Extending the RUSLE with the
Monte Carlo error propagation
technique to predict long-term
average off-site sediment

accumulation
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ABSTRACT: To evaluate if the adaptation of the basically two-dimensional Revised Universal
Soil Loss Equation (RUSLE) to a three-dimensional reality is appropriate for predicting off-site
sediment accumulation, it was extended with the Monte Carlo error propagation technique. This
technique generates the true probability distribution of model ouspur and gives the possibility to
explain whether the difference between the model output and the field observations is largely due
to the uncertainty of the model input or is mainly due to the uncertainty and limisations of the
model itself It was found thar the RUSLE was able to accurasely predict off-site sediment accu-
mulation in the water reservoir of a study area. The value of the measured sediment input was
within the 68% confidence interval around the predicted value, with a difference of only 1.4%.
Therefore, the error propagation explained this difference as mainly due to the uncertainty of the
model input parameters. Consequently, it can be concluded that the topographic factor of the
RUSLE model also can be considered as a measure of the sediment transport capacity of the over-
land flow, although it was originally developed for situations where detachment limits the sedli-

ment load.
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bundant rains in the winters of

1993-94 and 1994-95 resulted in
substantial on-site and off-site erosion
problems in Belgium. Therefore, the Re-
gional Land Management Board of the
hilly region in the south of West-Flanders
requested a scientific study of these prob-
lems. This Board was installed by Minis-
terial Decree to preserve and protect the
landscape of this area, which is consid-
ered to be of an exceptional value. The
motivation for this request came from the
need for information to support “land
management agreements’ between farm-
ers and this Board.

Although process-based erosion mod-
els, such as the Water Erosion Prediction
Project (WEPP) (Flanagan and Nearing
1995) are being developed to replace the
empirical models (Laflen et al. 1991), the
Revised Universal Soil Loss Equation
(RUSLE) (Renard et al. 1996) was select-
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ed as a basis to develop an erosion expert
system. The latter should be able to assess
both on-site soil losses and off-site sedi-
ment accumulations. This system was im-
plemented in ANSI C (American Nation-
al Standards Institute), intended to be
used inside a Geographic Informarion
System (GIS) environment. The RUSLE
was chosen because it requires only a lim-
ited amount of data to perform a field-
scale erosion analysis for large areas, com-
pared to other process-based models.

To predict the off-site sediment accu-
mulation in rivers or water reservoirs, the
equations in the erosion model describing
the hydrological processes must be a mea-
sure of the transport capacity of the over-
land flow. Only when this is realized can
the amount of sediment leaving a field be
estimated. The RUSLE is a factor-based
erosion model designed to predict long-
term average soil losses carried by runoff
from specific field slopes in specified
cropping and management systems
(Renard et al. 1996). The factor that
summarizes the hydrological components
of the water erosion process is the topo-
graphic factor LS. Foster and Wischmeier
(1974) stated that the LS equation, de-
rived from unit field plots with a length
of 22.13 m (72.6 ft) and 1.80 m (5.9 ft)

width, applies to situations where detach-
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ment limits the sediment load, and is not
a transport-capacity equation. However,
recent rill erosion experiments conducted
by Nearing et al. (1997) indicate that
transport capacity in eroding rills is
already reached within a sample length of
2.5 m (8.2 fr) for slopes ranging between
3 to 28%. These results support the state-
ment of Moore and Wilson (1992) that
the equations of the topographic factor in
the RUSLE model also are a measure of
the sediment transport capacity of over-
land flow. This implies that RUSLE can
estimate the sediment actually leaving a
field and does not account for deposition
as colluvium (intrabasinal storage).

The end product of a model always is
the result of operations and computations
performed on uncertain data. In GIS
studies, every layer of information has its
associated uncertainty caused by different
sources of variance (Heuvelink et al.
1989). Some of these sources can be un-
avoidable (e.g., the intrinsic variability of
the climate or the uncertainty associated
with interpolation methods). If the results
of a model are not in agreement with
field observations, it is important to
know whether this is due to the model it-
self or to the uncertainty of model inpur.
This can be evaluated with the Monte
Carlo error propagation technique (Wes-
seling and Heuvelink 1993). With this
technique, the model output is generated
at least a few hundred times, but instead
of using the parameter values, their sto-
chastic distributions are used. This allows
a modeler to determine the stochastic
properties of model output.

The factor of the RUSLE model that
poses the most problems in the error
propagation process is the LS factor.
Desmet and Govers {1996) developed a
method to calculate the LS factor on
topographically-complex landscapes with-
in a GIS, based on the unit contributing
area. For this study, an alternative method
to calculate the LS of a field was devel-
oped. This alternative method can be
used in the Monte-Carlo analysis and is
more closely related to the linear structure
of the RUSLE model and the linear
micro-topography that can be observed in
the field. The linear micro-topography is
created by cultivation techniques: crops
are cultivated in rows and the use of
heavy machinery creates linear furrows,
which initiates rill erosion. This induces a
parallel flow pattern and prevents the
concentration of the Horton runoff into
bigger rills and gullies. These features
cannot be captured by the unit contribut-
ing area because the resolution of most
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Digital Elevation Models (DEM) is too
low to describe this linear micro-topogra-
phy.

This paper has two main objectives: 1)
to evaluate if the RUSLE can be used to
predict fong-term off-site sediment accu-
mulation, which is equivalent to checking
if the RUSLE LS equations are a measure
of the transport capacity, and 2) to per-
form a Monte Carlo error propagation to
determine the uncertainty of the calculat-
ed on-site soil losses and off-site sediment
accumulation.

Materials and methods

The procedure described below was
applied to the Kemmelbeek Watershed
(Figure 1), located in the south of West-
Flanders, within Belgium’s loess belt. It
covers an area of 1,075 ha (2,655 ac) and
feeds a drinking-water reservoir for the
city of Ieper. The highest elevation is 151
m (495 fr), which drops to 23 m (75 fr)
at the reservoir inlet. The average slope
steepness is 4.6%, with a maximum slope
of 71%, although 99% of the slopes are
less than 30%. This watershed was cho-
sen as a pilot test area to determine the
on-site soil losses and off-site sediment
accumulation in the reservoir, using the
adapted RUSLE expert system. The
model predictions could be validated,
since data on the sediment input in the
reservoir are available. The reservoir has a
sediment-trapping efficiency of nearly
100%. This is based on the fact that 1)
most incoming sediment is deposited di-
rectly behind the reservoir inlet; 2) the
daily amount of water used for drinking
water production is a volume of 4,000 m3
(141,200 fi3), which corresponds with a
waterlayer of only 1.15 cm (0.45 in) for a
total reservoir area of 34.88 ha (86 ac);
and 3) excessive water is only pumped
into the downstream drainage system
when the reservoir exceeds a certain criti-
cal level. (The pumps are located 700 m
(2,296 ft) from the reservoir inlet).

In a GIS environment, a mode] can be
written as (Wesseling and Heuvelink

(1993):
M = F(Z]) ZZ)---: Zn: a1, A250e0y am) [l]

where the resulting map M is obtained by
applying expression F on input maps Z;
and model coefficients #;. Because most
model input is subject to uncertainty, not
all parameters of F are exactly known.
Therefore, the parameters of F must be
represented by probability distributions
rather than by deterministic quantities. A
Monte Carlo error propagation technique
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Figure 1. The Kemmelbeek River Watershed and its location in Belgium.

can then be used to determine the distrib-
ution of the model output. This tech-
nique repeatedly (e.g., 500 times) runs
the model with input values that are sam-
pled from their distributions. If the num-
ber of runs is sufficiently large (depend-
ing on the model complexity), the
distribution obtained from the runs will
approximate the true distribution of the
model output.

Before an error propagation can be
performed, the following must be deter-
mined (Wesseling and Heuvelink 1993):

1. the properties of function F;

2. which parameters are stochastic and
which are deterministic;

3. the probability distribution of the
stochastic parameters;

4. the correlation between the differ-
ent parameters at the same location; and

5. the correlation between the spatial
parameters at different locations.

In this study, the function F in Equa-
tion 1 is the RUSLE model. To test
if the elaborated methodology of the
RUSLE expert system is capable to pre-
dict off-site sediment accumulation, it is
hypothesized that the RUSLE model
itself induces no error. The uncertainty of
the output is then only induced by the
uncertainty of the model input parame-
ters: LS, R, K, C, and P. Therefore, the
stochastic properties of these input para-
meters must be determined.

The topographic factor (LS)

The RUSLE topographic factor
describes the combined effect of slope
length (L) and slope steepness (S).
Because a terrain element downslope gets
more runoff water than a terrain element
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near the water divide, Foster and
Wischmeier (1974) subdivided a slope
into a number of uniform segments. The
LS of a flowline in the landscape can be
calculated by:
M.+1
LSS [@M-L )-Si ] 5
i | L,,-22.13m ]

where L,, is the total length of 2 flowline
[m], L; is the length from the top of the
slope to the foot of segment 7 [m], L, is
the length from the top of the slope to
the top of segment 7 [m], S; is the slope
steepness factor for segment 7 [-], and M;
is the slope-length-exponent [-]. The
slope-length-exponent can be written as

(McCool et al. 1989; Renard et al. 1996):

M=-8 3]

- 1+8

B - sin(or) / 0.0896 . (4]
3.0 (sin{0))98 +0.56

where § is the rill/interrill ratio [-] and o
is the slope steepness [radians]. When
field conditions favor rill erosion » = 2
le.g., on ridged potato (Solanum tubero-
sum) fields]; when field conditions favor
sheet erosion 7 = 0.5 (e.g., a field thar re-
mains bare for a long time); and for in-
between conditions » = I. The main
crops in the study area are beets (Beta vul-
garis), maize (Zea mays), potatoes
(Solanum tuberosum), and wheat
(Triticum aestivum). The field conditions
for these crops favor rill erosion. There-
fore, an r-value of 2 was used, except for
pasture fields and forested areas where r
was set to 1.
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Figure 2. lllustration of the process used to calculate the topographic factor. Figure 2a shows the flow directions for each elementary
cell of the field or hydrological unit. Figure 2b shows the passible flow lines in the field. Figure 2c shows the flowline matrix (FLM) for
the field, indicating the number of flow lines passing through a cell.

The slope steepness factor (for a slope
length longer than 4.56 m, or 15 ft) is
given by this equation (McCool et al.
1987; Renard et al. 1996):

10.8 sin() + 0.03  if (slope < 9%)

$=116.8 sin(0) = 0.50 if (slope = 9%)

(5]

Due to the small parcels in the study area
(the average field area is only 1.40 ha or
3.46 ac) and the dense ditch system,
every field can be considered as a separate
hydrological unit concerning Horton
flow. Consequently, the flowlines in the
landscape start at the upper field bound-
aries and end at the lower field edges,
where the runoff water flows into the
drainage system. The calculation process
for the LS factor is shown in Figure 2.

For example, suppose a square field or
hydrological unit has a length and widch
of be 80 m (262 ft). In a 10-m (32.8-ft)
resolution DEM, this results in a grid
with 8 rows and 8 columns. Figure 2a
gives the drainage directions for each ele-
mentary cell of the grid. These drainage
directions are used to construct linear
flowlines in the field (Figure 2b). The
flowline matrix (FLM), given in Figure
2c¢, indicates the number of flowlines run-
ning through a cell. The representative
area for cach segment of a flowline is the
cell area divided by the FLM value for
that segment.

The soil erosion [# - y»-/] along a flow-
line, As, can then be written as:

Ml Mai

A=Y usi. CRK G D

=] Lo +22.13M; a-Rele-GoR

(6]

where NV is the number of segments in a
flowline, 4; is the representative area of a
segment in a flowline {4}, and R;, X;, C;,
and P are the other RUSLE factors, re-
spectively, the rain erosivity [M]- mm -
hal- h1. yr-1], the soil erodibility
[¢-ha b -ha!l -MJ! -mm!], the cover man-
agement factor [-] and the support prac-
tice factor [-]. If dx and dy are the cell di-
mensions [m], the representative area [5a]
of a segment in a flowline can be calculat-

ed by:

= —dx-dy 7]
10,000 - FLM;

The total soil erosion [¢- field!- yr] of a
field or hydrological unit, Aggqg, results
from:

F
Afed = z_‘i As (8]

where F is the number of flowlines in a
field or hydrological unit.

There are two sources of variance in
the LS algorithms that influence the
uncertainty on the predicted sediment
loss:

1. The uncertainty on the elevations
in the DEM. For every iteration in the
error propagation process, an error su-
face was created and added to the original
DEM. If the error between the DEM ele-
vation and the real elevation for a certain
point is high, the error also will be high
for positions in the neighbourhood of
that point. Therefore, the error surfaces
must be autocorrelated over a short dis-

tance. This requires the construction of a
random generator, which can create auto-
correlated error surfaces.

2. The rilling pattern that can be
observed in a field is never the same for
every storm event. To simulate this
randomness of the Horton flow, a
stochastic flow routing model was used to
determine the flow directions.

Construction of autocorvelated sur-
faces. The fractional Brownian motion
{(fBm) and fractional Gaussian noise (fGn)
serves as the basis for many models for
natural fractal shapes such as landscapes
(Polidori 1991; Peitgen et al. 1992). In its

one-dimensional form, the fractional

_Brownian motion model is defined as a

continuous function, f{x), of the indepen-
dent spatial variable, x, having the follow-
ing properties (Molz and Liu 1997; Peit-
gen et al. 1992):

1. The increments of fare stationary.
This means that for all values of x and a
fixed increment, #:

E[f(x + h) - f(x)] = Cy(h) 9]
E[(f(x + h) - f(x))?] = Cy(h) = y(h) [10]

where E[X] = expected value of the ran-
dom variable X, y(h) is the variogram,
and C, and C; are functions of 4. Be-
cause the increments of f{x) are defined
to be stationary, one can define:

n(xh) = f(x + h) - f(x) [11]
with the statistical properties of 7 de-
pending only on 4.

2. The variable n has a Gaussian distri-
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Figure 3. Three fBm traces generated with the random midpoint displacement method
and with a specified Hurst coefficient (H). To estimate the Hurst coefficient (<H>), a

power function is fitted at the variogram.

bution with:
E[n(x,h)] = 0 and E[(n(x,1))?] = 62[12]

Thus, in equations [9] and [10], C;(%) =
0 for all 4, and C,(1) = o2

3. The increments, n(x,5), are statisti-
cally invariant with respect to an affine
transformation. This means that the
random variable n(x,75) and rfn(x,h),
with r and H constants (0 < r < oo and 0
< H < 1), have the same Gaussian distrib-
ution. Thus:

Eln(x,rh)] = E{rH n(x,h)] = 0 {13]
E[(n(x,rh))?] = E[(r" n(x,h))?] =
2H E[(n(x,1))?] [14]

Using Equations [12], [13], and [14], one

can write:

E[(n(x,h))?] = h?H E[(n(x,1))?] =
h?H 62 = y(h) [15]
In order to define fBm = flx), it was nec-
essary to define the properties of its incre-
ments, n(x,4). This last function is
known as fGn. The concepts of fBm and
JfGn are generalizations of the classical
concepts of Brownian motion and Gauss-
ian noise, denoted as ¢Bm and ¢Gn. These
functions are obtained by setting H = 0.5.

The parameter, H, is the so-called Hurst
coefficient and is an indicator of the sur-
face complexity. H is related to the fractal
dimension of the surface and can be esti-
mated by fitting a

0.2, 0.5, and 0.8 with their respective var-
iograms. Random surfaces with a given
Hurst coefficient can be created by the
“random midpoint displacement” algo-
rithm (Peitgen et al. 1992).

Flow-routing algorithm. Several flow-
routing models exist to determine the
flow directions in a grided DEM: the de-
terministic 8-neighbors method (D8)
(O’Callaghan and Mark 1984; Jenson
and Domingue 1988); the stochastic
8-neighbors method (Rho8) (Fairfield
and Leymarie 1991); multiple-direction
methods (Quinn et al. 1991; Freeman
1991); and DEMON (Costa-Cabral and
Burges 1994). For this application, the
Rho8 method, which is basically a
stochastic extension of method D8, was
chosen based on its stochastic character to
determine flow directions.

In method D8, each pixel discharges
into one of its 8 neighbors. The drainage
direction is determined by the direction

of the largest weighted elevation drop
(LD), calculated by:

LD =(H.-H,)-p (16]
where H, and H,, is the elevation of the
center cell and the neighbor cell, respec-
tively, and p is the weight factor for the
direction and equals: 1/dx in the x direc-
tion, I/dy in the y direction, and

power function, y =

. 160
a-x% on the vari- '

ogram. According to 140

Equation 15, a = ¢2,
b = 2H, when y is the
semivariance and x is
the lag distance. The
fBm can be divided 30

into three distinct cat- .

120

clevation {m}

measured elevations
interpolated elevations
i : | 1 ] i | 1

error {m]

error trace )

200 300 400 500 600 700

distance [m]

egories: H< 0.5, H = 60—t
0.5 and H> 0.5. The 0 100
case H = 0.5 is the or- 15

dinary Brownian mo-
tion, which has inde- "
pendent increments.
For H> 0.5, there is a
positive correlation
between the incre-
ments. For H < 0.5,
there is a negative
correlation between
the increments and

semivariance
;

the curves or surfaces 0
seem to oscillate more

20 30 40
lag distance

erratically. As an illus-
tration, Figure 3 gives
3 fBm series with a
Hurst coefficient of
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Figure 4. Measured and DEM elevations along a transect (4a)
and the variogram (4b) of the error trace. Fitting a power func-
tion at the variogram results in a Hurst coefficient of 0.83.
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Figure 5. The mean LS value of a field and the standard deviation of these estimations.
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Figure 6. Variogram used to block-krige an erodibility grid. Fitting a spherical model at
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Figure 7. Block-kriged erodibility map (7a). The darker colors indicate the loamy soils,
the lighter colors indicate the (partial) denudation of Tertiary sands. Figure 7b gives
the kriging standard deviation. The standard deviation is directly proportional with the

distance from the sample positions.

1/sqre(dx2+dy?) in the diagonal directions.

If dx equals dy, p is equivalent to 1 for
the cardinal directions, and 1/grt(2) for
the diagonal directions. This method
gives maximum etrors in the flow direc-
tion of 22.5 degrees in planar areas which
are not aligned with the grid orientation
(Fairfield and Leymarie 1991). To solve

this problem, method Rho8 gives the
weight factor p a stochastic character. For
the cardinal directions, p equals 1; for the
diagonal directions, p ranges between
[0.5,1.0] with a mean value of 1/5gri(2),
according to its cumulative distribution

function (cdf):

0 x<0.5
2-1/x 055x<1
1 x>1

P(p<x) =

(17)

Let r be a uniformly distributed
random variable between [0, 1], then the
inverse of the cdf, p = 1/(2 - 7), generates
random weight factors for the diagonal
directions, with a mean value of I/sgre(2).
Using this flow-routing model, every
iteration in the Monte Carlo error propa-
gation process generates another flow
pattern.

To calculate the LS factor, a DEM of
the study area was interpolated from the
contour lines, digitized from the Belgian
topographic maps with a 1:10,000 scale.
The grid resolution was chosen as 10 m
(32.8 fi). The field boundaries were digi-
tized from the 1:10,000 orthophotos.
The random midpoint displacement
method, used in the Monte Carlo simula-
tions, requires two parameters: the Hurst
coefficient, indicating the complexity of
the DEM error surfaces, and a standard
deviation, indicating the dimension of
the errors. To determine the Hurst coeffi-
cient, the elevation was measured along a
transect down a hillslope. These measure-
ments were compared with the elevations
in the DEM.

Figure 4a gives the trace of the errors
along the transect, and Figure 4b shows
the respective variogram of this error
trace. Fitting a power function to the
variogram results in a Hurst coefficient of
0.83, indicating a positive correlation
between the errors at successive points.
The interval of the digitized contour
lines, used to interpolate the DEM, was
2.5 m (8.2 fr). Consequently, the maxi-
mum error of the elevations in the DEM
is 2.5 m, which can be considered to be
normally distributed. The standard devia-
tion, used in the random midpoint
displacement method, is then approxi-
mately one-sixth of the contour interval,
or 0.42 m (1.38 ft), according to (with
f{x) the normal probability density func-

tion):

+3'c
f(x) e dx = 0.997

3o

(18]

Figure 5 gives the results of the Monte
Carlo error propagation: the mean LS
value of a field and the uncertainty of
these estimations, expressed by the stan-
dard deviation.
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Rain erosivity (R)

Precipitation over a 27-yr span was
used to calculate the rain erosivity index.
Over this period, rain intensity was
recorded every 10 min. Equations used to
calculate erosivity can be found in Renard
et al. (1996). For the Kemmelbeek
Watershed, the mean yearly rain erosivity
is 724 [M] -mm-bhal -b! yr1]. The natural
variability of the precipitation characteris-
tics (intensity and amount) is very large.
Consequently, the standard deviation of
the R-factor also is very large: 224
[M] -mm-bha! b1 yri]. Because the
RUSLE model predicts the mean soil loss
over long time periods (a few decades), it
is not necessary to take this uncertainty
into account in the model calculations.
Therefore, the R-factor was considered to

be deterministic, with a value of 724
[M] mm-ba! B! yr].

Soil erodibility (K)

The soil erodibility factor can be calcu-
lated by the following equation (Renard
etal. 1996):

K

| 2.1:(8-(100-C))+4104.(12-OM) ]
100

-0.1317 [19]

where K is the soil erodibility [-ha b
ha! MJ-! mm-1], S is the textural frac-
tion between 2 and 100 pm [%], and
OM is the organic material content [%)].

The Belgian soil map contains only
qualitative information, so it is not ap-
propriate to convert this into quantitative
information. Therefore, 153 locations
were sampled within the watershed to
determine the textural fractions and the
organic material content. Using equation
[19], the erodibility of the samples was
calculated and block-kriged (Webster and
Oliver 1990; Van Meirvenne 1991) using
the variogram given in Figure 6. Blocks
10 m (32.8 fr) square were used, resulting
in an erodibility grid (Figure 7a) of the
same resolution as the DEM. The uncer-
tainty of this interpolation is expressed by
the kriging variance (Figure 7b). The K
factor can be considered to be normally
distributed with the kriged value as mean
and the kriging variance as a measure of
the spread of the estimation error.

The cover management
factor (C)

The dimensionless C factor, which has
a range between 0 and 1, expresses the
degree of protection of the soil surface by

Figure 9. The mean actual soil loss of a field (t/field/yr) and the standard deviation of

these estimations.

the crops or vegetation. The information
for calculating the C factor was obtained
from a detailed inquiry with farmers
(Ghekiere 1997). However, there was not
enough information (e.g., soil biomass,
crop residues, soil consolidation, etc.) to
use the RUSLE methodology. Instead,
the Universal Soil Loss Equation (USLE)
was used to calculate the C factor for
every crop rotation.

For every crop, the growing season was
subdivided in 6 stages. However, not
every crop cultivated in western Europe
can be found in the USLE crop database.
The C value for these crops must be esti-
mated using the data of similar crops.
Therefore, for every growing stage, a pos-
sible minimum and maximum C value
was chosen from the USLE C factor table
[see Table 5 in Agriculture Handbook
No. 537 (Wischmeier and Smith 1978)].
These values were weighted with the
erosivity value of that period, which
resulted in two maps (Figure 8) that
represent the minimum C factor and the
maximum C factor for a field. The C-
factor of a field can be considered to be
uniformly distributed between this mini-
mum and maximum C value.
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The support practice factor (P)

The dimensionless support practice
factor, P, takes into account the effect of
special management practices, such as
strip cropping and terraces. Because no
farmer applied such soil conservation
practices, the P factor has a deterministic
value of 1 for the entire study area.

Soil erosion (A)

Once the stochastic distribution of
every RUSLE parameter is determined,
the RUSLE model can be represented
by Equations 6 and 8. Because the sto-
chastic RUSLE parameters (LS, K, and
C) are mutually independent, there are
no correlation terms that should be taken
into account in the error propagation. To
assess the soil loss of every field or hydro-
logical unit and the uncertainty on these
results, a Monte Carlo simulation, with
500 runs per field, was performed. For
every run, a new DEM was created for
the field, and the K and C values for
every pixel in the field were randomly
sampled according to their probability
distribution. If the number of iterations is

high enough (at least a few hundred), the
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Figure 10. Percentile error maps for the LS, K, and C factors.

soil loss will be distributed normally. This
resulted in two maps (Figure 9) that show
the soil loss per field and the uncertainty
of these estimates, expressed by the stan-
dard deviartions.

Validation

Using the soil erosion map and the
standard deviation map on the soil loss,
one can calculate (using a Monte Carlo
simulation) the average yearly sediment
input in the water reservoir and the un-
certainty on that value. The calculated
yearly sediment input was 4,376 ¢-yr!
with a standard deviation of 75 #-yrl.
Given the uncertainty of the model input
parameters, the predicted average yearly
sediment input, and its 68% confidence
interval, was 4,376 £ 75 ¢ty In 1982,
204,141 t sediment was dredged out of
the reservoir (Gabriels 1985). The previ-
ous dredging dated from 1936. This
means that in the 46 years between the
two dredging operations 204,141 t sedi-
ment was deposited in the reservoir,
which represents a yearly input of 4,438
tyri. This value lies within the 68%
confidence interval; the model output
and field amount differed by only 1.4%.
It can be concluded that the RUSLE
model, in combination with the methods
presented in this paper, particularly the
adapration of the linear RUSLE model to
a three-dimensional reality, are capable of
predicting both on-site soil losses (sedi-
ment leaving each field) and off-site sedi-
ment accumulation within acceptable ac-
curacy. Note that the RUSLE model
cannot be used to estimate intrabasinal
sediment storage as colluvium.

Discussion and conclusions
Extending the RUSLE with an error

propagation was very important in evalu-
ating the difference between what can be
predicted by a model and what exists in
the field. If field measurements coincide
reasonably with model output, then the
difference between the model output and
the field truth can be explained mainly by
the uncertainty of the model input.
Otherwise, the difference must be mainly
due to the model itself. For example, in
regions where gully erosion is prominent,
the RUSLE will underestimate soil losses
and sediment accumulation. Also, an in-
correct assignment of the r-value of a field
in Equation 4 can be responsible for con-
siderable deviations berween model out-
put and field truth. However, it was not
possible to estimate the amount of error
induced by the model itself. This requires
supplementary statistical information
about the model regression equations
(confidence and prediction interval equa-
tions) from the model designers.

Scheinost et al. (1997) and Sinowski et
al. (1997) investigated the error contribu-
tion of a model (a pedotransfer function
to predict soil water retention) and the
error contribution of the spatial interpo-
lation. Probably due to error self-com-
pensation, the overall error was substan-
tially smaller than the sum of both single
components. The small deviation
between measured and predicted
sediment accumulation in this study may
indicate a similar error compensation
rather than the contribution of errors
from the input data only.

Computing sources of error can be
done by pretending that all parameters
have no error, except for the parameters
that are traced. Comparing these results
with the original model output shows the
(relative) error contribution of that par-

ticular parameter. Percentile error maps of
each parameter can be calculated by
dividing the variance by the total variance
and multiplying by 100 (Spiegel and
Meddis 1982; Wesseling and Heuvelink
1993). Figure 10 gives the percentile
error maps for the LS, K, and C factors.
In the case that the uncertainty induced
by the data is too large, one can select the
input parameters and locations that must
be sampled more precisely or at a higher
spatial resolution. The major error contri-
bution is from the LS factor, indicating
the need of high-quality DEM data in
erosion studies.

This study indicates the possible power
of the RUSLE model when applied in
agricultural watersheds, and when used
within the boundary limits of the model.
Until now, there was no physical model
capable of accurately predicting off-site
sediment accumulation with the same
amount of input data. Because the calcu-
lated and measured mean yearly sediment
input in the water reservoir differed only
by 1.4%, and gully erosion is not signifi-
cant in the study area, the RUSLE LS
equation proved to be, in this study, a re-
liable estimate of the sediment transport
capacity of the overland sheet flow and
small rill flow.

Modeling environmental processes is
very complex. No matter how complex
the model, it always is a generalization of
real processes, with output always the
result of computations and operations on
uncertain input data. Therefore, model
calculations should be performed using
probability distributions of the input
parameters rather than their deterministic
values.
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