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Abstract

Recent advances in on-the-go soil sensing, terrain modelling and yield mapping have made available large quantities of information about the
within-field variability of soil and crop properties. But the selection of the key variables for an identification of management zones, required for
precision agriculture, is not straightforward. To investigate a procedure for this selection, an 8 ha agricultural field in the Loess belt of Belgium
was considered for this study. The available information consisted of: (i) top- and subsoil samples taken at 110 locations, on which soil properties:
textural fractions, organic carbon (OC), CaCO3 and pH were analysed, (ii) soil apparent electrical conductivity (ECa) obtained through an
electromagnetic induction based sensor, and (iii) wetness index, stream power index and steepest slope angle derived from a detailed digital
elevation model (DEM). A principal component analysis, involving 12 soil and topographic properties and two ECa variables, identified three
components explaining 67.4% of the total variability. These three components were best represented by pH, ECa that strongly associated with
texture and OC. However, OC was closely related to some more readily obtainable topographic properties, and therefore elevation was preferred.
A fuzzy k-means classification of these three variables produced four potential management classes. Three-year average standardized yield maps
of grain and straw showed productivity differences across these classes, but mainly linked to their landscape position. In the loess area with
complex soil-landscape interactions pH, ECa and elevation can be considered as key properties to delineate potential management classes.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Soils derived from loess parent materials are recognized as
among the most fertile of Europe. Consequently, they have been
under intensive agriculture for centuries. A number of studies
addressed the general fertility status (Brahy et al., 2000) and
erodibility (Govers, 1991) of this soil material covering an
undulating Tertiary landscape. Limited attention has been given
to the within-field soil variability because loess soils are
considered to be very homogeneous. Yet, Reyniers et al. (2006)
observed important within-field variations in crop yield as a
result of soil and landscape variability. However, they used only
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a one-year observation of crop yield. Although yield maps have
been strongly promoted as a measure of crop productivity
guiding the delineation of management zones for precision
agriculture (Jaynes et al., 2005; Whelan et al., 2002), they often
display a large temporal variation due to varying weather con-
ditions, unevenmanagement practices and influences of pest and
diseases. To account for these variations, Lamb et al. (1997) and
Boydell and McBratney (2002) suggested that more than five
years of yield data are required to identify stable management
zones.

Traditional general purpose soil maps, typically drawn on a
scale between 1:20,000 and 1:200,000, were made for regional
land use planning and are therefore not suitable to provide
detailed information about the within-field variability (Robert,
1993). Soil inventory by intensive soil sampling and subsequent
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interpolation is not a realistic alternative due to cost constraints.
Thus there is a need for cost-effective, accurate and quantitative
ways to explore soil information at a very detailed scale (Cook
et al., 1996).

Recent advances in proximal and remote sensing and on-the-
go soil and crop measurements have made available several
types of ancillary information. Since these sources are capable
of producing detailed spatial information, they offer a large
potential to characterize the within-field soil and crop variation.

Nation-wide accurate elevation data are becoming accessible
allowing the generation of digital elevation models (DEMs).
From these, several terrain attributes, for example slope properties
or erosion indices (Wilson and Gallant, 2000) can be obtained,
which have a direct link with pedogenetic processes. Franzen
et al. (2002) delineated potential management zones on the basis
of topographic information, and Fraisse et al. (2001) found that
management zones were closely associated with yield variation
attributed to soil water availability influenced by topography.

Another widely used source of ancillary information is the
measurement of soil apparent electrical conductivity (ECa) by
either electromagnetic induction or electrical resistivity measure-
ments. Mobile ECa measurement systems, in conjunction with a
GPS, are capable of producing a large number of georeferenced
data in a short period of time. One system frequently used is the
electromagnetic induction sensor EM38DD (Geonics Ltd.,
Mississauga, ON). This sensor operates simultaneously in
horizontal and vertical dipole orientations providing ECa-H and
ECa-V measurements with investigation depths of approximately
0.75 m and 1.50 m, respectively (Hendrickx and Kachanoski,
2002). The horizontal mode receives 50% of the response from
the top 0.40 m of the soil profile while similar response is
achieved by the vertical mode from 0.85m depth (McNeil, 1980).
Under non-saline conditions, ECa is mainly related to clay, water
and organic matter content (Corwin and Lesch, 2005). Since these
are very important properties for soil management, ECa has been
used frequently to delineate management zones (e.g. Cockx et al.,
2005; Kitchen et al., 2005; Vitharana et al., 2006).

Due to the growing availability of all these information
sources, and their derived products, there is a risk of over-
information (Van Meirvenne, 2006). Although different ancillary
information sources may reflect different levels of soil spatial
variability, inter-correlations (i.e. partial duplication of informa-
tion) between them are common. However, in spite of the large
number of papers addressing the use of different ancillary
information sources, little attention has been given to integrate
such information.

This paper aims at identifying the key soil and topographic
properties required to delineate potential management classes in
an agricultural field in the Loess belt of Belgium. This area,
having been cultivated since historical times and displays
complex patterns of soil development due to the interaction of
different types of soil parent material and slope processes. Data
layers involved in this study were: (i) top- and subsoil textural
fractions, organic carbon (OC), CaCO3 (%) and pH-KCl
determined at 110 locations, (ii) ECa-V and ECa-H measure-
ments obtained by an EM38DD sensor and (iii) a highly accurate
and detailed DEM from which several topographic attributes
were calculated. The crop productivity trends across potential
management classes were investigated using a three years se-
quence of grain and straw yield data.

2. Materials and methods

2.1. Study field

The investigated field was an 8 ha parcel located in Leefdaal
(50°50′40″ N, 4°36′35″ E), Flanders, Belgium. It is situated
centrally in the Belgian Loess belt, which is a part of the larger
European loess area. The loess parent material is a Pleistocene
aeolian sediment which originally had a thickness ranging
between a few decimetres to approximately 10 m, deposited
over an undulating Tertiary sandy or clayey substrate. Initially,
the loess was rich in CaCO3 (10–20%), But, as a consequence
of the marine climate, the topsoil has decalcified down to
several meters in the uneroded areas. This acidification resulted
in an eluviation of clay particles creating the typical horizon
sequence of loess soils of Belgium: an acidic and clay eluviated
A, a clay illuviated Bt, a decalcified C1, a CaCO3 containing C2
and the underlying Tertiary substrate 2C (mostly having a sandy
or clayey composition). Because of the high erodibility of the
loess-derived silty soil, the topography plays a significant role
in soil development through erosion and deposition (Desmet
and Govers, 1995). On the slopes, most of the loess, or all of it,
may be eroded, while in valley bottoms colluvial deposits with a
mixed composition are found.

The availability of multiple-year yield data (yield mapping is
not yet a standard practise in Belgian agriculture) and the
growing interest on the feasibility of adopting precision
agriculture in this agriculturally important area, were the main
reasons to select the study field. Moreover it displays an
undulating topography, which is common for most parts of the
European loess area. The field has been under a winter wheat
(Triticum aestivum), barley (Hordeum vulgare) and sugar beet
(Beta vulgaris) rotation for many years using conventional rain
fed and uniform management practices. Generally soils in this
area are classified as Typic Hapludalfs (Soil Survey Staff, 1982).

2.2. DEM generation and topographic attributes calculation

Elevation data collected by airborne laser scanning (LiDAR)
(OC-GIS Vlaanderen, 2003) was used in this study. These data
have a measurement density of approximately one point measure-
ment per each 16–20m2 ground area and are characterized by very
small average horizontal and verticalmeasurement errors (0.14 and
0.20 m, respectively). Elevation data were interpolated to a 5 m
grid using punctual ordinary kriging (Goovaerts, 1997) to generate
the DEM. The smallest catchment area (drainage basin) envelop-
ing the study field was delineated using the algorithm of Jenson
and Domingue (1988). Its DEM (Fig. 1a) showed that the major
flow line (thalweg) of the catchment runs through the fieldwhich is
located near the catchment outlet. The field consists of two plateau
areas (in the east and west, the latter being the largest) gently
sloping into the narrow valley floor of the thalweg (Fig. 1b). A
topographic discontinuity of almost 2 m high crosses the field over



Fig. 1. (a) DEM of the smallest catchment enveloping the study field and (b) DEM of the study field indicated with the major drainage line; the topographic
discontinuity is shown inside the study field.
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200 m, most likely the remnant of a former hedge that might have
reduced erosion locally.

Topographic attributes were calculated from the DEM using
Idrisi (Kilimanjaro version, Clark Labs, Worcester, MA). The
steepest slope angle (β, in degrees) and the contributing
catchment area (As, in m2 m−1) were derived on a pixel basis.
The influence of the topographic discontinuity on runoff pattern
was modelled by defining a height barrier along the disconti-
nuity. Subsequently, the following secondary topographic
attributes were calculated (Wilson and Gallant, 2000):

• wetness indexWI=ln(As/tanβ), which is capable of predicting
zones of soil water saturation (small slopes and large
contributing area);

• stream power index SPI= (As×tan β ), which is a measure of
the erosive power of flowing water combining the effect of
upstream area and slope angle.

2.3. Soil sampling and ECa measurements

In November 2004, soil samples were taken at 110 locations at
two depth intervals (0–30 cm and 50–80 cm). Half of the sample
locations were located on the nodes of a 40 m regular grid and the
other half were located as a random pair associated to each grid
node. At each location a pooled sample was obtained from 3
augerings within a 1 m radius. All sampling locations were
georeferenced using a global positioning system (GPS) receiver
with a positional accuracy of 2 to 3 m and converted into the
Belgium national coordinate system (Lambert72). Air dried
samples were sieved through a 2 mm sieve and analyzed for a
range of agronomically important stable soil properties closely
linkedwith the pedogenesis of loess-derived soils. These included
OC (%) (by conventional Walkley and Black method), pH (in a
1 N KCl solution), CaCO3 (%) and textural fractions (by pipette-
sieve method).

The soil ECa (mS m−1) was measured using a dual dipole
EM38DD sensor. This was connected to a field computer
coupled with the GPS receiver and towed at ground level using
an all terrain vehicle at a speed of about 15 km h−1 along 5 m
spaced transects. In this way, georeferenced ECa measurements
were recorded on-the-go at 1 Hz yielding an approximate
measurement density of one observation per 20 m2.

Soil properties and ECa measurements were geostatistically
analysed. Therefore experimental variograms (omnidirectional
in the absence of anisotropy, else directional) were computed
and theoretical models were fit to them. Interpolation to a 5 m
grid was performed with punctual ordinary kriging.

2.4. Principal component analysis (PCA) and classification
into potential management classes

The 110 top and subsoil properties and their co-located ECa

and topographic attributes extracted from interpolated maps
were subjected to a PCA to identify the key variables. A cor-
relation matrix was used to equally weight all variables. To avoid
the spurious correlations due to the compositional nature of the
textural fractions (individual elements sum to 100%), only the
clay fraction was used as an input. The strength of inter-
correlations between variables was tested by the Bartlett's test of
sphericity. The Kaiser–Meyer–Olkin (KMO) measure of
sampling adequacy was evaluated to ensure the applicability
of the data set for a PCA. A high KMO (between 0.5 and 1) is
recommended. The selection of the number of retained PC's was
based on the analysis of the explained variances by each PC
represented by a screeplot (Cattell, 1966). To improve the in-
terpretation of the retained PC's, a varimax rotation was applied.
Finally, for each of the retained components, a representative key
variable was identified based on the factor loadings. All these
calculations were performed using SPSS (v. 12.0, SPSS Inc.,
Chicago, IL).

Kriged maps of the selected variables were classified into
potential management classes using a fuzzy k-means classifica-
tion procedure (Bezdek, 1981). This method produces a con-
tinuous grouping of objects by assigning partial classmembership
values, which is to be preferred for grouping properties in the soil
continuum (Odeh et al., 1992). The fuzzy k-means classification
determines the membership values for objects on the basis of
minimizing the objective function J(M,C). Consider a set of n



Fig. 2. Topographic attributes of the study field: (a) WI and (b) SPI.
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objects (i=1,….., n) each having p attributes (v=1,….., p) grouped
into k classes (c=1….., k), J(M,C) can be expressed as:

J M;Cð Þ ¼
Xn
i¼1

Xk
c¼1

mu
icd

2 xi; ccð Þ

whereM=mic is a n×kmatrix of membership values, C=ccv is a
k×p matrix of class centroids, ccv denotes the centroid of class c
for variable v, cc=(cc1,…, ccp)

T is the vector representing the
centroid of class c, xi=(xi1,…, xip)

T is the vector representing
object i, dic

2(xi,cc) is the square distance between xi and cc
according to a chosen distance metric (Euclidean, Mahalanobis'
or Diagonal) and φ is the fuzziness exponent which determines
the degree of fuzziness of the classification (ranges between 1 and
infinity, representing a crisp and a completely fuzzy classification,
respectively). The fuzzy k-means classification was performed
using the FuzME software (Minasny and McBratney, 2002). The
fuzziness exponent was fixed to the conventional value of 1.35
(Odeh et al., 1992) and used theMahalanobis' distancemetric as it
accounts for the differences in variances (Bezdek, 1981). The
classification was repeated for a range of classes, i.e. kwas set to a
value between 2 and 8. The optimum k-value was identified on
the basis of minimizing two cluster validity indices, the fuzziness
performance index (FPI) and the normalized classification
entropy (NCE) (Roubens, 1982). FPI (0≤FPI≤1) is a measure
of the degree of membership sharing among classes, where a
value close to 1 indicates a strong sharing of membership and 0
represents distinct classes with nomembership sharing. The NCE
(0≤NCE≤1) estimates the degree of disorganization in the
classification and a value close to 1 indicates strong disorganiza-
tion and 0 reflects superior organization.

2.5. Crop productivity among potential management classes

Yieldmeasurements were taken during the growing seasons of
2000, 2003 (in both years winter wheat was grown) and of 2004
(barley) using the experimental grain, straw and moisture sensors
of the Laboratory for Agricultural Machinery and Processing of
the K.U.Leuven. The raw yield data were pre-processed to
compensate for the systematic and random errors within these
data (Reyniers, 2003). The data pre-processing procedure
involved: removal of data with obvious positional errors,
correction ofmeasurement shifts caused by environmental factors
and the noise on sensor signals and removal of irrelevant data. The
grain (adjusted to a 15% reference moisture content) and straw
yield maps were constructed using ordinary kriging. Generally,
the spatio-temporal trend of yield is determined by averaging the
yield at each grid cell over a sequence of yield maps. Since
different grain crops were involved in this study, the simple
averaging could not be used to investigate the yield trends across
potential management classes. Therefore a standardized yield was
calculated as follows (Blackmore, 1999):

sit ¼
yit
Py t

� �
� 100;

where sit is the standardised yield (%) at grid cell i in the year t, yit
is the interpolated yield (t ha−1) and y

_
t is the average yield for the

same year. Then, an average standardized yield map was obtained
by averaging the standardized yield at each grid cell over the three
years considered.

3. Results and discussion

3.1. Topographic attributes

TheWImap of the field (Fig. 2a) derived from the DEMof the
entire catchment (Fig. 1a) showed large values in the valley floor.
Since the major flow line of the catchment passes through this
valley, this area is likely to be the wettest area of the field. The rest
of the field showed intermediate to small WI values. Large SPI
values were found on both slopes (Fig. 2b), which resulted from
the combined effect of a large upslope contribution area and a
steep slope angle (on both slopes the steepest slope angle ranged
between 10 and 15%), reflecting a larger tendency for surface soil
loss by runoff. However, on the western slope the topographic
discontinuity caused smaller SPI values on downslope since it
acted as a barrier for overlandwater flow.Naturally, on the plateau
areas the SPI values were smaller.
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3.2. Soil properties

The exploratory data analysis of the soil properties (Table 1)
indicated that the average texture of the topsoil and subsoil was
almost identical (about 16% clay, 15% sand and 69% silt)
resulting in the texture class silt loam, which is typical for soils
developed in loess (Govers, 1991). However, the sand fraction
showed a large variability with a coefficient of variation (CV) of
45% in the topsoil and 65% in the subsoil (ranging from 5.7 to
69.3%). The OC contents were small ranging from 0.52 to
1.01% in the topsoil (with a CVof 13%) and from 0.04 to 0.69%
in the subsoil (with a much larger CV of 57%). A large
variability was encountered for the pH: within this field: it
ranged between 4.7 and 7.5 in the topsoil and between 4.7 and
7.7 in the subsoil. These pH differences were remarkable, since
this field has been under arable land use for a long time and
good agricultural practise requires this soil property to be
monitored closely. Most likely only average pH values (around
6.2) were considered by the advisory institution, masking the
within-field variability. Linked to the soil pH, the CaCO3

content also varied largely, ranging from 0.0 to 5.8% (CV of
167%) in the topsoil and from 0.0 to 16.9% in the subsoil (CVof
189%). This was an indication of a presence of the decalcified
loess and CaCO3 rich loess parent material within the surface
soil at different parts of the field.

Similar top- and subsoil spatial patterns were observed for all
soil properties except for OC, which was quite uniform in the
topsoil.Moreover, subsoil OC variability in loess landscapes is an
important indication of colluvial deposits due to slope processes.
It can also be beneficial to crop performance due to an improved
water and nutrient holding capacity in the deeper layers.

The spatial behaviour of topsoil clay and pH and subsoil OC
was investigated by modelling their omnidirectional (clay and
OC) and directional (pH) variograms and these were used to
produce maps by ordinary kriging. Topsoil clay (Fig. 3a) was
Table 1
Summary statistics of sampled soil properties (number of samples (n)=110) and
apparent electrical conductivity (ECa, n=5534)

Mean Minimum Maximum Variance CV (%)

Topsoil
Clay (%) 15.6 8.4 19.1 5.2 14.7
Sand (%) 15.2 8.2 46.1 46.9 45.1
Silt (%) 69.2 44.3 75.5 28.6 7.7
OC (%) 0.77 0.52 1.01 0.01 13.0
pH-KCl 6.19 4.73 7.49 0.54 11.90
CaCO3 (%) 0.78 0.00 5.76 1.70 167.20

Subsoil
Clay (%) 16.8 11.5 20.9 6.0 14.6
Sand (%) 14.3 5.7 69.3 85.2 64.5
Silt (%) 68.8 15.5 78.0 72.7 12.4
OC (%) 0.25 0.04 0.69 0.02 56.6
pH-KCl 6.23 4.69 7.72 0.71 13.50
CaCO3 (%) 2.73 0.00 16.91 26.53 188.70

ECa

ECa-V (mS m−1) 16.6 8.2 23.8 4.0 12.0
ECa-H (mS m−1) 11.9 5.7 18.6 3.6 16.0

Fig. 3. Maps of kriged estimates for topsoil (a) clay content (%), (b) subsoil OC
(%) and (c) topsoil pH.
uniform over most of the area, with typical values for a loess soil
(15–16%). However, across the eastern slope an almost triangular
area with decreased clay content (9–13%), and consequently an
increased sand content, was found. Thewestern border of this area
was located next to the valley bottom (Fig. 1b) and coincidedwith
large SPI values (Fig. 2b) resulted by the larger upslope
contribution area in the S–E area of the catchment (Fig. 1a).
Therefore it was likely that water erosion occurring in this part of
the field might have completely removed the loess cover,
exposing the underlying Tertiary sandy material (the 2C horizon).
This was confirmed by the presence of surface gravel (with
diameters between 0.2 and 7.5 cm) in this part of the field.



Fig. 4. Map of kriged estimates for ECa-V.

Table 2
Factor loading of the rotated first three PC's with labels (inside parenthesis) used
in Fig. 5

Variable and
label
identification

Communality
of first 3
PC's

Principal component loadings

PC1 PC2 PC3

Topsoil
OC (1) 0.50 0.045 0.047 0.700
pH (2) 0.85 0.818 0.307 0.300
CaCO3 (3) 0.67 0.814 0.058 −0.043
Clay (4) 0.83 0.312 0.826 −0.219

Subsoil
OC (5) 0.67 −0.308 −0.254 0.707
pH (6) 0.83 0.872 0.083 0.255
CaCO3 (7) 0.71 0.837 −0.015 −0.098
Clay (8) 0.64 −0.174 0.641 −0.448

ECa and topographic attributes
ECa-V (9) 0.90 0.064 0.927 0.173
ECa-H (10) 0.90 0.153 0.923 0.152
Elevation (11) 0.66 −0.232 0.456 −0.627
Slope (12) 0.56 0.718 0.038 −0.202
WI (13) 0.51 −0.382 0.051 0.604
SPI (14) 0.23 0.137 0.100 0.446
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Moreover, it is commonly observed that N–W facing slopes have
a thinner loess cover due to the prevailing N–Wwinds during the
deposition period (Pleistocene).

In most of the field the subsoil OC content was low
(b0.25%) (Fig. 3b). But locally an increased level (N0.45%)
was found, mainly along the valley floor. The possible cause of
this was the deposition of eroded topsoil material from the
slopes, together with reduced conditions for mineralization due
to an increased wetness (as indicated by the WI, Fig. 2a).

The topsoil pH map (Fig. 3c) showed a N–S oriented band of
higher pH values (N6.6) over the western slope, more or less
parallel to the valley bottom. Within this band increased top-
and subsoil CaCO3 contents were found. This suggested that on
this slope, the decalcified A, Bt and C1 horizons were removed,
exposing the CaCO3 rich loess parent material (C2 horizon).
This indicated less severe erosive conditions than on the eastern
slope, where all loess material was removed. The past presence
of a hedge, which has resulted in the topographic discontinuity,
might have reduced the erosive power on this slope, as reflected
by the reduced SPI-values. Additionally, S-E facing slopes
originally were covered by thicker loess layers. The rest of the
field generally showed a lower pH (b5.8), with no CaCO3 in
topsoil or subsoil. This variability obviously has important
implications for lime applications, which is a routine practice by
farmers in this area. Some areas within this field (the plateau
areas and the eastern slope) require liming, whereas the western
slope does not.

3.3. Apparent electrical conductivity

Table 1 shows the descriptive statistics of the measured ECa

values. The average ECa-V was 16.6 mS m−1 while the average
ECa-H was 11.9 mS m−1. The lower values of ECa-H indicated
a lower topsoil conductivity which might have been the result of
the somewhat drier topsoil, compared to the subsoil. Both
variables had a similar variance and similar CV's (12% for ECa-
V and 16% for ECa-H), which indicated a moderate level of
variability, compared to most of the soil properties. A strong
correlation (r=0.90) was found between ECa-Vand ECa-H with
similar variograms and interpolated maps. Therefore the kriged
map of ECa-V is shown in Fig. 4. This map shows that ECa-V
was low on the eastern slope (b14.5 mS m−1), a pattern mainly
observed on the topsoil clay (Fig. 3a) and sand map. This was
confirmed by the rather strong correlation between ECa-V and
topsoil clay (r=0.7) and sand (r=−0.7). A number of studies
(e.g. Corwin and Lesch, 2005; Vitharana et al., 2006) reported
similar relationships between ECa and soil textural fractions.
The valley floor was distinct on the ECa map, with large values
(N18.5 mS m−1) reflecting the wetter soil conditions and the
increased OC content in the subsoil. The rest of the field was
fairly homogeneous with moderate ECa values.

3.4. Principal component analysis

The Bartlett's test of sphericity indicated a significant
correlation between the variables since the correlation matrix
was statistically different from an identity matrix (χ2 =1192.5,
pb0.05). The KMO measure was 0.67 indicating that the
sampling was adequate for PCA. Based on a screeplot of the
eigenvalues the first 3 PC's were retained, which accounted for
67.4% of the total variance. Table 2 gives the communalities
and loadings of the variables on the 3 rotated PC's. The smallest
communality was 0.23, but most were larger than 0.6. This
showed that the three retained PC's explained most of the
variance in the original dataset.

Fig. 5 provides the loading plots. The first PC (reflecting
30.5% of the total variance) was strongly associated with top-
and subsoil pH and CaCO3 content, with subsoil pH having the
largest loading on PC1 (0.872). Also the slope angle showed a
strong association with this PC. The second PC covered 21.3%
of the total variance and had the strongest contribution from the
two ECa variables (the largest loading on PC2 was for ECa-V:
0.927) and top- and subsoil clay content. The third component



Fig. 5. Rotated loading plots of the (a) first and second PC and (b) first and third PC. Label identifications and loading values are given in Table 2.
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accounted for 15.6% of the total variance and represented mainly
top- and subsoil OC (the largest loading on PC3 was for subsoil
OC: 0.707), elevation and the WI. SPI was weakly associated to
any of these three PC's and appeared to be less informative.

The PCA results suggested an independent spatial behaviour
along three major factors, dominated by pH, ECa and OC
respectively. Currently, intensive observations of ECa-V and pH
can be obtained by commercially available on-the-go sensors
(Adamchuk et al., 2005). On-the-go sensors suitable for OC
determinations (e.g. NIR sensor) are just becoming operational in
practise. Therefore, elevation was selected as an easy-to-obtain
surrogate for OC, since it had the second largest loading on PC3
after top- and subsoil OC. However, Moore et al. (1993) observed
a strong association between OC and WI in a different landscape
setting.

3.5. Potential management classes delineation

As a result from the PCA, topsoil pH, ECa-V and elevation
were used as input variables to the fuzzy k-means classification.
FPI and NCE were minimized for four classes, i.e. k=4. The
map of the potential management classes (Fig. 6a) was obtained
Fig. 6. (a) Potential management classes delineated using topsoil pH, ECa-V and el
classes.
by a generalization of the fuzzy k-means class membership map
by removing a few small island clusters which were not feasible
for practical site-specific management purposes. A clear link
between these management classes and the landscape position
was recognized using a cross-section of elevation across classes
(Fig. 6b).

Class 1 occupied the southwest, northwest and southeast parts
of the field and covered the largest area. Three zones of this class
covered the highest plateau and upslope positions of the field, i.e.
the areas leastmodified by slope processes. In this class the typical
A-Bt-C1-C2-2C acidic silt loam soil of the loess area was found.
This was confirmed by the average soil properties of the samples
located inside this class (Table 3). The average soil properties
of class 1 were therefore used as a reference to compare the
properties of the other classes.

Class 2 coincided with the less eroded western slope where
the CaCO3 rich loess parent material was exposed (C2 layer),
partially limited by the topographic discontinuity. Soil texture
was similar to class 1, but class 2 had an increase in pH andCaCO3

content (Table 3).
Class 3 covered the severely eroded eastern slope, exposing

partially the 2C sandy substrate. Due to the tillage activities, this
evation. (b) elevation along A–B with indication of the potential management



Table 3
Mean values of soil properties and yield data for each potential management
class (with standard deviations between brackets)

Mean

Class 1 Class 2 Class 3 Class 4

Topsoil
Clay (%) 16.2 (1.3) 16.8 (0.9) 12.5 (2.9) 15.0 (2.1)
Silt (%) 70.7 (1.8) 71.1 (1.9) 62.6 (9.5) 69.4 (3.3)
Sand (%) 13.0 (2.1) 12.0 (2.1) 24.7 (11.4) 15.5 (3.5)
pH 5.6 (0.4) 7.0 (0.4) 5.5 (0.4) 6.2 (0.5)
OC (%) 0.72 (0.08) 0.78 (0.12) 0.76 (0.09) 0.83 (0.12)
CaCO3 (%) 0.16 (0.14) 1.90 (1.87) 0.30 (0.20) 0.38 (0.16)

Subsoil
Clay (%) 18.7 (1.2) 16.8 (1.7) 14.7 (2.8) 15.7 (2.6)
Silt (%) 70.0 (2.0) 72.4 (3.2) 59.2 (16.7) 69.7 (2.7)
Sand (%) 11.3 (1.8) 10.8 (3.1) 26.1 (16.9) 14.7 (4.3)
pH 5.5 (0.5) 7.1 (0.5) 5.9 (0.6) 6.1 (0.4)
OC (%) 0.2 (0.06) 0.19 (0.07) 0.27 (0.12) 0.4 (0.15)
CaCO3 (%) 0.22 (0.27) 7.41 (6.81) 0.74 (1.25) 0.35 (0.24)

Three-year average standardized yield
Grain (%) 95.7 (7.1) 99.4 (8.5) 103.7 (7.6) 104.7 (7.7)
Straw (%) 94.4 (9.3) 98.7 (11.1) 102.9 (11.6) 108.2 (11.7)
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sand was mixed with the remaining silt loam causing the average
sand content to double compared to class 1, but pH and OC
remained similar (Table 3).

Class 4 represented the valley floor. Texture, pH and CaCO3

were quite similar to class 1, but the OC content was increased,
especially in the subsoil (Table 3).

3.6. Crop productivity and potential management classes

The three-year average standardized yield maps of grain and
straw (%) are shown in Fig. 7a and b. Visually, no strong
relationship could be observed for the grain yield, but for straw
there was a better correspondence with the management classes.
In particular, class 4 (the valley floor) had an average higher straw
productivity.

The three-year average standardized grain and straw yield
was split per class and the result is given in Table 3. Straw was
Fig. 7. Three-year average standardized y
more variable than grain. The highest productivity occurred in
class 4: 104.7% for grain and 108.2% for straw. The lowest
yield was found in class 1: the plateau and upslope areas.
Classes 2 and 3 had intermediate values, with class 3 slightly
above average and class 2 slightly below average. The sandy
substrate of class 3 did not result in a yield decline in the three
years considered. The relatively clay rich class 1 produced
lower yields, indicating that during those years, crop produc-
tivity did not fully reflect the general soil fertility variation of
the studied field. However the yield trends represented to some
degree the delineated management classes in relation to the
landscape position (Fig. 6b). Therefore, in the three years
considered, crop productivity was likely driven by variations in
moisture availability related to the landscape position. Weather
records of the three considered growing seasons indicated that
average (2000) to rather dry weather conditions (2003 and
2004) prevailed. So the crop might have benefited from the
wetter conditions in the valley floor and the reverse on the
higher landscape positions. However, it should be realized that
in dominantly wet climatic conditions this relationship might
invert. In the case of an extreme rain event, a temporary
flooding or fully saturated conditions might even destroy
completely the crop in the valley floor. So crop production in
the valley floor is likely to be more variable between years than
in the other classes. Kaspar et al. (2003) and Reuter et al. (2005)
made similar observations by investigating the relationships
between landform units and yield potential.

4. Conclusions

A strongly structured spatial variation of several soil
properties at a within-field scale in a loess-derived soil with
undulating topography was found. Although overall soil texture
was a homogeneous silt loam, on the eastern slope soil texture
was sandier, OC increased in the subsoil of the valley bottom and
CaCO3 and pH were much higher along a band on the western
slope. These patterns originated most likely from different levels
of soil erosion. These differences support the implementation of
differential soil management practices at a field scale.
ield map of (a) grain and (b) straw.



214 U.W.A. Vitharana et al. / Geoderma 143 (2008) 206–215
A PCA highlighted the importance of pH, ECa-V (as a
surrogate for soil texture) and OC as independent key variables to
characterise the overall soil variation. Since on-the-go sensors for
OC are just becoming operational, OCwas replaced by elevation,
the second most dominant variable on the principal component
associated with OC variation. In this way all three key properties
could be obtained without intensive soil sampling and costly
laboratory analyses.

These three key variables were used to identify and delineate
four classes using a fuzzy k-means algorithm. Clear differences
in top- and subsoil properties and landscape position were found
between these classes and also the three-year average
standardised grain and straw yields were different across the
classes. The yield differences were more related to differences
in topography across classes and less to the spatial variability of
soil properties.

The results indicated that the variability of pH, texture and
OC was suitable to delineate potential management classes.
Since similar pedogenetic processes occurred in most parts of
the undulating European loess landscape, it can be expected that
these findings can be extended to a broader scale.

It was concluded that in the loess area, with complex soil-
landscape interactions, pH, ECa and elevation can be defined as
the key properties to delineate potential management classes for
precision agriculture.
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