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Abstract

A geostatistical analysis assumes some form of stationarity of the variable under study, but different

types of stationarity exist and often spatial data exhibit some form of nonstationarity. However, most

studies assume one type of nonstationarity and consequently apply one type of interpolation method

within the study area.

A study area of 8� 18-km area was selected because it was expected to contain complex

nonstationary conditions in soil texture. Therefore, four geostatistical interpolation methods were

evaluated in their ability to account for different types of nonstationarity in the topsoil silt content:

two univariate interpolation methods, ordinary kriging (OK) and universal kriging (UK), and two

bivariate methods, simple kriging with varying local means (SKlm) and ordinary cokriging (OCK).

A digital elevation model (DEM) was used as the exhaustive secondary information for the bivariate

methods.

Two kinds of nonstationary conditions were identified inside the study area: (1) a large-scale trend

in both the silt content and elevation, with a strong correlation between them, and (2) a very strong local

fluctuation around a mean value, representing a local nonstationarity. Consequently, different

techniques were applied in different parts inside the study area: the global trend was best accounted for

by OCK andUK could best account for the local nonstationarity. After combining the results of the two

prediction methods, it was found that the overall estimation of the silt content was more precise than

when any single method was used over the entire study area.
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1. Introduction

Geostatistical interpolation methods are frequently used to describe the spatial

variation of natural phenomena. In their basic form, these interpolation methods

assume some form of stationarity of the variable under study, in order to comply

with the underlying theory of Random Functions (Journel and Huijbregts, 1978;

Armstrong, 1998). Depending on the definition, different types of stationarity can be

assumed: strict stationarity, second-order or weak stationarity, intrinsic stationarity or

quasi-stationarity (Journel and Huijbregts, 1978).

Another aspect of stationarity is its scale-dependence. A phenomenon may

appear stationary locally, whereas it may be nonstationary over longer distances,

e.g. in the presence of a large-scale trend. Or the opposite may occur: under gen-

eral stationary conditions, strong local fluctuations may appear, indicating a local non-

stationarity.

Thus, stationarity is not an unambiguous concept and the presence of stationarity

depends on the circumstances that we work under. Moreover, the assumptions of

stationarity are often violated in practice; Cressie (1986) argued that data virtually

never exhibit stationarity. Also, the presence of spatial trends in soil parameters and

soil catenas evolving from physical factors are common (Gotway Crawford and

Hergert, 1997). According to Webster (2000), we should ask ourselves the question

whether the assumption of a stationary model of the soil is reasonable in these

circumstances and whether it is profitable in that it can lead to accurate

predictions.

In geostatistics, there are several ways to incorporate trends and account for

nonstationarity; and several authors have described and compared some of these

techniques (Cressie, 1986; Journel and Rossi, 1989; Gotway Crawford and Hergert,

1997). However, in most of those studies, only one type of nonstationarity is

considered and one single interpolation technique is applied for the whole study

area.

The purpose of this study was (1) to examine how we can account for different

types of nonstationarity present inside one study area and (2) to explore which

method to use under various conditions. Therefore, we selected a study area of

8� 18 km, which was expected to exhibit complex nonstationarity conditions in the

topsoil silt content. We applied four geostatistical interpolation methods under two

different assumptions: in the first case, only one type of nonstationarity was

considered and the methods were used uniformly over the whole study area; in the

second case, different types of nonstationarity were assumed inside the study area and

multiple interpolation methods were applied at different locations after which the

results were combined. The four interpolation methods included two univariate

methods, ordinary kriging (OK) and universal kriging (UK), and two bivariate

methods, ordinary cokriging (OCK) and simple kriging with varying local means

(SKlm).

An independent test set was used to evaluate the prediction performances of the

different interpolation methods and to evaluate which method, or combination of methods,

performed best.
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2. Theory and methods

The following gives a brief review of the applied kriging methods. More detailed

presentations are given in geostatistical handbooks (e.g. Journel and Huijbregts, 1978;

Goovaerts, 1997; Wackernagel, 1998).

Geostatistics is based on the concept of Random Functions (RF), whereby the set of

attribute values z(x) at all locations x are considered as a particular realization of a set of

spatially dependent Random Variables (RV) Z(x). To make this approach acceptable, certain

assumptions have to be made, which are introduced under the hypothesis of stationarity.

2.1. The hypothesis of stationarity

In the strictest sense, a RF is stationary when all the moments of its distribution are

invariant under translation (Armstrong, 1998).

In geostatistics, often only the first two moments of the RF are considered,

called second-order or weak stationarity. A RF is said to be weakly stationary

when the mathematical expectation E[Z(x)] exists and does not depend on the support

point x:

E½ZðxÞ� ¼ m bx ð1Þ

and when for each pair of RV {Z(x), Z(x + h)}, the autocovariance exists and depends on

the separation distance h:

CðhÞ ¼ E½Zðxþ hÞ: ZðxÞ� � m2 bx: ð2Þ

This hypothesis can be reduced when assuming stationarity of the first two moments of

the increments of the RF, termed intrinsic stationarity. This assumes that the mean and

variance of the increments {Z(x + h)� Z(x)} exist and are independent of x:

E½Zðxþ hÞ � ZðxÞ� ¼ 0 bx

Var½Zðxþ hÞ � ZðxÞ� ¼ E½fZðxþ hÞ � ZðxÞg2� ¼ 2cðhÞ bx ð3Þ

where c(h) is the semivariance.

In practice, the semivariance is only used for distances AhAV b, where b represents the

radius of a circular neighbourhood of estimation. The limitation of the hypothesis of

second-order or intrinsic stationarity to those bounded distances corresponds to the

hypothesis of quasi-stationarity.

These different definitions of stationarity automatically lead to different definitions of

nonstationarity. Nonstationary conditions are present:

1. when the mathematical expectation of the RV (Eq. (1)) is not independent of the

support point x, in other words, when the local mean value changes with location,

2. when the semivariance (Eq. (3)), or the covariance (Eq. (2)), does not only depend on

the separation distance, but changes with direction or location.
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Nonstationarity is also scale-dependent. A global nonstationarity can be caused by a

large-scale trend, or a local nonstationarity may be present when the variable seems

stationary over a longer distance, but shows strong fluctuations on a local scale.

2.2. Ordinary kriging

Ordinary kriging (OK) is one of the most basic kriging methods. At an unsampled

location x0, Z is estimated by:

Z*ðx0Þ ¼
Xn

i¼1

kiZðxiÞ

where Z*(x0) is the estimated value of the RV Z at the unsampled location x0 and

ki are the n weights assigned to the observation points Z(xi). The weights ki sum to

one to assure unbiased conditions and they are found by minimizing the estimation

variance.

The RV Z(x) can be decomposed into a trend component m(x) and a residual

component R(x):

ZðxÞ ¼ mðxÞ þ RðxÞ: ð4Þ

OK assumes stationarity of the mean and considers m(x) to be a constant, but

unknown, value. Nonstationary conditions are taken into account by restricting the

domain of stationarity to a local neighbourhood and moving it across the study area. The

residual component R(x) is modeled as a stationary RV with zero mean and under the

assumption of intrinsic stationarity, its spatial dependence is given by the semivariance

cR(h):

cRðhÞ ¼
1

2
E½fRðxþ hÞ � RðxÞg2�: ð5Þ

Assuming a constant mean m(x), Eq. (5) is equivalent to:

cðhÞ ¼ 1

2
E½fZðxþ hÞ � ZðxÞg2�:

2.3. Universal kriging

Universal kriging (UK) considers that m(x) (Eq. (4)) is not constant, but that it varies

smoothly within the local neighbourhood, representing a local trend. The trend m(x) is

recalculated within each local neighbourhood. This trend component is modeled as a

weighted sum of known functions fl(x) and unknown coefficients al, l = 0,. . .L (Journel and

Rossi, 1989):

mðxÞ ¼
XL

l¼0

alflðxÞ:
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Often low order polynomials of the coordinates x are used to express the trend model.

In practice, the residual semivariance cR(h) (Eq. (5)) is calculated before the trend m(x)

is modeled. Since the attribute values z(x) are the only available data, the residual

semivariance is calculated by selecting pairs of observations that are not or slightly

affected by the trend.

2.4. Simple kriging with varying local means

In Simple kriging with varying local means (SKlm), the unknown local stationary mean

m(x) of the OK estimate is replaced by known varying local means m*(x) derived from

secondary information which must be known at any location x0. The linear estimator is

written as:

Z*ðx0Þ ¼ m*ðx0Þ þ
Xn

i¼l

kiRðxiÞ

where m*(x0) is the estimated mean for the location x0 and R(xi) are the residuals of the n

observation points: R(xi) = Z(xi)�m*(xi).

The local means can be derived from the secondary information using a relation of the

type:

m*ðx0Þ ¼ f ½yðx0Þ� ¼ a0 þ a1 yðx0Þ

where a0 and a1 are the regression coefficients and y(x0) is the value of the secondary

variable Y at location x0.

The residual component R(x) is modeled as a stationary RV with zero mean and a

spatial dependence is given by the semivariance cR(h) (Eq. (5)).
Goovaerts (1999) found that SKlm gave similar results as kriging with an external drift.

Therefore, the latter was not considered here.

2.5. Ordinary cokriging

Ordinary cokriging (OCK) is a multivariate extension of OK, in which the estimator is

calculated by using simultaneously the auto-correlation between the primary data and the

spatial cross-correlation between primary and secondary variables (Myers, 1982).

In this case study, standardized cokriging was used. In this method, the secondary

variable is rescaled, so that its mean equals that of the primary variable. The cokriging

estimator is then written as:

Z*ðx0Þ ¼
Xn1

i¼1

kiZðx1iÞ þ
Xn2

j¼1

qj½Y ðx2jÞ � mY þ mZ �

where mZ and mY are the means and ki and qj are the weights of the primary and

secondary variable, respectively.
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Unbiased conditions are assured by the following condition:

Xn1

i¼1

ki þ
Xn2

i¼1

qi ¼ 1

and the weights ki and qj are found by minimizing the estimation variance.

3. Study area and data set

As a study area, a rectangular area of 8� 18 km, located in the province of East-Flanders,

Belgium (Fig. 1) was selected. This particular area was chosen because we expected the

presence of a general form of nonstationarity in soil texture, based on our prior knowledge

and information on the pedological and topographical properties of the region. In a more

general study, Van Meirvenne (1991) proposed a stratification of East-Flanders into six

major soil texture regions, three of which are located inside this study area (Fig. 2a):

(i) a sand to loamy sand region in the northern part, dominated by texture classes Z, S

and P according to the Belgian texture triangle (Tavernier and Maréchal, 1962);

(ii) a sandy loam to silt loam transition area in the central part, represented mainly by

texture class L;

(iii) a silt loam to silt region in the southern part, containing mainly texture class A.

A digital elevation model (DEM) (Fig. 2b) shows that the topography is also nonsta-

tionary: elevation ranges between 10 m in the N and 95 m in the S.

Soil texture data were available from the Belgian soil survey at 189 locations.

Additionally 71 soil samples were taken and analyzed, which resulted in a total data set

Fig. 1. Location of the study area within Belgium and the province of East-Flanders.
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of 260 texture samples. We used the silt fraction as a target variable because this fraction

changed most within the area. A histogram and summary statistics of the silt content are

shown in Fig. 3a. Fig. 3b shows a location map of the silt content at the 260 observation

points. The data clearly reflect the global pattern of soil texture shown in Fig. 2a.

However, the point data indicate that there are considerable fluctuations in the silt content

inside the silt region, which are not revealed by the texture classes of the soil map.

To validate the performance of the different methods, we randomly split up the total

data set into 96 work data, which were used for the application of the interpolation

methods, and 164 validation points, which constituted an independent test set.

4. Results and evaluation of the interpolation methods

4.1. Assuming a uniform type of nonstationarity

The interpolation methods were applied uniformly over the whole study area, assuming

that one type of nonstationarity was present. The topsoil silt content was predicted using

OK, UK, OCK and SKlm. Each method was hereby applied twice:

(i) The work data set was used to estimate silt at the 164 points of the validation set,

allowing to evaluate the performance of the different methods.

(ii) The total data set of 260 points was used to map the silt fraction.

Fig. 2. The available information of the study area: (a) the different soil texture classes taken from the Belgian soil

map (legend: see text) and (b) a digital elevation model.
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Fig. 4 shows the experimental variograms and the fitted models of the four interpolation

methods, based on the 96 observations of the work data set.

Fig. 3. (a) Histogram and summary statistics of the silt content and (b) silt content at 260 observation

points.
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For the bivariate interpolation methods, the DEM (Fig. 2b) was used as an

exhaustive secondary information source, since elevation was known at every estima-

tion point. Fig. 5 shows the positive correlation between the silt content and elevation.

However, the correlation coefficient was rather weak (0.47).

The interpolation methods were compared by re-estimating the data values of the

independent test set using observations of the nonoverlapping work data set, after

which the true and estimated values were compared (Efron, 1982; Voltz and Webster,

1990).

Fig. 4. (a) Experimental variogram and fitted model used in OK, (b) directional experimental variogram and fitted

model used in UK, (c) residual variogram and fitted model used in SKlm and (d) experimental variograms of

primary and secondary variables and cross-variogram and fitted models used in OCK.
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The Mean Squared Estimation Error (MSEE), which calculates the averaged squared

difference between the true value Z(x) and the estimated value Z*(x), was used as an

evaluation index:

MSEE ¼ 1

m

Xm

i¼1

½Z*ðxiÞ � ZðxiÞ�2

with m the number of observation points in the independent test data set (here m = 164).

Obviously, the value of MSEE should be as small as possible.

OK, which assumes local stationarity, was considered as a reference method to assess

the ability of the other methods to account for the nonstationary conditions. The validation

results are given in Table 1. Two limits for the MSEE could be taken into account when

interpreting these results. An upper limit could be obtained by using the global mean of the

Table 1

Mean Squared Estimation Error of the silt content of the four interpolation methods for the whole study area

Interpolation methods MSEE (%2)

Global average 480

OK 259

UK 250

OCK 258

SKlm 298

Fig. 5. Scattergram between primary variable (silt content) and secondary variable (elevation) and the linear

model fitted with a correlation coefficient of 0.47.
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work data as a prediction for every point of the test data set. This resulted in an MSEE of

480%2. The nugget effect of the omnidirectional variogram model could be considered as

a lower limit, since it gives an average indication of the noise present inside the study area.

This nugget effect was 200%2 (Fig. 4a). It can be observed that all interpolation methods

performed much better than the global mean, but the best method (UK) resulted in a

MSEE of 250%2.

The results show furthermore that the MSEE of OK, UK, and OCK did not

significantly differ from each other: OCK produced a similar MSEE as OK and UK

was slightly better. SKlm performed much worse. Surprisingly, the best estimation of

the topsoil silt content was obtained by a univariate method and no actual gain was

taken from incorporating the elevation values into the estimation of the silt content.

Yet, based on geological history, elevation and texture were expected to be closely

related, since the soils inside the study area developed in eolian sediments. Apparent-

ly, the correlation with the secondary variable was too weak to gain from using

bivariate methods. Under such circumstances of weak correlation, SKlm performs even

worse than the univariate methods and therefore its use is not recommended in such

case.

The need to account for the nonstationarity in soil texture however was indicated by the

best performance of UK.

Fig. 6 shows the interpolated maps of silt content obtained by the different interpolation

methods, using the entire data set. UK, OK and OCK, which show little difference in

MSEE, also show similar maps, with the same global pattern but some differences at a

more detailed scale. SKlm, which had a much higher MSEE, shows a map that is quite

different from the other interpolations, due to the strong influence of the secondary

variable.

4.2. Assuming different types of nonstationarity

Next, we assumed that different types of nonstationarity were present inside the study

area. This assumption was based on Fig. 7, which shows the fluctuations of silt content

and elevation along the longitudinal axis of the study area.

In this figure, the general behavior of the elevation is shown by considering this

variable along a transect at X = 4000 m (Fig. 2b). The silt content was calculated as

the average per Y-intervals of 500 m for X going from 0 to 8000 m (Fig. 3b). Based

on Fig. 7, we concluded that the relationship between both variables behaves differ-

ently within the study area: (1) for Y < 7000 m (southern part) both variables show a

more or less stationary mean, but with strong local fluctuations around it; (2) for

Y>7000 m (northern part), a clear spatial trend can be observed for both variables. So,

inside the study area, we encountered two types of nonstationarity: local nonstatio-

narity in the S part and a global nonstationarity in the N part.

We considered the delineation between the two parts (set at Y= 7000 m) as a

gradual transition separating two strata with different structures of spatial variation. In

this method, described by Boucneau et al. (1998), the delineation is considered as a

stratification of the interpolation methods, but not of the observations involved in the

interpolation.
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4.2.1. The N part (large-scale trend)

The N part shows a large-scale trend in both the silt content and elevation and these

variables show a rather strong correlation (r = 0.69), as can be seen from Fig. 7 (subset, top

right).

Within this part, we disposed of 172 observation points of silt. The work data set now

consisted of 67 observations (including a number of locations situated in the S part to

Fig. 6. Interpolated maps of the topsoil silt content.
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ensure continuity across the delineation of both sub parts of the study area) and the

validation data set contained 105 observations. The experimental variograms and fitted

models of the four interpolation methods are shown in Fig. 8. The values of the test data

points were estimated by the four interpolation methods and the validation was done as

before.

The results are shown in Table 2. As expected, the bivariate interpolation methods now

resulted in the lowest MSEE, where OCK gave better results than SKlm. This can be

explained by the fact that SKlm only uses the secondary information to calculate the

moving average, while OCK explicitly uses the values of the secondary variable in the

estimation of the primary variable. The univariate methods UK and OK performed similar.

Despite the fact that there is a clear trend inside the area, the ‘nonstationary’ interpolation

method UK did not give a better estimation than the ‘stationary’ estimator OK did. So,

using OK with a moving window allows to incorporate a global trend, assuming local

stationarity.

4.2.2. The S part (local nonstationarity)

At first sight, second-order stationary conditions can be assumed in this part of the

study area, but the presence of strong local fluctuations may cause a local nonstationarity.

Fig. 7 (subset, left bottom) shows that the correlation between elevation and silt is

insignificant (r = 0.08) due to the irregular topography. Application of the bivariate

methods was clearly useless, hence only OK and UK were applied.

Fig. 7. Elevation along a transect located at X = 4000 m and silt content per step of Y= 500 m. In subset:

scattergrams between silt and elevation for both parts (< or > than Y= 7000 m).
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The available data set consisted of 107 observation points, with a work data set of 48

points (again with some overlap with the N part to ensure continuity across the dividing

line) and a test data set of 59 locations. The experimental variograms and fitted models for

OK and UK are shown in Fig. 9.

The results of the validation of the methods can be found in Table 2. UK resulted

in the lowest MSEE, despite the apparent stationary conditions. Strong local

fluctuations cause local nonstationary conditions, which were better accounted for

by UK. OK has been found to be very sensitive to short-range variation before

(Laslett and McBratney, 1990), and our findings confirm this. The MSEE of both

interpolation methods were higher when compared to the values found for the N part

Fig. 8. Variograms and models used in the interpolation of the northern part of the study area: (a) experimental

variogram and fitted model used in OK, (b) directional experimental variogram and fitted model used in UK, (c)

residual variogram and fitted model used in SKlm and (d) experimental variograms of primary and secondary

variables and cross-variogram and fitted models used in OCK.
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of the study area, which indicates larger estimation errors for the silt content within

this part.

4.2.3. Combining the N and S parts

The MSEE of the entire study area was calculated by comparing the true values of

the 164 validation points with their estimations, using OCK in the N part and UK in

Table 2

Mean Squared Estimation Error of the silt content of the interpolation methods after separation into two parts

(N and S) and their combination (entire study area)

Interpolation methods MSEE (%2)

N ( Y >7000 m) OK 223

UK 226

OCK 197

SKlm 219

S ( Y< 7000 m) OK 309

UK 298

Entire study area UK+OCK 234

   

   

Fig. 9. Variograms and models used in the interpolation of the southern part of the study area: (a) experimental

variogram and fitted model used in OK, (b) directional experimental variogram and fitted model used in UK.
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the S part. This resulted in a MSEE of 234%2 (Table 2), which is considerably lower

than the smallest value of the MSEE obtained by using a single method for the whole

study area (250%2, Table 1).

A map of silt of the whole study area was obtained by merging the interpolations

of both parts using the best performing method for each part: OCK in the N part

and UK in the S part (Fig. 10). This map clearly reflects the presence of a global

trend in silt in the N part of the study area (Y>7000 m), followed by local

nonstationary conditions causing strong local fluctuations in silt content in the S part

(Y < 7000 m).

5. Conclusions

We evaluated four geostatistical interpolation methods in their ability to account for

different nonstationary conditions in soil texture. When considering one type of

nonstationarity for the whole study area, OCK could not improve the estimation

relative to the univariate UK, which performed the best, despite the availability of an

exhaustively sampled secondary variable. It was found that in the situation where there

is a weak correlation (r less than 0.5) between the primary and secondary variable,

SKlm even performs worse than the univariate OK.

This survey showed that different interpolation methods gave the best results under

different forms of nonstationarity. In the N part of the study area, there was a large-

scale trend which represented a global nonstationarity. In this area, a good correlation

Fig. 10. Map of the silt content for the total study area after merging the two parts, using cokriging in the northern

part (Y>7000 m) and UK in the southern part (Y< 7000 m).
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between elevation and silt content was present (r = 0.69). This resulted in better interpo-

lation results obtained with the bivariate interpolation methods, with OCK performing the

best. The ‘stationary’ method OK could account for this global trend even slightly better

than the ‘nonstationary’ UK, because it allows to use a local neighbourhood and to assume

quasi-stationarity.

In the S part of the study area, a more complex, local nonstationarity in soil texture was

present, caused by strong fluctuations around a mean value. Here UK gave the best

estimation of the silt content.

After combining the interpolations of both parts, the estimation of the silt content

improved considerably, compared to using any of the applied methods uniformly over the

whole study area.

Therefore, we recommend that in situations where a nonstationary behavior is

expected, it is closely investigated whether there are more types of nonstationarity

present. Identifying these types of nonstationarity allows choosing the appropriate

interpolation method for each type, rather than applying a single method over the

entire study area.
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