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The SOC pool is an important component in the global 
C cycle, as it contains more C than the atmosphere and 

biosphere together (Batjes, 1996; Grace, 2004). Soil organic 
C plays an important role in enhancing crop production and 
mitigating the net rate of greenhouse gas emissions (Lal et al., 
1995; Post and Kwon, 2000). The risk of global warming and 
interest in adoption of the Kyoto Protocol have increased the 
attention of the scientifi c community on SOC stocks in the 
terrestrial ecosystems (Intergovernmental Panel on Climate 

Change, 2007). Precise measurement of the SOC stocks and 
verifi cation of the amount of C sequestered in the soil are 
among the critical factors in implementing C trading pro-
grams. Similarly, estimates of the spatial distribution of SOC 
stocks are necessary to quantify the SOC sink capacity of soils. 
Soil organic C maps showing the sink capacity at various scales 
are necessary to design an effective C sequestration program. 
Therefore, obtaining an accurate map is important, as both the 
rate of change in SOC and the sink capacity depend on the ini-
tial SOC stock. Estimates of SOC stocks at larger spatial scales 
across different soil depth intervals are limited by time and 
cost constraints (Sleutel et al., 2003: Goidts and van Wesemael, 
2007). Therefore, digital SOC mapping representing SOC 
stocks at different spatial scales such as plot, watershed, county, 
regional, and national levels are important.

The magnitude of SOC stocks at a location depends on 
a range of factors such as the soil type, land use, annual in-
put of biomass C, and the severity of degradation. Therefore, 
several approaches and techniques are needed to develop a re-
liable estimate of SOC stocks at different spatial scales (Van 
Meirvenne et al., 1996; Post et al., 2001; Lal, 2004). Simbahan 
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Predicting Soil Organic Carbon Stock Using 
Profi le Depth Distribution Functions and 
Ordinary Kriging

The objective of this study was to predict and map SOC stocks at different depth intervals 
within the upper 1-m depth using profi le depth distribution functions and ordinary kriging. 
These approaches were tested for the state of Indiana as a case study. A total of 464 pedons 
representing 204 soil series was obtained from the National Soil Survey Center database. 
Another 48 soil profi le samples were collected to better represent the heterogeneity of the 
environmental variables. Two methods were used to model the depth distribution of the SOC 
stocks using negative exponential profi le depth functions. In Procedure A, the functions to 
describe the depth distribution of volumetric C content for each soil profi le were fi tted using 
nonlinear least squares. In Procedure B, the exponential functions were fi tted to describe 
the depth distribution of the cumulative SOC stocks. The parameters of the functions were 
interpolated for the entire study area using ordinary kriging on 81% of the data points 
(n = 414). The integral of the exponential function up to the desired depth was used to 
predict SOC stocks within the 0- to 1-, 0- to 0.5-, and 0.5- to 1-m depth intervals. These 
estimates were validated using the remaining 19% (n = 98) of the data. Procedure B showed a 
higher prediction accuracy for all depths, with higher r and lower RMSE values. The highest 
prediction accuracy (r = 0.75, RMSE = 2.89 kg m−2) was obtained for SOC stocks in the 
0- to 0.5-m depth interval. Using Procedure B, SOC stocks within the top 1 m of Indiana 
soils were estimated to be 0.90 Pg C.

Abbreviations: MEE, mean estimation error; OK, ordinary kriging; SOC, soil organic carbon.
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and Dobermann (2006) reported the need for further research 
in using secondary information to map SOC stocks at different 
scales. Quantifying SOC stocks at different spatial scales in a cost-
effective manner is a priority research topic for soil scientists.

Previous studies have estimated SOC stocks at global (Post 
et al., 1990; Eswaran et al., 1993), national (Kern, 1994; Guo 
et al., 2006a), state (Amichev and Galbraith, 2004; Tan et al., 
2004), and regional (Homann et al., 1998; Yu et al., 2007) 
scales. These estimates were based on the measure-and-mul-
tiply approach, where the study area is separated into differ-
ent strata and the SOC measurements within each stratum are 
multiplied by the area of that stratum. Although the method 
is useful for estimating SOC stocks under different ecosystems, 
the estimates thus obtained do not account for spatial variabil-
ity due to soil heterogeneity within each stratum (Thompson 
and Kolka, 2005; Rasmussen, 2006). The errors associated 
with assigning a mean SOC content to mapping units from 
a small number of samples can be an important source of dis-
crepancy (Meersmans et al., 2008).

Alternatively, studies showing the spatial variability of SOC 
stocks have been conducted at plot (Simbahan et al., 2006), 
watershed (Minasny et al., 2006), and regional (Meersmans 
et al., 2008) scales. These studies used a variety of techniques 
such as geostatistics, artifi cial neural networks, and multiple 
regression in SOC stock mapping. These techniques were use-
ful, as they showed the spatial variability of SOC stocks and 
their associated uncertainty; however, no studies have been 
conducted to quantify SOC stock variability at different depth 
intervals using profi le depth distribution functions and geosta-
tistics at regional scales. Thus, the objective of this study was to 
predict and map SOC stocks at different depth intervals within 
the upper 1-m depth on a state scale using profi le depth distri-
bution functions and ordinary kriging. The Midwest Regional 
Carbon Sequestration Partnership (MRCSP) project funded 
by the U.S. Department of Energy to assess the potential of 
C sequestration and strategies to mitigate CO2 emissions pro-
vided an opportunity to conduct this study at a larger spatial 
scale. Therefore, as a case study, the entire state of Indiana was 
selected. Indiana is one of the seven states in the MRCSP proj-
ect. The hypothesis tested was that if the variability in environ-
mental variables that affect soil development can be captured 
through soil samples, it is possible to predict the SOC stock 
reliably and credibly. The environmental variables of elevation, 
climatic factors (temperature and precipitation), and land use 
were included in this study.

MATERIALS AND METHODS
Study Area and Data Sources

The study was conducted in Indiana, with central coordinates 
39°53.7′ N and 86°16.0′ W. The study area is 94,319 km2, with el-
evation ranging from 96 to 380 m above mean sea level. The highest 
elevated area is located in the southeast portion of the state. Similarly, 
areas with the lowest elevations are located in the northwest and south-
west corners of the state. The long-term (1975–2005) average annual 
temperature ranged from 8.5 to 14°C and the long-term precipitation 
ranged from 860 to 1270 mm. Both the temperature and precipita-
tion increased gradually from the northern to the southern part of 
the state. The soils of study area were classifi ed as Alfi sols, Mollisols, 
Inceptisols, Entisols, Ultisols, and Histosols, with about 350 identifi ed 

soil series. A total of 464 georeferenced soil profi le data representing 
204 soil series were extracted from the NSSC database (National Soil 
Survey Laboratory, 2006). These soil samples were collected within 
a 15-yr span from 1975 to 1990. A digital elevation model (DEM), 
with 30-m pixel resolution, and land cover data of similar resolution 
were extracted for the study area from the USGS database (Multi-
Resolution Land Characteristics Consortium, 2006). The land cover 
map of Indiana had 16 land classes. Major land classes identifi ed were: 
cropland, forest, grassland, water, developed land, and wetland.

Climate data, such as long-term point observations of mean an-
nual air temperature (MAAT) and mean annual precipitation (MAP), 
were obtained from the National Climatic Data Center database. 
Among the collected environmental variables, elevation showed sig-
nifi cant correlations with MAAT (r = 0.72, P < 0.001) and MAP (r = 
0.60, P < 0.001) data. Various studies have shown that when suffi cient 
correlation exists between a variable and environmental parameters, 
kriging combined with regression on these parameters is both easy to 
implement and suffi ciently accurate (Odeh et al., 1994; McBratney et 
al., 2000; Van Meirvenne and Van Cleemput, 2005). Therefore, re-
gression kriging (Hengl et al., 2004) was used to obtain a continuous 
surface of weather parameters for the study area. Linear regression of 
MAAT (67 data points) and MAP (84 data points) with elevation data 
was performed for the observation sites and the regression equation 
was used to predict the precipitation and temperature for the entire 
study area. Omnidirectional variograms were computed from the re-
siduals and kriged residual maps of both parameters were added to the 
regression prediction maps to obtain the regression kriged prediction 
(data not shown). The MAAT and MAP maps were developed at a 
similar spatial resolution (30 m) to the DEM and land cover maps, 
and all four environmental variables were used to guide the collection 
of additional soil samples across the study area.

Systematic (grid) sampling has been used extensively in geo-
statistical mapping (Baxter and Oliver, 2005; Minasny et al., 2006; 
Simbahan et al., 2006). This sampling strategy may not be practical 
for regional-scale studies, however, due to several reasons such as inac-
cessible areas, already available preliminary information that makes 
a regular grid superfl uous, and edge effects (van Groenigen, 2000). 
Therefore, the variability of environmental parameters that are expect-
ed to affect the SOC was sampled. For this purpose, soil samples were 
overlaid on the maps of elevation, land use, temperature, and precipi-
tation. After observing the distribution of soil samples, 48 additional 
soil sample points were identifi ed interactively in the geographic in-
formation system environment to better represent the heterogeneity 
of the environmental variables in the study area. Soil samples from 
the identifi ed locations were collected during mid-March to late April 
2006. The samples were obtained from soil pits at 0- to 5-, 5- to 10-, 
10- to 30-, 30- to 50-, and >50-cm depths. A hammer-driven core 
sampler was used to collect the soil cores (5.4-cm diameter and 6-cm 
depth) for bulk density (ρb) measurements and a bulk soil sample of 
about 1 kg was collected for SOC measurements. Samples were sealed 
in plastic bags and transported to the laboratory. A total of 98 samples 
were randomly selected from the whole data set, dividing the data 
set (n = 512) into calibration (n = 414) and validation data sets (n = 
98). This was done using the Create Subset function of Geostatistical 
Analyst in ArcGIS 9.2 (ESRI, Redlands, CA). Figure 1 shows the spa-
tial distribution of the calibration and validation sites of the SOC 
samples across the study area.
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Data Modeling and Soil Organic Carbon 
Stock Prediction

The collected additional soil samples were analyzed for C con-
centration by the dry combustion method (900°C) using a C-N 
analyzer (Vario Max, Elementar Analysensysteme, Hanau, Germany; 
Nelson and Sommers, 1996). Dry ρb was calculated using the core 
method (Blake and Hartge, 1986). The SOC concentration on a mass 
basis (Cm, kg kg−1) was converted to a volumetric basis (Cv, kg m−3) 
by using the ρb (kg m−3):

v m bC C= ρ  [1]

Soil ρb values were not available for all the pedons in the data set, 
thus ρb was predicted from the soil texture, SOC concentration, and 
depth of the horizons by using the pedotransfer function developed 
by Calhoun et al. (2001) (R2 = 0.56):

 [2]

where clay-free silt is the percentage of silt in the silt and sand fractions 
only, excluding the clay fraction. This model gave unrealistic predic-
tions for the horizons with high SOC concentrations. Therefore, the 
pedotransfer function developed by Adams (1973) was used for hori-
zons with a SOC concentration >6%:

( ) ( )b
om mn

100
SOM 100 SOM

ρ =
ρ + − ρ

 [3]

where SOM is the percentage by weight of organic matter, ρom is the 
average bulk density of organic matter (224 kg m−3), and ρmn is the 
bulk density of the mineral matter.

The distribution of SOC concentration with depth is essential 
information for estimating SOC stocks. In many cases, the SOC 

concentration decreased exponentially with an increase in soil depth. 
Among the various models that have been proposed, the exponential 
C depth model is the most widely accepted (Mestdagh et al., 2004; 
Zinn et al., 2005; Minasny et al., 2006). The following negative ex-
ponential function was fi tted for each sample point in the calibration 
data set from the surface to 1-m depth:

( )expC a bD= −  [4]

where C is the SOC concentration (kg m−3 in Procedure A and kg m−2 
in Procedure B), D is the absolute depth (m), and a and b are the pa-
rameters of the exponential function. The integral of the exponential 
equation down to the desired depth was used to calculate the SOC 
stock at a particular location:

( )s 0
exp

Z
C a bD= −∫  [5]

where Cs is the C stock (kg m−2) down to the desired depth (D) in the 
soil profi le. Solving the integral equation with respect to depth from 
the surface to D yields

( )s exp 1aC bD
b

= − − −⎡ ⎤⎣ ⎦  [6]

Two different methods were used in modeling the depth distri-
bution of the SOC concentration. In Procedure A, the exponential 
functions were fi tted to describe the depth distribution of Cv for each 
soil profi le using a nonlinear least squares procedure. The Cv was cal-
culated using Eq. [1] for each horizon of the soil profi les down to 
1-m depth. In Procedure B, the exponential functions were fi tted to 
describe the depth distribution of the cumulative SOC stock in indi-
vidual soil profi les. The cumulative SOC stock was calculated for the 
incremental horizon or layer depths in each profi le using Eq. [7]

s b mC C D= ρ  [7]

where Cs is the SOC stock (kg m−2), ρb is the bulk density (kg m−3), 
Cm is the SOC concentration (kg kg−1), and D is the soil depth (m).

The parameters of the exponential functions from both pro-
cedures were tested for the presence of spatial autocorrelation using 
Moran’s Index (I) (Moran, 1950). Moran’s I showed signifi cant spatial 
autocorrelation in the parameters (Table 1). This led to the use of an 
interpolation technique that capitalizes on the spatial autocorrelation 
present in the calculated parameters. Therefore, a geostatistical tech-
nique was used to interpolate the parameters across the study area. 
The obtained parameters were not signifi cantly correlated with the 
environmental variables. The highest Pearson’s correlation coeffi cient 
(r) value of 0.28 was observed between parameter a (using Procedure 
A) and precipitation. Therefore, secondary information could not be 
incorporated in mapping the parameters and ordinary kriging (OK) 
was used for the interpolation. Ordinary kriging is the most common 
type of kriging in practice. It assumes local stationarity of the mean of 
the variable under investigation.

Ordinary kriging is used to estimate the value of a random vari-
able, Z, at one or more unsampled points or across larger blocks from 

b 1.594 0.084SOC 0.0018Silt
   0.0020Clay-free silt 0.0001Clay(Sand)
   0.0466Clay/Silt 0.0008Depth

ρ = − −
− +
− +

Fig. 1. The state of Indiana, showing the distribution of calibration (n 
= 414) and validation sites (n = 98) and the location of the study site 
within United States.

Table 1. Moran’s index (I) statistic showing spatial autocor-
relation in the parameters.

Variable
Procedure A Procedure B

Moran’s I P value Moran’s I P value

Parameter a 0.1229 0.0020 0.1126 0.0010
Parameter b 0.0948 0.0010 0.1698 0.0010
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a sparse data set. The kriging estimate of variable Z at point x0,  Ẑ
(x0), is a linear weighted sum of n observations surrounding the 
estimate (Eq. [8]):

( ) ( )0
1

ˆ
n

i i
i

Z x z x
=

= λ∑  [8]

where λ i are the weights and z(xi) is the known value of variable Z at 
sampling site xi.

The n weights are then chosen such that the estimate is unbi-
ased and has minimum kriging variance. The unbiasedness is ensured 
when the sum of n weights are made equal to 1 (Eq. [9]):

1
1

n

i
i=

λ =∑  [9]

A detailed theoretical description of the kriging algorithms was pro-
vided by Webster and Oliver (2001).

The interpolated maps of the parameters were then used to solve 
Eq. [6] to get the SOC stocks for the entire study area using Procedure 
A. In Procedure B, the obtained maps of the parameters were used in 
Eq. [4] to obtain the C stock across the desired depth intervals.

The SOC stocks for entire state of Indiana were estimated using 
the predicted raster map of SOC stocks (0–1-m depth). For this pur-
pose, the raster map was multiplied by the pixel area to convert the 
SOC stocks (kg m−2) to a mass basis (kg) for each pixel. The individual 
pixels were then summed to get the SOC stocks for the entire state.

Validation of Predicted Soil Organic Carbon 
Stock Estimates

The uncertainty of the SOC stock maps was assessed using the 
independent validation data set. For the validation data set, the SOC 
stock was estimated in each profi le by summing the C stocks of each 
horizon from the surface to the depth of 1 m using 

( )s m b
1

n

j
C C D

=

= ρ∑  [10]

where Cs is the C stock (kg m−2), j is the soil horizon (e.g., 1, 2, 3…, 
n), Cm is the C concentration on a mass basis (kg kg−1), ρb is the 
soil bulk density corrected for rock fragments (kg m−3), and D is the 
thickness of each horizon (m).

From the predicted SOC map, SOC stock values were extracted 
for the validation points. The obtained values of observed and pre-
dicted C stocks were interpreted by calculating different validation in-
dices, such as r between the observed and predicted SOC values, the mean 
estimation error (MEE), the RMSE, and the relative improvement (RI):

( ) ( )s s
1

1 ˆMEE
n

i i
i
C x C x

n =

⎡ ⎤= −⎣ ⎦∑  [11]

( ) ( )
2

s s
1

1 ˆRMSE
n

i i
i
C x C x

n =

⎡ ⎤= −⎣ ⎦∑  [12]

where Cs(xi) is the measured C concentration, sĈ (xi) is the estimated 
C concentration, and n is the number of validated observations. The 
MEE represents the bias of the predictions and the RMSE represents 
the average error of prediction. These values should approach zero for 
an optimal prediction. The relative improvement (%) of one method 
over the other was calculated using 

A B

A

RMSE RMSERI 100
RMSE

−=  [13]

where RMSEA and 
RMSEB are the root mean square errors of Procedures A and B, re-
spectively.

The quality of prediction was also tested by examining the 1:1 
relationship between the observed and predicted SOC stocks at dif-
ferent depth intervals. The t-test (Devore and Peck, 1993) was used to 
test the hypothesis that the slope of the regression line equals 1.

RESULTS AND DISCUSSION
Exploratory Data Analysis

The summary statistics of the SOC stock data show a 
unimodal but positively skewed distribution (coeffi cient of 
skewness = 7.72) around a mean of 9.50 kg m−2 ranging be-
tween 1.6 and 125.2 kg m−2 (Table 2). The higher values were 
observed mainly in the northern part of the state. The large 
value of the coeffi cient of kurtosis (78.5) indicates that there 
are fewer observations situated around the mean value of SOC 
stock than for a normal distribution. This is mainly due to the 
large areas of Alfi sols and Inceptisols, which usually have lower 
SOC stocks in comparison to other soil types (Mollisols and 
Histosols). The large variance, 100.7 (kg m−2)2, is due to the 
many different soil types with strongly differing SOC contents 
(Entisols, Inceptisols, to Histosols). Extreme SOC values such 
as those >44.5 kg m−2 are the major infl uencing points in the 
data set. These values are typical for the Histosols found in the 
study area, so they should not be considered as outliers.

Soil Organic Carbon Modeling with Depth
Exponential functions (Eq. [4]) were fi tted to the SOC 

concentrations of the horizons in each soil profi le down to 1-m 
depth. The fi tted exponential functions showed a mean value 
of r = 0.95 and a RMSE = 4.98 kg m−3 between the observed 
and fi tted SOC stocks for all the soil profi les using Procedure 
A. In Procedure B, the fi tted exponential function showed a 
mean value of r = 0.98 and a RMSE = 1.03 kg m−2 between the 
observed and fi tted SOC storage for all profi les. These results 
indicate that both of the methods fi tted the data very well. The 
higher r and lower RMSE values suggest, however, that the ex-
ponential function fi tting method of Procedure B (with cumu-
lative SOC stock values) will result in lower errors in predicting 
the SOC stocks than Procedure A. The data in Fig. 2 show the 
relationship between the observed and fi tted exponential func-
tion C values using both methods.

Table 2. Summary statistics of soil organic C stock data (n = 
512 samples).

Parameter Value

Mean, kg m−2 9.50
Minimum, kg m−2 1.57

Maximum, kg m−2 125.2

Median, kg m−2 7.17

Variance, (kg m−2)2 100.68

Coeffi cient of skewness 7.72
Coeffi cient of kurtosis 78.5
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Spatial Interpolation of the Parameters of the 
Exponential Functions

The observation sites of the a and b parameters were used 
to compute the experimental variograms. The experimental 
variogram values were fi tted with omnidirectional spherical 
models (Webster and Oliver, 2001), as anisotropy was not ob-
served in the variogram surface. Figures 3 and 4 show the ex-
perimental variograms (symbols) with the fi tted models (solid 
lines) of the parameters obtained from both methods. The 
model parameters of the variograms are given in Table 3.

The fi tted variograms show similar trends of spatial varia-
tion for both parameters in Procedure A. In Procedure B, the 
variograms suggested a shorter spatial dependence (smaller 
range) in parameter a than parameter b. The parameters of the 
exponential functions fi tted according to both procedures were 
then interpolated to a 100- by 100-m grid using OK across the 
entire study area. The diameter of the interpolation window 
was kept within the range of the variogram models.

Prediction and Validation of the Soil Organic 
Carbon Stock

The interpolated maps of the parameters were used to 
predict and map the SOC stocks for the whole study area 
for different depth intervals: 0 to 1.0 m, the surface soil 
(0–0.50 m), and the subsoil (0.50–1.0 m) (Fig. 5). All three 
maps indicated higher SOC stocks in the northern part than 
the southern part of the state. In general, the spatial distribu-
tion of the SOC stocks is similar in both surface soils and sub-
soils, but the subsoil map shows a few locations where the SOC 
stocks are higher in the subsoil than in the surface layer. Figure 
6 shows both the areas where the surface soil has the highest 
SOC stock and the reverse. In most of the study area, the SOC 

Fig. 2. Observed and fi tted exponential depth function soil organic C 
stocks by (a) Procedure A and (b) Procedure B (n = 414 calibration 
sites); dashed line is the 1:1 line.

Fig. 3. Experimental variograms and fi tted models used for interpolation 
of parameters (a) a and (b) b using Procedure A; symbols represent 
the experimental semivariances and the solid line is the fi tted model.

Fig. 4. Experimental variograms and fi tted models used for interpolation 
of parameters (a) a and (b) b using Procedure B; symbols represent 
the experimental semivariances and the solid line is the fi tted model.
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is mainly stored in the topsoil, but apparently in a few areas 
there is more SOC stored in the subsoil. Areas with high subsoil 
SOC stocks are located in regions with low gradients (<5% slope 
angle) and high percentages of poorly drained soils. The data in 
Fig. 7 show the profi le depth distributions of the SOC stocks of 
the pedons that had higher SOC stocks in the subsoil.

The data in Table 4 show the validation indices of the pre-
dicted SOC stocks at different depth intervals for both meth-
ods. In the 0- to 1-m depth, the MEE is close to zero with both 
methods, which confi rms the unbiasedness of OK. A higher r 
and a lower RMSE suggest that the exponential function fi tting 
method of Procedure B produces less error in predicting the 
SOC stocks. Similarly, SOC stocks were predicted with lower 
errors by Procedure B in both the surface soil and subsoil. Both 
methods resulted in higher prediction errors when estimating 
the SOC stocks in the subsoil than the surface soil layer. The 
RI estimates showed that the SOC stock predictions improved 
at all depth intervals by using Procedure B over Procedure A. 
The RMSE decreased by 5% in the 0- to 1-m depth, 11.6% in 
the topsoil, and 1.5% in the subsoil. This RI in Procedure B re-
sulted because the cumulative SOC stock increases with depth, 
whereas the SOC concentration does not always decrease with 
depth (down to 1 m), for example in Histosols and Fluvents 
that are present in the study area.

The data in Table 5 show the results of the t-
test used to test the hypothesis that the slope of the 
regression line between the measured and predicted 
SOC stocks equals 1. The results indicate that in 
0 to 1 m and the subsoil, the slope of the regres-
sion line of Procedure B is not signifi cantly differ-
ent than 1, suggesting more accurate predictions of 
SOC stocks in comparison to Procedure A. In the 
topsoil, however, the slopes from both methods are 
signifi cantly different than 1, which means SOC 
stocks are either under- or overpredicted.

Distribution of Soil Organic Carbon Stock
The SOC map obtained by Procedure B was 

used to describe the spatial variation in SOC stocks 
across the study area. Indiana is divided into nine 
Major Land Resource Areas (MLRAs), namely, 
98, 99, 110, 111, 114, 115, 120, 121, and 122. 
The MLRA is a geographical unit that contains 
similar patterns of climate, soils, water resources, 
and land uses (Soil Conservation Service, 1981). 
With regard to the physiographic distribution of 
SOC stocks, MLRAs 98, 99, 110, and 111 had 
higher SOC stocks. These MLRAs are located in 
the northern part of the state and are character-
ized by low gradients (<5%) and high percentages 
of poorly drained soils (Tan et al., 2004). Some 
wetlands and peat soils present in these areas also 
contribute to high SOC stocks. Long-term average 
annual temperature and precipitation data showed 
lower temperature (<9.3°C) and lower precipita-
tion (900 mm) in areas with high SOC stocks. 
The SOC stocks were low in MLRAs 114 and 120. 
These MLRAs are located in the southern part of 
the state. These areas are mainly situated on steep 

slopes (>10%) with well-drained mineral soils. Long-term av-
erage annual temperature and precipitation are >1100 mm and 
>11°C, leading to low SOC stocks in these areas. A similar 
distribution of SOC stocks in these MLRAs was also observed 
by Tan et al. (2004) in Ohio. The observed effect of precipita-
tion on SOC is consistent with the pattern observed by Guo et 
al. (2006b) in the conterminous United States, and Burke et al. 
(1989) in the Central Plains grasslands. These studies suggested 
fl uctuation of SOC content as precipitation increases from 850 
mm. The SOC stocks in the entire state of Indiana were esti-
mated to be 0.90 Pg using the predicted SOC stock map from 
Procedure B.

The spatial variability of SOC stocks obtained from this 
study was compared with previous studies that used different 
data sources. Guo et al. (2006a) used the STATSGO database 

Table 3. Variogram model parameters fitted using 
both procedures.

Variable Model
Procedure A Procedure B

Nugget Sill Range Nugget Sill Range

km km
Parameter a spherical 294.5 494 52.5 1.42 4.18 69.7
Parameter b spherical 11.7 11.18 52.5 0.075 0.30 28.3

Fig. 5. Predicted soil organic C (SOC) stock maps for (a) 0 to 1, (b) 0 to 0.5, and (c) 0.5 to 1.0 
m using Procedure B. Small blank areas in (c) represent the areas with soils <0.5 m deep.
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to generate an SOC stock map of the United States. Indiana in 
the continental SOC stock map of that study showed a similar 
trend of spatial variability of SOC stocks as in the map pre-
sented in Fig. 5a. For instance, the northern part of that map 
shows higher SOC stocks (>10 kg m−2) than the southern part 
(<10 kg m−2), which is similar to our results. Likewise, Kern 
(1994) prepared an SOC stock map of the United States up to 
1-m depth using 3700 pedon data. The map of Indiana pre-
pared using the soil taxonomy approach of that study is also 
similar in most details to the map of Fig. 5a. That map di-
vided Indiana broadly into three main SOC stock regions. The 
northern portion of the state showed the highest SOC stock 
of 18.1 to 19.5 kg m−2, which is a comparable result to our 
map (>20 kg m−2) in this area.. The middle portion of the state 
showed an SOC stock of 12.1 to 13.5 kg m−2, and the south-

ern portion showed the lowest SOC stock of 7.6 to 9 kg m−2. 
Our results suggest 10.1 to 15 kg m−2 and <10 kg m−2, respec-
tively, in these parts of the state. These comparisons further 
confi rm the validity of our results.

Looking at the limitations and possible uncertainties as-
sociated with the prediction, this map refl ects the C stocks of 
about two decades ago, as the soil samples were collected in 
1975 to 1990. Therefore, the current SOC stocks might have 
changed due to various management factors. Similarly, the bulk 
density values were predicted for few pedons, which might cre-
ate uncertainty in the predictions. Likewise, the study area was 
not covered uniformly with SOC samples; therefore the SOC 
stock estimates at sparsely sampled areas will be associated with 
higher prediction errors.

SUMMARY AND CONCLUSIONS
In this study, the spatial variability of SOC stocks was pre-

dicted at three depth intervals within the upper 1-m depth on 
a state scale using the profi le depth distribution and ordinary 
kriging. The SOC stock map of this study shows comparable 
variability of SOC stocks to previous studies conducted in this 
region using other data sources. Therefore, predicting param-
eters based on exponential soil depth functions is a time- and 
cost-saving approach to estimating and mapping SOC stocks 

at larger spatial scales. The validation indices 
showed that the second method (Procedure B) of 
fi tting the exponential function produced lower 
estimation errors in predicting the SOC stock. 
This method of predictive mapping is especially 
useful where there are missing observations for 
some horizons, as they can be interpolated using 
the exponential equations.

Extensive data sets of environmental param-
eters are becoming increasingly available due to 
technological improvements in data collection 
techniques. Such data are likely to support envi-
ronmental studies where sampling to record the 
variable of interest is constrained by time and 
cost factors. Therefore, the use of profi le depth 
distribution and geostatistics is promising to 

Fig. 6. Regions of high topsoil soil organic C (SOC) and high subsoil 
SOC in the study area.

Fig. 7. Profi le depth distributions of soil organic C (SOC) stocks of the 
pedons with higher subsoil SOC stock.

Table 4. Validation indices of soil organic C stock for 0 to 1 m, topsoil 
(0–0.5 m), and subsoil (0.5–1.0 m) using both procedures.

Index
Procedure A Procedure B

0–1.0 m 0–0.5 m 0.5–1.0 m 0–1.0 m 0–0.5 m 0.5–1.0 m

r 0.64 0.68 0.34 0.68 0.75 0.50
Mean estimation error,
kg m−2 −0.86 −0.10 −1.15 0.70 −0.59 1.27

RMSE, kg m−2 3.93 3.27 2.61 3.73 2.89 2.57

Table 5. Results of a t-test used to test the hypothesis that the slope of the regres-
sion line equals 1 for 0 to 1 m, topsoil (0–0.5 m), and subsoil (0.5–1.0 m) using 
both procedures.

Statistic
Procedure A Procedure B

0–1.0 m 0–0.5 m 0.5–1.0 m 0–1.0 m 0–0.5 m 0.5–1.0 m

t statistic −6.016 −5.301 −15.58 −1.12 −6.33 −0.411
P value 0.0001 0.0001 0.0001 0.1338 0.0001 0.3411
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map SOC stocks at different spatial scales (county, state, and 
region) and for different depth intervals.
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