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The Direct Sampling (DS) algorithm is a recently developed multiple-point statistical simulation

technique. It directly scans the training image (TI) for a given data event instead of storing the training

probability values in a catalogue prior to simulation. By using distances between the given data events

and the TI patterns, DS allows to simulate categorical, continuous and multivariate problems. Benefiting

from the wide spectrum of potential applications of DS, requires understanding of the user-defined

input parameters. Therefore, we list the most important parameters and assess their impact on the

generated simulations. Real case TIs are used, including an image of ice-wedge polygons, a marble slice

and snow crystals, all three as continuous and categorical images. We also use a 3D categorical TI

representing a block of concrete to demonstrate the capacity of DS to generate 3D simulations. First,

a quantitative sensitivity analysis is conducted on the three parameters balancing simulation quality

and CPU time: the acceptance threshold t, the fraction of TI to scan f and the number of neighbors n.

Next to a visual inspection of the generated simulations, the performance is analyzed in terms of speed

of calculation and quality of pattern reproduction. Whereas decreasing the CPU time by influencing t

and n is at the expense of simulation quality, reducing the scanned fraction of the TI allows substantial

computational gains without degrading the quality as long as the TI contains enough reproducible

patterns. We also illustrate the quality improvement resulting from post-processing and the potential

of DS to simulate bivariate problems and to honor conditioning data. We report a comprehensive guide

to performing multiple-point statistical simulations with the DS algorithm and provide recommenda-

tions on how to set the input parameters appropriately.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Multiple-point statistics (MPS) covers an ensemble of sequen-
tial simulation algorithms using a training image (TI) as input
data for the spatial structure of a process instead of a two-point
variogram (Guardiano and Srivastava, 1993; Strebelle, 2000).
A TI is a conceptual image of the expected spatial structure and
is often built based on prior information. Using a TI allows
extracting multiple-point statistics and hence describing more
complex patterns; this is especially important when spatial
connectivity plays a key role in the model application (Bianchi
et al., 2011; Gómez-Hernández and Wen, 1998; Renard and
Allard, 2012; Zinn and Harvey, 2003).
ll rights reserved.

tiple-point statistics;
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eerschman).
As is characteristic for sequential simulations, the unknown
locations x of the simulation grid are visited according to a
predefined (random or regular) path. For each x the simulated
value is drawn from a cumulative distribution function F condi-
tioned to a local data event dn:

F z,x,dnð Þ ¼ Prob ZðxÞrz9dn

� �
ð1Þ

This data event comprises the values of the known neighbor-
ing grid nodes xi, i.e., the conditioning data and the already
simulated grid nodes, and their relative positions. F is built based
on the central nodes of TI patterns equal or similar to dn.

The Direct Sampling (DS) algorithm is a recent MPS algorithm
(Mariethoz et al., 2010)1. The particularities of DS consist in
skipping the explicit modeling of F by directly sampling the TI
during simulation, and in using dissimilarity distances between
1 It is the object of an international patent application (PCT/EP2008/009819).

The code is available on demand for academic and research purposes. Requests

should be sent to Renard, Mariethoz or Straubhaar.
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dn and the TI patterns. As soon as a TI pattern is found that
matches dn exactly or as soon as the distance between the TI
pattern and dn is lower than a given threshold, the value at the
central node of the TI pattern is directly pasted to x. Since the TI is
scanned randomly, this strategy is equal to drawing a random
value from F, but increases simulation speed. Other MPS algo-
rithms, like the widely used snesim (Strebelle, 2002) and IMPALA

(Straubhaar et al., 2011) algorithm, scan the TI beforehand for all
possible dn’s and store the TI probabilities in a catalogue. There-
fore, they are restricted to the simulation of categorical variables
and need to use a predefined template for dn. Due to its unique
strategy, DS allows to simulate both categorical and continuous
variables, and to handle multivariate cases, only by selecting the
appropriate distances measures.

Since DS is a promising simulation technique for a wide range
of applications, it is important to understand precisely its capa-
cities and its sensitivity to the user-defined input parameters.
DS is implemented in the ANSI C language and all input and output
files are in an ASCII SGeMS compatible format (Remy et al., 2009).
Detailed algorithm steps and further implementation details of DS
can be found in Mariethoz et al. (2010) and the user manual of DS.

Using DS requires the user to define some parameters: among
them, the acceptance threshold t, the maximum fraction of TI to
scan f and the maximum number of points in the neighborhood n

are the most important since they are balancing simulation quality
and CPU time (Section 2.1). For these three parameters, a detailed
sensitivity analysis is reported by generating non-conditional
simulations for the entire 3D parameter space. Next to a visual
inspection of the resulting simulations, we quantify the similarity
between the simulations and the TI by means of simulation quality
indicators (CASE 1). The same quality indicators are calculated for a
3D example (CASE 2). We also illustrate the potential of the post-
processing option (CASE 3), the multivariate simulation option
(CASE 4) and the data conditioning option (CASE 5) and discuss
the corresponding user-defined input parameters. Table 1 sum-
marizes the values of the parameter that we keep fixed and the
range of values of the parameters that we vary.
Table 1
Fixed parameters with their default values chosen for this study (sorted according to

default values and range over which they are varied (sorted according to the case num

Fixed parameters
Name
Simulation method

Number of realizations

Max search distance

Anisotropy ratios in the search window (x,y,z)

Transformations

Path type

Type of variable

Exponent of the distance function in the template

Syn-processing parameters (4)

Initial seed

Parameters reduction

Parallelization

Varied parameters
Name Default
Threshold position t 0.05

Max fraction of TI to scan f 0.5

Max number of points in neighborhood n 50

Post-processing parameters

– Number of post-processing steps (p)

– Post-processing factor (pf) 0

0

Number of variables to simulate jointly 1

Relative weight of each variable 1

Weight of conditioning data (d) 1

Data conditioning No
Since Mariethoz (2010) already showed good performance of
DS with as much as 54 processors, the parallelization option is not
discussed here. For more information about the option to use
transform-invariant distances we refer to Mariethoz and Kelly
(2011).

Many previous studies have used only one TI with sinuous
channels. In contrast, we include a greater variety of patterns by
performing sensitivity analyses on seven TIs: an image of ice-
wedge polygons (Plug and Werner, 2002), a microscopic view of a
thin marble slice, an image of snow crystals, all three as catego-
rical and continuous images, and a categorical 3D image of
concrete (Fig. 1). The continuous 2D TIs are grayscale photographs
with pixel values between 0 and 255; the categorical 2D TIs are
derived from these by classifying them into three categories. The
3D TI is generated by sequentially simulating 2D slices con-
strained by conditioning data computed at the previous simula-
tion steps (Comunian et al., 2012). The figures shown in this paper
are the results for the categorical ice-wedge TI, the continuous
marble TI and the 3D concrete TI. They are presented with the
same color scale as the TIs in Fig. 1. The results for the other TIs
can be found as supplementary electronic material available
online.
2. CASE 1: Parameters balancing simulation quality and CPU
time: t, f and n

2.1. Parameters t, f and n

An acceptance threshold t needs to be defined because a TI
pattern matching dn exactly is often not found, especially for
continuous variables. When the distance between the TI pattern
and dn is smaller than t, the central node of the TI pattern is
pasted at location x. The default distances used in this paper are
based on the fraction of non-matching nodes for categorical
simulations and the mean squared errors for continuous simula-
tions. The ‘exponent to the distance function in the template’ is
their appearance in the parameter file) and parameters that are varied with their

ber in which they are studied).

Default
MPS

10

125 125 0 (½ size simulation grid)

1 1 1

0 (no transformations)

0 (random path)

0 for categorical, 1 for continuous

0

0 0 0 0 (no syn-processing)

1350

1 (no parameters reduction)

1 (serial code, no parallelization)

Range Case
0.01–0.02–0.04–0.06–0.08–0.1–0.12–0.14–0.16–

0.18–0.2–0.25–0.5–0.75–0.99

1

0.05–0.1–0.15–0.2–0.3–0.4–0.5–0.6–0.75–1 1

1–5–10–15–20–30–50–80 1

2

0–1–2

0–1–3

1–2 3

0.1 0.9–0.25 0.75–0.5 0.5–0.75 0.25–0.9 0.1 3

0–1–5 4

No–yes 4



Fig. 1. The seven training images (TIs) that are used for the sensitivity analyses: (a) continuous (photograph: Plug and Werner, 2002) and (b) categorical (k¼3) TI of

ice-wedge polygons; (c) continuous and (d) categorical (k¼3) TI of a thin marble slice; (d) continuous and (e) categorical (k¼3) TI of snow crystals; (g) categorical (k¼3)

3D TI of a block of concrete The x-, y- and z-axes represent the number of pixels. The results of the sensitivity analyses for TIs (b), (c) and (g) are illustrated in this paper; the

results for TIs (a), (d), (e) and (f) can be found in the supplementary material available online.
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set to 0, meaning that the distances are calculated without
weighting the nodes in the TI pattern according to their proximity
to the central node. All distances are normalized ensuring their
minimum to be zero (exact match) and their maximum to be 1
(no match) (Mariethoz et al., 2010).

The maximum fraction of TI to scan f limits the number of TI
patterns that are scanned for their similarity with dn: f ranges
from 0 (no scan) to 1 (scan full TI if necessary). If the maximum
fraction of the TI f is scanned and still no TI pattern with a
distance smaller than t is found, the central node of the TI pattern
with the lowest distance is pasted at location x.

The neighborhood dn is defined as the n grid nodes that are
closest to x within the defined search area. This search area can be
defined by setting the parameters ‘maximum search distance’, i.e.,
the radius in the x-, y- and z-direction of a rectangular search area.
Generally, it is advised to use a large search area by setting the radii



E. Meerschman et al. / Computers & Geosciences 52 (2013) 307–324310
to half the size of the simulation grid, corresponding to the
maximum neighborhood size, except when considering non-
stationary variables (Mariethoz et al., 2010), or patching occurs
(discussed below). The definition of n results in dn’s covering a large
part of the search area when the first unknown grid nodes are
simulated, and a progressive decrease of the size of the area covered
by dn when the number of already simulated nodes increases.
Consequently, DS ensures that structures of all sizes are present in
the simulation, which is also the purpose of the multi-grid approach
in snesim (Strebelle, 2002).

Fig. 2 gives an overview of the DS workflow and its three main
input parameters.

It is clear that the larger n and the closer t to 0 and f to 1, the
better the simulation quality will be. However, these settings will
be very expensive in terms of CPU time. For all six TIs, we
simulate 10 unconditional realizations for each parameter com-
bination of 15 t values, 10f values and 8 n values (Table 1),
resulting in 12,000 realizations for each TI.
2.2. CPU time

Fig. 3 shows the CPU time needed to simulate one uncondi-
tional simulation for the categorical and the continuous case.
First the influence of t and n is shown for f¼0.5 after which the
influence of f is shown for different combinations of t and n.

Besides the fact that generating simulations based on the
continuous TI generally takes longer, the results for the categorical
and the continuous case show a similar behavior. Simulations with
small t and large n require a long simulation time and decreasing f

strongly reduces CPU time. Modifying one of the parameters t, f or n

increases or decreases the CPU exponentially. The combined effect
of relaxing all three parameters only slightly, can reduce CPU time
significantly. For instance, generating one simulation for the cate-
gorical case with default parameters (t¼0.05, f¼0.5, n¼50) takes
163 s. Relaxing t to 0.1 only takes 44 s, relaxing all three parameters
to t¼0.1, f¼0.3 and n¼30 only takes 13 s.

This behavior is related to the scanning algorithm. When t is
close to 0, f close to 1 and n high, the algorithm scans the entire TI
for a very good match with complex data events (large neighbor-
hoods). This takes a lot of time. In the opposite case, the algorithm
finds very quickly a TI pattern that matches the criteria and the
algorithm is fast. What is striking in Fig. 3 is that the evolution
Fig. 2. Workflow of DS explaining the three main input parameters: the acceptance th
between these two cases is rather abrupt for some parameter
values. When the parameter values are behind such an abrupt
boundary, DS is very fast whatever the parameter values, below
this boundary CPU time increases.
2.3. Visual quality inspection

Fig. 4 shows the first out of 10 simulations for some combina-
tions of t, f and n using the categorical ice-wedge TI and Fig. 5
using the continuous marble TI. The results for the other TIs can be
found as supplementary material. Similar as for Fig. 3, first a
sensitivity analysis on t and n is performed (for f¼0.5), after which
the effect of f is illustrated for some combinations of t and n.
We select simulations with different quality levels in order to
illustrate the evolution of the simulation quality. As the quality
steps depend on the TI, simulations with different t and n values
are illustrated for each case.

For the categorical case, running DS with t40.5 or nr5 results in
noisy images. This is not surprising since then the sampling is
not selective enough: any TI pattern can be accepted even if it is far
away from dn. This corresponds to situations in which the algorithm
is very fast. For tr0.5 and n45, the ice-wedge pattern is reasonably
well reconstructed. For tr0.2 and nZ30, the simulation quality is
very good. Not only the pattern reconstruction, but also the appear-
ance of noise and the fuzziness of the edges between different
categories are influenced by t and n (CASE 3). For the categorical
marble TI (Fig. 1d) similar thresholds are found (Supplementary
material—Fig. b). For the categorical snow crystals TI (Fig. 1f) the
simulation quality is good for tr0.1 and nZ50 (Supplementary
material—Fig. c). In contrast to the effect of t and n, f has a much
smaller effect on the simulation quality. Scanning a smaller part of
the TI hardly results in a quality decrease (Fig. 4b). The same
conclusion can be drawn from the simulations using the other
categorical TIs.

Fig. 5 shows that generating continuous simulations generally
requires stricter parameters (lower t, higher n and f). Running DS
with tZ0.2 results in noisy images. The simulation quality is good
for tr0.1 and nZ30. Simulations using the continuous ice-
wedge TI (Fig. 1a) show important changes in visual quality for
the same values of t and n (Supplementary material—Fig. a). The
quality of the simulations using the continuous snow crystal TI
(Fig. 1e) is generally less good: only for tr0.1 and nZ50 the
reshold t, the maximum fraction of TI to scan f and the maximum of neighbors n.



Fig. 3. (Color online) Influence of t and n (for f¼0.5) (top) and f (bottom) on the CPU time required to run one unconditional simulation.

E. Meerschman et al. / Computers & Geosciences 52 (2013) 307–324 311
simulation quality is moderate (Supplementary material—Fig. d).
For the continuous cases, it is observed that variations in f do not
affect much on the simulation quality.

Especially for the continuous cases, it can be seen that some
simulations are almost exact copies of parts of the TI. This
phenomenon is called ‘patching’. It is caused by copying each
time the central node of the same best matching pattern. The
issue of patching will be discussed further in the paper (Section
2.5).

2.4. Simulation quality indicators

For each unconditional simulation we calculate several quality
indicators by comparing the histogram, variogram and connec-
tivity function of the TI and the simulations. The connectivity
function t(h) for a category s is defined as the probability that two
points are connected by a continuous path of adjacent cells all
belonging to s, conditioned to the fact that the two points belong
to s (Boisvert et al., 2007; Emery and Ortiz, 2011; Renard et al.,
2011; Renard and Allard, 2012):

tðhÞ ¼ Prob x2xþh9sðxÞ ¼ s,s xþhð Þ ¼ s
� �

ð2Þ

Fig. 6 compares the histogram, variogram and connectivity
function of the categorical ice-wedge TI (Fig. 1b) with these of a
good simulation (t¼0.01, f¼0.5, n¼80) and a bad simulation
(t¼0.5, f¼0.5, n¼15 for categorical and t¼0.2, f¼0.5, n¼5 for
continuous). Both the indicator variogram values gk(h) and the
connectivity function tk(h) for each category k are calculated for
20 lag classes h with a lag width of 5. The histograms (proportions
of the three categories) are represented for both simulations. The
indicator variograms and the connectivity functions are only
reproduced for the good simulation, except for the intermediate
material (grey), where the bad simulation partially reproduces
the TI statistics.

Fig. 7 illustrates the same for the continuous case. Here the
standard variogram g(h) is calculated instead of the indicator
variogram. To calculate the connectivity functions, the TI and the
simulations are first divided into three categories based on two
thresholds representing connectivity jumps in the TI (Renard and
Allard, 2012). Similarly to Fig. 6, the histograms (represented as
the cdf) are represented for both the good and the bad simulation,
whereas the variogram and the connectivity functions are only
reproduced by the good simulation.

To quantify the dissimilarity between the simulations’ statis-
tics and those of the TI, we calculate three error indices for each
simulation: a histogram error ehist, variogram error evar and
connectivity error econn. For the categorical simulations, ek

hist is
defined as the absolute value of the difference between the
proportion of k in the simulation grid f k

sim and in the TI f k
TI . For

the continuous simulations, ehist is calculated as the Kullback–
Leibler divergence DKL (Kullback and Leibler, 1951):

ehist ¼D P99Q
� �

¼
X

i

P ið Þlog
PðiÞ

Q ðiÞ
ð3Þ

with P(i) the probability distribution in the simulations and Q(i)
the probability distribution in the TI.

The variogram error evar for the continuous simulations is
based on the weighted average difference between the variogram
values of the simulations gsim(h) and the TI gTI(h) for 20 lag classes
hd, and is calculated as

evar ¼

P20

d ¼ 1

1=hd

� �
9gsim hdð Þ�gTI hdð Þ9= varsimð Þ

P20

d ¼ 1

1=hd

� � ð4Þ

with varsim the simulation variance used to standardize the
absolute errors, so they range between 0 and 1. The term 1=hd

is included to give larger weights to errors corresponding to small
variogram lags. The variogram error ek

var for the categorical case is
calculated similarly using the indicator variogram values.



Fig. 4. (a) First out of 10 unconditional simulations illustrating the effect of parameters t and n with f¼0.5 and (b) first out of 10 unconditional simulations illustrating the

effect of f for constant t and n based on the categorical ice-wedge TI (Fig. 1b).
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Fig. 5. (a) First out of 10 unconditional simulations illustrating the effect of parameters t and n with f¼0.5 and (b) first out of 10 unconditional simulations illustrating the

effect of f for constant t and n based on the continuous marble TI (Fig. 1c).
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Fig. 6. Reproduction of (a) the categorical ice-wedge TI statistics of (b) a good (t¼0.01, f¼0.5, n¼80) and a bad simulation (t¼0.5, f¼0.5, n¼15) with the reproduction of

(c) the histogram, (d) the indicator variograms (the dotted lines represent the TI indicator variance) and (e) the connectivity functions.

E. Meerschman et al. / Computers & Geosciences 52 (2013) 307–324314
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The connectivity error econn is calculated as

econn ¼

P20

d ¼ 1

9tk
sim hdð Þ�tk

TI hdð Þ9

20
ð5Þ

and also ranges between 0 and 1.

2.5. Results and discussion

Figs. 8 and 9 show the results of the simulation quality
indicators for the categorical and the continuous case. The first
part of the figures illustrates the effect of t and n, the second part
the effect of f.

As was already concluded from Figs. 6 and 7 ehist behaves
differently than evar and econn. The histogram is generally well
reproduced for all simulations. Noisy images reproduce the histo-
gram the best, which is especially clear for the continuous case.
This can be explained by considering the extreme case of t¼1.
Fig. 7. Reproduction of (a) the continuous marble TI statistics of (b) a good (t¼0.01, f

(c) the histogram, (d) the variogram (the dotted line represents the TI variance) and (e
With such a setting, DS randomly samples values from the TI,
resulting in a perfect reproduction of the marginal distribution
(ehist¼0), but no reproduction of spatial continuity (very large evar

and econn). For intermediate combinations of t and n, ehist is
generally larger. In the areas with good simulation quality
(tr0.2 and nZ30) ehist behaves differently for the categorical
and the continuous case. For the categorical case low t and high n

guarantee both low ehist and good simulation quality (Fig. 4,
Supplementary material—Figs f and g). For the continuous case,
the high quality simulations (tr0.2 and nZ30) have higher ehist.
This counterintuitive result can be explained as follows: with low t

and high n, the simulation has to honor very strong spatial
constraints. When the structures are made of objects that are large
with respect to the domain size, respecting such spatial constraints
means to respect the connectivity of facies and the objects size,
even if it contradicts the target pdf. Because of a slight non-
stationarity in the TI, the simulation can then follow the pdf of one
specific part of the TI that is different than the rest. This can result
¼0.5, n¼80) and a bad simulation (t¼0.2, f¼0.5, n¼5) with the reproduction of

) the connectivity functions.
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in significant variability in the pdfs of the simulations. This is the
opposite as the case of t¼1, where the TI distribution is honored
because there is no constraint on the spatial continuity. For the
continuous ice-wedge TI (Fig. 1a) and the snow crystal TI (Fig. 1e),
the histogram is well reproduced in the high quality simulations
(Supplementary material—Figs e and h). Since certain applications
Fig. 8. (Color online) Influence of (a) t and n (for f¼0.5) and (b) f on th
require the histogram to be reproduced, this issue could be further
addressed by the DS developers.

In contrast, evar and econn increase for larger t and smaller n,
which is a more intuitive behavior. Both errors show similar
quality jumps as were derived from the visual inspection and
therefore behave as stable simulation quality indicators.
e quality indicators based on the categorical ice-wedge TI (Fig. 1b).
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These results allow us to derive some rules of thumb. Running
DS using a categorical TI should result in good simulations for
tr0.2 and nZ30. Selecting tZ0.5 and no15 should be avoided.
For continuous TI, it is advised to use tr0.1, nZ30 and to avoid
tZ0.2 and nr15. The quality of intermediate combinations is
hard to predict. It is obvious that the simulation quality steps
strongly depend on the TI. The greater the pattern repeatability in
the TI, the better the simulation quality will be.

Fig. 8b and Fig. 9b lead again to the conclusion that f does not
have a strong influence on the simulation quality. This is confirmed
by the other TIs (Supplementary material—Figs e–h). Only for
certain situations, like for fo0.2 in the continuous case (see results
for evar), the pattern reproduction degrades with lower f since the
probability of finding a matching TI pattern is lower. Note also that
using a small f value for TIs that contain insufficient diversity
(Mirowski et al., 2009), might aggravate the statistical scarcity and
lead to poor results. But generally decreasing f results in large
computation gains without a substantial decrease in simulation
quality, which is an important conclusion for an efficient use of DS.

It is interesting to juxtapose the CPU time (Fig. 3) with the
corresponding quality indicators (Figs. 8 and 9). This reveals
where the interesting boundaries are located in terms of quality
over CPU time ratio. For instance, for the categorical case the
quality is moderate from nZ15 and tr0.18 (f¼0.5) (Fig. 8a),
whereas the CPU time really increases from nZ30 and tr0.1
Fig. 9. (Color online) Influence of (a) t and n (for f¼0.5) and (b) f on t
(Fig. 3a). In between these boundaries, the simulation quality is
good, as is confirmed by the visual inspection. In case CPU time is
a limiting factor, users are recommended to investigate the
quality over CPU time ratio for different parameter combinations
running trial simulations on a small grid.

It is good practice to run DS initially with f¼0.5, t between 0.05
and 0.2 and n between 20 and 50. From this, the parameters need to
be fine-tuned for every particular situation, knowing that decreasing
t and increasing n and f should result in better simulation quality.
However, one should keep in mind that using parameters which
guarantee very good simulations has two drawbacks. First, these
configurations will require large CPU times. Second, there is a risk of
generating simulations which are all exact copies of (part of) the TI
(patching effect or verbatim copy). This risk is higher when the TI
does not show enough pattern repeatability (which is more often
the case for continuous TIs) and when there are no conditioning data
(CASE 5). Strategies to avoid patching are choosing fo1, thus
avoiding to pick each time the same best matching mode, slightly
relaxing t and n, or using a smaller ‘maximum search distance’.
3. CASE 2: 3D simulation

Similarly to two dimensions (CASE 1), DS can generate 3D
simulations. To demonstrate this, we perform a limited sensitivity
he quality indicators based on the continuous marble TI (Fig. 1c).



Fig. 10. (Color online) 3D example with (a) first out of 10 unconditional simulations illustrating the effect of parameters t and n with f¼0.5 and (b) influence of t and n (for

f¼0.5) on the quality indicators based on the 3D concrete TI (Fig. 1g).

E. Meerschman et al. / Computers & Geosciences 52 (2013) 307–324318
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analysis using the 3D concrete TI (Fig. 1g). We generate 10
unconditional simulations for each combination of eight t [0.01–
0.05–0.1–0.15–0.2–0.25–0.3–0.5] and eight n [1–5–8–16–32–64–
125–216] values, using a fixed value of 0.5 for f. The other
parameters are set as indicated in Table 1, with exception of the
maximum search distance that is defined as half of the search grid
in three directions (x, y and z).

The CPU time as a function of t and n (not shown here) behaves
very similar as for 2D (Fig. 3). For instance, generating one
simulation with t¼0.1 and n¼32 takes 194 s, with t¼0.05 and
n¼32 1998 s and with t¼0.05 and n¼64 6804 s.

Fig. 10b shows the simulation quality indicators (see Section
2.2.4) as a function of t and n. Overall, the results are analogous to
those of CASE 1. The simulation quality generally improves with
increasing n and decreasing t with a quality jump for t¼0.2 and
n¼32, as can be seen from egrey

conn and eblack
conn , and the unconditional

simulations shown in Fig. 10a. Again, ehist is the smallest for noisy
simulations with very small n.

Since the white category represents the background volume,
ewhite

conn is very small for all parameter combinations and hence
not informative. With parameters producing noisy simulations
Fig. 11. Illustration of the noise removal effect of post-processing using the categorica

post-processing steps (p) and the post-processing factor (pf) showing the lower left co
(tZ0.3 and nr8), egrey
var is again lower. This can be explained by

the small range of the grey indicator variogram, causing egrey
var to be

small for pure nugget variograms reproducing the sill correctly.
4. CASE 3: Post-processing for noise removal

To further improve the simulation quality and more specifically
to remove noise, DS includes a post-processing option. After having
simulated all the unknown grid nodes, it is possible to resimulate
each node with an entirely informed neighborhood. Two post-
processing parameters need to be defined: the number of post-
processing steps p and the post-processing factor pf. The latter is the
factor by which f and n are divided aiming to save CPU time in the
additional post-processing steps (Mariethoz, 2009). For example, if
p¼2 and pf¼3, all nodes are resimulated two times with parameters
f and n 3 times lower than their original values. Fig. 11 illustrates the
noise removal effect of post-processing for increasing t and varying p

and pf for the categorical ice-wedge TI (Fig. 1b).
The post-processing step proves to be valuable especially for

intermediate t values (0.1 and 0.2), since the noise can be considered
l ice-wedge TI (Fig. 1b) for increasing t, and sensitivity analysis for the number of

rner of the simulation grid.
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as entirely removed without substantially increasing CPU time. The
simulations obtained with intermediate t after post-processing are
similar to these obtained with small t, except for the boundaries
which are less sharp. Furthermore, post-processing allows for a
significant reduction in CPU time. With t¼0.1 and one post-
processing step, one obtains in 58 s realizations similar to when
using t¼0.05 without post-processing, which takes 163 s. For small t

(0.05) the post-processing step is not necessary since the simulation
quality is already good without it. For high t (0.5) it is insufficient
since post-processing only removes noise and does not improve
structures at larger scale. Repeating the post-processing step does
not result in significant quality improvements, and whether or not f

and n are decreased in the post-processing step neither decreases the
CPU time nor improves the simulation quality.

The effect of a post-processing step is less substantial for the
continuous case than for the categorical case and the CPU cost is
much higher (not shown here). Hence, for continuous cases, the
quality loss of selecting a high t, cannot be corrected with one or
more additional post-processing steps.

Since p and pf have to be chosen in advance, it can be considered
as good practice to add one additional post-processing step when
simulating categorical variables. When noise appears, it will be
reduced and the extra CPU time needed is relatively low. For pf a
value of 1 can be selected, since adjusting pf does not seem to have
an effect. If the simulations still contain noise after post-processing,
it is however advised to decrease t instead of adapting p and pf.
Fig. 12. Illustration of the multivariate simulation option: five unconditional

bivariate simulations using Fig. 1a and b as bivariate TI, and sensitivity analysis

for the weights given to the two variables (wcat and wcont). The left column

represents the categorical variable for each simulation, and the right column

represents the corresponding continuous variable.
5. CASE 4: Multivariate simulation

Among the MPS methods, only DS has demonstrated its
potential to simulate m variables simultaneously based on m

TIs. These variables can be continuous, categorical or a mixture of
both since for each a different distance measure can be chosen
(distance type parameter set to 0 for categorical and 1 for
continuous). Several implementations have been tested. The one
of Mariethoz et al. (2010) is used in this paper. First, a path is
defined that goes randomly through all the unknown grid nodes
for each variable xm. When one variable is simulated at one
location, the other variable at the same location can be simulated
later in the path. For each xm a multivariate dn is built containing
the neighboring data for the m variables, which do not have to be
collocated. For each variable the maximum number of neighbors
nm can be defined separately. Based on a weighted average of the
m selected distance measures, the multivariate TI pattern, cen-
tered at the same node for each TI, is chosen that is similar to the
multivariate dn. The weights used to define the multivariate
distance measure wm are user-defined. DS automatically nor-
malizes their sum to one. The value at the central node of this
multivariate TI pattern is then pasted at xm. If conditioning data
are given for all or some of the m variables, they will be honored
(Mariethoz et al., 2010) as shown in CASE 5.

A potential application is a situation where one variable is
(partially) known and the other(s) are to be simulated (the collocated
simulation paradigm). DS becomes especially interesting when the
relationship between the variables is known via the training data set
but not expressed as a simple mathematical relation. Applications can
be found in Mariethoz et al. (2010), (in press) and Meerschman and
Van Meirvenne (2011). As an illustration we show five unconditional
bivariate simulations using the categorical and continuous ice-wedge
TI (Fig. 1a and b) as bivariate TI and perform a sensitivity analysis on
the weights given to both variables (Fig. 12). For the other parameters
we use the default values as given in Table 1: both ncat and ncont

are 50.
Fig. 12 shows that not only the spatial texture of each TI is

reproduced, but also the multiple-point dependence between the
TIs. The weights given to each variable strongly influence the
continuous variable. The larger wcont, the better the quality of
the continuous variable. The quality of the continuous variable



Fig. 13. Illustration of data conditioning for the categorical ice-wedge TI (Fig. 1b) based on 100 conditioning data. For d¼0, d¼1 and d¼5 the first simulation is shown

together with the conditional probabilities for each category summarizing 50 simulations.
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Fig. 14. Illustration of data conditioning for the continuous marble TI (Fig. 1c) based on 100 conditioning data. For d¼0, d¼1 and d¼5 the first simulation is shown

together with the conditional median for each category summarizing 50 simulations.
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decreases for smaller wcont. In such cases, the bivariate relationship
between both TIs is well respected, but the spatial continuity of the
continuous variables is not strongly imposed. The quality of the
categorical simulations is less affected by the choice of the weights.
Note that for large wcont the continuous simulation is almost an
exact copy of the continuous TI (Fig. 1a), which is again an example
of the patching effect described in CASE 1.

These results and other numerical experiments (not shown
here) suggest that it is often beneficial for the quality of the
simulation of continuous variables to co-simulate a categorical
variable that helps reproducing the continuity of the structures.
This is a generally accepted technique in image processing in
which the categorical variable is called ‘feature map’ (Lefebvre
and Hoppe, 2006; Zhang et al., 2003).
6. CASE 5: Data conditioning

DS always honors conditioning data by assigning them to the
closest grid node prior to simulation. Hence, local accuracy is
guaranteed (the pixels at the data locations will have the correct
values) but the simulated structures need to be coherent with the
conditioning data. Therefore, one needs to check whether the
fixed grid nodes are included in the spatial pattern or whether
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they appear as noise. The parameter that can be used to enforce
pattern consistency in the neighborhood of the conditioning data
is the data conditioning weight d. This parameter is used in the
distance computation to weight differently data event nodes that
correspond to conditioning data. If d¼1, all the nodes in dn have
the same importance. For d41 higher weights are given to the
data event nodes that are conditioning data, while for do1 they
are given lower weights (Mariethoz et al., 2010; Zhang et al.,
2006).

For both the categorical and continuous cases, one of the best
unconditional simulations (t¼0.01, f¼1, n¼80) is used as refer-
ence image. To avoid using reference images that are copies of
part of the TI due to patching, we first mirrored both simulations
horizontally and vertically, before sampling 100 conditioning data
from each according to a stratified random sampling
scheme (Figs. 13 and 14). Using the default parameters for t, f

and n (Table 1), we run 50 simulations using these conditioning
data and the corresponding TI. To remove noise, one post-
processing step is performed with pf¼1 (CASE 3). Conditioning
data nodes are not resimulated during post-processing. For d¼0,
d¼1 and d¼5, the first conditional simulation is shown together
with the conditional probabilities for category k in the categorical
case (Fig. 13), and the median over the 50 simulations for the
continuous case (Fig. 14).

It can be concluded that d is an important parameter when
conditioning data are available. For d¼0 the 50 simulations can
be considered as unconditional simulations, since the condition-
ing data grid nodes are ignored in dn. The simulation patterns are
not at all consistent with the conditioning data and the large
variation between the simulations results in non-informative
summarizing images. For d¼1 the simulations show patterns
that are more or less consistent with the conditioning data. The
remaining inconsistencies disappear with d¼5, resulting in sum-
marizing images that closely resemble the reference images. The
better results for d¼5 are due to the high quality of the
conditioning data, which perfectly represent the reference image
without measurement errors. Generally, we advise to set d to a
value higher than or equal to 1. The lower the expected uncer-
tainty of the conditioning data, the higher d can be chosen.

Note that for this example the conditioning data are sampled
from a field with a spatial pattern that is very similar to the TI.
When one expects that the underlying spatial pattern of the
conditioning data deviates more from the TI, the use of transform-
invariant distances can be beneficial. This option of DS increases
the number of TI patterns by randomly scaling or rotating the
patterns found in the TI (Mariethoz and Kelly, 2011).
7. Conclusions

This paper has reported the first comprehensive sensitivity
analysis for the DS algorithm, aiming to encourage users to
benefit more efficiently from the potential of DS and its wide
spectrum of applications. Given these results we provide the
following general guidelines.

For categorical TIs, choosing tr0.2 and nZ30 will generally
result in high quality simulations. Smaller t and larger n result in
better simulation quality and a lower level of noise. However, this
choice will also depend on the available CPU time. Furthermore,
for small t and large n the user should check if there is still
sufficient variability between the simulations. For continuous TIs,
we advise to select tr0.1 and nZ30. For continuous cases, the
selection of t and n is a delicate balance between ensuring good
simulation quality and still guaranteeing sufficient variability
between the simulations (avoiding patching). A good strategy to
reduce both CPU time and the risk of patching is setting fo1, and
reducing the maximum search distance to a third the domain size
or less, thus scanning a different fraction of the TI for each
unknown grid node.

For categorical simulations in particular, it is advised to always
add one post-processing step for noise removal. If the final
simulations still contain (too much) noise, improvements should
be sought by adapting t and n.

Simulating bivariate images is a very new and promising techni-
que first offered by the DS algorithm. With the illustrative example in
this paper we have shown that the weights given to each variable
clearly affect simulation quality. In case of continuous variable
simulation, it is beneficial to add an auxiliary categorical variable
that is co-simulated with a relative small weight. This generally
improves the simulation of the continuous variable.

When conditioning data are available, it is interesting to put the
weights given to the conditioning data (parameter d) higher than
the weights given to the already simulated nodes. This results in
simulated patterns more consistent with the conditioning data.
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