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Woord vooraf 
 

Ik moet een jaar of zes geweest zijn. Een kinderboek had me verteld dat eksters verwoede 

verzamelaars zijn van alles wat schittert en blinkt - hun nesten zouden vol ‘gepikte’ juwelen 

liggen. Veel meer glitter en glamour had mijn kinderlijke nieuwsgierigheid niet nodig. Bij gebrek 

aan juwelen, ontvreemdde ik wat zilverpapier uit de keukenkast, rolde er bolletjes van en legde 

die zorgvuldig in ons klein stadstuintje. Geen ekster die daaraan zou kunnen weerstaan! Mijn 

eerste wetenschappelijk experiment was een feit, de proefopzet leek me waterdicht. De 

daaropvolgende dagen groeide echter mijn teleurstelling want de zilveren bolletjes bleven liggen 

in het gras. Tot op de dag van vandaag weet ik dus nog steeds niet hoe het interieur van een 

eksternest eruit ziet…  

Mijn eerste kennismaking met ‘de exacte wetenschap’ mag dan wel teleurstellend afgelopen zijn, 

mijn fascinatie voor alles wat groeit, bloeit, vliegt, fladdert en kruipt werd er niet minder op. Van 

jongs af aan wist ik dat ik bioloog wou worden; ik schreef er zelfs een gedicht over in het zesde 

leerjaar. Maar wat ik niet wist, was dat mijn liefde voor de natuur ooit zou resulteren in dit 

doctoraat. Bomen dienden toch om in te klimmen? 

Jazeker, natuurlijk dienen bomen om in te klimmen. Maar de afgelopen jaren ben ik vooral met 

mijn voeten op de grond gebleven en heb ik me toegelegd op het uitpluizen van enkele andere 

functies van die statige reuzen. Het was een lange, boeiende, leerrijke, kleurrijke en inspirerende 

tocht met de nodige verrassingen, frustraties, vreugdekreten, ontgoochelingen en verslavende 

adrenalinetrips. Nu ik aan de eindmeet sta, besef ik hoeveel voldoening die tocht me geboden 

heeft. En bovenal besef ik dat ik die eindmeet nooit ofte nimmer gehaald zou hebben zonder de 

hulp en steun van heel veel mensen… 

 

Jan – mijn heavy metal compagnon. Ik weet niet hoe ik jou ooit ga kunnen bedanken, voor 

alles… In de eerste plaats zou ik zonder jou waarschijnlijk nooit in Gontrode beland zijn. Drie 

maanden mocht ik op jouw stoel gaan zitten. En kijk, 10 jaar later loop ik daar nog steeds rond. 

Zonder jouw onaflatende input, hulp, kritische blik, relevante vragen, met de grond gelijk 

gemaakte (en terug opgebouwde) paperdrafts, oog voor het grote geheel,… zou ik die 10 jaar 

nooit doorsparteld hebben en zou dit doctoraat er vandaag niet liggen. Hoewel, misschien waren 



het wel vooral jouw droge humor en gave om de dingen te relativeren die me het meest vooruit 

geholpen hebben. Merci, Jan, een oneindig dikke merci!!!  

Kris – jij was degene die me overtuigde om een doctoraatsbeurs aan te vragen; zonder jouw 

duwtje in de rug zou ik die stap nooit gezet hebben. Die beurs werd niks, maar jij bleef me 

steunen en daar ben ik jou onwaarschijnlijk dankbaar voor. Jouw deur stond altijd open – 

letterlijk en figuurlijk – en hoe druk je het meestal ook had, ik kon altijd ‘binnenspringen’ met een 

prangende vraag. Beter nog: jij had altijd een antwoord klaar. Jouw gedrevenheid en ambitie 

werken enorm motiverend. Merci voor alle vrijheid, vertrouwen en kansen die ik kreeg de 

afgelopen jaren, zowel op vlak van onderzoek als onderwijs. Zonder die vrijheid en flexibiliteit 

zou ik niet kunnen functioneren hebben. Ik heb enorm veel van je geleerd, bedankt!  

Ook aan mijn copromotoren Stefaan en Filip – bedankt voor jullie input en feedback bij dit 

onderzoek. To the members of the jury: Lars, Karin, Piet en Hans – thanks a lot for all your 

constructive and relevant comments and suggestions on the preliminary version of my thesis. 

Thanks to you this final version has become a better version! 

 

Ik besef dat Gontrode een unieke werkplaats is, een intellectueel uitdagende open plek in het bos. 

Er wordt hard gewerkt maar ik onthoud zeker ook de dagelijkse fijne gesprekken aan tafel, de 

vele feestjes rond de knetterende open haard, zoete traktaties, brunchen, labo-uitstappen, BBQ’s 

met veel Boembekebier (al dan niet met parking after party ;-)), Kubbspelletjes, 

teambuildingsdagen in de vorm van modderige FORBIO-boomplantacties, beheerwerken in ons 

Aelmoeseneiebos, nachtelijke muizenvangsessies en nachtzwaluwmonitoring, … om nog maar te 

zwijgen van de legendarische paasvakantie-excursies!! :-) Het is een voorrecht en een plezier om 

elke dag naar die groene oase te mogen fietsen en daarvoor zijn al mijn geweldige collega’s 

verantwoordelijk. Dikke merci aan alle (ex-)ForNaLab’ers en (ex-)BOS+ers om er zo’n vrolijke 

en inspirerende boel van te maken! Een aantal mensen zou ik toch extra in de bloemetjes willen 

zetten. 

An – hoe kan ik jou bedanken? Je stond altijd klaar met raad en daad, met elke vraag, hoe banaal 

ook, kon ik bij jou terecht, je maakte altijd tijd om te luisteren en mee te denken over problemen 

met proefopzetten, vastgelopen papers, reviewers,…  en om me moed in te spreken wanneer ik 

het spoor bijster was. Maar daarnaast kon ik met jou ook altijd filosoferen over alle andere 

belangrijke dingen des levens, ver weg van biogeochemische cycli. En die héérlijke week in Bari 

ga ik nooit vergeten, ’s ochtends verwend worden door onze cappuccinoman en ’s avonds door 

Antonio – la dolce vita! 



Evy – jij de early bird, ik de nachtraaf. Jij altijd mooi op tijd, ik altijd te laat. Hoe verschillend we 

ook zijn, je bent en blijft mijn favoriete bureaumaatje! Een bureau delen is lief en leed delen hé. 

Merci voor alle gedeelde plezier, lachbuien, smart, levensverhalen, frustraties, stress, TWOL-

terreinwerk, …  

Margot – jij bent zonder twijfel de meest attente persoon die ik ken. Merci voor alle culinaire 

hoogstandjes die ik regelmatig vond op mijn bureau en in mijn inbox. Jouw koekjes, kaartjes, 

eitjes, kiwi’s, en alle andere mogelijke vormen van hulp en steun… ze kwamen altijd als een 

geschenk uit de hemel. Laat ons hopen dat er ooit een dag komt zonder lekkere blog-stress ;-)  

Jeroen – ik mis jouw kritische en tegelijk guitige blik! 

Mechi – you brought your open mind, loads of positive energy, South-American fire and great 

sense of humor to our lab. Thanks so much for the great time and the endless talks!! It’s so quiet 

now in Gontrode without you… 

Sanne – jouw enthousiasme knettert gelijk sterreschijters. Ik kan me geen beter AAPje 

voorstellen om samen mee door de bossen te slingeren! Merci ook voor het fijne gezelschap in 

Bern, de trein is altijd een beetje reizen hé ;-) 

Lander – merci om me in te wijden in de duistere wereld van R. Hoezeer ik ook van die heerlijk 

Gentse rrrr houd, ik blijf erbij dat R gemaakt is voor een mannenbrrrrein! 

Steph – ge zijt een zotte doze en mijn favoriete partner in crime voor bizarre fotograafhoudingen. 

Uiteraard ook merci voor de lekkerste honing ter wereld. Telkens weer sta ik te kijken naar al 

jouw energie en moed om je dromen om te zetten in daden. Respect! 

Andreas – niet alleen ben je altijd paraat voor een feestje, ook jouw vernieuwende, duurzame 

ideeën werken heel inspirerend. Merci voor beide :-) 

Bert – met je wijze mopkes slaag jij erin om zelfs mijn lastigste werkdagen te relativeren… Merci 

voor het trainen van mijn lachspieren en voor alle fijne babbels de afgelopen jaren. En die 

cultuur- en muziektips mag je blijven delen! 

Sander – merci om mijn passie voor dik belegde boterhammen te delen ;-) 

Christel – bedankt voor jouw punctuele hulp bij alle administratie en logistiek. Een hele 

verademing dat ik me daar niet mee moest bezig houden. 

Rudi – bedankt om mijn computer draaiende te houden! 

 

Mijn doctoraat speelde zich echter ook buiten de muren van Gontrode af. Ik denk niet dat er in 

Vlaanderen een bos bestaat dat ik zozeer op mijn duimpje ken als het Waaltjesbos in Lommel. 

‘Mijn’ bos :-) Het resultaat? Een slordige 40 000 kilometer op de teller van de auto… Ik had nooit 

gedacht dat het vele terreinwerk tijdens de afgelopen jaren me een trip rond de wereld zou 



opleveren! En wat voor één… Ontelbare bodem-, strooisel-, humus-, hout- en waterstalen, 

uuuuren aanschuiven op de Antwerpse ring, E17 en E313, veel te vroeg opstaan, sneeuwstormen, 

hittegolven, kapotte knieën, bevroren vingers, stijve spieren, massa’s muggen- en tekenbeten, een 

gekneusde rib, meerdere geblokkeerde ruggen, gescheurde broeken, donkere wallen onder de 

ogen, zwarte nagelranden, bloed, zweet en tranen… En neen, ik overdrijf niet. En toch, hoe 

vermoeiend en lastig dat terreinwerk vaak ook was, eigenlijk waren het de mooiste dagen! Wat ga 

ik ‘mijn’ bos missen!  

Ook daar kreeg ik (gelukkig) heel wat onontbeerlijke hulp van vele onontbeerlijke mensen. 

Dries en Wout van het ANB – ik ben jullie super dankbaar voor alle vrijheid die jullie me gaven 

om het Waaltjesbos binnenstebuiten te keren. Putten graven, bomen omzagen, strooisel 

verzamelen, meettoestellen installeren,… alles was toegestaan, ik hoefde het zelfs niet te vragen. 

Zonder jullie bereidwillige medewerking zouden er nooit zoveel cijfertjes in dit doctoraat geraakt 

zijn. Bedankt dus! 

Luc – wat ben ik blij dat jij ‘in mijnen tijd’ nog tijd had om mee te gaan op terrein. Jouw 

efficiëntie en jouw gave om de dingen te vereenvoudigen zorgden ervoor dat alles tien keer 

sneller ging. Neen, het perfecte terreinweer bestaat niet, maar toch was het elke keer een plezier 

om met jou naar Lommel te rijden, in de bodem te wroeten, met materiaal te zeulen en 

sliptechnieken in de sneeuw te oefenen ;-) De eclairs waren steeds de kers op de taart! 

Mmmmmmerci! 

Davy – dankzij jou bleven de dataloggers draaien, enfin, de ene al wat beter dan de andere ;-) 

Dikke merci voor alle hulp daarmee, zonder jouw technisch inzicht zouden die gigantische 

datasets nooit tot bij mij geraakt zijn. 

Kris – ook jij stond altijd klaar om mee te helpen op terrein en materiaal te vervoeren. Bedankt 

voor al je noeste hulp, in je achtertuin dan nog wel. 

Mama, papa, Griet – jullie zijn de allerbeste ‘strooiselrapers’ en ‘doorvalvolumemeters’! Merci, ’t 

was fijn om dit ook met jullie te kunnen delen. Ook bedankt voor de mooie foto’s die jullie er 

trokken. En neen, mama, mijn doctoraat gaat dus niet over kleine blaadjes… ;-) 

Hoewel ik het geluk heb gehad om meestal in noest gezelschap naar Lommel af te zakken, waren 

er uiteraard ook de ‘eenzame’ terreindagen. Hoewel, Murphy was meestal wel zo vriendelijk om 

me dan te vergezellen… Bij deze ben ik de lokale garagist Jos Jansen eeuwig dankbaar om me te 

verlossen van die ingedeukte bodemplaat (tja, in een bos zitten soms stronken in de weg…) en 

ook de 2 buurmannen die in een mum van tijd die platte band vervingen door het reservewiel. 

Geen idee hoe ik zonder die mannen ooit weggeraakt zou zijn uit Lommel! 



Ten slotte moesten die ontelbare bodem-, strooisel-, humus-, hout- en waterstalen natuurlijk ook 

nog geanalyseerd worden. Daarvoor een superdikke merci aan de immer nauwkeurige laboranten: 

Greet, Luc, Ria en Trees. 

En die gigantische datasets die de dataloggers genereerden? Die waren voer voor een 

waterbalansmodel. Zonder Piet, Meisam en Frank zou ik daar echter nooit wijs uit geraakt zijn. 

Hartelijk bedankt dus om me wegwijs te maken in RETC en HYDRUS en om de transpiratiedata 

aan te leveren. De modeloutput vormde de basis voor het laatste hoofdstuk en dit heeft nog 

enkele cruciale inzichten opgeleverd! 

Bedankt ook aan Chrissie en Margot voor de punctuele eindredactie van de general introduction, 

aan Filip en Jan voor de grafische wonderen en aan Griet voor de creatieve (hihi) vertaling van de 

summary. 

 

Nu goed, buiten de bomen in Gontrode en in Lommel heb ik het immense geluk omringd te zijn 

door de allerbeste vrienden ter wereld. Zonder jullie steun en alle (ont)spannende, warme, 

verrijkende, onvergetelijke en megawijze momenten die jullie me de afgelopen jaren bezorgd 

hebben, zou ik de eindmeet van deze tocht door het bos zeker nooit gehaald hebben. Ik weet 

echt niet hoe ik jullie hiervoor kan bedanken...  

Griet – mijn favoriete reisgezel, mijn wist-je-datjes-wederhelft, mijn persoonlijke styliste en 

(kunst)geschiedenislerares,… maar bovenal my sister nr 1! Grietje, ik zou hier honderden 

anekdotes en insiders kunnen neerpennen, maar ik weet dat dat niet nodig is. Bedankt voor alles... 

Bedankt voor de vanzelfsprekendheid waarmee je mijn allerliefste zus bent, altijd. 

Aagje – we deelden tranen van verdriet maar meestal zijn het slappe lach tranen die over onze 

wangen rollen. In Gent of in Barcelona, maakt niet uit, bij jou zijn is altijd van een onevenaarbare 

intensiteit en een ware beproeving voor de lachspieren! Een zaligere pleisterplaats dan jouw 

dakterras in Barcelona bestaat er niet. Bedankt om er altijd voor me te zijn, amor. 

Sylvie – loving is giving… meer dan 3 woorden heb ik eigenlijk niet nodig om uit te leggen 

waarom ik jou zo graag zie. Je geeft, je luistert, je omarmt en zo maak je me telkens weer een 

beetje zachter. Al blijft het een raadsel waarom jij altijd houdt van hetgeen waar ik net niet van 

hou en waarom ons samenzijn iedere keer opnieuw de klok sneller doet tikken ;-) Jouw eindeloze 

stroom bordjes en potjes vol lekkers en vol liefde, daar zit Pieter zeker ook voor iets tussen. Dus 

Pieter: ook een dikke merci! 

Irès – merci voor jouw warme en gulle zijn, voor ’s werelds beste pasta al vongole en voor de vele 

momenten dat je me de exacte wetenschap deed vergeten tijdens onze inspirerende babbels, de 



uitstapkes met Tuur en de dansbare nachten in ’t Volkshuis! Voor de rest van mijn leven toveren 

vingerhoedjes steevast een glimlach op mijn gezicht... 

Sofie – jij bent het beste voorbeeld dat recente vriendschap zeker niet minder (h)echt is... We 

deelden noeste werkzondagen, togen en dansvloeren tot aan het ochtendgloren, en zowat alles 

daartussenin :-) Altijd kan ik 100% mezelf zijn bij jou, en dat doet heel veel deugd. En merci ook 

dat ik te allen tijde bij jou terecht kan met mijn hypochondrie ;-)  

Fem – na 33 jaar zijn woorden bijna overbodig geworden hé... Of misschien toch dit: Oh lalala! 

Heleen – onze gedeelde passie voor culturele tête-à-têtes en kaartjes zijn telkens weer 

hartstochtelijke feestmalen voor mijn ziel en voor m’n brievenbus. Ik stel dan ook voor dat we 

daar nog niet meteen een punt achter zetten :-) 

Lisa – merci om me te helpen om die kokosnoot te kraken… Leve de herontdekking van de 

maagdelijke vriendschap! 

Brammie – dude, keep on rockin’ in the free world! Ik doe mee :-) 

Brecht – muziek krijgt een extra dimensie in jouw bijzijn. Merci voor het delen van al dat moois. 

Simon – een wijzere schoonbroer kan ik mij niet inbeelden. 

Liselot – jouw optimisme en heweldih hevoel voor humor zijn hewoonweh vurrukkuluk! De 

ideale remedie als er gerelativeerd moet worden, zeker in het bijzijn van de nodige gin-tonic(s)! 

Lore – merci voor de gezellige klets- en knipbeurten, met gelijke én ongelijke triepen ;-) 

Nicole – duizend maal dank voor al jouw goede zorgen in de Kluyskensstraat, voor jouw 

ontelbare culinaire hoogstandjes en strelingen van mijn smaakpapillen. Ik ken weinig mensen die 

zo gul zijn als jij! 

Team fuck swamps – de trip door Sarek zou nooit zo adembenemend geweest zijn zonder jullie. 

Tack så mycket! 

De bende van Izegem – ook al versta ik jullie (taaltje) vaak niet, jullie warme, respectvolle en 

bewuste manier van leven versta ik maar al te goed. Op weekend gaan met jullie is genieten pur 
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Summary 

 

This thesis was executed in the context of the historical metal pollution in the Campine 

(Kempen) region in north-eastern Belgium. Due to metal refining activities in the past, an 

extended area of about 700 km² is diffusely polluted with mainly cadmium (Cd) and zinc (Zn). 

The historical soil pollution is still causing human-toxicological and ecotoxicological risks, 

through metal leaching to groundwater and accumulation in the food chain. Moreover, the 

Campine region is characterized by poor sandy soils, aggravating the risks for metal dispersion in 

the environment. 

Conventional soil sanitation techniques are technically and financially inadequate to tackle the 

pollution problem, because of its spatial extent and the relatively moderate contamination levels. 

Hence, alternative remediation strategies, such as phytostabilization, are to be investigated.  

Sustainable phytostabilization projects require the metals to be stabilized in the soil and should 

thus aim at minimizing metal dispersion via both above- and below-ground pathways. As there is 

a clear tree species effect on metal uptake, on litter decomposition, on biogeochemical processes 

in the soil profile and on the water balance, the distribution and fluxes of metals in the forest-soil 

system will be tree species specific as well. Selecting appropriate tree species is thus crucial for 

achieving successful phytostabilization.  

 

The main objectives of this thesis were to assess the feasibility of phytostabilization by afforesting 

diffusely Cd and Zn contaminated sandy soils, and to determine the tree species effects on Cd 

and Zn cycling on these soils. Our study was carried out in ‘Waaltjesbos’, a young post-

agricultural forest on a metal contaminated site on sandy soil. At the moment of our study, the 

trees were 10-15 years old. The six selected tree species were silver birch (Betula pendula), oak 

(Quercus robur and Q. petraea), black locust (Robinia pseudoacacia), aspen (Populus tremula), Scots pine 

(Pinus sylvestris) and Douglas fir (Pseudotsuga menziesii). 

 

We showed that aspen translocates high amounts of Cd and Zn into its foliage, generating a 

significant accumulation of total Cd and Zn concentrations in the topsoil (0-5 cm), and this after 

only 10 years of tree growth. Moreover, accumulated metals in the leaves may pose a long-term 



risk to primary consumers and enter the food web. Given these risks of above-ground metal 

dispersion, aspen should be avoided when afforesting Cd and Zn contaminated sites.  

 

We also showed that Cd and Zn leaching at 50 cm depth was elevated under black locust, Scots 

pine and Douglas fir, compared to lower seepage fluxes under silver birch, oak and aspen. This 

pattern was significantly correlated with leaching of anions and base cations, and to a lesser 

extent to soil solution pH, at least at this young stage of forest development at a post-agricultural 

site. Due to former (agricultural) liming and fertilization processes, the base cation status of the 

soil and the solution pH were still relatively high. However, we expect both parameters to 

decrease with forest age, especially for species with slowly decomposing litter, implying that the 

effect of pH on Cd and Zn leaching will become relatively more important in the long term. In 

this respect, we recommend not to plant tree species that generate high anion, base cation or H+ 

fluxes when afforesting Cd and Zn contaminated lands, because these species pose a serious risk 

for metal leaching to deeper soil layers and potential contamination of the groundwater. In 

general, coniferous as well as N-fixing species should thus be avoided.   

Finally, contrary to what is often argued in literature about phytostabilization, we found that Cd 

and Zn leaching losses at our study site showed no resemblance with the downward soil water 

fluxes. This might imply that the impact of the biogeochemical processes in the soil (solution) on 

Cd and Zn leaching (complexation with anions, competition for sorption sites with base cations 

and protons) was relatively more important than the effect of evapotranspiration.  

 

Summarized, taking into account all the aforementioned recommendations, it seemed that silver 

birch and oak may be planted on Cd and Zn contaminated sandy soils. Aspen, black locust, Scots 

pine and Douglas fir, on the other hand, cause risks for above-ground or below-ground metal 

dispersion and should therefore be avoided. 

These conclusions were drawn from our study in a young forest (10 – 15 years). Consequently, it 

is unsure whether they can be extended to the long term. Further research in older forests is thus 

essential. 

 

  



 

 
 
Samenvatting 

 

Dit doctoraat is het sluitstuk van een onderzoek dat werd uitgevoerd in het licht van de 

problematiek van metaalverontreiniging in de Belgische Kempen. Als gevolg van hoge 

metaalemissies van de non-ferro industrie uit de vorige eeuw worden we vandaag geconfronteerd 

met de erfenis van een historische bodemverontreiniging, die zich over een grote oppervlakte in 

de regio heeft verspreid. Ongeveer 700 km² is diffuus verontreinigd met voornamelijk cadmium 

(Cd) en zink (Zn). Deze metaalaccumulatie in de bodem zorgt voor risico’s voor het ecosyteem 

en voor de volksgezondheid, onder de vorm van uitloging naar grond- of oppervlaktewater en 

verspreiding in de voedselketen. De regio wordt bovendien gekenmerkt door arme zandbodems 

die het risico op uitloging en verspreiding van de metalen in het ecosysteem nog verhogen. Door 

de uitgestrektheid van de verontreiniging is klassieke bodemsanering geen haalbare kaart. 

Bijgevolg dringen alternatieve beheertechnieken, zoals fytostabilisatie, zich op. 

Duurzame fytostabilisatieprojecten beogen het vastleggen van metalen in de bodem door middel 

van plantengroei, en dienen er dus voor te zorgen dat zowel boven- als ondergrondse 

metaalverspreiding geminimaliseerd wordt. Aangezien er duidelijke boomsoorteffecten zijn op 

metaalopname, strooiselafbraak, biogeochemische processen in het bodemprofiel en op de 

waterbalans, zal de metaal(re)distributie in het bosecosysteem ook boomsoortspecifiek zijn. Het 

selecteren van geschikte boomsoorten is dan ook cruciaal om succesvolle fytostabilisatie te 

realiseren. 

 

De hoofddoelstellingen van dit doctoraat waren om de haalbaarheid te onderzoeken van 

fytostabilisatie door bebossing van Cd- en Zn-verontreinigde zandbodems, en om de 

boomsoorteffecten op de Cd- en Zn-fluxen te bepalen. De studie werd uitgevoerd in 

‘Waaltjesbos’, een bos dat ongeveer 15 jaar geleden aangeplant werd op verontreinigde 

landbouwgrond in Lommel. De zes geselecteerde boomsoorten waren ruwe berk (Betula pendula), 

inlandse eik (Quercus robur en Q. petraea), valse acacia (Robinia pseudoacacia), trilpopulier (Populus 

tremula), grove den (Pinus sylvestris) en Douglasspar (Pseudotsuga menziesii). 

 



In dit onderzoek toonden we aan dat trilpopulier grote hoeveelheden Cd en Zn naar zijn 

bladeren transloceert, wat resulteert in een aanzienlijke Cd- en Zn-accumulatie in de bovenste 

bodemlaag (0-5 cm) - en dit al na slechts 10 jaar. Geaccumuleerde metalen in de bladeren kunnen 

bovendien een mogelijk risico inhouden voor herbivoren en zo in het voedselweb terechtkomen. 

Rekening houdend met deze risico’s op bovengrondse metaalverspreiding, dient trilpopulier te 

worden vermeden bij het bebossen van Cd- en Zn-verontreinigde sites. 

 

We toonden ook aan dat de uitspoeling van Cd en Zn op 50 cm diepte aanzienlijk hoger was 

onder valse acacia, grove den en Douglasspar dan onder ruwe berk, eik en trilpopulier. De 

uitspoeling van Cd en Zn was duidelijk gecorreleerd aan de uitspoeling van anionen en basische 

kationen, maar slechts in mindere mate gelinkt aan de pH van de bodemoplossing. Dit laatste was 

hoogstwaarschijnlijk te wijten aan het jonge stadium van bosontwikkeling op voormalige 

landbouwgrond. Onder invloed van de voormalige bekalkings- en bemestingspraktijken, is het 

gehalte aan basische kationen in de bodem en de pH van de bodemoplossing immers nog relatief 

hoog in onze studiesite. We verwachten echter dat beide parameters zullen dalen naarmate het 

bos verder ontwikkelt, voornamelijk onder de boomsoorten met trage strooiselafbraak. Dit 

betekent dat het pH-effect op de uitspoeling van Cd en Zn waarschijnlijk prominenter zal 

worden op lange termijn. Daarom adviseren we om geen boomsoorten aan te planten die hoge 

uitspoelingsfluxen van anionen, basische kationen of protonen genereren, aangezien deze soorten 

een groter risico inhouden op metaaluitloging naar diepere bodemlagen en bijgevolg ook op een 

potentiële vervuiling van het grondwater. In het algemeen dienen dus zowel naaldbomen als 

stikstoffixerende boomsoorten vermeden te worden op Cd- en Zn-verontreinigde zandgronden. 

 

Tot slot stelden we vast dat – in tegenstelling tot wat vaak in literatuur over fytostabilisatie gesteld 

wordt – het uitspoelingspatroon van Cd en Zn onder de verschillende boomsoorten op onze 

studiesite niet overeen kwam met het patroon van de neerwaartse bodemwaterfluxen. Dit 

impliceert mogelijks dat de impact van de biogeochemische processen in de bodem(oplossing) op 

de Cd- en Zn-uitspoeling (complexatie met anionen, competitie voor sorptiesites met basische 

kationen en protonen) relatief belangrijker was dan het effect van evapotranspiratie. 

 

Samengevat en rekening houdend met alle hierbovengenoemde aanbevelingen, kunnen we 

besluiten dat ruwe berk en eik de voorkeur genieten wanneer Cd- en Zn-verontreinigde 

zandgronden bebost worden. Trilpopulier, valse acacia, grove den en Douglasspar daarentegen 



veroorzaken risico’s voor boven- en ondergrondse metaalverspreiding en dienen daarom 

vermeden te worden. 

Deze conclusies zijn gebaseerd op de resultaten van ons onderzoek in een jong bos (10 – 15 jaar). 

Bijgevolg is het niet zeker of deze kunnen geïnterpreteerd worden op lange termijn. Verder 

onderzoek in oudere bossen is dus noodzakelijk. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

  



 
 

List of abbreviations and symbols 
 

BC   base cations 
CEC  cation exchange capacity 
CECe  effective cation exchange capacity 
diss  dissolved 
DOC   dissolved organic carbon 
FF  forest floor 
Ic   canopy interception loss 
ICP-AES inductively coupled plasma atomic emission spectroscopy 
ICP-MS inductively coupled plasma mass spectrometry 
k  litter decomposition rate 
Ksat   saturated hydraulic conductivity  
LAI  leaf area index 
LF  litterfall 
MLF  annual leaf litterfall 
M0  initial litter mass 
Mt  litter mass at time t 
n  sample size 
OC  organic carbon 
Of  fragmentation horizon 
Oh  humus horizon 
Ol  litter horizon 
p   significance of statistical test (p-value) 
P  precipitation 
pH  measure of acidity 
R²  coefficient of determination 
SLA   specific leaf area 
spp.  species 
st.dev  standard deviation 
SWC   volumetric soil water content 
θr   residual water content 
θs  saturated water content 
T  transpiration 
TDR   Time Domain Reflectometry 
TF  throughfall 
tot  total 
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1.1 Historical metal pollution 

Industrialization and the lack of effective environmental protection during the first half of the 

20th century gave rise to significant emissions of trace metals into the global environment. 

Subsequent atmospheric deposition of these metals resulted in many metal polluted sites 

worldwide. Trace metals accumulate in the soil and pose serious risks for ecosystems and public 

health through leaching to groundwater and dispersion in the food chain (WHO, 2000). 

In the Campine (Kempen) region, situated in northeastern Belgium, zinc (Zn) and lead (Pb) were 

refined in three zinc smelters (Lommel, Balen, Overpelt) using a pyrometallurgical process from 

the end of the 19th century until the 1970s. Cadmium (Cd) occurs naturally in zinc, lead and 

copper ores and is usually produced as a byproduct of zinc refining. After World War II, Belgium 

became the principal producer of Cd in Europe (Lauwerys et al., 1990). In 1950, when metal 

processing was still very inefficient and poorly regulated, one of the zinc smelters in the area 

(Overpelt) emitted 340 kg Cd per day (Staessen et al., 1995). The Lommel zinc factory was 

dismantled in 1974, but the other two remain operational to this day. However, because of the 

transition from pyrometallurgical to electrolytic refining processes in the ‘70s, the termination of 

Pb-production and other technical innovations (e.g. filters), metal emissions have been reduced 

multifold during the past decades (Staessen et al., 1995; Wilkens and Loch, 1997; Seuntjens, 2002; 

Joris et al., 2014). In 2004, both remaining zinc smelters together emitted only 0.04 kg Cd per day 

(Peeters, 2006). Nevertheless, the high metal emission loads in the past and the use of residues 

(ashes, slacks, muffles) in roadways have resulted in a historical soil pollution of mainly Cd and 

Zn, and to a lesser degree of Pb, copper (Cu), arsenic (As) and mercury (Hg) (Ceenaeme et al., 

2004; Joris et al., 2014). At present, primary emissions have been almost eliminated, whereas 

secondary sources of Cd and Zn due to resuspension of contaminated soil and road ashes are a 

major diffuse input to the area (Seuntjens, 2002; van der Grift and Griffioen, 2008). An extended 

area of about 700 km² in the Belgian and Dutch Campine region is now diffusely polluted (Van 

der Grift and Griffioen, 2008). Most of the metal contamination is found in the upper layer of 

the soil (up to 30-50 cm) but deeper soil layers and groundwater have become contaminated as 

well, due to leaching of the metals (Peeters, 2006; MIRA, 2010; Joris et al., 2014). Fig 1.1 clearly 

shows the (historical) Cd pollution around the three zinc smelters in the northern Campine 

region.  
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Figure 1.1 Location of the Belgian (light gray) and Dutch (dark gray) Campine region, with an 

overview of the Cd concentration (mg kg-1) in the soil in the Belgian part of the region (OVAM, 

2008). The location of our study site is indicated by the blue arrow (see Fig 3.1 for a detailed map 

of the study site) 

 

 

Metal concentrations at an experimental site in the close vicinity (500 m) of the Balen smelter 

were found to be fairly elevated, with total Cd and Zn concentrations up to 12 mg kg-1 and 654 

mg kg-1, respectively (Van Slycken, 2011). However, apart from highly elevated metal 

concentrations in the immediate surroundings of the smelters, the soil contamination levels in the 

Campine region are moderate. As an example, total Cd concentrations in the upper 30 cm of the 

soil at our study site (Fig 1.1) ranged from 0.7 to 5.0 mg kg-1 (average 1.93 mg kg-1), and total Zn 

concentrations in the upper 30 cm were between 35 and 350 mg kg-1 (average 116 mg kg-1). 

Compared with the site-specific background concentrations and Flemish soil sanitation reference 

values (see Table 3.7), we found that the soil sanitation threshold of 1.59 mg Cd kg-1 was 
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exceeded in more than half of the sampling points at our study site. Zn concentrations in the 

majority of our sampling points were higher than the background concentration of 56 mg Zn kg-

1, but the soil sanitation threshold of 544 mg Zn kg-1 was not exceeded throughout our study site. 

Soil Cd concentrations at unpolluted sites in Europe and USA were found to be around 0.02 - 0.2 

mg kg-1 (Holmgren et al., 1993; Andersen et al., 2002; Sevel et al., 2009). Benchmarking the metal 

concentrations measured at our study site against those from unpolluted sites on the one hand, 

and against those from the experimental site next to the smelter on the other hand, confirms that 

the soils in the Campine region are moderately contaminated. 

 

The historical metal pollution in the Campine region still causes human-toxicological and 

ecotoxicological risks. Pb, As and Cd are a threat to human health, whereas Zn is phytotoxic. Cd 

in particular poses a serious health hazard as it is highly toxic and classified as a human 

carcinogen (IARC, 1993; Nawrot et al., 2006). Exposure to Cd occurs through intake of 

contaminated food or water, or by inhalation of tobacco smoke or polluted air; and Cd 

accumulates in the human body, particularly the kidneys (Järup et al., 1998). An important 

toxicological feature of Cd is its exceptionally long biologic half-life in the human organism, 

ranging from 10 to up to 30 years (Lauweryns et al., 1990; Nawrot et al., 2006). 

During the ‘80s and ‘90s, two large-scale morbidity studies were carried out in the vicinity of the 

zinc smelters in the Belgian Campine region: Cadmibel (Cadmium in Belgium) and PheeCad 

(Public health and environmental exposure to Cadmium) (Hotz et al., 1999). It was shown that 

excessive exposure to Cd was linked to about 30% increased urinary cadmium excretion (Sartor 

et al., 1992), renal dysfunction (Buchet et al., 1990; Staessen et al., 1994), increased calciuria 

(Staessen et al., 1991), osteoporosis and a 35% population-attributable risk of fractures (Staessen 

et al., 1999). Moreover, Nawrot et al. (2006) found a significant association between risk of lung 

cancer and environmental exposure to Cd: residence in the high-exposure area was associated 

with a hazard ratio for lung cancer of 3.6. The latter study was breaking news in Belgium and 

headlined the national press (Fig 1.2). Above all, it raised a lot of questions and concerns among 

the people living in the northern Campine region, after which the Flemish government launched 

the ‘Actionplan Cadmium’ (Peeters, 2006). This project was aimed at determining the geographic 

extent of the Cd problem in Flanders and at giving an overview of possible actions to tackle the 

issue. One of the proposed actions was to plant fallow sites in order to reduce Cd spreading via 

wind erosion, and this way minimize Cd inhalation and ingestion by local residents. This concept, 

phytoremediation, will be discussed in detail below (see § 1.3). 
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Figure 1.2 The study of Nawrot et al. (2006) about the association between environmental 

exposure to cadmium and cancer in northeast Belgium, published in The Lancet Oncology, 

became national headline news (De Standaard, January 2006) 

 

 

In addition to the toxicological hazards associated with historical metal pollution, the risk for 

metal leaching and below-ground dispersion is aggravated by the predominant sandy texture of 

the soils in the region. Sandy soils are characterized by a low cation exchange capacity (CEC), low 

acid neutralizing capacity and low metal ion sorption ability (Andersen et al., 2002). This also 

implies that the metal availability for plant uptake is rather high (see § 1.2), which may result in an 

accumulation of metals in above-ground plant parts. This, in turn, may pose new risks for metal 

dispersion in the environment, through herbivores and litterfall. Therefore, remediation of the 

contaminated soils in the Campine region is necessary. However, due to the extent of the 

diffusely polluted area (700 km² spread over the Belgian and Dutch Campine region), 

conventional soil sanitation techniques are technically and financially inadequate to tackle the 

pollution problem. Hence, one should rely on risk based management of the area or on 

alternative remediation strategies. Examples of risk based management are: removal of zinc ashes, 

use of soil amendments to immobilize the metals in the soil, cultivation advices to farmers and to 
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the public (which vegetables are safe to grow), sensibilization campaigns to inform the public on 

how to reduce exposure to metals (use of groundwater for irrigation and drinking purposes, 

house cleaning tips, avoid bare soil in gardens, tips for playing children, …). Besides these risk 

based management options, phytoremediation has a lot of potential as an alternative remediation 

strategy. However, its practical applicability is still underexplored and should thus be further 

investigated. The phytoremediation technique will be discussed more in detail below (see § 1.3). 

 

1.2 Behaviour of metals in soils 

There is a consensus in the literature that total soil metal concentrations are not a good measure 

of metal bioavailability and thus not a very useful tool to determine potential environmental and 

human health risks (Sauvé et al., 2000a, 2000b). The evaluation of the potential risks and toxicity 

of metals in soils requires an assessment of the proportion of the total metal burden that is 

dissolved in the soil solution. Dissolved metals are mobile and could possibly be taken up by 

adjacent plant roots, be detrimental to various soil biological organisms, or otherwise be leached 

from the soil and contaminate groundwater and surface water (Sauvé et al., 2000a; Weng et al., 

2001a). The concentration of metals in the soil solution, at any given time, is governed by a 

plethora of interrelated chemical reactions between the solid and the aqueous phase of the soil, 

including inorganic and organic complexation, oxidation-reduction reactions, precipitation-

dissolution reactions and adsorption-desorption reactions (McLean and Bledsoe, 1992; Ross, 

1994, McBride et al., 1997). These reactions are metal-specific and their relative importance 

depends on total metal content, on the concentration of organic and inorganic elements and 

ligands in the soil solution and on different soil properties, such as pH, CEC, organic matter 

dynamics and texture (e.g. Temminghoff et al., 1995; McBride et al., 1997; Römkens and 

Salomons, 1998; Sauvé et al., 2000a; Andersen et al., 2002; Voegelin et al., 2003). 

A plethora of metal sorption studies have shown that solution pH has an overriding importance 

on metal solubility in many soils, as free metal ions and H+ ions compete for adsorption on the 

soil’s exchange sites (e.g. Christensen, 1984; Berthelsen et al., 1994; McBride et al., 1997; Sauvé et 

al., 2000a, 2000b; Strobel et al., 2001b, 2005; Andersen et al., 2002; Voegelin et al., 2003; Degryse 

et al., 2007). This is especially true for sandy soils with low CEC, low acid neutralization capacity, 

and low ability of the subsoil to sorb metal ions. Soils with higher contents of clay or organic 

matter (and thus a higher CEC) can counteract the acidification effect, as they have a higher 

metal adsorption capacity (Andersen et al., 2002). 



Chapter 1 

8 

Metal leaching can as well be stimulated by formation of soluble complexes with organic ligands, 

such as DOC (Sauvé et al., 2000b; Strobel et al., 2001b, 2005). Many authors found that soluble 

organic matter particularly has a strong affinity for Cu, Ni, Hg and Pb, whereas Cd and Zn tend 

not to complex strongly with soluble organics. This implies that the solubility of Cd and Zn is 

mainly controlled by pH with minor to no effects of DOC (e.g. Bergkvist et al., 1989; Holm et 

al., 1995; Römkens and de Vries, 1995; McBride et al., 1997; Sauvé et al., 2000b; Weng et al., 

2001b; Strobel et al., 2001b, 2005). 

Apart from the formation of organo-metal complexes, transport of metals through the soil 

matrix is also enhanced by formation of soluble complexes with inorganic ligands, such as SO4
2-, 

Cl-, PO4
3-, NO3

-. Cd and Zn tend to complex mainly with Cl- and SO4
2- (Benjamin and Leckie, 

1982; Bergkvist et al., 1989; McLean and Bledsoe, 1992; Boekhold et al., 1993; Ross, 1994). Also 

the presence of base cations in the soil solution may significantly increase the mobility of some 

metals, as there is competition between the major cations and free metal ions for adsorption onto 

binding sites (Cavallaro and McBride, 1978; McLean and Bledsoe, 1992; Sauvé et al., 2000; 

Voegelin et al., 2003). Especially the competition between Ca2+ and Cd2+ has been described: 

increased Ca concentrations will displace Cd from sorption sites and mobilize Cd (Christensen, 

1984; Temminghoff et al., 1995). 

 

1.3 Phytoremediation 

Phytoremediation is defined as the use of plants and their associated microorganisms to remove 

pollutants from the environment or to render them harmless (Salt et al., 1998). It depends on 

naturally occurring processes, in which plants detoxify inorganic and organic pollutants, via 

degradation, sequestration, or transformation (Pilon-Smits and Freeman, 2006). This green 

technology has gained popularity with government agencies and industry in the past 20 years 

(Pilon-Smits, 2005; Gomes, 2012) as it offers a low-cost alternative that retains the integrity of 

the soil and can be aesthetically pleasing (Pulford and Dickinson, 2005). Depending on the 

pollutant, substrate, and alternative remediation methods available, phytoremediation is typically 

2- to 10-fold cheaper than conventional remediation techniques (Pilon-Smits and Freeman, 

2006). Moreover, it creates environmental benefits such as soil erosion control, carbon 

sequestration and wildlife habitat (Gomes, 2012). All these advantages ensure a high degree of 

public acceptance for the phytoremediation technology (Pilon-Smits, 2005; Pulford and 

Dickinson, 2005; Gomes, 2012).  
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However, the use of phytoremediation also has some limitations. It may take an excessive 

amount of time for site remediation to be effective (see also Fig 2.1 and Table 2.1), and this time 

constraint is often considered to be the Achilles heel of phytoremediation (Robinson et al., 2003). 

Furthermore, with regard to metal pollution for instance, there are gaps in the knowledge about 

the potential risks related to metal dispersion in the environment, e.g. in food chains or via metal 

leaching to groundwater (Pulford and Dickinson, 2005; Mertens et al., 2007; Gomes, 2012). 

Metals may be transferred to more mobile and bioavailable forms when they return to the soil 

surface via litterfall, or deeper in the soil due to root or microbial action. In this way, 

phytoremediation could also provide a new exposure pathway for the metals (Perronnet et al., 

2000; Robinson et al., 2003; Vervaeke et al., 2004; Pulford and Dickinson, 2005; Mertens et al., 

2007). The scope of the phytoremediation process may be further limited by the plants’ biomass 

production, their rooting depth, the (decreasing) bioavailability of the pollutants and the 

restricted number of target metals that can be detoxified at multi-metal contaminated sites 

(Robinson et al., 2003; Ernst, 2005; Pilon-Smits, 2005; Gomes, 2012). See Chapter 2 for a 

detailed discussion of all the limiting factors. Research suggests that phytoremediation is best 

suited for the treatment of slightly to moderately polluted areas and cannot serve as an equivalent 

for conventional soil remediation on more heavily polluted sites (Pulford and Watson, 2003; 

Dickinson and Pulford, 2005; Meers et al., 2010; Van Slycken, 2011).  

Phytoremediation involves a variety of techniques and strategies that lead to contaminant 

degradation, removal (through accumulation or dissipation), transfer from or stabilization in soil 

and water (Pulford and Watson, 2003; Pilon-Smits and Freeman, 2006). Six main subtypes of 

phytoremediation have been identified: phytoextraction, phytodegradation, rhizofiltration, 

phytostabilization, phytovolatilization and rhizodegradation (= phytostimulation) (see Fig 1.3). 

The different phytotechnologies make use of different plant properties and typically different 

plant species are used for each (Pilon-Smits, 2005).  

Inorganic pollutants (such as trace metals) are generally dealt with by phytoextraction and/or 

phytostabilization, while organic pollutants are most commonly treated by phyto- and 

rhizodegradation (Pilon-Smits and Freeman, 2006). 

Both phytoextraction and -stabilization will be discussed in further detail in the following 

sections. The other four techniques are less relevant in the context of metal contaminated soils 

and were therefore considered to be outside the scope of this thesis. 
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Figure 1.3 The main subtypes of phytoremediation (based on Pilon-Smits, 2005 and Gomes, 2012) 

 

 

1.3.1 Phytoextraction 

Phytoextraction aims at removing pollutants from the soil, by repeatedly harvesting plants that 

accumulate high levels of pollutants in their above-ground biomass. Fast growth rate, high 

biomass yield and high pollutant uptake and accumulation in harvestable tissues are thus 

important properties for plants used in phytoextraction projects. One category of plants that 

shows potential for phytoextraction of metal contaminated sites are the so-called 

hyperaccumulators, plants that accumulate toxic elements to levels that are at least 100-fold 

higher than non-accumulator species (Baker and Brooks, 1989; Peer et al., 2005). 

Hyperaccumulators have been reported for As, Co, Cu, Mn, Ni, Pb, Se and Zn (Baker et al., 

2000; Ma et al., 2001). Despite these properties hyperaccumulators are not very popular for 

phytoextraction because they are often slow growers, attain low biomass and have no economic 

value (Pilon-Smits, 2005). Another possibility that is often referred to is the use of short rotation 
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coppice (SRC) for phytoextraction of metals from soils. SRC are carefully tended plantations of 

fast-growing trees for rotations shorter than 15 years (MacPherson, 1995). Although metal 

concentrations in trees are much lower than those in hyperaccumulators, total metal removal 

could be equal to those of hyperaccumulating plants because of their high biomass production 

(Pulford and Watson, 2003; Meers et al., 2007). Several authors postulated that trees have the 

ability to remove significant amounts of trace metals from the soil (Dickinson, 2000; Dickinson 

and Pulford, 2005; Meers et al., 2007). Willows (Salix spp.) and poplars (Populus spp.) are 

considered to be best suited for this task because of their strong ability to coppice, their high 

capacity for Zn and Cd uptake, and their high biomass production (e.g. Greger and Landberg, 

1999; Robinson et al., 2000; Klang-Westin and Eriksson, 2003; Pulford and Watson, 2003; 

Rosselli et al., 2003; Laureysens et al., 2004; Vangronsveld et al., 2009). 

One of the concerns inherent to the phytoextraction process is the treatment and/or disposal of 

the harvested, metal-rich biomass. The contaminated plant material might be used for non-food 

purposes (e.g. wood, cardboard) or it can be further concentrated by composting or ashing 

(producing bioenergy), followed by disposal in a landfill (Pilon-Smits and Freeman, 2006). Van 

Slycken (2011) investigated the conversion of metal contaminated energy maize (Zea mays) into 

biogas, through anaerobic digestion. The biogas production potential was similar to that of maize 

from an uncontaminated site, suggesting that the increased metal concentrations had very limited 

to no effects on the biomethanisation processes. The metal concentrations in the produced 

digestate were 3-4 times higher than those of the input material, yet the legal threshold values for 

using the digestate as a soil amendment were not exceeded. Sas-Nowosielska et al. (2004) 

examined various strategies (composting, compaction, incineration, ashing, pyrolysis, direct 

disposal and liquid extraction) and considered incineration (smelting) the most feasible, 

economically acceptable and environmentally sound. In the case of valuable metals, recycling of 

the accumulated element may be an option. This process, termed phytomining, is currently being 

used for nickel (Chaney et al., 2000). 

Other concerns regarding the phytoextraction technology, and the risks, weaknesses and threats 

of phytoextraction practices in the field will be discussed in detail in Chapter 2. 

 

1.3.2 Phytostabilization 

Other than extracting metals from the soil, phytostabilization aims at stabilizing the metals in the 

soil, in order to avoid their above- and below-ground dispersion in the ecosystem. 

Phytostabilization can result from either physical or chemical effects. Trees can be very well 
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suited for phytostabilization purposes due to their large biomass, extensive root systems and high 

transpiration capacity (Pulford and Watson, 2003). The canopy layer, forest floor and roots form 

a ‘green cap’ which provides physical stabilization of the soil and decreases the risk of dispersion 

of metal contaminated soil particles by wind and water erosion (Vangronsveld et al., 1995a; 

Eviner and Chapin, 2003). In addition, litterfall adds significant amounts of organic matter to the 

(top)soil, promoting nutrient cycling, soil aggregation and water holding ability. Elevated 

evapotranspiration in forests decreases the downward soil water fluxes, and thus may reduce 

metal leaching losses to groundwater and surface waters (Pulford and Watson, 2003). Garten 

(1999) modeled the effect of a forest cover on Sr leaching from contaminated soil, mainly in 

shallow subsurface flow, and showed that the losses were reduced by approximately 16% under 

trees relative to grass. This observation was attributed to the greater evapotranspiration rate of 

the trees. Yet, even if only a grass cover is present, the leaching losses may also be reduced 

compared to bare soil. A percolation experiment, comparing waste dump substrate without and 

with 3-year-old grass cover, revealed that total amounts of percolated Cd and Zn were reduced 

by 84% and 87%, respectively, under the grass cover (Vangronsveld et al., 1995a).  

On the other hand, tree growth may enhance metal mobility due to soil acidification, production 

of dissolved organic matter (Mayer, 1998), root-induced chemical changes in the rhizosphere 

(Nye, 1981; Hinsinger, 2000; Vervaeke et al., 2004) and eventual uptake of metals (Mertens et al., 

2007). These effects are species-specific because tree species have different effects on soil 

parameters such as pH and organic matter content, and exhibit different element uptake patterns 

(Finzi et al., 1998; Augusto et al., 2002; Reich et al., 2005). Uptake and translocation of metals to 

the leaves might cause risks for above-ground metal dispersion in the environment. On the one 

hand, accumulated metals in the leaves may pose a long-term risk to primary consumers and 

enter the food web. On the other hand, contaminated litter may result in hot spots of available 

metals in the forest floor and in the topsoil. This could provide a new exposure pathway for the 

metals. The forest floor and topsoil are particularly vulnerable as they are the biologically most 

active parts of the soil system and biological activity has been shown to be highly sensitive to 

metal pollution (Bergkvist et al., 1989). Tree species inducing soil acidification will enhance metal 

solubilization (see § 1.2) and thus bear a potential risk for below-ground metal dispersion. Hence, 

with respect to risk control, it is very important to select tree species for phytostabilization 

purposes that cause low soil acidification and a minimal translocation of metals to their leaves 

(Mertens et al., 2007). 
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1.4 Objectives and general outline of the thesis 

The success of phytoremediation projects is determined by the feedback mechanisms between 

the metal accumulation in trees, the leaf litter quality, the composition of the forest floor leachate 

and soil solution, and the evapotranspiration rate of the trees. These processes will affect metal 

mobility and are tree species specific. However, the global effects of trees on soil metals and the 

interspecific differences between tree species are still not fully investigated and understood. 

Therefore, this thesis studies the effects of different tree species on the fate of metals in the 

forest-soil system of afforested sandy soils. The study focuses on Cd and Zn because they are the 

main contaminants in the Campine region and are the most mobile and bioavailable of trace 

metals, implying that the risks of Cd and Zn dispersion in the ecosystem are higher compared to 

other metals. Determining the actual effects of Cd and Zn fluxes in the forest-soil system on 

public health and on ecological food webs, however, lies beyond the scope of this thesis. 

 

The main objectives of this thesis are to  

- investigate the biogeochemical and physical effects of six different tree species on Cd and 

Zn mobility on sandy soil. 

- assess the feasibility of phytostabilization of diffusely Cd and Zn contaminated sandy 

soils by means of afforestation. 

 

First, a conceptual approach of the actual and future applicability of phytoextraction and -

stabilization is given (Chapter 2). After that, in order to further assess the feasibility of 

phytostabilization by afforesting diffusely contaminated sandy soils, an observational study was 

carried out in the Campine region in the northeast of Belgium. In this observational study, we 

first examine the general patterns involved in phytostabilization (Chapter 3). Six tree species 

were selected that are typical for the Campine sandy soils: silver birch (Betula pendula), oak (Quercus 

robur and Q. petraea), black locust (Robinia pseudoacacia), aspen (Populus tremula), Scots pine (Pinus 

sylvestris) and Douglas fir (Pseudotsuga menziesii). Subsequently, to get insight into the main patterns 

associated with phytostabilization, we aim to unravel the processes behind those patterns, under 

the six selected tree species (Chapters 4-7). See Fig 1.5 for a schematic overview of the thesis. 

Biogeochemical (mainly related to litter decomposition) and biophysical (evapotranspiration) 

processes play a central role in this study, as they are both known to be key players regarding 

metal mobility.  
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In Chapter 2 we discuss the opportunities, threats and perspectives of practising the 

phytoextraction and phytostabilization techniques in the field. 

Chapter 3 describes the tree species effects on soil properties that are decisive for metal mobility 

(pH, OC, CEC) and the effects on Cd and Zn uptake and redistribution in the soil profile after 

10 years of tree growth. 

Litter decomposition is one of the driving processes within the mobilization of metals, as it 

determines soil acidification and DOC leaching. Hence, in Chapter 4, litter decomposition 

dynamics and the accompanied changes in metal (Cd, Zn) and nutrient (base cations, N, C) 

amounts are quantified by means of a litterbag experiment. Tree species producing contrasting 

leaf litter in terms of chemical composition and degradability have a different influence on the 

composition and reactivity of forest floor leachate. Forest floor leachate chemistry in its turn 

determines to a large extent the biogeochemical processes in the soil and the soil solution 

chemistry, thus affecting metal mobilization and below-ground dispersion risks. Therefore, in 

Chapter 5, we explore the tree species effects on fluxes of Cd, Zn, DOC, H+ and base cations in 

forest floor leachates, which were sampled with zero-tension lysimeters.  

Sustainable phytostabilization requires the metals to be stabilized in the soil and should thus 

avoid above-ground (via uptake) and below-ground (via leaching) dispersion risks. However, 

typical tree species on the nutrient-poor sandy soils in the Campine region (e.g. pine, oak) are 

often characterized by nutrient-poor leaf litter, enhancing soil acidification and thus metal 

mobilization. Therefore, in Chapter 6, we investigate whether topsoil acidification in pine and 

oak stands can be counteracted by admixing shrub species with nutrient-rich leaf litter, such as 

European rowan (Sorbus aucuparia), alder buckthorn (Rhamnus frangula) and black cherry (Prunus 

serotina), and determine which is the threshold cover of the shrubs needed to obtain a significant 

effect in the topsoil.  

Finally, to get insight into possible metal leaching to deeper soil layers and groundwater, the 

species-specific water and element seepage fluxes are quantified in Chapter 7. For this, we 

collected the soil solution with suction cup lysimeters at 50 cm depth and simulated the water 

fluxes at that depth by means of a water balance model. 

 

1.4.1 Study sites 

Chapters 3, 4, 5 and 7 were carried out in ‘Waaltjesbos’, a metal contaminated site on sandy soil 

in Lommel that was afforested between 1996 and 1998 and now serves as a public forest. Before 

afforestation, the site had been under agricultural use for at least several decades. The site is 

situated in between two zinc smelters, Lommel and Balen; the former was closed in 1974, while 
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the latter is still operational (see § 1.1). Detailed site descriptions are given in § 3.2.1. To unravel 

tree species effects on the behaviour of accumulated soil metals, Waaltjesbos is a unique study 

area since it originated from a rather homogenized situation (agricultural soil) which was 

subsequently planted with different tree species in blocks. The block pattern offers a perfect 

opportunity to study the tree species effects unambiguously. For each of the six considered tree 

species, three stands were selected throughout the forest (see Fig 3.1). The six tree species were 

chosen because they are typical for the Campine sandy soils and because they have divergent 

effects on metal uptake, on litter decomposition, on biogeochemical processes in the soil profile 

and on the water balance after plantation on an agricultural soil. Hence, Cd and Zn cycling under 

these tree species is expected to reflect the biogeochemical and biophysical interactions that took 

place over the preceding 10-15 years. 

Chapter 6 was not carried out in Waaltjesbos, but in several uncontaminated forests in the 

Campine region (see § 6.2.1). 
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Understanding the aforementioned processes and their interactions is essential for sound phytoremediation that accounts for its possible risks. This 

thesis allows to gain fundamental insights into the driving factors of terrestrial metal cycling, and contributes to fill some of the knowledge gaps about 

the influence of tree growth and tree species choice on metal mobilization. This thesis may therefore become a useful tool for scientifically-based 

management of metal contaminated soils. 

 

 

Figure 1.5 Schematic overview of the thesis with the interlinkages between the different chapters 
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Phytoextraction of metals from soils: 
how far from practice? 
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Abstract 

For most trace elements, the technique of phytoextraction needs significant improvements to 

become practically feasible. Calculations for Cd revealed that the amount of Cd taken up by 

Thlaspi caerulescens or Salix spp. needs at least to be the double of the present amount to slightly 

decrease the Cd concentration in the upper 0.5 m of the soil within a period of 10 years. 

Additionally, metals taken up by the plants might pose an important risk. Alternatives as 

bioavailable contaminant stripping and phytostabilization might be more appropriate. 
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After: Van Nevel, L., Mertens, J., Oorts, K., Bogaert, G., Verheyen, K., 2007. 

Phytoextraction of metals from soils: how far from practice? Environmental Pollution, 150, 

34-40. 
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2.1 Introduction 

Phytoextraction is a phytoremediation technique that uses uptake by plants to remove metals and 

other contaminants from soils, sediments or water. Successful phytoextraction requires that the 

polluted medium is cleansed to a level that complies with environmental regulations, and from an 

economic viewpoint, this should be achieved at a lower cost than an alternate technology or the 

cost of inaction (Robinson et al., 2003). However, despite intensive research on the subject in the 

last decade, very few field trials or commercial operations that demonstrate successful 

phytoextraction have been realised (Robinson et al., 2006).  

This leads us to the discussion on the opportunities and threats of phytoextraction practices in 

the field. In this paper we focus on the actual and future feasibility of phytoextraction of metals 

from polluted soils, giving attention to the risks involved in metal uptake by plants. 

 

2.2 Metal phytoextraction on polluted soils: feasibility 

Phytoextraction seems to be a simple and economic technique for the remediation of metal 

polluted soils. Nevertheless, ongoing research reveals that the applicability of the technique might 

be limited and that the practical implications might not be so evident as first thought. At present, 

the technology is limited by the long period required for cleanup, the restricted number of target 

metals that can be extracted, the limited depth that can be assessed by the roots, the difficulty of 

producing a high-biomass crop of the desired species and the lack of knowledge on the 

agronomic practices and management (e.g. Keller et al., 2003; Ernst, 2005; McGrath et al., 2006; 

Robinson et al., 2006). There is also concern about metal-accumulating plants providing an 

exposure pathway for toxic elements to enter the food chain if local herbivores consume these 

plants (e.g. Rock, 1997).  

Robinson et al. (2006) simply state that phytoextraction is not ready for action. According to 

these authors, examples of successful phytoextraction are conspicuously absent. Also do 

Nascimento and Xing (2006) state in their literature review that it will take some time before 

phytoextraction may be established as a commercial technology. According to Peer et al. (2005), 

phytoextraction seems possible for As and Ni, while for the other metals the technology still 

appears to be far from practice. The vast majority of the hyperaccumulator species discovered so 

far are Ni hyperaccumulators (do Nascimento and Xing, 2006). Plant species that can accumulate 

Cd, Pb, Zn, Co, As and Cu are much less numerous (McGrath et al., 2001). 
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In a meta-analytical study, Audet and Charest (2007) concluded that phytoextraction efficiency 

will decline under increasing soil metal concentrations. According to Ernst (2005), 

phytoextraction is an option to decontaminate soils with low to moderate metal concentrations; 

for soils with a high load or with a deep penetration of metals, phytoextraction is not a realistic 

option. In those cases phytostablization is recommended instead. 

 

2.2.1 Theoretical feasibility 

But is phytoextraction indeed far from practice? As long-term site trials are not available, 

phytoextraction efficiency should be evaluated using models. Phytoextraction projects can be 

evaluated on the amount of metals being removed from the soil in relation to the total amount 

present in the soil (Mertens et al., 2005; 2006) and on the time needed for remediation.  

To attain a predefined decrease of metal concentration in the soil profile over a certain depth, a 

certain metal amount has to be removed, that can be calculated by: 

 
 vBB CdVA ××=     (2.1) 
 
Where A is the amount of metal to be removed per hectare (mg/ha), VB the soil volume 

(m³/ha), dB the soil density (kg/m³) and Cv the predefined concentration decrease (mg/kg).  

Since the total extracted metal amount is the product of plant biomass and tissue metal 

concentration, the time needed to achieve the predefined soil concentration decrease is calculated 

by: 

 
BP

A
t

×
=      (2.2) 

 
Where t is the time (yr), P is the crop metal concentration (mg kg-1), and B is the annual biomass 

production (kg ha-1 yr-1). Both P and B are spatial and temporal dependent as both parameters 

depend on the soil characteristics and available metal concentrations being spatial and temporal 

dependent (Robinson et al., 2006; see also further).  

 

Here we discuss the theoretical feasibility of phytoextraction of Cd. To diminish the soil Cd 

concentration in the upper 0.50 m of the soil profile with 1 mg kg-1, 8 kg Cd/ha (5000 m³/ha x 

1600 kg soil /m³ x 1 mg Cd/kg soil) should be removed. To obtain a rough estimate, we assume 

that biomass production and crop metal concentration remain constant over time. The lines in 

Fig 2.1 represent the combinations of P, B and t that result in a removal of 8 kg Cd/ha according 
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to Eq. 2.2. The data points in this figure are literature data from field trials on medium polluted 

soils that reported crop concentrations as well as the biomass production (see Table 2.1). 

Despite a theoretically possible reduction of 1 mg kg-1 in the soil’s Cd concentration over a 

period of 15 years, it should be noticed that this is actually not very satisfactory in terms of 

practice. A remediation period of 15 years to achieve a decrease of 1 mg kg-1 might be too long 

to meet the demands of environmental decisionmakers. If we assume that a remediation period 

of 10 years is acceptable, we should conclude that none of the examples for slightly polluted soils 

(Fig 2.1) is able to attain a 1 mg kg-1 Cd reduction. The situation lies even further away if we have 

to attain a more profound concentration reduction. For the most polluted soil in Table 2.1, a 

decrease of 1 mg Cd kg-1 can be obtained in less than 2 years, but as the soil concentration is 163 

mg kg-1, this implies that the remediation period would be extremely long.  

 

 
Figure 2.1 Annual biomass production (B) and crop Cd concentration (PCd) needed to decrease 

the Cd concentration in the upper 0.5 m of the soil with 1 mg kg-1 within different periods, 

assuming that P and B remain constant over time. PCd and B data retrieved from literature (see 

Table 2.1) 
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Table 2.1 Literature data reporting species, annual biomass production B , crop Cd concentration PCd and total Cd concentration in the soil. Calculated 

t is the time needed to remove 8 kg Cd/ha, calculated using Eq. 2.2 

  Species B 
(ton ha-1 yr-1) 

PCd 

(mg kg-1) 
total soil [Cd] 

(mg kg-1) 
 Calculated t 

(yr) 

Thlaspi caerulescens 2.6 1618 163 (1) Robinson et al., 1998 1.9 

T. caerulescens 2.1 256.7 2.8 Hammer and Keller, 2003 15 

T. caerulescens 2.51 265 44 Maxted et al., 2003 12 

Salix ‘Calodendron’ (*) 13.07 9.41 44 Maxted et al., 2003 65 

S. dasyclados ‘Loden’ (*) 31.53 10.72 44 Maxted et al., 2003 24 

Salix spp. (*) 9.2 - 13.9 5.6 – 25.2 4.6 - 5.0 Vervaeke, 2004 35 - 103 

S. viminalis ‘Orm’ (*) 10.5 – 14.1 1.6 – 3.4 (**) 1.5 – 3.1 (2) Meers et al., 2005 167 - 467 

S. viminalis ‘Orm’ (2 yr) (*) 11.5 3.6 3 (2) Vervaeke et al., 2003 193 

S. viminalis (*) 2.1 - 8.7 0.6 – 4.1 0.17 - 0.45 Klang-Westin and Eriksson, 2003 471 - 1852 

S. ‘Calodendron’ (*) 8.5 8.2 41.6 (3) Maxted et al., 2007 115 

Populus spp. (*) 3.5 – 6.0 (**) 1.6 – 2.4 (**) 0 – 7.9 French et al., 2006 563 - 1437 

S. viminalis ‘Orm’ (*) 6.8 (**) 2.9 (**) 0 – 7.9 French et al., 2006 405 

 (*) B and P refer only to wood 
(**) data derived from figures 
(1) mine tailing, (2) dredged sediment, (3) sewage sludge 
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2.2.2 Why are basic calculations overestimates? 

Due to temporal and spatial heterogeneity of the soil composition, this basic calculation certainly 

is a theoretical abstraction and an overestimate of the reality. As metals are removed from the soil 

by successive croppings, the available metal concentration will decrease. In some situations, 

the change may be approximately linear, however in most cases there could be a logarithmic 

decay upon successive annual croppings (Robinson et al., 1999). On dredged sediments planted 

with willow, a lesser proportion of total soil Cd was extractable by ammonium-acetate in a 6-year-

old stand (6%) compared to a 1-year-old stand (17%) (Mertens et al., 2006). Long-term cropping 

of Salix resulted in a 30-40% decrease in plant-available Cd, although the effects on total Cd 

concentrations were negligible (Eriksson and Ledin, 1999). The efficiency of repeated croppings 

of the hyperaccumulator Thlaspi caerulescens to extract Cd and Zn from contaminated soils was 

examined by Keller and Hammer (2004). They measured a reduced Cd concentration already in 

the third cropping, indicating a decrease in Cd availability. 

Since the metal concentration in an accumulator plant is correlated with the available 

concentration in the soil, the decreasing soil availability after several harvests will affect the metal 

yield of the crop, and hence the total extracted metal amount. However, it is doubtful whether 

the reduction of the bioavailable pool is definitive. Several authors described a replenishment of 

the bioavailable metal pool (Zhang et al., 1998; Whiting et al., 2001; Hammer and Keller, 2002; 

Keller and Hammer, 2004; Fischerova et al., 2006). This topic certainly needs further 

investigation as metal availability is crucial for the feasibility of phytoremediation. 

Furthermore, the plants’ biomass production might decrease in time, due to nutrient depletion 

in the soil after several croppings or pest infections. Fertilizers, pest control and crop rotation 

might be necessary. Plant growth may moreover be limited by other environmental variables, 

such as low pH, salinity, insufficient aeration or low water availability, whereas experimental 

conditions are generally optimal. 

Finally, a lot of metal contaminated soils are polluted with more than one element, while few 

plant species can extract high concentrations of more than one element (Ernst, 2005). This 

polymetallicity might strongly affect the productivity of plants, even of metal resistant plants, 

causing the extraction period to become too long to be economically feasible (Marchiol et al., 

2004; Ernst, 2005; Robinson et al., 2006). At such multi-metal contaminated sites, 

phytostabilization seems the most relevant technology in order to ensure a stabilization of the 

metals in the soil (Ernst, 2005). 
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Accounting for this expected decrease in phytoextraction efficiency, we end up even further from 

the possibility to decrease the soil Cd concentration with 1 mg/kg within a period of 10 years, 

than is seen in Fig 2.1. 

 

2.2.3 How to perform more realistic estimates? 

Ideally, long-term field trials are necessary, but are not practical for this objective. Therefore, 

validated mechanistic models are required that account for the spatial and temporal heterogeneity 

of metal distribution in the soil and for temporal changes of metal uptake by plants (Robinson et 

al. 2006). Although various aspects of vegetation-trace element interactions have been 

investigated in detail, there is, as yet, no quantitative model that integrates the aforementioned 

interactions (Robinson et al., 2006).   

Robinson et al. (2006) rewrote Eq. 2.2, incorporating temporal and spatial heterogeneity of 

biomass production, crop metal concentration and soil concentrations: 
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EBEP

MxM
t

fi

×
−

=       (2.3) 

 
Where t is the time (yr), x is the spatial position (latitude, longitude), Mi(x)max is the maximum 

initial metal burden (mg/ha), Mf is the target metal soil burden (mg/ha), P is the crop metal 

concentration (mg/kg DM), and B is the biomass production (kg DM/ha/yr). Mf will be highly 

dependent on the depth of the rooting zone, another limiting factor often overlooked in 

efficiency calculations. Both P and B are a function of the root exposure to bioavailable metal E 

(mg/kg). E can be calculated as: 

 

∫ ∫=
z t

dzdtztMCztRE
0 0

''' )),((),(     (2.4) 

 
Where z is depth (m), R is the root fraction (-) that is in contact with the bioavailable metal C 

(mg/kg), which is a function of M. 

It remains difficult to approach the temporal heterogeneity, since effects registered at short 

notice seldom reflect the long-term results. Koopmans et al. (2007) accounted for the decrease of 

total and available metal in the soil, estimating plant metal uptake by experimentally derived 

regression models describing the relationships between soil, soil solution and plant, instead of the 

assumption of constant plant uptake. Estimates of the duration of Cd phytoextraction using T. 

caerulescens - for their specific soil and assumptions - increased by more than 50 years. The 

regression models assumed equilibrium between metals sorbed to the soil solid phase and metals 
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dissolved in soil solution whereas in reality, replenishment of the soluble fraction is a slow 

process. This means that phytoextraction duration will last even longer than the estimates of 

Koopmans et al. (2007). 

Moreover, roots in the field may not be in intimate contact with the contaminated material, thus 

resulting in lower-than-expected metal uptake (Keller and Hammer, 2004; Robinson et al., 2006). 

Schmidt (2003) demonstrated that the remediation efficiency of plants grown in the field was 

20% lower compared to the plants under pot experimental conditions.  

Phytoextraction projects could as well be evaluated on their cost effectiveness. The importance 

of the time needed for effective remediation, often hailed as the Achilles’ heel of phytoextraction, 

might become less important if the cost of the operation is sufficiently low, or phytoextraction is 

combined with a profit making operation (e.g. phytomining, forestry or bio-energy production) 

(Robinson et al., 2003; Krämer, 2005). The viability of using phytoremediation in comparison to 

intensive remediation solutions or inaction can be assessed with tools as e.g. Decision Support 

Systems (DSS) (Robinson et al., 2003). However, Linacre et al. (2005) rightly emphasize the 

importance of likelihood of remediation success. They used a model that incorporates the factor 

‘uncertainty in project success’, and illustrated that the possibility that full cleanup may not be 

realised may significantly increase the perceived costs of remediation works for decisionmakers. 

Therefore, modelling of uncertainty will be a key complement to models assessing the viability of 

phytoextraction from the scientific standpoint (Linacre et al., 2005). 

 

2.3 Amelioration of the technique: perspectives? 

As shown above, phytoextraction of most metals is still far from practice and the technique 

needs to be ameliorated. Most phytoextraction studies focus on enhanced plant metal uptake, by 

discovering or engineering new plants, and by soil amendments to enhance metal uptake.  

 

2.3.1 Chelant-enhanced phytoextraction  

To enhance metal uptake by plants, chelating agents that increase metal solubility are added to 

the soil. However, this technique contains some major drawbacks and environmental concerns, 

limiting the acceptance to use it in the field.  

A large excess of chelant has to be applied to the soil due to the co-solubilization of Ca and Fe 

and in order to induce appreciable tissue concentrations (Nowack et al., 2006). At such soil 

solution concentrations, Nowack et al. (2006) found that plants will remove only a small fraction 
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of the solubilized metals. This causes leaching of both the chelant and solubilized metals, 

exacerbated by preferential flow processes, to be unavoidable. The use of chelators that 

significantly increases the risk of contaminant leaching, will do little to enhance the ability of 

phytoextraction to meet the demands of current environmental legislation (Robinson et al., 

2006). Moreover, synthetic chelators are barely degradable by micro-organisms and thus 

persistent in the environment, posing adverse effects on soil microbiota (Bouwman et al., 2005). 

The environmental concerns may limit the use of chelant-enhanced phytoextraction to 

applications where the connection to receiving waters has been broken, or where leaching is 

unimportant. In the former case, phytoextraction could be conducted ex situ. The contaminated 

material would be placed on a liner whereby any leachate could be collected and recycled 

(Nowack et al., 2006; Robinson et al., 2006). 

Chelant-enhanced phytoextraction may nonetheless have a role in enhancing the uptake of 

essential trace metals. Such a role warrants further investigations into the use of biodegradable 

chelants such as ethylenediaminedisuccinic acid (EDDS) (Nowack et al., 2006; Meers et al., 2008). 

Application techniques could be adapted to minimize the risks of leaching.  

 

2.3.2 Genetic manipulation 

It is often claimed that genetically modified plants may have an advantage in phytoextraction 

compared to the wild species. However, genetic manipulation does not evidently contribute to 

solve the phytoextraction velocity. The engineering of transgenic plants suitable for 

phytoextraction will probably require a change in the expression levels of several genes. Beyond a 

certain number of genes, this could render transgenic approaches impractical (Krämer, 2005).  

Genetic manipulation of plant rhizosphere, however, might be a good strategy, because it is 

thought that metal accumulator plants enhance metal solubility by releasing natural chelators 

from the roots (do Nascimento and Xing, 2006). This trail could furthermore overcome 

environmental constraints associated with chemically assisted phytoextraction. Insights into the 

effects of root exudates on metals are urgently necessary since this could have a dramatic impact 

on the feasibility of phytoextraction, either by using wild or transgenic plants (do Nascimento 

and Xing, 2006). 

Finally, recent genome sequencing, the development of genomics tools, and the ease of genetic 

transformation of poplar might open up new avenues for the use of trees in phytoremediation 

(Krämer, 2005). 
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2.3.3 Bioavailable contaminant stripping 

Hamon and McLaughlin (1999) introduced the concept of ‘bioavailable contaminant stripping’ 

(BCS). This technique is identical to phytoextraction but where phytoextraction aims at 

decreasing the total metal concentration, BCS aims the extraction of only the most labile, 

bioavailable metal pools. It is the available pool that causes environmental risks, and thus should 

be kept low enough to be harmless. This concept might be promising since cleanup time can be 

substantially shortened. However, in order to apply the technique efficiently and safely, it is 

necessary to assess the kinetics of replenishment of the bioavailable pool in the long term (Fitz et 

al., 2003).  

 

2.4 Metal mobilization due to uptake: risks 

Accumulation of metals in above-ground plant parts might cause risks for dispersion of metals in 

the environment. Three main risks can be identified: (i) metals entering the food chain through 

herbivores, (ii) dispersion of plant material to adjacent environments and (iii) accumulation of 

metals in the topsoil. Theoretical aspects of the risk analysis process in phytoextraction projects 

were recently reviewed by Linacre et al. (2003). The primary conclusion of this article was that 

risks of phytoextraction must be identified, quantified, managed, and communicated if the 

technology is going to find broad public acceptance.  

 

2.4.1 Risks posed by metals in standing crop 

The high metal concentration in the standing crop may pose a risk for herbivores. The risk of 

increased metal concentration in food for animals can be calculated based on a log logistic species 

sensitivity curve (Aldenberg and Slob, 1993). This is a cumulative frequency distribution of the 

critical metal concentrations in food (i.e. the highest concentration at which no negative effect 

was observed in laboratory feeding studies with contaminated foods) for various mammal and 

bird species (Fig 2.2). The critical concentration is usually defined as the 5% effect concentration, 

and for Cd in food this corresponds to 1.65 mg/kg fresh weight. At a crop Cd concentration of 

20 mg/kg, it is predicted that already 71% of the animal species will be affected.  
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Figure 2.2 Species sensitivity distribution describing the risk of increased [Cd] in food for 

mammals and birds, based on existing data in literature (based on EU Risk Assessment 

Report for Cd, 2007) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This approach, however, assumes that the herbivores’ diet completely consists of the 

contaminated food and therefore largely overestimates the risks. Some authors even report 

avoidance of plant material with high metal concentrations in the feeding behaviour of organisms 

(Boyd and Martens, 1992; Behmer et al., 2005). In order to correctly calculate the risk for 

herbivores, the proportion of contaminated leaves in the total diet of the herbivores should be 

known. Further, there is almost no information available on secondary poisoning through the 

plant-herbivore-predator pathway. Such information is critical for a correct assessment of the 

risks posed by the standing crops on the herbivorous organisms, and thus should be further 

investigated.  

But not only the concentration in the standing crop might cause risks: Pteris spp. convert arsenate 

to arsenite (Peer et al., 2005). Although this conversion could make the arsenic less harmful for 

the plants, it is more harmful to animals and other organisms that might be exposed to the 

arsenite through plant contact.  
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2.4.2 Risks caused by litterfall 

During growth and harvest, plant material might be dispersed, raising concern of contamination 

of adjacent environments (Perronnet et al., 2000). Also plant litter may be dispersed to adjacent 

areas through wind or water. When such plant material contains high metal concentrations, this 

may cause redistribution of the metals to unpolluted areas. Therefore, control measures should 

be taken in case dispersion with wind and water is expected to be important. 

 

2.4.3 Accumulation of metals in the topsoil 

The effect of plant biomass re-entering the soil can concentrate even more metals in the upper 

soil profile. Mertens et al. (2006) denoted that harvesting willows growing on polluted sediment 

after 4 or 6 years would result in more Cd distributed through foliar litterfall than Cd that could 

be removed through the harvest of the stems. Accumulation of metals in the leaves and foliar 

litterfall will cause a redistribution of metals in the soil. Metals taken up from the entire rooting 

zone will be concentrated in the upper soil horizons. In a field trial, it was seen that the 

concentrations of Cd and Zn in the upper soil layer under 33-years-old poplars were 2-3 times 

higher than under the even-aged oaks, ashes and maples (Mertens et al., 2007). Moreover, metals 

associated with organic matter are expected to be more mobile and bioavailable compared to 

metals adsorbed on mineral particles, because the organic matter decomposes in the soil, 

releasing the metals. Perronnet et al. (2000) reported that Cd and Zn associated with organic 

matter of T. caerulescens were highly available in soil. In their experiment, the leaves of T. 

caerulescens were incorporated into uncontaminated soil, whereafter Cd and Zn from this leaves 

exhibited a high mobility: Cd and Zn were transferred in large amounts to subsequent crops of 

rye grass (Lolium perenne) and T. caerulescens. About 94% of the Cd in rye grass and 86% in T. 

caerulescens originated from the incorporated leaves. Therefore, in natural environments, as well as 

in polluted areas, (hyper)accumulating plants may play a significant role in the metal cycle and 

generate hot spots of available metals in the upper part of the soil. This could provide a new 

exposure pathway for the metals, especially since the topsoil is highly vulnerable because the 

majority of biological life is concentrated there. 

The risk of increased soil metal concentration for plants and invertebrates can be calculated in a 

similar way as described above for metal contaminated foods (Fig 2.3). Based on this curve, the 

percentage of species affected at a certain Cd concentration in the soil can be predicted. An 

increase of topsoil Cd concentration from 5 to 10 mg/kg will increase the potentially affected 

fraction of invertebrates and plants from 11 to 26 %. However, this prediction assumes that 
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Figure 2.3 Species sensitivity distribution for the risk of increased soil [Cd] for 

invertebrates and plants, based on existing data in literature (based on EU Risk 

Assessment Report for Cd, 2007) 

organisms are only exposed to topsoil, which does not hold for the majority of species. No 

sufficient information is currently available to describe the effect of a local increase in metal 

concentrations on the overall risk for soil organisms. The risk of metal accumulation and 

increased metal bioavailability in the topsoil for the ecosystem health needs further investigation 

in order to properly assess the risks of phytoremediation techniques. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In case leaves and foliar litterfall contribute to a serious risk, harvesting the leaves in addition to 

the wood could be a possible management option to reduce the risk of food chain accumulation 

(Dickinson and Pulford, 2005).  
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due to their extensive root systems and high transpiration capacity, very well suited for 

phytostabilization purposes: they reduce leaching, control wind- and water erosion and add 

organic matter to the substrate that might bind the metals (e.g. Dickinson, 2000; Pulford and 

Watson, 2003). On the other hand, eventual soil acidification and production of dissolved organic 
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Weng et al., 2002; Strobel et al., 2005). Hence, it is very important to select tree species for 

phytostabilization purposes that cause low soil acidification and do not translocate high amounts 

of metals to their leaves (Mertens et al., 2007).  

 

2.5 Conclusions 

Phytoextraction seems not practically feasible at the present state of knowledge. The technique 

needs significant ameliorations. Even then, applicability might be limited as metal uptake might 

cause risks for the environment. Models should be developed to predict site-specific feasibility of 

soil remediation using phytoextraction, and more research needs to be done regarding 

environmental risks of metal uptake by plants.  

Reducing the risks of metal dispersion in the environment and contamination of the food chain 

may be attained by means of phytostabilization, as this technique aims at minimizing metal 

mobility. Although phytostabilization seems a more promising alternative for remediation of 

diffusely contaminated soils, this technique cannot guarantee to completely exclude all dispersion 

risks (see § 1.3.2). Moreover, its practical applicability is still underexplored and should thus be 

further investigated. The next chapters of this thesis contribute to answering these questions. 
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Abstract 

Phytostabilization of metals using trees is often promoted although the influence of different tree 

species on the mobilization of metals is not yet clear. This study examined effects of six tree 

species on the soil characteristics pH, organic carbon (OC) content and cation exchange capacity 

(CEC) and on the redistribution of cadmium (Cd) and zinc (Zn) on a polluted sandy soil. Soil and 

biomass were sampled in 10-years-old stands growing on former agricultural land. The tree 

species included were silver birch (Betula pendula), oak (Quercus robur and Q. petraea), black locust 

(Robinia pseudoacacia), aspen (Populus tremula), Scots pine (Pinus sylvestris) and Douglas fir (Pseudotsuga 

menziesii). In the short period of ten years, only aspen caused significant changes in the soil 

characteristics. Due to accumulation of Cd and Zn in its leaf litter, aspen increased the total as 

well as the NH4OAc-EDTA-extractable Cd and Zn concentrations in the topsoil compared to 

deeper soil layers and to other tree species. Also topsoil pH, OC content and CEC were 

significantly higher than under most of the other species. This caused rather low ‘bioavailable’ 

CaCl2-extractable concentrations under aspen. Nevertheless, given the risks of above-ground 

metal dispersion and topsoil accumulation, it is recommended that aspen should be avoided 

when afforesting Cd and Zn contaminated lands.  
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After: Van Nevel, L., Mertens, J., Staelens, J., De Schrijver, A., Tack, F., De Neve, S., Meers, 

E., Verheyen, K., 2011. Elevated Cd and Zn uptake by aspen limits the phytostabilization 

potential compared to five other tree species. Ecological Engineering, 37, 1072-1080. 
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3.1 Introduction 

Industrialization has effectuated significant emissions of trace metals into the global 

environment. Subsequent deposition of these metals and accumulation in the soil poses serious 

risks for ecosystems and public health through leaching of metals to groundwater and dispersion 

in the food chain (WHO, 2000). In the Campine region in northeastern Belgium, zinc (Zn) and 

lead (Pb) were refined from the end of the 19th century until the 1970s, resulting in an extended 

area of about 700 km² diffusely polluted by particularly cadmium (Cd) and Zn (Ceenaeme et al., 

2004; Van der Grift and Griffioen, 2008). The risk for metal leaching and dispersion is intensified 

by the dominant sandy texture of the soils in the region. Sandy soils are characterized by a low 

cation exchange capacity (CEC), low acid neutralizing capacity and low metal ion sorption ability 

(Andersen et al., 2002).  

Conventional soil remediation is technically and financially not feasible in this area because of the 

spatial extent of the metal pollution and the relatively moderate contamination levels. Therefore, 

adequate soil management that accounts for the present contamination appears to be the only 

realistic option. A possible management strategy for such degraded soils is afforestation (e.g. 

Dickinson, 2000; Pulford and Watson, 2003; Pilon-Smits and Freeman, 2006). In the Campine 

region, the most polluted agricultural soils have been taken out of production and a part of them 

has been afforested during recent years, in order to stabilize the metals and avoid their 

introduction in the food chain. This technique is also called phytostabilization. 

Plants, and trees in particular, play an important role in the biogeochemical cycling of nutrients 

and pollutants, and can therefore be considered as ecosystem engineers (Jones et al., 1994). 

However, species-specific effects of plants on nutrient cycling are not yet adequately known (e.g. 

Reich et al., 2005; Hobbie et al., 2007), including the effect of trees on the biogeochemical cycling 

of metals. The main driving biogeochemical processes affecting metal mobility in soils are 

oxidation-reduction reactions, acidification, organic matter dynamics, and changes in base cation 

and anion concentrations and the CEC (McBride et al., 1997; Römkens and Salomons, 1998; 

Sauvé et al., 2000a; Andersen et al., 2002). The changes in the above-mentioned soil 

characteristics after afforesting agricultural land strongly depend on the tree species (Nordén, 

1994; Alriksson and Eriksson, 1998; Augusto et al., 2002; Hagen-Thorn et al., 2004; Reich et al., 

2005). Consequently, the distribution and fluxes of metals in biomass, litter and mineral soil will 

be species-specific as well (Alriksson and Eriksson, 2001; Watmough et al., 2005; Mertens et al., 

2007). Selecting appropriate tree species is thus crucial for achieving successful phytostabilization. 

Trees can potentially be very well suited for phytostabilization purposes due to their extensive 
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root systems and high transpiration capacity (Pulford and Watson, 2003). On the other hand, tree 

growth might enhance metal leaching because of soil acidification and production of dissolved 

organic matter (Mayer, 1998). Hence, with respect to risk control, it is very important to select 

tree species for phytostabilization purposes that cause low soil acidification and a minimal 

translocation of metals to their leaves (Mertens et al., 2007).  

Therefore, the aim of this study was to investigate the effects of six different tree species on (i) 

soil characteristics that influence metal mobility: pH, organic carbon (OC) content and CEC and 

(ii) on Cd and Zn compartmentalization after 10 years of tree growth on a sandy soil that was 

formerly under agricultural practice. We hypothesize that (i) tree species with high nutritional 

litter quality will ameliorate pH, OC content and CEC in the topsoil, whereas species with 

nutrient-poor litter will induce topsoil acidification and (ii) tree species which take up and 

translocate metals to their leaves will cause metal accumulation in the topsoil. However, given the 

young age of the forest, it is questionable whether these effects will be detectable already. 

 

3.2 Materials and Methods 

3.2.1 Site description and stand selection 

The study site was the forest ‘Waaltjesbos’ (51°13'23" N, 5°15'01" E) in Lommel (northeast 

Belgium), which covers an area of 203 ha (Fig 3.1). The soil is a well-drained nutrient poor sandy 

soil (Podzol; IUSS WRB classification). The forest is located at the edge of the Campine plateau, 

which originates from a mixture of tertiary sands and gravel-rich sands deposited by the Meuse 

River. During the Pleistocene these sands were covered by aeolian sand deposits. The particle 

size distribution in the study site was determined as 92.3% sand, 2.0% silt and 3.3% clay. 

The climate is sub-atlantic: the mean annual precipitation amounts to 800 mm and is evenly 

distributed throughout the year. The mean annual temperature is 9.0 °C (Royal Meteorological 

Institute of Belgium, http://www.kmi.be/). 

The site was afforested between 1996 and 1998 and now serves as a public forest. Before 

afforestation, the site had been under agricultural use for at least several decades. Due to the past 

agricultural practices, there is a clearly visible (black) plough layer extending till 40 cm depth. 

Different tree species were planted in blocks, so that the forest consists of mainly homogeneous 

stands of pedunculate oak (Quercus robur L.), sessile oak (Q. petraea (Matt.) Liebl.), silver birch 

(Betula pendula Roth), Scots pine (Pinus sylvestris L.), Corsican pine (Pinus nigra ssp. Laricio Maire), 

black locust (Robinia pseudoacacia L.), Douglas fir (Pseudotsuga menziesii (Mirb.) Franco), Japanese 
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larch (Larix kaempferi (Lambert) Carr.), black alder (Alnus glutinosa (L.) Gaertn.), common ash 

(Fraxinus excelsior L.) and beech (Fagus sylvatica L.). Aspen (Populus tremula L.) was planted in rows 

together with silver birch and black locust (30 – 50% aspen). No shrub layer is present in the 

forest. The block pattern offers a perfect opportunity to study the tree species effects 

unambiguously. No initial data were available on the soil characteristics and metal concentrations 

at the moment of the afforestation. 

The site is situated in between two zinc smelters. Approximately 2 km north of the site used to 

be the former zinc smelter of Lommel, which was built in 1904 and was closed down and 

dismantled in 1974. The zinc smelter of Balen is about 2 km south-west, the predominant wind 

direction, of the site. It was built in 1889 and is still operational. Metal emissions from this 

factory have been controlled significantly and currently satisfy requirements according to 

European standards (see § 1.1). Nevertheless, the study site has been exposed to metal pollution 

during several decades, mainly to Cd and Zn and to a lesser degree to Pb, copper (Cu), arsenic 

(As) and mercury (Hg). The historical soil pollution in the region has two major causes: high 

metal emission loads in the past and subsequent atmospheric deposition on the one hand and 

application of zinc ashes for road construction on the other hand. Although these zinc ashes 

have been recently removed as part of decontamination policy in the region, possible remainders 

in the area cannot be excluded. The soil pollution in Waaltjesbos is diffuse and moderate, with 

Cd concentrations in the upper 30 cm of the soil up to 5.0 mg kg-1 (average 1.93 mg kg-1), 

exceeding the soil sanitation threshold of 1.59 mg kg-1. Zn concentrations in the upper 30 cm of 

the soil are up to 350 mg kg-1 (average 116 mg kg-1), being higher than the background 

concentration of 56 mg kg-1 but not exceeding the soil sanitation threshold of 544 mg kg-1 (see 

Table 3.7). 

In our study, six tree species were selected that are typical for the sandy soils in the study region 

and with potential to be used in future afforestations: oak (Q. robur and Q. petraea), silver birch, 

black locust, aspen, Scots pine and Douglas fir. For each of the considered tree species, three 

stands were selected throughout the forest to account for potential differences in soil 

characteristics, except for Douglas fir, for which only two stands were available (Fig 3.1). The size 

of the stands ranged from 0.5 to 4 ha. Stem diameters at 1.3 m height, stem numbers and basal 

area are shown in Table 3.1. Representative pictures of the stands are shown in Fig 3.2. 
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Figure 3.1 Map of Waaltjesbos, with the selected stands for each of the six tree species 
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Figure 3.2  Stand of silver birch (left) and Scots pine (right) 
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Figure 3.2 (continued)  Stand of aspen (upper left), Douglas fir (upper right),  

oak (bottom left) and black locust (bottom right) 
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3.2.2 Sampling and sample analyses 

Stem, branch and leaf litter biomass as well as different mineral soil layers were sampled in 

August 2007. At that time, the trees under study were 10 years old. In each selected stand, two 

healthy trees with average diameter were selected for sampling and marked as sampling points. 

Hence, six replicates were obtained per species, except for Douglas fir (four replicates). The 

sampling trees were cut and soil was sampled within a radius of 1 m, by pooling two core 

samples. On each felled tree, a stem slice was taken at 1.3 m stem height, while branches were 

collected throughout the tree crown. Leaf litter was collected with litterfall traps that had a 

circular surface area of 0.24 m². In every stand, four litterfall traps were emptied monthly in the 

autumn of 2007 until the broadleaved trees were leafless, and during one year for the conifer 

species (September 2007 – August 2008). Stem, branch and leaf litter samples were oven-dried at 

70 °C to constant weight. Samples were not rinsed before drying. Every dried leaf litter sample 

was sorted out by hand to separate the leaf litter of the considered tree species while discarding 

other litterfall fractions. Monthly leaf litter samples were pooled per trap before analysis. 

Subsequently the biomass samples were milled and analyzed for Cd and Zn concentrations by 

inductively coupled plasma atomic emission spectroscopy (ICP-AES) after microwave 

destruction with an aqua regia solution (HNO3/HCl).  

Soil samples were taken with a soil auger at four fixed depths: 0-5, 10-20, 20-30 and 50-60 cm 

(below plough layer). The first three sampling depths were all entirely located in the Ap horizon, 

whereas the fourth sampling depth was located in the C horizon. Soil samples were oven-dried at 

40 °C to constant weight. Aggregates were broken and soil was passed through a 2 mm sieve. Soil 

pH was determined in a 1:5 soil/KCl solution (1 M) with a glass electrode. The CEC was 

determined spectrophotometrically using a hexaminecobalt trichloride solution as extractant 

(ISO/DIS 23470). The OC content was determined spectrophotometrically by oxidation in a 

sulfochromic medium (ISO 14235). Pseudo-total Cd and Zn concentrations were determined by 

digesting the sediment for 2 h in an aqua regia solution under reflux (ISO 11466) and analysing the 

solution by ICP-AES. An estimation of the mobile Cd and Zn pool was made by determining 

their extractable concentrations in a 1:10 soil/CaCl2 solution (0.01 M) and in a 1:10 

soil/NH4OAc-EDTA solution (0.5 M NH4OAc and 0.02 M EDTA, set to pH 4.65) and 

subsequent ICP-AES analysis. The unbuffered CaCl2 solution was used to extract exchangeable 

metals at ionic strength similar to that of the soil solution, whereas the NH4OAc-EDTA solution 

was intended to extract a complexable metal fraction as well. Complexation by EDTA and acetic 

acid simulates the complexing behaviour by root exudates, whereas NH4
+ ions are capable to 
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desorb the exchangeable soil fraction and the adapted pH simulates rhizosphere acidity (Meers et 

al., 2007). 

 

3.2.3 Estimation of above-ground biomass 

Estimation of the amount of above-ground biomass is necessary for calculating above-ground 

metal stocks. Leaf litter biomass was estimated by weighing the leaf litter collected in the litterfall 

traps (precision of 0.001 g). By summing the monthly litterfall masses, mean yearly dry biomass 

per litterfall trap was determined and extrapolated to annual leaf litterfall per hectare.  

Woody biomass of stems and branches was assessed using species-specific allometric relations 

between tree diameter and dry stem or branch weight. The allometric relations were established 

for the studied forest stands according to the power function: 

 
baDM =       (3.1) 

 
where M is the above-ground dry biomass per tree (kg), D is the stem diameter at 1.3 m height 

(cm), and a and b are allometric coefficients (Crow and Laidly, 1980; Zianis and Mencuccini, 

2004). 

To establish these relationships, D was measured for a random subsample of trees, spread over 

the three selected stands per species (Table 3.1), in order to define the diameter distribution per 

tree species. Then, trees were divided into four classes on the basis of the diameter range. For 

each D class one sample tree, representative of the class median, was felled in March 2008. For 

each sample tree, the branches were separated from the stem (needles were removed) and both 

compartments were separately weighed in the field by a portable scale with a precision of 10 g. 

Subsequently, a disc of approximately 10 cm thick was taken from the stem at 1.3 m height and 

weighed immediately on a portable scale to the nearest 0.1 g. A random subsample of the 

branches was weighed in the field as well (± 0.1 g). In the laboratory, all subsamples were oven-

dried at 90 °C to constant mass, and weighed to recalculate the total dry biomass (M) of the stem 

and the branches of every sample tree. The established allometric relations (Table 3.1) were used 

to calculate the biomass of the stem and branches of every tree for which D was measured. Based 

on the stem numbers (Table 3.1), total stem and branches biomass was estimated per hectare for 

each tree species.  

The Cd and Zn amounts in the stem, branches and leaf litter were calculated by multiplying the 

Cd and Zn concentrations with the estimated biomass. 
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Table 3.1  Stem diameter at 1.3 m height (D, average ± st.dev), stem number (N), basal area (BA) 

and parameters of the allometric relations (see Eq. 3.1, n = 4) 

 D § 

(cm) 
N §             

(ha-1) 
BA §            

(m² ha-1)  a b R² 

silver birch 5.1 ± 2.2 3599 7.7 
stem 0.0587 2.4881 0.996 

branches 0.0225 2.4326 0.998 

oak 5.9 ± 1.9 4024 11.0 stem 0.1542 1.9986 0.982 
branches 0.0376 2.4163 0.927 

black locust 9.3 ± 3.1 3551 24.8 stem 0.0849 2.4362 0.999 
branches 0.0055 2.8291 0.994 

aspen 9.0 ± 3.2 4036 26.1 stem 0.12 2.1706 0.997 
branches 0.0202 2.52 0.994 

Scots pine 7.7 ± 1.8 5010 23.4 stem 0.1175 2.006 0.957 
branches 0.0028 3.2158 0.991 

Douglas fir 11.0 ± 2.5 2939 27.7 stem 0.1281 2.0278 0.966 
branches 0.0017 3.3768 0.985 

§ Based on measurements spread over the 3 stands per species, performed during winter 2007-2008 

 

 

3.2.4 Data analysis 

Differences between tree species were first tested using nonparametric analysis of variance 

(Kruskal-Wallis). Then, Mann-Whitney U tests were used to test the pairwise differences between 

the species. Moreover, soil data were subjected to an additional analysis to account for the spatial 

variation of the site. After all, both the historical atmospheric deposition as well as the possible 

remainders of the zinc ash roads may have contributed to a non-homogeneous metal pollution 

over the terrain before afforestation. The soil data indeed indicated an apparent spatial 

(horizontal) variation in soil characteristics and metal concentrations (e.g. total concentrations at 

20-30 cm depth of 0.2 – 4.1 mg Cd kg-1 and 6.3 – 520 mg Zn kg-1). On the other hand, the 

former agricultural use of the site has resulted in a strong (vertical) homogenization of the upper 

soil layers, due to many years of ploughing. Consequently we assumed a more or less uniform 

vertical distribution of the soil characteristics and metal concentrations in the soil profile until 40 

cm depth at the moment of afforestation. After 10 years of tree growth, trees probably affected 

soil properties mostly in the upper soil layers. Therefore we considered the soil characteristics 

and metal concentrations in the 20-30 cm soil layer as being most representative for the initial site 

situation. Hence, to take into account the spatial variation, for each tree species the upper three 

soil layers (0-5, 10-20, 20-30 cm) were compared pairwise by means of a two-related-samples test 

(Wilcoxon signed-rank test). Correlations between pH, CEC, OC content, total and CaCl2-
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extractable metal concentrations were calculated for each soil layer by means of Spearman 

correlation coefficients.  

One of the Scots pine sampling points was marked as an outlier, with exceptionally high values 

for all measured soil variables (e.g. pH-KCl 5.8, total concentrations 4.3 mg Cd kg-1 and 490 mg 

Zn kg-1 in the 0-5 cm layer), and was excluded from all data analyses. All statistical analyses were 

performed in SPSS 15.0. Following Moran (2003), the p-values were not corrected for multiple 

comparisons.  

 

3.3 Results 

3.3.1 Above-ground biomass: production and metal concentrations 

Annual leaf litterfall was highest for Scots pine and aspen and lowest for silver birch and black 

locust (Table 3.2). Although no significant differences were found for the woody biomass 

estimates, black locust showed high stem wood production per ha. Silver birch produced low 

total above-ground biomass. 

 

Table 3.2 Woody biomass estimates Mstem and Mbranches, annual leaf litterfall MLF and average 

wood production per year Prodstem and Prodbranches for each tree species in 2008 (average ± st dev); 

values with the same letter did not differ between species (p < 0.05) 

 Mstem          
(ton ha-1) 

Mbranches      
(ton ha-1) 

MLF          
(ton ha-1 yr-1) 

Prodstem       
(ton ha-1 yr-1) 

Prodbranches    
(ton ha-1 yr-1) 

silver birch 19.0 ± 9.8 a 6.6 ± 3.3 a 1.4 ± 0.6 a 1.9 ± 1.0 0.7 ± 0.3 

oak 26.2 ± 5.9 a 14.3 ± 3.9 a 3.7 ± 0.7 b 2.6 ± 0.6 1.4 ± 0.4 

black locust 92.3 ± 28.2 a 15.6 ± 5.5 a 2.1 ± 1.0 ac 9.2 ± 2.8 1.6 ± 0.6 

aspen 76.5 ± 27.7 a 29.7 ± 12.3 a 4.0 ± 1.0 de 7.7 ± 2.8 3.0 ± 1.2 

Scots pine 41.7 ± 4.2 a 13.3 ± 2.2 a 4.9 ± 1.1 e 4.2 ± 0.4 1.3 ± 0.2 

Douglas fir 56.6 ± 9.7 a 21.6 ± 4.1 a 3.1 ± 1.3 bcd 5.7 ± 1.0 2.2 ± 0.4 

 

 

Significant differences between the six tree species were found for both Cd and Zn 

concentrations in the above-ground biomass compartments (Table 3.3). Aspen clearly took up 

more Cd than the other species, with the Cd concentration in the leaf litter being about 7 times 

higher than that of the other tree species. Zn concentrations in all the compartments were 

significantly higher in silver birch and aspen. Among the other species, only minor differences in 

Cd and Zn concentrations were found.  
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The amount of Cd and Zn in the above-ground biomass of aspen was clearly higher than for the 

other tree species (Table 3.4). The above-ground Zn pools in silver birch, on the other hand, 

were not elevated compared to the other species, despite high Zn concentrations in its biomass 

(Table 3.3). This was caused by its low biomass production (Table 3.2).  

 

 

Table 3.3 Cd and Zn concentrations (average ± st dev) in the biomass compartments; per 

compartment, values with the same letter did not differ between species (p < 0.05)  

 Cd 
(mg kg-1) 

Zn 
(mg kg-1) 

Stem 

silver birch 0.83 ± 0.38 (3) a 239 ± 75 c 

oak < 1.0 a 53 ± 31 a 

black locust < 1.0 a 56 ± 15 a 

aspen 2.72 ± 1.50 (1) b 146 ± 60 b 

Scots pine 1.03 ± 0.49 (2) a 63 ± 34 a 

Douglas fir < 1.0 a 41 ± 15 a 

Branches 

silver birch 1.88 ± 0.81 b 701 ± 161 b 

oak < 1.0 a 171 ± 53 a 

black locust < 1.0 a 180 ± 30 a 

aspen 7.02 ± 2.66 c 497 ± 181 b 

Scots pine 1.70 ± 0.22 b 177 ± 59 a 

Douglas fir 0.87 ± 0.43 (2) ab 144 ± 23 a 

Leaf litter 

silver birch 1.72 ± 0.44 c 1 540 ± 341 c 

oak < 1.0 a 287 ± 106 a 

black locust 1.22 ± 0.40 (1) bc 427 ± 100 b 

aspen 13.0 ± 6.5 d 2 354 ± 494 d 

Scots pine 1.08 ± 0.34 (1) b 321 ± 56 a 

Douglas fir < 1.0 a 295 ± 22 a 

< if all values were lower than the determination limit, the determination limit was given, preceded by ‘<’ 

(1), (2), (3) the number between brackets is the number of values lower than the determination limit of 1.0 
for Cd. The mean was calculated by equalling those values to the half of the determination limit. 
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Table 3.4 Cd and Zn amounts (average ± st dev) in woody biomass and annual leaf litterfall of 

the six tree species 

 Cd 
(g ha-1) 

Zn 
(g ha-1) 

Stem 

silver birch 16.2 ± 7.6 4 662 ± 1 533 

oak < 26.7 1 422 ± 852 

black locust < 91.2 5 124 ± 1 427 

aspen 208.2 ± 115.6 11 188 ± 4 666  

Scots pine 44.3 ± 23.2 2 723 ± 1 592 

Douglas fir < 57.4 2 338 ± 947 

Branches 

silver birch 12.6 ± 5.5 4 688 ± 1 117 

oak < 15.8 2 701 ± 1 395 

black locust < 15.5 2 775 ± 570 

aspen 209.7 ± 82.7 14 845 ± 5 649 

Scots pine 23.2 ± 4.8 2 409 ± 896 

Douglas fir 18.7 ± 9.9 3 086 ± 769 

Leaf litter 

silver birch 2.4 ± 1.3 2 159 ± 1 093 

oak < 3.7 1 063 ± 438 

black locust 2.5 ± 1.5 893 ± 492 

aspen 52.4 ± 29.5 9 461 ± 3 146 

Scots pine 5.3 ± 2.0 1 562 ± 452 

Douglas fir < 3.1 910 ± 402 
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3.3.2 Soil 

pH, OC and CEC 

Only under aspen the pH in the topsoil (0-5 cm) was significantly increased compared to the 

deeper soil layer and to the other tree species (Table 3.5). At 10-20 cm depth the pH under silver 

birch was lower than under aspen, Scots pine and Douglas fir. With respect to the OC content in 

the topsoil, two groups could be distinguished, namely aspen and black locust in the higher range 

and the other species with lower OC contents. Aspen showed a significantly higher OC content 

in the topsoil compared to deeper layers. The CEC in the upper 5 cm of soil under aspen was 

higher than for the other species, whereas the lowest CEC values were found under silver birch 

and oak. Aspen had induced a CEC increase in the topsoil compared to 10-20 cm depth, whereas 

the CEC under silver birch at 10-20 cm depth was lower than at 20-30 cm depth. In each soil 

layer the CEC was significantly (p < 0.05) correlated with both pH (Spearman’s ρ = 0.381 - 

0.692) and OC content (ρ = 0.341 - 0.687), while pH and OC content were not significantly 

correlated (p > 0.06, ρ < 0.374). Pairwise comparison revealed that pH, OC and CEC in the 

deepest soil layer (50-60 cm) were significantly lower than at 20-30 cm depth (significances not 

shown). 
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Table 3.5 Soil characteristics pH-KCl, OC and CEC at four depths (average ± st dev); values 

followed with the same letter did not differ, first capital letters denote species effects and should 

be read vertically (p < 0.05), second small letters denote differences between soil layers and 

should be read horizontally (p < 0.05) 

 0 – 5 cm 10 – 20 cm 20 – 30 cm 50 – 60 cm 

pH-KCl  
(-) 

silver birch 4.5 ± 0.3 A a 4.3 ± 0.2 A a 4.5 ± 0.1 A a 4.4 ± 0.2 A 

oak 4.4 ± 0.2 A a 4.5 ± 0.3 AB a 4.6 ± 0.3 A a 4.7 ± 0.3 A 

black locust 4.4 ± 0.3 A a 4.5 ± 0.3 AB a 4.7 ± 0.3 A a 4.5 ± 0.1 A 

aspen 5.4 ± 0.6 B b 4.7 ± 0.3 B a 4.8 ± 0.5 A ab 4.8 ± 0.4 A 

Scots pine 4.5 ± 0.3 A a 4.7 ± 0.3 B a 4.8 ± 0.4 A a 4.5 ± 0.4 A 

Douglas fir 4.4 ± 0.4 A a 4.7 ± 0.1 B a 4.7 ± 0.2 A a 4.4 ± 0.2 A 

OC  
(g C kg-1) 

silver birch 19 ± 5 A a 14 ± 6 A a 14 ± 6 A a 7 ± 4 A 

oak 17 ± 1 AB a 18 ± 5 A a 16 ± 4 A a 11 ± 8 A 

black locust 32 ± 9 BC a 15 ± 8 A a 18 ± 8 A a 6 ± 3 A 

aspen 29 ± 6 C b 18 ± 9 A a 17 ± 7 A a 13 ± 7 A 

Scots pine 20 ± 7 AB a 16 ± 7 A a 14 ± 8 A a 5 ± 4 A 

Douglas fir 17 ± 4 AB a 19 ± 7 A a 14 ± 1 A a 12 ± 12 A 

CEC  
(cmol kg-1) 

silver birch 2.8 ± 1.2 A ab 2.2 ± 0.8 A a 2.9 ± 1.1 A b 1.7 ± 0.4 A 

oak 2.8 ± 0.6 AC a 2.7 ± 0.7 AC a 3.1 ± 0.7 AC a 2.8 ± 1.7 AB 

black locust 5.8 ± 1.0 BCD a 4.5 ± 0.9 B a 4.6 ± 0.7 B a 3.4 ± 0.6 B 

aspen 8.1 ± 1.7 D b 4.8 ± 1.8 BC a 4.9 ± 1.5 BC ab 4.0 ± 1.8 B 

Scots pine 4.7 ± 0.7 B a 4.6 ± 0.8 B a 4.2 ± 1.1 AB a 2.8 ± 0.7 B 

Douglas fir 4.6 ± 1.0 AB a 3.9 ± 0.2 B a 3.7 ± 0.4 AB a 2.8 ± 1.5 AB 

 

 

Cd and Zn concentrations 

Total Cd and Zn concentrations in the topsoil were highest under aspen and differed significantly 

from the lower Cd and Zn levels under the other species, except for Scots pine (Table 3.6). For 

aspen the total metal concentrations in the topsoil were significantly higher than those in deeper 

layers. The tree species effect was most pronounced in the upper 5 cm, as no differences between 

species were found in the deeper soil layers. 
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In contrast to total soil Cd and Zn, the CaCl2-extractable concentrations were not highest in the 

topsoil of aspen but of Scots pine, although no significant differences between the species or the 

soil layers were found. NH4OAc-EDTA-extractable concentrations, however, followed the same 

trends as total concentrations, with significantly higher values in the topsoil under aspen 

compared to other species and to deeper soil layers. In addition, NH4OAc-EDTA-extractable Cd 

under oak was significantly higher at 10-20 cm than in the topsoil.  

Pairwise comparison revealed that both total and extractable Cd and Zn concentrations in the 

deepest soil layer (50-60 cm) were significantly lower than at 20-30 cm depth (significances not 

shown).  

 

Table 3.6 Total and extractable soil Cd and Zn concentrations (mg kg-1 DM) at four depths 

(average ± st dev); values followed with the same letter did not differ, first capital letters denote 

species effects and should be read vertically (p < 0.05), second small letters denote differences 

between soil layers and should be read horizontally (p < 0.05) 

 0 – 5 cm 10 – 20 cm 20 – 30 cm 50 – 60 cm 

Cd 

silver birch 1.42 ± 0.86 (1) AB a 1.50 ± 0.72 (1) A a 1.67 ± 1.02 (1) A a 0.42 ± 0.40 (4) A 

oak 1.45 ± 0.42 A a 1.96 ± 0.92 A a 1.90 ± 0.76 A a 0.83 ± 0.98 (4) A 

black locust 1.70 ± 0.70 AB a 2.15 ± 1.12 (1) A a 1.82 ± 1.22 (1) A a 0.43 ± 0.38 (4) A 

aspen 3.55 ± 1.44 C b 2.20 ± 1.30 (1) A a 1.96 ± 1.14 (1) A a 1.15 ± 0.97 (2) A 

Scots pine 2.34 ± 0.67 BC a 1.88 ± 0.59 A a 1.75 ± 0.93 A a 0.33 ± 0.20 (4) A 

Douglas fir 1.55 ± 0.29 AB a 1.88 ± 0.72 A a 1.88 ± 0.34 A a 0.33 ± 0.26 (3) A 

Zn 

silver birch 87 ± 52 AB a 73 ± 44 A a 77 ± 40 A a 30 ± 19 A 

oak 86 ± 29 A a 109 ± 68 A a 110 ± 56 A a 51 ± 47 A 

black locust 123 ± 62 AB a 135 ± 70 A a 120 ± 72 A a 29 ± 23 (1) A 

aspen 267 ± 91 C b 120 ± 72 A a 114 ± 72 A a 71 ± 69 (1) A 

Scots pine 142 ± 38 BC a 118 ± 23 A a 101 ± 27 A a 21 ± 13 A 

Douglas fir 117 ± 69 AB a 93 ± 34 A a 98 ± 37 A a 25 ± 10 A 

Cd (CaCl2) 

silver birch 0.56 ± 0.21 A a 0.68 ± 0.31 A a 0.60 ± 0.33 A a 0.26 ± 0.20 A 

oak 0.67 ± 0.22 A a 0.81 ± 0.24 A a 0.65 ± 0.26 A a 0.13 ± 0.13 A 

black locust 0.58 ± 0.18 A a 0.64 ± 0.40 A a 0.52 ± 0.31 A a 0.16 ± 0.10 A 

aspen 0.45 ± 0.15 A a 0.52 ± 0.21 A a 0.49 ± 0.22 A a 0.31 ± 0.20 A 

Scots pine 0.87 ± 0.50 A a 0.72 ± 0.38 A a 0.56 ± 0.43 A a 0.16 ± 0.13 A 
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Douglas fir 0.64 ± 0.15 A a 0.57 ± 0.14 A a 0.53 ± 0.16 A a 0.14 ± 0.11 A 

Zn (CaCl2) 

silver birch 32 ± 11 A a 28 ± 14 A a 27 ± 13 A a 11 ± 8 A 

oak 38 ± 11 A ab 41 ± 19 A b 35 ± 19 A a 8 ± 8 A 

black locust 30 ± 9 A a 34 ± 20 A a 30 ± 19 A a 6 ± 5 A 

aspen 33 ± 17 A a 26 ± 13 A a 22 ± 11 A a 14 ± 11 A 

Scots pine 43 ± 19 A a 43 ± 34 A a 28 ± 17 A a 8 ± 7 A 

Douglas fir 36 ± 15 A a 26 ± 5 A a 26 ± 9 A a 4 ± 2 A 

Cd (NH4OAc-EDTA) 

silver birch 1.34 ± 0.77 A a 1.29 ± 0.76 A a 1.67 ± 1.12 A a 0.39 ± 0.37 A 

oak 1.22 ± 0.47 A a 1.76 ± 0.88 A b 1.67 ± 0.95 A ab 0.39 ± 0.71 A 

black locust 1.30 ± 0.64 A a 1.72 ± 0.96 A a 1.41 ± 0.87 A a 0.27 ± 0.26 A 

aspen 3.26 ± 1.18 B b 1.91 ± 1.10 A a 1.78 ± 0.96 A a 1.08 ± 0.93 A 

Scots pine 1.96 ± 0.83 AB a 2.09 ± 0.36 A a 1.80 ± 1.11 A a 0.29 ± 0.29 A 

Douglas fir 1.84 ± 0.21 AB a 2.10 ± 0.97 A a 2.31 ± 0.96 A a 0.25 ± 0.24 A 

Zn (NH4OAc-EDTA) 

silver birch 61 ± 35 A a 43 ± 28 A a 55 ± 32 A a 15 ± 11 A 

oak 58 ± 24 A a 71 ± 48 AB a 71 ± 51 A a 20 ± 29 A 

black locust 59 ± 31 A a 72 ± 35 AB a 63 ± 32 A a 12 ± 10 A 

aspen 200 ± 49 B b 74 ± 47 AB a 70 ± 47 A a 48 ± 46 A 

Scots pine 83 ± 28 A a 94 ± 47 B a 70 ± 23 A a 15 ± 16 A 

Douglas fir 77 ± 21 A a 71 ± 27 AB a 82 ± 33 A a 8 ± 3 A 

(1), (2), (3), (4) the number between brackets is the number of values lower than the determination limit of 
0.40 for Cd or 5.0 for Zn. The mean was calculated by equalling those values to the half of the 
determination limit. 
 

 

Correlation between soil characteristics and metal concentrations 

Significant (p < 0.01) positive correlations were found between pH, CEC, OC and the total Cd 

and Zn concentrations in the topsoil (Fig 3.3). The three considered soil characteristics appeared 

to affect total metal concentrations significantly. The correlation coefficients with the CaCl2-

extractable metal concentrations were all negative but much weaker than those with the total 

concentrations. Only the influence of pH on extractable Cd was significant. 

 



Phytostabilization potential of six tree species 

 53 

3.4 Discussion 

The Cd and Zn concentrations in the tree compartments and the Cd and Zn redistribution in the 

different soil layers are the net result of a variety of biogeochemical and biophysical processes 

that took place during 10 years after afforestation. The most apparent tree species effects on the 

metal redistribution and the consequent implications for phytostabilization will be discussed. 

 

3.4.1 Tree species effects on above-ground metal accumulation 

Poplars (Populus spp.) and Salix spp. are known to take up Cd and Zn from polluted soils and to 

accumulate these metals in their biomass, including branches, leaves and wood, distinctly more 

than other tree species (Vandecasteele et al., 2003; Brekken and Steinnes, 2004; Laureysens et al., 

2004; Mertens et al., 2007; Unterbrunner et al., 2007; Hassinen et al., 2009). The Cd and Zn 

concentrations measured in the biomass of aspen (Populus tremula) are in line with these reports. 

Our findings also confirm that birches (Betula spp.) do not take up Cd but are known as Zn 

accumulators (Alriksson and Eriksson, 2001; Rosselli et al., 2003). Furthermore, a clear 

compartmentalization between the three studied biomass fractions was observed, in particular for 

Zn. Tree species that take up Cd or Zn from the rooting zone obviously translocate those trace 

metals to their leaves, as reported before (Alriksson and Eriksson, 2001; Hammer et al., 2003; 

Vervaeke et al., 2003; Meers et al., 2005; Mertens et al., 2007; Unterbrunner et al., 2007).  

Above-ground metal amounts (Table 3.4) represent the actual metal stock in the above-ground 

biomass and can be used to estimate metal fluxes by litterfall and wood immobilization. 

Considering the risk of metal dispersion within ecosystems, litterfall should be given principal 

attention as it brings the total foliar Cd and Zn stock to the upper soil layer every autumn, or 

continuously in case of the conifer species. The high Cd and Zn stocks in the leaf litter of aspen 

represent large Cd and Zn fluxes every autumn and generate consequently a pathway of above-

ground metal dispersion. On the other hand, the large Cd and Zn stocks in aspen’s woody 

biomass will have smaller implications with regard to ecotoxicological risks, since the woody 

compartment more slowly enters the decomposition cycle.  
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Figure 3.3 Correlations between the soil characteristics pH (-), CEC (cmol kg-1), OC (g kg-1) and 

the total and CaCl2-extractable Cd and Zn concentrations (mg kg-1 DM) in the topsoil (0-5 cm) 

under the six tree species, with Spearman’s rho correlation coefficients (** p < 0.01) 
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3.4.2 Tree species effects on soil pH, OC and CEC  

It is generally known that plant species can differ in their effect on soil pH, organic matter 

content and CEC, and differences between tree species for these soil characteristics have been 

reported in the past (Nordén, 1994; Finzi et al., 1998; Augusto et al., 2002; Hagen-Thorn et al., 

2004; Reich et al., 2005; Mertens et al., 2007). Trees are known to lower the soil pH through a 

variety of processes such as soil respiration, nutrient uptake and litter decomposition (Nilsson et 

al., 1982; Reich et al., 2005; De Schrijver et al., 2012). In the present study, however, aspen 

significantly increased the pH in its topsoil (0-5 cm) compared to the deeper soil layer and to the 

other tree species (Table 3.5). No significant pH changes were found (yet) under the other 

species. The fact that aspen increased the topsoil pH was thus remarkable, particularly given the 

short period of tree growth (10 years) and the nutrient poor sandy soil conditions. Sandy soils are 

characterized by a low CEC and a low acid neutralizing capacity, which makes them more 

vulnerable to acidification. The differences in topsoil pH between the species can probably be 

attributed to the chemical properties and the decomposition rate of the different leaf litter types 

(Hagen-Thorn et al., 2004; Reich et al., 2005; Mertens et al., 2007). Slow litter decomposition 

leads to the production of organic acids and delays the return of base cations to the soil, which 

will result in lower pH values (Hagen-Thorn et al., 2004). Leaf litter from poplars is generally of 

high nutritional quality, facilitating rapid litter decomposition and nutrient release to soils (Cooke 

and Weih, 2005). In a common garden test with 14 tree species Reich et al. (2005) found that 

litter Ca concentration appeared to be a key driver of changes in soil properties and that soil pH 

increased with the Ca concentration of foliage litter. Our results showed that aspen indeed had 

the highest Ca concentrations in its leaf litter (unreported data). The ameliorating effect of the 

nutrient rich aspen litter on pH did not occur yet in the deeper soil layers. Black locust is a 

nitrogen (N)-fixing legume tree (Boring and Swank, 1984) and litter decomposition rates of N-

fixing species are reported to be higher than those of non-N-fixing species (Aerts and Chapin, 

2000). However, no increase of the topsoil pH under black locust was found, most likely because 

symbiotic N2-fixation can lead to soil acidification as a by-product of increased nitrification rates 

(Van Miegroet and Cole, 1985; Johnson and Lindberg, 1992; Rhoades et al., 2001). 

As CEC is influenced by the clay and organic matter content and the soil pH (Helling et al., 

1964), differences in CEC at this sandy site will mainly be determined by variations in organic 

matter content. The CEC was indeed strongly positively correlated with OC in each soil layer. 

Due to input of organic material from litterfall, trees increase the amount of organic matter in the 

upper soil layers which will eventually lead to the formation of an ectorganic horizon (Emmer, 

1995). No ectorganic horizon was discernible yet under this young forest. Nevertheless, the OC 
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contents in the topsoil under aspen and black locust, i.e. those species with high litter 

decomposition rates, could be distinguished from the other species. This was also reflected in a 

higher CEC under aspen.  

The values of the three examined soil characteristics in the deepest layer (50-60 cm) were 

significantly lower than at 20-30 cm depth. This could be attributed to the former agricultural use 

of the site, which aimed at maintaining a high pH and organic matter content in the plough layer 

by liming and fertilizing. 

Effects of the different tree species on the soil characteristics after only 10 years of tree growth 

on a poor sandy soil were remarkable and important, considering the strong influence of pH, 

CEC and OC on metal mobility, as shown in Fig 3.3. Both the positive and negative relations 

between the soil characteristics and metal concentrations were expected and confirmed previous 

findings (Römkens and Salomons, 1998; Sauvé et al., 2000a; Andersen et al., 2002; Watmough et 

al., 2005). 

 

3.4.3 Tree species effects on metal redistribution in the soil 

Input and output fluxes determine metal concentrations and metal amounts in the different soil 

layers. Output of metals from the soil layers is mainly controlled by uptake by plant roots and 

leaching. Input to the upper soil layer is determined by input of contaminated litter and 

atmospheric deposition. Input via atmospheric deposition was not accounted for in this study, 

since the metal emissions from the factory nearby decreased significantly before the site was 

afforested. However, secondary deposition due to resuspension of contaminated soil may 

nowadays contribute to metal input to the topsoil. See § 5.4.2 for further reflections on this issue. 

The most distinct species effect on metal redistribution was found for aspen, showing higher 

total Cd and Zn concentrations in the topsoil compared to the other species. Total Cd and Zn 

concentrations in the upper 5 cm were on average respectively 1.6 and 2 times higher than those 

at 20-30 cm depth and respectively 2 and 2.5 times higher than under the other species. Such a 

metal redistribution can be attributed to an accumulation in the topsoil or to leaching of metals 

from the deeper layers. Whether accumulation of metals via the litterfall causes an increase of the 

soil concentration depends on two conditions: (1) the concentration in the decomposed litter is 

higher than the soil concentration and (2) the input flux is greater than the output flux. 

Decomposition of litter slows down and stops at a ‘limit value’ (fraction of litter that does not 

decompose) of 0-55% of the dry weight (Berg, 2000). As metals are immobilized by humic 

substances during litter decay (Stevenson, 1982; Laskowski and Berg, 1993), metal concentrations 
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in the litter will at least double during decomposition from fresh leaves to decomposed litter. The 

Cd and Zn concentrations of the decomposed litter of the aspens thus are expected to increase to 

about 26 mg Cd kg-1 and 4700 mg Zn kg-1 dry weight (Table 3.3). They will therefore be 

significantly higher than the soil concentrations, and allow an increase of the topsoil 

concentrations to occur. However, this only holds true if output fluxes of metals do not exceed 

the input flux. In addition, the relatively high values for pH, OC and CEC found in the topsoil 

under aspen contribute to the adsorption of the metals on the soil’s exchange sites (Sauvé et al., 

2000a). This was reflected in the fact that (1) the CaCl2-extractable Cd and Zn concentrations in 

the topsoil were not increased under aspen and (2) neither the total Cd and Zn concentrations in 

the 10-20 cm layer were increased compared to 20-30 cm depth (Table 3.6). Thus, the input flux 

of metals via the litterfall exceeded the output flux, resulting in a Cd and Zn accumulation in the 

topsoil under aspen. A similar accumulation of Cd and Zn in the topsoil of Populus, compared to 

other species, was reported on a polluted dredged sediment disposal site with 33-year-old trees 

(Mertens et al., 2007). Nevertheless, our results were striking as the trees were only 10 years old 

and sandy soils show faster dynamics in metal mobilization than calcareous dredged sediments. 

In contrast to aspen, the high Zn concentration in the leaf litter of silver birch (Table 3.3) was 

not reflected in a considerable Zn accumulation in the topsoil compared to the 20-30 cm layer 

(Table 3.6). This can probably be attributed to the low leaf litter biomass production of silver 

birch (Table 3.2). The other tree species did not show any marked Cd or Zn accumulation in 

their above-ground biomass and consequently no metal accumulation in the topsoil could be 

observed. On the contrary, for some species we observed a slight decrease in the total topsoil 

concentrations compared to the deeper layers, although this trend was not significant. This effect 

was most pronounced for oak (Table 3.6). Leaching of the metals to deeper soil layers, due to soil 

acidification, might be one of the reasons for that decrease.  

The total Cd and Zn concentrations in the upper three soil layers were compared with the 

background concentrations and with the Flemish soil sanitation reference values (Vlarebo, 2008). 

These values are assessed as a function of the organic matter (2.71%) and clay contents (3.33%) 

of the soil (Table 3.7). In more than half of the sampling points, total Cd concentrations in the 

upper three soil layers exceeded the soil sanitation reference value, whereas for Zn this limit was 

not exceeded at the study site. Total and extractable Cd and Zn concentrations in the deepest soil 

layer (50-60 cm) were significantly lower than at 20-30 cm depth (Table 3.6). This could be 

explained because the soil contamination at our study site was mainly caused by atmospheric 

pollution. Ploughing till approximately 40 cm depth redistributed the metals in the upper three 

sampling layers, but not deeper.  
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Table 3.7 Background concentration and soil sanitation norm for Cd and Zn in Waaltjesbos, 

taking into account %OM and %clay (Vlarebo, 2008) 

 Cd                        
(mg kg-1) 

Zn                        
(mg kg-1) 

background concentration 0.64 56 

soil sanitation reference value (type I) 1.59 544 

 

 

Unlike total soil metal concentrations, extractable metal concentrations allow an estimation of the 

mobile metal pools in the soil, thus reflecting a metal fraction that could potentially be taken up 

by adjacent plant roots, be detrimental to various soil biological organisms, or otherwise be 

leached from the soil and contaminate groundwater and surface water (Sauvé et al., 2000a; Weng 

et al., 2001a). Extractable metal concentrations thus offer a better criterion when it comes to 

evaluation of possible dispersion risks of the metals in the environment or in the food chain. Our 

results of the CaCl2-extractable Cd and Zn concentrations in the soil profile showed no 

significant tree species effects (Table 3.6). It was, moreover, particularly remarkable that aspen 

did not generate elevated CaCl2-extractable concentrations in the topsoil. This could be explained 

by the higher pH and CEC under aspen (Table 3.5, Fig 3.3). This implies that the risks 

concerning aspen might actually be smaller than expected from the accumulation of total Cd and 

Zn in the topsoil. However, NH4OAc-EDTA-extractable Cd and Zn concentrations in the 

topsoil under aspen were elevated compared to other species and to deeper soil layers. Being a 

very strong extractant, NH4OAc-EDTA yielded almost ‘totals’ on this poorly buffered sandy soil. 

The implications of these findings with respect to risk control in phytostabilization projects are 

discussed below (see § 3.4.4). 

 

3.4.4 Implications for phytostabilization 

Phytostabilization uses plants to minimize the mobility and bioavailability of pollutants in the 

environment, either by stabilizing them or by preventing their migration (Smith and Bradshaw, 

1972; Vangronsveld et al., 1995b). Consequently, tree species that accumulate metals in their 

leaves and that induce soil acidification should be avoided, as these processes might give rise to 

dispersion of metals in the environment via above- and below-ground pathways.  

In Chapter 2 (see § 2.4), we identified three main risks associated with the accumulation of metals 

in above-ground plant parts: (i) metals entering the food chain through herbivores, (ii) dispersion 

of contaminated plant material to adjacent environments and (iii) accumulation of metals in the 



Phytostabilization potential of six tree species 

 59 

topsoil. The topsoil is particularly vulnerable as it is the biologically most active part of the soil 

system and biological activity has been shown to be highly sensitive to metal pollution (Bergkvist 

et al., 1989). In this respect, aspen and Populus species in general should be avoided for afforesting 

Cd and Zn contaminated lands because they translocate high amounts of Cd and Zn into the 

foliage. Our results clearly demonstrate an accumulation of total Cd and Zn concentrations in the 

topsoil under aspen trees and this only after 10 years of tree growth. This accumulation pattern is 

expected to be continued in the future. Such a metal redistribution in the ecosystem is 

undesirable in phytostabilization projects. However, ‘bioavailable’ CaCl2-extractable Cd and Zn 

concentrations appeared not to be elevated under aspen, due to the higher pH and CEC values in 

the topsoil of this species. As extractable ‘bioavailable’ concentrations should preferably be 

considered for risk analysis, one may argue that on the short term there are few concerns 

regarding the ecotoxicological risks linked with aspen. However, the NH4OAc-EDTA-extractable 

Cd and Zn concentrations in the topsoil under aspen were increased compared to the deeper soil 

layers, as was also reported by Mertens et al. (2007) for Populus ‘Robusta’. This indicates that in 

more acid conditions the accumulated Cd and Zn in the topsoil will yet become more mobile and 

thus ‘bioavailable’. This could for instance be the case when the aspen trees would be harvested 

and replaced by more acidifying species. Moreover, it should be stressed that all metals 

accumulated in the leaves might still pose a long-term risk to primary consumers and enter the 

food chain. 

Although silver birch translocated considerable amounts of Zn to its leaves, its low leaf litter 

biomass production mitigated the risk of Zn dispersion in the ecosystem, as confirmed by the 

absence of Zn accumulation in the topsoil under birch. Above-ground dispersion of Zn from 

silver birches might, however, still occur via herbivory. Furthermore, as leaf litter biomass 

production will increase in time, Zn accumulation in the topsoil can potentially occur in the 

future.  

Soil acidification might give rise to metal leaching to deeper soil layers and eventually to 

groundwater contamination. It was shown that metal solubility increases rapidly when solution 

pH drops below a critical value. Cd and Zn leaching breakthrough was found to occur within the 

solution pH range of 4.0 to 4.5 (Bergkvist et al., 1989). pH-H2O values at our site were > 5.3 in 

all soil layers [deduced from pH-KCl (Table 3.5) according to the formula pH-H2O = 0.967 pH-

KCl + 1.127 (Azevedo et al., 2013)], implying that the Cd and Zn leaching breakthrough point 

was not attained yet. However, continued tree growth in the future will most likely result in a 

more progressive acidification of the upper soil layers. Given the risk of Cd and Zn leaching, we 

recommend not to plant acidifying tree species, or else to mix them with other species that have 
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high nutritional leaf litter quality, facilitating rapid litter decomposition and nutrient release to 

soils, e.g. European rowan (Sorbus aucuparia) or alder buckthorn (Rhamnus frangula). More research 

on the effects of these shrub species is done in Chapter 6.  

The effects of the different tree species on the soil characteristics and on the metal redistribution 

in the soil profile will evolve during the next decades and will probably become more 

pronounced in the future. A next sampling campaign within 10 or 20 years is therefore essential. 

Finally, based on the present study, it was not clear which tree species may be planted on Cd and 

Zn contaminated sandy soils, without risks for above- and below-ground metal dispersion. The 

next chapters of this thesis will contribute to answering this question. 
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Abstract 

In a forest on sandy, metal polluted soil, we examined effects of six tree species on litter 

decomposition rates and accompanied changes in metal (Cd, Zn) and nutrient (base cations, N, 

C) amounts. Decomposition dynamics were studied by means of a litterbag experiment lasting 

for 30 months. The decomposition peak occurred within the first year for all tree species, except 

for aspen. During litter decomposition, high metal litter types released part of their accumulated 

metals, whereas low metal litter types were characterized by a metal enrichment. Base cations, N 

and C were released from all litter types. Metal release from contaminated litter might involve 

risks for metal dispersion towards the soil. On the other hand, metal enrichment of 

uncontaminated litter may be ecologically relevant as it can be easily transported or serve as food 

source. 
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After: Van Nevel, L., Mertens, J., Demey, A., De Schrijver, A., De Neve, S., Tack, F.M.G., 

Verheyen, K., 2014. Metal and nutrient dynamics in decomposing tree litter on a metal 

contaminated site. Environmental Pollution, 189, 54-62. 



Chapter 4 

66 

4.1 Introduction 

Decomposition dynamics of plant litter has been studied in a plethora of studies during the last 

decades (Prescott, 2005, 2010), reflecting the importance of litter decomposition in the recycling 

of elements within terrestrial ecosystems (Meentemeyer, 1978; Melillo et al., 1982; Blair, 1988a, 

1988b; Vitousek et al., 1994). Litter decomposition rates also determine soil acidification and 

dissolved organic carbon (DOC) leaching (Konova, 1966; Finzi et al., 1998; Fröberg, 2004; 

Hagen-Thorn et al., 2004). Both processes are essential on metal contaminated sites as soil 

acidification and DOC production are likely to affect metal mobilization and, subsequently, metal 

leaching to deeper soil layers (Mayer, 1998; Strobel et al., 2001a).  

It has long been demonstrated that litter decomposition rates are controlled by environmental 

conditions, by the chemical composition of the litter and by soil organisms (e.g. Meentemeyer, 

1978; Swift et al., 1979; Melillo et al., 1982; Coûteaux et al., 1995; Gholz et al., 2000; 

Hättenschwiler and Gasser, 2005; Cornwell et al., 2008; Wickings et al., 2012). In general, climate 

(especially temperature and moisture) governs decay rates on a broad regional scale, whereas 

initial litter quality (C:N ratio, lignin, N, lignin:N ratio, base cation and polyphenol content) are of 

more importance in controlling decay rates at a smaller scale, e.g. within site (Berg et al., 1993; 

Coûteaux et al., 1995; Heal et al., 1997; Aerts and Chapin, 2000). However, other authors 

(Cornwell et al., 2008; Zhang et al., 2008) revealed, on the basis of meta-analyses, that litter 

quality was the dominant regulator of litter decomposition at the global scale.  

Another important aspect of litter decomposition, besides the decomposition rates, are the 

related enrichment and release dynamics of chemical elements, as these reflect elemental cycling 

and availability to plants and soil organisms. Although it has been well documented that 

accumulated trace metals can retard litter decomposition processes (e.g. Tyler, 1976; Coughtrey et 

al., 1979; Berg et al., 1991; Laskowski et al., 1994; McEnroe and Helmisaari, 2001; Johnson and 

Hale, 2004), knowledge of the dynamics of metals in decomposing litter is relatively scarce (Virzo 

De Santo et al., 2002; Lomander, 2002). Especially field studies exploring metal dynamics in 

decomposing litter on metal contaminated sites are rare. Most of the studies were executed in 

unpolluted forest ecosystems (Laskowski and Berg, 1993; Laskowski et al., 1995; Lomander and 

Johansson, 2001; Virzo De Santo et al., 2002; Tyler, 2005; Kaila et al., 2012). We found only one 

study where dynamics of metal fluxes in decomposing leaves were determined on polluted soil 

(Scheid et al., 2009).  

In a 14-year-old, metal contaminated forest containing replicated stands of six different tree 

species, we studied, by means of a litterbag experiment, (i) litter decomposition rates for different 
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tree species, (ii) the accompanied changes in metal and nutrient amounts and (iii) the relations 

between metal and nutrient dynamics, forest floor leachate fluxes and topsoil characteristics. We 

hypothesize that (i) tree species with low litter quality (in terms of base cations and C/N ratio) 

and/or high Cd and Zn litter concentrations have slower litter decomposition rates and (ii) metal 

and nutrient release from decomposing litter will be reflected in topsoil characteristics and forest 

floor leachate fluxes. No hypotheses were made on the extent and direction of the metal 

dynamics (enrichment or release) during decomposition of the different litter types, due to scarce 

knowledge on this topic. 

 

4.2 Materials and Methods 

4.2.1 Experimental set-up and sampling 

The study included the six considered tree species (oak, silver birch, black locust, aspen, Scots 

pine, Douglas fir) and was executed in the selected stands in ‘Waaltjesbos’ (see Fig 3.1). See § 

3.2.1 for full site descriptions and stand selection. A characterization of the soil of the study site 

is given in Table 3.5 (soil characteristics pH-KCl, OC content, CEC) and Table 3.6 (total and 

extractable soil Cd and Zn concentrations). The six tree species are characterized by divergent 

leaf litter quality and different metal concentrations in their leaf litter (see Tables 4.1 and 5.1).  

Freshly fallen leaves and needles were collected randomly from the forest floor in the considered 

stands in November 2009 and air-dried at 25 °C in a forced air oven. Air-dried foliar litter (20 g) 

was put in 30 x 30 cm litterbags with a mesh size of 1.5 x 1.5 mm. For Douglas fir, we used 

litterbags with a smaller mesh size (1 x 0.6 mm) because of needle loss through the bigger 

meshes. Macrofauna was excluded from both litterbag types (Herlitzius, 1983; Staaf, 1987; Smith 

and Bradford, 2003; Hättenschwiler et al., 2011) and therefore the decomposition process was 

mainly mediated by microflora and micro- and mesofauna. Hence, we are confident that 

decomposition dynamics of Douglas fir litter elapsed under comparable circumstances as that of 

the other species. Pooled samples (1 per tree species) of the collected foliar litter were also used 

for determination of initial litter quality (see § 4.2.2 for details on chemical analyses). 

In February 2010, series of 12 litterbags were put in every stand - each species in its respective 

stand - on top of the mineral soil. Three replicate litterbags per species (1 per stand) were 

collected after 1, 2, 3, 4, 6, 8, 10, 12, 16, 20, 24 and 30 months. For black locust and aspen, 

known to produce easily decomposable litter (Aerts and Chapin, 2000; Cooke and Weih, 2005; 
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Tateno et al., 2007), only 10 litterbags were placed in every stand, the last being collected after 20 

months. Hence, we sampled 30/36 litterbags per species during the course of the experiment. 

Since aspen and silver birch are the only species that showed elevated Cd and/or Zn 

concentrations in their leaf litter (see Table 3.3), we consider those two species here as ‘high 

metal litter types’ and the other in situ species as ‘low metal litter types’. Additionally, litterbags 

with ex situ uncontaminated leaf litter from aspen and silver birch were brought to the study site 

as well, and placed in the aspen and silver birch stands respectively. In that way, we were able to 

observe decomposition dynamics in ‘high metal litter types’ (aspen Cd and Zn; birch only Zn) as 

well as in ‘low metal litter types’ (non-accumulating in situ species and uncontaminated aspen and 

birch). However, comparison of contaminated versus uncontaminated aspen and birch litter was 

not at issue, since our experimental set-up could not account for the distinction between 

‘contamination effects’ and ‘site effects’ (manifested by different nutrient levels in the litter, see 

Table 4.1) of the two litter types. 

Uncontaminated leaf litter was collected from the forest floor in two other local forests: 

‘Heidebos’ (51°10'55" N, 3°54'25" E) and ‘Dombergheide’ (51°21'3" N, 4°57'10" E), for silver 

birch and aspen, respectively. Both forests are also located on poor sandy soils, but without a 

history of metal pollution. At the moment of leaf litter collection, the birch and aspen stands 

were about 50 and 20 years old, respectively. The pretreatment and sampling of the 

uncontaminated litterbags was identical to that of the in situ litterbags, i.e. 12 collections for 

uncontaminated silver birch and 10 collections for uncontaminated aspen. 

To allow extrapolation of the changes in absolute nutrient and metal amounts during 

decomposition (see further) from litterbag scale to stand scale, we estimated leaf litterfall 

amounts for each tree species. Although we had determined annual leaf litterfall already in 2007-

2008 (see Table 3.2), we measured it again as we expected substantial tree growth given the young 

age of the forest. Leaf litterfall was again collected with litterfall traps that had a circular surface 

area of 0.24 m². For each tree species, one stand was allocated for leaf litterfall estimation and 

provided with six litterfall traps (end of August 2012) which were emptied monthly during 

autumn 2012 until the broadleaved trees were leafless. Litter samples were oven-dried (70 °C) to 

constant weight. Prior to weighing (± 0.1 g), samples were sorted out by hand to separate the leaf 

litter of the considered tree species while discarding other litterfall fractions. As coniferous litter 

is shed year-round, annual litterfall amounts of the coniferous species were obtained by upscaling 

their litterfall amounts gained during autumn 2012. Therefore we used conversion factors based 

on the annual needle litterfall measured in 2007-2008. 
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In order to compare leaf litter decomposition in litterbags with forest floor dynamics, the forest 

floor mass was determined. Forest floor was defined as the organic material above the mineral 

soil (i.e. Ol + Of horizons as no Oh horizon was discernible yet under this young forest; Of 

horizon had not been developed yet in the black locust and Douglas fir stands) (Jabiol et al., 

1995). We collected forest floor samples in March 2012 using a 20 x 20 cm wooden frame (6 

replicates per stand, thus 18 replicates per tree species). Forest floor samples were oven-dried (70 

°C) to constant weight, fruits and non-litter material were discarded and the remaining litter 

fraction was weighed (± 0.01 g). 

Finally, we related metal and nutrient dynamics in the decomposing litter to forest floor leachate 

fluxes and topsoil characteristics. Forest floor leachate was collected in 2009-2010 using zero-

tension lysimeters, installed directly under the forest floor in the same stands as those where the 

litterbags were put (see Chapter 5). Topsoil (0-5 cm) was sampled in 2007, also in the same stands 

(see Chapter 3). 

 

4.2.2 Sample analysis 

Upon collection, litterbags were air-dried at 25 °C in a forced air oven. Thereafter, prior to 

weighing (± 0.1 g), litter samples were carefully cleaned by hand from extraneous material. 

Subsequently, prior to chemical analysis, litter was oven-dried (70 °C) to constant weight and 

ground using a centrifugal mill (Retsch ZM1, Germany). Ground samples were analyzed for Cd, 

Zn, Ca, K, Mg, Na, C and N. The samples were ashed at 450 °C and dissolved in HNO3 before 

Cd and Zn analysis using ICP-MS (Elan DRC) and ICP-OES (Varian Vista-MPX) respectively. 

Concentrations of K, Ca, Mg and Na were measured by means of flame atomic absorption 

spectrophotometry (Varian SpectrAA-240) after a destruction in HNO3-HClO4. C and N 

concentrations were determined by elemental analysis (Vario Max CNS, Germany). The analytical 

quality of the measurements was checked by including method blanks, repeated measurements of 

internal and certified reference samples, and by inter-laboratory tests.  
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Table 4.1 Initial litter concentrations of Ca, base cations (BC), N, C, Cd and Zn (n = 1) 

 Ca §               
(mg kg-1) 

BC §          
(meq kg-1) 

N §              
(%) 

C §               
(%) 

C/N §             
(-) 

Cd §             
(mg kg-1) 

Zn §            
(mg kg-1) 

silver birch 17021 1061 1.3 50.8 39.1 2.69 1749 

oak 10100 739 1.4 49.5 37.1 0.38 283 

black locust 21731 1359 2.2 47.6 21.6 0.89 185 

aspen 21619 1519 0.9 47.4 52.7 17.1 2209 

Scots pine 6665 524 1.4 49.7 35.5 1.60 309 

Douglas fir 7953 570 2.0 50.0 25.0 1.22 334 

  uncontaminated      

silver birch 8173 567 1.5 51.2 34.1 0.51 181 

aspen  12089 837 1.7 49.1 28.9 2.29 656 

§ Concentrations analyzed on pooled samples of litter collected from the forest floor in November 2009 (cfr. § 4.2.1) 
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4.2.3 Data analysis 

The single-exponential equation �� = ������ (Olson, 1963) is widely used to fit decomposition 

datasets, but it is less appropriate when strong curvatures are observed in the decomposition 

dynamics. In that case, decomposition data often fit better to a double-exponential equation, 

where litter is split in a more labile and a more recalcitrant fraction (e.g. Lousier and Parkinson, 

1976). However, as Rovira and Rovira (2010) argue, it is often impossible to link those fractions 

with quantifiable organic pools. To fit our data we therefore used their global conceptual 

approach, considering a single organic compartment whose decomposition rate changes with 

time (Rovira and Rovira, 2010). This conceptual approach can, in practice, take different forms 

depending on the dataset under study. We fitted our decomposition data for each tree species to 

three of their proposed equations: (1) exponential decrease of the decomposition rate, (2) wave-

form dynamics of the decomposition rate and (3) rational-type change in the decomposition rate. 

See Rovira and Rovira (2010) for more detailed, mathematical descriptions of the considered 

equations.  

In addition to the considered equations, we also fitted our dataset to the classic Olson’s model, in 

order to show how the equations improved the fit. As there is a higher number of parameters 

involved in the three selected equations (see Rovira and Rovira, 2010), more uncertainty may 

have been added to the models, in spite of an improvement in fit (compared to Olson’s model). 

Therefore, we compared the R² values of the considered models as well as ∆ AICC = AICC(Eq) – 

AICC(Olson) 

with  �	
� = �	�������� + 2� + �������
�����    (4.1) 

 
where n is the sample size, K the number of parameters involved in the model and ��� the residual 

variance. The best fit (highest R² values and lowest ∆ AICC values) for all tree species was 

obtained for the rational-type model: 

�� = ��	�����	�	�³
!"	 #!

$#%	&"'%(     (4.2) 
 
where t is time, X0 and Xt are the initial amount of litter and the remaining amount of litter at 

time t, respectively, and a, b and c are model parameters. The model represents Olson’s single-

exponential equation, in which the decomposition rate k in itself increases initially from its 

lowermost value c (at ) = 0) to its uppermost value kmax (at ) = √,), followed by a decrease back 

to value c (at ) = ∞), with ./01 = 2 + 3 0
�√45

6
 (Rovira and Rovira, 2010). Such a pattern might 

be observed if an initial period of microbial colonization is needed before the decomposition 



Chapter 4 

72 

process starts (e.g. Wolters and Schaefer, 1993). The course of the decomposition rates k can be 

modeled according to: 

. = 2 + 3 0�
�%�45

6
      (4.3) 

 
The decomposition parameters c (kmin), kmax and √, were derived from the model output, and 

their confidence intervals (CI) were explored to assess tree species effects on decomposition 

dynamics (see Table 4.2).  

To examine which litter characteristics explained litter decomposition dynamics, correlations 

between initial litter concentrations (base cations, N, C, Cd, Zn, C/N) and decomposition 

parameters on the one hand and forest floor mass on the other hand were calculated by means of 

Pearson correlation coefficients. As forest floor mass is determined by both litter quality and 

quantity, an additional correlation between forest floor mass and annual leaf litterfall amounts 

(see § 4.2.1) was calculated as well. 

Base cation concentrations were calculated by summing the equivalents of K+, Ca2+, Mg2+ and 

Na+. Element amounts in the litterbags were calculated by multiplying element concentrations 

with the remaining mass at each collection date. Changes in nutrient and metal amounts during 

litter decomposition were calculated both absolutely and relatively, i.e. compared to the initial 

amounts. To compare all considered tree species, the changes were calculated after 20 months of 

decomposition, because at that point the experiment was finished for black locust and aspen (see 

§ 4.2.1). The absolute changes were extrapolated from litterbag scale to stand scale (per ha) on 

the basis of the estimated annual leaf litterfall amounts (see § 4.2.1). Relations between absolute 

changes in metal and nutrient amounts (at stand scale) and topsoil data (Cd and Zn 

concentrations, pH, OC content, CEC) and forest floor leachate fluxes (Cd, Zn, DOC, H+) were 

explored by means of Pearson correlation coefficients. Due to different moisture levels in the 

litter during sample analysis (air-dried at 25 °C prior to mass determination and oven-dried at 70 

°C prior to chemical analysis), the (absolute changes in) nutrient and metal amounts were slightly 

overestimated by 6%. However, species-specific patterns and relative differences between the 

species stayed unaltered. 

Finally, a repeated measures ANOVA analysis was applied to leaf litter mass (Mt), with ‘time’ as a 

within-subject factor and ‘species’ as between-subjects factor. Differences between species were 

tested using a Bonferroni post hoc test. To compare all considered tree species, 10 collections (20 

months) were included in the analysis, because the litterbags of black locust and aspen did not 

stay longer in the forest (see § 4.2.1). All statistical analyses and model fitting were performed in 

SPSS Statistics 21 for Windows. 
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Table 4.2 Estimates of the decomposition parameters kmin, kmax and √7 (average ± SE) obtained 

with the rational-type model (Eq. 4.2) and R² of the fits; differences between species were 

assessed by CI overlapping, values with the same letter did not differ between species (p < 0.05) 

 kmin (yr-1) kmax (yr-1) √7 (yr) R² 

silver birch 0 ± 0.075 a 0.603 ± 0.300 a 0.601 ± 0.058 c 0.90 

oak 0.137 ± 0.048 a 0.514 ± 0.202 a 0.561 ± 0.059 c 0.95 

black locust 0.773 ± 0.062 b 2.223 ± 2.669 a 0.055 ± 0.027 a 0.95 

aspen 0.300 ± 0.088 a 0.812 ± 0.937 a 1.255 ± 0.510 bc 0.89 

Scots pine 0.023 ± 0.075 a 1.674 ± 0.550 a 0.324 ± 0.023 b 0.94 

Douglas fir 0 ± 0.076 a 0.912 ± 0.551 a 0.345 ± 0.045 b 0.87 

  uncontaminated    

silver birch 0 ± 0.122 a 0.722 ± 0.466 a 0.628 ± 0.080 c 0.84 

aspen 0 ± 0.135 a 0.991 ± 0.640 a 0.765 ± 0.119 c 0.89 

 

 

 

4.3 Results 

4.3.1 Leaf litter mass loss 

We compared leaf litter mass loss through the study period under the different tree species (Fig 

4.1), as well as their decomposition parameters kmin, kmax and √, (Table 4.2 & Fig 4.2) obtained by 

the rational-type model (Eq. 4.2). This model generally described the decomposition data well, 

with R² values ranging between 0.84 – 0.95 (Table 4.2 & Fig 4.1). After 20 months, only 20% of 

the initial leaf litter mass was left in the black locust litterbags. For the other species, whose 

litterbags stayed longer in the forest, the remaining mass ranged from 32% to 59% after 30 

months (Fig 4.1). The repeated measures ANOVA and Bonferroni corrected multiple 

comparisons showed that average litter mass loss through the study period (20 months) was 

significantly faster for black locust and Scots pine compared to the other tree species, among 

which no differences in average mass loss were found (data not shown). Comparison of the 

decomposition parameters (Table 4.2) revealed that black locust exhibited the highest 

decomposition rate (highest kmin) and fastest decomposition dynamics in the initial phase (lowest 

√, - time at which the decomposition rate reaches its uppermost value).  
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Figure 4.1 Remaining mass in the litterbags (average ± st.dev) and modeled data according to a 

rational-type model (Eq. 4.2; see model parameters in Table 4.2). Bonferroni corrected multiple 

comparisons showed that average mass loss in the first 20 months was significantly faster for 

black locust and Scots pine compared to the other tree species. 
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The dynamics of the species-specific decomposition rates k (Fig 4.2) revealed that the maximum 

decomposition rate occurred within the first year for all the tree species, except for aspen. After 

this decomposition peak, k dropped and reached almost zero after 3 years in the case of Douglas 

fir, Scots pine, silver birch and uncontaminated birch, whereas k was still relatively high after 3 

years for black locust and aspen.  

Based on the asymptotic curves (Fig 4.1) and the modeled k values that reached almost zero in 

the end of the modeled period (Fig 4.2), it seemed that decomposition of Scots pine, Douglas fir, 

silver birch and uncontaminated birch litter was strongly slowed down at the end of the study 

period. Litter of oak, black locust, aspen and uncontaminated aspen, on the other hand, would 

have decomposed more if it was left longer in the field.  

 

 

 

 

Figure 4.2 Decomposition rate (k) dynamics for the different tree species, modeled over 3 years 

according to Eq. 4.3 
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Correlation of the decomposition parameters with initial litter chemistry (Table 4.3) showed that 

mainly the timing of the decomposition peak (√,) was governed by the litter quality. Litter rich 

in N or with low C/N ratio had an earlier peak (low √,), whereas Cd or Zn accumulation slowed 

down the decomposition process (high √,). The minimum decomposition rate (kmin) was higher 

for litter that contained more base cations. 

 

Table 4.3 Pearson correlation coefficients between initial litter concentrations (base cations 

(BC), N, Cd, Zn & C/N) and decomposition parameters  (n = 8) and forest floor mass (n = 18) 

 kmin kmax √, MFF 

BC 0.704 * 0.242 0.344 - 0.768 ** 

N 0.354 0.583 - 0.773 * - 0.146 

Cd 0.169 - 0.107 0.789 * - 0.270 

Zn - 0.034 - 0.288 0.735 * - 0.306 

C/N - 0.205 - 0.508 0.807 ** 0.009 

* p < 0.05; ** p < 0.01 
 

 

Forest floor mass was lowest for black locust and aspen, and highest for Scots pine (Table 4.4) 

and negatively correlated with initial base cation concentrations in the litter (Table 4.3). No 

significant correlation between forest floor mass and leaf litterfall could be found (Pearson’s r = 

0.291). 

 

Table 4.4 Forest floor mass (n = 18) and annual leaf litterfall (n = 6) in Waaltjesbos (average ± 

st.dev); differences between species were tested using analysis of variance (ANOVA) with a 

Bonferroni post hoc test, values with the same letter did not differ between species (p < 0.05) 

 Forest floor mass 
(ton DM/ha) 

Annual litterfall      
(ton DM/ha/yr) 

silver birch 9.3 ± 1.7 bc 1.4 ± 0.2 a 

oak 11.4 ± 3.2 bc 3.1 ± 0.4 bc 

black locust 2.4 ± 2.3 a 2.6 ± 0.2 bc 

aspen 6.5 ± 1.3 ab 2.4 ± 0.3 b 

Scots pine 26.2 ± 7.5 d 3.3 ± 0.2 c 

Douglas fir 14.2 ± 3.6 c 7.1 ± 0.7 d 
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4.3.2 Metal amounts 

Initial Cd and Zn concentrations were elevated in aspen litter, while silver birch litter was 

characterized by an elevated Zn concentration (Table 4.1). After 20 months of decomposition, 

aspen litter had released 50% of its initial Cd amount and 41% of its initial Zn amount (Table 

4.5). There was also a slight decrease (9%) of the Zn amount in birch litter, yet this was not 

significant compared to the Zn dynamics in the other species. On the other hand, 

uncontaminated aspen and birch litter, as well as the non-accumulating in situ species, were 

characterized by an increase in metal amounts during the decomposition process (Table 4.5 & Fig 

4.3). Especially oak and uncontaminated aspen and birch litter showed a considerable metal 

enrichment compared to their initial amounts. 

 

4.3.3 Nutrient amounts 

We found a general decrease in base cation, N and C amounts in litter of all tree species during 

the decomposition process (Table 4.5 & Fig 4.3). The release of base cations and C was steady, N 

dynamics on the other hand was more irregular (Fig 4.3). C release was evident as it is governed 

by the leaf litter mass loss. Base cation losses were highest from black locust and aspen litter 

(Table 4.5), as a result of the abundance of base cations in these litter types (Table 4.1). Net N 

release was highest from black locust (Table 4.5). All tree species released relatively less N than 

base cations and C during the decomposition process (Table 4.5). Black locust revealed highest 

nutrient releases, both absolutely and relatively. 
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Table 4.5 Absolute changes in nutrient and metal amounts in litterbags (release (-) enrichment (+)) after 20 months of litter decomposition (average 

± st.dev; n = 3); relative changes (% of initial amount) between brackets; differences in absolute changes between species were tested using analysis 

of variance (ANOVA) with a Bonferroni post hoc test, values with the same letter did not differ between species (p < 0.05) 

 BC 
(meq) 

N 
(mg) 

C 
(mg) 

Cd 
(mg) 

Zn 
(mg) 

silver birch - 8.7 ± 2.5 a (-41) - 0.8 ± 8.3 a (-0.3) - 4385 ± 508 a (-43) 0.03 ± 0.01 a (+53) - 3.1 ± 3.8 ab (-9) 

oak - 6.7 ± 1.1 a (-45) 0.9 ± 27.3 a (+0.3) - 4698 ± 144 a (-47) 0.05 ± 0.02 a (+660) 7.4 ± 2.9 ab (+131) 

black locust - 22.4 ± 0.8 b (-82) - 318.0 ± 28.4 b (-72) - 7727 ± 376 b (-81) 0.01 ± 0.01 a (+59) 1.8 ± 1.3 ab (+49) 

aspen - 22.2 ± 4.5 b (-73) - 39.1 ± 66.0 a (-22) - 6679 ± 1454 ab (-70) - 0.17 ± 0.13 b (-50) - 18.1 ± 21.9 b (-41) 

Scots pine - 5.7 ± 0.2 a (-55) - 117.1 ± 11.9 a (-42) - 5558 ± 365 ab (-56) 0.02 ± 0.01 a (+65) 3.0 ± 1.8 ab (+48) 

Douglas fir - 6.9 ± 2.0 a (-61) - 105.7 ± 57.0 a (-26) - 4589 ± 917 a (-46) 0.01 ± 0.01 a (+41) 0.6 ± 1.5 ab (+10) 

  uncontaminated     

silver birch - 3.9 ± 3.4 a (-35) - 89.3 ± 93.8 a (-30) - 5696 ± 1821 ab (-56) 0.04 ± 0.01 a (+408) 23.4 ± 8.4 a (+647) 

aspen - 9.5 ± 1.7 a (-57) - 144.9 ± 43.1 a (-43) - 6387 ± 492 ab (-65) 0.06 ± 0.02 a (+128) 20.4 ± 5.1 a (+155) 

 

 

 

 

 

 

 



 

 79 

 

Figure 4.3 Metal and nutrient amounts (per litterbag) in decomposing litter over time under the different tree species 
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4.3.4 Relations with forest floor leachate fluxes & topsoil characteristics  

Correlation analysis (Table 4.6) revealed that the more Cd was released from decomposing litter, 

the higher the Cd and Zn concentrations in the topsoil and the Cd fluxes in the forest floor 

leachate were. Zn release from decomposing litter was correlated with Cd and Zn topsoil 

concentrations but not with Zn leachate fluxes. Net release of base cations was significantly 

correlated with topsoil CEC and OC content (Table 4.7). No other correlations with topsoil 

characteristics, nor with forest floor leachate fluxes were determined. 

 

 

Table 4.6 Pearson correlation coefficients between changes in metal amounts after 20 months of 

litter decomposition (releases/enrichments per ha) and metal forest floor leachate fluxes and 

topsoil (0-5 cm) concentrations (n = 36) 

 Cdleachate Cdtopsoil Znleachate Zntopsoil 

Cdlitter 0.380 * 0.494 ** 0.067 0.497 ** 

Znlitter 0.236 0.369 * - 0.063 0.349 * 

* p < 0.05; ** p < 0.01 
 

 

Table 4.7 Pearson correlation coefficients between changes in nutrient amounts after 20 months 

of litter decomposition (releases/enrichments per ha) and topsoil (0-5 cm) characteristics (pH-

KCl, OC content, CEC), DOC and H+ forest floor leachate fluxes (n = 36) 

 pHtopsoil OCtopsoil CECtopsoil DOCleachate H+
leachate 

BClitter 0.243 0.562 ** 0.674 ** - 0.201 - 0.237 

Clitter - 0.175 0.042 0.243 0.101 - 0.023 

Nlitter - 0.292 0.316 0.239 0.056 - 0.004 

* p < 0.05; ** p < 0.01 
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4.4 Discussion 

4.4.1 Leaf litter mass loss 

Our decomposition experiment allowed for the assessment of the decomposition rate peak, 

which occurred within the first year for all species except for aspen (Fig 4.2). This peak reflects 

the early decomposition stages, which are characterized by a rapidly decomposing labile pool 

(Adair et al., 2008). After the decomposition peak, the decay rate slowed down as the relative 

amount of recalcitrant material in the litterbags increased. After 30 months, the decomposition 

rates of Scots pine, Douglas fir, silver birch and uncontaminated birch litter had approximated 

zero (Fig 4.2), implying that these species had already reached their ‘limit value’ at the end of the 

study period (Fig 4.1), i.e. the extremely slow decay of the remaining recalcitrant litter fraction 

(Berg 2000). The decomposition of oak, black locust, aspen and uncontaminated aspen litter was 

still ongoing after 20/30 months (Fig 4.1), meaning that those litter types would have 

decomposed further if they were left longer in the field, albeit with a slower rate, inherent to the 

recalcitrant phase (Berg et al., 1993; Prescott et al., 2004; Prescott, 2005; Hobbie et al., 2006; 

Adair et al., 2008; Harmon et al., 2009). 

Correlations between decomposition dynamics (expressed by kmin, kmax, √,) and initial litter 

concentrations (Table 4.3) revealed that litter quality was particularly decisive for the timing of 

the decomposition peak (√,). High N concentration and low C/N ratio promoted an early 

decomposition peak (low √,), as often demonstrated in previous studies (e.g. Edmonds, 1980; 

Berg et al., 1993; Aerts, 1997; Jamaludheen and Kumar, 1999; Moro and Domingo, 2000; Zhang 

et al., 2008). Elevated Cd or Zn concentrations in the litter, on the other hand, might have 

slowed down the decomposition process (Table 4.3), as can be noticed by the high √, for aspen 

(Table 4.2 & Fig 4.2). A negative impact of trace metals on litter decomposition has also been 

found in a plethora of studies in the last decades (e.g. Tyler, 1976; Coughtrey et al., 1979; Berg et 

al., 1991; Laskowski et al., 1994; McEnroe and Helmisaari, 2001; Johnson and Hale, 2004).  

However, initial Cd and Zn concentrations in the litter did not seem to affect forest floor mass 

(Table 4.3). Forest floor build-up was governed by initial base cation concentrations in the litter 

(Table 4.3), most probably due to the positive influence of base cations on the activity of 

burrowing earthworms (Reich et al., 2005; Hobbie et al., 2006; De Schrijver et al., 2012).  

Black locust showed the highest decomposition rate as well as the earliest start of the 

decomposition process (Table 4.2 & Fig 4.2). This was not surprising as black locust has shown 

to produce high quality litter, which is characterized by high nutrient concentrations, low C and 
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lignin concentrations, and consequently low C/N and lignin/N ratios (De Schrijver et al., 2012), 

litter properties that are generally reflected in easily decomposable litter (Berg et al., 1993; 

Cotrufo et al., 2000; Zhang et al., 2008; Prescott, 2010). Moreover, black locust is a N-fixing 

legume tree (Boring and Swank, 1984; Tateno et al., 2007; De Marco et al., 2013), known to 

produce N-rich litter (Jamaludheen and Kumar, 1999; Wedderburn and Carter, 1999; Moro and 

Domingo, 2000; Tateno et al., 2007; De Marco et al., 2013) with faster decomposition rates in the 

early stages compared to non-N-fixing species (Aerts and Chapin, 2000; Moro and Domingo, 

2000; Tateno et al., 2007).  

The fast litter mass loss for Scots pine (cfr. repeated measures ANOVA on Mt ; § 4.3.1) was more 

surprising because coniferous litter is usually less rich in base cations and has higher C/N ratios 

and lignin contents (Augusto et al., 2002), litter characteristics related to slower decomposition 

rates (Berg et al., 1993; Cotrufo et al., 2000; Zhang et al., 2008; Prescott, 2010). Several authors 

demonstrated indeed that deciduous woody species decomposed significantly faster than 

evergreens (Cornelissen, 1996; Cornwell et al., 2008). Nevertheless, the discrepancy between fast 

litter mass loss from our Scots pine litterbags and its high forest floor mass (Table 4.4), was 

particularly striking. To some extent, confined needle litter loss through the meshes of the Scots 

pine litterbags was observed, and could have resulted in an overestimation of its real-world 

decomposition rate. Anyhow, Scots pine litter was characterized by a high initial decomposition 

rate as well as by an early slow-down of its decomposition rate (Fig 4.2), resulting in a 

considerable recalcitrant litter fraction, and thus a thick forest floor. Analogous results were 

found by Hobbie et al. (2006).  

 

4.4.2 Metal amounts 

Metal accumulation in or release from decomposing litter may depend on its initial metal 

concentrations (Lomander and Johansson, 2001; Kaila et al., 2012). We found a metal release 

from the ‘high metal litter types’ (aspen Cd and Zn; silver birch Zn) and a Cd and Zn 

accumulation in the ‘low metal litter types’ (non-accumulating in situ species and uncontaminated 

aspen and birch) (Table 4.5 & Fig 4.3).  

The net accumulation suggests that the metal ions are readily fixed by the primary organic matter 

and/or humic substances in the leaf litter (Laskowski and Berg, 1993). Polyvalent metal ions are 

known for their tendency to form highly stable complexes with humic substances (Stevenson, 

1982). These humic substances are produced as secondary products during the decay of organic 

matter. Thus, as the amount of humic substances increases in the course of a decay process, more 
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metal ions can be bound (Laskowski and Berg, 1993). Moreover, the stability constants for 

complexes formed by humic substances and some metal ions increase with increasing 

humification of the material (Stevenson, 1982). However, apart from immobilization of metals 

already present in litter by humic substances (explaining concentration increases during litter 

decomposition), an increase in absolute amounts obviously requires a net transport of metals into 

the litterbags from external sources (Laskowski et al., 1995; Lomander and Johansson, 2001). 

Since no measurements of the metal fluxes to and from the litterbags were conducted during our 

experiment, we can only speculate about sources of the influx. Accumulation of metals in 

unpolluted litter has been observed in previous studies (Staaf, 1980; Laskowski and Berg, 1993; 

Laskowski et al., 1995; Lomander and Johansson, 2001; Scheid et al., 2009; Kaila et al., 2012) and 

in almost all the cases this was mainly attributed to atmospheric deposition and throughfall. 

Another source of metal input was microbial translocation and immobilization of metals from 

underlying contaminated soil layers, mainly by fungi (Lomander and Johansson, 2001; Lomander, 

2002; Tyler, 2005). Fungi are capable of accumulating significant amounts of metals present in 

their external environment (Gadd and Griffiths, 1978; Berthelsen et al., 1995), even at unpolluted 

sites (Lepp, 1992; Tyler, 2005). Since fungal mycelia can constitute a significant pool of organic 

material with a high capacity for metal accumulation, it seems likely that they can affect the 

translocation of metals in soil systems (Lomander, 2002). Finally, Scheid et al. (2009) determined 

that the main cause for metal enrichment in decomposing litter was contact of the underlying 

polluted soil with the litter. The Cd and Zn enrichment in our ‘low metal litter types’ was 

probably induced by a combination of above-mentioned processes.  

Particularly striking was the convergence in Zn amounts between the uncontaminated and in situ 

aspen and birch litter (Fig 4.3). We believe that the Zn enrichment was mainly due to upward Zn 

transport from the polluted soil into the uncontaminated litter via microbiota. As Zn is an 

essential element, probably the microbiota are mainly contaminated with Zn, which might explain 

why the metal enrichment in uncontaminated aspen and birch litter was more pronounced for Zn 

than for Cd (see Fig 4.3 & Table 4.5). Moreover, the observed convergence in Zn amounts 

confirmed that metal dynamics in decomposing litter depend on the initial metal concentrations, 

a phenomenon that was demonstrated earlier for Zn in particular (Lomander and Johansson, 

2001; Kaila et al., 2012), reflecting the Zn requirement of the decomposing heterotrophs (Gosz et 

al., 1973). 

The fact that ‘low metal litter types’ became metal-enriched when they decomposed on a 

contaminated site, implies that the organic matter of decomposing leaves and needles acted as an 

efficient metal storage pool. Leaf litter can thus act as a temporary sink for metals from the soil 
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around and below the litter. Similar conclusions were drawn by Scheid et al. (2009); they even 

found that soil-derived metals that entered the litterbags were tightly bound to the decomposing 

leaf litter and were not mobilized during the decomposition process. Such upward metal 

enrichment may be ecologically relevant as litter can be transported easily to other sites (e.g. by 

wind) or serve as a source of food for a variety of organisms. 

The decrease in metal amounts in the ‘high metal litter types’ (Table 4.5 & Fig 4.3) implies that 

Cd and Zn were released from the aspen litter and, to a lesser extent, Zn followed an analogous 

pattern in the birch litter. The external sources of metal input into decomposing litter, as 

described above, must have been negligible compared to the elevated initial metal amounts in in 

situ aspen and birch litter. Hence, metal output was faster than the input. Some studies also found 

metal release from decomposing litter, with higher relative releases from litter with larger initial 

metal amounts (Lomander and Johansson, 2001; Kaila et al., 2012), in line with our results. Such 

a metal release can be attributed to mineralization and might involve risks for metal dispersion 

from the litter towards the soil. Relations between metal releases from the ‘high metal litter types’ 

and metal amounts in the underlying topsoil and forest floor leachate are discussed below (see § 

4.4.4). 

 

4.4.3 Nutrient amounts  

Our results, showing a general decrease in base cation, N and C amounts during the 

decomposition process (Table 4.5 & Fig 4.3), are in line with the patterns found in literature. K, 

Mg and Ca (here grouped as base cations) are generally known to be released during litter 

decomposition (e.g. Blair, 1988a; Laskowski and Berg, 1993; Laskowski et al., 1995; Brun et al., 

2008; Jacob et al., 2009; Kaila et al., 2012). The high net N release from black locust (Table 4.5) 

was also in line with the expectations, since black locust is a N-fixing tree species (Boring and 

Swank, 1984) and thus characterized by litter rich in N (Table 4.1).  

N dynamics in decomposing litter is generally characterized by an initial immobilization phase 

followed by a release, indicating that insufficient N may limit decomposer activity in early stages 

(e.g. Swift et al., 1979; Staaf, 1980; Berg and Staaf, 1981; Staaf and Berg, 1982; Blair, 1988a, 

1988b; Prescott et al., 1993; Parton et al., 2007; Manzoni et al., 2008). Indeed, it is commonly 

accepted that N is usually a limiting factor for the growth of decomposer populations in forest 

litter (Berg and Staaf, 1987; Blair, 1988a). We observed this typical pattern of net N 

immobilization followed by release in all our studied litter types, except in black locust and Scots 

pine litter (Fig 4.3). The latter species were characterized by an immediate decline in N amounts. 
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Such instant N releases correspond to a leaching or rapid decay phase (Berg and Staaf, 1981), and 

are related to litter types that are initially rich in N (Aber and Melillo, 1982; Prescott et al., 1993; 

Moro and Domingo, 2000; Parton et al., 2007). Black locust indeed showed the fastest and 

earliest decomposition dynamics (Table 4.2 & Fig 4.2) as well as a high initial N concentration 

(Table 4.1), both features contributing to its instant N release. For Scots pine, however, it was 

unclear which processes could explain its instant N loss.  

Relative releases of N after 20 months of litter decomposition were consistently less than base 

cation and C releases (Table 4.5), as was also found by Blair (1988a) in a mixed hardwood forest. 

These results indicate that the majority of base cation release occurs in the first years of 

decomposition, implying a rapid recycling of cation nutrients from plant litter to the soil where 

they may subsequently become available for plant uptake. This is in contrast to N which tends to 

be retained in the litter, meaning that litter may act as a sink during the first decomposition years 

for nutrients limiting to the decomposer community, such as N (Blair, 1988a; Manzoni et al., 

2008). 

 

4.4.4 Relations with forest floor leachate fluxes & topsoil characteristics  

Metal and nutrient dynamics in decomposing litter were mainly related to topsoil characteristics, 

but hardly to forest floor leachate fluxes (Table 4.6 & 4.7). Only Cd leachate fluxes could be 

correlated to Cd dynamics in decomposing litter. Aspen was the only tree species revealing net 

Cd release from its litter (Table 4.5), and this resulted in higher Cd fluxes in its forest floor 

leachate (cfr. Table 4.6 and Fig 5.2) and elevated Cd concentrations in its topsoil (cfr. Table 4.6 & 

3.6). On the other hand, net Zn release from aspen and - to a lesser extent - birch litter (Table 

4.5) was not reflected in the Zn fluxes in forest floor leachates (cfr. Table 4.6 and Fig 5.2) and 

only partly reflected in the Zn topsoil concentrations, as Zn accumulation was only found under 

aspen but not under silver birch (cfr. Table 3.6). The latter might be explained by the low annual 

leaf litterfall amount (Table 4.4) and low Zn release (Table 4.5) under silver birch.  

Net release of base cations was significantly correlated with topsoil CEC and OC content (Table 

4.7). This relation was governed by black locust and aspen, both species with litter rich in base 

cations (Table 4.1) and characterized by high CEC and OC content in their topsoil (cfr. Table 

3.5). However, nutrient releases from decomposing litter were not correlated with topsoil pH, 

nor with DOC and H+ leachate fluxes. This was rather surprising as it is commonly accepted that 

DOC leaching and soil acidity are significantly related to litter chemistry (Reich et al., 2005; 

Hobbie et al., 2007; De Schrijver et al., 2012), particularly to base cation contents (Finzi et al., 
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1998; Hagen-Thorn et al., 2004; Reich et al., 2005; Jacob et al., 2009). The absence of these 

correlations might be explained by the fact that litter decomposition measured in litterbags is 

never an exact representation of what happens in reality, especially when soil macrofauna is 

excluded (Prescott, 2005; Hobbie et al., 2006; Hättenschwiler et al., 2011), as witnesses the 

discrepancy between leaf litter mass loss from litterbags and forest floor mass for Scots pine. 

 

4.5 Conclusion 

In our study, litter decomposition data was fit to a model in which the decomposition rate k 

increased initially, followed by a decrease. We showed that the decomposition peak occurred 

within the first year for all the tree species, except for aspen. Moreover, decomposition of Scots 

pine, Douglas fir and silver birch litter was strongly slowed down at the end of the study period. 

Litter of oak, black locust and aspen, on the other hand, would have decomposed further if it was 

left longer in the field. During litter decomposition, the ‘high metal litter types’ released part of 

their accumulated metals, whereas the ‘low metal litter types’ were characterized by a net Cd and 

Zn enrichment. Base cations, N and C were released from all litter types as decomposition 

proceeded. The metal and nutrient releases from decomposing litter were mainly reflected in 

topsoil characteristics (Cd and Zn concentrations, CEC, OC content), but they were less clearly 

related to forest floor leachate fluxes (Cd, Zn, DOC, H+). Hence, metal release from 

contaminated litter might involve risks for metal dispersion towards the soil. On the other hand, 

metal enrichment of ‘low metal litter’ may be ecologically relevant as it can be easily transported 

to other sites or serve as a food source for a variety of organisms. 
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Forest floor leachate fluxes under six tree species 
on a metal contaminated site 
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Abstract 

Trees play an important role in the biogeochemical cycling of metals, although the influence of 

different tree species on the mobilization of metals is not yet clear. This study examined effects 

of six tree species on fluxes of Cd, Zn, DOC, H+ and base cations in forest floor leachates on a 

metal polluted site in Belgium. Forest floor leachates were sampled with zero-tension lysimeters 

in a 12-year-old post-agricultural forest on a sandy soil. The tree species included were silver 

birch (Betula pendula), oak (Quercus robur and Q. petraea), black locust (Robinia pseudoacacia), aspen 

(Populus tremula), Scots pine (Pinus sylvestris) and Douglas fir (Pseudotsuga menziesii). We showed that 

total Cd fluxes in forest floor leachate under aspen were slightly higher than those in the other 

species’ leachates, yet the relative differences between the species were considerably smaller when 

looking at dissolved Cd fluxes. No tree species effect was found for Zn leachate fluxes. We 

expected higher metal leachate fluxes under aspen as its leaf litter was significantly contaminated 

with Cd and Zn. We propose that the low amounts of Cd and Zn leaching under aspen’s forest 

floor were possibly caused by high activity of soil biota, for example burrowing earthworms. 

Furthermore, our results revealed a significant tree species effect on H+, DOC and base cation 

fluxes, with especially very low H+ fluxes in aspen leachate (130 times less than oak). Scots pine 

and oak were characterized by high H+ and DOC fluxes as well as low base cation fluxes in their 

forest floor leachates, implying that those species might enhance soil acidification and thus bear a 

potential risk for below-ground metal dispersion. 
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After: Van Nevel, L., Mertens, J., De Schrijver, A., Baeten, L., De Neve, S., Tack, F.M.G., 

Meers, E., Verheyen, K., 2013. Forest floor leachate fluxes under six different tree species on 

a metal contaminated site. Science of the Total Environment, 447, 99-107. 
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5.1 Introduction 

Metal polluted soils are often afforested in order to prevent dispersion of the metals in the 

environment, a technique called phytostabilization (e.g. Dickinson, 2000; Pulford and Watson, 

2003; Mertens et al., 2007). Trees can potentially be very well suited for phytostabilization 

purposes due to their extensive root systems and high transpiration capacity (Pulford and 

Watson, 2003). On the other hand, tree growth might enhance metal leaching to groundwater 

because of soil acidification and production of dissolved organic matter (Mayer, 1998). Tree 

species can exert a significant influence on soil acidity and dissolved organic carbon (DOC) 

leaching, which has been found to be significantly related to litter quality (Reich et al., 2005; 

Hobbie et al., 2007; De Schrijver et al., 2012). Tree species with litter rich in calcium (Ca) were 

associated with lower soil acidity, increased earthworm abundance and diversity, as well as higher 

forest floor turnover rates (Reich et al., 2005; Hobbie et al., 2006; Jacob et al., 2009; De Schrijver 

et al., 2012). In contrast, species producing litter with low contents of base cations and high 

concentrations of organic acids have been shown to decompose slowly and enhance soil 

acidification and DOC leaching (Konova, 1966; Finzi et al., 1998; Hagen-Thorn et al., 2004).  

Tree species producing contrasting leaf litter in terms of chemical composition and degradability 

thus have a different influence on the composition and reactivity of the forest floor leachate and 

the soil solution (Strobel et al., 2001a). Forest floor leachate composition is highly relevant, in 

particular the fluxes of DOC and protons (H+) as these are expected to increase metal leaching. 

Numerous studies have shown that the forest floor is the major source of DOC in forest 

ecosystems (Cronan and Aiken, 1985; Qualls et al., 1991; Currie et al., 1996; Michalzik and 

Matzner, 1999; Michalzik et al., 2001; Vandenbruwane, 2008). DOC is one of the most actively 

cycling soil organic carbon (C) pools and its significance in forest ecosystems has been 

highlighted because of its ecological function in transport and cycling of nutrients and metals in 

soils (Qualls and Haines, 1991; Qualls et al., 1991; Tipping and Hurley, 1992; Michalzik and 

Matzner, 1999; Kalbitz et al., 2000). Tree species producing forest floor leachate with high DOC 

concentrations are stimulating base cation (Finzi et al., 1998) and metal leaching (Strobel et al., 

2001a). Leaching of base cations causes soil acidification (Marschner, 1995; Finzi et al., 1998), 

concomitantly increasing metal mobilization in the soil (e.g. McBride et al., 1997; Sauvé et al., 

2000a, 2000b; Voegelin et al., 2003). Moreover, the presence of base cations in the soil solution 

may also increase the mobility of some metals: it was shown that increased Ca2+ concentrations in 

the soil solution significantly displace Cd2+ from sorption sites (Christensen, 1984; Temminghoff 

et al., 1995). Metal leaching to groundwater poses serious risks for ecosystems and human health 

(WHO, 2000).  
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The potential feedback mechanisms between metal accumulation in trees, leaf litter quality, the 

composition of the forest floor leachate and the soil solution thus all affect metal mobility. 

Therefore, metal mobility is likely to be strongly species dependent and strategies for 

phytostabilization of metals need to carefully consider the importance of tree species selection. 

Here we aim to unravel the tree species effects on fluxes of Cd, Zn, DOC, H+ and base cations in 

forest floor leachate, with respect to Cd and Zn mobilization. For estimating the risk of Cd and 

Zn leaching to deeper soil layers, the H+, base cation and metal fluxes in the forest floor leachates 

are of particular interest. Nevertheless, to our knowledge, no field studies incorporating fluxes 

and interrelationships of DOC, H+, base cations and metals in forest floor leachates exist. 

Furthermore, we found no field studies comparing metal leaching from the forest floor under 

different tree species. 

We hypothesize that (i) tree species with low litter quality (in terms of base cations and C/N 

ratio) produce high DOC and H+ and low base cation fluxes in their forest floor leachates, 

enhancing soil acidification and thus eventually causing risk for metal leaching and (ii) tree species 

with high metal concentrations in their leaf litter give rise to higher metal fluxes in their forest 

floor leachates, also causing risk for below-ground metal dispersion. 

 

5.2 Materials and Methods 

5.2.1 Experimental set-up and sampling  

The study included the six considered tree species (oak, silver birch, black locust, aspen, Scots 

pine, Douglas fir) and was executed in the selected stands in ‘Waaltjesbos’ (see Fig 3.1). See § 

3.2.1 for full site descriptions and stand selection. A characterization of the soil of the study site 

is given in Table 3.5 (soil characteristics pH-KCl, OC content, CEC) and Table 3.6 (total and 

extractable soil Cd and Zn concentrations). The six tree species have divergent leaf litter quality 

and show different metal concentrations in their leaf litter (see Tables 4.1 and 5.1). Hence, forest 

floor leachates under these tree species are expected to reflect the biogeochemical interactions 

that took place over the preceding years.  

In each selected stand, two zero-tension lysimeters were installed to collect forest floor leachate. 

The zero-tension lysimeters were constructed from 30 cm long PVC guttering (324 cm²) covered 

with wire netting (1.5 mm mesh size). Each lysimeter was connected with flexible PVC tubing to 

a 2-l polyethylene (PE) bottle installed beneath the lysimeter. The bottles were placed below 

ground level to avoid the growth of algae and to keep the samples cool. The lysimeters were 
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installed directly under the forest floor (Ol + Of if present). The Of horizon had started to 

develop in most of the stands, except in the black locust and Douglas fir stands, but an Oh 

horizon was not present yet under this young forest (Jabiol et al., 1995). To ensure optimal 

drainage from the gutter into the bottle, lysimeters were placed under a slight inclination. 

 

 

 

 

 

 

 

Leachates were sampled three-weekly between September 2009 and September 2010. The water 

volumes were measured in the field, and 300-ml subsamples of the forest floor leachates were 

taken to the lab for chemical analysis. The samples were transported in a cooler, once in the lab 

they were stored in a freezer until analysis. At every sampling event, the PE sampling bottles were 

replaced by specimens that were rinsed with distilled water.  

 

5.2.2 Sample analysis 

Forest floor leachates from different sampling occasions were pooled volume-weighted to bulk 

samples per season (autumn: 19/09/2009 – 30/11/2009; winter: 01/12/2009 – 31/03/2010; 

spring: 01/04/2010 – 24/06/2010; summer: 25/06/2010 – 21/09/2010). Prior to analyses, bulk 

samples were filtered through a 0.45 µm nylon filter (Gelman), except for pH and total Cd and 

Zn concentrations, which were measured on the unfiltered samples. pH was measured with a pH 

Installation of a zero-tension lysimeter (upper) and sampling of the forest floor leachate (lower) 
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Orion electrode; hydrogen ion (H+) concentration was calculated from the measured pH value. 

Total Cd and Zn concentrations were measured with ICP-MS (Perkin-Elmer Elan DRC-e) and 

ICP-OES (Varian Vista-MPX) respectively, after a destruction with HNO3 and H2O2. Filtered 

samples were analyzed for the base cations Ca, potassium (K), magnesium (Mg) and sodium (Na) 

(flame atomic absorption spectrophotometry, Varian SpectrAA-240), for DOC (Total Organic 

Carbon Analyzer, Shimadzu TOC-VCPN) and for dissolved Cd and Zn (respectively ICP-MS, 

Perkin-Elmer Elan DRC-e and ICP-OES, Varian Vista-MPX).  

In order to get insight in the leaf litterfall amounts and chemical composition, leaf litter samples 

were collected with litterfall traps in 2007-2008 (see § 3.2.2 and § 3.2.3), weighed and dried at 70 

°C to constant weight and ground using a centrifugal mill (Retsch ZM1, Germany). Subsequently, 

ground samples were analyzed for Cd, Zn, Ca, K, Mg, Na, C and nitrogen (N). The samples were 

ashed at 450 °C and dissolved in HNO3 before Cd and Zn analysis using ICP-MS (Elan DRC) 

and ICP-OES (Varian Vista-MPX) respectively. The K, Ca, Mg, Na concentrations were 

measured by means of flame atomic absorption spectrophotometry (Varian SpectrAA-240) after 

a destruction in HNO3-HClO4. C and N concentrations were determined by elemental analysis 

(Vario Max CNS, Germany). 

 

5.2.3 Water fluxes 

Water fluxes in the forest floor were not calculated from volumes collected in the zero-tension 

lysimeters as these volumes were highly variable from collector to collector, ranging from 1.3% 

to 87% of open-field precipitation (P). Several authors recognized the great variability of water 

volumes collected with lysimeters, and suggested to estimate the water fluxes indirectly (Haines et 

al., 1982; Fröberg et al., 2005; Kalbitz et al., 2007; Landre et al., 2010; Nieminen, 2011). 

Consequently, water fluxes in the forest floor were considered to be equal to throughfall (TF) 

fluxes (Fröberg et al., 2005). However, the forest floor will intercept and evaporate a fraction of 

throughfall (Putuhena and Cordery, 1996). A few studies describe forest floor evaporation in 

relation to throughfall flux. Some found a tight resemblance between throughfall flux and water 

flux in the forest floor, with only 1% (Vandenbruwane, 2008) or 2% (Qualls et al., 1991) of the 

throughfall being absorbed by the forest floor and later evaporated, supporting our assumption. 

Others, on the other hand, saw that evaporation from the forest floor contributed an important 

share to the forest water balance, ranging from 20% in the Ol-horizon of a Norway spruce forest 

(Kalbitz et al., 2004) over 22% in a beech forest (Solinger et al., 2001; Gerrits et al., 2010), up to 

26% in a mixed deciduous forest (Bittner et al., 2010) of the throughfall flux. However, as our 

study site is characterized by a thin forest floor (see § 5.2.1), we assume that the applied method 
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(cfr. Fröberg et al., 2005) is adequate, bearing in mind that the throughfall fluxes will slightly 

overestimate the actual water fluxes below the forest floor.  

In order to measure throughfall fluxes, four throughfall collectors were installed randomly in 

every stand, consisting of PE funnels (154 cm²) draining into 2-l PE bottles below ground level. 

Bulk precipitation was measured in an open patch in the forest by means of six bulk collectors, 

similar to the throughfall collectors. Stemflow was not collected because of its negligible 

contribution to the total water flux reaching the forest floor in this young forest (see also Alcock 

and Morton, 1985; Grelle et al., 1997; Price et al., 1997; Bergholm et al., 2003; Bittner et al., 

2010). Water volumes in throughfall and bulk collectors were measured three-weekly from April 

2011 until April 2012. Species-specific canopy interception loss (Ic) was calculated as (P – TF)/P, 

according to the growing (May – October) and the dormant season (November – April). 

Precipitation data of September 2009 - September 2010 (data of the Royal Meteorological 

Institute of Belgium) were multiplied with 1 – Ic to calculate species-specific throughfall fluxes 

during the period when forest floor leachates were sampled. 

 

  

 

Throughfall collectors (left) and bulk collectors (right) 



Forest floor leachate fluxes 

 97 

5.2.4 Data analysis 

Leachate fluxes were calculated by multiplying water fluxes by leachate concentrations. The sum 

of these seasonal leachate fluxes over the one year monitoring period yielded annual leachate 

fluxes. Base cation fluxes were calculated by summing the equivalents of K+, Ca2+, Mg2+ and Na+. 

Base cation fluxes, together with leachate pH and fluxes of DOC, total and dissolved Cd and Zn 

and H+ were considered as response variables.  

First, both the intercorrelations between the seasonal leachate fluxes of Cd, Zn, base cations, 

DOC, H+ and pH, and the correlations between those seasonal leachate fluxes and leaf litter 

characteristics (Cd and Zn amounts, base cation amounts (sum of K+, Ca2+, Mg2+, Na+ 

equivalents) and C/N ratio) were calculated by means of Spearman correlation coefficients. 

The experimental design was hierarchical, with lysimeters grouped within stands and tree species 

replicated at the stand level, so we used multilevel models. The lmer function in the lme4 library 

of R version 2.13.2 was used here (Bates et al., 2011; R Core Team, 2014). First, we examined 

whether there was a species and/or a seasonal effect on the leachate fluxes. Therefore, we 

constructed a null model with two random effect terms: the ‘Stand’ that was sampled and the 

‘Lysimeter code’ nested within stand, which accounted for the repeated measurements on the 

same lysimeter. Next, we tested models with the explanatory factor ‘Species’ or ‘Season’ as fixed 

effects against the null model with a likelihood ratio test to evaluate whether these factors 

significantly improved the null model. The factor ‘Season’ was included in the fixed effects, but 

we allowed the seasonal effect to vary by lysimeter and allowed for correlation among the 

seasonal effects for the same lysimeter. Finally, a full factorial model with ‘Species’ and ‘Season’ 

as fixed effects was fitted using restricted maximum likelihood estimates. Prior to all multilevel 

analyses, log transformations were applied to maximize the normality of the data. 
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5.3 Results 

5.3.1 Leaf litter characteristics 

Leaf litter characteristics have a direct link with the forest floor leachate. Aspen clearly took up 

more Cd than the other species, with the Cd concentration in the leaf litter being about 7 to 12 

times higher than that of the other tree species. Zn concentrations in leaf litter were significantly 

higher in aspen and silver birch. Highest base cation concentrations were found for aspen and 

black locust, while Scots pine showed the highest C/N ratio (Table 5.1). 

Leaf litter concentrations (Table 5.1) were multiplied by annual leaf litterfall to calculate the 

amounts (fluxes) of metals and base cations reaching the forest floor with litterfall (Table 5.2). N 

was not further considered as it was not taken into account for the leachate fluxes. C was not 

further considered as C amounts were not taken into account for the correlations between 

leachate fluxes and leaf litter characteristics (only C/N ratio). 

Cd and Zn litterfall fluxes were highest for aspen, due to its high Cd and Zn concentrations 

(Table 5.1) and high leaf litter production (Table 5.2). Silver birch, on the other hand, showed 

high Zn concentrations in its leaf litter (Table 5.1), but the Zn amount did not differ from the 

other species due to its very low leaf litter production (Table 5.2). A similar pattern was found for 

the base cations: highest fluxes were found under aspen, as this species showed high base cation 

concentrations (Table 5.1) as well as high leaf litter production, whereas black locust, also 

showing high base cation concentrations, did not exhibit a high base cation amount due to its low 

leaf litter production (Table 5.2).  
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Table 5.1 Cd, Zn, base cations, C and N concentrations and C/N ratio in leaf litter of the different tree species (average ± st.dev); differences 

between species were tested using analysis of variance (ANOVA) with a Bonferroni post hoc test, values with the same letter did not differ between 

species (p < 0.05) 

 Cd §                  
(mg kg-1) 

Zn §                  
(mg kg-1) 

BC §                
(meq kg-1) 

C §                    
(%) 

N §                    
(%) 

C/N                     
(-) 

silver birch 1.72 ± 0.44 a 1 540 ± 341 b 779 ± 124 a 46.8 ± 0.3 bc 1.50 ± 0.07 a 31.3 ± 1.4 a 

oak < 1.0 a 287 ± 106 a 798 ± 86 a 46.5 ± 0.4 b 1.56 ± 0.19 a 30.1 ± 3.8 a 

black locust 1.22 ± 0.40 (1) a 427 ± 100 a 1477 ± 188 b 44.7 ± 0.2 a 2.29 ± 0.30 b 19.8 ± 2.9 a 

aspen 13.0 ± 6.5 b 2 354 ± 494 c 1585 ± 291 b 45.1 ± 0.3 a 1.48 ± 0.32 a 31.6 ± 7.3 a 

Scots pine 1.08 ± 0.34 (1) a 321 ± 56 a 619 ± 56 a 47.7 ± 0.3 c 1.04 ± 0.01 a 45.9 ± 0.6 b 

Douglas fir < 1.0 a 295 ± 22 a 639 ± 148 a 47.5 ± 0.5 bc 1.62 ± 0.40 ab 30.2 ± 7.1 a 

§ Concentrations analyzed on leaf litter samples (n = 6) collected with litterfall traps in 2007-2008 (cfr. § 3.2.2) 

< if all values were lower than the determination limit, the determination limit was given, preceded by ‘<’ 

(1) the number between brackets is the number of values lower than the determination limit of 1.0 for Cd. The mean was calculated by equalling those values to the 
half of the determination limit. 
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Table 5.2 Annual leaf litterfall MLF and amounts (fluxes) of Cd, Zn and base cations in leaf 

litterfall of the six tree species (average ± st.dev); differences between species were tested using 

analysis of variance (ANOVA) with a Bonferroni post hoc test, values with the same letter did 

not differ between species (p < 0.05) 

 MLF 
§                

(ton ha-1 yr-1) 
Cd                     

(g ha-1 yr-1) 
Zn                   

(kg ha-1 yr-1) 
BC               

(eq ha-1 yr-1) 

silver birch 1.4 ± 0.6 a 2.4 ± 1.3 a 2.2 ± 1.1 a 1092 ± 527 a 

oak 3.7 ± 0.7 cd 1.9 ± 0.3 a 1.1 ± 0.4 a 2956 ± 635 b 

black locust 2.1 ± 1.0 ab 2.5 ± 1.5 a 0.9 ± 0.5 a 3087 ± 1590 b 

aspen 4.0 ± 1.0 cd 52.4 ± 29.4 b 9.5 ± 3.1 b 6370 ± 2019 c 

Scots pine 4.9 ± 1.1 d 5.3 ± 2.0 a 1.6 ± 0.5 a 3010 ± 746 b 

Douglas fir 3.1 ± 1.3 bc 1.5 ± 0.7 a 0.9 ± 0.4 a 1969 ± 972 ab 

§ MLF estimated by weighing the leaf litter collected in the litterfall traps (n = 12) in 2007-2008 (cfr. Table 
3.2) 
 

 

5.3.2 Forest floor leachate  

Leachate pH and seasonal concentrations of Cd, Zn, DOC and base cations in forest floor 

leachates are reported in Appendix A.1. However, here we focus on the leachate fluxes (amounts) 

of Cd, Zn, DOC and base cations, since fluxes are more important for the discussion of 

biogeochemical cycles. Leachate fluxes were estimated by multiplying leachate concentrations by 

water fluxes in the forest floor. Seasonal and annual leachate fluxes are reported in Appendix A.2. 

 

Water fluxes 

Water fluxes in the forest floor showed a strong seasonal pattern: spring 2010 was extremely dry, 

whereas the summer of 2010 was very wet (Fig 5.1). Moreover, the water fluxes varied under the 

different tree species, which was attributed to a significant species effect on interception values. 

Canopy interception loss (Ic) was significantly higher for the coniferous species compared to the 

broadleaved species. Ic values ranged from 10.1 % (black locust) over 10.6 % (oak), 18.3 % (silver 

birch), 26.4 % (aspen), 43.6 % (Douglas fir) up to 56.5 % (Scots pine).  
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Figure 5.1 Estimated water fluxes in the forest floor under the six tree species 

 

 

 

Leachate fluxes  

As one could expect, the seasonal effect on forest floor leachate fluxes was pronounced for all 

response variables (Table 5.3), according to the seasonally changing water fluxes. Moreover, there 

was a significant species effect on forest floor leachate fluxes for all response variables, except for 

Zn (Table 5.3). This species effect was examined more in detail by comparing annual leachate 

fluxes (Fig 5.2, see also Appendix A.2).  

 

Table 5.3 Contribution of ‘Species’ and ‘Season’ on leachate fluxes of total and dissolved Cd and 

Zn, DOC, H+ and base cations. The likelihood ratio χ² test statistics represent comparisons of a 

multilevel model without fixed effects and a model with ‘Species’ or ‘Season’. See methods for 

details on the model building. 

 Cdtot 
§ Cddiss 

§ Zntot 
§ Zndiss 

§ DOC § H+ § BC § 

Likelihood ratio χ²    

Species 19.6 ** 17.3 ** 6.5 8.1 22.0 *** 27.2 *** 31.2 *** 

Season 54.2 *** 89.0 *** 90.0 *** 87.2 *** 98.7 *** 35.5 *** 88.7 *** 

Full factorial model R syntax: Response ~ -1 + Species + Season + (1 | Stand) + (Season - 1 | 
Stand:Code) 

§ log transformed; ** p < 0.01; *** p < 0.001 
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Total Cd fluxes in forest floor leachate under aspen were higher than those under oak, Scots 

pine, Douglas fir and silver birch, the latter two species showing the lowest Cd fluxes (Fig 5.2). 

The dissolved Cd fluxes in aspen leachate were only distinguished from those under silver birch 

(Fig 5.2). No tree species effect was found for Zn fluxes in forest floor leachate (Fig 5.2), in spite 

of significant differences in Zn amounts in leaf litter (Table 5.2) and a positive correlation 

between Zn leachate fluxes and Zn litter amounts (Table 5.4).  

Highest base cation fluxes in forest floor leachate were found under aspen and black locust (Fig 

5.2), significantly correlated with base cation litter amounts and negatively correlated with the 

C/N ratio of the leaf litter (Table 5.4). Ca2+ and K+ were the dominant cations in the leachate for 

all considered tree species (Fig 5.2).  

Scots pine and oak induced significantly higher DOC fluxes compared to silver birch, aspen and 

Douglas fir (respectively 1.7, 1.5 and 1.4 times higher), while black locust produced intermediate 

DOC fluxes (Fig 5.2). A similar pattern was found for H+ fluxes, with especially very low values 

in aspen leachate (130 times less than oak) (Fig 5.2). DOC and H+ leachate fluxes were 

significantly intercorrelated (Table 5.5). Surprisingly, neither DOC nor H+ leachate fluxes were 

correlated with base cation amounts or with the C/N ratio of the leaf litter (Table 5.4). 
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Figure 5.2 Annual fluxes of total Cd and Zn, dissolved Cd and Zn, DOC, H+ and base cations in 

forest floor leachate under the six tree species (average ± st.dev); differences between species 

were tested using a multilevel model with a Bonferroni post hoc test, values with the same letter 

did not differ between species (p < 0.05) 
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Table 5.4 Spearman’s ρ correlation coefficients between annual leachate fluxes (rows) and leaf 

litter characteristics (Cd, Zn and base cation amounts and C/N ratio; columns) (n = 36) 

 Cd Zn BC C/N 

Cdtot 0.480 ** 0.141 0.658 ** - 0.197 

Cddiss 0.401 * 0.139 0.460 ** 0.045 

Zntot 0.459 ** 0.380 * 0.262 0.131 

Zndiss 0.588 ** 0.405 * 0.306 0.222 

DOC 0.032 - 0.377 * 0.253 - 0.011 

H+ - 0.352 * - 0.558 ** - 0.194 0.107 

BC 0.226 - 0.027 0.497 ** - 0.516 ** 

* p < 0.05; ** p < 0.01 
 

 

 

 

Table 5.5 Spearman’s ρ correlation coefficients of the intercorrelation between annual leachate 

fluxes (n = 36) 

 Cdtot Cddiss Zntot Zndiss DOC H+ 

Cdtot       

Cddiss 0.638 **      

Zntot 0.582 ** 0.671 **     

Zndiss 0.531 ** 0.694 ** 0.837 **    

DOC 0.264 0.179 0.232 0.174   

H+ - 0.126 - 0.088 - 0.071 - 0.047 0.426 **  

BC 0.601 ** 0.403 * 0.269 0.161 0.259 - 0.287 

* p < 0.05; ** p < 0.01 
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5.4 Discussion 

In order to get insight in the risk tree species exert on metal mobilization in metal polluted soils, 

we examined forest floor leachates under different tree species with diverging leaf litter quality. 

Litter decomposition is mainly affected by climate, soil and vegetation (Meentemeyer, 1978). 

Here, the selected stands developed in homogenous conditions of climate and soil, as they are all 

part of a relatively small forest (203 ha, see also § 3.2.1). Differences in litter decomposition 

products (i.e. forest floor leachates) are thus closely linked with tree species.  

Leachate fluxes were calculated by means of the estimated water fluxes in the forest floor, which 

were considered to be equal to throughfall fluxes. As these estimated water fluxes probably are a 

slight overestimation of the actual water fluxes (see § 5.2.3), one should bear in mind that 

absolute values of the forest floor leachate fluxes should be interpreted with care. However, the 

relative differences between tree species are most relevant in the scope of this study, and we 

consider these to be reliable. 

 

5.4.1 Fluxes of H+, DOC and base cations 

Metal solubility, and hence mobility, is generally enhanced by acidity and by complexation with 

dissolved organic matter (McBride et al., 1997; Sauvé et al., 2000a, 2000b; Weng et al., 2002; 

Strobel et al., 2005). Therefore, H+ and DOC fluxes in forest floor leachates are of major concern 

as they reflect the amounts of protons and DOC entering the mineral soil, where they might 

mobilize accumulated metals. Many authors found that DOC particularly has a strong affinity for 

Cu, Ni, Hg and Pb, whereas Cd and Zn tend not to complex strongly with soluble organics. This 

implies that the solubility of Cd and Zn is mainly controlled by pH with minor to no effects of 

DOC (e.g. Bergkvist et al., 1989; Holm et al., 1995; Römkens and de Vries, 1995; McBride et al., 

1997; Sauvé et al., 2000b; Weng et al., 2001b; Strobel et al., 2001b, 2005). 

Our results showed a significant tree species effect on H+ fluxes, with especially very low values 

in aspen leachate (Fig 5.2). Given the univocal effect of pH on metal solubility (e.g. Sauvé et al., 

2000a, 2000b; Degryse et al., 2007), we expect that the extremely low proton amounts leaching 

from aspen’s forest floor (130 times less than oak) will result in low Cd and Zn mobilization in 

the (top)soil under aspen trees. This was confirmed by the immediately bioavailable (CaCl2-

extractable) Cd and Zn concentrations, that appeared not to be elevated in the topsoil under 

aspen, despite significant accumulation of total Cd and Zn (see Table 3.6). 
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In analogy to H+ fluxes, a similar pattern was found for DOC fluxes. The positive 

intercorrelation between DOC and H+ fluxes in forest floor leachates (Table 5.5) was expected as 

soil acidification is known to be enhanced by species with high litter concentrations of organic 

acids (Finzi et al., 1998). Scots pine and oak induced significantly higher DOC fluxes compared 

to silver birch, aspen and Douglas fir (Fig 5.2). Several studies revealed higher DOC fluxes in 

forest floor leachate from coniferous species compared to broadleaved species (Cronan and 

Aiken, 1985; Currie et al., 1996; Fröberg et al., 2011; Lindroos et al., 2011). Coniferous litter often 

is less rich in base cations and has higher C/N ratios and lignin contents (Augusto et al., 2002), 

litter characteristics related to slower decomposition rates (Cotrufo et al., 2000; Hobbie et al., 

2006; Prescott, 2010). Consequently, coniferous litter is often more resistant to biological 

degradation and leaches more organic acids compared to broadleaved litter (Howard and 

Howard, 1990; Ranger and Nys, 1994; Johansson, 1995). However, Michalzik et al. (2001) 

concluded from a synthesis of 42 field studies from temperate forests that annual fluxes of DOC 

in deciduous forests were within the range of those from coniferous sites, at least on a regional 

scale. Also Vandenbruwane (2008) did not find a difference in DOC fluxes under the forest floor 

of a Corsican pine and a silver birch stand. In a common garden study, DOC release from the 

litter layer (Ol-horizon) was significantly higher under oak than under Douglas fir (Trum et al., 

2011), in line with our results.  

In temperate forest ecosystems, fluxes of DOC from the forest floor into the mineral soil have 

been estimated at 100-400 kg C ha-1 yr-1 (Michalzik et al., 2001). Our results are on the lower side 

(65-170 kg ha-1 yr-1), most likely because it is a young post-agricultural forest (ca. 12 years) and a 

well-developed forest floor is not present yet (absence of Of- and Oh-horizon, see § 5.2.1). The 

former agricultural practices of fertilization and liming, resulting in a higher nutrient status and 

soil pH, are favorable for both microbial and earthworm communities (Edwards, 2004; Fierer 

and Jackson, 2006), being beneficial for litter decomposition rates (Reich et al., 2005), which in 

turn results in lower DOC production (Konova, 1966; Finzi et al., 1998). For species with slowly 

decomposing litter, increasing forest age will cause a build-up of the forest floor (De Schrijver et 

al., 2012). Therefore, we here suggest that DOC and H+ leaching from the forest floor will 

further increase under the tree species with slower decomposing litter, as oak and pine, whereas it 

will stay more or less unaltered under aspen as a consequence of its fast litter decomposition (see 

also further). Under black locust we expect DOC and H+ leaching to increase with forest age, 

given black locust’s ability to symbiotically fix atmospheric N2. This process can enhance soil 

acidification as a by-product of increased nitrification rates (Van Miegroet and Cole, 1984), as 

was found for Alnus glutinosa and Alnus rubra in other studies (Van Miegroet and Cole, 1984, 
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1985; Compton et al., 2003; De Schrijver et al., 2012). After 35 years of post-agricultural forest 

development, A. glutinosa developed a thick forest floor and this despite high base cation contents 

in its leaf litter (De Schrijver et al., 2012), probably causing high DOC leaching. We might expect 

that the latter will also occur in the black locust stands at our study site. Further observations are 

needed to confirm this.  

Base cations entering the soil via forest floor leachate may have a dual effect on metal 

mobilization in the (top)soil. On the one hand they can be expected to play a significant role in 

preventing metal leaching as they are of relevance for buffering protons and preventing soil 

acidification (Marschner, 1995; Finzi et al., 1998). On the other hand, base cations in the soil 

solution may also increase the mobility of some metals: it was shown that increased Ca2+ 

concentrations in the soil solution significantly displace Cd2+ from sorption sites (Christensen, 

1984; Temminghoff et al., 1995). It was not clear which of both processes was decisive at our 

site. 

Base cations release from the forest floor is species-specific as it is favored by leaf litter with 

higher degradability and better quality (fast litter decomposition rate) (Hagen-Thorn et al., 2004; 

Jacob et al., 2009). Highest base cation fluxes in forest floor leachate were found under aspen and 

black locust (Fig 5.2), being correlated to base cation amounts in the leaf litter (Table 5.4), even 

though the base cation amount in black locust’s leaf litterfall was not elevated compared to the 

other species (Table 5.2). Due to its low leaf litter production (Table 5.2), the high base cation 

concentration in black locust’s leaf litter (Table 5.1) was not reflected in a high base cation 

amount in its leaf litterfall (Table 5.2). However, since black locust and aspen litter have shown to 

be easily decomposable (Aerts and Chapin, 2000; Cooke and Weih, 2005), both species promote 

a fast base cation return to the soil, explaining the highest base cation fluxes in humus leachates 

under these species.  

Summarized, with respect to Cd and Zn mobilization, aspen achieved the best results as it 

generated extremely low H+ fluxes in its forest floor leachate. It seems that aspen’s high base 

cation leachate fluxes also contributed to stabilization of Cd and Zn: despite significant 

accumulation of total Cd and Zn concentrations in its topsoil, we found that its immediately 

bioavailable (CaCl2-extractable) Cd and Zn topsoil concentrations were not elevated (see Table 

3.6). This made us assume that the metal-stabilizing effect of the base cations entering the soil via 

forest floor leachates (by buffering protons and hence counteracting soil acidification) was 

relatively more decisive than their mobilizing effect (by competing with metal ions for sorption 

sites). Scots pine and oak, on the contrary, were the inferior species with respect to Cd and Zn 
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mobilization, because of high H+ fluxes as well as low base cation fluxes in their forest floor 

leachates. Douglas fir, black locust and silver birch scored intermediately.  

 

5.4.2 Fluxes of Cd and Zn 

Although the Cd flux through leaf litterfall in aspen stands was 10 to 34 times higher than the 

litterfall fluxes of Cd under the other studied species (Table 5.2), the total Cd fluxes via forest 

floor leachate were only 1.2 to 2.1 times higher under aspen (see Fig 5.2). In analogy to Cd fluxes, 

we had expected higher Zn leachate fluxes under aspen since the Zn flux through leaf litterfall in 

aspen stands was 4.4 to 10.6 times higher compared to the other tree species (Table 5.2).  

We here propose that the low amounts of Cd and Zn leaching under aspen’s forest floor are 

possibly caused by soil biotic activity, showing divergent behavior under different tree species. 

Burrowing earthworms, for example, were shown to pull significant amounts of leaf litter in the 

soil (Edwards, 2004; Reich et al., 2005). Although we did not sample the earthworm populations 

in this forest, recent studies (Reich et al., 2005; Jacob et al., 2009; De Schrijver et al., 2012) 

revealed that tree species with high leaf litter Ca concentrations are beneficial for the amounts 

and species composition of earthworms, causing permanent mixing of topsoil with litter, 

earthworm excrements and soil from deeper soil layers. As such, burrowing earthworms 

counteract soil acidification (De Schrijver et al., 2012). Earthworm sampling in a 38-yr-old post-

agricultural forest showed a significantly higher biomass and richness of burrowing earthworm 

species under a poplar species (Populus x euramericana) compared to six other broadleaved tree 

species (unpublished results). The significantly higher contents of organic matter (cfr. OC 

content), the higher CEC and soil pH found in the topsoil under aspen at our study site (see 

Table 3.5) are confirming our hypothesis of high earthworm amounts under aspen (in line with 

Reich et al., 2005).  

Relative differences between the tree species were even smaller when looking at dissolved Cd 

fluxes (Fig 5.2). Leachate pH under aspen was significantly higher compared to the other species 

(see Appendix A.1), resulting in low dissolved Cd fluxes in aspen leachate. This finding is 

consistent with the results of Huang et al. (2011), who found that Cd was mobilized from the 

forest floor dominantly during episodes of lower pH, in a Norway spruce (Picea abies) forest. 

However, as total Cd fluxes in aspen leachate were elevated compared to the other species, it 

indicates that there is a (soluble) fraction of Cd in aspen's leachate which might become 

dissolved, and thus prone to leaching to deeper soil layers or groundwater, in more acid 

conditions. 



Forest floor leachate fluxes 

 109 

The elevated input of Cd and Zn via leaf litterfall is giving rise to higher total Cd and Zn 

concentrations in the topsoil under aspen compared to the other tree species and to deeper soil 

layers (see Table 3.6). Aspen trees thus circulate significant amounts of Cd and Zn via their leaf 

litter, yet this is not univocally reflected in higher metal fluxes in their forest floor leachates, 

especially not when considering dissolved metal fluxes. These findings were thus in contrast with 

our hypothesis (ii), namely that tree species with high metal concentrations in their leaf litter give 

rise to higher metal fluxes in their forest floor leachates. The observed Cd and Zn accumulation 

in the topsoil under aspen might be caused by high activity of burrowing earthworms, mixing the 

topsoil with contaminated litter. Our results, showing that metal leaching from the forest floor 

under aspen was not as high as foreseen, might imply that the risks of below-ground metal 

dispersion under aspen might actually be smaller than expected. More research on this issue is 

done in Chapter 7. 

As only input of elements via litterfall was measured, the total element input to the forest floor 

was underestimated. The sum of element fluxes via throughfall (TF) and litterfall (LF) constitutes 

the total element input to the forest floor and includes both external (atmospheric) and internal 

(uptake from soil and recycling through litterfall and foliar leaching) sources (Ukonmaanaho et 

al., 2001). Metal emissions from the factory nearby have been almost eliminated during the past 

decades and therefore we did not measure metal fluxes via TF. However, secondary deposition of 

Cd and Zn, due to resuspension of contaminated soil, may nowadays contribute to metal input to 

the forest floor and (top)soil (Seuntjens, 2002; van der Grift and Griffioen, 2008). Average Cd 

concentrations in the air, measured from 2005 until 2008 in the close vicinity of our study site 

(data of the Flemish Environment Agency), were far below the European target value for Cd (5 

ng m-3). However, tentative estimations, based on average Cd and Zn concentrations in the air 

and deposition velocity, indicated that TF fluxes of Cd and Zn were considerable. Aspen was the 

only species where LF fluxes of Cd and Zn largely exceeded the estimated TF fluxes. For the 

other tree species, the Cd flux through TF was estimated to be higher than through LF, whereas 

for Zn both input fluxes showed an equal share. Moreover, our estimations suggested that Cd TF 

fluxes might account for the greater part of the discrepancy between Cd fluxes in litterfall (Table 

5.2) and those in forest floor leachates (Fig 5.2) for the tree species that did not accumulate Cd in 

their leaves. This insight emphasizes the relevance of TF measurements within future research. 

 



Chapter 5 

110 

5.5 Conclusions and outlook 

Tree species can exert a significant influence on metal mobility, through leaching of H+, DOC, 

base cations and/or metals from the forest floor. After all, forest floor leachate chemistry 

determines to a large extent the biogeochemical processes in the soil and the soil solution 

chemistry, thus affecting metal mobilization and below-ground dispersion risks.  

Our results revealed aspen, silver birch and Douglas fir as species with the lowest H+ and DOC 

fluxes (Fig 5.2), at least at this young stage of forest development. With regard to the base cation 

fluxes, aspen and black locust showed the highest fluxes (Fig 5.2). Hence, considering H+, DOC 

as well as base cation fluxes, it seems that aspen can minimize metal mobility in the (top)soil, 

whereas oak and Scots pine might enhance (top)soil acidification, and thus bear a potential risk 

for below-ground metal dispersion. Douglas fir, black locust and silver birch seem to be 

intermediate options, although we expect the H+ and DOC fluxes in their forest floor leachates 

to increase significantly with increasing forest development (see also § 5.4.1). 

The preceding results were confirmed by the immediately bioavailable (CaCl2-extractable) Cd and 

Zn concentrations, that appeared not to be elevated in the topsoil under aspen, despite significant 

accumulation of total Cd and Zn (see Table 3.6). For Scots pine and oak, however, no significant 

changes in total or immediately bioavailable Cd and Zn topsoil concentrations, compared to 

deeper soil layers, were found (yet) in this young forest.  

Leaf litter of aspen is contaminated with Cd and Zn (Tables 5.1 and 5.2), resulting in a significant 

Cd and Zn accumulation in the topsoil under aspen (see Table 3.6). For that reason we previously 

recommended to avoid Populus species when afforesting Cd and Zn contaminated lands (Mertens 

et al., 2007; see also Chapter 3). Moreover, total Cd fluxes in aspen’s forest floor leachate were 

slightly but significantly higher than those in the other species’ leachates (Fig 5.2). Nevertheless, 

metal leaching from the forest floor under aspen was not as high as foreseen, especially not when 

considering dissolved metal fluxes. This might imply that the risks of below-ground metal 

dispersion under aspen might actually be smaller than expected. More research on this issue is 

done in Chapter 7. 

Aspen revealed elevated Cd fluxes on the one hand, but low H+ fluxes and high base cation 

fluxes on the other hand in its forest floor leachate. The first process implies a risk of below-

ground metal dispersion in the soil profile, whereas the latter processes might contribute to 

stabilization of the released metals in the soil. Given the current set-up, it is hard to determine 

which process will be decisive with respect to Cd and Zn leaching. Anyhow, until further 

research, the elevated metal concentrations in aspen’s leaf litter make this species inappropriate 
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for phytostabilization purposes because of the risk of above-ground metal dispersion. Further 

research is thus essential, in particular on the chemical composition of the soil solution in deeper 

soil layers under the different tree species (see Chapter 7). 
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Can shrub species with higher litter quality mitigate 
soil acidification in pine and oak forests 

on poor sandy soils? 
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Abstract 

This study, aiming to unravel whether topsoil conditions under tree species with nutrient-poor 

leaf litter can be altered by admixing a shrub layer, was performed in 12 pine (mainly Pinus 

sylvestris) and 12 oak (Quercus robur) stands on sandy podzolic soils in northeast Belgium. We 

examined the effects of presence of a shrub layer on forest floor mass and topsoil chemical 

properties related to soil acidification. The shrub species included were European rowan (Sorbus 

aucuparia), alder buckthorn (Rhamnus frangula) and black cherry (Prunus serotina). For each tree 

species, 60 – 90 years old stands were selected containing shrubs present in varying cover classes: 

sparse (< 20 %), intermediate (20 - 70 %) and dense (> 70 %). The oak stands were characterized 

by less but ‘nutrient-richer’ litterfall, compared to the pine stands. This was reflected in less 

humus build-up (FH-horizon) and higher pH, CEC, BS and lower C/N in the topsoil in the oak 

stands compared to the pine stands. However, despite the fact that the shrubs produced litter 

with significantly higher base cation and N concentrations than that of the studied tree species, 

we did not find any significant changes in topsoil conditions in the pine and oak stands under 

study, even under dense shrub layers (87 – 91 % cover). 

 

 

 

 

 

 

 

 

 

 

 

 

 

         ----------------------------------------------------------------------------------------------------------- 

After: Van Nevel, L., Mertens, J., De Schrijver, A., De Neve, S., Verheyen, K., 2014. Can 

shrub species with higher litter quality mitigate soil acidification in pine and oak forests on 

poor sandy soils? Forest Ecology and Management, 330, 38-45. 
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6.1 Introduction 

Acidification of forest soils has been, and still is, an important concern in large parts of Europe 

and North America. Many studies have reported soil pH decreases in forests during the past 

decades (e.g. Johnston et al., 1986; Ahokas, 1997; Drohan and Sharpe, 1997; Hovmand and Bille-

Hansen, 1999; Miller et al., 2001; Jönsson et al., 2003; De Schrijver et al., 2006). Atmospheric 

deposition of acidifying (SOx, NOy) and potentially acidifying (NHx) compounds undoubtedly 

and unequivocally drives forest soils towards more acidic conditions, but the rate of soil 

acidification is also determined by the litter quality and the related build-up of the forest floor 

(De Schrijver et al., 2012). Sandy podzolic soils, which are naturally acidic and depleted in 

nutrients, are characterized by low cation exchange capacity (CEC) and low acid neutralizing 

capacity (Andersen et al., 2002) and have shown to be particularly susceptible to further 

acidification (Wiklander and Andersson, 1972). Such sandy podzolic soils are widespread in the 

northeastern part of Belgium, the region of the present study. On top of that, tree species choice 

is limited on these poor sandy soils, mainly coming down to species with nutrient-poor leaf litter, 

e.g. pine (Pinus spp.) and oak (Quercus spp.).  

Soil acidification leads to numerous adverse ecological and biogeochemical effects on (forest) 

ecosystems, such as depletion of essential base cations (Mg2+, Ca2+, K+) and increased availability 

of potentially toxic elements (e.g. Al3+) (Bowman et al., 2008; Marlow and Peart, 2014). In this 

respect, we aimed to investigate whether mitigation of soil acidification is feasible by mixing pine 

and oak with shrub species that have higher nutritional leaf litter quality, potentially facilitating 

litter decomposition and base cation release to soils. In this study, leaf litter quality comprises 

base cation and N concentrations. After all, higher base cation concentrations and lower C/N 

ratio enhance litter decomposition (e.g. Hobbie et al., 2006; Zhang et al., 2008), promoting faster 

base cation cycling (Melillo et al., 1982), which will in turn increase the buffering capacity of the 

soil (De Schrijver et al., 2004; Clarholm and Skyllberg, 2013). Hence, in what follows, we will use 

the terms ‘nutrient-rich’ and ‘nutrient-poor’ leaf litter. 

The ameliorative effects of European rowan (Sorbus aucuparia), alder buckthorn (Rhamnus frangula) 

and black cherry (Prunus serotina) have been proven during the last decades (e.g. Emmer et al., 

1998; Kooijman et al., 2000; Starfinger et al., 2003; Lorenz et al., 2004; Becker et al., 2013; Carnol 

and Bazgir, 2013; Kacálek et al., 2013). The majority of these studies, however, compared species 

effects in homogeneous stands. However, tree/shrub species may have different effects when 

present in a mixture compared to pure stands (Vandermeer, 1989; Hättenschwiler et al., 2005). 

We found some studies though on the effects of shrub admixtures in stands composed of tree 
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species with nutrient-poor leaf litter (Brandtberg et al., 2000; Mohr and Topp, 2005; Aubert et al., 

2006), but they dealt with other species and soil types than those we consider in the present 

study. Moreover, the required shrub cover to achieve a biogeochemical effect in the (top)soil is 

still underexplored. Hence, our key questions were (1) can soil acidification of podzol soils in 

pine and oak stands be counteracted by admixing shrubs such as S. aucuparia, R. frangula or P. 

serotina and (2) if so, what is the threshold cover of the shrubs needed to obtain a significant 

effect in the topsoil? We expect a species effect on the nutrient return especially via foliar litterfall 

(Prescott, 2002; Reimann et al., 2007; Vesterdal et al., 2008; Hojjati et al., 2009; Carnol and 

Bazgir, 2013). Therefore, we hypothezise in zones with dense shrub cover (i) a higher nutrient 

return to forest floor via litterfall, (ii) a thinner forest floor and (iii) a higher topsoil pH and base 

saturation, compared to zones without shrubs. 

 

6.2 Materials and Methods 

6.2.1 Study area and stand selection 

The study was conducted in the Campine ecoregion, situated in the northeastern part of Belgium. 

The climate is sub-atlantic: the mean annual precipitation is about 800 mm and is evenly 

distributed throughout the year. The mean annual temperature is 9.0 °C (Royal Meteorological 

Institute of Belgium, http://www.kmi.be/). The region’s characteristic forests are secondary pine 

plantations - mainly of Scots pine (Pinus sylvestris) and, to a lesser extent, Corsican pine (P. nigra 

subsp. Laricio) - on nutrient-poor and acidic sandy soils. The pine stands are interspersed with 

deciduous stands of pedunculate oak (Quercus robur), red oak (Q. rubra), common beech (Fagus 

sylvatica), silver birch (Betula pendula), and downy birch (B. pubescens). The most common species in 

the shrub layer are rowan (S. aucuparia), black cherry (P. serotina), and alder buckthorn (R. frangula) 

(Waterinckx and Roelandt, 2001). 

We selected 24 stands (12 pine, 12 oak), spread over 9 forests on sandy soils in the Campine 

region. The distance between the paired oak and pine stands ranged from 100 to 1200 m. Only 

60 – 90 years old stands, with a homogeneous, even-aged tree layer of pine (7 stands with P. 

sylvestris and 5 stands with P. nigra) or oak (Q. robur) and a tree canopy cover of more than 50% 

were considered for our study. Another crucial selection criterion was the presence of a shrub 

layer of European rowan (S. aucuparia), alder buckthorn (R. frangula) or black cherry (P. serotina), 

with at least three cover classes present in each stand: sparse (< 20 %), intermediate (20 - 70 %), 

dense (> 70 %). In about half of the selected stands there was a homogeneous shrub layer of one 

of the three considered shrub species, whereas in the other half the shrub layer was dominated by 
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one of the considered species and blended with a minor share of one or two of the remaining 

shrub species. The shrubs had developed naturally in the stands (they were not planted). 

Fig 6.1 shows the location of the selected forests in the Campine region. In these forests, the 24 

stands under study were selected. The exact location, species composition, canopy cover and 

basal area of the tree and shrub layer of the 24 selected stands are presented in Table 6.1.  

 

 

 

 

 

 

 

6.2.2 Experimental set-up and sampling 

In each of the 24 selected stands, the percentage cover of the tree and shrub layer was estimated 

visually in August 2011 and three shrub cover classes (sparse (S), intermediate (I), dense (D)) 

were allocated. Each cover class represented a patch within the stand of at least 20 m diameter. 

The center of each cover class was allocated as a sampling point. Around these sampling points, 

the basal area of trees and shrubs was measured and litterfall, forest floor and mineral soil were 

sampled as described below.  

The basal area of all trees and shrubs with a diameter at 1.3 m height (DBH) > 7 cm was 

determined in a circle with radius 9 m around the sampling point, whereas the shrubs with DBH 

< 7 cm were measured within a smaller radius of 4.5 m. 

Litterfall was collected with 1 m high litterfall traps that had a circular surface area of 0.24 m². 

Every sampling point was provided with a litterfall trap, which was installed in September 2011 

and emptied monthly during autumn 2011 until the broadleaved species were leafless (October – 

Figure 6.1 Map of the Campine region, showing the location of the forests in which the 24 stands 

were selected 
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December). Litter samples were oven-dried (70 °C) to constant weight. Prior to weighing (± 0.01 

g), samples were sorted out by hand to separate non-foliar litterfall (mainly twigs and fruits) and 

foliar litterfall of the considered species. As coniferous litter is shed year-round, annual litterfall 

amounts of the pine trees were obtained by proportionally upscaling their litterfall gained during 

autumn 2011. Therefore we used a conversion factor based on litterfall data of Scots pine, which 

was collected in 2007-2008 in Waaltjesbos (see § 3.2.2 and § 3.2.3). On the basis of this 2007-

2008 dataset, we established that Scots pine clearly had a litterfall peak during autumn (October - 

December), representing 57% of its annual litterfall.  

The forest floor was defined as the organic material above the mineral soil and was sampled in 

September - October 2012, just before the onset of (deciduous) foliar litterfall, when forest floor 

mass was at a minimum. The forest floor (comprising the litter (L), fragmentation (F) and humus 

(H) horizons (Jabiol et al., 1995)) was collected in two replicate squares within a radius of 1 m 

around each sampling point, using a 20 cm x 20 cm wooden frame. The three horizons (L, F, H) 

were collected separately. Sampling was done carefully in order to avoid contamination with the 

mineral material. Forest floor samples were oven-dried (70 °C) to constant weight; twigs, fruits 

and non-litter material were discarded and the remaining fraction was weighed (± 0.001 g).  

Mineral soil sampling was carried out simultaneously with forest floor sampling. Underneath 

every removed forest floor sample, the topsoil (0 - 5 cm) was sampled with a Kopecky ring 

(diameter 5 cm), by pooling two core samples. Soil sampling was confined to the upper 5 cm of 

the soil, as changes in soil pH and buffering capacity were expected to occur here first (De 

Schrijver et al., 2012). 

  

 

Sampling of the forest floor and the mineral topsoil 
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6.2.3 Sample analysis 

Foliar litterfall samples were ground using a centrifugal mill (Retsch ZM1, Germany) and 

analyzed for Ca, K, Mg, C and N. The non-foliar litterfall fraction was not analyzed. K, Ca, Mg 

concentrations were measured by means of flame atomic absorption spectrophotometry (Varian 

SpectrAA-240) after a destruction in HNO3–HClO4. C and N concentrations were determined by 

elemental analysis (Vario Max CNS, Germany). Mineral soil samples were oven-dried to constant 

weight at 40 °C. Aggregates were broken and soil was passed through a 2 mm sieve. Soil pH-H2O 

was determined in a 1:5 soil/water solution with a glass electrode. A subset of 41 soil samples 

was also analyzed for effective CEC (CECe), C and N. Effective CEC was calculated as the sum 

of K+ + Mg2+ + Ca2+ + Al3+, measured by flame atomic absorption spectrophotometry using 

BaCl2 (0.1 M) as extractant (ISO 11260). C and N concentrations were determined by dry 

combustion (Vario Max CNS, Germany).  

 

6.2.4 Data analysis 

Base cation concentrations in foliar litterfall were calculated by summing the equivalents of K+, 

Ca2+ and Mg2+. Nutrient (base cation and N) return via litterfall was calculated by multiplying 

foliar litterfall amount by its nutrient concentrations. Base saturation of the topsoil was calculated 

as (K+ + Mg2+ + Ca2+)/CECe. The values of forest floor mass and topsoil chemical properties of 

the two replicates per sampling point were pooled and their averages were used for further 

statistical analyses. As no H-horizon was developed in about half of the sampling points, we 

pooled the F and the H horizons and considered them together as FH-horizon in all further 

analyses. 

The three shrub species were considered together as ‘shrubs’ in all further analyses, in order to 

perform more straightforward data analysis. Their litter quality (C/N ratio, base cation and N 

concentrations) is shown in Table 6.2. When more than one of the three shrub species was 

present in the shrub layer around a sampling point, their foliar litterfall and nutrient amounts 

were summed (Fig 6.2 a, e & f) and their nutrient concentrations and C/N ratio were calculated 

as weighted average, based on their respective foliar litterfall amounts (Fig 6.2 b-d). 

To unravel whether establishment of the shrubs was related to tree density, correlations between 

basal area and foliar litterfall amounts of the shrubs on the one hand and basal area of the trees 

on the other hand were calculated by means of Pearson correlation coefficients. 

Response variables were foliar litterfall and its nutritional content (C/N ratio, base cation and N 

concentrations and amounts), together with the forest floor mass (L- and FH-horizon) and 
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topsoil properties (pH-H2O, CECe, base saturation, C concentration, C/N ratio). The 

experimental design was hierarchical, with shrub cover classes nested within tree species (stand 

type) and tree species replicated at forest level, so multilevel models were applied. The lme 

function in the nlme library of R version 3.0.1 was used here (Bates et al., 2011; R Core Team, 

2014). First, we examined whether there was a tree species and/or a shrub cover effect on the 

response variables. Therefore, we constructed a model with ‘forest’ as random effect term and 

‘tree species’ and ‘shrub cover’ (nested within tree species) as fixed effect terms. Subsequently, we 

split the dataset in two subsets - one with Pinus stands and another with Quercus stands - to 

examine the effect of the shrub layer within each stand type. Therefore, we built an analogous 

model with ‘forest’ as random effect term and only ‘shrub cover’ as fixed effect term, which was 

applied to the Pinus and Quercus datasets separately. Foliar litterfall amount was included as 

covariate in the models (those applied to forest floor mass and topsoil properties) to control for 

potential effects of differences in litter input on the forest floor and topsoil properties. But as it 

did not have a significant effect on any of the response variables, it was removed again. The 

effects of tree species (on the whole dataset) and of shrub cover (within each stand type) on the 

response variables were tested using analysis of variance (ANOVA).  

 

 

Table 6.2 Foliar litterfall quality of the shrub species under study (average ± st.dev); differences 

between species were tested using analysis of variance (ANOVA) with a Bonferroni post hoc 

test, values with the same letter did not differ between species (p < 0.05) 

 BC  
(meq kg-1) 

N  
(%)  

C/N  
(-) 

alder buckthorn 1164 ± 140 b 2.16 ± 0.25 b 23.5 ± 3.1 a 

European rowan 995 ± 156 a 2.06 ± 0.25 b 25.2 ± 3.2 a 

black cherry 944 ± 193 a 1.52 ± 0.37 a 35.4 ± 10.1 b 
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Table 6.1 Location, species composition, canopy cover and basal area of the tree and shrub layer (in cover classes S, I, D) of the selected stands 

Forest Location  Tree species Tree cover 1 
(%) 

Basal area trees  
S - I - D §  
(m² ha-1) 

Main shrub 
species 

Shrub cover  
S - I - D §  

(%) 

Basal area shrubs  
S - I - D §  
(m² ha-1) 

Peerdsbos Brasschaat 51°16’ N  Pinus 55 31.8 - 25.6 - 29.3 S. aucuparia 20 - 60 - 80 2.9 - 4.8 - 6.4 
  4°29′ E Quercus 85 19.3 - 17.5 - 36.3 S. aucuparia 5 - 35 - 90  0 - 4.0 - 7.8 

Zoerselbos Zoersel 51°16′ N  Pinus 75 36.3 - 31.7 - 44.6 S. aucuparia 0 - 45 - 90 0 - 1.0 - 2.2 
  4°42′ E Pinus 70 40.4 - 42.5 - 30.5 R. frangula 2 - 50 - 95 0.3 - 2.9 - 7.0 
   Quercus 60 30.5 - 31.9 - 16.6 R. frangula 5 - 60 - 95 0.6 - 6.3 - 5.0 
   Quercus 80 29.5 - 28.1 - 17.9 S. aucuparia 10 - 60 - 85 0.6 - 3.8 - 6.4 

Grotenhout Vosselaar 51°18’ N Pinus 60 22.4 - 43.8 - 36.1 R. frangula 0 - 45 - 90 0 - 1.0 - 2.1 
  4°53’ E Pinus 55 14.8 - 24.9 - 40.8 R. frangula 2 - 60 - 95 0 - 3.8 - 3.9 
   Quercus 85 10.1 - 23.3 - 11.8 S. aucuparia 10 - 45 - 90 0.2 - 2.6 - 11.2 
   Quercus 75 12.1 - 25.8 - 18.2 Sorbus & Rhamnus 0 - 55 - 80 0.2 - 7.5 - 7.4 

Overheide Ravels 51°24’ N   Pinus 70 28.2 - 28.5 - 44.6 R. frangula 0 - 40 - 100 0 - 0.6 - 3.0 
  4°59’ E Quercus 80 19.0 - 21.6 - 19.8 R. frangula 10 - 60 - 100 0 - 1.3 - 7.5 

Hoge Vijvers Arendonk 51°21’ N Pinus 75 44.0 - 51.0 - 42.0 R. frangula 0 - 45 - 95 0 - 0.2 - 2.2 
  5°05’ E Quercus 75 16.7 - 9.5 - 10.4 R. frangula 0 - 50 - 100 0.3 - 1.5 - 5.4 

Gruitrodebos  Meeuwen- 51°04’ N Pinus 55 44.9 - 24.8 - 14.5 P. serotina 5 - 65 - 90 0.3 - 2.6 - 2.9 
 Gruitrode 5°36’ E Pinus 75 55.2 - 45.8 - 43.8 P. serotina 1 - 62 - 95 0 - 2.4 - 3.6 
   Quercus 65 (80) 22.4 - 28.2 - 6.9 R. frangula 7 - 40 - 70 0 - 0.5 - 1.6 
   Quercus 70 (90) 21.4 - 28.4 - 21.8 P. serotina 8 - 45 - 75 1.3 - 0.8 - 3.7 

In Den Hechtel- 51°08′ N  Pinus 85 48.8 - 50.9 - 44.1 R. frangula 7 - 40 - 77 0 - 0.9 - 1.2 
Brand Eksel 5°20′ E Quercus 85 (95) 21.9 - 23.6 - 20.9 R. frangula 10 - 50 - 90 0.1 - 0.4 - 2.1 

Pietersembos Lanaken 50°54′ N  Pinus 60 25.0 - 31.6 - 40.0 P. serotina 15 - 53 - 92 0 - 5.5 - 4.8 
  5°37′ E Quercus 75 (90) 26.5 - 20.9 - 32.3 R. frangula 0 - 65 - 80 0 - 1.6 - 1.3 
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Postel Postel 51°17’ N  Pinus 85 25.6 - 30.7 - 43.3 P. serotina 0 - 62 - 95 0 - 1.5 - 5.9 
   5°11’ E Quercus 65 (80) 32.3 - 13.7 - 21.3 P. serotina 20 - 55 - 85 0 - 2.2 - 3.8 
  

Averages 
Pinus 68 34.8 - 35.8 - 37.8  4 - 52 - 91  0.3 - 2.3 - 3.8 

  Quercus 75 (81) 21.5 - 21.0 - 18.2  7 - 52 - 87  0.3 - 2.7 - 5.3 

1 Tree cover of the main tree species (pine or oak); values between brackets denote total tree cover (main + additional tree species)  

§ S=sparse, I=intermediate, D=dense 
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6.3 Results 

6.3.1 Foliar litterfall 

Annual foliar litter production from the pine trees was higher compared to the oak trees (Table 

6.3). Total foliar litterfall (trees + shrubs) was also higher in the pine stands than in the oak 

stands (Table 6.4). Relative contributions of shrub litterfall to total litterfall amounted to 0.1%, 

6% and 17% on average, in the sparse, intermediate and dense shrub cover classes, respectively 

(Fig 6.2a). Within the pine stands, there was a significant effect of shrub cover, with higher total 

litterfall amounts in the zones with a denser shrub layer. However, despite similar relative 

contributions of shrub litterfall to total litterfall in both stand types, this effect could not be 

found in the oak stands (Table 6.4 and Fig 6.2a). Correlation analyses revealed that neither basal 

area, nor foliar litterfall of the shrubs was related to the basal area of the trees (data not shown). 

Litterfall quality was significantly better in the oak stands compared to the pine stands, as was 

shown by lower C/N ratio and higher base cation and N concentrations (Table 6.4 and Fig 6.2 b-

d). Furthermore, the shrubs produced higher quality litter than the tree species (Table 6.3). The 

species effect was particularly remarkable for base cation concentrations, being 3.5 times higher 

in the shrub litterfall compared to the pine litterfall, and almost double compared to the oak 

litterfall. Hence, the denser the shrub layer, the higher the base cation concentrations were, both 

in the pine and oak stands (Table 6.4). However, for N, this pattern could only be retrieved in the 

pine stands, and the C/N ratio was not influenced by the shrub cover (Table 6.4).  

Even though there was less foliar litterfall in the oak stands (Table 6.4 and Fig 6.2a), the base 

cation and N return in these stands was significantly higher compared to the pine stands. 

Nevertheless, the presence of a dense shrub layer in the pine stands induced significantly higher 

nutrient amounts via litterfall, reaching the level of those in the oak stands (Table 6.4 and Fig 6.2 

e-f). No effects of shrub cover on nutrient return were found in the oak stands. Relative 

contributions of the shrubs’ base cation amounts to total base cation return amounted to 27% 

and 40% on average, in the Q-D and P-D zones respectively (Fig 6.2e). 
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Table 6.3 Foliar litterfall and its nutrient concentrations and C/N ratio of the trees and shrubs 

under study (average ± st.dev); differences between species were tested using analysis of 

variance (ANOVA) with a Bonferroni post hoc test, values with the same letter did not differ 

between species (p < 0.05) 

 Foliar litterfall   
(kg ha-1 yr-1) 

 BC             
(meq kg-1) 

N                      
(%)  

C/N                     
(-) 

pine 2891 ± 581 b  300 ± 94 a 0.93 ± 0.16 a 59.1 ± 9.2 c 

oak 2343 ± 678 a  574 ± 80 b 1.53 ± 0.17 b 34.0 ± 3.7 b 

shrubs § 

S 4 ± 11 
P 

Q 

1008 ± 223 c 

1113 ± 125 d 

1.90 ± 0.41 c 

2.03 ± 0.36 c 

28.7 ± 9.3 a 

25.5 ± 5.3 a 
I 158 ± 123 

D 500 ± 264 

§ Shrubs’ foliar litterfall amounts in cover classes S, I, D (S=sparse, I=intermediate, D=dense) and their 
litter quality in the pine (P) and oak (Q) stands 
 

 

6.3.2 Forest floor mass 

Forest floor mass was significantly affected by the tree species: the mass of the L-horizon was 

higher in the oak stands, whereas the FH-horizon mass was higher in the pine stands (Table 6.4). 

Within the pine stands, there was a significant effect of shrub cover on the L-horizon mass, with 

lowest mass in the zones with sparse shrub cover. No effect of shrub cover on the mass of other 

forest floor horizons (FH pine, L & FH oak) could be found (Table 6.4).  

 

6.3.3 Topsoil  

pH, CECe as well as base saturation of the topsoil were significantly higher in the oak stands than 

in the pine stands, whereas C/N ratio was significantly lower. There was no tree species effect on 

the C concentration. The presence of a shrub layer did not have significant effects on topsoil 

properties (Table 6.4). 
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Table 6.4 Total foliar litterfall (trees + shrubs) quantity and quality, forest floor mass and topsoil properties (average ± st.dev) in the pine and oak 

stands, and under the 3 shrub cover classes (S, I, D) within the respective stands (n = 72). p-values denote the effects of (1) tree species and (2) shrub 

cover within each tree species on the response variables, tested using analysis of variance (ANOVA) within linear mixed-effect models1,2. See 

methods for details on the model building. 

 Tree species Pinus Quercus 

Pinus Quercus p 1 S § I § D § p 2 S § I § D § p 2 

Foliar litterfall 

Amount 
(kg/ha/yr) 

3195 ± 633 2553 ± 626 < .0001 2837 ± 537 3160 ± 546 3589 ± 613 0.001 2486 ± 772 2605 ± 605 2569 ± 524 0.82 

C/N         
(-) 

56.9 ± 9.4 33.8 ± 4.0 < .0001 58.9 ± 9.3 58.3 ± 9.5 53.6 ± 9.4 0.13 33.8 ± 4.5 34.8 ± 3.7 32.6 ± 3.8 0.09 

BC conc 
(meq/kg) 

340 ± 106 615 ± 94 < .0001 281 ± 95 330 ± 111 408 ± 76 0.002 571 ± 58 613 ± 105 663 ± 96 0.02 

N conc 
(%) 

1.01 ± 0.18 1.56 ± 0.19 < .0001 0.93 ± 0.17 0.98 ± 0.15 1.11 ± 0.19 0.004 1.55 ± 0.23 1.51 ± 0.15 1.63 ± 0.16 0.07 

BC return 
(eq/ha/yr) 

1084 ± 402 1556 ± 411 < .0001 792 ± 311 1023 ± 362 1437 ± 231 0.0001 1416 ± 463 1559 ± 337  1693 ± 408 0.17 

N return 
(kg/ha/yr) 

32.4 ± 10.8 39.6 ± 10.1 0.0002 26.6 ± 7.4 30.5 ± 5.6 40.2 ± 13.4 < .0001 38.1 ± 11.5 38.7 ± 8.1 41.9 ± 11.0 0.46 

Forest floor mass 

L   
(ton/ha) 

3.4 ± 1.8 4.1 ± 1.2 0.04 2.6 ± 1.6 3.9 ± 1.9 3.9 ± 1.6 0.02 4.3 ± 1.1 3.8 ± 1.0 4.2 ± 1.3 0.46 

FH 
(ton/ha) 

54.5 ± 28.7 37.9 ± 24.3 0.004 48.0 ± 28.0 57.4 ± 27.5 58.1 ± 31.8 0.39 40.4 ± 28.1 39.5 ± 26.3 33.7 ± 19.2 0.77 
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Topsoil 

pH-H2O 
(-) 

3.92 ± 0.15 4.03 ± 0.23 0.01 3.95 ± 0.19 3.90 ± 0.12 3.90 ± 0.14 0.59 4.01 ± 0.26 4.05 ± 0.22 4.02 ± 0.24 0.86 

CECe * 
(cmol/kg) 

2.2 ± 0.7 4.4 ± 1.9 0.004 2.0 ± 0.4 1.8 ± 0.5 2.6 ± 0.8 0.16 4.0 ± 2.7 4.8 ± 2.0 4.4 ± 1.2 0.86 

BS *     
(%) 

28.6 ± 10.4 47.0 ± 15.9 0.006 28.4 ± 11.7 24.0 ± 8.2 32.1 ± 12.0 0.68 46.6 ± 18.2 39.3 ± 5.3 55.2 ± 19.8 0.30 

C *       
(%) 

5.4 ± 2.6 7.6 ± 4.1 0.16 3.8 ± 1.0 5.7 ± 3.2 6.7 ± 2.8 0.20 7.7 ± 6.9 6.9 ± 2.7 8.2 ± 2.4 0.91 

C/N *     
(-) 

19.2 ± 2.7 15.8 ± 3.2 0.01 18.4 ± 3.5 20.1 ± 3.3 19.4 ± 2.1 0.74 17.1 ± 4.3 15.0 ± 3.4 15.3 ± 1.7 0.40 

* analyzed on a subset of samples (n = 23) 
§ S=sparse, I=intermediate, D=dense 
Full factorial model R syntaxes:  
   1 Response ~ tree species + tree species:shrub cover + (1|forest)  
   2 Response ~ shrub cover + (1|forest)  
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Figure 6.2 Foliar litterfall quantity and quality under the 3 shrub cover classes (S, I, D) within the pine (P) and 

oak (Q) stands: foliar litterfall amounts (a), C/N ratio (b), base cation and N concentrations (c-d) and 

amounts (e-f) (average ± st.dev). Percentages (a, e-f) denote relative contributions of shrubs’ to total amounts. 
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6.4 Discussion 

6.4.1 Foliar litterfall 

Litterfall amount and quality affect the magnitude of the nutrient return from the forest canopy 

to the soil. Foliar litter production from the tree species (Table 6.3) was in line with similar 

studies on pine (Maddelein and Lust, 1992) and oak (Hansen et al., 2009), but higher than the 

values reported by Pausas (1997) and Reich et al. (2005). 

The presence of a shrub layer resulted in increased litterfall amounts in the pine stands, yet this 

was not the case in the oak stands, notwithstanding similar contributions of shrub litterfall to 

total litterfall in both stand types (Table 6.4 and Fig 6.2a). The pattern in the oak stands 

corresponded to what one could expect: a denser shrub layer in zones where the tree layer was 

sparser, thus yielding an equal amount of litterfall in zones with or without shrubs. However, as 

there was no correlation between basal area or litterfall of the shrubs and basal area of the trees, it 

seems that the establishment of the shrubs in the stands under study took place independently of 

tree density. The fact that the stands were quite open might explain this. 

There was a significant species effect on the nutrient concentrations and C/N ratio in foliar 

litterfall, resulting in a decreasing quality in the order shrubs > oak > pine (Table 6.3). Analogous 

results were found in other studies considering the same species (Lorenz et al., 2004; Reich et al., 

2005; Hobbie et al., 2006; Carnol and Bazgir, 2013; Kacálek et al., 2013). Base cation 

concentration in the shrubs’ foliar litterfall was higher in the oak stands than in the pine stands 

(Table 6.3), probably induced by a higher topsoil CECe in the oak stands (Table 6.4). Litterfall 

quality (nutrient concentrations and C/N ratio) in the oak stands, even without shrubs, was 

higher than in the pine stands with dense shrub layers (Table 6.4 and Fig 6.2 b-d). This implies 

that converting pine stands towards oak stands would be more effective to generate nutrient-

richer litterfall than planting shrubs under the pines. 

The shrubs’ contribution to the total base cation return in the Q-D (27%) and P-D (40%) zones 

(Fig 6.2e) was strikingly high given the low contribution of the shrubs to the total basal area 

(Table 6.1) and to the litterfall amounts (Fig 6.2a). This illustrates the relative importance of a 

shrub layer with species that have higher nutritional leaf litter quality. Nevertheless, the impact of 

increased nutrient return on the topsoil might as well be marginal. After all, litterfall quality will, 

more than litterfall quantity, influence litter decomposition and thus determine nutrient 

availability and cycling (Berg et al., 2001; Reich et al., 2005; Hansen et al., 2009). The fact that 

litterfall quality in the P-D zones was lower than in the oak stands (Table 6.4 and Fig 6.2 b-d), 

implied that the equal nutrient return was a matter of litterfall amounts. Therefore we expect that 
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oak stands without shrubs will still have better soil properties than pine stands with shrubs. 

Within the oak stands, shrubs did not have an impact on nutrient return via litterfall, due to a less 

pronounced difference between litterfall quality of oaks and shrubs (Table 6.3) on the one hand, 

and equal litterfall amounts in zones with or without shrubs (Table 6.4 and Fig 6.2a) on the other 

hand. Our hypothesis (i) of higher nutrient return in zones with a denser shrub layer was thus 

only supported in the pine stands.  

 

6.4.2 Forest floor mass 

Our data revealed a discrepancy between litterfall amounts and L-horizon mass: although litterfall 

was highest in the pine stands, the mass of their L-horizons was lowest (Table 6.4). This might 

imply that fragmentation of the litter layer under the pines proceeded faster than under the oaks. 

We suggest that this could be attributed to the leaf shape of both species. Firstly because the 

relative contact area between leaf tissue and decomposing organisms is higher for needles than 

for leaves, and secondly because a litter layer composed of needles has more direct contact with 

the underlying forest floor or soil than a litter layer composed of oak leaves (which is less dense). 

The former is thus better accessible to soil decomposers. Fast litter mass loss in the early 

decomposition stages has also been observed for Scots pine in previous studies (Hobbie et al., 

2006; see also Chapter 4). 

Once the litter is fragmented, leaf shapes become irrelevant and litter quality will be one of the 

dominant regulators of litter decomposition (Melillo et al., 1982; Berg et al., 1993; Gholz et al., 

2000; Prescott et al., 2004; Hobbie et al., 2006; Cornwell et al., 2008; Zhang et al., 2008). Given 

the inferior quality of the pine litter (Table 6.3), the higher mass of FH-horizons in the pine 

stands (Table 6.4) was thus in line with the expectations.  

Shrub cover hardly affected the forest floor mass in both stand types. Only the L-horizon mass 

in the pine stands was significantly higher when a shrub layer was present (Table 6.4). As we 

suggested earlier, the fragmentation of the litter layer is probably highly directed by the shape of 

the leaves/needles, developing faster for needle litter than for leaf litter. Our results, showing 

lowest L-mass in zones without shrubs under the pines, were consistent with this reasoning. Also 

the fact that shrub litterfall did not have an effect on the fragmentation process (expressed as L-

horizon mass) in the oak stands, agreed with our assumption.  

However, the lack of impact of shrub cover on the mass of the FH-horizons (Table 6.4) was 

rather unexpected, given the fact that the development of FH-horizons is governed by litter 

quality (Cornwell et al., 2008; Zhang et al., 2008). After all, the higher quality of the shrub litter 
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(Table 6.3) was reflected in higher base cation concentrations (in both pine and oak stands) and 

N concentrations (only in pine stands) in litterfall in zones with more shrubs (Table 6.4). 

Therefore, we presumed that zones with a denser shrub layer would be characterized by thinner 

FH-horizons, due to faster decomposition. But our hypothesis (ii) was thus not supported. We 

even found a contrary (although not significant) trend in the pine stands, suggesting higher FH-

horizon mass in denser shrub zones. This was most probably caused by the considerably higher 

litter input in denser shrub zones under the pines (Table 6.4 and Fig 6.2a). However, as the 

litterfall quality in these zones was higher as well (Table 6.4), we assume that the litter 

decomposed faster, ensuring the significant surplus of litterfall amounts in these zones not to 

result in a significant surplus of FH-horizon mass. The oak stands, on the other hand, produced 

an equal amount of litterfall in zones with or without shrubs, but with higher base cation 

concentrations in the denser shrub zones (Table 6.4). Hence, due to the latter, slightly faster litter 

decomposition and thus thinner FH-horizons were expected in these dense shrub zones. There 

was indeed a trend towards thinner FH-horizons in the Q-D zones, yet this was not significant, 

probably because the shrubs in the oak stands did not affect litterfall N concentration and C/N 

ratio (Table 6.4), both known as essential drivers of litter decomposition (e.g. Edmonds, 1980; 

Berg et al., 1993; Aerts, 1997; Jamaludheen and Kumar, 1999; Moro and Domingo, 2000; Zhang 

et al., 2008).  

The lack of significant impact of shrub cover on FH-horizons in the oak and pine stands might 

indicate a threshold effect. After all, both in P-D and Q-D zones, the shrubs constituted only 

17% of the total litterfall (Fig 6.2a). A higher contribution of shrub litterfall to total litterfall 

would increase the litter quality, by which the effects on the FH-horizons would probably 

become more pronounced. However, as the shrub cover was already very high in the dense shrub 

zones (on average 91% and 87% in the P-D and Q-D stands respectively; cfr. Table 6.1), much 

higher shrub litterfall amounts were not very likely, implying that the threshold could not be 

attained. 

 

6.4.3 Topsoil  

The topsoil in the oak stands had significantly higher pH, CECe and BS and lower C/N ratio 

than in the pine stands (Table 6.4). This was most probably the result of higher litterfall quality 

(in terms of C/N ratio and base cation concentration) and less humus build-up (FH-horizon) in 

the oak stands compared to the pine stands (Table 6.4). De Schrijver et al. (2012) also showed 

that forest floor build-up and leaf litter quality were the determining factors for changes in the 

topsoil pH, exchangeable Ca2+ and Al3+ concentrations. Additionally, it is generally known that 
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conifers receive higher dry deposition of acidifying compounds (SO4
2-, NH4

+, NO3
-) than 

deciduous trees (Augusto et al., 2002; Erisman and Draaijers, 2003; De Schrijver et al., 2004, 

2007, 2008; Wuyts et al., 2008), which probably intensified the difference in topsoil conditions 

between the oak and the pine stands. Finally, local differences in land use history in the selected 

forests might also have contributed to this pattern. 

The presence of shrubs did not have any significant effect on the topsoil properties though, 

neither under the oaks, nor under the pines (Table 6.4). Yet, in the pine stands the C 

concentrations in the P-D zones were almost twice as high compared to the P-S zones, linked to 

significantly higher litter input in denser shrub zones under the pines (Table 6.4 and Fig 6.2a). 

The fact that CECe, BS and C/N were not significantly affected by the shrubs in the oak stands 

was not surprising as the shrub layer did not even have an effect on the nutrient return via 

litterfall (Table 6.4), due to the minor difference between litterfall quality of oaks and shrubs 

(Table 6.3). However, considering the pine stands, we had expected that the higher nutrient 

concentrations in litterfall in denser shrub zones under the pines (Table 6.4) would have been 

reflected in improved topsoil conditions. After all, as we assumed that the nutrient-richer shrub 

litterfall enabled faster litter decomposition in the denser shrub zones under the pines (cfr. § 

6.4.2), one would expect faster nutrient cycling in those zones, resulting in higher buffering 

capacity of the underlying (top)soil (in terms of CECe and BS). Yet this was not the case, so the 

question was where the surplus of base cations and N that reached the forest floor via litterfall in 

the denser shrub zones under the pines was gone? It was very likely that the nutrients were stored 

in the forest floor (FH-horizon), as was also found by several other authors (e.g. Ovington, 1958; 

Maddelein and Lust, 1992; Emmer et al., 1998; Fisher and Binkley, 2000). The pine stands in our 

study were indeed characterized by a relatively thick FH-horizon. Hence, the nutrients originating 

from the shrubs’ richer litterfall might be ‘trapped’ in the forest floor and temporarily removed 

from the active nutrient cycles, as organic matter breakdown may take several years (Ovington, 

1954). Another process that could explain why the buffering capacity of the topsoil (CECe and 

BS) was not significantly increased in the P-D zones, might be leaching of the nutrients from the 

topsoil.  

Summarizing, there was a clear tree species/stand type effect on the topsoil properties, but no 

significant effects of shrub cover could be found. Our hypothesis (iii) was thus not supported. 

One might assume that more shrubs could have induced more effects in the topsoil (a threshold 

effect). However, given the high shrub cover in the dense shrub zones (Table 6.1), we believe 

that a higher shrub impact is not realistic (cfr. § 6.4.2). The age of the shrubs, on the other hand, 

might have been a reason for the lack of effects. The exact age of the shrubs was unknown, but 
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as they were well-developed we estimated that they were established in the stands since a couple 

of decennia. Following Emmer et al. (1998) and Vesterdal et al. (2002), we might expect chemical 

changes in the mineral (top)soil to emerge in the future. After all, ‘deacidification’ of forest soils 

is a slow and lengthy process (Vanguelova et al., 2010; Karlsson et al., 2011; Verstraeten et al., 

2012; Akselsson et al., 2013), certainly given the high rates of acidifying dry deposition in 

industrialized regions (De Schrijver et al., 2012). On the other hand, it might be quite likely that 

litter quality was not effective enough to alter the soil quality on our nutrient-poor and acidic 

sandy soils, and that it never will. Hommel et al. (2007) indeed stated that litter quality was the 

key factor to restore the buffering capacity of forest topsoils, yet this mechanism was only 

successful within a range of ‘intermediate’ (moderately poor) sites. Sandy soils should e.g. contain 

at least 15% loam to be susceptible for the ‘nutrient-rich litter effect’ (Hommel et al., 2007). 

Hence, our results suggest that planting shrub species with nutrient-richer litter in pine and oak 

stands will not change topsoil properties as soil acidity and base saturation, at least in the short to 

medium term. It seems that adequate tree species selection (or conversion of pine towards 

deciduous tree species) will probably be more effective to enhance topsoil conditions than 

planting shrubs under tree species with nutrient-poor leaf litter.  

 

6.5 Conclusions 

Despite the fact that the shrubs produced litter with significantly higher nutrient concentrations 

than that of the tree species, we did not find any effects on topsoil conditions in the pine and oak 

stands under study, even under dense shrub layers (87 – 91 % cover). Consequently, it seems thus 

not feasible to mitigate (top)soil acidification by introducing a shrub layer with nutrient-rich leaf 

litter in pine and oak stands on poor sandy soils, at least in the short to medium term. On the 

other hand, there was a tree species (stand type) effect, with less but ‘richer’ litterfall in the oak 

stands. This was reflected in faster litter decomposition (thinner FH-horizon) and higher pH, 

CECe, BS and lower C/N in the topsoil in the oak stands compared to the pine stands. Adequate 

tree species selection (or conversion of pine towards deciduous tree species) seems thus more 

effective to mitigate (top)soil acidification than planting shrubs under tree species with nutrient-

poor leaf litter. However, given the poor and acidic conditions of the sandy podzolic soils in the 

Campine region, the impact of the tree species that can thrive on this soil type will most probably 

be insufficient to affect topsoil properties related to soil acidification thoroughly.  
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7.1 Introduction 

Tree cover provides a sustainable vegetation that may potentially allow metals to remain 

permanently stabilized in soil or woody biomass. Due to their high evapotranspiration capacity, 

trees might reduce downward soil water fluxes and metal leaching losses to the groundwater 

(Pulford and Watson, 2003). Garten (1999) modeled the effect of a forest cover on Sr leaching 

from contaminated soil, mainly in shallow subsurface flow, and showed that the losses were 

reduced by approximately 16% under trees relative to grass. Indeed, forest ecosystems are 

characterized by higher LAI, higher roughness length and deeper root systems compared to other 

vegetation types, resulting in a significantly higher evapotranspiration capacity (Kelliher et al., 

1993; Zhang et al., 2001; Nosetto et al., 2005). However, evidence demonstrating that trees 

stabilize metals in the soil is still insufficient. It is known that metals can become vertically mobile 

in soil profiles under mature woodlands (Martin and Coughtrey, 1987; Dickinson et al., 1996; 

Clemente et al., 2008) and, clearly, this might threaten underground aquifers in the longer term 

(Pulford and Dickinson, 2005; Clemente et al., 2008). Other studies in highly contaminated 

mature woodlands, on the other hand, have demonstrated very low metal mobility and relatively 

steady-state conditions (Lepp and Dickinson, 2003). After all, transport of metals through the soil 

matrix is not only driven by evapotranspiration rates but also by a plethora of interrelated 

chemical reactions between the solid and the aqueous phase of the soil, including inorganic and 

organic complexation, oxidation-reduction reactions, precipitation-dissolution reactions and 

adsorption-desorption reactions (McLean and Bledsoe, 1992; Ross, 1994). Further research is 

thus required to evaluate the long-term feasibility of using trees to stabilize trace metals in soil. 

Within a forest ecosystem, there is a tree species effect on evapotranspiration rates (Köstner, 

2001; Zirlewagen and von Wilpert, 2001) as well as on leaching of organic and inorganic elements 

and ligands which affect metal solubility (e.g. Finzi et al., 1998; Augusto et al., 2002, 2014; De 

Schrijver et al., 2007, 2012; Fröberg et al., 2011). This implies that one of the key questions 

involved in realizing a sustainable and ecologically sound phytostabilization project is: which tree 

species will guarantee the lowest below-ground metal dispersion risks? Hence, the main goal of 

this study was to quantify the downward metal fluxes (seepage fluxes) under different tree 

species. Therefore, we collected the soil solution with suction cup lysimeters at 50 cm depth, for 

chemical analysis, and simulated the water fluxes at that depth by means of a numerical water 

balance model. 
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We hypothesize that (i) tree species which induce leaching of anions, base cations and/or protons 

will cause elevated Cd and Zn seepage fluxes and (ii) tree species with higher evapotranspiration 

rates will reduce Cd and Zn seepage fluxes. 

 

7.2 Materials and Methods 

7.2.1 Experimental set-up and sampling 

The study included the six considered tree species (oak, silver birch, black locust, aspen, Scots 

pine, Douglas fir) and was executed in the selected stands in ‘Waaltjesbos’ (see Fig 3.1). See § 

3.2.1 for full site descriptions and stand selection. A characterization of the soil of the study site 

is given in Table 3.5 (soil characteristics pH-KCl, OC content, CEC) and Table 3.6 (total and 

extractable soil Cd and Zn concentrations). The six tree species have divergent effects on the soil 

properties and the water balance and show different behaviour in metal cycling. Hence, seepage 

fluxes under these tree species are expected to reflect the biogeochemical and biophysical 

interactions that took place over the preceding years.  

In each selected stand, two suction cup lysimeters were installed at 50 cm depth to collect soil 

solution. The lysimeters consisted of (i) a PVC tube fitted with a porous ceramic cup and (ii) an 

opaque, glass, one-liter bottle connected to the PVC tube via a polyethylene tube and stored 

below ground to keep samples cool. The lysimeters were installed into the soil at an angle of 45° 

and a -50 kPa suction was applied. Following installation, they were flushed during four months 

prior to the actual monitoring, which was executed three-weekly between December 2009 and 

November 2010. On each sampling occasion, sample volumes in the lysimeters were measured in 

the field, and 300-ml subsamples were taken to the lab for chemical analysis. The samples were 

transported in a cooler, once in the lab they were stored in a freezer until analysis. Simultaneously 

with soil solution monitoring, groundwater levels were monitored with 2 m long observation 

wells in five stands spread over the forest.  

 

 

 

 

 

 

 

Suction cup lysimeter 
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7.2.2 Sample analysis 

Soil solution samples from different sampling occasions were pooled volume-weighted to bulk 

samples per season (winter: 23/11/2009 – 31/03/2010; spring: 01/04/2010 – 25/06/2010; 

summer: 26/06/2010 – 21/09/2010; autumn: 22/09/2010 – 25/11/2010). 

Prior to analyses, bulk samples were filtered through a 0.45 µm nylonfilter (Gelman), except for 

pH and total Cd and Zn concentrations, which were measured on the unfiltered samples. pH was 

measured with a pH Orion electrode; hydrogen ion (H+) concentration was calculated from the 

measured pH value. Total Cd and Zn concentrations were measured with ICP-MS (Perkin-Elmer 

Elan DRC-e) and ICP-OES (Varian Vista-MPX) respectively, after a destruction with HNO3 and 

H2O2. Filtered samples were analyzed for K+, Na+, Ca2+, Mg2+, Al3+ and NH4
+ (flame atomic 

absorption spectrophotometry, Varian SpectrAA-240), for NO3
-, SO4

2-, PO4
3- and Cl- (ion 

chromatography, Dionex ICS-90), for DOC (Total Organic Carbon Analyzer, Shimadzu TOC-

VCPN) and for dissolved Cd and Zn (respectively ICP-MS, Perkin-Elmer Elan DRC-e and ICP-

OES, Varian Vista-MPX). 

 

7.2.3 Soil water fluxes 

Since soil water fluxes cannot be measured directly, they have to be estimated indirectly (Haines 

et al., 1982; Kutílek and Nielsen, 1994; Weihermuller et al., 2007; Nieminen, 2011). Soil water 

fluxes at 50 cm depth were estimated with the numerical Hydrus-1D model (Šimůnek et al., 

1998). Soil physical characteristics [soil water retention curve, saturated hydraulic conductivity 

(Ksat) and volumetric soil water content (SWC)], precipitation and evapotranspiration rates are the 

driving variables in the model. For each of the considered tree species, one of the three selected 

stands was used to measure the soil physical characteristics. SWC was monitored by Time 

Domain Reflectometry (TDR) from March 2011 until February 2013. In every stand, four TDR 

probes (type CS625, Campbell Scientific) were installed (at 5, 15, 30 and 50 cm depth), and 

connected to a datalogger (type CR200, Campbell Scientific) which recorded SWC every 4 hours. 

Measurements of the soil water retention curve and Ksat were executed in the lab on undisturbed 

soil samples, taken with Kopecky rings in three replicates at 5, 15, 30 and 50 cm depth in 

September 2011. The samples’ soil water retention curve was constructed by measuring SWC at 

nine soil-matric potentials (cfr. Cornelis et al., 2005). Ksat was obtained with the constant-head 

method, using a closed permeameter (Eijkelkamp Agrisearch Equipment) (cfr. Pulido Moncada 

et al., 2014). 
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Simultaneously with SWC monitoring, bulk precipitation was monitored hourly in an open patch 

in the forest by means of a tipping bucket (type RG1, Delta-T Devices) connected to a CR200 

datalogger. However, to account for species-specific canopy interception loss (Ic), net 

precipitation (throughfall) was used as input in the Hydrus-1D model. This was calculated as P*(1 

– Ic), with Ic being quantified in situ from April 2011 until April 2012 (see § 5.2.3). Species-specific 

transpiration was simulated using the MAESPA model (Duursma and Medlyn, 2012), based on 

net precipitation, global radiation, air temperature, relative humidity, wind speed, atmospheric 

pressure, groundwater levels, leaf area index (LAI), specific leaf area (SLA) and stem numbers. 

Global radiation, air temperature, relative humidity, wind speed and atmospheric pressure were 

measured by the Royal Meteorological Institute of Belgium at a weather station located 15 km 

from the study site. Species-specific LAI was measured via a direct method: after determining dry 

mass and specific leaf area (SLA) of 18 subsamples per species, the annual leaf litterfall (see § 

4.2.1 and Table 4.4) was converted into LAI by multiplying by the SLA.  

In the Hydrus-1D model, the soil was conceptualized to be homogeneous. The model was 

calibrated by means of the SWC values from the first monitoring year (March 2011 – February 

2012), whereas the SWC values from the second monitoring year (March 2012 – February 2013) 

TDR probes at 5, 15, 30 and 50 cm depth (left) and the tipping bucket (right).  

Both connected to a datalogger 
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were used to validate the model. Model calibration was done by optimizing the fit between 

modeled and observed SWC values, by varying Ksat and the soil water retention curve parameters 

θr θs and n, as these were the most sensitive parameters. Calibration and validation results for each 

tree species are shown in Appendix B. The model systematically overestimated the observed 

SWC values during the summer season, probably due to rather low simulated transpiration values 

(see § 7.4.1). Finally, the model was run with species-specific net precipitation and transpiration 

data of November 2009 – November 2010 to calculate soil water fluxes at 50 cm depth during 

the period when soil solution was sampled. As bulk precipitation was not measured in situ during 

that period, we used data of the Royal Meteorological Institute of Belgium from a measuring unit 

closeby. Groundwater levels under the forest were generally deeper than 2 m, so we modeled the 

soil water fluxes according to the assumption of free drainage. In one of the oak stands, we 

measured a consistently high groundwater level (average at 62 cm depth) and therefore this stand 

was omitted from further analyses. 

 

7.2.4 Data analysis 

Seepage fluxes were calculated by multiplying the modeled soil water fluxes at 50 cm depth by the 

measured soil solution concentrations per season. The sum of these seasonal seepage fluxes over 

the one year monitoring period (November 2009 – November 2010) yielded annual seepage 

fluxes. Since the lysimeters did not yield any soil solution samples during the summer period, 

annual seepage fluxes did not comprise summer seepage fluxes.  

Base cation seepage fluxes were calculated by summing the equivalents of K+, Ca2+, Mg2+ and 

Na+. Since Al3+ and NH4
+ concentrations in the soil solution were negligible (majority of values 

lower than detection limits), they were not further considered in this study. Anion seepage fluxes 

were calculated by summing the equivalents of NO3
-, SO4

2-, PO4
3- and Cl-. Annual base cation and 

anion seepage fluxes, together with annual seepage fluxes of DOC, total and dissolved Cd and 

Zn and H+ were considered as response variables. 

The correlations between the annual seepage fluxes of Cd, Zn, base cations, anions, DOC and 

H+, annual solution pH at 50 cm depth (average of seasonal values) and topsoil pH (0-5 cm, see 

Chapter 3) were calculated by means of Pearson correlation coefficients. Correlation analyses 

were performed in SPSS Statistics 22 for Windows. 

The experimental design was hierarchical, with lysimeters grouped within stands and tree species 

replicated at the stand level, so we used multilevel models. The lmer function in the lme4 library 

of R version 3.1.1 was used here (Bates et al., 2011; R Core Team, 2014). First, we examined 
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whether there was a species effect on the seepage fluxes. Therefore, we constructed a null model 

with ‘Stand’ as random effect term. Next, we tested a model with the explanatory factor ‘Species’ 

as fixed effect against the null model with a likelihood ratio test to evaluate whether this factor 

significantly improved the null model. Finally, a full factorial model with ‘Species’ as fixed effect 

and ‘Stand’ as random effect term was fitted using restricted maximum likelihood estimates.  

 

7.3 Results 

Seasonal pH and concentrations of Cd, Zn, DOC, base cations and anions in the soil solution at 

50 cm depth are reported in Appendix C.1. However, here we focus on the seepage fluxes 

(amounts), since fluxes are more important for the discussion of biogeochemical cycles. Seasonal 

and annual seepage fluxes are reported in Appendix C.2. 

 

7.3.1 Soil water fluxes 

The modeled soil water fluxes at 50 cm depth (Fig 7.1) were rather high, ranging from 312 mm to 

757 mm or 78% to 92% of net precipitation (i.e. throughfall) during the modeled year. The 

interspecific differences seemed to be controlled mainly by the species-specific canopy 

interception losses, given the tight resemblance of the soil water fluxes with the net P values 

(Table 7.1). 

 

 

Figure 7.1 Modeled soil water fluxes at 50 cm depth under the six tree species  

(Nov 2009 – Nov 2010) 
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Table 7.1 shows input parameters used in the MAESPA model and in the Hydrus-1D model. 

Table 7.2 gives an overview of the main components of the evapotranspiration process, 

transpiration and canopy interception, and their relation to bulk precipitation. Canopy 

interception losses (Ic) were significantly higher for the coniferous species compared to the 

broadleaved species. Ic values ranged from 10.1 % (black locust) over 10.6 % (oak), 18.3 % (silver 

birch), 26.4 % (aspen), 43.6 % (Douglas fir) up to 56.5 % (Scots pine) (cfr. § 5.3.2). Simulated 

transpiration values were low and were related to LAI values, with highest values for Douglas fir 

and black locust.  

 

Table 7.1 Species-specific input parameters for the MAESPA model (stem number, SLA, LAI, 

net precipitation P) and the model’s output (simulated transpiration T) 

 
stem nr    

(trees ha-1) 
SLA        

(cm² g-1) 
LAI        
(-) 

net P §   
(mm) 

T §       
(mm) 

silver birch 3565 163.1 2.2 753 92 

oak 4525 127.8 4.0 824 111 

black locust 3472 263.2 6.7 829 120 

aspen 4167 119.1 2.8 679 101 

Scots pine 5952 73.5 2.4 401 95 

Douglas fir 3265 107.8 7.7 520 123 

§ During the modeled year (Nov 2009 – Nov 2010). Calculated net P and simulated T values were used to 
run the Hydrus-1D model for the studied year. See methods (§ 7.2.3) for details on net P calculations.  
 

Table 7.2 Overview of simulated transpiration T and canopy interception Ic during the modeled 

year (Nov 2009 – Nov 2010) relative to bulk precipitation during that period (922 mm) 

 
T       

(mm) 
T               

(% of bulk P) 
Ic    

(mm) 
T + Ic 
(mm) 

T + Ic          
(% of bulk P) 

silver birch 92 10.0 169 261 28.3 

oak 111 12.0 98 209 22.6 

black locust 120 13.0 93 213 23.1 

aspen 101 11.0 243 344 37.4 

Scots pine 95 10.3 521 616 66.8 

Douglas fir 123 13.3 402 525 56.9 
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7.3.2 Element seepage fluxes 

There was a significant species effect on annual seepage fluxes for all response variables (Fig 7.2).  

Total and dissolved Cd and Zn fluxes in seepage water were highest under black locust and Scots 

pine. Douglas fir also revealed high total Cd fluxes, but for the dissolved Cd fluxes no significant 

differences could be found compared to the other species. Total Zn leaching under Douglas fir 

was slightly (yet not significantly) elevated, whereas dissolved Zn leaching under this conifer was 

low (Fig 7.2).  

Highest base cation fluxes in seepage water were found under black locust. Base cation fluxes 

were also elevated under Scots pine and Douglas fir, being significantly higher than those under 

birch and aspen (only Scots pine). Ca2+ was the dominant cation in the seepage water for all 

considered tree species, constituting 60% – 75% of total base cation fluxes (Fig 7.2). A similar 

pattern as the base cation fluxes was found for the anion fluxes, being highest under black locust, 

lowest under the other three broadleaved species and intermediate under the two coniferous 

species. Particularly strong, positive correlations were indeed found between the base cation and 

anion seepage fluxes, and they were also strongly correlated with the Cd and Zn seepage fluxes 

(Table 7.3). The anion seepage flux under black locust was dominated by NO3
-, whereas NO3

- 

leaching contributed only a minor share under the other tree species. The five other species’ 

anion seepage fluxes were mainly composed of SO4
2- and Cl-. Leaching of PO4

3- was negligible 

under the considered tree species, except for oak (Fig 7.2).  

Oak induced the highest DOC flux in the seepage water and silver birch showed an intermediate 

value. Surprisingly, DOC seepage fluxes were not correlated with any of the other elemental 

seepage fluxes (Table 7.3). H+ leaching revealed a totally different pattern compared to DOC 

leaching; the highest H+ flux was observed under Douglas fir and an intermediate value under 

black locust (Fig 7.2). H+ fluxes were significantly (but less strong) correlated with Cd, base 

cation and anion fluxes, but not with the Zn fluxes (Table 7.3). 

Fig 7.2 clearly shows that the considered tree species could be divided in two groups in terms of 

leaching losses. Black locust, Scots pine and Douglas fir were characterized by high seepage 

fluxes of Cd, Zn, base cations and anions, whereas these seepage fluxes were consistently low 

under silver birch, oak and aspen. DOC and H+ seepage fluxes revealed a different pattern.  
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Figure 7.2 Annual seepage fluxes of total Cd and Zn, dissolved Cd and Zn, DOC, H+, base 

cations and anions at 50 cm depth under the six tree species (average ± st.dev); differences 

between species were tested using a multilevel model with a Bonferroni post hoc test, values with 

the same letter did not differ between species (p < 0.05) 
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Table 7.3 Pearson correlation coefficients of the correlation between annual element seepage fluxes and solution pH (pHsol) at 50 cm depth  

and topsoil pH (n = 34) 

 Cdtot Cddiss Zntot Zndiss DOC H+ BC Anions pHsol 

Cdtot          

Cddiss 0.866 **         

Zntot 0.768 ** 0.842 **        

Zndiss 0.609 ** 0.812 ** 0.877 **       

DOC - 0.222 - 0.155 - 0.261 - 0.142      

H+ 0.595 ** 0.412 * 0.257 0.218 - 0.165     

BC 0.771 ** 0.822 ** 0.806 ** 0.815 ** - 0.118 0.368 *    

Anions 0.794 ** 0.832 ** 0.845 ** 0.820 ** - 0.259 0.388 * 0.980 **   

pHsol - 0.448 ** - 0.161 - 0.023 - 0.014 0.044 - 0.697 ** - 0.280 - 0.301  

pHtopsoil
 § - 0.213 - 0.290 - 0.409 * - 0.266 - 0.137 - 0.207 - 0.388 * - 0.390 * 0.237 

  § Topsoil pH was determined in 2007 (cfr. § 3.2.2)  

  * p < 0.05; ** p < 0.01 
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7.4 Discussion 

In order to get insight in the risk tree species exert on metal leaching to the groundwater, in metal 

polluted soils, we examined seepage fluxes under different tree species with diverging effects on 

biogeochemical and biophysical processes in the forest-soil system. 

 

7.4.1 Soil water fluxes 

The modeled soil water fluxes at 50 cm depth (Fig 7.1) were rather high, ranging from 312 mm to 

757 mm or 78% to 92% of net P during the modeled year. The interspecific differences seemed 

to be controlled mainly by the species-specific canopy interception losses, given the tight 

resemblance of the soil water fluxes with the net P values (Table 7.1). No resemblance was found 

between the soil water fluxes and the basal area of the stands (see Table 3.1). Van der Salm et al. 

(2004) estimated the annual seepage fluxes under European forests to be on average 150 mm, 

with higher values in areas with high rainfall. The fairly low transpiration estimates (Table 7.1) 

might be one of the reasons for our high soil water fluxes. This hypothesis was supported by the 

fact that the model consistently overestimated the observed SWC values during the summer 

season, as observed during the calibration and validation process (see Appendix B).  

The estimated transpiration values ranged from 10% to 13% of bulk P during the modeled year 

(Table 7.2). Other authors reported substantially higher values, with averages (both comprising 

coniferous and deciduous forests) around 33.5% in the UK (Nisbet, 2005) and 38% in Flanders 

(Verstraeten et al., 2005). Our low T values might potentially be due to limited water availability 

in the unsaturated zone of these dry sandy soils, and might suggest that the trees are also 

pumping up water from deeper soil layers or even groundwater. As the MAESPA model only 

accounted for soil water extraction from the unsaturated zone, the actual T values would 

probably be higher. However, given the aim of this study, i.e. estimating element leaching to 

deeper soil layers (> 50 cm) and the groundwater, only the flux in the unsaturated zone is of 

importance.  

 

7.4.2 Element seepage fluxes 

The element seepage fluxes were estimated by means of the modeled soil water fluxes, which 

were rather high. However, annual element seepage fluxes did not comprise summer seepage 

fluxes because the lysimeters did not yield any soil solution samples during the summer period. 

Hence, as the water balance model mainly overestimated the soil water fluxes during the summer 
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(see § 7.4.1 and Appendix B), we believe that the estimated seepage fluxes approach the reality 

quite reasonably. Nevertheless, modeling the soil water fluxes required some assumptions and 

relied, among others, on the simulated transpiration values, which in their turn also required 

some approximations. The absolute values of the element seepage fluxes should thus be 

interpreted with care. However, the relative differences between tree species are most relevant in 

the scope of this study, and we consider these to be reliable. 

 

Patterns 

The high similarity between the absolute values of total and dissolved Cd and Zn fluxes indicates 

that the metal fraction associated with inorganic and organic colloidal material in the soil solution 

was negligible. 

Cd and Zn leaching at 50 cm depth was elevated under black locust, Scots pine and Douglas fir, 

compared to lower seepage fluxes under silver birch, oak and aspen. This pattern was 

significantly correlated with leaching of anions and base cations (Fig 7.2 and Table 7.3). The 

patterns indicate that Cd and Zn leaching was mainly related to the downward fluxes of anions 

and base cations (mainly Ca2+), to a lesser extent to the H+ fluxes, and not at all to the DOC 

seepage fluxes. It is generally known that transport of metals through the soil matrix is driven by 

a plethora of interrelated chemical reactions between the solid and the aqueous phase of the soil. 

Our results on Cd and Zn leaching corresponded broadly with patterns described in literature. 

Indeed, transport of metals through the soil matrix is generally enhanced by formation of soluble 

complexes with inorganic ligands, such as SO4
2-, Cl-, PO4

3-, NO3
-. Cd and Zn tend to complex 

mainly with Cl- and SO4
2- (Benjamin and Leckie, 1982; Bergkvist et al., 1989; McLean and 

Bledsoe, 1992; Ross, 1994). Also the presence of base cations in the soil solution may 

significantly increase the mobility of some metals, as there is competition between the major 

cations and free metal ions for adsorption onto binding sites (Cavallaro and McBride, 1978; 

McLean and Bledsoe, 1992; Sauvé et al., 2000; Voegelin et al., 2003). Especially the competition 

between Ca2+ and Cd2+ is distinct: increased Ca concentrations in the soil solution will displace 

Cd2+ ions from sorption sites and mobilize Cd (Christensen, 1984; Temminghoff et al., 1995). 

These processes were confirmed by our results. 

In addition, a plethora of metal sorption studies have shown that solution pH has an overriding 

importance on metal solubility in many soils, by competing with H+ ions for sorption sites (e.g. 

Bergkvist et al., 1989; Berthelsen et al., 1994; McBride et al., 1997; Sauvé et al., 2000a, 2000b; 

Strobel et al., 2001b, 2005; Voegelin et al., 2003; Degryse et al., 2007). Metal leaching can as well 
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be stimulated by formation of soluble complexes with organic ligands, such as DOC (Sauvé et al., 

2000b; Strobel et al., 2001b, 2005). However, many authors found that soluble organic matter 

particularly has a strong affinity for Cu, Ni, Hg and Pb, whereas Cd and Zn tend not to complex 

strongly with soluble organics. This implies that the solubility of Cd and Zn is mainly controlled 

by pH with minor to no effects of DOC (e.g. Bergkvist et al., 1989; Holm et al., 1995; Römkens 

and de Vries, 1995; McBride et al., 1997; Sauvé et al., 2000b; Weng et al., 2001b; Strobel et al., 

2001b, 2005). Our results on Cd and Zn leaching were consistent with these findings with respect 

to DOC. The effect of solution pH, on the other hand, was less pronounced in our study: 

solution pH was negatively correlated with total Cd seepage fluxes, yet its impact was less strong 

than that of the base cation and anion fluxes, and dissolved Cd fluxes and Zn fluxes were not 

affected by solution pH (Table 7.3). The relatively high solution pH at our study site (see 

Appendix C.1) might be the reason for this, as the critical solution pH for Cd and Zn 

breakthrough was not attained yet (see further). 

Despite overall agreement in literature on the importance of pH on Cd and Zn leaching, we 

found the Cd and Zn seepage fluxes at our study site to be governed by leaching of anions and 

base cations (cfr. Fig 7.2 and Table 7.3). This might be caused by the fact that we are dealing with 

a young forest on post-agricultural soil. Due to the former liming and fertilization processes, the 

base cation status of the soil at our study site is still elevated (unreported data), but will decrease 

over time as base cation leaching proceeds. Solution pH is also still relatively high (see Appendix 

C.1), but we expect this to decrease with forest age, due to a build-up of the forest floor, 

especially for species with slowly decomposing litter (De Schrijver et al., 2012). It was shown that 

metal solubility increases rapidly when solution pH drops below a critical value. Cd and Zn 

leaching breakthrough was found to occur within the solution pH range of 4.0 to 4.5 (Bergkvist 

et al., 1989). This implies that the relative impact of base cation and anion leaching on Cd and Zn 

leaching at our study site might become weaker, whereas the effect of solution pH might become 

more important in the long term.  

Topsoil pH was negatively correlated with total Zn seepage fluxes, but only quite weakly, and no 

correlations with dissolved Zn fluxes and Cd fluxes were found (Table 7.3). This shows that 

topsoil pH hardly affects metal leaching at 50 cm depth, and confirms the fact that metal 

transport through the soil matrix is dependent on multiple interrelated chemical reactions in the 

soil. Moreover, topsoil pH was not correlated with solution pH at 50 cm depth, implying that H+ 

transport through the soil was also subjected to plenty of chemical reactions. 

Finally, when comparing the pattern of the metal seepage fluxes (Fig 7.2) with that of the soil 

water fluxes (Fig 7.1), it was clear that Cd and Zn leaching losses at our study site showed no 
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resemblance with the downward soil water fluxes. This might imply that the differences in soil 

water fluxes between the tree species were not large enough to actually influence metal leaching, 

or else, that the impact of the chemical effects on Cd and Zn leaching (complexation with anions, 

competition for sorption sites with base cations and protons) was relatively more important than 

the effect of the biophysical processes (evapotranspiration, here represented by its main 

components T + Ic, see Table 7.2). 

 

Tree species effects 

Cd and Zn leaching was elevated under black locust, Scots pine and Douglas fir compared to 

lower seepage fluxes under silver birch, oak and aspen. This pattern was mainly driven by the 

seepage fluxes of anions and base cations (mainly Ca2+). 

The elevated anion flux under black locust was dominated by NO3
-, which was not surprising 

since black locust is a N-fixing legume tree (Boring and Swank, 1984; Tateno et al., 2007; De 

Marco et al., 2013). It has been well documented that N input through symbiotic fixation of 

atmospheric N2 results in increased NO3
- leaching (Van Miegroet and Cole, 1984; Van Miegroet 

et al., 1992). The substantial amount of NO3
- in black locust’s seepage water also resulted in a 

high base cation flux under this tree species (Fig 7.2). The base cations are displaced from the 

exchange sites in the soil, and thus leached, as a consequence of the increase in ionic strength of 

the soil solution (Van Miegroet et al., 1992). The symbiotic N2-fixation was most probably also 

responsible for the (slightly) elevated H+ seepage flux under black locust. After all, N2-fixation 

can enhance soil acidification as a by-product of increased nitrification rates (Van Miegroet and 

Cole, 1984). The resulting H+ release may, in its turn, have contributed to black locust’s high base 

cation seepage flux (Bowman et al., 2008). 

The elevated anion fluxes under Scots pine and Douglas fir can be explained by the higher 

capacity of coniferous canopies to scavenge SO4
2-, NO3

- and Cl- (dry deposition) compared to 

deciduous species (e.g. Bergkvist and Folkeson, 1995; Augusto et al., 2002, 2014; De Schrijver et 

al., 2007, 2008; Wuyts et al., 2008; Christiansen et al., 2010). The high efficiency of conifers in 

capturing atmospheric deposition can result in high losses of elements in seepage water 

(Bergkvist and Folkeson, 1995; Augusto et al., 2002, 2014; De Schrijver et al., 2007). De Schrijver 

et al. (2007) demonstrated, based on 38 case studies worldwide, comparing paired stands of pure 

coniferous and deciduous trees at sites with similar soil type and land use history, that the higher 

input flux of N and S clearly involved a higher seepage flux of NO3
- and SO4

2- under coniferous 

forests compared to deciduous forests. Moreover, the authors found a close relationship between 
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seepage of NO3
- and SO4

2- on the one hand, and K+, Ca2+, Mg2+ and Al3+ on the other hand. The 

higher seepage flux of anions under conifers thus clearly involved a higher soluble cation fraction, 

making total cation seepage a function of total anion seepage (Johnson, 1992). 

 

Implications for phytostabilization 

Phytostabilization uses plants to minimize the mobility and bioavailability of pollutants in the 

environment, either by stabilizing them or by preventing their migration (Smith and Bradshaw, 

1972; Vangronsveld et al., 1995b). Consequently, tree species that induce Cd and Zn leaching to 

deeper soil layers and groundwater should be avoided.  

Cd and Zn leaching at 50 cm depth showed to be mainly related to leaching of anions and base 

cations (mainly Ca2+) and to a lesser extent to H+ leaching/solution pH, at least at this young 

stage of forest development at a post-agricultural sandy site. We expect the effects of the 

different tree species on the seepage fluxes of anions, base cations and H+ to evolve during the 

next decades. The relative impact of base cation and anion leaching on Cd and Zn leaching might 

become weaker, whereas the effect of solution pH might become more important in the long 

term. In this respect, we recommend not to plant tree species that generate high anion, base 

cation or H+ fluxes when afforesting Cd and Zn contaminated lands, because these species pose 

a serious risk for metal leaching to deeper soil layers and potential contamination of the 

groundwater. In general, coniferous as well as N-fixing species should thus be avoided. At our 

study site, this was demonstrated by elevated Cd and Zn seepage fluxes at 50 cm under black 

locust, Scots pine and Douglas fir.  

Contrary to what is often argued in literature about phytostabilization, we found that Cd and Zn 

leaching losses at our study site showed no resemblance with the downward soil water fluxes. 

This implies that evapotranspiration rates seemed to be a less decisive criterion for tree species 

selection on contaminated sites. Hence, when establishing a phytostabilization project on a 

contaminated sandy site, principal attention should be given to the aforementioned 

biogeochemical processes (complexation with anions, competition for sorption sites with base 

cations and protons). 

Summarized, based on our results on Cd and Zn leaching, it seems that silver birch, oak and 

aspen may be planted on Cd and Zn contaminated sandy soils. However, as our previous findings 

showed a distinct Cd and Zn accumulation in aspen’s foliage (see Chapter 3), this species is 

inappropriate for phytostabilization purposes because of the risk of above-ground metal 

dispersion. 
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7.5 Conclusions 

Cd and Zn leaching at 50 cm depth was elevated under black locust, Scots pine and Douglas fir, 

compared to lower seepage fluxes under silver birch, oak and aspen. This pattern was 

significantly correlated with leaching of anions and base cations (mainly Ca2+) and to a lesser 

extent to H+ leaching, at least at this young stage of forest development at a post-agricultural 

sandy site. Transport of Cd and Zn through the soil matrix was enhanced by formation of 

soluble complexes with the anions on the one hand, and by competition for sorption sites with 

Ca2+ and H+ on the other hand. DOC seepage fluxes were not correlated to the Cd and Zn 

seepage fluxes, because Cd and Zn do not tend to complex strongly with soluble organics. Due 

to former (agricultural) liming and fertilization processes, the base cation status of the soil at our 

study site is still elevated, but will decrease over time as base cation leaching proceeds. On the 

other hand, we expect H+ leaching to increase with forest age. This implies that the relative 

impact of anion and base cation leaching on Cd and Zn leaching might become weaker, whereas 

the effect of solution pH might become more important in the long term.  

Contrary to what is often argued in literature about phytostabilization, we found that Cd and Zn 

leaching losses at our study site showed no resemblance with the downward soil water fluxes. 

This might imply that the differences in soil water fluxes between the tree species were not large 

enough to actually influence metal leaching, or that the effect of evapotranspiration really was 

inferior to the biogeochemical effects in the soil (solution). These biogeochemical processes 

(complexation with anions, competition for sorption sites with Ca2+ and H+) should thus get 

principal attention in phytostabilization projects on Cd and Zn contaminated sites. 

We were able to solve one of the key questions involved in realizing a sustainable and ecologically 

sound phytostabilization project, namely ‘which tree species will guarantee the lowest below-

ground metal dispersion risks?’. It seems that silver birch, oak and aspen may be planted on Cd 

and Zn contaminated sandy soils. However, as our previous findings showed a distinct Cd and 

Zn accumulation in aspen’s foliage, this species is inappropriate for phytostabilization purposes 

because of the risk of above-ground metal dispersion. 
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In the Campine region in north-eastern Belgium, an extended area of about 700 km² is diffusely 

polluted with mainly Cd and Zn, due to metal refining activities in the past. This historical metal 

pollution still causes human-toxicological and ecotoxicological risks through leaching to 

groundwater and dispersion in the food chain. Moreover, the Campine region is characterized by 

poor sandy soils, aggravating the risk for metal leaching and dispersion in the environment. 

Conventional soil sanitation techniques are technically and financially inadequate to tackle the 

pollution problem, because of its spatial extent and the relatively moderate contamination levels. 

Hence, alternative remediation strategies, such as phytoextraction and phytostabilization, should 

be investigated. 

 

This thesis was executed in the context of the historical soil pollution in the Campine region. We 

evaluated the applicability and feasibility of both phytoextraction and phytostabilization of metal 

contaminated soils. After profound evaluation of the opportunities, threats and perspectives 

of phytoextraction, we concluded that this technique is still far from practice at the 

present state of knowledge. However, even if the technique could be ameliorated, its 

applicability would be limited as metal uptake in plants poses serious risks for the 

environment and for contamination of the food chain. Phytostabilization seems a more 

promising alternative for remediation of diffusely contaminated soils, as this technique aims at 

minimizing metal mobility and therefore decreases dispersion risks. However, phytostabilization 

cannot guarantee to completely exclude all dispersion risks. Hence, in this thesis, we focused on 

the phytostabilization technique and assessed its feasibility. 

 

To accomplish sound phytostabilization projects, one should account for the associated risks of 

metal dispersion in the ecosystem. Sustainable phytostabilization requires the metals to be 

stabilized in the soil and should thus (aim to) avoid both above-ground (via uptake) and below-

ground (via leaching) metal dispersion. 

There is a clear tree species effect on metal uptake, on litter decomposition, on biogeochemical 

processes in the soil profile and on the water balance. Hence, as these processes are all inherent 

to metal cycling, the distribution and fluxes of metals in the forest-soil system will be tree species 

specific as well. Selecting appropriate tree species is thus crucial for achieving successful 

phytostabilization. 

 

The main objectives of this thesis were to assess the feasibility of phytostabilization by afforesting 

diffusely Cd and Zn contaminated sandy soils and to determine the tree species effects on Cd and 
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Zn cycling on these soils. Therefore, an observational study was carried out in a forest that was 

planted on a former agricultural, contaminated site in the Campine region (northeastern 

Belgium). The six considered tree species were silver birch (Betula pendula), oak (Quercus robur and 

Q. petraea), black locust (Robinia pseudoacacia), aspen (Populus tremula), Scots pine (Pinus sylvestris) and 

Douglas fir (Pseudotsuga menziesii). The trees were 10-15 years old during the sampling years 

between 2007-2012. 

We were able to examine the main patterns involved in phytostabilization and to unravel the 

underlying processes. By understanding these processes and their interactions, we gained 

fundamental insights in the driving factors of metal cycling in forest ecosystems and in the 

influence of tree species choice on metal mobilization.  

The main findings of this in situ study will be discussed below. Figure 8.1 compiles the tree 

species specific Cd and Zn fluxes and (re)distribution profiles in the forest ecosystem, together 

with litter decomposition dynamics and evapotranspiration (T + Ic), as measured at our study site 

during the course of this thesis. 

 

 



 

 157 

 

 

 

 



 

158 

 

 

 

 

 



 

 159 

 

Figure 8.1 Overview of the Cd and Zn concentrations (mg kg-1 DM) (in italic) in the different soil depths and in the foliar litter (LF conc), soil pH-KCl 

(-), Cd (g ha-1 yr-1) and Zn (kg ha-1 yr-1) fluxes in foliar litterfall (LF flux), throughfall (TF flux§), forest floor leachate (FF leachate flux) and seepage 

water at 50 cm depth (seepage flux), transpiration + canopy interception (T + Ic in % of bulk precipitation) and remaining mass in the litterbags after 

20 months (Mt/M0) as measured at our study site under the six tree species during the course of this thesis 

 
§ TF fluxes were not measured, but estimated based on average Cd and Zn concentrations in the air measured in the close vicinity of our study site (data of the 
Flemish Environment Agency), and deposition velocity (Vd) values of PM10 for coniferous and broadleaved species (literature values). TF fluxes were assumed to 
be equal to total depostion fluxes (assuming canopy exchange of Cd and Zn to be negligible).   
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8.1 Main findings 

Dispersal of soil metals into the ecosystem can result from uptake of metals by the above-ground 

biomass, accumulation or mobilization of metals in the forest floor and topsoil, and leaching of 

metals towards groundwater. 

 

8.1.1 Above-ground biomass 

Aspen should be avoided when afforesting Cd and Zn contaminated lands, given its risks 

of above-ground metal dispersion via herbivory. 

Aspen trees translocate high amounts of Cd and Zn into their foliage, generating a potential 

pathway of above-ground metal dispersion. This has long been demonstrated by numerous 

authors, for Populus spp. and Salix spp. in general (e.g. Brekken and Steinnes, 2004; Unterbrunner 

et al., 2007), and was confirmed by our results for aspen.  

Metals accumulated in the leaves may pose a long-term risk to primary consumers and enter the 

food chain. According to Ross (1994), the input of metals into the food web is potentially more 

harmful than metal leaching into the groundwater.  

Silver birch translocated considerable amounts of Zn to its leaves. However, as Zn is mainly 

phytotoxic, its human-toxicological and ecotoxicological risks are less radical compared to Cd. 

Based on our results, planting silver birch on Zn contaminated sites seems acceptable.  

 

8.1.2 Forest floor and topsoil 

The forest floor and topsoil are particularly vulnerable as they are the biologically most active 

parts of the soil system and biological activity has been shown to be highly sensitive to metal 

pollution (Bergkvist et al., 1989). A metal redistribution towards the forest floor and/or topsoil 

or mobilization of these metals is thus undesirable in phytostabilization projects. 

 

Aspen induced an accumulation of total Cd and Zn concentrations in the topsoil (0-5 cm) 

and this after only 10 years of tree growth. However, the ‘bioavailable’ CaCl2-extractable 

concentrations were low under aspen. The latter was caused by increased pH, CEC and 

OC content in the topsoil under the aspen trees. 

Contaminated litterfall may result in a metal accumulation in the topsoil. Our results clearly 

demonstrate a significant increase of total Cd and Zn concentrations in the topsoil under aspen 

trees, compared to the deeper soil layers and the other tree species. This accumulation pattern is 
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expected to be continued in the future. Besides the total Cd and Zn accumulation, aspen was also 

the only tree species which significantly increased topsoil pH, CEC and OC content compared to 

the deeper soil layers and to the other tree species.  

The differences in topsoil characteristics between the species were attributed to the chemical 

properties of the different leaf litter types. The elevated total Cd and Zn concentrations were 

obviously caused by the large Cd and Zn fluxes via aspen’s foliar litterfall. Aspen also generated 

highest base cation litterfall fluxes and this was most probably the reason for the pH increase and 

for elevated organic matter contents in its topsoil and thus increased OC and CEC values. 

Although black locust was also characterized by high base cation concentrations in its leaf litter, 

no increase of topsoil pH under black locust was found. This was most likely due to the fact that 

1) black locust is a N-fixing tree, and symbiotic N2-fixation can lead to soil acidification as a by-

product of increased nitrification rates and 2) its base cation litterfall fluxes were not elevated 

compared to most of the other tree species since black locust produced low leaf litterfall 

amounts. 

As a consequence of increased pH, CEC and OC values, ‘bioavailable’ CaCl2-extractable Cd and 

Zn concentrations appeared not to be elevated under aspen. Since extractable ‘bioavailable’ metal 

concentrations should preferably be considered for risk analysis, this may imply that -on the short 

term- the ecotoxicological risks linked with aspen might actually be smaller than expected from 

the accumulation of total Cd and Zn in the topsoil. However, NH4OAc-EDTA-extractable Cd 

and Zn concentrations in the topsoil under aspen were elevated compared to other species and to 

deeper soil layers. This indicates that in more acid conditions the accumulated Cd and Zn in the 

topsoil will yet become more mobile and thus ‘bioavailable’. This could for instance be the case 

when the aspen trees would be harvested and replaced by more acidifying species.  

Silver birch translocated considerable amounts of Zn to its leaves, but this was not reflected in a 

Zn accumulation in the topsoil, probably due to its low leaf litterfall amounts. However, as litter 

biomass production will increase in time, Zn accumulation in the topsoil can potentially occur in 

the future. 
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During litter decomposition, ‘high metal litter types’ released part of their accumulated 

metals, whereas the ‘low metal litter types’ were characterized by a metal enrichment. 

Metal release from contaminated litter might involve risks for metal dispersion. On the 

other hand, metal enrichment of uncontaminated litter may be ecologically relevant as it 

can be easily transported or serve as food source. 

Since aspen and silver birch are the only species that showed elevated Cd and/or Zn 

concentrations in their leaf litter, we considered those two species as ‘high metal litter types’. The 

other (non-accumulating) in situ species and ex situ uncontaminated aspen and birch were 

considered as ‘low metal litter types’.  

A litterbag experiment lasting for 30 months revealed that the ‘low metal litter types’ were 

characterized by an increase in Cd and Zn amounts during the decomposition process. Such an 

increase in absolute amounts requires a net transport of Cd and Zn into the litterbags from 

external sources, such as atmospheric deposition and throughfall, microbial translocation and 

immobilization of metals from the underlying contaminated soil (mainly by fungi), or direct 

contact of contaminated soil particles with the litter. We assume that the observed metal 

enrichment was induced by a combination of aforementioned processes. The fact that the ‘low 

metal litter types’ became metal-enriched when they decomposed on a contaminated site, implies 

that the organic matter of decomposing leaves and needles acted as an efficient metal storage 

pool. Leaf litter can thus act as a temporary sink for metals from the soil around and below the 

litter. Such upward metal enrichment may be ecologically relevant as litter can be transported 

easily to other sites (e.g. by wind) or serve as a source of food for a variety of organisms. 

On the other hand, our litterbag experiment revealed that aspen litter released 50% of its initial 

Cd amount and 41% of its initial Zn amount during the course of the experiment. There was also 

a slight decrease (9%) of the Zn amount in birch litter, yet this was not significant compared to 

the Zn dynamics in the other species. The external sources of metal input into decomposing 

litter, as described above, must have been negligible compared to the elevated initial metal 

amounts in the aspen and birch litter. Hence, metal output was faster than the input. 

Base cations, N and C were released from all litter types during the decomposition process. The 

metal and nutrient releases from decomposing litter were mainly reflected in topsoil 

characteristics (Cd and Zn concentrations, CEC, OC content), but they were hardly related to 

forest floor leachate fluxes (Cd, Zn, DOC, H+).  
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Despite substantial Cd and Zn accumulation in aspen’s leaf litter and significant Cd and 

Zn release during its litter decomposition, Cd and Zn leaching from the forest floor under 

aspen was not as high as foreseen. Forest floor leachate fluxes were hardly related to 

metal and nutrient dynamics in decomposing litter. 

Forest floor (FF) leachates were sampled with zero-tension lysimeters. We found that total Cd 

fluxes in forest floor leachate under aspen were slightly higher than those in the other species’ 

leachates, yet the relative differences between the species were considerably smaller when looking 

at dissolved Cd fluxes. Moreover, no tree species effect was found for Zn leachate fluxes. We had 

expected higher metal FF leachate fluxes under aspen, given its elevated Cd and Zn input via leaf 

litterfall (respectively 10 - 34 and 4 - 11 times higher compared to the other tree species) as well 

as significant Cd and Zn release during its litter decomposition. As discussed before, the high Cd 

and Zn LF fluxes under aspen gave rise to a distinct Cd and Zn accumulation in its topsoil, but 

this was not univocally reflected in higher Cd and Zn FF leachate fluxes. We propose that, given 

the former agricultural practices on the site, this discrepancy might be caused by high activity of 

soil biota, for example burrowing earthworms, mixing the topsoil with contaminated litter. In any 

case, the fact that metal leaching from the forest floor under aspen was not as high as foreseen, 

might imply that the risks of below-ground metal dispersion under aspen might actually be 

smaller than expected. This will be discussed more in detail in § 8.1.3. 

For the other tree species, on the contrary, we found Cd fluxes in the forest floor leachates to be 

considerably higher than Cd fluxes in litterfall. Rough estimates of throughfall (see Fig 8.1 for 

details on estimation procedure) revealed that the throughfall Cd fluxes might be partially 

responsible for this discrepancy. This insight emphasizes the relevance of throughfall 

measurements within future research. 

Furthermore, our results showed a significant tree species effect on H+, DOC and base cation 

fluxes, with especially very low H+ fluxes in aspen leachate (130 times less than oak). It seems 

that the extremely low proton amounts leaching from aspen’s forest floor resulted in low Cd and 

Zn mobilization in the topsoil under aspen trees: despite significant accumulation of total Cd and 

Zn concentrations in its topsoil, we found that its immediately bioavailable (CaCl2-extractable) Cd 

and Zn topsoil concentrations were not elevated. Scots pine and oak were characterized by high 

H+ and DOC fluxes as well as low base cation fluxes in their forest floor leachates, suggesting 

that those species might enhance (top)soil acidification, and thus bear a potential risk for below-

ground metal dispersion. However, significant changes in total or immediately bioavailable 

(CaCl2-extractable) Cd and Zn concentrations in their topsoil, compared to deeper soil layers, 

were not (yet) found in this young forest.  
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It is often postulated that leaf litter quality has a direct link with the chemical composition of the 

forest floor leachate (Strobel et al., 2001a). However, our results reveal that this link was not so 

distinct. Firstly, the H+ and DOC forest floor leachate fluxes were not correlated with leaf litter 

quality (here expressed by base cation LF fluxes and C/N ratio). Secondly, Cd and Zn forest 

floor leachate fluxes were correlated with the LF fluxes of Cd and Zn, respectively, but we found 

a large discrepancy between the metal LF fluxes and the FF leachate fluxes, for all species. 

Summarized, at our study site, leaf litter quality did have a clear effect on topsoil characteristics 

(Cd and Zn concentrations, pH, CEC and OC; see higher) but its effect on the the forest floor 

leachate fluxes was not so unambiguous. 

 

Planting ‘nutrient-rich’ shrub species in pine and oak stands on poor and acidic sandy 

soils will not change topsoil conditions related to soil acidification. Adequate tree species 

selection (or conversion of pine towards deciduous tree species) seems more effective to 

enhance topsoil properties as pH and base saturation than planting shrubs under tree 

species with nutrient-poor leaf litter. 

We know from previous research and from our own observations that 1) soil pH has an univocal 

effect on Cd and Zn solubility, and hence mobilization (e.g. Berthelsen et al., 1994; McBride et 

al., 1997; Sauvé et al., 2000a, 2000b; Degryse et al., 2007) and that 2) litter quality affects topsoil 

characteristics (e.g. De Schrijver et al., 2012). Typical tree species on the nutrient-poor sandy soils 

in the Campine region (e.g. pine, oak) are often characterized by nutrient-poor leaf litter, 

enhancing soil acidification and thus metal mobilization. It is often postulated that topsoil 

acidification under ‘acidifying’ tree species can be counteracted by admixing shrub species with 

nutrient-rich leaf litter. Therefore, in the light of sustainable metal stabilization, we investigated 

whether topsoil conditions related to soil acidification (pH, base saturation, CEC) in pine and oak 

stands can be altered by the presence of a ‘nutrient-rich’ shrub layer. The shrub species included 

were European rowan (Sorbus aucuparia), alder buckthorn (Rhamnus frangula) and black cherry 

(Prunus serotina). Moreover, we aimed to determine the threshold cover of the shrubs needed to 

obtain a significant effect in the topsoil. 

Despite the fact that the shrubs produced litter with significantly higher base cation and N 

concentrations than that of the studied tree species, we did not find any significant changes in 

topsoil conditions in the pine and oak stands under study, even under dense shrub layers (87 – 91 

% cover). Consequently, it seems thus not feasible to mitigate soil acidification by introducing a 

shrub layer with nutrient-rich leaf litter in pine and oak stands on poor sandy soils. Our results 

were in line with previous findings of Hommel et al. (2007), who stated that litter quality was the 
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key factor to restore the buffering capacity of forest topsoils, yet this mechanism was only 

successful within a range of ‘intermediate’ (moderately poor) sites. Sandy soils should e.g. contain 

at least 15% silt to be susceptible for the ‘nutrient-rich litter effect’. 

On the other hand, we found a tree species (stand type) effect, with ‘nutrient-richer’ litterfall in 

the oak stands compared to the pine stands. This was reflected in less humus build-up (thinner 

FH-horizon) and higher pH, CECe, BS and lower C/N in the topsoil in the oak stands compared 

to the pine stands. Adequate tree species selection (or conversion of pine towards deciduous tree 

species) seems thus more effective to mitigate soil acidification than planting shrubs under tree 

species with nutrient-poor leaf litter. 

 

8.1.3 Seepage water 

Cd and Zn leaching at 50 cm depth was elevated under black locust, Scots pine and 

Douglas fir, compared to lower seepage fluxes under silver birch, oak and aspen. This 

pattern was significantly correlated with leaching of anions and base cations, but not 

linked with evapotranspiration. 

We were able to solve one of the key questions involved in realizing a sustainable and ecologically 

sound phytostabilization project, namely ‘which tree species will guarantee the lowest below-

ground metal dispersion risks?’ Moreover, we unraveled the driving processes behind the Cd and 

Zn seepage fluxes under the six tree species at our study site. 

Cd and Zn leaching showed to be mainly related to leaching of anions and base cations (mainly 

Ca2+) and to a lesser extent to H+ leaching, at least at this young stage of forest development at a 

post-agricultural sandy site. Transport of Cd and Zn through the soil matrix was thus enhanced 

by formation of soluble complexes with the anions on the one hand, and by competition for 

sorption sites with Ca2+ and H+ on the other hand. DOC seepage fluxes were not correlated to 

the Cd and Zn seepage fluxes, because Cd and Zn do not tend to complex strongly with soluble 

organics. Due to former (agricultural) liming and fertilization processes, the base cation status of 

the soil at our study site is still elevated, but will decrease over time as base cation leaching 

proceeds. On the other hand, we expect H+ leaching to increase with forest age, due to a build-up 

of the forest floor, especially for species with slowly decomposing litter. This implies that the 

relative impact of base cation and anion leaching on Cd and Zn leaching might become weaker, 

whereas the effect of pH might become more important in the long term.  

Contrary to what is often argued in literature about phytostabilization, we found that Cd and Zn 

leaching losses at our study site showed no resemblance with the downward soil water fluxes. 
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This might imply that the differences in soil water fluxes between the tree species were not large 

enough to actually influence metal leaching, or else, that the impact of the biogeochemical 

processes in the soil (solution) on Cd and Zn leaching (complexation with anions, competition 

for sorption sites with base cations and protons) was relatively more important than the effect of 

evapotranspiration.  

Table 8.1 compiles the different biogeochemical and biophysical processes inherent to metal 

leaching, clearly showing the aforementioned patterns: an overriding importance of base cation 

and anion leaching, an overall agreement with H+ leaching, but no resemblance with DOC 

leaching nor with evapotranspiration (here represented by its main components T + Ic). 

 

Table 8.1 Schematic overview of the processes affecting metal leaching, showing relative values 

(relative to maximum value) for each process, with the tree species divided in a group of high 

(red) and low (green) Cd and Zn leachers 

 
H+  

leaching 
DOC  

leaching 
BC & Anion  

leaching 
T + Ic 

silver birch 0.3 0.7 0.4 0.4 

oak 0.2 1.0 0.4 0.3 

aspen 0.2 0.5 0.4 0.6 

black locust 0.5 0.5 1.0 0.3 

Scots pine 0.1 0.5 0.8 1.0 

Douglas fir 1.0 0.4 0.7 0.9 

 

 

Finally, we would like to add that the relatively low Cd and Zn seepage fluxes under aspen 

confirm that the risks of below-ground Cd and Zn dispersion under this tree species are indeed 

smaller than expected from the accumulation of total Cd and Zn in its topsoil. The low 

immediately bioavailable (CaCl2-extractable) Cd and Zn concentrations in its topsoil and the 

lower than foreseen Cd and Zn fluxes in its forest floor leachate suggested this already (see 

above), but our results on metal leaching at 50 cm depth could thus confirm our presumptions. 
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8.2 Implications for forest management 

Sustainable phytostabilization projects require the metals to be stabilized in the soil and should 

thus aim at minimizing metal dispersion via both above-ground and below-ground pathways. The 

main findings of this thesis (§ 8.1) provide a scientific basis of high relevance for management of 

metal contaminated sandy soils. Translating our main findings to field practices results in 

following recommendations:  

 

Tree species that accumulate metals in their foliar biomass should be avoided. 

Metals accumulated in the leaves may pose a long-term risk to primary consumers and enter the 

food web. Besides, contaminated litterfall may give rise to an accumulation of metals in the 

topsoil. This could provide a new exposure pathway for the metals, especially since the topsoil is 

highly vulnerable because the majority of biological life is concentrated there. In addition, the 

accumulated metals in the topsoil may be mobilized under acidifying conditions (e.g. when trees 

are harvested and replaced by acidifying species), potentially resulting in leaching towards deeper 

soil layers. 

On Cd and Zn contaminated sites, Populus species and Salix species should thus be avoided (e.g. 

Mertens et al., 2001; Brekken and Steinnes, 2004; Unterbrunner et al., 2007; Van Slycken, 2011). 

Our results confirmed this, as we demonstrated a significant Cd and Zn accumulation in aspen 

foliage. 

Silver birch translocated considerable amounts of Zn to its leaves. However, as Zn is mainly 

phytotoxic, its human-toxicological and ecotoxicological risks are less radical compared to Cd. 

Based on our results, planting silver birch on Zn contaminated sites seems acceptable.  

 

Tree species that induce substantial leaching of anions should be avoided.  

We showed that anion leaching induced leaching of base cations, and that seepage of both anions 

and base cations (mainly Ca2+) resulted in elevated Cd and Zn seepage fluxes at 50 cm depth. 

Tree species that are characterized by high anion and base cation losses, pose thus a serious risk 

for metal leaching to deeper soil layers and potential contamination of the groundwater. 

In general, coniferous as well as N-fixing species should thus be avoided. At our study site, this 

was demonstrated by elevated Cd and Zn seepage fluxes at 50 cm under black locust, Scots pine 

and Douglas fir. 
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Tree species that are characterized by low soil solution pH should be avoided. 

The soil solution pH has a major effect on Cd and Zn solubility, due to competition between 

metal and H+ ions for sorption sites. This implies that species with low soil solution pH also 

induce higher Cd and Zn leaching, and thus pose a considerable risk for metal contamination of 

the groundwater. 

In our study, the impact of soil solution pH on Cd and Zn leaching was less pronounced, which 

was most probably attributed to the young stage of forest development on a post-agricultural site 

(with high initial pH and Ca contents). The solution pH at 50 cm depth at our study site (see 

Appendix C.1) was still higher than the critical value for Cd and Zn breakthrough, which was 

found to occur within a solution pH range of 4.0 to 4.5 (Bergkvist et al., 1989). However, we 

expect the solution pH to decrease with forest age, especially for species with slowly 

decomposing litter, implying that the effect of pH on Cd and Zn leaching will become more 

important in the long term.  

In general, tree species characterized by slow litter decomposition rates (and thus substantial 

humus build-up) as well as N-fixing species should be avoided, as these are acidifying processes. 

At our study site, this was confirmed by elevated Cd and Zn seepage fluxes under black locust, 

Scots pine and Douglas fir. 

 

Evapotranspiration rates seem to be a less decisive criterion for tree species selection on 

contaminated sites.  

Comparison of the Cd and Zn seepage fluxes with the soil water fluxes under the different tree 

species at our study site revealed that Cd and Zn leaching losses showed no resemblance with the 

downward soil water fluxes. The impact of the biogeochemical processes in the soil (solution), i.e. 

complexation with anions, competition for sorption sites with base cations (mainly Ca2+) and H+ 

ions, was relatively more important than the effect of evapotranspiration. Hence, when 

establishing a phytostabilization project on a contaminated sandy site, principal attention should 

be given to the aforementioned biogeochemical processes. 

 

Planting ‘nutrient-rich’ shrub species under ‘acidifying’ tree species on poor and acidic 

sandy soils is not effective to counteract topsoil acidification.  

Our results revealed that dense shrub layers (87 – 91 % cover) of European rowan, alder 

buckthorn and black cherry in pine and oak stands, on poor and acidic sandy soils, did not affect 

topsoil conditions related to soil acidification. Adequate tree species selection (or conversion of 
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pine towards deciduous tree species) seems more effective to mitigate soil acidification than 

planting shrubs under tree species with nutrient-poor leaf litter. 

 

Summarized, taking into account all the aforementioned recommendations, it seems that 

silver birch and oak may be planted on Cd and Zn contaminated sandy soils. Aspen, 

black locust, Scots pine and Douglas fir, on the other hand, cause risks for above-ground 

or below-ground metal dispersion and should therefore be avoided on Cd and Zn 

contaminated sandy sites. 

These conclusions are drawn from our study in a young forest (10 – 15 years). Therefore, 

we would like to add that it is unsure whether they can be extended to the long term. 

Further research in older forests is thus essential (see below). 

 

8.3 Recommendations for further research 

The effects of the different tree species on the (top)soil characteristics, on the metal 

redistribution in the soil profile and on the forest floor leachate and seepage fluxes will evolve 

during the next decades and will probably become more pronounced in the future. Therefore, in 

order to get an idea of tree species effects on metal cycling in the ecosystem on the long term, it 

is essential to execute similar research in older forests on contaminated sites. Unfortunately, long-

term afforestations of contaminated sites are scarce. However, chronosequences with different 

tree species on uncontaminated sites may reveal relevant insights in the processes affecting metal 

mobilization, e.g. (top)soil acidification or seepage fluxes of base cations, anions, H+, DOC. 

 

Our study was carried out in a post-agricultural forest. Due to the former liming and fertilization 

practices, the site was still relatively well-buffered, compared to other sandy forest sites without 

agricultural background. This was reflected in an elevated base cation status in the soil (mainly 

Ca) and in a relatively high solution pH (higher than the critical value for Cd and Zn 

breakthrough). As the soil (solution) status has an unambiguous effect on metal behaviour, it 

would be very interesting to investigate metal cycling at less buffered sandy sites. This would also 

give an idea of how the metal behaviour will potentially evolve over time (as base cation leaching 

proceeds and solution pH drops below the critical value for Cd and Zn breakthrough) in post-

agricultural forests. 

 

Our results on Cd and Zn leaching losses revealed that they showed no resemblance with the 

downward soil water fluxes. This might imply that the differences in soil water fluxes between 
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the tree species were not large enough to actually influence metal leaching, or that the effect of 

evapotranspiration really was inferior to the biogeochemical effects in the soil (solution). 

Therefore we suggest to examine differences in metal seepage fluxes between forest and semi-

natural open landscapes (grassland, heathland). Soil water fluxes under open landscapes are 

considerably larger than under forests, so higher metal seepage fluxes under non-forested sites 

are to be expected. However, if it would be confirmed in open landscapes that metal leaching is 

indeed governed by the biogeochemical processes in the soil, this could potentially reveal lower 

metal seepage fluxes under grassland or heathland than under forest, as grasslands and heathlands 

are characterized by less leaching of anions, base cations, H+ compared to forests. 

In addition, as modeled soil water fluxes are always rough approximations of the reality, a more 

accurate quantification of evapotranspiration rates would be opportune. This could for instance 

be achieved by means of sap flow measurements or eddy covariance techniques. 

 

This thesis revealed fundamental insights into terrestrial Cd and Zn cycling, but we did not 

consider the effective impact on the environment and on humans. More research needs to be 

done regarding the actual effects of metal fluxes in the forest-soil system on public health and on 

ecological food webs. 
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Appendix A 

 

Table A.1 Seasonal leachate pH and concentrations of Cd and Zn (total and dissolved), DOC and base cations (BC) in 

forest floor leachates under the six tree species (n = 6) (average ± st.dev) 

 
season § 

pH 
(-) 

Cdtot 

(µg l-1) 

Cddiss 

(µg l-1) 

Zntot 

(mg l-1) 

Zndiss 

(mg l-1) 

DOC 

(mg l-1) 

BC 

(meq l-1) 

silver 
birch 

autumn 6.85 ± 0.35 1.0 ± 0.3 0.3 ± 0.1 0.14 ± 0.05 0.14 ± 0.05 11.3 ± 2.9 0.58 ± 0.10 

winter 6.68 ± 0.19 1.4 ± 1.4 0.2 ± 0.1 0.11 ± 0.04 0.10 ± 0.05 4.3 ± 0.6 0.35 ± 0.06 

spring 6.61 ± 0.18 2.8 ± 0.7 0.6 ± 0.2 0.29 ± 0.05 0.30 ± 0.06 15.7 ± 2.7 0.64 ± 0.21 

summer 6.02 ± 1.10 2.0 ± 0.6 0.7 ± 0.3 0.25 ± 0.16 0.26 ± 0.06 13.1 ± 1.6 0.58 ± 0.09 

oak 

autumn 6.40 ± 0.20 1.1 ± 0.7 0.5 ± 0.3 0.16 ± 0.06 0.16 ± 0.06 20.5 ± 6.7 1.12 ± 0.22 

winter 6.46 ± 0.33 3.1 ± 1.2 0.2 ± 0.2 0.09 ± 0.04 0.08 ± 0.03 8.3 ± 2.0 0.41 ± 0.21 

spring 5.91 ± 0.89 2.3 ± 1.3 0.7 ± 0.4 0.18 ± 0.07 0.19 ± 0.07 20.4 ± 6.3 0.67 ± 0.27 

summer 4.73 ± 0.45 1.8 ± 1.2 0.8 ± 0.6 0.21 ± 0.11 0.22 ± 0.12 18.0 ± 2.6 0.77 ± 0.59 

black 
locust 

autumn 6.70 ± 1.12 1.3 ± 0.5 1.0 ± 0.6 0.21 ± 0.09 0.21 ± 0.10 16.7 ± 2.3 1.47 ± 0.33 

winter 6.61 ± 0.37 3.2 ± 1.3 0.4 ± 0.1 0.10 ± 0.02 0.10 ± 0.02 8.4 ± 3.1 0.71 ± 0.17 

spring 6.04 ± 0.63 5.3 ± 1.7 1.3 ± 1.2 0.33 ± 0.29 0.35 ± 0.31 19.4 ± 7.6 1.28 ± 0.94 

summer 5.58 ± 1.02 2.5 ± 0.9 1.0 ± 0.7 0.25 ± 0.14 0.25 ± 0.15 12.5 ± 4.8 1.10 ± 0.51 
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Table A.1 (continued)      

aspen 

autumn 7.54 ± 0.28 2.1 ± 1.5 1.2 ± 0.8 0.27 ± 0.21 0.18 ± 0.07 14.1 ± 2.5 1.68 ± 0.62 

winter 7.24 ± 0.21 4.0 ± 1.1 1.0 ± 0.6 0.19 ± 0.10 0.19 ± 0.11 7.2 ± 2.5 1.12 ± 0.46 

spring 6.92 ± 0.51 5.3 ± 0.9 1.7 ± 0.9 0.51 ± 0.33 0.52 ± 0.34 21.1 ± 5.2 1.42 ± 0.35 

summer 6.92 ± 0.12 4.3 ± 1.3 1.6 ± 0.7 0.41 ± 0.19 0.38 ± 0.14 15.1 ± 2.3 1.20 ± 0.19 

Scots 
pine 

autumn 6.23 ± 0.33 2.4 ± 1.1 2.3 ± 1.1 0.44 ± 0.20 0.48 ± 0.22 33.8 ± 9.0 0.89 ± 0.21 

winter 6.01 ± 0.48 4.8 ± 0.5 1.2 ± 0.6 0.24 ± 0.09 0.25 ± 0.10 15.4 ± 6.3 0.58 ± 0.25 

spring 6.49 ± 1.23 5.3 ± 1.0 2.4 ± 1.2 0.47 ± 0.19 0.52 ± 0.24 31.3 ± 6.6 1.30 ± 0.47 

summer 4.61 ± 0.23 4.1 ± 1.0 2.5 ± 0.8 0.60 ± 0.17 0.60 ± 0.16 33.5 ± 7.3 1.21 ± 0.28 

Douglas 
fir 

autumn 5.90 ± 1.01 2.0 ± 2.0 0.6 ± 0.4 0.42 ± 0.48 0.13 ± 0.09 18.5 ± 4.3 1.14 ± 0.91 

winter 6.73 ± 0.45 3.9 ± 0.6 1.3 ± 1.5 0.11 ± 0.05 0.11 ± 0.06 8.6 ± 3.0 0.75 ± 0.30 

spring 6.10 ± 0.80 3.6 ± 1.5 0.9 ± 0.7 0.20 ± 0.12 0.22 ± 0.16 21.0 ± 4.3 1.26 ± 0.55 

summer 5.71 ± 0.62 1.8 ± 1.1 0.8 ± 0.5 0.21 ± 0.08 0.20 ± 0.09 25.6 ± 7.0 1.37 ± 0.66 

§ autumn: 19/09/2009 - 30/11/2009;  winter: 01/12/2009 - 31/03/2010;  spring: 01/04/2010 - 24/06/2010;  
  summer: 25/06/2010 - 21/09/2010 (see § 5.2.2) 
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Table A.2 Seasonal and annual fluxes of Cd and Zn (total and dissolved), DOC, H+ and base cations (BC) in forest floor 

leachates under the six tree species (n = 6) (average ± st.dev) 

 
season § 

Cdtot 

(g ha-1 yr-1) 
Cddiss 

(g ha-1 yr-1) 
Zntot 

(kg ha-1 yr-1) 
Zndiss 

(kg ha-1 yr-1) 
DOC 

(kg ha-1 yr-1) 

H+ 

(mol ha-1 yr-1) 
BC 

(eq ha-1 yr-1) 

silver 
birch 

autumn 1.8 ± 0.5 0.6 ± 0.2 0.2 ± 0.1 0.2 ± 0.1 19.8 ± 5.1 0.34 ± 0.36 1021 ± 175 

winter 3.1 ± 3.2 0.5 ± 0.3 0.2 ± 0.1 0.2 ± 0.1 9.7 ± 1.3 0.50 ± 0.23 785 ± 135 

spring 2.0 ± 0.5 0.4 ± 0.1 0.2 ± 0.0 0.2 ± 0.0 10.9 ± 1.9 0.18 ± 0.07 444 ± 144 

summer 4.8 ± 1.5 1.6 ± 0.6 0.6 ± 0.1 0.6 ± 0.1 31.8 ± 3.9 14.1 ± 21.4 1404 ± 215 

 annual 11.6 ± 3.1 3.2 ± 0.9 1.3 ± 0.3 1.3 ± 0.3 72.2 ± 7.5 15.2 ± 21.3 3653 ± 430 

oak 

autumn 2.2 ± 1.3 1.0 ± 0.5 0.3 ± 0.1 0.3 ± 0.1 39.6 ± 12.9 0.83 ± 0.37 2163 ± 418 

winter 8.0 ± 3.0 0.6 ± 0.5 0.2 ± 0.1 0.2 ± 0.1 21.5 ± 5.1 1.09 ± 0.64 1057 ± 534 

spring 1.7 ± 1.0 0.5 ± 0.3 0.1 ± 0.1 0.1 ± 0.1 15.1 ± 4.7 2.92 ± 3.63 496 ± 199 

summer 4.5 ± 3.0 2.1 ± 1.6 0.5 ± 0.3 0.6 ± 0.3 45.6 ± 5.8 71.1 ± 64.4 1956 ± 1486 

 annual 16.4 ± 2.7 4.2 ± 2.4 1.2 ± 0.3 1.2 ± 0.4 121.8 ± 17.3 76.0 ± 62.4 5671 ± 1373 

black 
locust 

autumn 2.5 ± 1.0 2.0 ± 1.3 0.4 ± 0.2 0.4 ± 0.2 32.4 ± 4.5 1.69 ± 1.52 2857 ± 644 

winter 8.3 ± 3.3 1.1 ± 0.3 0.3 ± 0.1 0.3 ± 0.1 21.9 ± 8.2 0.82 ± 0.54 1874 ± 438 

spring 3.9 ± 1.3 1.0 ± 0.9 0.2 ± 0.2 0.3 ± 0.2 14.4 ± 5.6 1.83 ± 3.16 942 ± 694 

summer 6.3 ± 2.2 2.5 ± 1.7 0.6 ± 0.4 0.6 ± 0.4 31.5 ± 12.0 29.7 ± 39.4 2782 ± 1294 

 annual 21.0 ± 6.4 6.5 ± 3.5 1.5 ± 0.7 1.6 ± 0.8 100.2 ± 10.0 33.8 ± 37.7 7757 ± 994 
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Table A.2 (continued)      

aspen 

autumn 3.3 ± 2.4 1.8 ± 1.1 0.4 ± 0.3 0.3 ± 0.1 22.4 ± 3.5 0.06 ± 0.04 2669 ± 991 

winter 8.5 ± 2.4 2.0 ± 1.3 0.4 ± 0.2 0.4 ± 0.2 15.1 ± 5.3 0.13 ± 0.05 2351 ± 967 

spring 3.3 ± 0.6 1.1 ± 0.6 0.3 ± 0.2 0.3 ± 0.2 12.9 ± 3.2 0.14 ± 0.19 867 ± 216 

summer 9.1 ± 2.8 3.4 ± 1.4 0.9 ± 0.4 0.8 ± 0.3 31.9 ± 4.3 0.26 ± 0.08 2533 ± 391 

 annual 24.2 ± 5.4 8.3 ± 3.9 2.0 ± 1.1 1.8 ± 0.8 82.3 ± 9.0 0.6 ± 0.1 8419 ± 1878 

Scots 
pine 

autumn 2.2 ± 1.0 2.1 ± 1.0 0.4 ± 0.2 0.4 ± 0.2 31.3 ± 8.4 0.69 ± 0.52 824 ± 192 

winter 5.2 ± 0.6 1.3 ± 0.6 0.3 ± 0.1 0.3 ± 0.1 16.6 ± 6.8 1.74 ± 2.16 629 ± 267 

spring 2.1 ± 0.4 0.9 ± 0.4 0.2 ± 0.1 0.2 ± 0.1 12.0 ± 2.5 1.37 ± 2.17 500 ± 181 

summer 5.7 ± 1.4 3.5 ± 1.1 0.8 ± 0.2 0.8 ± 0.2 46.6 ± 10.1 38.4 ± 18.9 1676 ± 384 

 annual 15.2 ± 2.7 6.7 ± 2.1 1.7 ± 0.5 1.7 ± 0.5 125.9 ± 40.7 42.2 ± 17.6 3630 ± 883 

Douglas 
fir 

autumn 2.4 ± 2.4 0.8 ± 0.4 0.5 ± 0.6 0.2 ± 0.1 22.3 ± 4.6 7.69 ± 10.9 1380 ± 1101 

winter 5.9 ± 0.7 1.9 ± 1.7 0.2 ± 0.1 0.2 ± 0.1 12.8 ± 3.5 0.37 ± 0.32 1124 ± 394 

spring 1.7 ± 0.7 0.4 ± 0.3 0.1 ± 0.1 0.1 ± 0.1 10.2 ± 1.9 1.60 ± 2.94 609 ± 266 

summer 3.1 ± 1.9 1.3 ± 0.8 0.4 ± 0.1 0.4 ± 0.1 43.9 ± 12.0 6.98 ± 8.02 2347 ± 1131 

 annual 13.1 ± 3.2 4.4 ± 1.7 1.1 ± 0.7 0.8 ± 0.3 89.2 ± 17.6 16.6 ± 11.9 5293 ± 2427 

§ autumn: 19/09/2009 - 30/11/2009;  winter: 01/12/2009 - 31/03/2010;  spring: 01/04/2010 - 24/06/2010;  
  summer: 25/06/2010 - 21/09/2010 (see § 5.2.2)  
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Appendix B 

 

Figures B.1 – B.12 show the calibration and validation results at four depths (5, 15, 30 and 50 cm) under the different tree 
species, i.e. Hydrus-1D model output (blue line) vs. observed values (red line)  

Calibration: March 2011 – February 2012  
Validation: March 2012 – February 2013 
(See § 7.2.3) 
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Figure B.1 Calibration results for silver birch at 5 (a), 15 (b), 30 (c) and 50 (d) cm depth (model output vs. observed values) 
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Figure B.2 Validation results for silver birch at 5 (a), 15 (b), 30 (c) and 50 (d) cm depth (model output vs. observed values) 
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spring summer autumn winter 

a 

Figure B.3 Calibration results for oak at 5 (a), 15 (b), 30 (c) and 50 (d) cm depth (model output vs. observed values)  
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Figure B.4 Validation results for oak at 5 (a), 15 (b), 30 (c) and 50 (d) cm depth (model output vs. observed values)  

spring summer autumn winter 

a 

spring summer autumn winter 

b 

c 

spring summer autumn winter 

d 

spring summer autumn winter 



 

182 

0

0,05

0,1

0,15

0,2

0,25

4 804 1604 2404 3204 4004 4804 5604 6404 7204 8004

S
W

C
 (

-)

time (hours)

0

0,05

0,1

0,15

0,2

0,25

4 804 1604 2404 3204 4004 4804 5604 6404 7204 8004

S
W

C
 (

-)

time (hours)

0

0,05

0,1

0,15

0,2

0,25

4 804 1604 2404 3204 4004 4804 5604 6404 7204 8004

S
W

C
 (

-)

time (hours)

0

0,05

0,1

0,15

0,2

0,25

4 804 1604 2404 3204 4004 4804 5604 6404 7204 8004

S
W

C
 (

-)

time (hours)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.5 Calibration results for black locust at 5 (a), 15 (b), 30 (c) and 50 (d) cm depth (model output vs. observed values) 
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Figure B.6 Validation results for black locust at 5 (a), 15 (b), 30 (c) and 50 (d) cm depth (model output vs. observed values)  
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Figure B.7 Calibration results for aspen at 5 (a), 15 (b), 30 (c) and 50 (d) cm depth (model output vs. observed values) 
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Figure B.8 Validation results for aspen at 5 (a), 15 (b), 30 (c) and 50 (d) cm depth (model output vs. observed values)  
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Figure B.9 Calibration results for Scots pine at 5 (a), 15 (b), 30 (c) and 50 (d) cm depth (model output vs. observed values)  



 

 187 

0

0,05

0,1

0,15

0,2

0,25

4 804 1604 2404 3204 4004 4804 5604 6404 7204 8004

S
W

C
 (

-)

time (hours)

0

0,05

0,1

0,15

0,2

0,25

4 804 1604 2404 3204 4004 4804 5604 6404 7204 8004

S
W

C
 (

-)

time (hours)

0

0,05

0,1

0,15

0,2

0,25

4 804 1604 2404 3204 4004 4804 5604 6404 7204 8004

S
W

C
 (

-)

time (hours)

0

0,05

0,1

0,15

0,2

0,25

4 804 1604 2404 3204 4004 4804 5604 6404 7204 8004

S
W

C
 (

-)

time (hours)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

spring summer autumn winter 

a 

spring summer autumn winter 

b 

d 

spring summer autumn winter 

c 

spring summer autumn winter 

Figure B.10 Validation results for Scots pine at 5 (a), 15 (b), 30 (c) and 50 (d) cm depth (model output vs. observed values)  
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Figure B.11 Calibration results for Douglas fir  at 5 (a), 15 (b), 30 (c) and 50 (d) cm depth (model output vs. observed values) 
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Figure B.12 Validation results for Douglas fir  at 5 (a), 15 (b), 30 (c) and 50 (d) cm depth (model output vs. observed values)  
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Appendix C 

 

Table C.1 Seasonal pH and concentrations of Cd and Zn (total and dissolved), DOC, base cations (BC) and anions in the 

soil solution at 50 cm depth under the six tree species (n = 6) (average ± st.dev) 

 
season § 

pH 
(-) 

Cdtot 

(µg l-1) 

Cddiss 

(µg l-1) 

Zntot 

(mg l-1) 

Zndiss 

(mg l-1) 

DOC 

(mg l-1) 

BC 

(meq l-1) 

Anions 

(meq l-1) 

silver 
birch 

winter 5.60 ± 0.17 2.0 ± 1.1 2.3 ± 0.9 0.54 ± 0.24 0.53 ± 0.22 32.4 ± 13.3 0.76 ± 0.27 0.56 ± 0.26 

spring 5.50 ± 0.09 4.0 ± 0.7 2.2 ± 0.8 0.41 ± 0.11 0.41 ± 0.12 27.8 ± 10.2 0.58 ± 0.26 0.38 ± 0.26 

summer / / / / / / /  / 

autumn 5.60 ± 0.17 3.1 ± 1.2 3.3 ± 0.7 0.50 ± 0.08 0.60 ± 0.25 38.9 ± 13.6 1.04 ± 0.44 0.66 ± 0.24 

oak 

winter 5.90 ± 0.47 2.5 ± 1.6 2.6 ± 1.0 0.52 ± 0.07 0.52 ± 0.08 49.1 ± 28.4 0.81 ± 0.25 0.51 ± 0.16 

spring 6.22 ± 0.54 1.3 ± 1.1 1.8 ± 0.4 0.36 ± 0.04 0.36 ± 0.04 32.7 ± 15.6 0.64 ± 0.29 0.32 ± 0.10 

summer / / / / / / /  / 

autumn 6.07 ± 0.73 4.3 ± 2.1 3.1 ± 1.7 0.59 ± 0.16 0.57 ± 0.16 50.2 ± 19.9 0.98 ± 0.23 0.53 ± 0.10 

black 
locust 

winter 5.21 ± 0.14 6.1 ± 2.3 6.4 ± 2.8 1.42 ± 0.61 1.51 ± 0.66 23.9 ± 7.6 2.30 ± 1.07 2.35 ± 1.30 

spring 5.71 ± 0.37 3.0 ± 0.7 4.3 ± 2.3 0.70 ± 0.03 1.08 ± 0.72 16.6 ± 4.0 1.52 ± 0.47 1.46 ± 0.53 

summer / / / / / / /  / 

autumn 5.60 ± 0.16 5.3 ± 0.9 4.2 ± 0.6 0.84 ± 0.14 0.81 ± 0.14 28.9 ± 10.1 1.13 ± 0.27 0.94 ± 0.34 
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Table C.1 (continued)       

aspen 

winter 5.75 ± 0.22 3.6 ± 1.1 3.7 ± 1.4 0.60 ± 0.25 0.64 ± 0.27 25.0 ± 5.0 1.10 ± 0.46 0.90 ± 0.47 

spring 5.85 ± 0.24 3.6 ± 1.6 2.9 ± 0.9 0.46 ± 0.18 0.44 ± 0.18 23.0 ± 7.6 0.74 ± 0.23 0.58 ± 0.27 

summer / / / / / / / /  

autumn 5.80 ± 0.19 5.6 ± 1.2 4.8 ± 0.9 0.66 ± 0.21 0.72 ± 0.29 37.6 ± 6.7 1.15 ± 0.16 0.82 ± 0.15 

Scots 
pine 

winter 5.84 ± 0.90 9.3 ± 4.6 10.2 ± 5.8 2.61 ± 2.08 3.00 ± 2.28 38.2 ± 18.1 2.91 ± 0.84 2.75 ± 1.02 

spring 5.98 ± 0.61 4.1 8.2 ± 6.3 0.62 2.83 ± 3.15 48.0 2.23 ± 0.29 1.53 

summer / / / / / / / /  

autumn 5.79 ± 0.65 15.2 ± 16.1 18.0 ± 13.3 1.88 ± 1.99 3.85 ± 3.66 78.4 ± 60.5 2.56 ± 1.80 3.28 ± 2.21 

Douglas 
fir 

winter 5.00 ± 0.54 6.9 ± 4.7 6.1 ± 3.2 1.08 ± 0.66 1.07 ± 0.63 33.9 ± 7.6 2.02 ± 1.06 1.79 ± 1.07 

spring 5.11 ± 0.26 7.9 ± 2.8 6.2 ± 5.2 0.95 ± 0.77 0.87 ± 0.82 27.8 ± 3.5 1.84 ± 0.85 1.42 ± 1.05 

summer / / / / / / / /  

autumn 5.45 ± 0.23 16.6 10.5 ± 9.3 2.19 1.32 ± 1.17 33.4 ± 2.9 2.71 ± 1.30 2.67 ± 1.67 

§ winter: 23/11/2009 - 31/03/2010;  spring: 01/04/2010 - 25/06/2010;  summer: 26/06/2010 - 21/09/2010;  
  autumn: 22/09/2010 - 25/11/2010 (see § 7.2.2) 
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Table C.2 Seasonal and annual seepage fluxes of Cd and Zn (total and dissolved), DOC, H+, base cations (BC) and 

anions at 50 cm depth under the six tree species (n = 6) (average ± st.dev) 

 
season § 

Cdtot 

(g ha-1 yr-1) 
Cddiss 

(g ha-1 yr-1) 
Zntot 

(kg ha-1 yr-1) 
Zndiss 

(kg ha-1 yr-1) 
DOC 

(kg ha-1 yr-1) 

H+ 

(mol ha-1 yr-1) 
BC 

(eq ha-1 yr-1) 
Anions 

(eq ha-1 yr-1) 

silver 
birch 

winter 5.2 ± 2.3 6.2 ± 1.7 1.5 ± 0.5 1.4 ± 0.5 85.9 ± 19.2 7.44 ± 2.17 2042 ± 570 1494 ± 552 

spring 1.9 ± 0.2 1.0 ± 0.3 0.2 ± 0.0 0.2 ± 0.0 13.3 ± 4.4 1.55 ± 0.26 278 ± 124 183 ± 111 

summer / / / / / / / / 

autumn 5.3 ± 1.5 5.5 ± 1.1 0.8 ± 0.1 1.0 ± 0.4 65.2 ± 17.7 4.49 ± 1.36 1747 ± 731 1109 ± 309 

 annual 12.4 ± 3.0 12.7 ± 2.8 2.5 ± 0.6 2.6 ± 0.6 164.4 ± 45.2 13.5 ± 3.8 4067 ± 1250 2786 ± 945 

oak 

winter 7.3 ± 3.6 7.4 ± 1.4 1.5 ± 0.1 1.5 ± 0.2 138.7 ± 44.2  5.42 ± 3.31 2371 ± 493 1492 ± 306 

spring 0.6 ± 0.4 0.9 ± 0.2 0.2 ± 0.0 0.2 ± 0.0 15.7 ± 6.1 0.44 ± 0.34 307 ± 114 156 ± 40 

summer / / / / / / / / 

autumn 7.7 ± 3.0 5.6 ± 2.5 1.1 ± 0.2 1.0 ± 0.2 90.5 ± 29.4 3.05 ± 2.76 1768 ± 342 955 ± 146 

 annual 15.6 ± 6.7 13.9 ± 4.0 2.8 ± 0.4 2.8 ± 0.4 244.9 ± 84.3 8.91 ± 6.85 4445 ± 869 2603 ± 493 

black 
locust 

winter 17.7 ± 4.0 18.1 ± 3.9 4.1 ± 1.1 4.3 ± 1.1 67.9 ± 5.2 19.1 ± 4.82 6538 ± 1552 6628 ± 1743 

spring 1.3 ± 0.2 1.9 ± 1.0 0.3 ± 0.0 0.5 ± 0.3 7.4 ± 1.8 1.13 ± 0.81 677 ± 211 649 ± 237 

summer / / / / / / / / 

autumn 9.6 ± 1.4 7.6 ± 1.0 1.5 ± 0.2 1.5 ± 0.2 52.2 ± 16.3 4.75 ± 1.56 2031 ± 432 1688 ± 552 

 annual 28.7 ± 4.8 27.6 ± 4.9 5.9 ± 1.4 6.2 ± 1.5 127.5 ± 21.8 25.0 ± 7.9  9247 ± 2237 8965 ± 2344 
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Table C.2 (continued)       

aspen 

winter 8.5 ± 2.3 8.7 ± 2.8 1.4 ± 0.5 1.5 ± 0.5 58.4 ± 6.8 4.82 ± 2.04 2570 ± 921  2095 ± 918 

spring 1.3 ± 0.5 1.1 ± 0.3 0.2 ± 0.1 0.2 ± 0.1 8.3 ± 2.5 0.59 ± 0.32 269 ± 83 208 ± 88 

summer / / / / / / / / 

autumn 8.1 ± 1.6 6.9 ± 1.3 1.0 ± 0.3 1.0 ± 0.4 54.7 ± 9.8 2.48 ± 0.83 1669 ± 233 1195 ± 216 

 annual 17.9 ± 3.2 16.7 ± 4.4 2.5 ± 0.9 2.7 ± 1.0 121.4 ± 15.5 7.89 ± 2.66  4508 ± 1356 3498 ± 1314 

Scots 
pine 

winter 12.4 ± 4.8 13.2 ± 5.8 3.4 ± 2.0 3.9 ± 2.0 49.6 ± 19.5 4.82 ± 5.58 3775 ± 906 3546 ± 1033 

spring 0.6 ± 0.0 1.2 ± 0.4 0.1 ± 0.0 0.4 ± 0.2 7.2 ± 0.0 0.24 ± 0.12 336 ± 27 229 ± 0 

summer / / / / / / / / 

autumn 12.4 ± 5.9 14.7 ± 6.8 1.5 ± 0.7 2.5 ± 1.2 64.0 ± 31.2 2.47 ± 1.79 3110 ± 1299 2678 ± 1142 

 annual 25.4 ± 9.6 29.1 ± 12.6 5.1 ± 2.6 5.9 ± 2.7 120.8 ± 50.1 6.79 ± 6.22 7220 ± 2176 6453 ± 2119  

Douglas 
fir 

winter 13.1 ± 5.3 11.0 ± 4.3 2.0 ± 0.8 1.9 ± 0.9 59.9 ± 8.9 41.4 ± 38.1 3648 ± 1418 3221 ± 1454 

spring 1.4 ± 0.2 1.1 ± 0.4 0.2 ± 0.1 0.2 ± 0.1 5.0 ± 0.3 1.51 ± 0.38 329 ± 96 254 ± 84 

summer / / / / / / / / 

autumn 17.7 ± 0.0 11.2 ± 4.4 2.3 ± 0.0 1.4 ± 0.6 35.6 ± 1.4 4.08 ± 0.94 2891 ± 620 2843 ± 794 

 annual 32.2 ± 6.0 23.3 ± 9.0 4.5 ± 0.9 3.5 ± 1.4 100.4 ± 11.1  47.0 ± 39.0 6868 ± 1806 6318 ± 1957 

§ winter: 23/11/2009 - 31/03/2010;  spring: 01/04/2010 - 25/06/2010;  summer: 26/06/2010 - 21/09/2010;  
  autumn: 22/09/2010 - 25/11/2010 (see § 7.2.2) 
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