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Abstract. The average area of agricultural fields in Flanders (Belgium) is about 1.7 ha, being very small
compared to fields where precision agriculture is currently applied. Therefore this paper addresses the question
whether the within-field variation of soil properties in such fields is structured enough to motivate precision
agriculture. To answer this question, 9 soil properties determined on 380 soil samples located in 77 agricultural
fields situated in the 5 most dominant pedoscapes of Flanders were used to analyze their spatial variation over
intervals ranging from 5 to 900 m. The data set was subjected to a principal component analysis which identified
two principal components (PCs) explaining more than 78% of the total variance. The first PC represented the
chemical soil properties and the second the physical and biological properties. A variogram analysis of the
scores on these two PCs showed that the micro-scale and random variation dominated (82%) the within-field
variability of the first PC. The within-field variability of the second PC was dominantly spatially structured
(only 37% micro-scale and random variation). Therefore, it was concluded that mainly for soil physical and
biological properties (like soil textural fractions and organic matter), the average within-field variation in the
small fields of the investigated landscapes is structured enough to allow precision agriculture.
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Introduction

Precision agriculture (PA), being the adaptation of management to site specific
conditions, has triggered new attention to soil spatial variation since this is considered
to be the key element to its successful implementation (Robert, 1999; Verhagen and
Bouma, 1997). In particular the within-field scale is of importance for PA since
traditional agriculture focuses mainly on the between-field variation of yield controlling
properties. However, within-field scale does not define a particular order of dimension
since the size of agricultural fields can vary considerably and it will be clear that large
fields could be expected to benefit more from PA than small fields. Moreover, it is not
sufficient to encounter an important within-field variation to motivate PA. This varia-
tion must be spatially structured to allow accurate mapping. Micro-scale and random
variation cannot be mapped, they just add uncertainty to the cartographic information.
Geostatistical tools, like variogram analysis, allow differentiation between structured
variation and micro-scale and/or random variation (Cressie, 1991). Consequently these
tools have been used intensively to map soil properties to guide PA. Mostly however,
only a few soil properties sampled within one, or a few neighboring, fields have been
considered (e.g. Geypens et al., 1999; Mulla, 1993). Therefore, these results apply only



194 MARC VAN MEIRVENNE

locally. On the other hand, regional studies on soil properties (e.g. Van Meirvenne et al.,
1990) contain too few details to allow a quantification of the within-field variability.
Rarely, studies have been reported which investigate the within-field variability of a large
number of agricultural parcels over different pedoscapes. Yet such a study would be
needed to allow a general insight into the within-field variation of soil properties within a
region, and hence support the decision if the application of PA would be worthwhile.

In some countries, the longstanding and intensive agricultural activities have created
strongly fragmented landscapes with very small fields. In Flanders, Belgium, the average
area of an agricultural field is about 1.7 ha, which is very small compared to fields where
PA is currently applied (e.g. Herbst et al., 2001; Mulla, 1997; Shatar and McBratney,
1999). Consequently the following question can be formulated: “Is the within-field
variation of soil properties sufficiently structured to allow PA in highly fragmented
agricultural landscapes?”. To answer this question, a (geo)statistical analysis was
performed using 9 soil properties measured on 380 soil samples, located in 77 agricultural
fields and situated in 5 pedoscapes of Flanders.

Theory
Principal component analysis (PCA)

Due to their multidimensionality, multivariate data sets (i.e. with more than 1 variable
measured on each sample) can be difficult to interpret. One of the methods developed
to overcome this problem is PCA. A PCA of a set of p variables generally aims to
summarize—and hopefully improve the interpretation of—the available information by
creating a few, say k, new variables that are orthogonal linear combinations of the
original variables referred to as principal components (PCs). The analysis requires the
computation of the eigenvalues and eigenvectors of the variance-covariance matrix (or
the correlation matrix) of the p variables. The eigenvectors determine the directions of
maximum variability while the eigenvalues specify the variances of the vectors. The
mathematical details of a PCA can be found in standard text books (e.g. Johnson and
Wichern, 1992).

Variogram analysis

In geostatistics the semivariance ~y(h) is commonly used to describe and model the spatial
variance of a regionalized property Z (Journel and Huijbregts, 1978), using:

n(h)
) = ot D) = 2+ W (1

with z(x;) the value of variable Z at location x;, h is a distance vector, or lag, and n(h) is
the number of pairs separated by h. To these experimental values, a continuous curve is
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fitted. One often encountered model is the spherical model described by:

7(0) =0 .
3h 1 /h
= _ | - 1 <
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v(h) =Co +C, ifh>a

with Cy the nugget effect (Y-intercept), a the range and (Co+ C,) the sill. The sill
represents the total variation encountered at and beyond a, while the nugget effect
represents the micro-scale and/or random variation (Cressie, 1991). Therefore, the ratio
between and (Cy + C) (called nugget to sill ratio, NSR) indicates the relative proportion
of micro-scale and random variation versus the total variation within the study area.
Equally, the ratio of Cy to y(h) represents the proportion of micro-scale (at lags smaller
than the smallest experimental lag) and random variation (unstructured variation) versus
the variation encountered at a spatial scale h.

Soil sampling and analysis

To investigate the spatial variability of soil properties in the highly fragmented
agricultural areas of Flanders, five transects were located in five typical pedoscapes
(Figure 1). These pedoscapes were (listed from north to south): the Polder area with
loamy to clayey soils (Pol), the Sandy area (Sa), the Silty-sand area (Sisa), the Sandy-silt
area (Sasi) and the Silt area (Si). Every transect had a length of 2 km and along it, 76
topsoil (0-30 cm) samples were taken at intervals ranging from 5 to 100 m (Figure 2).

Sa Pol Sisa

Sasi

Si

TN 20 km Ghent Brussels

Figure 1. Western part of the soil association map of Flanders, Belgium, with location of the five transects
(thick black lines): Polder area (Pol), Sandy area (Sa), Silty-sand area (Sisa), Sandy-silt area (Sasi) and Silt
area (Si).
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Figure 2. Sampling configuration along one transect.

Figure 3. Orthophoto with transect (Sa) positioned on it (the transect has a total length of 2 km).

Only agricultural land was sampled. Information on parcel delineations and land use was
recorded. The sampling was done according to a predetermined scheme and the starting
point of the transect was located randomly within the first field. Although it was intended
to sample along a line, sometimes the orientation had to be modified due to practical
considerations (like the presence of non-agricultural land or the refusal by the land owner
to grant permission to visit his land) (Figure 3).

The following soil properties were analyzed on every sample: three textural fractions
determined by the conventional pipette-sieve method (clay, silt and sand), organic carbon
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Table 1. Some statistical parameters of the nine variables considered (all samples pooled, n =380)

Clay Silt Sand OC pF-WP Ca K Na

(%) (%) (%) (%) pH-KCl (ww%) (mgkg™") (mgkg™') (mgkg™")
Minimum 1.3 0.7 6 0.4 3.55 2.78 69 7.8 10.0
Maximum 254 835 97 3.6 7.51 15.16 39780 1160.2 131.6
Average 104 397 498 1.13 5.46 7.66 6387 137.6 36.2
Standard deviation 57 302 347 042 1.10 2.98 11070 108.6 24.6

(OC) determined by the Walkley and Black method, pH-KCI, gravimetric moisture
content at 15 bar suction (considered to be the permanent wilting point—pF-WP) and
plant available Ca, K and Na (determined on an ammonium-lactate extract at pH 3.75).
These properties were chosen because they represented physical, chemical and biological
soil conditions which are relatively stable in a medium to a long time frame. Table 1
contains some descriptive statistics of these variables and shows the wide range of values
encountered by this transect sampling.

Defining field scale in Flanders

The five transects combined covered a length of 10 km and crossed 77 arable fields.
Thus, the average dimension (which we define as being the average field scale hgeq) of
one field is 130 m, and the average rectangular area of one field is about 1.7 ha. Some
regional differences occurred: on average the fields in the Polder area are the largest
(4 ha), those in the Silty area the smallest (1 ha). Clearly the rural area of Flanders is
highly dissected, as Figure 3 illustrates.

Multivariate analysis

To overcome the limitations imposed by considering one soil property only, and to obtain
a more general description of the most dominant soil processes, a multivariate data
analysis of the data set was conducted. Therefore, a multivariate matrix was constructed
containing all 380 samples (of the 5 transects combined) and the 9 soil properties
determined on each of these samples. This matrix was subjected to a PCA performed on
the correlation matrix (using SPSS). The correlation matrix (Table 2) indicates that some
variables were strongly correlated (e.g. silt and sand, Ca and Na), as could be expected,
but between other variables the correlation was sometimes moderate to weak. In general,
a sufficient amount of correlation is present for PCA to be useful. The first PC explained
57.0% of the total variance of the data matrix, the second 21.4% and the third 9.9%. It
was decided to retain only the first two PCs since they already explained more than 78%
of the total variation, and the additional PCs contributed little extra information. These
first two PCs were subjected to a Varimax rotation (Johnson and Wichern, 1992) to
improve the interpretation of the two PCs. After rotation each PC represented each about
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Table 2. Correlation matrix subjected to the PCA

pF-WP Clay Silt Sand oC pH-KCl Na K
Clay 0.954
Silt 0.678 0.754
Sand —0.746 —0.820 —0.994
oC —0.352 —0.539 —0.548 0.565
pH-KCl 0.697 0.641 0.235 —0.309 —0.373
Na 0.762 0.667 0.222 —0.302 —0.216 0.818
K 0.260 0.250 0.081 —0.112 —0.075 0.291 0.361
Ca 0.716 0.619 0.117 —0.202 —0.199 0.822 0.922 0.196
Silt
Clay
pF WP
Pht,
Ca

PC 1 (39.6 %)
I T
-1

and
PC 2 (38.8 %)

Figure 4. Loadings of the nine soil properties on the first two rotated principal components.

39% of the total variance. Figure 4 shows the obtained loadings (Johnson and Wichern,
1992, p. 397) of the nine variables on the rotated PCs.

The first PC was strongly dominated by pH, Na, Ca and somewhat less by K.
Therefore, it was interpreted to represent the soil chemical properties. These properties
can be modified by management (e.g. by fertilization or liming) and thus they are
variable over a short to medium (several years) time period. The second PC was strongly
influenced by the textural fractions silt and sand, and the biological property OC, which is
on Figure 4 closely located to the variable “sand.” This indicated that the OC is strongly
(and positively) related to the sand content as a result of the larger organic matter
applications by the farmers to sandy soils. So the second PC represented the physical and
related biological soil properties, which are mainly related to soil genetical processes and,
which are either invariable in time (like texture), or only modifiable over a medium time
period (like OC). Clay was situated in between both PCs (but somewhat closer to the
second PC) which reflects the colloidal nature of this soil property, influencing both
physical and chemical soil conditions. The moisture content at wilting point (pF-WP) is
known to be closely linked to soil texture (Hillel, 1980, p. 150) and in particular the clay
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fraction (Van Meirvenne and Hoffman, 1989), hence it appears in the close vicinity of
the variable “clay” on the graph. So, PCA was successful in creating two new variables
(the two PCs) which represented the major part (78%) of the information available in the
nine observed soil properties. In this way, the need to select one or a few of the observed
nine soil properties for the subsequent spatial analysis, was avoided.

Variogram analysis of the scores on the two PCs

To find an answer to the research question, the one-dimensional variograms of the sample
scores on the two identified PCs were calculated using Eq. (1) for each transect. These
results were pooled into one variogram for score 1 and another for score 2. Pooling
resulted in a large number of pairs for every experimental point (n(h) ranged between
349 and 1315). These two variograms were each modeled by a single spherical model
(Eq. (2)) and Table 3 gives the model parameters. Both variogram models were bounded,
that is, they reached an upper horizontal bound after the initial slope. It showed that the
processes under investigation could be considered to be stationary at the scale of
investigation (Webster and Oliver, 2001). The single models indicated that one spatial
pattern or process was dominant (Burrough and McDonnell, 1998). The variogram of the
scores on the first PC (Figure 5(a)) contained a large NSR (57%) and a range of 670 m.
The first parameter indicated that the first PC displayed a considerable micro (<5 m) and
random variation. The spatially structured part (i.e. the spatially autocorrelated part)
however extended over a large distance, being several times the average size of a field.
This suggested a regional pattern in respect to land use, that is, neighboring field
frequently belong to the same farmer using a similar type of soil management. The NSR
of the scores variogram of the second PC (Figure 5(b)) was only 30%, but the range was
considerably shorter (250 m) than the range of the first PC variogram. The spatial
behavior of the second PC is therefore quite different from the first PC: a smaller micro
and random variation, allowing more accurate interpolation, but its variation occurs over
smaller distances (less than twice the average field scale), requiring more frequent
observations to allow mapping.

If the average dimension of an agricultural field (hgeg = 130 m) is introduced into the
variograms, it can be noticed that both variograms have about similar amounts of the
total variation (as represented by the sill) present at this field scale: ~y(hgeq)/
(Cop+Cy)-100=69% for the first PC and 80% for the second. So, the largest part of
the total variation of soil properties encountered in these pedoscapes is present within

Table 3. Parameters of the spherical models fitted to the experimental
variograms of the scores of the samples on the first and second PC (see Figure 5)

Scores on PC1 Scores on PC2
Co 0.061 0.017
C, 0.046 0.039
a (m) 670 250

NSR (%) 57.0 30.4
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Figure 5. Experimental (dots) and modeled (black curves) variograms of the scores of the samples on the
(a) first PC and the (b) second PC.

a field scale. This suggests that, in terms of total within-field variability, the application
of PA could be worthwhile, even in these small fields.

However, a large within-field variation is not sufficient to motivate PA. In order to
manage this within-field variability spatially, it must be structured enough at a spatial
scale sufficiently large to allow management to take it into consideration. With present
day tillage and fertilization equipment such a scale would be a few square meters.
Therefore, we have to consider the ratio of the nugget effect to the variance at the field
scale: Y(hge1q)/Co - 100. For the first PC this ratio is 82.2% whereas it is 37.8% for the
second PC. So at a field scale the first PC has a dominant micro-scale (<5 m) and random
within-field variation whereas the second PC shows dominantly a spatially structured
(i.e. autocorrelated) within-field variation. Therefore, the latter offers a much better
opportunity for PA to account for spatial variability.

Conclusions

A PCA of the nine soil properties considered allowed identification of two groups of
soil properties: (i) the chemical (represented by the first PC) and (ii) the physical
and biological (represented by the second PC). The scores on these two PCs were used
to perform a variogram analysis. From this analysis the following conclusions
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could be drawn:

1. The spatial variance of both chemical and physical soil properties is dominantly
(70-80%) present at a within-field scale (being on average 130 m in our study area).

2. At a within-field scale, the chemical soil properties display dominantly a micro-scale
(<5 m) and random variation (82% of the total within-field variation). This type of
variation was much less important (37%) for the soil properties associated with
the second PC (physical and biological properties).Hence, in the small fields of the
landscapes investigated, when PA is to be guided by soil properties, it should be
mainly by those properties dominating the second PC, such as soil textural fractions
and OC.
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