (4.55) 29.69 (1.64) 
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Table A-II: Phospholipid fatty acid (PLFA) and amino sugar (AS) concentrations (µg g-1 soil) in the oak, pine and spruce forests. Standard errors are 

presented between brackets.  

    PLFA AS 

Forest Distance Gram+   Gram-   Bacteria   Fungi   Ratio Glu   Mur   Gal   GluMur GluGal 

Qr1 0 10.81 (0.32) 10.26 (0.89) 21.06 (0.99) 10.52 (0.48) 0.50 1252.13 (170.42) 54.23 (11.14) 542.13 (100.08) 23.09 2.31 

 16 5.20 (0.28) 3.07 (0.41) 8.27 (0.55) 5.07 (0.83) 0.61         

 64 4.44 (0.13) 2.70 (0.19) 7.15 (0.26) 5.57 (0.36) 0.78 810.32 (61.39) 36.21 (1.61) 408.20 (68.41) 22.38 1.99 

  128 2.97 (0.14) 2.11 (0.27) 5.09 (0.32) 2.97 (0.25) 0.58                 

Qr2 0 4.49 (0.04) 2.45 (0.11) 6.93 (0.12) 3.03 (0.25) 0.44 1079.56 (73.89) 62.01 (5.73) 514.47 (47.34) 17.41 2.10 

 16 2.63 (0.05) 1.43 (0.09) 4.06 (0.11) 2.12 (0.19) 0.52         

 64 1.98 (0.03) 1.34 (0.08) 3.31 (0.09) 1.66 (0.09) 0.50 363.43 (51.66) 34.68 (8.05) 177.71 (12.20) 10.48 2.05 

  128 2.11 (0.04) 1.41 (0.08) 3.52 (0.09) 2.60 (0.09) 0.74                 

Pn1 0 2.99 (0.11) 1.76 (0.16) 4.75 (0.22) 1.65 (0.12) 0.35 774.11 (51.26) 47.30 (3.59) 225.45 (18.51) 16.37 3.43 

 16 2.95 (0.05) 1.62 (0.09) 4.57 (0.12) 1.78 (0.06) 0.39         

 64 2.29 (0.06) 1.30 (0.13) 3.59 (0.15) 1.15 (0.06) 0.32 787.79 (139.44) 44.39 (6.28) 326.82 (45.55) 17.75 2.41 

  128 1.90 (0.07) 0.84 (0.10) 2.74 (0.14) 1.59 (0.31) 0.58                 

Pn2 0 3.44 (0.04) 2.16 (0.07) 5.60 (0.09) 1.71 (0.12) 0.30 535.46 (24.86) 40.42 (4.56) 236.56 (23.64) 13.25 2.26 

 16 2.62 (0.05) 1.66 (0.07) 4.27 (0.10) 1.48 (0.12) 0.35         

 64 1.75 (0.04) 1.00 (0.07) 2.75 (0.09) 1.17 (0.08) 0.42 447.59 (71.17) 33.66 (5.66) 194.30 (33.16) 13.30 2.30 

  128 1.99 (0.04) 1.14 (0.08) 3.13 (0.10) 0.94 (0.05) 0.30                 

Ps 0 1.66 (0.05) 0.69 (0.03) 2.35 (0.07) 1.05 (0.15) 0.45 244.88 (60.90) 10.43 (4.60) 96.15 (26.90) 23.47 2.55 

 16 1.33 (0.02) 0.59 (0.03) 1.91 (0.04) 0.64 (0.02) 0.34         

 64 1.31 (0.01) 0.80 (0.03) 2.11 (0.03) 0.64 (0.06) 0.31 196.44 (52.50) 18.50 (5.08) 88.60 (31.14) 10.62 2.22 

  128 1.75 (0.15) 1.40 (0.24) 3.14 (0.31) 1.28 (0.29) 0.41                 

Glu = Glucosamine, Mur = Muramic acid, Gal = Galactosamine. 
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Table A-III: Mean 15Nrec (%) values at the different times of sampling at the edge (0 – 5 m) and interior (64 m) of the oak (Qr2), pine (Pn2) and spruce 

forest (Ps).  Standard errors are presented between brackets (n = 6). 

      Oak Pine Spruce 

Layer Treatment Time Edge Interior Edge Interior Edge Interior 

L 15NH4
+ 1 39.7 (7.3) 96.1 (11.8) 133.5 (43.6) 75.6 (23.2) 110.9 (50.9) 80.6 (6.2) 

  2 15.2 (3.2) 44.7 (6.3) 78.5 (15.5) 44.6 (5.9) 149.4 (43.9) 75.3 (8.9) 

  3 9.8 (1.2) 23.5 (6.3) 31.4 (6.7) 29.5 (8.0) 119.8 (18.5) 42.7 (3.3) 

 
15NO3

- 1 80.5 (9.8) 60.4 (8.5) 169.8 (39.6) 105.9 (34.1) 74.2 (28.3) 71.7 (7.4) 

  2 16.7 (4.2) 9.2 (0.9) 65.0 (26.1) 78.1 (34.5) 66.2 (29.7) 62.7 (21.3) 

  3 10.6 (2.0) 5.3 (1.9) 44.1 (12.6) 120.6 (11.6) 66.2 (11.5) 52.9 (8.4) 

FH 15NH4
+ 1 67.8 (35.2) 19.5 (1.9) 44.7 (15.3) 19.0 (6.8) 12.3 (3.2) 17.5 (5.2) 

  2 27.4 (7.0) 10.3 (2.7) 28.6 (6.3) 11.4 (2.8) 20.3 (5.2) 22.5 (4.0) 

  3 25.9 (5.6) 10.2 (2.2) 29.8 (12.4) 18.1 (5.0) 16.3 (2.8) 30.7 (6.8) 

 
15NO3

- 1 25.3 (2.3) 17.0 (4.4) 27.8 (8.2) 14.4 (3.8) 5.1 (0.5) 16.2 (4.8) 

  2 17.1 (3.6) 9.2 (2.3) 17.0 (3.7) 14.1 (3.9) 13.9 (2.7) 22.7 (5.6) 

  3 17.7 (4.0) 7.6 (3.1) 35.7 (11.6) 35.2 (4.9) 25.9 (3.6) 27.2 (4.6) 

MS10 15NH4
+ 1 -2.4 (3.1) -5.0 (2.5) -5.9 (3.4) 5.3 (2.8) 7.1 (2.6) -1.2 (1.9) 

  2 -3.5 (3.8) -3.2 (2.2) -4.5 (1.9) 2.9 (2.0) 13.0 (4.3) 2.0 (2.7) 

  3 2.1 (4.9) -4.9 (0.7) 2.3 (0.5) 3.7 (0.5) 10.2 (2.6) 5.8 (5.8) 

 
15NO3

- 1 4.5 (1.9) -0.7 (1.4) -4.4 (1.8) 1.2 (2.1) -0.1 (2.0) 0.1 (0.9) 

  2 10.0 (3.5) -0.5 (0.6) -1.1 (2.1) 1.8 (2.1) 9.7 (3.6) 20.5 (10.4) 

  3 5.2 (1.1) -3.2 (1.5) -0.6 (0.4) 1.3 (0.8) 5.0 (5.3) 5.8 (5.4) 

MS20 15NH4
+ 1 -5.0 (2.4) -3.1 (1.7) -5.3 (1.7) 7.0 (1.2) 1.2 (1.6) -1.1 (1.2) 

  2 -2.6 (1.2) -3.9 (2.0) -3.4 (1.2) 3.8 (1.8) 6.0 (0.9) 3.2 (0.7) 

  3 1.5 (3.5) -2.6 (0.9) -1.2 (0.9) 2.5 (1.5) 0.4 (0.7) 2.8 (2.2) 

 
15NO3

- 1 7.7 (3.6) -1.5 (1.2) 0.0 (2.2) 3.6 (1.6) 0.1 (1.4) -0.5 (0.7) 

  2 11.1 (4.1) -0.4 (1.4) -0.3 (1.8) 6.9 (0.5) 3.5 (1.1) 3.2 (0.7) 

    3 8.2 (2.1) -0.9 (0.7) -0.8 (0.9) 7.9 (4.0) 3.5 (2.0) 0.1 (1.0) 

L = Litter, FH = fermentation and humus layer, MS10 = Mineral soil 0 - 10 cm, MS20 = Mineral soil 10 - 20 cm; Time: 1 = 1 day, 2 = 1 month, 3 = 10 months. 
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