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n to be poor quality data for digital terrain modeling, but they are often the only
available topographic information at national scale, especially in developing countries. We investigated
several methods to derive elevation and slope data from contours for two contiguous watersheds in Burundi.
Two key issues in digital terrain modeling were addressed: (1) finding the ‘best’ elevation interpolator, and
(2) assessing the related uncertainty and its propagation to slope models. The key validation criterionwas the
reproduction of the terrain shape as inferred from the pattern of contours, which is more important than
absolute accuracy in soil–terrain correlation. A method using a triangulated irregular network (TIN) and four
grid-based methods were compared and combined. The most satisfactory results were achieved by
combining the TIN-based method with a grid-based method. Treating contours as inequality constraints
proved useful in simulating the elevation uncertainty. The Zevenbergen and Thorne and the Evans–Young
slope algorithms were compared based on their sensitivity to the elevation uncertainty. Outputs from
simulation were filtered to produce realistic alternative elevation models. In that case, the slope variance
values were similar for the two algorithms, suggesting similar performances. Checking for shape reliability
was found critical for the validation of topographic models.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Contour lines of topographic maps are still the main source of
topographic information, especially in developing countries. However,
topography represents a continuous surface, and therefore these
linear features have to be converted to a raster layer, known as a digital
elevation model (DEM). Problems in interpolating a DEM from
contours have been reported in literature (e.g. Burrough and
McDonnell, 1998; Wilson and Gallant, 2000). They are related to the
discrete distribution of elevation on a contour map. No information is
provided in between consecutive contours, while only one elevation
value is redundantly given along each contour trace. Therefore, more
attention should be focused on contour-specific interpolators that
properly approximate the terrain shape between contour lines. In this
respect, the ideal contour-derived DEM or terrain shape is that
inferred from visual interpretation of the pattern of contours. Most
previous work has compared different DEM interpolators based only
on global quantitative measures, such as the Root Mean Square Error
(RMSE) (e.g., Kidner, 2003; Aguilar et al., 2005). However, in many
applications, reproduction of the terrain shape is more important than
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absolute accuracy (Wise, 2000). Moreover, DEM errors are likely to
vary spatially, but spatial variability cannot be described by global
statistical measures (Fisher and Tate, 2006).

Qualitative criteria related to reproduction of the terrain shape
inferred from contours have proved useful by, among others, Carrara
et al. (1997) and Wise (2000), and have also been recommended in
Wilson and Gallant (2000). For example, careful inspection of the
original contours allows identification and approximate location of
many landscape features (summits, pits, crests, river channels or
ephemeral gullies, watershed boundary). The maximum uncertainty
in the location of such features is typically equal to the contour
interval for the Z-coordinate (elevation), and the distance between the
surrounding contour(s) at map scale for the X and Y coordinates.
However, unless an additional validation dataset is provided, the
RMSE, and other quantitative measures, cannot help checking the
reproduction of these features on interpolated DEMs.

The implicit and contour-derived information may be extended to
assess the DEM uncertainty. Uncertainty assessment may be
performed by analysis of discrepancies between numerous equally
probable realizations produced using simulation methods (Goovaerts,
1997). For contour data, one needs to take into account that elevation
values at points located between two contours are constrained by the
two contour values. So far, assessing the uncertainty of DEMs by
treating contour values as constraint intervals has not been tested.
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In many environmental applications, DEMs are used in combina-
tion with other topographic properties (e.g. slope gradient, slope
aspect, slope curvature, upslope contributing area, and topographic
wetness index) which are themselves derived from DEMs (e.g.,
Burrough and McDonnell, 1998; Shary et al., 2002). Therefore, DEM
errors will propagate to the target variable (Heuvelink, 1998; Holmes
et al., 2000; Biesemans et al., 2000). Sources of errors in DEMs are
due to the quality of input data, the limitations of the algorithm used
to model the topography and the complexity of the terrain (Wood,
1996). Consequently, for a given area where the elevation data
are only contour lines, the only element under the control is the
algorithm used. Many interpolationmethods are available, but it is not
clear to the user which interpolator is best for contour data. Special
methods have been developed to account for the reproduction of the
terrain shape (e.g. Hutchinson, 1996; Carrara et al., 1997; Jaakkola
and Oksanen, 2000), but it seems no single method is satisfactory
(Jaakkola and Oksanen, 2000). In this paper, several methods were
investigated and combined, and preference was given to methods
available in common GIS software.

The aim of this paper was to capitalize on the reproduction of
terrain shape in generating DEMs and assessing DEM uncertainty and
its effects on slopemodels. Themain reasoningwas that a correct DEM
must portray the implicit geomorphologic characteristics (e.g. sum-
mits, pits, passes, crests, valleys) that can be inferred from explicit
features of the original topographic maps (i.e. contour values and
pattern, river channels). Special attention was paid to the choice of
DEM resolution, which is prerequisite to DEM interpolation and limits
the ability to portray geomorphologic characteristics. Notice that the
contour values themselves are not error-free, but these errors are
usually not documented. Therefore, we limited ourselves to topo-
graphic information readily available, i.e. contour data. The test site
(14.8 km2)was composed of two contiguous catchments in the Central
Plateaus of Burundi which are characterized by a hilly landscape with
round-shape summits, developed on folded Precambrian rocks. The
research was conducted at a catchment scale so as to account for the
landscape complexity at the catena level, i.e. from the valleyfloor to the
hilltop orwatershed divide. As such, the test site is a typical example of
well differentiated landscapes that are abundant in the tropics.

2. Theory

2.1. Creating DEMs from contours

The first step toward creating a DEM from contour data is deciding
on the minimum spacing between original elevation contours and the
appropriate pixel size, also referred to as resolution or grid spacing, to
be used in the DEM interpolation. A minimum spacing between
sampling points must be determined to avoid spatial aliasing (Smith
and Wessel, 1990; Carrara et al., 1997). Smith and Wessel (1990)
consider that the minimum spacing between samples should be at
least twice the grid spacing or resolution of the DEM. This requires
prior knowledge about the appropriate resolution of the DEM that
must be accounted for when digitizing or when cleaning the already
digitized data. However, for some of the proposed approaches, finding
the optimal resolution involves repeatedly creating DEMs using
different resolutions, which becomes impractical. Examples of such
methods were proposed in Hutchinson (1996) and Florinsky and
Kuryakova (2000). For DEMs derived from contours, Hengl (2006)
suggests three resolutions: (1) the coarsest resolution that should be
equal to half the average spacing between contours, (2) the finest
resolution that is given by the shortest spacing between contours, and
(3) the compromise resolution that he defined as the 5-% probability
distance between contours. An alternative method is the application
of cartographic rules, stating that the optimal DEM resolution is equal
to the maximum graphic resolution of lines shown on a map, i.e.
0.4 mm atmap scale (Tempfli, 1999). Deciding on the appropriate DEM
resolution is crucial since it controls the spatial detail, yet in many
instances, the DEM resolution is chosen arbitrary or based on external
motivations.

The next step is selecting the appropriate DEM interpolation
method. Many researchers have focused on comparing DEM algo-
rithms using global statistical indices, like the Mean Error (ME) and
the RootMean Square Error (RMSE). These indices are computed using
interpolated values, z⁎(uα), and reference values, z(uα) for n reference
points (also known as validation points) (uα) (α=1, 2… n).

ME ¼ 1
n
∑
n

α¼1
z4 uαð Þ−z uαð Þ� � ð1Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

α¼1
z4 uαð Þ−z uαð Þ½ �2

n

vuut
ð2Þ

The ME represents the bias, whereas the RMSE measures the
accuracy for a given interpolation method. Indices (1) and (2) can be
combined to provide a measure of the precision of the interpolation
method:

Precision ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMSE2−ME2

p
ð3Þ

According to Desmet (1997), the choice of an appropriate
interpolation method is a compromise between precision and shape
reliability. The following artifacts can be expected to exist in DEMs
created with inappropriate interpolation methods or options:

(1) Over-shoots and under-shoots, that is, extrapolations to non-
allowable maximum or minimum elevations. The difference in
elevation between an interpolation point and the closest
contour cannot be larger than the contour interval.

(2) Artificial terraces along contour traces. These are likely to occur
for interpolatorsusing too small searchneighborhoods (Burrough
and McDonnell, 1998; Jones, 1998).

(3) Tabular-shaped valleys, crests and summits passing to the
closest contour trace. This is typical to interpolation methods
that cannot extrapolate beyond the local contour range, like
Moving Average and Inverse Distance Weighting.

All three types of artifacts are easily identified using common GIS
operations. The first artifact may be identified by deriving contours
with the same contour interval as that of the original contours.
Overlay of the two contour maps will show over-shoots and under-
shoots as new local contour maxima and minima, respectively. The
last two types of artifacts correspond to the case where all the eight
pixels around the central pixel in a three by three pixel window
receive an identical value (Hengl et al., 2003). Local minima and
maxima are often under-represented on topographic maps by too few
elevation points in valleys and at summits. Surprisingly, interpolation
methods that cannot extrapolate beyond the data range are still used
in DEM interpolations.

2.2. Modeling uncertainty for contour-derived DEMs

Most studies on DEM uncertainty focused on deriving uncertainty
for a specific DEM. This required the use of validation data to compute
the error and model its spatial variability, then simulate it and finally
add it to the DEM (Fisher, 1998; Holmes et al., 2000; Raaflaub and
Collins, 2006). Even without extra data the DEM uncertainty can be
assessed by simulating equiprobable DEMs directly from the original
data (Goovaerts, 1997). The uncertainty about the value of a variable at
a non-sampled point depends both on the spatial configuration and on
the values of the surrounding sampling points. Classical statistics
cannot address this problem because they do not account for the
spatial data configuration. Simulation-based methods are consistent



Fig. 1. Moving window definition for slope models.
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with the concept of random variable, i.e. a variable that can take a
series of outcome values according to some probability distribution.
The local uncertainty is given by any statistical measure of dispersion
from the set of realizations at a given location (point-to-point
statistic). Spatial features are deemed certain if seen on most
realizations, which expresses the spatial uncertainty (Goovaerts,
1997). Of the many simulation techniques available the sequential
indicator simulation is appropriate for contour data because it allows:
(1) the incorporation of secondary information including ‘inequality
data’ (Deutsch and Journel, 1998) and, (2) the modeling of several
indicator variograms for several cutoffs, which permits the reproduc-
tion of class-specific patterns. Inequality data are interval data of
which we know only the boundaries. Contour elevation values may be
considered as such boundaries for interpolated elevation data located
between contour traces. Class-specific patterns of elevation on
watersheds are common; lower elevation values are observed along
river channels while higher elevation values are usually located along
crest lines and towards summits.

2.3. Propagation of DEM uncertainty to slope models

Of the numerous DEM derivatives, the slope gradient has been one
of the most studied. Indeed, the slope gradient controls the rate of
surface and subsurface movement of material (soil, water, pollutants),
hence its importance in a wide range of disciplines, including
pedology, land evaluation, hydrology, civil engineering. Different
slope algorithms have been proposed and compared for their accuracy
(Evans, 1980; Zevenbergen and Thorne, 1987; Eyton, 1991; Florinsky,
1998; Jones, 1998; Corripio, 2003; Warren et al., 2004). They can be
classified in three groups, depending onwhether the slope gradient is
approximated using (1) trigonometry or (2) differential geometry
(Warren et al., 2004), or (3) vectorial algebra (Corripio, 2003). The
trigonometric approach, also referred to as the ‘Maximum Downward
Gradient’ (MDG) computes the slope gradient as a change in elevation
over a certain distance; the elevation at a point is compared with the
elevations of its eight neighbors, and the largest slope gradient of the
corresponding eight slope gradients is adopted. This approach is
seldom used, because it considers only eight possible directions of
steepest slope. The approach based on differential geometry is the
commonly used and consists in two operations:

(1) Fitting a differentiable, bivariate function to the elevation z in a
DEM moving window:

z ¼ f x; yð Þ ð4Þ
where x and y are plan Cartesian coordinates,

(2) Computing the slope gradient as a magnitude of the gradient
vector (tangent vector of the surface pointing in the direction of
steepest slope; Warren et al., 2004):

slope gradient ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2x þ f 2y

q
ð5Þ

where fx and fy are partial derivatives of the bivariate function. The
often-used slope algorithms are of two types, depending on whether
the partial derivatives fx and fy are approximated using the four or
eight closest pixels in a three by three DEM window (Burrough and
McDonnell, 1998). They will be referred to as 4-neighbor and 8-
neighbor henceforth.

The method based on vectorial algebra calculates the slope gradient
using the smallest surface unit of the DEM (Corripio, 2003). As such, this
method minimizes the smoothing effect that characterizes methods
based on differential geometry.

In many applications, the slope gradient, like other DEM derivatives,
is used as a predictor or explanatory variable for another target variable.
In this case, one ismore concerned about the uncertainty rather than the
accuracy of the predictor's value. Therefore, in this study the
performance comparison of slope algorithms will be based on their
sensitivity to DEM uncertainty. Previous studies on DEM uncertainty
propagation indicate that slope models utilizing more neighboring
pixels or larger moving windows are less sensitive to DEM uncertainty
(Albani et al., 2004; Raaflaub and Collins, 2006). This implies, a priori,
that the 4-neighbormodels aremore sensitive to DEMuncertainty than
the 8-neighbormodels. However, someGIS software use the 4-neighbor
slope models in developing other useful topographic models, like the
wetness index (Beven and Kirkby, 1979). For example, LandMapR
(MacMillan, 2003) uses a 4-neighbor slope algorithm (the Eyton's
algorithm; Eyton, 1991) to compute the wetness index and for a fuzzy-
based landform classification. In this case, it would be desirable to check
whether difference in the DEM uncertainty propagation between the 4-
and the 8-neighbor models is significant, which would justify changing
the formula for thewetness indexoranyother slope-basedvariable. Two
representatives of such slope algorithms will be considered here: the
Zevenbergen and Thorne method (4-neighbor method) and the Evans–
Young method (8-neighbor method).

Let S be the slope gradient (%) at a location with elevation z5,
surrounded by eight elevation data, z1 to z4 and z6 to z9 with a
numbering as shown in Fig. 1, and w being the DEM resolution.

The Zevenbergen and Thorne algorithm (Zevenbergen and Thorne,
1987) is based on the 4 cardinal neighboring points:

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z6−z4
2w

� �2
þ z2−z8

2w

� �2
:

r
ð6Þ

The Evans–Young (Shary et al., 2002) algorithm uses all surround-
ing data:

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z3 þ z6 þ z9−z1−z4−z7

6w

� �2
þ z1 þ z2 þ z3−z7−z8−z9

6w

� �2
:

r
ð7Þ

The two algorithms will be evaluated based on their relative
sensitivity to DEM uncertainty propagation.

3. Materials and methods

3.1. Study area

The study area is an 8 km by 5.5 km area enclosing 2 contiguous
watersheds in southern Burundi. Actuallywewere interested only in the
twowatersheds, but for DEM interpolation purposes it was necessary to
select a rectangle enclosing the two watersheds. Therefore, only the
zone corresponding to the two watersheds will be considered in the
evaluation of theDEM interpolationmethods and slope algorithms. This
zone will be referred to as ‘test site’. The only topographic information
available was a 1:50000-scale topographic map with 20-m contour
interval. This is themost detailed topographic map available that covers
the whole country. The contour values range from 1820 m to 2080 m.
The study site belongs to the ‘Central plateaus’ region, which extends to
more than half of the countryand is dominated bya hilly landscape. Two
perpendicular patterns are evident by contours and the river network:
an E–Worientation corresponding to the orientation of the three main
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rivers, two of which border the study area in the N and S; and an N–S
orientation which corresponds to the direction of secondary river
channels at their connection to the threemain rivers. Isolated hills form
an N–S alignment, which is also the general orientation of lithologic
units in the case study. The study area is characterized by complex
landscapes as suggested by the spacing between contours. The slope
steepness is least (greatest contour spacing) around themain rivers and
maximum (minimum contour spacing) towards the summits and the
heads of the secondary river channels (Fig. 2).

3.2. DEM interpolation methods

First the minimum spacing between sampling points and the
appropriate DEM resolution were selected. For the DEM resolution we
applied the cartographic rule (Tempfli, 1999). The scale of the original
topographicmapwas1:50000, so the optimalDEM resolutionwasfixed
at 20mand theminimumspacing between digitized contour nodeswas
set to 40 m (Smith and Wessel, 1990). The second step was selecting
interpolationmethods that allowextrapolationbeyondthe localminima
and maxima. As already mentioned, preference was given to common
GIS software. Surfer (Golden Software Inc., 2002) and Idrisi (Eastman,
2003)were used to selectmethods that allowextrapolation. Five of such
methods were selected: (1) a method based on a triangulated irregular
network (TIN) (we used the modules ‘TIN’ and ‘TINSURF’ implemented
in Idrisi Kilimanjaro version (Eastman, 2003)), and four grid-based
methods: (2) ordinary kriging, (3) minimum curvature (MC), (4) radial
basis functions (RBF), and (5) the modified Shepard's method (MS) (for
which we used Surfer v.8 (Golden Software Inc., 2002)). A detailed
theoretical description of these methods is beyond the scope of this
paper, so only a short description follows.

A TIN is built from joining known point values (contour vertices
in our case) into a series of non-overlapping triangles based on the
Delaunay triangulation (Burrough and McDonnell, 1998). In Idrisi
Kilimanjaro, both points and contours may be used as input. However,
TIN pre-processing is only possible when the input data are contours
(Eastman, 2003). This consists of: (1) addition or deletion of extra
vertices along contour lines, (2) constraining the triangulation to avoid
Fig. 2. Study area with contours, river chan
triangle edges that cross contours, or (3) extrapolation beyond the data
range by removal of so-called ‘bridge and tunnel’ (B/T) edges. A B/Tedge
is any triangle edgewith end points that have the same value but are not
neighboring points on a contour. As the names suggest, a ‘bridge edge’ is
a triangle edge that lies above the true surface, while a ‘tunnel edge’ is a
triangle edge that lies below the true surface. B/Tedges likely occur near
hill tops, valley bottoms, along ridges or channels, and along slopes
where contours are undulating. These artifacts are corrected in Idrisi by:
(1) adding new points (the so-called ‘critical points’) atmidpoints of B/T
edges, (2) adjusting the TIN and (3) interpolating the elevation at the
newpoints. Interpolation is performedeither byfittingaparabolic shape
to surrounding contours (the recommended method) or by linear
interpolation using a linear polynomial equation. The TIN model can be
converted into a raster model using the ‘TINSURF’ Idrisi routine.

Kriging predicts a value at a non-sampled location by a weighted
linear combination of values at surrounding locations. The weights
depend on the data configuration and are obtained using a variogram
model or structure, which expresses the spatial variability of the
phenomenon under study. A variogram model is typically character-
ized by three parameters: (1) the nugget variance, which represents
all sources of random noise (e.g. measurement or sampling errors) and
variability at distances smaller than the sampling interval; (2) the
range (i.e. range of correlation) which is the maximum distance of
spatial correlation between observations of the investigated variable;
and (3) the sill, which represents the total variance. The often-used
variogram models are the linear, Gaussian, spherical and exponential
models (Goovaerts, 1997).

The MCmethod generates the smoothest surface while attempting
to honor sample data as closely as possible. The method consists in
repeatedly applying a spline function over the grid until successive
changes in the pixel values are less than a user-specified maximum
residual value, or until a user-specified number of iterations is
reached. Two parameters, i.e. the ‘internal tension’ and the ‘boundary
tension’, control the bowing between samples and at the edges
respectively (Smith and Wessel, 1990).

The MS method is an inverse-distance-least squares interpolator. As
such, the method is similar to the inverse distance to a power method.
nels, watersheds, profiles AB and CD.



Table 1
Options and parameters used in DEM interpolation by kriging, MC, MS and RBF

Interpolation
method

Options and parameters

Kriging Kriging type: point ordinary kriging.
Variogram model: double spherical (nugget variance: 0 m2; range:
750 m (first structure) and 1200 m (second structure); sill: 850 m2

(first structure) and 750 m2 (second structure)).
Search radius: 4780 m (8 search sectors; 3 maximum data per
sector; 5 maximum empty sectors; maximum 24 data in all sectors;
minimum 8 data in all sectors).

MC Maximum residual: 0.28 m; maximum iteration: 100,000; internal
tension: 0; boundary tension: 0.

MS Smoothing factor: 2; quadratic neighbors: 13; weighting neighbors:
19; search radius: 956 m.

RBF Basis function: multiquadratic; shape factor: 720.
Search radius: 4780 m (4 search sectors; 16 maximum data per
sector; 3maximum empty sectors; 8minimum data in all sectors; 64
maximum data in all sectors).
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However, the use of least squares in the MSmethod allows reducing the
‘bull's eye’ artifact that characterizes the inverse distance to a power
method. The method starts by computing a local least squares fit of a
quadratic surface around each observation. The number of local
neighbors to use at this stage is given by the ‘Quadratic Neighbors’
parameter. The interpolated values are generated using a distance-
weighted average of the previously computed quadratic fits at
neighboring observations. The number of local neighbors for this
operation is given by the ‘Weighting Neighbors’ parameter. For the two
parameters, Surfer v.8 assigns default values following recommenda-
tions by Renka (1988).

The RBFmethod comprises a diverse group of interpolationmethods
(Carlson and Foley, 1991). The functions used are kernel basis functions
that define the optimal weights to apply to the data points when
interpolating a grid node. The multiquadratic basis function is usually
recommended (e.g., Aguilar et al., 2005) and was used here.

InMS and RBF, the smoothness is controlled by so-called ‘smoothing
factor’ and ‘shape factor’ respectively. Other optimization options
include, accounting for anisotropy (kriging, MC, MS and RBF), and
defining the search neighborhood (kriging, MS and RBF). It is also
possible to incorporate ‘breaklines’ (kriging, MC, RBF) or ‘faults’ (kriging
andMC). Breaklines are used to definediscontinuities in the slope,while
faults act as barriers to information flow; samples located on one side of
a fault are not used during interpolation on the other side.

The TIN-based DEM was constructed from the original contours
after having added extra nodes by setting a maximum spacing
distance between nodes to 40 m. For the other methods (kriging, MC,
MS and RBF), the original contour lines were generalized to contour
nodes using also a tolerance distance of 40 m.

3.3. DEM uncertainty

The DEM uncertainty was modeled by sequential indicator
simulation, using ‘SISIM’, a GSLIB routine (Goovaerts, 1997; Deutsch
and Journel, 1998). The indicator approach requires selecting different
thresholds from the cumulative distribution function (cdf) of the
variable. However, the cdf of elevation obtained from contour nodes
typically shows a step-like shape which is not representative of the
real topography. Therefore the cdf was approximated from a sample of
DEM pixel values. Elevation nodes from the DEM obtained using
TINSURF were sampled using a tolerance distance of 40 m (i.e. 2 times
the DEM resolution).

From the new elevation dataset up to 10 thresholds were selected
and corresponding indicator values were calculated. Given a threshold
zk∈ ]zj, zj+20[, where zj and zj+20 are elevation values in meters for two
consecutive contour lines on a topographic map with 20-m contour
interval, such that zj+20=zj+20 m, the indicator variable i(u; zk) at a
location u is:

iðu; zkÞ ¼
1 if zV zj
undefined for za�zj; zjþ20½
0 if zzzjþ20

:

8<
: ð8Þ

Interestingly, this way of coding allows obtaining more hard data
values (0's and 1's) for modeling indicator variograms. Indeed, the
undefined values in relation (8) become 1's when moving to thresholds
higher than zk. Still, relation (8) does not account for the implicit
increase of elevation from zj to zj+20 inside the constraint interval ]zj,
zj+20[. If z∈ ]zj, zj+20[, the probability for having z higher than threshold
zk decreases as z values get closer to zj and increases as z values get
closer to zj+20. Therefore, relation (8) was replaced by relation (9):

iðu; zkÞ ¼
1 if zV zj
zjþ20−z
20

for za�zj; zjþ20½
0 if zzzjþ20

:

8>><
>>:

ð9Þ
This way, all the input data may be used for modeling the indicator
variograms.

The program POSTSIM, also available in GSLIB (Deutsch and
Journel, 1998) was used to compute the conditional variance as a
measure of DEM uncertainty.

3.4. Performance comparison

The DEM interpolation methods were compared using both
qualitative and quantitative criteria. Qualitative criteria were:
(1) checking for artificial terraces using the script proposed by Hengl
et al. (2003), (2) profiling, (3) watershed delineation, and (4)
reconstruction of the drainage network from the interpolated DEMs
by using the Idrisi routines ‘PROFILE’, ‘WATERSHED’ and ‘RUNOFF’,
respectively. The ME and RMSE were combined to quantify the
precision, using relation (3). For this, the interpolation dataset was
split into a calibration dataset and a validation dataset. Since different
interpolators usually perform similarly in zones of high sampling
density, we compared the performance of the interpolators in a
situation of lower sampling density. This situation was simulated by
setting a tolerance distance of 100 m between the validation points
and the calibration points. The validation dataset was composed of
184 points selected randomly from the original interpolation points
and located in the test site. Because the validation points were taken
from contour vertices whereas the TIN-basedmethod is optimal when
using contours, only qualitative criteria were applied to the TIN-based
method.

Two slope algorithms were compared: the Zevenbergen and
Thorne algorithm (ZT), which belongs to the 4-neighbor methods,
and the Evans–Young algorithm (EY), which is an 8-neighbor method.
The comparison criterion for the two algorithms was the sensitivity to
DEM uncertainty propagation. From the simulated DEMs, slope
gradient models were derived using each of the two algorithms, and
their point-to-point variances were compared.

4. Results and discussion

4.1. Evaluation of DEM interpolation methods

TINSURF generated a DEM from a TIN obtained with the
constrained triangulation option in the Delauney triangulation, and
with the parabolic fit option for the B/T removal. For kriging, MC, MS
and RBF, the options and parameters which were used are given in
Table 1. MS produced exaggerated angular summits with the
recommended values of the smoothing factor (between 0.0 and 1.0;
see Golden Software Inc., 2002). Therefore the smoothing factor was
increased to 2.0 to reduce these angularities.
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Using the script proposed by Hengl et al. (2003), we checked for
the presence of artificial terraces in the DEMs. No terrace was detected
in DEMs produced with TINSURF, MC, MS and RBF, whereas one
terrace was identified in the kriging-based DEM. In reality, flat areas
exist, especially in the valley bottoms, but they are not documented on
topographic maps, and their reproduction by an interpolator is likely
to be an artifact rather than a performance. A precise delineation of
valley bottoms is crucial in hydrological, ecological and agricultural
applications, because bottomvalleys and hillsides are characterized by
fundamentally different soil and water dynamics. The only way to
successfully delineate the two types of landscapes is the use of field
measurements or high-resolution satellite or airborne imagery.

Fig. 3 shows the river channels and watersheds generated from the
DEMs. These watersheds were automated by specifying outlet zones A
Fig. 3. River channels (dashed lines) and watersheds (thick lines) derived from DEMs obtaine
squares A and B are the outlet zones of both watersheds. (a): Contours and river channels fr
using the five interpolation methods: (b) kriging; (c) MC; (d) MS; (e) RBF; (f) TINSURF. The
and B (Fig. 3(a)) as seed images in the ‘WATERSHED’ Idrisi module.
Notice that these outlet zones were set large enough and centered to
the river channels that were digitized from the original topographic
map. Therefore, failure to reproduce the delineation of watersheds
was only due to limitations of the DEM interpolators. As a reference,
the contours and drainage patterns that were digitized from the
original topographic map were also given in Fig. 3(a). For performance
comparison, the original contours were overlaid on the DEM-derived
watersheds and river channels. The four encircled zones 1, 2, 3 and 4
on Fig. 3 were identified as problematic zones because the spacing
between contours is larger than in the surrounding areas. Important
deviations (N100 m) of DEM-derived river channels relative to those
shown on the original topographic map were observed in zone 2 for
kriging; in zones 1 and 2 for MC; in zones 1, 2 and 3 for MS; and in
d with different interpolation methods. Encircled areas are control zones, and the black
om the original topographic map; (b)–(f): DEM-derived watersheds and river channels
original contours overlay the DEM-derived watersheds and river channels.



Table 2
Performance comparison between kriging, MC, MS and RBF, based on the precision
index

Contour value (m) Na Precision (m) Ranking

Kriging MC MS RBF

1860 22 11 11 9 11 MSNkriging=MC=RBF
1880 30 10 9 13 9 MC=RBFNkrigingNMS
1900 38 7 6 21 7 MCNkriging=RBFNMS
1920 32 8 8 15 8 kriging=MC=RBFNMS
1940 24 8 7 9 7 MC=RBFNkrigingNMS
1960 16 8 7 11 7 MC=RBFNkrigingNMS
1980 8 10 7 27 8 MCNRBFNkrigingNMS
2000 5 6 4 21 4 MC=RBFNkrigingNMS
2020 6 7 7 9 7 kriging=MC=RBFNMS
2060 3 11 10 11 12 MCNkriging=MSNRBF
All 184 9 9 16 9 kriging=MC=RBFNMS

The best precision for each contour value is in bold.
a N is the number of validation points.

Fig. 4. DEM profiles along line AB (see Fig. 2). Kriging, MC, RBF and TINSURF give acceptable profiles, whereas MS over-estimates one summit beyond the allowable elevation range,
which is in between 1820 m and 1840 m. The parameters and options used for Kriging, MC, MS and RBF are given in Table 1.
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zone 3 for RBF. These important deviations were not observed for
TINSURF. In general the watershed corresponding to outlet A was
correctly delineated by all the five interpolators considered. Inside
zone 4, the pattern of contours indicates a hill oriented N–S and
having a summit at the southern limit of zone 4. Therefore the extent
of the watershed should match a part of the hill. This was
accomplished by kriging, MC, RBF and TINSURF, but not by MS. The
watershed corresponding to outlet B was excessively under-estimated
by MS and RBF. This was because the channels (dashed lines on Fig. 3)
derived from those two interpolators did not intersect the outlet zone.
Notice that similar problems would have been observed with kriging,
MC and MS, but not with RBF, if we were to delineate smaller
watersheds by choosing outlets in zone 2 where RBF reproduces
the river channels better than kriging, MC and MS. From these
results, a ranking of the methods in terms of watershed and channels
delineation is:

TINSURFNMC ¼ kriging ¼ RBFNMS: ð10Þ

Fig. 4 showsDEMprofiles along transect AB (see Fig. 2). The pattern
of the original contours suggests that transect AB passes through two
summits. Since the nearest contours for the two summits have the
same value (1920 m), allowable values for the two summits must be
higher than 1920 and lower than 1940. This condition was fulfilled by
TINSURF, kriging, MC and RBF, but was violated by MS. For the TIN-
based method, artificial abrupt changes could be expected due to the
triangulation process (Burrough and McDonnell, 1998). So the
performance of the methods in terms of interpolation of acceptable
values and profiles can be ranked as:

MC ¼ kriging ¼ RBFNTINSURFNMS: ð11Þ

Table 2 gives the precision values that were obtained by comparing
interpolated values with actual contour values at the 184 validation
points. As mentioned already TINSURF was not used here since it
performs better when applied to contours than to points. Considering
the global precision values, i.e. computed using all the validation
points (Table 2, last row), the relative performances were ranked as:

MC ¼ kriging ¼ RBFNMS: ð12Þ
When the precision values were considered for each contour value

(Table 2), then the relative performances differed among contour values.
In general,MS performedworst atmost contour values but it gave better
results at extreme contour values; it was the best at contour value
1860 m, and the second together with kriging at contour value 2060m.
Contrary to theMS, the difference in precision between kriging, MC and
RBFwas not pronounced; of the 10 contour values considered (Table 2),
the largest difference in precision was 2 m. When accounting for these
small differences, MC was ranked best and RBF was better than kriging.

Therefore, the general ranking related to the precision indices
became:

MCNRBFNkrigingNMS: ð13Þ

Kriging is a popular interpolation method, but, as the overview of
the results in Table 2 indicates, MC and RBF were found to be superior
to kriging in terms of local accuracy.
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It was concluded that none of the five interpolation methods was
superior for all the validation criteria. However, MS was worst for all
criteria. MC outperformed the other grid-based interpolation meth-
ods, but TINSURF was best in terms of correctness of channels
delineation. However, TIN-based interpolation methods are known to
produce DEMs with artificial triangular facets (Burrough and
McDonnell, 1998). Therefore, MC and TINSURF were combined as
follows:

(1) sampling the DEM from the TINSURF method with a 40 m
tolerance distance,

(2) interpolating a DEM from the sampled points using MC.

The rationale behind this combination was correcting for the
artificial triangular facets of the DEM from TINSURF using a smoothing
interpolator. For the DEM obtained with the combined method, no
artificial triangular facets were observed, and the reproduction of
watersheds and river channels was as good aswith TINSURFalone. In a
similar manner, TINSURF was combined with the other grid-based
methods (kriging, MS, RBF), and all the combinations gave satisfactory
results. This is because the tolerance distance (40 m) that was used to
sample the TIN-based DEM was kept short.

Fig. 5 represents the DEM obtained by combining MC and
TINSURF (a), and the derived slope image using the EY algorithm
Fig. 5. DEM obtained by combining TINSURF and MC (a) and correspo
(b). The crests and channels networks appear on the DEM as high and
low grey levels, respectively. For the slope image, both the crests and
channels networks appear in low grey levels, indicating minimum
slope gradients. Maximum slope gradients (high grey levels) can be
observed around the crests and at the heads of secondary river
channels. All these observations from the DEM and slope image are in
agreement with the pattern of the original contour lines (Fig. 2).
Artificial terraces, which are often reported for slope maps obtained
from contour-derived DEMs (e.g. Burrough and McDonnell, 1998),
were not observed. Combinations of TINSURF with the other grid-
based methods gave similar results as combination of TINSURF with
MC.

4.2. DEM uncertainty and its propagation

Profiles from individual DEM realizations produced noisy repre-
sentation of the elevation. While the real spatial variation of some
environmental variables may be effectively noisy, this is usually not
the case for topography. Therefore, the 100 DEM realizations were
filtered as to approximate the smooth topography inferred from the
original contours. A moving averaging filter using a three by three
pixels window was passed over each DEM realization three times. At
each pass, filtered DEM realizations were evaluated by deriving
nding slope gradient map using the Evans–Young algorithm (b).



Table 3
Quantiles of point-to-point simulated DEM variance, VarZT, VarEY and ΔVarS

Before post-processing After post-processing

5th 50th 95th 5th 50th 95th

percentile percentile

DEM variance (m2) 0 96 181 3 7 14
VarZT (%2) 208 557 1440 13 24 50
VarEY (%2) 123 254 709 11 22 44
ΔVarS (%2) −8 297 831 1 2 6
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contour maps of 20-m contour interval (the same as the original
contour map) and comparing these with the original contour map.
Fig. 6 represents profiles of a DEM realization before and after applying
such a filter. The unfiltered DEM profile shows only the long-range
features of the hillslope, but the short-range variability is exaggerated.
After filtering the local variation the DEM profile is much more
continuous and realistic.

ThefilteredDEMswere subsequently used toderive slope gradients
according to the EY and ZT slope algorithms. To assess the DEM and
slope uncertainty, variances for the elevation and slope gradient were
derived from the 100 DEMs and associated slope realizations, before
and after filtering. The two slope algorithms were compared based on
the slope variances. Let VarZT and VarEY be the variances for the slope
gradient when using the ZT and EY algorithms, respectively. The
difference in slope variance between the 2 algorithms is:

ΔVarS ¼ VarZT−VarEY: ð14Þ

Positive variance differences would indicate that the ZT algorithm
is more sensitive to DEM uncertainty than the EY method, and vice
versa. It is worth noting that the variances were computed for each
location (pixel) in the test site from the 100 simulated values, and are
to be considered as a measure of local uncertainty. The number of
pixels in the test site was 37,682.

Table 3 provides quantiles corresponding to the 5th, 50th and 95th
percentiles; for the point-to-point statistics of: (1) the variances of the
simulated DEMs, (2) VarZT, (3) VarEY and (4) ΔVarS, before DEM
filtering and after DEM filtering.

In more than half of pixels in the test site, the variance of the raw
elevation, i.e. before filtering, was less than 100 m2. In 95% of pixels in
the test site, the variance was less than 181m2, i.e. less than half of the
allowable maximum uncertainty which is 400 m2 (i.e. standard
deviationbcontour interval, which is 20 m in our case). Yet these
figures are not providing a complete basis for evaluation since they
correspond to simulated DEMs with exaggerated roughness, as shown
on Fig. 6. After filtering, the variance of the elevation was less than
Fig. 6. Profiles along line CD (see Fig. 2) for a simulated DEM, before filtering (thin line)
and after filtering (thick line).
14m2 in 95% of the pixels in the test site (i.e. standard deviation b4m).
It must be stressed here that filtering was primarily applied so as to
obtain realistic DEM realizations fromwhich reliable variances for the
test site could be derived. Variance values obtained from the raw DEM
realizations and corresponding slopes would be applicable to
extremely rough topography as suggested on Fig. 6. The difference
in slope variance between the two slope algorithms, ΔVarS, was
positive in 94.7% of the pixels in the study site before filtering. Before
filtering, the quantiles of variances for the two slope algorithms were
extremely large, and the quantiles for VarZT were twice as large as
those for VarEY. In our test site, where the roughness was approxi-
mated by the filtered DEMs, the two slope algorithms may be used
without significant differences; in 95% of the pixels in the test site,
ΔVarSb6%2.

5. Conclusion

In this study we tried to derive reliable topographic models from
contours. Special attentionwas paid to the reproduction of the terrain
shape, which is more important than absolute accuracy in many
environmental applications.

For DEM interpolation, only interpolators that allow extrapolation
to local minima and maxima – which were not explicitly documented
on contour maps –were selected. In this respect, a TIN-based method
and four grid-based interpolators (kriging, minimum curvature,
modified Shepard's method and radial basis function) proved
successful, while avoiding artificial terraces which are common
artifacts in contour-derived DEMs. The reproduction of channel
networks and watersheds was worse with the modified Shepard's
method but excellent with the TIN-based method. However, TIN-
based methods are known to produce artificial sharp triangular edges.
These could be removed by combining the TIN-based method with
kriging, MC, MS or RBF. Therefore, we recommend combining the TIN-
based method with a grid-based interpolation method that is able to
extrapolate outside the local data range.

Uncertainty assessment using indicator simulation and treating
contour lines as constraint intervals, proved successful. However,
although the simulated elevation uncertainty was within the allow-
able range (i.e. variance of less than 400 m2 or standard deviation of
less than 20 m), the simulated DEMs were too noisy compared to the
real topography in the test site. Filtering the simulated DEMs resulted
in realistic DEM realizations. The EYmethodwas less sensitive to DEM
uncertainty than the ZT method, but, after filtering, the difference
between the two slope algorithms was not significant. Therefore, we
concluded that both the two slope algorithms were appropriate.
Overall, it was shown in this study that reliable topographic models
can be derived from contours.
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