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Abstract

A non-parametric approach for assessing the probability that heavy metal concentrations in soil
exceed a location-specific environmental threshold is presented. The methodology is illustrated for
an airborne Cd-contaminated area in Belgium. Non-stationary simple indicator kriging, using a
soft indicator coding to account for analytical uncertainty, was used in combination with
declustering weights to construct the local conditional cumulative distribution function (cedf) of
Cd. The regulatory Cd contamination threshold (CT) depends on soil organic matter and clay
content, which entails that its value is not constant across the study area and also is uncertain.
Therefore, soft indicator kriging was used to construct the ccdfs of organic matter and clay. Latin
hypercube sampling of the cedfs of Cd, soil organic matter and clay yielded a map of the
probability that Cd concentrations exceed the site-specific CT. Cross-validation showed that the
cedfs provide accurate models of the uncertainty about these variables. At a probability level of
80% we found that the CT was exceeded at 27.3% of the interpolated locations, covering 3192 ha
of the study area, illustrating the extent of the pollution. Additionally, a new methodology is
proposed to sample preferentially the locations where the uncertainty about the probability of
exceeding the CT, instead of the uncertainty about the pollutant itself, is at a maximum. This
methodology was applied in a two-stage sampling campaign to identify locations where additional
Cd samples should be collected in order to improve the classification into safe and contaminated
locations. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

There is an increasing awareness that an estimate is of little value in the
absence of a measure of the associated uncertainty. This is specially the case of
prediction of environmental variables where the prediction uncertainty is re-
quired to support decision-making about further management. Over the last 20
years, geostatistical methods, like kriging, have been used successfully to
investigate the spatial variability of continuously varying environmental vari-
ables and to incorporate this information into mapping (Burrough and McDon-
nell, 1998). However, the kriging variance has often been misused as a measure
of reliability of the kriging estimate. The main limitation of the kriging variance
is that, when it is used to calculate the probability of exceedence, it relies on the
assumptions of normality of the distribution of prediction errors (as, e.g. in
Tiktak et al., 1999) and of homoscedasticity (i.e. the variance of the errors is
independent from the data values). These conditions are rarely met for environ-
mental attributes, which typically display highly skewed histograms. An alterna-
tive is to use indicator kriging (Journel, 1983), to derive, at each unsampled
location, the conditional cumulative distribution function (ccdf) which models
the uncertainty about the unknown value. This approach does not rely on an
analytical (parametric) modelling of the shape of the error histogram, hence it is
referred to as “non-parametric”. Furthermore, it can account for measurement
errors through a soft indicator coding of observations (Journel, 1986), which
contrasts with most studies on heavy metals where the measurement errors were
assumed to be negligible (e.g. Goovaerts et al., 1997; Juang and Lee, 1998).
Also, the ccdfs can be used to analyse how the uncertainty propagates when
several variables are combined (Heuvelink, 1998). This uncertainty propagation
can be conducted numerically by sampling the ccdfs of these variables many
times to consider all possible combinations.

Uncertainty assessment is not a goal per se, but it is a preliminary step in the
decision-making process, such as delineation of hazardous areas. In the process
of site characterization and remediation, multistage, or phased, sampling is often
conducted so as to validate the result of prior sampling or to improve the
cost-effectiveness of a sampling campaign (Englund and Heravi, 1994). Phased
sampling involves an interruption of the sampling process until the data are
available for estimating contaminant concentrations at unsampled locations,
which will guide the selection of locations where additional data are needed.
Chien (1998) found that two-stage sampling led to a smaller proportion of
locations that were wrongly classified. Different criteria can be used to locate
these additional samples. A common approach consists of designing a sampling
scheme that minimizes the kriging variance (Webster and Burgéss, 1984; Van
Groenigen and Stein, 1998). This approach is very convenient for multistage
sampling because, as long as the variogram model is unchanged, the impact of
sampling on the kriging variance can be assessed a priori (Burgess et al., 1981;
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Englund and Heravi, 1994). In this paper we present an alternative approach that
is based on the analysis of the ccdfs, and so it is better suited to the presence of
heteroscedasticity (i.e. the variance of the estimation errors depends on the
actual data values). In particular, a new criterion is introduced to sample
preferentially the locations where the uncertainty about the exceedence of the
sanitation threshold, instead of the uncertainty about the Cd concentration itself,
is at a maximum. In that way, the sampling scheme is tailored for the specific
objective of improving the remediation decision instead of improving the
accuracy of the prediction itself.

Our research deals with a 216-km® study area in Belgium, which was
contaminated by airborne cadmium for over a century. The origins of the Cd
were three zinc factories. Cd was released in the atmosphere until the 1950s and
since the 1970s, the emission reduced drastically due to the use of a hydrother-
mal extraction process. During the 1980s, under the aegis of the Flemish
Executive, the topsoil of more than 1500 vegetable gardens was sampled by the
Study Centre for Ecology and Forestry (LISEC), and Cd, together with several
other soil properties, was determined. Vegetable gardens were targeted since the
direct exposure of human to soil contaminated by Cd is most risky when
vegetables (especially leafy crops) grown on such soils are consumed (Chaney,
1990). More recently, a new environmental threshold has been applied (Vlaamse
Gemeenschap, 1996) to evaluate the contamination of soils by heavy metals.
This threshold was defined as a function of soil organic matter and clay content.
So the uncertainty of these soil properties must be incorporated in the evaluation
of a contamination by heavy metals as well.

The aim of this paper is to present a non-parametric methodology to assess
and combine the uncertainty arising from measurement errors and several spatial
predictions into the mapping of the probability that a sanitation threshold is
exceeded. Additionally, we will discuss how the results of this uncertainty
analysis can be used in the design of two sampling strategies to improve
decision-making through the collection of additional data.

2. Materials and methods
2.1. Theory

2.1.1. Modelling of local uncertainty

Consider the problem of modelling the uncertainty about the value of a soil
attribute z at the unsampled location x,, (representing a coordinates’ vector).
The information available consists of a set of n observations {z(x,),a=
1,2,...,n} which is considered as a realisation of one set of n spatially
correlated random variables Z(x,). The uncertainty about the z value at X, can
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be modelled through a random variable Z(x,) that is characterised by its
distribution function (Goovaerts, 1997):

F(xy:2l(n)) = Prob{Z(x,) < zl(n)}. (1)

The function F(x,;zl(n)) is referred to as a conditional cumulative distribution
function, where the notation [(n) expresses the conditioning to the n data z(x_).
The ccdf fully models the uncertainty at x,, since it gives the probability that the
unknown is no greater than any given threshold z.

Determination of a ccdf is straightforward if an analytical model defined by a
few parameters can be adopted. For example, under the multi-Gaussian model,
the ccdf is Gaussian (Journel and Huijbregts, 1978, p. 566) with the simple
kriging estimate and variance as the mean and variance at this location. A
non-parametric - approach does not assume any particular shape or analytical
expression for F(x,;z[(n)), hence it does not require the adoption of particular
models for the random function and is more flexible. It consists of estimating
the value of the ccdf for a series of K threshold values z,, discretizing the range
of variation of z:

F(x¢;z,/(n)) = Prob{Z(x,) < zl(n)},  k=12,....K. (2)

The resolution of the discrete ccdf is then increased by interpolation within each
class 1z,, z;,,,] and extrapolation beyond the two extreme threshold values z,
and z,.

A non-parametric estimation of ccdf values is based on the interpretation that
the conditional expectation of an indicator random variable I(x,;z,) given the
information (n):

F(xq32l(n)) = E{I(x4;2,)(n)} 3)
with I(x,;z,) =1 if Z(x,) <z, and zero otherwise, can be considered as the
conditional probability in Eq. (2). Ccdf values can thus be estimated by
interpolation of indicator transforms of data, for which we used indicator kriging
(Journel, 1983).

2.1.2. Indicator coding

The indicator approach requires a preliminary coding of each observation
z(x,) into a series of K values indicating whether the threshold z, is exceeded
or not. If the measurement errors are assumed negligible compared to the spatial
variability, observations are coded into hard (0 or 1) indicator data:

i(X,32;) ={

To account for the uncertainty arising from analytical errors, we propose to
replace z(x,) by a Gaussian distribution centred on z(x_) (assuming no bias)
and with a standard deviation s(x,) = CVz(x_), where CV is the coefficient of

1 ifz(x,) <z,

) k=12,...,K. (4)
0 otherwise
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variation of the analytical procedure (repeatability). The indicator coding thus
becomes:

i(x,52,) = N{(z, — 2(x,)) /5(x,)} k=12,....K (5)

where N{.} is the standard normal cumulative distribution function. Unlike the
hard indicator coding (Eq. (4)), coding according to Eq. (5) yields indicators
valued between 0 and 1, referred to as soft indicators (Journel, 1986). The
difference between a hard and soft indicator coding is illustrated for a clay
observation, z=3.3 dag kg~', determined with an analytical repeatability of
4.7%:

7, (dagkg™"): 16 19 23 26 28 3.1 35 3.8 43
hard i(z,): 0 0 0 0 0 0 1 1 1
soft i(z,): 0 0 0 0 0.001 0.099 0901 0999 1

The nine thresholds z, correspond to the nine deciles of the sample distribution
of clay used in the subsequent case study.

2.1.3. Indicator kriging

At any unsampled location X, each of the K ccdf values can be estimated as
a linear combination of indicator transforms of neighbouring observations. The
ordinary indicator kriging estimator for threshold z, is:

£

[Fxg:zd(m)] = é{Aauk)i(xa;zk). (6)

The weights A_(z,) are obtained by solving the following ordinary indicator
kriging system of (n + 1) equations (Goovaerts, 1997):

2 )\B(Zk)%(xa “X13§Zk) - ‘l’(zk) = ')’I(Xa —XO;Zk) Va=1ton
B=1

i /\B(Zk) =1
B=1
(7)

where ¢/(z,) is a Lagrange parameter. The only information required by the
kriging system are K indicator variogram values for different lags, and these are
derived from the variogram model v,(h; z,) fitted to experimental values
computed as:

N(h)

Y {i(x,:2) = i(x, + hiz)} } (8)

a=1

vi(hiz,) = 2N()

Because of the impact of wind direction and location of factories on the
spatial distribution of Cd, these data display a strong spatial trend that needs to



80 M. Van Meirvenne, P. Goovaerts / Geoderma 102 (2001) 75—100

be taken into account in the interpolation procedure. Consequently, simple
indicator kriging with varying local means (Goovaerts and Journel, 1995) was
used. Therefore, the estimator of Eq. (6) is re-written as:

[F{XO;Zkl(n + 1)}] =y(Xe5z0) T X A(z)i(x,52,) —y(x,520)) (9)

a=1]

where y(x,;z,) is the local mean of the soft indicator for threshold z, and
location x,, (see the cadmium section for more details about how these local
means were derived). The weights A (z,) are obtained by solving a simple
indicator kriging system:

2 Ag(2)CrlX, = Xg32,) = Cr(X, — Xg32,) Ya=1ton (10)
B=1

where Cy, (h;z,) is the autocovariance of the residual random function R(x;z,)
= I(x;z,) — y(x;z;). The residual covariance is typically derived as: CR(0) —
vr(h;z,) where the residual variogram model is fitted to experimental values
obtained from:

N(h)

Y {r(xaiz) = r(x, +hiz,)) (11)

a=1]

2N(h)

with the residuals r(x,;z,) = i(x,;z;,) — y(X,;2,).

At each location x,, the series of K ccdf values must be valued within [0, 1]
and be a non-decreasing function of the threshold value z,, i.e. [ F(x;z,(n)]*
<[F(xy;z,(n)]"Vz, > z,. These conditions are not necessarily satisfied be-
cause kriging weights can be negative and therefore the kriging estimate is a
non-convex linear combination of the conditioning data. Following Deutsch and
Journel (1998), the first constraint was met by resetting the estimated probabili-
ties outside [0, 1] to the nearest bound, 0 or 1. Order relation deviations between
successive ccdf values were corrected using the average of an upward /down-
ward correction. Last, the complete local distribution was retrieved from the set
of K ccdf values by linear interpolation between the quantiles as provided by
the sample distribution (in case of preferentially clustered observations, declus-
tering weights were taken into account). As discussed in Goovaerts (1999), a
limitation of the indicator approach with respect to a multi-Gaussian approach is
this a posteriori correction of order relation deviations although these are
generally of small magnitude (around 0.01-0.03, Goovaerts, 1994) and should
not affect the optimal property of the indicator kriging estimator.

Yr(hszy) =

2.1.4. Using local uncertainty models i
Knowledge of the ccdf F(x;zl(n)) at x, allows one to do the following.
(1) Assess the probability of exceeding a critical threshold z_ at x:

Prob{Z(x,) > z.(n)} = 1 — F(xy;z.I(n))} (12)
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(2) Estimate the unknown value z(x,). For example, using a least-squared
error criterion amounts at estimating that value by the mean of the ccdf, called
E-type estimate (Deutsch and Journel, 1998):

2 (x0) = | 2dF(xiel(n)) (13)

Similarly, the conditional variance of the ccdf can be calculated.
(3) Generate a series of L simulated values zX(x,) through a random
sampling of the ccdf:

z0(x,) =F"'(x0;p"l(n)) I=12,...,L (14)

where p are L independent random numbers uniformly distributed in [0, 1].
This procedure is called a Monte-Carlo simulation (Heuvelink, 1998). The set of
simulated values can then be used as input to any function f(.), e.g. Y =£(2),
allowing the uncertainty about the output variable Y to be modelled numerically
through the distribution of y-values, y(x,) =f(z{"(x,)). For complex func-
tions f(.) it becomes difficult and time-consuming to generate the large number
of simulated values required by a Monte-Carlo analysis of uncertainty propaga-
tion. The Latin hypercube sampling (McKay et al., 1979) is a more efficient
method of sampling probability distributions (Luxmoore et al., 1991; Pebesma
and Heuvelink, 1999). The idea is to divide each ccdf into N equal probability
classes which are sampled once to generate a set of N input values. This
approach ensures that the ccdf is represented in its entirety in the input to
function f(.), and it usually requires a much smaller sample than the traditional
Monte Carlo simulation for a given degree of precision.

2.2. Study area, database and sanitation threshold

The study area is located in the Northeast of Belgium (Fig. 1). The Belgian
Lambert72 (L72) co-ordinate system was used to geo-reference all samples since
it is a metric system facilitating the manipulation of spatial vectors.

Three data sets were used: 1553 analyses of total Cd performed in top soils of
vegetable gardens, 1378 soil organic matter measurements collocated with the
Cd observations, and 314 top soil clay determinations available from the
National Soil Survey database. Cd was determined by atomic absorption spec-
trometry after extraction by concentrated HNO,. The repeatability of this
procedure was reported to be 7.8% (OFEFP, 1993). Soil, organic matter was
obtained as 1.724 X C, C being measured by the conventional Walkley and
Black procedure. We repeated this analysis five times for five samples, leading
to an average repeatability of 2.2%. A similar procedure was followed by Van
Meirvenne (1991) for the conventional pipette procedure used to determine the
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Fig. 1. Location of the study area (rectangle), the three zinc factories (crossed squares) and the
major communities (black dots) in Belgium. The coordinates of the lower left corner of the study
area are: 5°12'00"E, 51°9'40”"N (X: 208000 m L72, ¥: 206000 m L72) and of the top right
corner: 5°27'31"E, 51°16'06" N (X: 226000 m L72, Y: 218000 m L72).

clay content. He found a repeatability of 4.7% for sandy soils. The area contains
mainly acid sandy Spodosols with a dominant 100—200 pwm sand fraction.
Location maps of the three data sets are given in Fig. 2. The strong spatial
clustering of the Cd and soil organic matter data is due to the preferential
location of vegetable gardens in communities or along roads. To obtain a
histogram and descriptive statistics that are representative for the region, the Cd
and SOM data were declustered using square cells of increasing dimension. The
goal is to give less weight to redundant (clustered) data located into densely
sampled cells (Deutsch and Journel, 1998). Because vegetable gardens with a
higher Cd content have been preferentially sampled, declustering leads to a
smaller average Cd concentration. The smallest declustered mean Cd content
(2.8 mg kg~ ') was found for a cell size of 3800 m (the sample mean of the
equally weighted distribution was 4.1 mg kg~ '). The declustered histogram of
Cd (Fig. 2) indicates that the distribution is strongly positively skewed, with
extreme values ranging from 0.2 to 70.5 mg kg~ '. Notwithstanding the similar
spatial configuration, clusters of high or low values were not detected for soil
organic matter. Therefore, all observations of soil organic matter were equally
weighted and its histogram is also presented in Fig. 2. The soil organic matter
distribution is slightly positively skewed, with a mean of 7.0 dag kg~' and
values ranging from 1.5 to 22.4 dag kg~'. Soil surveyors of the National Soil
Survey collected 314 topsoil samples more or less evenly distributed, and these
were analysed for their clay content. The average clay content is 3.0 dag kg ™'
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Fig. 2. Location maps (left) and histograms (right) for the Cd (top), soil organic matter (middle)
and clay (bottom) data sets. Cd values exceeding the largest value on the axis (25 mg kg™') were
grouped in the last class of the histogram. Location maps were grayscaled between the 10th and
90th percentiles to improve the contrast. Values below the first percentile, or above the last
percentile, received the same colour as these percentiles, respectively. Crosses locate the three
zinc factories (see Fig. 1).

and the distribution is also slightly positively skewed with extreme values of 0.1
and 11.5 dag kg~ '. These samples were taken in non-vegetable gardens and they
were also analysed for soil organic matter. Their mean soil organic matter
content (4.6 dag kg~') was lower than the mean soil organic matter of the
vegetable gardens, which indicates that the intensive soil use in vegetable
gardens increased the soil organic matter content on average by 2.4 dag kg~ '.

The Flemish government published a so-called contamination threshold (CT)
to evaluate the pollution of soils by heavy metals (Vlaamse Gemeenschap,
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1996). It is used to decide whether a soil is suitable for a particular land use
(concentration < CT) or whether sanitation measures (like cleaning up) are
required (concentration > CT). It is computed according to:

a+ bC+ cO
) (15)

CT(C,0) =N(102)| ————

( ) ( )( a+10b+2c¢

where C is the clay content (dag kg™'), O the soil organic matter (dag kg™"),

CT(C,0) is the CT, and N(10,2), a, b and c are parameters depending on the

type of heavy metal and the type of land use. For Cd, a=04, b=0.03,

¢ = 0.05 and for agricultural land use (including vegetable gardens), N(10,2) = 2
1

mg kg™ .

3. Exceedence of the location-specific sanitation threshold
3.1. Cadmium

3.1.1. Soft indicator coding

The nine deciles of the declustered sample distribution of Cd were used as
thresholds z,. Using Eq. (5), all observations were soft indicator coded with a
CV of 7.8%.

3.1.2. Spatial trend— local means

Two processes were considered to be responsible for the clearly observable
spatial trend in the Cd data (Fig. 2): the dominant winds and the distance to the
sources (the three factories) causing a dilution effect.

A wind rose from a climatic station (Kleine Brogel) near the study area is
given in Fig. 3. The dominant winds blow to the north to east directions. This

N

S

Fig. 3. Wind rose of annual frequencies of wind blowing to a particular direction (longest
line—NNE—corresponds to 12.5%).



M. Van Meirvenne, P. Goovaerts / Geoderma 102 (2001) 75-100 85

wind rose was split into four directional classes (4.4% of the days of the year it
is windless) defined as:

 High frequency (54.9%): angle interval 348° to 101° (E = 0°)

e Medium frequency (24.4%): angle interval 146° to 236°,

» Relatively low frequency (11.1%): angle interval 236° to 348°, and
e Low frequency (5.2%): angle interval 101° to 146°.

Nine distance classes were considered around each factory: 0-499, 500-999,
1000-1499, 1500-1999, 2000-2999, 3000-3999, 4000-4999, 5000—-5999 and
> 6000 m. Assuming that the major source of contamination for any sampled

i \
e
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Ny \'«,\\&,ﬁ\\\‘

'93\
X

7 - (1.8 mg/ke)
s

T N

7 o

A
RN
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[".2!/ Illl,fzt:."\\“

\
::\\\ () i\ n

7 - i(5.4 mg'kg)

Fig. 4. Trend surfaces (corresponding to 1—the local mean indicator) of tﬁe probability to exceed
the 20% (1.8 mg kg ™!, top), the 50% (3.1 mg kg ™!, middle) and the 80% (5.4 mg kg™, bottom)
percentile of the Cd distribution.
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location x,, is the closest of the three factories, each indicator data i(x;z,) was
assigned to one directional and one distance class. For each threshold value z,,
the indicators were averaged within each of these 36 classes resulting in a
9 X4 X9 look-up table of local means describing the spatial trend of Cd
concentrations. To avoid abrupt changes across class boundaries, these local
means were smoothed by interpolation (using ordinary kriging with a linear
variogram model). Fig. 4 shows the resulting trend surfaces (plotted as 1 —
i(x;z,)) for the 2nd, 5th and 8th decile value z,. As the threshold value
increases, the spatial continuity of the local means decreases dramatically due to
the concentration of higher Cd values in the vicinity of the factories and along
the most frequent wind directions.

3.1.3. Indicator variograms of residuals

For every z, the local mean was subtracted from the indicators i(x,;z,)
yielding nine sets of residuals r(x,;z,). The omnidirectional variograms of
these residuals were calculated (Eq. (11)) and fitted by a combination of a
nugget effect and a spherical (first four) or an exponential (last five) model
(McBratney and Webster, 1986) (Table 1 and Fig. 5). The gradual increase of
the ratio of the nugget effect vs. the sill from 43% to 83% and the corresponding
decrease in the range reflect a gradual spatial destructuring as the Cd values
increase.

3.1.4. Simple indicator kriging with varying local means and ccdfs

Ccdf values of Cd were estimated by simple indicator kriging with varying
local means (Egs. (9) and (10)). The latter were provided by the trend surfaces
at the nodes of a 200 m X 200 m grid. A search radius of 1200 m (correspond-
ing to the largest range of the fitted variograms, see Table 1) was used and a
minimum of four neighbouring observations was required before an interpola-

Table 1

Parameters of the nine fitted indicator variograms of the Cd residuals (Fig. 5)

7, (mgkg™") Nugget Model® Sill Range (m)
1.2 0.042 Sph 0.055 1165
1.8 0.064 Sph 0.074 1220
22 0.081 Sph 0.071 1050
2.6 0.089 Sph 0.069 900
3.1 0.077 Exp 0.077 825
3.6 0.081 Exp 0.057 915
43 0.074 Exp 0.027 700
54 0.052 Exp 0.011 170

73 0.025 Exp 0.009 85

“Sph: spherical, Exp: exponential.
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tion was accepted. The number of neighbours was limited to the closest 25 if
more were available within the search radius. Due to the uneven spatial
coverage of the Cd observations this condition was fulfilled at only 3164 out of
5400 grid nodes. At each of these locations, the interpolated probabilities were
used to construct the ccdfs. The means of the cedfs (Eq. (13)) are mapped in
Fig. 6. As expected, the largest Cd concentrations were found near the factories
with extensions along the major wind directions.

3.2. Soil organic matter and clay

Due to the absence of a dominant spatial trend for soil organic matter and
clay (see Fig. 2), the ccdfs of both variables were obtained by ordinary indicator
kriging (Eq. (7)). Again, nine thresholds corresponding to the nine deciles (0.1
to 0.9) of the sample distributions (Fig. 2), were used for the soft indicator
coding (Eq. (5)) using the reported repeatabilities. Isotropic indicator variograms
(not shown) were computed and modelled for both variables and each of the
nine thresholds. Because of the more restricted spatial coverage of soil organic
matter compared to Cd, only 2925 grid nodes could be interpolated. At those
locations, the ccdfs of soil organic matter and clay were constructed using the
same options (to correct order relation problems and to extrapolate at the tails)
as for Cd.

3.3. Cross-validation of spatial predictions of Cd, soil organic matter and clay

Before making any decision on the basis of uncertainty models it is critical to
evaluate how well the ccdfs capture the uncertainty about the unknown values.

2060000 . . . s
208000

X(mL72)

Fig. 6. Map of Cd (mg kg~ ') E-type estimates (circles locate factories; values larger than 10 were
coloured as 10, largest value = 10.9 mg kg~ '; white areas could not be interpolated under the
imposed conditions).
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As for spatial interpolation, a classical approach is to compare geostatistical
predictions with observations that have been temporarily removed one at a time
(leave-one-out or cross-validation approach). The major difficulty resides in the
selection of performance criteria for ccdfs modeling.

At any test location X, a series of symmetric p-probability intervals (PI) can
be constructed by identifying the lower and upper bounds to the (1 —p) /2 and
(1+p)/2 quantiles of the ccdf F(x,;zl(n)), respectively. For example, the
0.5 — PI will be bounded by the lower and upper quartiles [ F~'(x,; 0.25[(n)),
F~'(x4; 0.75((n))]. A correct modelling of local uncertainty would entail that
there is a 0.5 probability that the actual z-value at x,, falls into that interval or,
equivalently, that over the study area 50% of the 0.5 — PI include the true value.
If a set of ccdfs have been derived independently from z measurements (e.g.
using cross-validation or jackknife) at N data locations x ;» the fraction of true
values falling into the symmetric p — PI is readily computed as:

09 =5 ZeGin) Vo< o) (16

with:

£(x;:p)
1 if z(x;) € [F'(x;3(1 = p)/2l(n)), F ' (x (1 + p) /2l(n))]

0 otherwise

(17)
To account for measurement errors, &£(x P p) is here computed as:
E(x;5p)
= Prob{F_’(xj;(l —p)/2l(n)) <z(x;) < F~'(x;5(1 +p)/2|(n))}.
(18)

The closeness of the estimated (experimental) and expected (theoretical) frac-
tions can be assessed using the goodness statistics G (Deutsch, 1997) defined as:

I
G=1—f0 [3a(p) —2][£(p) —pldp (19)
where a( p) is an indicator function defined as:
1 ifé(p)=p -
= 20
a(p) {O otherwise. - (20)

Twice more importance is given to deviations when £( p) < p (inaccurate case)
since then [3a( p)-2|=2. In the case where the fraction of true values falling
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into the p-probability interval is larger than expected, i.e. the accurate case, this
weight becomes 1. In other words, one penalizes the situation where the fraction
of true values within the PI is smaller than expected. The ideal situation is when
the experimental fractions match the theoretical ones, that is G =1. The
goodness statistics is completed by the so-called “accuracy plot” which is a plot
of the experimental vs. expected fractions.

A cross-validation approach has been used to derive ccdfs of Cd, soil organic
matter and clay content at, respectively, N = 1553, 1378 and 314 data locations
of Fig. 2. Probability intervals have been computed for increasing probability p
and the proportions of true values falling into these PIs were computed
according to Eq. (16). Fig. 7 shows that for Cd the dots plot on the 45° line,
which indicates that the theoretical fractions are correctly predicted by our
uncertainty models (G close to 1). Results are not as good for the two other

1.0.Cd . 1.0.S0OM
0“‘. "

— & — ...'
€0.8] - 0.8 P
g s g
k=1 o £ ',:;-'
@ 0.6] & 0 0.6 Lt
£ ] o = a5
£ rd £ &
S 0.4] i 5 0.4] o
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Fig. 7. Plots of the proportion of true values falling within probability intervals (accuracy plot) vs.
the probability p. Cedfs for Cd, organic matter and clay were derived using indicator kriging and
cross-validation, while the ccdfs of the difference between Cd and the CT were obtained
numerically using the Latin hypercube sampling procedure described in Fig. 8.
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properties: the dots lying below the 45° line for p > 0.5 means that the
proportion of true values falling into large p-probability intervals is smaller than
expected, which reflects a less accurate modeling of the tails of the ccdfs.
Deviations between experimental and theoretical fractions are however small
since the goodness statistics are all very close to 1.

3.4. Latin hypercube sampling

3.4.1. Sanitation threshold

At each of the 2925 grid nodes, the ccdfs of soil organic matter and clay were
discretised into 100 equiprobable classes which were randomly sampled each
once and independently for both variables (the correlation coefficient between
the 314 clay and soil organic matter values of the Belgian Soil Survey was
0.173, and their correlation should be even smaller on vegetable gardens due to
the strong impact of gardening practice on soil organic matter). This yielded, for
each grid node, 10000 pairs of soil organic matter and clay values which were
combined into Eq. (15) to generate a set of 10000 CT values. Fig. 8 illustrates
this procedure for one location. Fig. 9 shows a map of the mean of the local
distributions (Eq. (13)) of the 10000 CT values. The spatial variability of soil
organic matter and clay, together with the analytical uncertainty, yielded CT
values ranging between 1.60 and 2.51 mg kg~ ', with an average of 2.08 mg
kg™ '

3.4.2. Probability to exceed the CT

At the same 2925 grid nodes, the ccdf of the Cd content was also sampled by
a Latin hypercube sampling (Fig. 8). The resulting set of 100 Cd values was
compared with the set of 10000 CT values yielding a ccdf based on 1000000
differences between Cd and CT. The underlying assumption here is the indepen-
dence between CT and Cd values, the correlation of which could not be formally
assessed since there is no location where all variables are known. In presence of
a likely positive correlation between Cd and ST, an independent sampling of
their probability distributions as performed in this paper would entail an
overestimation of the actual risk of exceeding the CT (conservative scenario).
Note that if the correlation can be estimated, procedures exist to sample jointly
probability distributions so that the simulated values reproduce the experimental
correlation (Heuvelink, 1998). The probability of exceeding the threshold was
estimated by the proportion of these differences that are positive (Fig. 8) and
these probabilities are mapped in Fig. 10. The probability: of exceeding the CT
varied between 0 and 1 with a mean of 0.62. As expected, high probabilities
were found around the factories, but due to the spatial variability of all three
variables involved, the spatial pattern of the probability to exceed the CT is
much more complex than that of Cd (compare to Fig. 6).
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218000

Y (m L72)

208000 X (mL72) 226000

Fig. 9. Map of the mean of the local distribution of 10000 CT (mg kg™ ') values obtained through
a Latin hypercube sampling of the cedfs of soil organic matter and clay (circles locate factories).

The goodness of the ccdfs of the difference between Cd and CT was assessed
using a cross-validation approach similar to the one described above. A diffi-
culty was that such a cross-validation requires the knowledge of all three soil
properties at the same locations, which is not the case here. Such a limitation
was overcome by using only those 1364 locations where both Cd and organic
matter content have been measured and by interpolating clay content at these
locations using ordinary kriging. The later estimates have been considered as
true values in the cross-validation approach. At each location, the three ccdfs
have been sampled using the procedure described in Fig. 8 to yield a numeri-

218000]

SRR X (m L72) T

Fig. 10. Probability map to exceed the local CT,
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cally cross-validated ccdf of the difference between Cd and CT. The accuracy
plot of Fig. 7 (right bottom graph) shows that these models predict very well the
proportions of true values that fall within probability intervals of increasing size
(G =0.98).

3.5. Advantages of the proposed procedure

The following are the advantages of our procedure.

(1) Any probability threshold p. can be considered in decision-making. For
example, if we would consider the 80% probability of exceeding CT as a critical
probability level p., then x, would be classified as contaminated if:

Prob{Z(x,) > z.I(n)} = p.. (21)

In our case study, if p, = 0.80 this would result in a classification of 27.3% of
the interpolated area (covering 3192 ha) as unsafe to be used as vegetable
gardens, i.e. where Cd exceeds the CT. To avoid the difficult selection of a
probability threshold for criterion (21), an alternative consists of classifying as
hazardous all locations where the CT is exceeded in expected value:

X, ishazardousif E[Cd(x,)] > E[CT(x,)] orif E[Cd(x,) — CT(x,)] > 0.
(22)

The expected value of the difference between the Cd and CT values was
numerically approximated by the arithmetic average of the 1000000 differences
generated by the Latin hypercube sampling of the ccdfs. According to this
criterion, the largest part of the interpolated area (72.7% or 8492 ha) was
classified as hazardous (Fig. 11).

218000.

no information

hazardous

206000.

208000, T X (m L72) 326000,

Fig. 11. Classification of locations as hazardous or safe on the basis that the Cd sanitation
threshold is exceeded in expected value (Eq. (22)).
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(2) Because the decision rule (22) involves expected values, there is actually
a risk that the location x,, is wrongly declared hazardous (false positive) or safe
(false negative). These can be computed directly from our results (Fig. 10)
(Goovaerts, 1997; Myers, 1997).

(3) Using the concept of cost functions, an evaluation of the economic costs
involved can be performed (Goovaerts et al., 1997).

An additional, but less often explored, advantage of our procedure is the
ability to optimise the location of additional samples.

4. Location of additional samples

When we are very uncertain about the actual pollutant concentrations and the
resulting risk of misclassification, it might be more advantageous to collect
additional information before a final classification into safe or contaminated
areas is being conducted (Van Groenigen, 1999). Consider that additional
resources are available, allowing the collection of S additional samples and the
measurement of Cd concentration, organic matter and clay contents. To increase
the cost-effectiveness of the new sampling phase, it is important to account for
the information already collected and processed.

4.1. Reduction of the uncertainty about Cd concentration

A first objective may be the reduction of the uncertainty about the Cd
concentration, which is achieved by sampling the S locations with the largest
ccdf variance for Cd:

x is sampledif s*(x) = f+w{z — 25 ()} f(x,2l(n))d  is large (23)
0

where f(x;z|(n)) is the local probability density function of Z(x), and z (x) is
the E-type estimate of Z(x) (Eq. (13)). Fig. 12 (left column, top map) shows the
map of the ccdf variance for Cd, and the 200 locations with the largest variance
(Ieft middle map). Because of heteroscedasticity (i.e. relation between local
mean and local variance), the selected locations are all in the vicinity of the
three factories. Moreover, they are strongly clustered, hence additional con-
straints must be imposed to avoid the collection of redundant information of
these spatially autocorrelated variables. Now assume that S = 50 and that we
accept 500 m as a maximal autocorrelation length (as a compromise between the
different ranges of the indicator variograms, see Table 1). With this additional
information we made a selection by starting from the location with the largest
variance and remove all other location within 500 m. Next, the location with the
second largest variance was selected and again all locations within 500 m were
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Fig. 12. Top left: map of cedf variance for Cd ((mg kg™ ')?); top right: map of CV(x) (Eq. (24));
location of 200 locations candidate for additional sampling because of the large cedf variance for
Cd (left middle) or large CV(x) (right middle); bottom graphs show 50 locations with large cedf
variance for Cd (left) or large CV(x) (right) that are at least 500 m apart to increase the efficiency
of the sampling design (circles in top maps and crosses in middle and bottom graphs locate
factories).

removed. This procedure continued until 50 locations were obtained with the
largest variance and that are at least 500 m apart, which increases the efficiency
of the sampling. Fig. 12 (left bottom map) shows the result.

4.2. Reduction of the remediation error

In many situations, the primary concern is to assess the intensity and real
extent of pollution concentrations exceeding a regulatory threshold. In other
words, it is the remediation decision that matters, not the accuracy of the
prediction itself (Rautman, 1997). The objective would then be to minimise the
uncertainty about whether the critical threshold z_ is exceeded.

L
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Chien (1998) proposed assessing the uncertainty at the unsampled location x
by the product w(x)s*(x), where s%(x) is the conditional variance, a measure of
local uncertainty as defined in Eq. (23) and w(x) measures how close the
probability of exceeding the critical threshold at x is to the probability threshold
p. specified by the decision-maker. Garcia and Froidevaux (1997) used as a
measure of uncertainty the absolute difference between the probability of
exceeding the critical threshold z_ and the closest of the two low and high risk
probability thresholds 0.2 and 0.8; they considered that the uncertainty is
negligible at locations where the probability of contamination is either high
(> 0.8) or low (< 0.2). None of these methods take into account the fact that
the predictions of the site-specific physical threshold z, may be uncertain, as in
our case study. Therefore, we propose to use as a sampling criterion the ratio of
the standard deviation to the absolute value of the mean of the local cumulative
distribution of the difference (D(x)) between the pollutant concentration (Z(x))
and the threshold (Z.(x)):

Var[ D(x)]

xis sampled if CV(x) = E[DX)]I

islarge (24)

The expected value and the variance of F(x;d|(n)) were approximated by
the arithmetical average and variance of the 1000000 differences between Cd
and CT generated by the Latin hypercube sampling of the ccdfs. This type of
coefficient of variation (CV) is large if the denominator is small, that is if the
simulated pollutant concentrations and threshold values are close and so the
uncertainty about the exceedence of that threshold becomes large. For the same
average difference, the CV will be larger if the variance of the distribution of
differences is large.

Fig. 12 (right column) shows the map of CV(x) (top), and the 200 locations
with the largest values are displayed below it. Unlike the previous criterion,
additional samples are no longer collected in the vicinity of factories, which is
certainly contaminated, but the focus is on the borderline between the zones that
could be classified as safe or hazardous (compare to Fig. 11). Indeed, it is in
these areas that the risk for misclassification is the largest. Although the
clustering is less pronounced than for the first criterion, the efficiency of the
sampling can be increased by imposing a constraint of minimum distance
between two samples; for example a minimum distance of 500 m leads to the
selection of the 50 locations displayed at the bottom of Fig. 12 (right graph),
using the same selection procedure as described before. This selection could be
optimised further using simulated annealing (Van Groenigen and Stein, 1998);
for example, the two constraints of maximisation of CV(x) and maximisation of
the distance between samples could be included into a single objective function
instead of imposing a constraint of minimum distance a posteriori (two-step
approach).
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5. Conclusions

The environmental database of our study consisted of three soil variables: Cd,
soil organic matter and clay. These data had several characteristics complicating
their combined spatial evaluation:

e Soil organic matter was collocated with Cd, but clay was not.

e Cd and soil organic matters were strongly spatially clustered, but only for Cd
high-valued areas were preferentially sampled. A declustering procedure was
used to obtain a Cd distribution that is representative of the study area.

e The distributions of these variables were moderately (soil organic matter and
clay) to strongly (Cd) positively skewed.

e Cd displayed a strong spatial trend due to the preferential winds and the
distance to its sources (three factories).

o The analytical repeatability varied between 2.2% (for soil organic matter) to
7.8% (for Cd).

The aim of this paper was to present a non-parametric methodology to
incorporate two common sources of uncertainty, spatial interpolation and analyt-
ical error, into the prediction of the probability of exceeding a location-specific
threshold. The combination of (non-stationary in the case of Cd) indicator
kriging and Latin hypercube sampling yielded local ccdfs of the difference
between the heavy metal concentration and the CT. Knowledge of such ccdfs
allowed the mapping of the probability of exceeding that threshold, i.e. in our
case study this amounted to 27.3% of the interpolated area (3190 ha) where the
probability to exceed the CT is 80% or higher. Cross-validation results indicated
that most ccdf models are accurate in that the fraction of true values falling into
a p-probability interval is usually larger than expected.

The design of a sampling scheme that minimises the averaged kriging
variance over the study area typically leads to take additional samples in
sparsely sampled areas. Although it is important to account for first-phase
sampling density in the elaboration of the second-phase design, data values must
also be accounted for, in particular in the presence of heteroscedasticity. In this
case, the uncertainty may be larger in an area that is densely sampled but which
displays higher variabilities than in a sparsely sampled area that is homoge-
neous. Whereas minimisation of uncertainty about Cd concentration entails the
sampling of high-valued areas around factories, the proposed approach (i.e.
minimisation of the “coefficient of variation” of the ccdf of differences between
Cd concentration and the CT) leads to the sampling of borderlines between areas
classified as hazardous or safe. Because the ccdfs are data-dependent, one
cannot investigate a priori the impact of the sampling strategy on the local
uncertainty, as is possible when the kriging variance is used as a measure of
uncertainty (Burgess et al., 1981). Thus, additional constraints, such as mini-
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mum distance between samples, need to be imposed to avoid clustering of
samples and the consequent loss of efficiency of the sampling design.
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