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Multiple-point statistics (MPS) is a collection of geostatistical simulation algorithms that uses a multiple-point
training image (TI) as structural model instead of a two-point variogram. MPS allows to simulate more complex
random fields, like phenomena characterized by spatial connectivity. A very recent development is multivariate
MPS inwhich an ensemble of variables can be simulated simultaneously using amultivariate TI.We investigated
if multivariate MPS can be used for the processing of proximal soil sensor data, i.e. interpolating the sensor data
and predicting the target variable. We measured a field with fossil ice-wedge polygons in the subsoil with an
electromagnetic induction sensor and used these measurements to predict the location of wedge material in
the subsoil. We built a bivariate TI with a categorical image of a random polygonal network as primary variable
and a continuous image of the corresponding sensor values as secondary variable. Then, we performed a bivar-
iate reconstruction with the recently developed Direct Sampling software. The resulting E-types provided an in-
terpolated sensor data map and a probability map predicting the location of wedge material in the subsoil. This
procedure was compared to themore traditional approach of interpolating the sensor data with ordinary kriging
and performing a fuzzy k-means classification. Comparing the resulting maps with an aerial photograph reveal-
ing the location of the ice-wedges through polygonal cropmarks, showed that MPS reconstructed the polygonal
patternsmuch better. The local accuracy of theMPSmapswas proven by an independent quantitative validation
based on nine extra measurement lines and 94 bore hole samples. As a first application in soil science, our case
study showed that multivariateMPS can be used for the processing of proximal soil sensor data. The flexibility of
the technique opens perspectives for other new applications and thereforemultivariate MPS can become a valu-
able part of the pedometrical toolbox.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Thekey function in traditional geostatistics is the variogram,which is
used as a model of the spatial structure. However, this two-point statis-
tic is often not able to characterize complex random fields, such as phe-
nomena showing spatial connectivity. To map complex random fields,
multiple-point statistics (MPS) need to be considered (Guardiano and
Srivastava, 1993). The fundamental idea of MPS is to replace the
two-point variogram by a multiple-point training image (TI). A TI is a
conceptual image of the expected spatial structure and is often built
based on prior knowledge. A very recent development in MPS is multi-
variate MPS, in which an ensemble of variables can be simulated simul-
taneously using a multivariate TI (Mariethoz et al., 2010).

MPS was developed in petroleum geology and hydrogeology
(Strebelle, 2002) and to date most of its applications can be found in
these fields (e.g. Comunian et al., 2011; Huysmans and Dassargues,
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2009; Le Coz et al., 2011; Ronayne et al., 2008; Strebelle et al., 2003;
Zhang et al., 2006). Complex patterns, that are hard tomodel with tradi-
tional two-point geostatistics, also appear in soil science: a.o. dune pat-
terns, paleochannels, limestone pavement, desiccation cracks, (relict)
patterned ground, land-use patterns, sedimentary rock layers and soil
pores. However, the use of MPS in the processing of soil data is still an
open research question. In this paper, we investigated whether multi-
variate MPS can be used for the processing of proximal soil sensor data.

Proximal soil sensing is an increasingly used data source for soil
inventory (McBratney et al., 2000). In a mobile setup, these sensors
allow to rapidly collect indirect observations of the subsoil in a
non-destructive way (Adamchuk et al., 2004). Processing proximal soil
sensor data typically includes two steps: first the sensor data need to
be interpolated to a regular grid and then this map can be used as a
proxy to predict the target variable (de Gruijter et al., 2010).

Even though proximal soil sensor data are considered as high-
resolution data, interpolating the data to a regular grid remains a crucial
processing step. Sensor sampling is typically done with a sensor at-
tached to a vehicle takingmeasurements atfixed intervalswhile driving
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along parallel lines. With the instruments available today, the within-
line sampling density is mostly no longer a limiting factor. The
between-line distance, on the other hand, largely affects the costs of a
field survey. Generally, this distance should be chosen based on the
expected scale of the soil features one wants to map. Apart from inter-
polating the sensor data betweenmeasurement lines, spatial interpola-
tion is required to complete the data set when some areas are
inaccessible for the sensor survey.

To date, ordinary kriging (OK) is an often used method to interpo-
late sensor data because of its declustering ability. OK is a traditional
geostatistical estimation technique based on a two-point variogram
(Goovaerts, 1997). In our experience, OK is a successful method to in-
terpolate sensor data. However, when the sensor data reflect subsoil
phenomena that have a complex spatial pattern or are highly spatially
connected, the two-point variogram is no longer sufficient. In practice,
problems arise when the between-line distance is larger compared to
the scale of the investigated soil features. Hence, it is worth investigat-
ing whether MPS can serve as a more suited interpolation technique
for these situations.

If the sensor variable differs from the target variable (i.e. the soil var-
iable of interest), a model is needed to predict the target variable from
the sensor variable, which then serves as an ancillary or secondary var-
iable (de Gruijter et al., 2010). For example, if the sensed variable is
electrical resistivity and the variable of interest is porosity, themodeling
of the relationship between these two attributes is critical. Depending
on the specific situation and the type of target variable, a variety of
pedometrical techniques can be used for this aim, ranging from numer-
ical classification to CLORPT and hybrid techniques (McBratney et al.,
2000). For instance, fuzzy k-means is an often used predictive classifica-
tion technique to delineate zones with homogeneous soil properties
based on proximal soil sensor data (Cockx et al., 2006, 2007; Islam et
al., 2011; Vitharana et al., 2008b). Examples of CLORPT techniques are
predicting the depth to contrasting soil layers from proximal soil sensor
data with inverse modeling techniques (De Smedt et al., 2011; Saey et
al., 2008, 2009) or predicting the soil clay content based on neural net-
work approaches (Cockx et al., 2009). Vitharana et al. (2008a) used re-
gression kriging to predict the depth to clay substratum and Triantafilis
et al. (2001) compared different hybrid techniques to predict soil salin-
ity from proximal soil sensor data.

Multivariate MPS is promising for both the interpolation of sensor
data and the prediction of the target variable. This technique is mainly
developed for situations where one variable is (partially) known and
the other is to be simulated (the collocated simulation paradigm).
Fig. 1. (a) Aerial photograph taken on 4August 1996 showing polygonal cropmarks and a former
(b) same aerial photograph after georectification, clipping, and color stretching. Coordinates are a
a, J. Bourgeois, Department of Archaeology and Ancient History of Europe, Ghent University, Belg
Using a bivariate TI is especially interesting when the relationship be-
tween the variables is known through training data but cannot simply
be expressed as a mathematical relationship (Mariethoz et al., 2010;
Meerschman et al., 2013). To investigate the use of multivariate
MPS, we applied it to a case study aiming to predict the location of fos-
sil ice-wedge polygons in the subsoil based on electromagnetic induc-
tion (EMI) data.

Fossil ice-wedges polygons are a clear example of spatially con-
nected subsoil features. They are remnants of thermal contraction cracks
that were formed during glacial periods (Kolstrup, 1986). At the end of
the glaciation these soil cracks were filled up and covered with wind
and water transported sediments (French, 2007). Hence, today fossil
ice-wedge polygons can be recognized as polygonal networks in the
subsoil that arefilledwith soilmaterial (wedgematerial) that is younger
than the surroundingmaterial (hostmaterial). Mapping these cryogenic
features is of interest since they cause abrupt changes in the subsoil
composition, possibly inducing preferential flow paths for e.g. agro-
contaminants or nutrients. Furthermore, themorphology of this polygo-
nal network is important for paleoclimatological reconstructions (Plug
and Werner, 2002, 2008). It has recently been shown that EMI sensors
are an effective aid in the mapping of fossil ice-wedge polygons, espe-
cially when the textural contrast between the wedge material and the
host material is sufficiently strong (Cockx et al., 2006; Meerschman et
al., 2011).

In this paper, we used an EMI sensor to measure a field with fossil
ice-wedge polygons in the subsoil. Then, we applied bivariate MPS to
interpolate the proximal soil sensor data to a regular grid and to simul-
taneously derive a map estimating the location of the fossil ice-wedge
polygons in the subsoil. To set a comprehensive framework for the
evaluation of the new method's prediction performance, we com-
pared it with the often applied procedure of interpolating the sensor
data with OK and then performing a fuzzy k-means classification to
derive the possibility of finding wedge material in the subsoil.

2. Material and methods

2.1. Study area and data collection

Fig. 1a shows an oblique aerial photograph of an agricultural field
in Belgium (central coordinates: 51°01′16″ N, 3°29′41″ E). The photo-
graph was taken on 4 August 1996 when sugar beets were cultivated
on the field. At that moment polygonal crop marks revealed the pres-
ence of an underlying network of fossil ice-wedges. Besides this
field track (north-southeast oriented)with delineation of the study area (large rectangle) and
ccording to the Belgian metric Lambert-72 projection.
ium, photo: J. Semey.
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polygonal pattern, the aerial photograph also shows a former field
track from north to southeast and east–west stripes due to operation
lines from farming vehicles. The photograph was georectified and
color stretched to enhance the contrasts, after which a test area of
0.63 ha was selected and clipped (Fig. 1b) (Meerschman et al., 2011).

A fossil ice-wedge was partly exposed by excavating a part of the
field to a depth of 0.9 m (Meerschman et al., 2011). The wedges
were formed in the Tertiary material which was covered by wind-
blown loess at the end of the last Weichselian Glacial stage. This
loess layer has an approximate thickness of 0.6 m. The wedges were
between 0.3 and 1.2 m wide and their infillings contained more sand
than the host material. Because of this difference in soil texture, we
surveyed thefieldwith an EM38-DD electromagnetic induction sensor
measuring the apparent electrical conductivity (ECa) of an underlying
soil volume in mS m−1 (Corwin and Lesch, 2005). We used a mobile
setup with a between-line measurement distance of approximately
3 m and a within-line distance of 0.4 m (Fig. 2a). More details about
the first processing steps, including temperature correction, drift
correction, noise removal and spatial trend removal, can be found in
Meerschman et al. (2011). The spatial trend was caused by larger
ECa values at the location of the former field track, and was subtracted
from the sensor data to highlight the polygon boundaries. Fig. 2a
shows the final data set, i.e. the residuals ΔECa=ECa — spatial trend,
referred to hereafter as ‘sensor data’.

To validate the interpolated sensor data maps we used nine extra
measurement lines with a between-line distance of approximately
9 m and a within-line distance of 0.4 m (Fig. 2b). The lines were po-
sitioned in the middle of two conditioning data lines. They were mea-
sured on the same day as the conditioning data and were processed in
a similar way. To validate the prediction of wedge material in the sub-
soil, we took 94 subsoil samples (0.6 m–0.8 m): half of them were
sampled according to a regular grid and half of themwere simply ran-
domly sampled. We analyzed their textural fractions: 43 samples
were classified as wedge material and 51 as host material (Fig. 2b)
(Meerschman et al., 2011).

2.2. Traditional two-point geostatistics and predictive classification

First, the sensor data were interpolated to a regular grid (cell size
0.1 m×0.1 m) with OK using a spherical variogram model (C0=0,
C1=1.7, a=4.3 m) (Fig. 3) (Goovaerts, 1997). The model was fit to
the experimental variogram considering only data pairs in the direc-
tion of the driving lines. This directional variogram was more stable
Fig. 2. Overviewof the data collectionwith (a) the conditioning data: 28measurement lines (in-lin
9measurement lines (in-line distance 0.4 m) of proximal soil sensor data (ΔECa inmS m−1) and 9
indicator 0) of wedge material in the subsoil (0.6–0.8 m).
than the omnidirectional one which showed a jump at lag distances
around 3 m, corresponding to the between-line distance. This strategy
could be applied since we assumed that the anisotropy shown by the
experimental variograms was caused by the sampling configuration,
whereas the spatial process being studied was assumed isotropic.
We defined an elliptical search window with the longest radius per-
pendicular to the driving direction to ensure that neighbors from dif-
ferent measurement lines were selected.

Then, we performed a fuzzy k-means classification of the interpo-
lated sensor data. Since fuzzy-set theory allows dealing with uncer-
tainty especially due to imprecise boundaries between categories
(McBratney and Odeh, 1997), this technique was appropriate to clas-
sify the soil into two classes: one area with host material and one with
wedgematerial in the subsoil (from 0.6 to 0.8 m depth). Although the-
oretically required for predictive classification (de Gruijter and
McBratney, 1988), we did not add an extragrade class here since this
would impede comparison with the MPG probability map. We used
the FuzME software (Minasny andMcBratney, 2002) and set the fuzz-
iness exponent φ at 2.1 following the scheme proposed by McBratney
andMoore (1985). Parameter φ controls the degree of fuzziness of the
classification and has a value between 1 (hard classification) and ∞.
The resulting fuzzy membership map for the wedge material class
was interpreted as the possibility to findwedgematerial in the subsoil.

2.3. Multiple-point geostatistics

MPS requires the construction of a TI. In the case of bivariateMPS, a
bivariate TI is needed. For this case study the TI needed to consist of a
categorical image of the target variable (TI1), i.e. an indicator for the
presence of wedge material in the subsoil, and a continuous image of
the ancillary variable (TI2), i.e. the sensor data. Both TI1 and TI2 need-
ed to represent the expected spatial structure of the corresponding
variable and the bivariate image needed to represent the expected re-
lationship between both variables. We built this bivariate TI based on
our physical knowledge of the crack formation and the sensor mea-
surements on the one hand, and the information we gathered during
the field work on the other hand, i.e. the excavation and the prediction
sensor data (Fig. 2a).

TI1 was built from a binary image of a polygonal network of desicca-
tion cracks in a Mexico silt loam, that we selected from literature (Baer
et al., 2009). We resized the image to an image of 700 pixels high and
700 pixels wide (bicubic interpolation), each pixel representing an area
of 0.01 m2. Then, we dilated the wedges considering the width of the
e distance 0.4 m) of proximal soil sensor data (ΔECa inmS m−1) and (b) the validation data:
4 classified bore hole samples indicating the presence (wedge indicator 1) or absence (wedge

image of Fig.�2


Fig. 3. Spherical variogrammodel with C0=0, C1=1.7 and a=4.3 m used to interpolate
the proximal soil sensor data with traditional two-point geostatistics (ordinary kriging).
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excavated polygon (see 2.1). Fig. 4a shows the resulting image that was
used as TI1. TI2was obtainedby a forwardmodelingprocedure predicting
the corresponding sensor data starting from TI1. We spatially filtered TI1
with a kernel (11×11 pixels) representing the depth–response curve of
the EM38DD soil sensor (McNeill, 1980). This filtered image was histo-
gram transformed targeting the histogram of the sensor data (Fig. 2a).
The continuous TI (TI2) is shown in Fig. 4b. The image processing steps
were performed in Matlab (Mathworks, R2011a).

We used the Direct Sampling (DS) code to generate bivariate
multiple-point simulations (Mariethoz et al., 2010). As most of the
MPS algorithms, DS is a sequential simulation technique. This means
that the non-observed locations x of the simulation grid are visited
according to a predefined (random or regular) path and that for each
x a simulated value is drawn from a cumulative distribution function
F(z,x,dn(x))=Prob{Z(x)≤z|dn(x)} conditioned to a data event dn(x)
of size n centered at x. This data event comprises the values of the n
known neighboring grid nodes xi (i=1,…,n), i.e. the conditioning
data and the already simulated grid nodes, and their relative positions.
Hence, MPS considers the n neighboring locations jointly, instead of
pairwise.

Most MPS algorithms build F(z,x,dn(x)) by scanning the TI before-
hand for replicates of all possible dn(x)'s (based on a predefined tem-
plate) and storing the TI probabilities in a catalog (Straubhaar et al.,
2011; Strebelle, 2002). The conditional probability is then calculated
Fig. 4. Bivariate TI used to interpolate the proximal soil sensor data and predict the target variab
pattern of the wedge indicator (TI1) and (b) the continuous image representing the spatial pa
as the ratio of the number of replicates with their central node equal
to z and the total number of replicates found. Therefore, these algo-
rithms are restricted to categorical variables.

Conversely, DS can handle continuous and multivariate cases. This
algorithm skips the prior scanning step and directly samples the TI dur-
ing simulation. As soon as a TI pattern is found that matches dn(x) ex-
actly or as soon as the distance between the TI pattern and dn(x) is
lower than a user-defined threshold, the value at the central node of
the TI pattern is directly pasted to x. Different dissimilarity distances
can be selected, depending on the application and the type of variable
(Mariethoz et al., 2010). Hereafter, we briefly discuss the DS parameters
that were particularly interesting for this case study. More details about
DS and its implementation can be found in Mariethoz et al. (2010) and
Meerschman et al. (in press). For practical guidelines about how to set
the DS input parameters, the reader is referred to Meerschman et al.
(2013).

DS generates multivariate simulations by defining a path through
all the non-observed grid nodes x for each of the m variables. This
means that when one variable is simulated at one location, the other
variable at the same location can be simulated later in the path. For
each x a multivariate data event dn(x) is defined that contains the
neighboring data for the m variables. Based on a weighted average of
the m selected dissimilarity distances, the multivariate TI pattern is
chosen that is most similar to the multivariate dn(x) and the value at
the central node of this TI pattern is pasted in the simulation grid at lo-
cation x. Both the type of dissimilarity distance and theweight given to
each distance wm are user-defined (Mariethoz et al., 2010). In this
paper we used the fraction of non-matching nodes for the categorical
variable and the mean absolute error for the continuous variable. The
continuous variable was given a weight three times larger than the
categorical variable.

If conditioning data are given for all or some of them variables, they
will be honored by assigning them to the closest grid node prior to se-
quential simulation. Although local accuracy is assured this way, it is
important that the assigned grid nodes are embedded in the spatial pat-
tern and do not appear as noisy pixels. Therefore, DS allows to give the
conditioning data grid nodes a higher weight when calculating the dis-
tance between dn(x) and the TI pattern. In this study the weight given
to the conditioning data was set five times larger than the weight
given to the already simulated grid nodes.

We ran 50 bivariate simulations with the constructed bivariate TI
(Fig. 4) and the sensor data as continuous conditioning data (Fig. 2a).
The resulting E-type for the continuous variable served as an interpolated
lewithmultiple-point geostatistics with (a) the categorical image representing the spatial
ttern of the sensor data (TI2).

image of Fig.�3
image of Fig.�4
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sensor data map and the E-type for the categorical (binary) variable
served as a probability map for the presence of wedge material in the
subsoil.
2.4. Validation

The interpolated sensor data maps were validated by comparing
the measured sensor values in the independent measurement lines
(Fig. 2b) with the estimated values at the closest grid node. For both
the map interpolated with two-point geostatistics and the one inter-
polated with multiple-point geostatistics, we made a scatterplot and
calculated five validation indices: the mean estimation error (MEE),
the root mean square estimation error (RMSEE), the mean absolute
estimation error (MAEE), the Pearson's correlation coefficient (r)
and the Spearman's rank correlation coefficient (rR).

Based on the 94 classified bore hole samples (Fig. 2b), we validated
the twomaps predicting the presence of wedgematerial in the subsoil
by calculating their receiver-operating characteristic (ROC) curve
(Pontius and Schneider, 2001). This method was chosen since a ROC
curve evaluates the two-class prediction performance of the maps
Fig. 5. Map of the sensor data interpolatedwith ordinary kriging and derived fuzzymembership v
sensor data and probability map to find wedge material in the subsoil simultaneously generated
independent of the chosen decision threshold. This is important to
compare the fuzzy membership value map more objectively with
the probabilitymap derivedwithMPS. The effect of the degree of fuzz-
iness, as is defined by φ, will not influence the comparison. The ROC
space is defined by the 1-specificity (false positive rate) and the sensi-
tivity (true positive rate) as x- and y-axes respectively, considering a
continuous range of decision thresholds. The top left corner is the op-
timal location of the ROC space since there both the specificity and the
sensitivity are 1. The area under the ROC curve (AUC) measures the
two-class prediction performance. An AUC of 0.5 indicates a classifica-
tion performance no better than chance. The closer the AUC is to 1, the
better is the classification potential of the maps (Cockx et al., 2007).
3. Results and discussion

Fig. 5 shows the maps generated with traditional two-point
geostatistics (left) and multiple-point geostatistics (right). When we
compare these maps with the georectified aerial photograph of the po-
lygonal crop marks (Fig. 1b), it is clear that both maps delineate the
major ice-wedges very well, especially considering the between-line
aluemap indicating the possibility to findwedgematerial in the subsoil (left) andmap of the
with MPS (E-type of 50 simulations) (right).

image of Fig.�5


Fig. 6. Validation results for both interpolated sensor data maps (Fig. 5— top) using the independent validation data of 9measurement lines (Fig. 2b): scatterplots and validation indices
(MEE=mean estimation error, RMSEE, rootmean square estimation error,MAEE=mean absolute estimation error, r=Pearson's correlation coefficient, rR=Spearman's rank correlation
coefficient) for the map interpolated with two-point geostatistics (left) and the map interpolated with multiple-point geostatistics (right).

Fig. 7. Validation results for bothmaps predicting the presence ofwedgematerial in the sub-
soil (Fig. 5— bottom) using the 94 classified bore hole samples (Fig. 2b): receiver-operating
characteristic (ROC) curves.
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distance of the input data whichwas large in relation to the scale of the
soil features (Fig. 2a).

However, the polygonal pattern was much better reconstructed in
the MPS maps. The maps based on two-point geostatistics showed
more smoothed polygons and a lack of connectivity for the smaller poly-
gons. This better pattern reconstruction of theMPSmaps is due to the use
of a TI as a structuralmodelwhich explicitly implies amultiple-point pat-
tern. Since the used TI strongly influences the resultingmap, selecting an
appropriate TI is crucial. Nevertheless, one should realize that using a
variogram as a structural model also has consequences for the higher
order statistics. By only implying a two-point statisticalmodel, the higher
order statistics remain uncontrolled and are thus blindly accepted
(Journel and Zhang, 2006).

In addition to reconstructing the patterns correctly, the prediction
maps also need to be locally accurate. To quantify this local accuracy,
we validated themaps as described in Section 2.4. Fig. 6 shows the val-
idation results for the interpolated sensor datamaps (Fig. 5— top). Al-
though the validation scatterplots show a smoothing effect for both
maps (the slope shown by the data in both plots is less than one),
they predicted the sensor data reasonably well. The scatterplot cloud
was more elongated for the MPS E-type map, the correlation coeffi-
cients were closer to 1, and the validation indices closer to 0. This
shows that the enhanced pattern reconstruction obtained with MPS
does not come at the cost of local accuracy.

Fig. 7 shows the ROC curves for the maps predicting the presence
of wedge material in the subsoil (Fig. 5 — bottom) using the 94 classi-
fied bore hole samples (Fig. 2b). The fuzzymembership valuemap had
an AUC of 0.73 and the probability map created with MPS an AUC of
0.84. This means that the probability of ranking a randomly chosen lo-
cation with wedge material higher than a randomly chosen location
with host material, is higher for the MPSmap than for the fuzzy mem-
bership value map. Hence, the MPS map was better able to locate the
fossil ice-wedge polygons in the subsoil.

This case study illustrates one potential application of multivariate
MPS in soil science, but the flexibility of the method opens up a wide
range of potential applications. The variables to be simulated can be
categorical and/or continuous and for each variable conditioning
data can be given as input data. Furthermore, the (multivariate) TI
can be data driven, knowledge driven or a combination of both, like
the TI used in this paper.

The use of a TI is the strength of MPS, as it allows to simulate com-
plex spatial structures and multivariate relationships based on differ-
ent types of prior information. At the same time this TI is also the
bottleneck of MPS: constructing a TI, especially a bivariate TI, can re-
quire a large effort and there is a need for prior information that can
be visualized. In this study, we started the TI construction from a sim-
ple binary image taken from literature. However, comparing different
methods to construct soil TIs is a topic for further research.
4. Conclusions

As a first application in soil science, this case study has shown that
bivariate MPS can be used for the processing of proximal soil sensor
data. Based on a bivariate TI, we interpolated the proximal soil sensor
data and simultaneously predicted a target variable, i.e. the location of
fossil ice-wedge polygons in the subsoil. The use of the sensor data as
ancillary variable guaranteed local accuracy, while the multiple-point
structural model (TI) ensured pattern reconstruction.

Since soil scientists often face complex patterns that are hard to
model with traditional two-point geostatistics, we believe that (mul-
tivariate) MPS can be a valuable part of the pedometrical toolbox. It is
an innovative and flexible hybrid approach, which can be both data
and knowledge driven.

image of Fig.�6
image of Fig.�7
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