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1. Introduction

There are scant reports on soil water salinity dynamics in

response to saline irrigation, especially concerning the

seasonal variation in electrical conductivity of the soil water

(ECsw) as a function of depth. Among others, Rhoades et al.

(1997), Cetin and Kirda (2003), De Clercq and Van Meirvenne

(2005) and Douaik et al. (2006) have all emphasised the

importance of spatial and temporal changes in soil salinity

and the effect on return-flow water-quality when use is made

of low quality irrigation water. In such studies, soil salinity is

generally reported as an integrated value for the whole profile.

In many countries sustained irrigation with poor quality

water is commonly practised and requires close monitoring

and control of soil salinity at both regional and field scales to

minimise the adverse effects on production and impacts on

downstream users (Odeh et al., 1998; Kelleners and Chaudhry,

1998; Kotb et al., 2000; Görgens and De Clercq, 2006). Rapid

assessment of soil salinity is becoming increasingly important

for managerial purposes. Salinity depth trends were investi-

gated after sustained irrigation for sugar cane (Nelson and

Ham, 2000), winter wheat (Sharma and Rao, 1998) and rice

(Mondala et al., 2001). For vineyards, De Clercq et al. (2001)

reported on the effects of poor quality irrigation and posed the
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Remote sensing combined with an ability to look deeper than the soil surface is currently

high in demand. This study was conducted through scaling down the amount of soil data

from a saline irrigation water experiment to see if one can still capture the essential soil

salinity depth trends within the data, to a level that can enhance the ability of remote

methods. A saline irrigation experiment with 6 water qualities was conducted for 8 years on

1.2 ha of vineyard land near Robertson in the Western Cape Province of South Africa. Soil

water was sampled at regular intervals at 5 depths between 0.15 and 1.2 m with suction cup

lysimeters at a fixed time following each irrigation. Electrical conductivity of the soil water

(ECsw) was determined after sampling. Data collected over the full 8-year period were

investigated for depth trends in ECsw, seeking trend lines with lowest polynomial order

that were still significantly predict the salinity profile. At all treatment levels a first order

polynomial equation, fitted to the salinity profiles, significantly predicted the salinity trends.

The ECsw value at only two depths could therefore be used to calculate total salt accumula-

tion and soil water quality below the root zone. The implication is that considerable value

can be obtained from minimal measurements both in estimating salt accumulation in the

soil profile and predicting water quality in return flow from saline irrigation.
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following list of questions that should be considered when

considering irrigation quality:

1. Does the farmer use refined scheduling techniques?

2. Do the advantages of partial wetting of the soil apply?

3. What is the salt tolerance of the crop?

4. Does the salt content of the marketable product matter?

5. What is the length of season for the crop?

6. What is the typical rooting volume of the crop?

7. Under saline conditions, should crops be selected with the

smallest possible rooting volume?

8. What is the quality of the receiving waters?

A number of articles found, where the electrical conductivity

measured alone or where for instance time domain reflecto-

metry was used refer to soil water content and bulk electrical

conductivity, indicated a very complicated approach to link soil

water electrical conductivity (EC) with other measured para-

meters. Persson and Bertacchi Uvo (2003) is perhaps the most

recent example of the complicated situation arising when soil

water EC is measured at a range of soil water content values for

different soils. These are all at non-saturated conditions. The

ability to use these values for any predictions depends on the

accuracy of two infield-measured parameters and the calibra-

tion of the individual sensors. These measurements can be of

great value when plant reaction to soil water EC needs to be

tested between irrigations but to compare results between

different locations and different instruments becomes quite a

daunting task. De Clercq et al. (2001) showed that the

cumulative effect of bad irrigation water quality on vines could

be adequately described using a single set of soil water

measurements taken after each irrigation event, when the soil

water content was still at field water capacity. These soil water

samples, extracted from the soil using micro lysimetry, were

then analysed using a single laboratory EC probe. This method

then allowed for easier comparison between infield measure-

ments done at different depths and locations and different soil

types. Using the extracted soil water at field capacity also has

the added advantage that it can be directly related to the quality

of the water that moved through the soil. Once evaporation

from the soil surface starts and the plant starts to utilise some of

the water, the downward movement of water stops and the

ECsw starts to change, as salts are concentrated in theremaining

soil water.

Modern devices, such as the electromagnetic induction

sensor EM38, used for routine monitoring of soil salinity, are

limited in its ability to make measurements over the entire soil

profile. Shi et al. (2006) indicated that they could successfully

map coastal sandy soils for reclamation using hyperspectral

remote sensing; however, their study applied only to soil

surface conditions. On the other hand, Zhu et al. (2007)

developed a knowledge based system for predicting grain yield

taking into account all possible conditions affecting wheat

growth, including soil type and soil-depth parameters. If these

two approaches could be combined, the possibility of predicting

subsoil conditions remotely seems attainable. Farifteh and

Farshad (2002) emphasized the need to be able to detect and

model soil properties from remotely sensed sources. They listed

some possibilities of how to be able to tell more about subsoil

conditions, in particular soil salinity, from remotely sensed

information. They indicated that imaging spectrometry pro-

vides large volumes of high resolution spectral data, which can

be useful to detect soil properties. They further indicated that a

nextstepwouldbe to linkmodelledsoilprocessesusing existing

models (for example SWAP and CropSyst) to this hyperspectral

information base, to model subsoil conditions and the fate of

salinity in the landscape.

Metternicht and Zinck (2003) indicated in a review article

some constraints on the use of remote sensing data. They

stated that monitoring soil salinity cannot be achieved from

remote sensing data alone and requires a solid synergy

between remote sensing data, field observations and labora-

tory determinations as sources of data, and GIS capabilities for

processing, transforming and displaying the data. They

further concluded that the best results are obtained when

integrating remote sensing data with field and laboratory data

and that it is the researcher’s challenge to identify the most

adequate salinity indicators for a particular area, so that

appropriate ground and remote sensing techniques can be

applied to extract information in an accurate and cost-

effective manner. Lesch et al. (1995) attempted the link

between satellite imagery and EM38 interpreted soil salinity

information using multiple linear regression models and

found, after successful modelling, that they could reduce the

sampling density and still retain the prediction accuracy

inherent in their statistical calibration techniques, also

facilitating assessment methodology that can be applied in

a rapid, practical, and cost-effective manner.

This article strives to find means of revealing more about

irrigated subsoil conditions when using remotely sensed

information. For that purpose, it is important to find and

define subsoil conditions that lend itself to a higher degree of

predictability and define a starting point for modelling of this

nature. Therefore, a basis needs to be established for making

the best use of relatively meagre information about the

salinity depth function. To achieve this goal we used the

approach posed by Davis (1986) to use a F-test (Tables 1 and 2)

coupled with trend surface theory (Davis, 1986, pp. 405–422) to

find trend lines with the highest significance and with the

lowest possible polynomial order. The procedure aims to solve

curvilinear regressions or trend surfaces in the simplest

possible way and the idea was developed before computers

Table 1 – ANOVA table for a linear surface trend (n = number of observations)

Variance Sum of squares d.f. Mean SS F-test

Linear trend SSr 2 MSr F = MSr/MSa

Deviation SSa n � 2 � 1 MSa

Total variance SSt n � 1

a g r i c u l t u r a l w a t e r m a n a g e m e n t 9 6 ( 2 0 0 9 ) 3 9 5 – 4 0 4396



Author's personal copy

became widely available. The choice of a polynomial expres-

sion is normally governed by the goal of achieving the highest

degree of goodness-of-fit and higher order polynomials are

more successful at this since they encompass the lower order

forms (Mondala et al., 2001). However, higher order poly-

nomials require more parameters to be fit and therefore they

are more data demanding. Frequently by making use of an

adjusted R2-value, deviation from the trend surface and the

degrees of freedom, the decision for using a lower order

polynomial also becomes evident. Therefore, for small data

sets, lower order polynomials are usually more realistic (Lesch

et al., 1995).

We know that the knowledge base for modelling soil salinity

is well established and similarly the methodology for mapping

features of the topsoil from remote sources. The linkupbetween

the two, that could allow us to know more about the soil from

the interpretation of remotely sensed information, is currently

fuzzy. The objective of this paper therefore is to examine soil-

depth salinity-trends after prolonged irrigation of a vineyard

with different salt concentrations, and to find the simplest basis

for calculating salt accumulation and return flow water quality

from a limited number of measurements that could also be

detected remotely.

2. Materials and methods

A saline irrigation experiment was carried out for 8 years (from

1991 till 1998) in a vineyard near Robertson in the Western

Cape Province, South Africa (Fig. 1, central coordinates

33849029.0300S; and 19852044.7700E). The vineyard was estab-

lished in 1974 with Colombar vines, grafted on Richter-99

rootstock and trained on a factory roof trellising system

(Saayman, 1988). Van Zyl (1984) described the soil as a Hutton

Table 2 – ANOVA table for the significance of increase in order from p to p + 1 where the trend surface of order p has k
regression coefficients (without b0) and surface of order p + 1 have m regression coefficients (without b0)

Variance object Sum of squares d.f. Mean SS F-test

Trend surface order p + 1 SSrp+1 m MSrp+1 Fp+1 = MSrp+1/MSap+1
a

Deviation from order p + 1 SSap+1 n �m � 1 MSap+1

Trend surface of order p SSrp k MSrp Fp = MSrp/MSap
b

Deviation from order p SSap n � k � 1 MSap

Increase in order SSv = SSrp+1 � SSrp m � k MSv Fv = MSv/MSap+1
c

Total variance SSt n � 1

The number of observations is n.
a Significance test for trend surface with order p + 1.
b Significance test for trend surface with order p.
c Significance test for the increase in order.

Fig. 1 – Map of a section of the Western Cape region of South Africa, indicating the location of the Robertson research farm.
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fine sandy loam. In terms of the current South African soil

classification (Soil classification working group, 1991) the soil

belongs to the Trawal 2210 family (Typic Durochrepts

according to USDA Soil Taxonomy), with an ortic A-horizon

of about 0.15 m depth and a neo-carbonate B-horizon down to

a duripan at about 1.2 m depth. Soil preparation included

homogenising by deep cultivation to about 1 m prior to

planting.

2.1. The experimental layout

The 1.2 ha experimental block was divided into 24 plots to

which were randomly allocated 4 replications of 6 irrigation

salinity treatments. The six treatments were�0.23, 0.75, 1.5, 2.5,

3.5 and 5.0 dS m�1, the first being normal canal water and the

others canal water to which CaCl2 and NaCl had been added in a

1:1 molar ratio to achieve the desired salinity. Irrigation was

appliedwith micro jet sprinklers.Only two thirds of the totalsoil

surfacewaswettedby irrigation, i.e., eachvinehad a soil surface

of 3 m2 and therefore only 2 m2 was wetted. Scheduling was

done according to water use of the least saline plots, being those

that received canal water and the soil water deficits were

calculated from weekly neutron probe measurements. Irriga-

tion applications included a 10 percent leaching fraction which

is standard practice in the region. The experimentally deter-

mined mean field capacity of 287 mm 1.05 m�1, which is

equivalent to 273 mm m�1, was used to determine the soil

water deficit in the control plots. This was described in full by De

Clercq et al. (2001).

This is a predominantly winter rainfall region, which

ensured that there was negligible interference in the water

balance by rainfall during the summer months when most of

the irrigation was applied. The average total amount of

irrigation applied during summer was 600 mm and the

combined winter rainfall and winter irrigation was aimed at

600 mm. During winter, rain was supplemented with irriga-

tion to promote leaching of salts and ensure the success of a

cover crop (De Clercq et al., 2001).

Each plot consisted of five vine rows, 3 m apart, with 23

vines per row at 1 m spacing. The roots of the vines typically lie

between 10 and 80 cm depth with the bulk of the roots

between 30 and 60 cm depth. Soil measurements were

confined to the central ten vines in the middle row of each

plot. Suction cup lysimeters (SCL) were installed between two

of these vines at depths of 15, 30, 60, 90 and 120 cm and linked

to a central vacuum pump. The vacuum pump was synchro-

nised with an irrigation controller allowing remote control of

soil water extraction. All of the 120 soil water samples were

thus taken simultaneously at exactly the same time after each

irrigation event. After collection of the soil water samples, the

EC was measured for each, using a normal laboratory EC meter

under normal laboratory conditions (De Clercq et al., 2001).

Irrigation was systematically applied in the afternoon of

each Wednesday and suction sampling was initiated 12 h after

irrigation had terminated, to ensure that the soil water status

was effectively at field capacity. Over the 8-year duration of

the experiment at least 12 annual sets of suction cup data were

successfully collected, with 7–9 of these being collected during

the irrigation season and the remainder during winter (De

Clercq et al., 2001).

2.2. Data analysis

Trend surface analysis, as described by Davis (1986), was used

to analyse the seasonal soil salinity distribution with depth. In

this procedure the order of the polynomial expressions, fitted

to the ECsw data (Z) plotted as a function of time (X) and depth

(Y) for each treatment, was raised successively to establish the

polynomial with the lowest order that was still significant.

To simplify the trend surface routine, an algorithm was

developed in Basic programming language, which determines

the coefficients (b0, b1, b2) relating X, Y and Z to each other for n

observations in the following three equations:

X
Z ¼ b0nþ b1

X
Xþ

X
Y (1)

X
XZ ¼ b0

X
Xþ b1

X
X2 þ b2

X
XY (2)

X
YZ ¼ b0

X
Y þ b1

X
XY þ b2

X
Y2 (3)

Having derived these coefficients, the position of Z on a

linear surface trend (i.e. ECsw as a function of depth and time)

can be predicted. The goodness of fit of this surface trend can

be calculated from the total sum of squares (SSt) and the sums

of squares resulting from the trend surface (SSr), and the

deviation from the trend surface (SSa), where

SSa ¼ SSt� SSr (4)

and the goodness of fit is then calculated as

R2 ¼ SSR
SSt

(5)

with R2 being a multiple synonym for the R2 used in linear

regression. Using Eq. (4) in (5), R2 can be rewritten as:

R2 ¼ SSr
SSt
¼ 1� SSa

SSt
(6)

Because R2 is enhanced by increasing the order of the

polynomial describing the trend surface, it has doubtful value

for decision making. We therefore adopted an adjusted R2*

which is calculated in terms of SSa in (6) and not SSr in (5), and

then corrected for degrees of freedom (d.f.),

R2� ¼ 1� SSa

n� k� 1

� �
� SSt

n� 1

� ��1

¼ 1� ð1� R2Þ � n� 1
n� k� 1

� �
(7)

where the numerator terms n � 1 and n � k � 1 are the d.f., in

which n is the number of observations and k is the number of

regression coefficients ignoring b0.

The most important argument for using trend surface

analysis in the current context lies in the test for significance

(F-test, Tables 1 and 2). The significance of the specific trend

was tested through an analysis of variance or ANOVA (Table 1).

The degrees of freedom used (d.f. minus b0) were 2 for the 1st

order polynomial, 5 for the 2nd order and 9 for the 3rd order.

The test for significance was then applied and compared for

surface trends of different order in an expanded ANOVA
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(Table 2). For each increase in order the significance of the

increase was also tested. The expanded ANOVA in Table 2

consisted of three variance analyses, each with its own F-

value.

This resulted in two estimates for Z: one from a trend

surface of order p and one from a trend surface of order p + 1.

For each of these estimates, two sums of squares were

calculated for the fitted trend surface (SSrp and SSrp+1) and two

for the deviation from the fitted trend (SSap and SSap+1). The

latter were derived from SSt, and SSrp or SSrp+1, respectively.

The sum of squares that originates through the increase in

order is SSv = SSrp+1 � SSrp. Dividing these sums of squares by

their respective d.f., produces R2* (adjusted R2) values which

can then be compared by means of the three F-tests.

The above approach formed the basis for deciding which

order of trend surface to use for predicting ECsw as a function

of soil depth and time of year. Through this collective

approach, an argument can be substantiated that whatever

Fig. 2 – Monthly means and standard deviations (vertical bars), calculated for an 8-year period, of soil water salinity

developed in response to six irrigation salinity treatments (dS mS1).

Table 3 – Summer month (October–March) statistics for ECsw (dS mS1) as a function of irrigation salinity treatments (n = 192
observations per treatment)

Treatment (dS m�1) 0.23 0.75 1.5 2.5 3.5 5.0

Min 0.75 0.80 0.67 1.26 1.12 1.14

Max 2.07 2.61 4.53 7.54 7.58 6.90

Mean 1.28 1.92 2.27 4.55 4.34 4.31

s2 0.06 0.10 0.21 0.35 0.40 0.29

Skewness 0.52 �0.78 0.30 �0.17 0.06 �0.30

Kurtosis 0.69 �0.45 �1.10 �1.19 �1.47 �0.89

s2 is an estimator of the variance s2.
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polynomial trend applies for a trend surface, should apply for

an individual soil profile.

3. Results and discussion

All ECsw data collected in each month over 8 irrigation years

were pooled to allow monthly means and standard deviations

to be calculated over all depths for each treatment. These were

plotted from October onwards for the six salinity treatments

and shown in Fig. 2. It can be observed that the salinity peak

between March and May increased in magnitude over the first

four levels of irrigation salinity but remained relatively

constant thereafter, suggesting that there is a characteristic

upper limit of profile salinity governed by the application of a

10 percent leaching fraction in combination with leaching by

winter rain. This also suggests that in the high salinity

treatments the water uptake was reduced and that as a result

the leaching fraction may have been larger than the planned

10 percent. A number of studies showed the effects of salinity

on crop yield, by relating the effect soil salinity has on crop ET,

and assuming the ET and crop yield to be linearly related

(Shani et al., 2007; Ben-Gal et al., 2008).

The summer data (October–March) for each treatment (192

measurements per treatment) were pooled for the purpose of

calculating the statistics shown in Table 3. These summer data

formed the basis for developing predictive polynomial

expressions relating soil salinity to both depth and time.

The procedure of Davis (1986) was applied to identify the

polynomial with the lowest order while remaining statistically

significant in 95% of the cases. The significance of the increase

in trend surface order was tested and the results are shown in

Tables 4–6. These tables show the significance, in terms of F

values, of first, second and third order polynomials. The F(p, d.f.,

d.f.) value is also shown in each case and the latter is

consistently smaller than the F value, supporting the argu-

Table 4 – ANOVA table for a linear surface trend (cf. Table 1)

Variance object Sum of squares (SS) d.f. Mean SS F-test

Trend surface order p 29088 2 13158 128

Deviation from surface 26316 27 102

Total variance 2772 29 F(0.05,2, 27) = 2.62

Table 5 – ANOVA table for the significance of an increase in order p to p + 1 where the trend surface with order p has k
regression coefficients (without b0) and the trend surface with order p + 1 has m regression coefficients (without b0)

Variance object Sum of squares (SS) d.f. Mean SS F-test

Trend surface, order p + 1 26702 5 5340 53.7a

Deviation from surface 2386 24 99 F(0.05,5, 24) = 2.62

Trend surface, order p 26316 2 13158 128.13b

Deviation from surface 2772 27 102 F(0.05,2, 27) = 3.36

Increase in order 386 3 128 1.294c

F(0.05,3, 24) = 3.01

Total variance 29088 29

The number of observations is n (cf. Table 2).
a Significance test of trend surface with order p + 1.
b Significance test of trend surface with order p.
c Significance test of the increase in order.

Table 6 – ANOVA table for the significance of an increase in order from p + 1 to p + 2 where the trend surface with order
p + 1 has k regression coefficients (without b0) and the trend surface with order p + 2 has m regression coefficients (without
b0)

Variance object Sum of squares (SS) d.f. Mean SS F-test

Trend surface, order p + 2 27793 9 3088 47.65a

Deviation from surface 1295 20 64.7 F(0.05,9, 20) = 2.39

Trend surface, order p + 1 26702 5 5340 53.70b

Deviation from surface 2386 24 99.4 F(0.05,5, 24) = 2.62

Increase in order 1090 4 272.6 4.20c

F(0.05,4, 20) = 2.87

Total variance 29088 29

The number of observations is n (cf. Table 2).
a Significance test of trend surface with order p + 2.
b Significance test of trend surface with order p + 1.
c Significance test of the increase in order.
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ment that a first order trend surface should be sufficient to

describe the relationship of ECsw to depth and time. The trend

surfaces representing first, second and third order polyno-

mials were mapped for all six treatments in Fig. 3 (the surfaces

are salinity contours, the shading intensity of which is

proportional to the salinity degree). Fig. 3 indicates that the

salinisation tendency as summer progresses from October to

March was strongest at depth in the low salinity treatments

but was more uniformly distributed through the soil profile in

response to more saline treatments. Since only five depth

intervals were sampled, fitting a polynomial higher than the

first order for a single sampling event would probably

correspond to over-interpretation. In Fig. 3, treatments 1.5

and 3.5 dS m�1 showed differences in the general trends

compared with the other treatments. These differences were

associated with lower infiltration rates, as part of these

treatments were affected by ancient termite nests, causing

different soil water behavioural patterns. Regardless of the

Fig. 3 – Trend surfaces represented by contours of soil water salinity (ECsw) in relation to time in early summer and depth of

soil in plots treated with six levels of irrigated salinity (T1 S T6; cf. Fig. 1) over 8 years. Graph columns from left to right are

based on the first, 2nd and 3rd order polynomials as applied to the time to depth ECsw relationships.
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latter, the way in which trend surface analysis was applied,

combined the parameters of space and time in the test.

Therefore the different sampling points in the landscape

showed similar behaviour.

Table 7 shows the changes in both R2 and R2* with

increasing polynomial order as was applied to the p, p + 1

and p + 2. It is clear that the difference in R2 values has shrunk

considerably by using the adjusted R2 to such an extent that

there is almost no difference between p and p + 1.

Due to the significance displayed in the first order

polynomial above (Table 4), it should be possible to describe

salinisation of the soil profile during an irrigation season on

the basis of only two measurement depths (preferably

conveniently shallow). This could enable quick estimation

whether over- or under-irrigation has occurred and whether

salt accumulation has taken place below the root zone. This

can be indicated by knowing the gradient (m) of the first order

polynomial. To determine which two monitoring depths are

most suitable, the data were subjected to an analysis in which

depth trend lines for each time interval were calculated from

ECsw measurements at two pairs of shallower depths (either 15

and 60 or 30 and 60 cm). The gradients of these EC depth trend

lines were then compared with the gradients of EC lines

derived from EC measurements at all five depths in Table 8.

Therefore, the regression between the gradients derived from

situation 1 (Table 8) and gradients derived from the 5 depth

trend lines, produced a R2 of 0.51 and a highly significant p0.005

value of 0.0034. But, regressing the general soil ECsw-profile

from situation 2 (Table 8), with the 5 depth trend line

gradients, produced a better R2 value of 0.89 and a p0.005 value

of 0.0001. This shows that in about 9 out of 10 cases tested, an

increase or decrease of ECsw at a soil depth of 120 cm could be

predicted with confidence by looking at ECsw data from only

two depth increments in the upper soil. The reason that the 0–

15 cm depth showed a poorer result could possibly be related

to the fact that ameliorants were added shortly before

sampling or salt accumulated on the soil surface as an

evaporite. The third depth increment, namely the 30–60 cm

depth, proved to be the region where the bulk of the roots were

situated and therefore where most soil water was taken up by

the plant (De Clercq et al., 2001). It is clear that the predictive

accuracy increases when the soil surface layer is avoided but

the data for depth increment combination, situation 3 in

Table 8, show that inclusion of the A-horizon in the prediction

still produced a useful result. This demonstrates that the use

of an instrument such as the EM38 electromagnetic induction

sensor could be of great value in predicting salinity depth

trends in irrigated agriculture.

A further step was to test the extent to which the ECsw

below the root zone could be predicted using information

based on measurements at the centre of the root zone. The

resulting prediction is shown in Table 9, where the ECsw at

120 cm depth was predicted using the ECsw values at the 15–30

and 30–60 cm depth. The result as indicted in Table 9 is highly

significant in predicting the quality of the water that would

drain from this field. Water that drained past the bottom of the

root zone is generally considered lost to drainage unless

prolonged periods of under-irrigation occur in which case

upward water movement and salt build-up could occur.

The modelled change in salinity depth trend through the

year is illustrated in Fig. 4. To amplify the seasonal response,

Fig. 5 was added to indicate the change in slope of the depth

trend lines when the offset in each equation is ignored and

x = 1. This signifies the relationships between treatments in

terms of their profile inclination for the time of year. In both

Figs. 4 and 5, a positive slope means low salt in the upper and

high salt in the lower horizon. A negative slope indicates

higher salt in the upper section of the profile. The indicated

trend lines ties together at point (15;1) and is again an

indication of the excellent predictive quality of the first order

polynomial in these data.

The migration of the regression lines (Figs. 4 and 5),

resulting from irrigation with saline water, might have been

overlooked without the stating of simplified first order

polynomial modelling. Knowing how the soil responds to

irrigation over time has important implications for soil salinity

surveys when carried out with electromagnetic induction

sensors or when large areas have to be sampled for EC

mapping and the prediction of return flow. Apart from using

electromagnetic induction sensors, by knowing the date,

irrigation water quality and being able to remotely measure

the topsoil EC, estimation of both the subsoil salinity

conditions and the return-flow components from such

irrigated land becomes possible.

Electromagnetic sensors like the EM38 have the ability to

measure at two depth intervals, usually in the order of 0–30

Table 7 – R2 and the adjusted R2* for the three trend
orders

Order R2 R2* R2 � R2*

p first 0.905 0.898 0.007

p + 1 second 0.918 0.901 0.017

p + 2 third 0.955 0.935 0.020

Table 9 – A regression analysis between predicted ECsw

values for the 120 cm depth (based on the 15–30 and 30–
60 cm increments) and the measured 120 cm depth ECsw

values

R2 S.E. d.f. P0.005 F

73.9 97.4 71 0.00004 198.4

Table 8 – A regression between the gradient values of the 1st order polynomials derived from ECsw at selected depth
increments and from slope values derived from ECsw at all 5 depth increments for situations 1–3

Situation ECsw at depths (cm) Regression equation (Y = ECsw, X = depth) R2 p0.005

1 0–15, 30–60 Y = 0.435X + 0.469 0.51 0.0034

2 15–30, 30–60 Y = 0.482X + 0.546 0.89 0.0001

3 0–30, 30–60 Y = 0.402X + 0.526 0.65 0.0001
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and 15–120 cm. Though no EM38 data were available we feel

that this approach could add considerable value to remotely

sensed information. Being able to outline and link salinity

depth profiles with such surveys would clearly also enhance

our current remote sensing abilities. Combining information

about the time of year, the remotely detected soil surface EC

and the irrigation water quality, could therefore help in

predicting soil profile salinity for irrigated lands.

4. Conclusions

Soil scientists often focus on unnecessary detail regarding

soils and their behaviour. This study provided an opportu-

nity to better understand the temporal and spatial variation

of ECsw by using a simplified approach. The classical trend

surface analysis procedure of Davis provided an answer to

the problem of finding a suitable depth relationship that

could be used as a norm for the soil studied. This simplified

the management of salt in the soil and the quantity and

quality of return flow.

Prediction of the depth trend in ECsw with a first order

polynomial has distinct advantages. Over- or under-irrigation

can easily be evaluated for any irrigated land. Prediction of salt

accumulation on the soil surface or deep drainage can readily

be assessed. The slope of the first order polynomial indicates

directly the general trend and whether an accumulation or a

depletion of salt can be expected in the soil. When linked to

remote sensing, the approach described here could be used in

evaluating extensive areas of land in terms of salinity and

their suitability for irrigated crops.

Lastly, this research further showed that by knowing the

date, irrigation water quality and being able to characterize the

topsoil EC remotely, one can estimate subsoil salinity condi-

tions in irrigated lands and further estimate the return-flow

component from such irrigated lands.
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