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At present, spatially very detailed data sets can be obtained about soil, landscape and crop variability. How-
ever, there is a need to select independent key properties to identify management classes needed for precise
land management. In a previous study performed in the European loess belt, topsoil pH, apparent electrical
conductivity (ECa) and elevation were identified as key properties. In this study we enlarged the number
of soil properties by including gamma ray measurements and employed a similar methodology to a field in
the sand belt of northern Europe. Based on a principal component analysis we identified the same three vari-
ables as key properties. This was surprising given the big differences in landscape topology and pedogenesis
between the loess and sand areas. These three key variables were used to delineate management classes
EM38-MK2 using a fuzzy k-means with extragrade classification procedure. This classification was evaluated by mapping
Gamma ray the wheat grain yield in the year 2006. A multiple regression model could be constructed that predicted yield
pH from ECa and elevation well (Rgdj =0.88). To analyse the influence of ECa on crop yield in depth a boundary
Yield modelling line analysis was conducted. The boundary line could be modelled with an excellent R3y; of 0.98. It was con-
cluded that ECa, elevation and pH are generic key variables for the delineation of management classes of the
aeolian landscapes of north-west Europe. Given its integral nature and strong relationship with crop perfor-
mances, the authors plea to upgrade ECa from a “secondary” (proxy) source of information to a “primary”
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variable which can be used directly as a basis for detailed soil mapping of the bulk soil.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

As recent as two decades ago soil inventory studies searched for
optimal methods to complement sparse soil data with the best avail-
able interpolation techniques, resulting in advances in pedometrics
and geostatistics (Goovaerts, 1997). To overcome the limitations of
spatially scarce data, the focus shifted to measurement technologies
creating dense data sets of secondary soil property information e.g.
soil apparent electrical conductivity (ECa) (McBratney et al., 2000).
Progress in sensing technology for precision agriculture and water
management resulted in advanced data capture techniques, provid-
ing high-resolution information about crops (a.o. yield maps) and
landscapes (a.o. elevation maps) (Schellberg et al., 2008). As a result,
we now have access to a wealth of detailed data on soil, landscape
and crop properties. However, these rich data sets often duplicate in-
formation, potentially masking the complex interactions that may
exist among a few independent variables (Van Meirvenne, 2006).
Therefore, the challenge is to select the key variables which are essen-
tial for the faced problem.
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One of the applications of detailed soil inventories is precision
land management based on management classes (Moral et al,
2010). These classes are assumed to delineate zones where manage-
ment can be implemented in a homogeneous way (Pedroso et al.,
2010). Given the strong interactions between crops and climate,
and the instability of the nature of such interactions between years,
it is better to rely on time-stable land properties to create manage-
ment classes (Corwin and Lesch, 2005). Ideally these properties
should be captured quickly at a detailed scale, i.e. with proximal or re-
mote sensors.

Although early research on the concept of site specific manage-
ment of soils based on varying soil conditions within a field dates
back to the 1990s (Doolittle et al., 1994; Jaynes et al., 1993; Larson
and Robert, 1991; Mulla, 1991; Mulla and Schepers, 1997; Sudduth
et al., 1995), one of the first efforts to identify key properties for the
delineation of management zones in Europe was made by Vitharana
et al. (2008). These authors focused on a field located within the Eu-
ropean aeolian loess belt, i.e. a more or less continuous zone of silty
soil in an undulating landscape and east-west orientated throughout
Europe (Haase et al., 2007). The WRB (World Reference Base for soil
resources) Major Soil Groups of this belt comprise generally Luvisols
and Albeluvisols (European Soil Bureau Network, 2005). In their
study 12 soil and topographic variables, including top- and subsoil


http://dx.doi.org/10.1016/j.geoderma.2012.07.017
mailto:marc.vanmeirvenne@ugent.be
http://dx.doi.org/10.1016/j.geoderma.2012.07.017
http://www.sciencedirect.com/science/journal/00167061

100 M. Van Meirvenne et al. / Geoderma 199 (2013) 99-105

textural fractions, organic carbon and pH, were considered. A princi-
pal component analysis showed that three could be identified as the
most independent (“orthogonal”): pH, ECa and elevation. These
were called “key variables” for the delineation of potential manage-
ment classes in the European loess area (Vitharana et al., 2008). The
significance of these key variables was tested by using them to define
management classes (using a fuzzy k-means procedure) and evaluat-
ing these classes in terms of crop performances.

The aim of this study was to use the procedure described by
Vitharana et al. (2008) but to extend the study to another important
European aeolian soil-landscape: the north European sand belt. This
zone stretches from Great Britain over Belgium and the Netherlands
to Germany and Poland (Jungerius and Riksen, 2010) and is situated
largely north of the loess belt. Generally, the soil can be classified as
a Podzol (European Soil Bureau Network, 2005), although agricultural
tillage has mostly destroyed the typical profile development in the
top decimetres. Similar to the loess belt, the sand area is generally
considered to be rather homogeneous, as both belts were created by
fluvio-eolian activities associated with the Weichselian glaciation
(Derese et al., 2009). Given the distinctly different pedological pro-
cesses (podsolisation instead of eluviation/illuviation of clay) our
working hypothesis was that in the sand area other key variables
would be identified for the definition of land management classes.
Therefore we extended our study to more soil variables than those
used in the study of Vitharana et al. (2008). The final evaluation of
the created classes will be conducted using crop yield data.

2. Study site and measured variables

A 4.2 ha arable field located in the sand area of northern Belgium
(with central co-ordinates: 3° 37’ 22.43” E and 51° 07’ 00.03” N),
which is part of the greater sand belt of northern Europe, was selected
(Fig. 1). Maize, potatoes and wheat are the main crops used in a typ-
ical crop rotation for the area.

Five types of geo-referenced information were collected on this
field: (1) topographic information, (2) five soil properties analysed
from soil auger samples at two depths, (3) four sets of detailed ECa
measurements obtained from an electromagnetic induction (EMI)
sensor, (4) four concentrations of radionuclides in the topsoil
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Fig. 1. The study field delineated on a topographic map of the area with its approximate
position within Belgium (insert frame) and 30 soil sampling locations (dots within the
field).

measured with a gamma ray sensor, and (5) wheat grain yield.
Since wheat yield was considered as the target variable it will be
used to validate the created management classes.

2.1. Topography

Detailed data on the elevation of the field were obtained by Light
Detection and Ranging (LIDAR) using an airborne laser scanner
(OC-GIS Vlaanderen, 2003). On average, one observation per 4 m?
was taken with average horizontal and vertical errors of 0.14 m and
0.20 m, respectively. These data were used to build a digital elevation
model (DEM) of the field at a 5 m resolution using ordinary kriging.
Table 1 shows that the elevation of the study field is low (6-7 m)
and rather uniform (max. difference is only 1.8 m). Given the flat to-
pography of the field no other topographic indices (like the wetness
index or the stream power index) were considered, contrary to
Vitharana et al. (2008).

2.2. Soil samples

In May 2009 soil samples were taken at 30 locations chosen ran-
domly out of 100 stratified random grid positions projected over the
field. Two depth intervals were sampled: 0-0.3 m (referred to as top-
soil t) and 0.6-0.9 m (subsoil s) (Fig. 1). At each location a pooled
sample was obtained from 3 augerings within a 1 m radius. All sam-
ples were air dried, sieved through a 2 mm sieve and analysed for or-
ganic carbon (OC) (%), pH (in a 1 N KCl solution) and three textural
fractions (clay: 0-2 um, silt: 2-50 pum and sand: 50-2000 um) by
using the conventional methods [i.e. Walkley and Black (1934), pH
electrode and pipette-sieve method, respectively].

From Table 1 it can be seen that the average texture of both the
topsoil and subsoil is sand loam [USDA (United States Department
of Agriculture) texture triangle], which is characteristic for these
fluvio-aeolian deposits. However, a considerable variation is present,
especially in the silt fraction with the largest coefficient of variation

Table 1
Some descriptive statistics of all variables (n =number of observations, CV = coefficient of
variation).

Variables n Mean Minimum Maximum Variance CV (%)
Topography
Elevation (DEM) (m) 1867 6.9 5.8 7.6 0.1 5

Soil sample properties
Topsoil (0-0.3 m)

Sand (%) 30 73 64 87 554 10
Silt (%) 30 19 8 28 378 32
Clay (%) 30 8 4 11 26 21
0OC (%) 30 13 1.0 19 0.05 18
pH-KCI 98 53 4.6 5.6 009 6
Subsoil (0.6-0.9 m)
Sand (%) 30 71 53 95 2901 24
Silt (%) 30 25 2 44 2785 67
Clay (%) 30 4 2 6 09 23
OC (%) 30 1.0 0.7 1.6 0.05 24
pH-KCI 30 6.1 5.2 7.6 045 11

EMI measurements

ECa-H5(mSm~') 87,673 18 7 39 68 15
ECa-H1 (mS m™ ') 87,673 29 8 48 136 13
ECa-V.5 (mSm~') 87,670 28 7 48 137 13
ECa-V1 (mS m~') 87,670 33 11 55 194 13
Gamma—ray measurements

40K (Bq kg™ ") 30 299 248 380 11547 11
238 (Bq kg™ ") 30 13 8 21 79 22
137Cs (Bq kg™ ") 30 14 10 19 51 16
232Th (Bq kg™ 1) 30 3 0 6 37 64
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(CV) of the three fractions, and for all textural fractions this variation
was the largest in the subsoil (with CVs being twice the topsoil CVs
for sand and silt). The OC content was moderate (on average 1.3%)
in the topsoil, and was still relatively large in the subsoil (on average
1.0%) which reflects the podsolisation process of organic matter
leaching in the topsoil and accumulating in the subsoil. For both
layers the CV of OC was around 20%. The pH indicated acid conditions,
both in the top- and subsoil, with the subsoil being somewhat less
acidic (according to the farmer no lime was added for at least 3
decades).

2.3. EMI measurements

Detailed measurements of the soil ECa were collected with the
EMI sensor EM38-MK2 (Geonics Ltd., Canada) mounted on a sled
and pulled by an all-terrain vehicle which drove at a speed of approx-
imately 5-7 km h~'. The EM38-MK2 consists of two receiver coils at
0.5 and 1.0 m distances from which measurements were taken every
second both in horizontal (ECa-H.5 and ECa-H1) and vertical orienta-
tions (ECa-V.5 and ECa-V1) on 20 May 2010. The theoretical depth of
influence (DOI — i.e. conventionally the depth below the sensor at
which 70% of the cumulative influence of the signal is obtained) of
these configurations is: 0.38 m for the H.5 orientation, 0.75 m for
both the H1 and V.5 orientations (but with a different distribution
of the depth sensitivity) and 1.50 m for the V1 orientation (McNeill,
1980). A Trimble AgGPS332, with an Omnistar satellite correction,
provided differential GPS (DGPS) measurements with a pass-to-pass
accuracy of approximately 0.10 m. Measurements were taken along
parallel lines with an in-between distance of 2 m while the vehicle
driving was supported by a Trimble Lightbar Guidance System. All
measurements were standardised to the reference temperature of
25 °C according to Sheets and Hendrickx (1995):

ECa,s = ECay (0.4470 +1.4034e "/ 26-815) (1)

with ECays being the standardised ECa at 25 °C and ECar the ECa
values at soil temperature T (°C). During the survey T was recorded
by a bimetal sensor pushed in the soil to a depth of 0.25 m. In the
remaining part of this paper all ECa values refer to ECas.

Table 1 contains the statistics of the ECa measurements. The mean
values show an increasing value with increasing DOI: from
17mSm~! for H5 over 28 mS m~"' for both H1 and V.5 to
33 mS m~! for V1. The CV of H.5 was slightly larger compared to
the three other ECa data sets. This frequently occurs because the
most shallow measuring coil configuration (H.5) has often more
noise in arable land due to its bigger sensitivity to artefacts located
within the ploughing layer. Since ECa measurements were found in
many studies (e.g. Saey et al., 2009) to be most strongly influenced
by soil moisture and the concentration of clay related colloids, the
larger ECa values of the V1 coil orientation indicate that the soil be-
comes wetter with an accompanied increase in clay content below
the sampling interval of the auger samples.

2.4. Gamma-ray measurements

On 11 June 2009, the gamma ray detector system “The Mole” (The
Soil Company, the Netherlands) was used to measure the concentra-
tions of the (semi)naturally occurring 4°K, 238U, '*’Cs and 232Th ra-
dionuclides of the top-soil (Bq kg™') of the study field. This was
done at the same locations where the 30 pooled soil samples were
taken. The system consists of a Csl crystal detector and the measured
gamma spectra were analysed by the full spectrum analysis method
using a chi-squared algorithm to fit a set of standard spectra to the
measured spectrum. The details of the spectra processing methodolo-
gy were described by Van Egmond et al. (2010). The presence of these

radionuclides is strongly related with the mineralogy of the soil mate-
rial (*°K, 238U, and 232Th) or with some potentially human induced
contamination ('3’Cs). The summary statistics of the gamma-ray
measurements are shown in Table 1. The largest concentration was
found for “°K, with much smaller values for 233U, *’Cs and 232Th. In
general these values are very low, reflecting the quite uniform miner-
alogy of these deposits which contain mainly quartz mineral in the
sand and silt fractions. “°K is more strongly related with clay min-
erals, but since the clay content of the topsoil is quite low (on average
8%), the “°K in this soil is also relatively small.

3. Identification of key variables

The co-located elevation and ECa measurements at the soil sam-
pling locations were selected using a search algorithm of 0.25 m radi-
us. In this way a data set of 19 variables at 30 locations was created
composed of: elevation, top- and subsoil sand, silt, clay, OC and pH,
four ECa measurements and four radionuclides. To identify orthogo-
nal (i.e. independent) combinations of variables (termed factors)
we used a principal component analysis (PCA). In this way we could
also identify the most dominant variable of each factor, which we
considered to be a key variable. To avoid spurious correlation due to
the compositional nature of the textural fractions (they sum to
100%) only one fraction was considered. Vitharana et al. (2008) se-
lected the clay fraction because in the Luvisols elluviation and illuvi-
ation of clay are dominant pedological processes. However, in
Podzols the dominant pedological processes strongly depend on the
permeability of the soil matrix. Therefore we considered it more ap-
propriate to select the sand fraction. So, a matrix of 15 variables and
30 locations was the input to a PCA.

The applicability of the data matrix for a PCA was evaluated by the
Kaiser-Meyer-0lkin (KMO) measure of sampling adequacy (the KMO
value should be between 0.5 and 1) and the Bartlett's test of spheric-
ity which checks the significance of the correlation between the vari-
ables. We conducted a PCA on the correlation matrix and the
selection of the retained factors was based on the explained variance
by each principal component (PC or factor) and a plot of their eigen-
values (a screeplot). To optimise the interpretation of the retained
factors a varimax rotation was applied. From each of the retained fac-
tors, a key variable was identified based on the largest factor loading
after checking the communality for the retained factors. This multi-
variate analysis was performed with SPSS v.19 (SPSS Inc., USA).

For our 30 x 15 matrix the KMO value was 0.71 and the correlation
matrix was found to be significantly different from an identity matrix
by the Bartlett's test (y?=739.8, p<0.05). The first factor (PC1)
explained 30.1% of the total variance, the second (PC2) explained
27.1% and the third (PC3) explained 15.3%. So together these three
components explained 72.5% of the total variance within the data. It
was decided to retain only these three factors.

The communalities and loadings of the variables of the three rotat-
ed PCs are given in Table 2. Most of the variables had high communal-
ities, only for subsoil pH (pH_s), '*’Cs and 232Th this value was below
0.5. So their contribution to the first three PCs was limited. The vari-
ance of some variables, like the four ECa measurements, was almost
entirely accounted by the first three PCs (communalities > 0.9).

The loading plots of the first and second and the first and third PCs
are shown in Fig. 2. The first PC was dominantly associated with the
four ECa measurements, of which ECa-H.5 had the largest loading
(0.97). The ECas measured with the other coil configurations were
strongly similar, with ECa-V1 having the lowest loading (0.90).
None of the other 11 variables was strongly related to PC1 (topsoil
sand Sa_t had the largest absolute loading of —0.36). Elevation
(DEM) is the strongest contributor to the second PC with a loading
of 0.85. However, also both top- and subsoil sand (Sa_t and Sa_s)
and OC (OC_t and OC_s) showed a strong association with PC2 al-
though in an inverse relationship with elevation. The loadings of
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Table 2

Principal component loadings of the rotated first three principal components and the
communalities of each variable (of the variables with a communality exceeding 0.5
the largest absolute loading is in bold).

Principal component (PC)

loadings
Variables Communality of first PC1 PC2 PC3
3 PCs (30.1%) (27.1%) (15.3%)
Topography
Elevation (DEM) 0.83 —0.05 085 —032
Soil sample properties
Topsoil
Sand 0.76 —-036 —-074 —029
oC 0.78 —028 —082 —0.16
pH-KCl 0.72 0.09 0.06 0.85
Subsoil
Sand 0.77 —033 —-0.78 —023
ocC 0.78 —028 —082 —0.16
pH-KCl 0.36 —0.14 —0.01 0.58
EMI measurements
ECa-H.5 0.95 0.97 0.05 0.01
ECa-H1 0.97 0.95 0.27 0.08
ECa-V.5 0.97 0.94 0.28 0.07
ECa-V1 0.92 0.90 0.31 0.12
Gamma-ray measurements
40K 0.69 0.26 0.74 0.27
38y 0.52 0.19 0.26 0.64
137¢s 0.39 —0.14 —0.11 —0.67
232Th 0.48 0.02 0.63 0.02

these variables on PC2 were very similar (between —0.74 and —0.82).
Moreover, 4K had a large loading on PC2: 0.74, confirming its strong
association with clay (being often in an opposite position of sand).
The third PC represented mainly topsoil pH (pH_t) with the largest
loading on PC3 of 0.85. Also subsoil pH (pH_s) (0.58) and 23U
(—0.67) were associated with PC3.

The result of the PCA identified three key variables: ECa-H.5, ele-
vation and pH_t. Surprisingly, these are the same variables as identi-
fied by Vitharana et al. (2008) for the loess area.

4. Maps of key variables

Each of the three key variables, ECa-H.5, elevation and pH_t, was
interpolated with ordinary kriging (Goovaerts, 1997) to create a
map with a resolution of 1 m by 1 m. For this purpose, the topsoil
of 70 additional locations was sampled and analysed for pH resulting
in 100 measured locations. All three variograms were best modelled
by an omnidirectional spherical model (not shown). The kriged
maps of ECa-H.5, DEM and pH_t are given in Fig. 3.

Fig. 3A reveals several distinct patterns in the spatial behaviour of
the first key variable, i.e. ECa-H.5. In general the ECa values are larger
in the northern part and lower in the southern part of the field. This
general pattern is crossed by three distinct linear features. A rather
wide (about 10-15 m) line of higher ECa values crosses the field
more or less halfway in an east-west orientation. This feature is an
extension of a former field track still present to the west of the field
but no longer running through the study field (compare with
Fig. 1). The farmer declared that some 40 years ago this track was re-
moved (by his father) and since then both parts were merged into
one field. The other two linear features with elevated ECa values are
smaller in width. One runs more or less parallel with the former
track halfway in the northern part of the field, the other runs almost
perpendicular to the former track in the southern part. Both represent
former ditches which were also removed by the farmer's father. So
until about 40 years ago this field was actually split into four smaller
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Fig. 2. Rotated loading plots of the first and second principal components (A) and the
first and third principal components (B). Symbol definitions are given in the text.

fields each covering an area of approximately 1 ha and managed dif-
ferently. Note also that along most borders deviating ECa values were
measured, potentially representing compaction due to agricultural
traffic. It is surprising that although the ECa-H.5 has the shallowest
DOI it still records these subsoil features, illustrating the relative na-
ture of the DOI parameter. It is our experience that such former an-
thropogenic influences are commonly found in this old agricultural
area. The DEM in Fig. 3B shows that the field is the highest in the
northern part with the elevation decreasing gradually towards the
southern side. The former track and ditches are still visible as slight
differences onto the micro-relief (which is hardly visible on the
field). Within the southern part the western half is lower than the
eastern. The southern and western borders of the field have the low-
est elevation because they are close to open ditches. The major drain-
age channel of the area (the “Centerloop” in Fig. 1) runs along the
southern border. The interpolated pH_t (Fig. 3C) shows a more
patchy pattern with values fluctuating around the mean of 5.3. In
general the southern part is slightly more acidic, while the northern
part is less acidic.

5. Management classes

We used a fuzzy k-means classification for the three key variables
to create distinctly different classes. These can be considered to repre-
sent stable management zones. However, in contrast to Vitharana et
al. (2008) we preferred to use a fuzzy k-means with extragrade
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Fig. 3. Kriged maps of the three key variables: ECa-H.5 (mS m~!) (A), elevation (DEM
in m) (B) and topsoil pH-KCI (C). Coordinates in all maps are according to the Belgian
Lambert72 projection.

classification procedure (de Gruijter and McBratney, 1988) which is a
modification of the fuzzy k-means classification (Bezdek, 1981). The
fuzzy k-means classification produces a continuous grouping of ob-
jects by assigning partial class membership values, which is to be pre-
ferred for grouping properties in the soil continuum. The procedure
with extragrades recognises the objects that might not fit well in
any of the classes formed (containing the ‘intragrades’) and places
those in an additional outlier group, the ‘extragrades’. To allow the
discrimination between ‘extragrades’ and ‘intragrades’ the ‘fuzzy
k-means with extragrades’ algorithm requires an extra parameter to
be chosen: the extragrade exponent . To obtain memberships that
were neither too fuzzy nor too hard, the fuzziness exponent was
fixed to the conventional value of 1.35 (Odeh et al, 1992) and to ob-
tain an average extragrade membership o was taken to be very
small (2x10~7) (McBratney and de Gruijter, 1992). The fuzziness
performance index (FPI) and the modified partition entropy (MPE)
were used to guide the classification (McBratney and Moore, 1985).
FPI estimated the degree of fuzziness generated by a specified num-
ber of classes. MPE estimated the degree of disorganisation created
by a specified number of classes. The optimum number of classes is
determined when these two measures are minimal. We used the
FuzMe 3.0 software (Minasny and McBratney, 2006).

The optimal number of classes was found to be two with an
extragrade class. By including the extragrade class, the influence of
outliers on the classification was reduced which resulted in more
compact and more stable classes. The results of this classification
were generalised by removing a few small island areas (the largest
covering 12 m?) to obtain more contiguous zones. The result is
shown in Fig. 4A. The two classes formed two continuous zones of
about the same area in the northern and southern parts of the field.
The extragrade class formed an intermediate zone between the two
classes and some elongated zones along the western border of the
field. From a comparison with the maps of Fig. 3, it can be concluded
that class 1 groups the areas with the largest ECa-H.5, the highest el-
evation (and thus the smallest sand and OC content) and the highest
pH_t. The reverse holds true for class 2. The extragrade class groups
intermediate values but includes also some extremes like the band
with higher ECa-H.5 values along the western border of the southern
part and some areas with low pH in the northern part.

6. Wheat yield

In the autumn of 2005 winter wheat was sown on the study field
and on 29 July 2006 it was harvested with a commercial combine
(CNH New Holland CX880, Italy) equipped with a DGPS and a yield
monitor. The growing conditions were close to normal for most of the
winter and spring seasons, but during the ripening period (June-July)
weather conditions were exceptionally dry and hot. Therefore the
crop matured earlier than usual which implied that grain was harvested
earlier than in most other years. Post-processing of the grain yield data
included standardisation to 15% moisture content and the filtering of
about 3% erroneous data (like corrections for the time delay in grain
flow at the start or end of driving lines, spatially duplicated records,
etc.). The retained data were block kriged at a resolution of 5 by 5 m
(Fig. 4B). The average yield of the field was 9.2 t ha™!, but in general
yields were higher (9-10 t ha~') in the northern part of the field and
lower (7.5-8.5 t ha™!) in the southern part. However, the visual simi-
larity between the yield map and the delineated management classes
is not straightforward. Therefore, the 6762 yield data were grouped
according to the two management classes and the extragrade class
and Table 3 shows the result. As could be expected from Fig. 4, class 1
produced the highest average yield (9.9 t ha—!), while class 2 produced
on average 1.3 t ha™ ! less. The extragrade class took an intermediate
position with 8.8 t ha™'. The variation around these mean values was
similar for classes 1 and 2 (around 0.55 t ha™!) but it was clearly larger
for the extragrade class (0.71 t ha~—!). This indicates the effect of an
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Fig. 4. Management classes obtained through a fuzzy k-means with extragrade classi-
fication of the three key variables (A) and kriged wheat yield (t ha~!) (B).

extragrade class: the creation of rather homogeneous classes by group-
ing outliers in a heterogeneous extragrade.

7. Relationship between crop yield and key variables

The ability of the key variables to predict wheat grain yield for
2006 was evaluated by a stepwise multivariate regression analysis.
Measurements falling within the extragrade class were excluded
from this analysis to avoid instabilities in the modelling. This resulted
in the model:

Grainygyg = —0.324 + 0.175 « (ECa — H.5) + 1.009 « DEM-0.00217
« (ECa — H.5)% 2)

Table 3
Mean grain yield for 2006 per management class and its standard deviation (t ha=1').

Management class n Mean Standard deviation
Class 1 3646 9.9 0.54
Class 2 2353 8.6 0.57
Extragrade 763 8.8 0.71

with RZ;;=0.88, p<0.001 and Grainygps in t ha™'. The high RZy; indi-
cates the very strong correlation between grain yield and both
ECa-H.5 and elevation, but ECa-H.5 clearly was the most influencing
variable. Topsoil pH did not significantly influence crop yield in this
growing year.

Given the strong influence of ECa-H.5 on crop yield, we analysed
its impact through a boundary line analysis (Kitchen et al., 1999).
We used the procedure described by Shatar and McBratney (2004)
in which the 10% highest yield data are selected by splitting the
cloud in bins. The idea is that within each bin the highest yield data
have ECa (or combined soil properties) as the most limiting factor,
contrary to lower yields which have other limiting factor(s) (e.g. dis-
eases). By concentrating on the highest yield data, the relationship
between yield and ECa was modelled by a quadratic curve (Fig. 5):

Grain,gys = 6.537 + 0.232 « (ECa — H.5)-0.00331 « (ECa — H.5)*  (3)
with R24;=0.98 and Grainyges in t ha™".

Model (3) and Fig. 5 indicate that in 2006 the highest grain yields
were very strongly related to ECa. Especially between 10 and
25mS m~ !, yield increased strongly. Beyond 25 mS m~' grain
yield levelled off around 10.5 t ha™!. Therefore, crop productivity
for the 10% highest yield was strongly driven by variations in soil ECa.

8. Conclusions

Based on a PCA of the correlation matrix from 15 soil and topo-
graphic variables, three variables were identified as key variables for
this field located in the sandy belt of northern Europe: ECa-H.5, eleva-
tion and pH_t. Surprisingly, these are the same three variables identi-
fied by Vitharana et al. (2008) for a field in the European loess belt,
although not all variables that these authors considered are the
same as in this study and the topographic and pedogenetic processes
are strongly different.

The identified key properties allowed defining two stable manage-
ment classes using a fuzzy k-means with extragrade procedure. The
extragrade was found useful to isolate deviating points and extreme
values, resulting in the creation of classes with less variability.

The created management classes were spatially continuous and
therefore suitable for practical management by the farmer. They dif-
fered distinctly in soil and topographic properties. A classification of
crop yield (wheat grain of the year 2006) according to the two man-
agement classes confirmed the significance of the classification. Crop
yield was distinctly higher in one class compared to the other. The
extragrade class contained on average an intermediate wheat yield
which was, however, more variable.
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Fig. 5. Relationship between ECa-H.5 and wheat yield. Filled circles represent the
points selected by the boundary line procedure described in the text and were used
to fit the curve (representing the boundary line). Empty circles represent points
which can be considered to have another yield limiting factor than ECa-H.5.
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The relationship between crop performance and the key proper-
ties was modelled by a stepwise multiple regression and surprisingly
pH_t did not seem to be significantly influencing crop production for
the year 2006. However, ECa-H.5 was very strongly related to crop
yield. A boundary analysis confirmed this finding and an excellent
(R24;=0.98) quadratic model could be fit to the upper yield data
across the range of ECa-H.5 values.

When the study of Vitharana et al. (2008) and this study are com-
bined, it appears that topsoil ECa, elevation and pH are strong poten-
tial candidates as generic key properties to delineate management
classes in the north-western European aeolian landscapes. ECa and el-
evation are often related to physical and biological soil properties like
texture, organic matter content and moisture availability, while pH is
an integral measure for the soil chemical status. In this context, these
three variables are strongly complimentary. With current proximal
soil sensing technology these three variables can be recorded in a spa-
tially detailed and continuous way, e.g. ECa with EMI or electrical re-
sistivity, elevation by LIDAR or organic matter by near-infrared field
spectroscopy (Stenberg et al.,, 2010) and pH by on-the-go electro-
chemical sensors (Adamchuk et al., 2007).

Given the many sources which report that proximally sensed ECa
is an excellent integrator of the bulk soil status (e.g. Corwin and
Lesch, 2005; Kitchen et al., 1999; Saey et al., 2009; Sudduth et al,,
1995), the authors propose to upgrade ECa from a secondary proxy
for other soil properties, to a primary soil variable. In general, we en-
visage a future for several types of proximally sensed information as a
basis for regional ‘multiple purpose’ soil maps.
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