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ABSTRACT Consequently, there has been much interest in meth-
ods to analyze experiments that take into account spatialSoil heterogeneity complicates the design and analysis of field
correlation (e.g., Wilkinson et al., 1983; Zimmermanexperiments. Block designs were developed for this purpose. How-
and Harville, 1991; Zhang et al., 1994; Brownie andever, the analysis of experimental results supposes that the residuals

from the treatment are spatially independent and that within block Gumperz, 1997). These methods adjust the observations
variation is random. Experience indicates that this rarely is the case by values measured on neighboring plots. Smith (1938)
in field experiments, because of the strong spatial autocorrelation of was the first to model empirically variations in soil fertil-
soil properties. This paper applies geostatistical tools, such as vario- ity to compare experimental designs. A simple method
gram analysis and conditional stochastic simulation, to investigate for comparing different experimental designs was by
the optimal experimental plot size and shape and to decide which placing different experimental plans in a uniformity trialexperimental design is to be preferred. The methodology is illustrated

and then calculating the residual variation for each ofusing a case study of water-use efficiency under semiarid conditions
these plans (Claustriaux and Rousseau, 1974). Pattersonin Morocco. It was found that under these conditions an experiment
and Hunter (1983) used two different models to exam-with 16 treatments would use best a plot size of 4 by 8 m oriented
ine the effect of block sizes in variety trials with incom-north-south, configured according to an incomplete block design with

8 plots per block oriented in two rows in the east-west direction. plete blocks but they did not take plot size or shape
into account.

An alternative approach to the quantification of het-
erogeneity is by applying geostatistics which is usedSoil spatial variation is an important source of ex-
mostly to analyze the structure of the spatial variabilityternal variation that affects the design of field ex-
of regionalized variables such as soil properties and toperiments on, for example, water-use efficiency. Con-
optimize their interpolation. Only a few studies (includ-sequently, intensive research (e.g., Cochran and Cox,
ing Ersboll, 1996; Van Es and Van Es, 1993) have related1957) has been conducted to develop improved methods
geostatistics to the design of field experiments.for determining treatment effects when soil variability

The practical purpose of this paper is to present aaffects plot yield.
methodology to account for soil spatial autocorrelationTraditionally, well-designed experiments are based
in the design of experiments on water-use efficiencyon the concepts of replication, blocking, and randomiza-
under the semiarid conditions of Morocco. Conditionaltion. Replication implies that a given number of treat-
stochastic simulations was used to generate a numberments are applied under identical conditions to different
of equiprobable realizations of the most important soilexperimental plots. The aim of using replications is to
property, available water capacity (AWC). These real-estimate the experimental error. However, since in wa-
izations were then used to analyze the experimentalter-use efficiency trials the underlying experimental ma-
setup in terms of (i) plot size and plot shape, and (ii)terial is soil, it will rarely be homogenous. Therefore
the design to be preferred.experimental plots are combined into blocks and blocks

are replicated. To overcome the effect of spatial depen-
dence of soil properties, plots are randomized within MATERIALS AND METHODS
blocks. Randomization of plots within blocks is expected

Study Area and Soil Samplingto equalize error over all treatment differences thus
allowing the use of statistical methods of analysis, such The study site is located within the experimental farm of the

National School of Agriculture in Meknes, Morocco, (centralas analysis of variance and regression analysis. However,
coordinates: 33�52� N long., 5�33� W lat., altitude: 625 m abovethe underlying hypothesis is that spatial variability is
sea level) situated on the Sais plateau (Fig. 1). It has beenrandom; i.e., spatially unstructured, within blocks. How-
used previously to conduct experiments on yield responseever, in the presence of a significant spatial correlation
(Corbeels et al., 1998). This area has a semiarid climate withover small distances, the assumption of independence
a temperate winter. Rains occur mainly between October andbetween plots is violated. In such a situation, a field May, with an average monthly maximum of 80 mm in Decem-

researcher may be faced with contradictory results: clear ber. The average annual rainfall is 526 mm, but extreme fluctu-
difference in crop yields between experimental plots but ations occur between years.
no significant treatment effect (see e.g., Bhatti et al., In August 1995, we sampled the topsoil (0–40 cm) at 100
1991; Van Es and Van Es, 1992). locations within a 150 by 150 m field according to the pair

random sampling method (Van Meirvenne and Hofman,
1991). Therefore, fifty samples were located randomly within
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Fig. 1. Location of the study area. Hatched area is the Sais plateau within Morocco.

the field and 50 additional samples were each located ran-
�(h) �

1
2n(h) �

n(h)

i�1

(z(xi) � z(xi � h))2 [2]domly within a circle of 5 m around one of the 50 previously
located points. This configuration allows assessing the spatial

where z(xi ) and z(xi�h) are the observed values of Z at loca-variability at both short and longer distances in respect to the
dimension of the experimental field. The radius of 5 m was tions xi and xi�h respectively, h is a separation vector and
chosen intuitively to ensure a sufficient number of samples n(h) is the number of paired comparisons at that lag (Journel
intervals within this distance. and Huijbergts, 1978).

Disturbed soil samples were analyzed for the three main A theoretical model is fitted to the experimental values of
particle-size fractions (clay, silt, and sand) by the usual pipette- the variogram, usually using three parameters: the range, the
sieve method, CaCO3, organic C (OC), and the gravimetric sill, and the nugget effect. The range is the separation distance
moisture (GM) content at �0.033 and �1.5 MPa using a pres- beyond which two observations are independent of each other.
sure membrane apparatus. These two GM contents were taken The sill is the variogram value corresponding to the range.
to represent field capacity (FCw ) and the permanent-wilting The discontinuity at the origin is called the nugget effect and
point (PWPw ) on a weight basis, respectively. The difference arises from a combination of random errors and sources of
between FCw and PWPw was multiplied with the soil bulk variation at distances smaller than the shortest sampling inter-
density (Db ) to obtain the volumetric AWC (Cassel and Niel- val (Goovaerts, 1998).
sen, 1986). The latter was further multiplied by 1000 to yield Based on the variogram model, conditional stochastic simu-
the AWC within 1-m soil depth, expressed as milimeters, as- lation was used to generate a number of sets of values, called
suming that Db remained unchanged within the soil profile. realizations, which aim to reproduce each the sample histo-

Since the soil was too hard and too dry to take undisturbed gram and the variogram model. Such a set of L realizations can
soil samples, Db could not be observed directly. Therefore we be synthesized according to the objectives of the study. Sev-
used published Db and soil data from within the studied region eral conditional stochastic simulation algorithms are available,
to build a pedotransfer function. It was found that Db could (Deutsch and Journel, 1998) and we used Sequential Gaussian
best be predicted from the percentages of silt (S), CaCO3 (C), Simulation (SGSIM) that proceeds as follows (Fig. 2):
and OC by:

1. Data are transformed according to y(xi ) � �(z(xi)), with
Db � 1.68 � 0.054S � 0.016C � 0.063√OC z(xi) the original data, �(·) a transformation function,

and y(xi) the normal scores having a standard normal(r2 � 0.74). [1]
(or Gaussian) histogram (Goovaerts, 1997).

Variations in the AWC were found to be responsible for yield 2. The sample variogram of the normal scores is computed
variations in the study area (Fagroud et al., 1997); therefore, and modeled.
we used it as the target variable to analyze the design of 3. The L simulations are performed in normal score space
experimental plots. as follows:

A. define a random path visiting each of the m unsam-Geostatistics pled locations to be simulated only once;
B. at each unsampled location x0, estimate the parame-The sample variogram �(h) is commonly used to estimate

ters (mean and variance) of the Gaussian conditionalthe structure of the spatial variation of a regionalized variable
Z. It can be obtained from: cumulative distribution function (ccdf) by simple krig-
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Fig. 2. Flow chart of the sequential gaussian simulation algorithm producing one realization l.

ing using the normal score variogram model and the D. proceed to the next location along the random path,
and repeat the two previous steps;mean value of the normal scores. The conditioning

information consists of n neighboring data of both E. loop until all m locations are simulated;
F. proceed with the next simulation by repeating theoriginal normal score data y(xi) and values y(l)(x0)

simulated at previously estimated locations, l being previous steps, until all L realizations are available.
4. The results are finally back-transformed to the originalthe realization number (l � 1,..,L);

C. randomly draw a simulated value y(l)(x0) from the variable space by applying the inverse of the normal
score transform �(·) to the simulated y-values.ccdf, and add it to the data set;
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Table 1. Some statistical parameters of the studied variables of 100 topsoil samples (CV � coefficient of variation).

% GM‡ at % GM at
Sand Silt Clay OC† CaCO3 �1.5 MPa �0.33 MPa AWC§

% PWPw FCw mm
Mean 14.5 33.5 52.0 1.49 6.5 24.6 34.4 129.2
Min. 11.8 14.1 34.3 0.88 0.4 18.9 29.9 72.8
Max. 19.4 51.6 73.7 1.82 31.6 27.9 39.6 170.0
CV, % 8.9 29.5 19.8 10.7 110.9 6.9 5.5 15.1

† Organic C.
‡ Gravimetric moisture.
§ Available water control.

Each of these L simulations is a realization of the unknown represents the estimates of the expected value at every
spatial distribution of Z. Differences between them provide location, is shown in Fig. 4 (top left). Available water
a measure of the spatial uncertainty about Z which was used capacity tends to decrease towards the lower part of the
to optimize the design of our experiment. area (small y-coordinates), which could indicate some

overall nonstationarity This was, however, not taken
RESULTS into account since we used a small neighborhood, as-

suming local stationarity.Exploratory Data Analysis
Some descriptive statistics of the variables of interest

are summarized in Table 1. As can be observed, the
Plot Size and Shapestudy site mainly consists of calcareous (on average

6.5% CaCO3) soils with a clayey texture and a low OC Plot Configurations
content (on average 1.5%). Moderate variations (coeffi-

We considered 24 different combinations of plot sizescient of variations [CVs] between 9 and 30%) were
and plot shapes with properties presented in Table 2.observed for all these variables, with the exception of
Plot sizes were chosen to avoid very small plots (�8CaCO3 (CV of 110%).
m2) or large ratios of length/width since these were con-Because of the clayey texture, the average PWPw and
sidered unrealistic in practice. Figure 5 illustrates someFCw values differ only by 10%. Consequently the aver-
of these configurations for a 20 by 20 m subpart ofage AWC within 1 m is low (129 mm), it exceeds 150
the study area. Each of the 500 realizations created bymm only at 10% of the locations and has a minimum of
SGSIM at a grid spacing of 1 by 1 m were aggregatedonly 70 mm. Because of the extreme dryness in summer,
into these 24 different plot configurations. Goovaertssoils dry out well beyond PWPw and thus require quite
(1999) provides some arguments why aggregating simu-some precipitation (or irrigation) amounts before they
lated values to block estimates is to be preferred overcan support plant growth. But too large water additions
block kriging.quickly result in drainage losses because of the small

AWC of the top 1 m. Although both PWPw and FCw
Evaluation Criteriondisplay moderate variations (CVs of 6.9 and 5.5%, re-

spectively), their combination into AWC within 1 m To evaluate the efficiency of the aggregation into
results in a CV similar to soil texture (15%). Hence the plots, the average AWC of every plot was computed
importance of an accurate mapping of water holding for each of the 500 realizations and for each of the 24
characteristics to improve the management efficiency of
these soils (El Jaafari et al., 1993; Corbeels et al., 1998).

Variogram and Simulations
A normal score transformation was applied to the

AWC data and the omni-directional experimental vario-
gram of normal scores exhibits a clear spatial structure
(Fig. 3). This variogram was modeled by a spherical
model (McBratney and Webster, 1986) with a range of
80 m and a nugget effect which represents �42% of
the total variance indicating an important proportion
of microscale and random variation. Since AWC was
calculated from the combination of several variables
(including a pedotransfer function), this relatively large
nugget effect could be explained partly by the accumu-
lated uncertainty related to the analytical determina-
tions and the pedotransfer function.

Five hundred realizations of the spatial distribution
of AWC were generated over a 100 by 100 m subpart
of the study area using a grid spacing of 1 by 1 m. A Fig. 3. Normal score variogram of the available water capacity (AWC)

within 1-m depth.map of the mean values of these 500 realizations, which
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Fig. 4. (a) Mean of 500 realizations of available water capacity (AWC), (b) means of aggregating AWC in plots of 4 	 8 m, (c) residual mean
map from incomplete blocks of eight treatments and (d) corresponding residual variogram.

tion was repeated for each of the 500 realizations, yield-plot configurations of Table 2 using:
ing an empirical distribution of NSR values for every
plot configuration. Therefore the average NSR and its
confidence intervals were considered. The smaller the(AWCij)pq �

k � �
j	q

(j�1)	q�1
�
i	p

l�(i�1)	p�1

AWCkl

pq average NSR, the less random errors remain between
plots; thus, the less the plot configuration meets thei � 1,...,100/p [3]
condition that experimental errors can be considered

j � 1,...,100/q to be random. So the largest NSR represents the config-
uration which best meets the underlying hypothesis of

where p and q are the width and length of the plots classical ANOVA techniques.
considered, respectively (i.e., p � 2, 4, 5, 8, and 10 m;
q � 2, 4, 5, 8, and 10 m), i and j are column and row Determination of the Most Efficient Plot Sizenumber of the plot configuration and k, l represent and Plot Shapethe column and row number of the simulated map. To

Figure 6 shows the average NSR versus plot width,compare the degree of efficiency, the average AWC
pooled for all lengths. The maximum NSR was reachedvalues were used to compute experimental, and model
for plot widths of 4 m, but the 95% confidence intervalstheoretical, variograms of every plot configuration for
were large (from 36.5 to 55.1%) and they overlappeda given realization. The nugget/sill ratio (NSR) was used
with the intervals of 5 and 8 m. The smallest NSR wasas a criterion indicating the extent to which the experi-
found for a width of 10 m with narrow intervals (be-mental errors between plots were randomly distributed

in space (Bhatti et al., 1991; Ersboll, 1996). This calcula- tween 29.2 and 30.3%).
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Fig. 5. Some of the 24 plot configurations considered (see Table 2) for a 20 by 20 m subpart of the simulated areas (the top plot represents the
original grid spacing (1 by 1 m) of the simulated maps before aggregation).

Figure 7 illustrates, for two fixed widths (4 and 10 m), 4 by 8 m is given in Fig. 4 (top right) where it can be
observed that the orientation of the overall variabilitythe effect of plot shape on the NSR. It appeared that for

a width of 10 m, the NSR showed only small fluctuations of AWC is more or less parallel to the longest direction
of the plots.between the considered plot lengths. In contrast, a large

variation of NSR was observed for a plot width of 4 m
with a clear maximum for a plot length of 8 m. There- Experimental Design
fore, it was concluded that plots of 4 	 8 m could be Complete versus Incomplete Block Designsconsidered to be most efficient in terms of obtaining
the largest spatially unstructured between plot variance. Planning a new experiment involves deciding on the

experimental design. Two elements are to be consideredThe corresponding map of the mean AWC per plot of
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Table 2. Plot sizes and plot shapes considered and number of
plots which could be created within the 100 by 100 m study
area (see also Fig. 5).

No. of
Plot no. Width Length columns No. of rows No. of plots

m
1 4 25 1250
2 5 20 1000
3 2 8 50 12 600
4 10 10 500
5 2 50 1250
6 4 25 625
7 4 5 25 20 500
8 8 12 300
9 10 10 250
10 2 50 1000
11 4 25 500
12 5 5 20 20 400
13 8 12 240
14 10 10 200
15 2 50 600
16 4 25 300 Fig. 6. Average Nugget/Sill ratio as a function of plot width for AWC
17 8 5 12 20 240 within 1 m. Bars indicate the empirical confidence intervals with
18 8 12 144 a 95% confidence level.
19 10 10 120
20 2 50 500
21 4 25 250
22 10 5 10 20 200
23 8 12 120
24 10 10 100

in the design of an experiment: (i) the nature of the
blocks (complete or incomplete) and (ii) the number of
plots per block and their configuration within the blocks
(orientation and shape). Blocks of experimental plots
are called complete when the number of plots is equal
to the number of treatments (e.g., different levels of
irrigation amounts). Since this involves extensive lay-
outs when the number of treatments to be investigated
is large and when blocks are being replicated several
times, incomplete block designs were created. In incom-
plete blocks, the number of experimental plots per block
is smaller than the number of treatments, but each treat- Fig. 7. Nugget/Sill Ratio as a function of plot length for two plot
ment occurs equally frequently over all blocks (called widths.
“balanced incomplete blocks arrangements” by Coch-
ran and Cox, 1957).

as shown in Table 3. The designs with incomplete blocksTo compare various designs, we examined the follow-
and the lattice square were constructed using plansing two statistics:
taken from Cochran and Cox (1957). For each design,

1. The parameters of the variogram model of the plot various combinations of plot configurations within blocks
residuals as summarized in the NSR. Since the were considered as shown in Fig. 8 for eight treatments
ranges of the variogram models greatly differ, this (as in the incomplete block designs). Blocks were ori-
ratio was standardized as NSR/Range. ented either in the east-west (horizontal) or in the

2. The average efficiency, Ei, of a given incomplete north–south direction. For the designs with 8, 10, 12,
block design i compared with the corresponding and 16 plots per block all four configurations were com-
complete block design with the same configuration: pared; whereas for the designs with 4, 5, and 6 plots per

blocks only two configurations (I and III) were consid-
Ei �

RMSi

RMSc

[4] ered because Configurations II and IV (with double
lines or double columns) would become too small for
practical implementations. An overview of the variouswith RMSi as the residual mean square of the ith incom-
configurations is presented in Table 4 together with theplete block design and RMSc the residual mean square
block sizes, given that the dimensions of every experi-for a complete block design.
mental plot was 4 by 8 m as determined in the previous
chapter. In total 20 configurations belonging to sevenBlock Configuration and Comparison Criterions different designs were evaluated. It is important to note

We examined the layout of 7 experimental designs that the relative superiority of Configurations III and
IV compared with I and II is because of the overallto be applied in a field experiment with 16 treatments,
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Table 4. Studied configurations for 16 treatments.Table 3. Characteristics of the adopted experimental designs with
16 treatments; plan identifications refer to Cohran & Cox Design Number of plots Configuration Block size (m 	 m)
(1957). no. per blocks type (1 plot � 4 m 	 8 m)

Design Number of plots 1 I 4 	 32
type† per block Plan identification 2 4 III 16 	 8

3 I 4 	 40RCB 16 –
4 5 III 20 	 8IB 12 Paired block of plan 11.27

IB 10 11.29
5 I 4 	 48IB 8 Paired block of plan 10.2
6 6 III 24 	 8IB 6 11.27

IB 5 Half block of plan 11.29 7 I 4 	 64
LS 4 10.2 8 8 II 8 	 32

9 III 32 	 8† RCB, random complete block; IB, incomplete blocks; LS, lattice square.
10 IV 16 	 16

11 I 4 	 80
12 10 II 8 	 40
13 III 40 	 8
14 IV 20 	 16

15 I 4 	 96
16 12 II 8 	 48
17 III 48 	 8
18 IV 24 	 16

19 I 8 	 64
20 16 III 64 	 8

Fig. 8. Configurations for one block with eight treatment plots as in
an incomplete block design. Each block consist of one column
(type I), one row (type III), two columns (Type II), or two rows
(Type IV).

spatial tendency in AWC (see Fig. 4 top left). Thus,
blocks directed east-west would contain less spatial vari-
ability, so one could expect a larger part of the total
variation to be attributed to differences between blocks.

Each of the considered designs was overlaid on each
of the 500 simulated maps of AWC. Each time, 50 ran-
domizations of treatment numbers within the blocks
were generated using a pseudo random number genera-
tor. So for each design of Table 4, 25 000 different con-

Fig. 9. Nugget/Sill Ratio to Range ratio of variograms of the residualsfigurations were investigated by an analysis of variance versus number of blocks.
and the residuals were computed by subtracting block
effects from plot values (we eliminated only the block
effects since no treatment effect was applied). Again, moves from this optimal number of plots, the more this

statistics decreases, reaching on average 0.13 and 0.26we calculated and modeled the variograms of the residu-
als for each of the 25 000 configurations and retained for 4 and 16 plots respectively.

The average Ei (Eq. [4]) for the incomplete blocktheir parameters using Variowin (Pannatier, 1996). As
before, this allowed us to calculate the average, and its designs with eight plots compared with a complete block

design of the simulations are shown in Fig. 10. All incom-confidence intervals, of the two evaluation criteria.
The ratio NSR/Range indicates (Fig. 9) that the opti- plete block designs resulted in an average Ei of more

than 100, suggesting their superiority over a completemal number of plots per block should be neither too
high (NSR small) nor too small (significant spatial corre- block design. Although no significant differences were

found between the different incomplete block designs,lation) since it represents a compromise between two
parameter requirements indicating a weak spatial de- it appears that Design 9 (Configuration III) gives better

results than the other configurations.pendence of the residual errors: a large NSR and a short
range. The best result was obtained for an incomplete Therefore, we concluded that the best experimental

design to investigate the effect of the AWC in the topblock design with eight plots per block, yielding an aver-
age NSR to the range ratio of 2.35, and the more one 1 m of our experimental field consists of an incomplete
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