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Research Article
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multi-scale terrain variables: application along the Belgian Part of

the North Sea
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{Renard Centre of Marine Geology (RCMG), Department of Geology and Soil Science,

Ghent University, Krijgslaan 281, S8, 9000 Gent, Belgium

{Department of Soil Management and Soil Care, Ghent University, Coupure 653, 9000
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(Received 30 January 2007; in final form 28 April 2008 )

In the nowadays highly pressurized marine environment, a science-based

approach to management becomes increasingly important. In many cases, the

sediment nature and processes are the key to the understanding of the marine

ecosystem, and can explain particularly the presence of soft-substrata habitats.

For predictions of the occurrence of species and habitats, detailed sedimento-

logical information is required. This paper presents a methodology to create high

quality sedimentological data grids of grain-size fractions and the percentage of

silt-clay. Based on a multibeam bathymetry terrain model, multiple sources of

secondary information (multi-scale terrain variables) were derived. Through the

use of the geostatistical technique, Kriging with an external drift (KED), this

secondary information was used to assist in the interpolation of the

sedimentological data. For comparison purposes, the more commonly used

Ordinary Kriging technique was also applied. Validation indices indicated that

KED gave better results for all of the maps.

Keywords: Multivariate geostatistics; Sedimentology; Topography; Ecogeogra-

phical variables; Belgian part of the North Sea

1. Introduction

For marine habitat mapping and spatial planning purposes, high quality maps of

ecogeographical variables (EGVs), which assist in the prediction of the occurrence

of biological species or communities are invaluable (Derous et al. 2007, Degraer

et al. 2008). For soft substrata habitats, the grain-size and the silt-clay percentage

are often the most determining EGVs for the modeling of macrobenthic species (Wu

and Shin 1997, Van Hoey et al. 2004, Willems et al. 2008). As such, interpolated

data of these sedimentological variables are required, if full-coverage maps of

macrobenthos are needed for scientific or management purposes. However, the
occurrence of macrobenthic species or communities is known to be patchy or bound

to topographic variation (Rabaut et al. 2007); as such, more detailed sedimento-

logical information is required if targeted predictions of macrobenthos are to be

made (e.g. impact assessments). Consequently, (multi-scale) terrain characteristics
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are also believed to be important EGVs (Guisan and Thuiller 2005, Baptist et al.

2006, Wilson et al. 2007).

Ecogeographical variables that cover entire parts of the seafloor (e.g. derived

from high-resolution multibeam bathymetry), represent well the topographical

and morphological variation; however, this is seldom the case when the

sedimentological variability is considered. Mostly, sedimentological data are

interpolated from poorly distributed sediment sampling points and most often

inadequate techniques are being used for the interpolation. Verfaillie et al. (2006)

and Pesch et al. (2008) argued already that the quality of the sedimentological

maps can be improved significantly, if complex geostatistical interpolation

methods are applied.

Multivariate geostatistics can be considered when there is a linear correlation

between the variable and a secondary dataset. In Verfaillie et al. (2006), one

secondary dataset (Digital Terrain Model or DTM) was used to create a high quality

map of the median grain-size of the sand fraction (fraction between 63 and

2000 mm), based on Kriging with an External Drift (KED). However, if more than

one secondary dataset is available, which correlates with the sedimentological

variable, improved results can be obtained (e.g. Kyriakidis et al. 2001, Bourennane

and King 2003, Reinstorf et al. 2005, Hengl et al. 2007a, Miras-Avalos et al. 2007).

Furthermore, Verfaillie et al. (2006) demonstrated that interpolations based on

linear regression and Ordinary Kriging (OK) resulted in respectively bad and

relatively good results, compared to KED.

Our aim was to produce high quality maps of ds10 (10th percentile of the sand

fraction), ds50 (median grain-size of the sand fraction), ds90 (90th percentile of the

sand fraction) and silt-clay% (fraction below 63 mm) using KED (Goovaerts 1997)

with multiple secondary datasets, derived from multibeam bathymetry. For

unimodal sandy sediments, maps of the ds10 and ds90 are in principle very similar

to those of ds50. Still, for skewed grain-size distributions, with extreme fine or coarse

fractions, those variables can be important to explain presences of certain species or

communities.

This paper will demonstrate particularly the strength of advanced geostatistical

techniques to model a suite of sedimentological variables, using multiple secondary

EGVs.

2. Materials and methods

2.1 Study area and datasets

The study area (Figure 1) was situated on the Belgian Part of the North Sea (BPNS),

at about 16 km away from the harbor of Zeebrugge and very close to the Belgian-

Dutch border. Depths were between 15 and 24 m mean lowest low water at Spring

tide (MLLWS). Important geomorphological and ecological values characterize this

area. Large to very large sand dunes (sensu Ashley 1990) were present in the area,

reaching heights of 2.5 m, with wavelengths of a few hundred meters.

The sedimentological dataset consisted of 97 samples, collected during 2

campaigns (RV/Belgica 2006/11/20-24 and 2007/11/26-30). A stratified random

sampling approach was chosen, based on previously acquired multibeam

bathymetry. Sedimentological samples were analyzed with a Malvern Mastersizer

2000 laser particle size analyzer (Malvern Instruments 2008). New multibeam

bathymetry (Kongsberg Simrad EM1002S) data were acquired also during the two
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sampling campaigns. For this study, the bathymetry datasets were processed at a

resolution of 5 m.

Software used was Variowin 2.21 (Pannatier 1996) for the variogram analysis of

the sedimentological datasets; gstat 0.9–42 (Pebesma 2004), implemented in R 2.6.1

(R version 2.6.1 2007) for the geostatistical analysis; ArcGIS 9.2 for GIS analyses

and modeling; Biomapper 3.2 (Hirzel et al. 2006) for the principal component
analyses (PCA); and SPSS 15.0 for the correlation analysis of the sedimentological

data with the EGVs.

Figure 1. Study area (bottom), located in Europe (top left) and the Belgian part of the
North Sea (BPNS) (top right). Large to very large sand dunes (sensu Ashley 1990) are present
in the area.
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2.2 Research strategy

The research strategy consisted out of three steps (Figure 2): (1) the selection of

relevant EGVs as secondary variables for KED; (2) geostatistical interpolation,

based on KED and OK; and (3) comparison of the results.

2.3 Selection of EGVs as secondary variables for KED

Based on the DTM, a range of multi-scale characteristics were derived that could be

used as secondary datasets for KED (slope, eastness, northness, profile curvature,

plan curvature, mean curvature and fractal dimension; cf. Wilson et al. 2007, for an

overview and description). Each variable was calculated on five different spatial

scales, ranging from fine- (15 m) to large-scale (155 m). Window sizes of 3, 7, 13, 21

and 31 cells were applied (with a resolution of 5 m, this corresponded respectively to

lengths of 15, 35, 65, 105 and 155 m). In this paper, the dataset of multi-scale

characteristics were called ‘terrain EGVs’.

To avoid multicollinearity (i.e. high degree of linear correlation) of the terrain

EGVs, a PCA was applied. The PCA is based on a correlation matrix, implying that

the Kaiser-Guttman criterion can be applied (Legendre and Legendre 1998). This

means that principal components (PCs) with eigenvalues larger than 1 were

preserved as meaningful components for the analysis.

A Pearson correlation coefficient was calculated between the PCs (or EGV-PCs)

and the sedimentological point data (ds10, ds50, ds90 and silt-clay%). The selection

of EGV-PCs as secondary datasets for the geostatistical modelling was based on

statistically significant correlations (p(0.05) and the visual inspection of linearity

on a scatter plot.

Figure 2. Research strategy: Step 1: The full coverage digital terrain model (DTM) was
subjected to a multi-scale terrain analysis, resulting in a set of derived ecogeographical
variables (EGVs). After a principal components analysis, a Pearson correlation between the
field observations and the secondary datasets was calculated. Only significantly (p(0.05)
correlating principal components (PCs or EGV-PCs) were retained as secondary variables for
Kriging with an external drift (KED); Step 2: field observations were interpolated using KED
with the selected EGV-PCs as secondary information. Ordinary Kriging (OK) was also
applied on the field observations without secondary information (not shown in the scheme);
and Step 3: results of KED and OK are compared and evaluated.
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2.4 Interpolation with OK and KED

Kriging requires a variogram analysis. The variogram c(h) represents the average

variance between observations, separated by a distance h. This value is important in

the description and interpretation of the structure of the spatial variability of the

investigated regionalized variable (Journel and Huijbregts 1978). The ‘sill’ is the

total variance s2 of the variable, the ‘range’ is the maximal spatial extent of spatial

correlation between observations of the variable and the ‘nugget variance’ represents

random error or small-distance variability.

Geostatistics is based on the concept of Random Functions, whereby the set of

attribute values z(x) at all locations x are considered as a particular realization of a

set of spatially dependent Random Variables Z(x) (Meul and Van Meirvenne 2003).

To compare the resulting maps of predictions of the sedimentological data, the

datasets were interpolated, both with OK and KED.

OK is the most frequently used kriging technique. The OK algorithm uses a

weighted linear combination of sampled points, situated inside of a neighborhood

(or interpolation window) around the location x0 where the interpolation is

conducted. An underlying assumption is that the mean value (m) is locally

stationary (i.e. that it has a constant value inside the interpolation neighborhood).

The algorithm can be written as:

Z1 x0ð Þ~
Xn x0ð Þ

a~1

la
: Z xað Þ{m½ �f gzm~

Xn x0ð Þ

a~1

laZ xað Þ½ �z 1{
Xn x0ð Þ

a~1

la

" #
:m ð1Þ

with la equal to the weights attributed to the n(x0) observations z(xa); n the total

number of observations z(xa); n(x0) the subset of n, lying inside the interpolation

window. The weights la are obtained by solving a set of equations (the kriging

system), involving knowledge of the variogram (see e.g. Goovaerts 1997). These

weights are constrained to sum to one, leading to the elimination of the parameter m

from the estimator which is thus written as:

Z1OK x0ð Þ~
Xn x0ð Þ

a~1

laZ xað Þ with
Xn x0ð Þ

a~1

la~1 ð2Þ

KED is a multivariate variant of ‘Kriging with a trend model’ (KT), formerly called

‘Universal Kriging’. Kriging with an external drift and KT are non-stationary

methods, meaning that the statistical properties of the variable are not constant in

space (i.e. no constant mean within the interpolation neighbourhood). With KT, the

trend is modeled as a function of the spatial coordinates, whilst for KED, the trend

m(x0) is derived from a local linear function of the secondary variable, which is

formulated in each interpolation window (Goovaerts 1997):

m x0ð Þ~b0zb1u2 x0ð Þ ð3Þ

with m(x0) the trend on location x0; b0, b1 the unknown parameters of the trend,

calculated in each interpolation window from a fit to observations; u2(x0) the

secondary variable on location x0. In the case of more than one secondary variable

ui(x0), this formula can be extended to:

m x0ð Þ~b0zb1u2 x0ð Þzb2u3 x0ð Þz . . . zbi{1ui x0ð Þ ð4Þ

with m(x0) the trend at location x0; b0, b1, b2, bi21 the unknown parameters of the
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trend, calculated in each interpolation window from a fit to the observations; u2(x0),

u3(x0), …, ui(x0) the secondary variables at location x0, depending on the number of

secondary variables i21. The KED estimator has the same form as the OK

estimator. At each location where the primary sedimentological variable z(xa) was

observed, the residual r(xa) was computed:

r xað Þ~z xað Þ{m xað Þ ð5Þ

A major problem concerning KED is that the underlying (trend-free) variogram is

assumed to be known. This means that the variogram, estimated from the raw data,

is biased if the mean changes from place to place. As such, it is necessary to remove

the local mean and estimate the residual variogram (Lloyd 2005). A solution to

estimate the underlying variogram, associated with r(xa), is to use the variogram in a

direction where the drift is not active (Goovaerts 1997, Wackernagel 1998, Hudson

and Wackernagel 1994, Lloyd 2005, Verfaillie et al. 2006). The variogram in this

direction can be extended to other directions under the assumption of isotropic

behavior of the underlying variogram.

For KED, the secondary data must be available at all primary data locations as well

as at all locations being estimated. A more complex multivariate geostatistical

technique is cokriging, which does not require this secondary information to be known

at all locations being estimated. Cokriging is much more demanding than other kriging

techniques, because both direct and cross variograms must be inferred and jointly

modelled and because a large cokriging system must be solved (Goovaerts 1997).

The selected EGV-PCs were used as secondary datasets for KED, resulting in

sedimentological data grids of ds10, ds50, ds90 and silt-clay%.

Kriging with an external drift was computed in R, based on Hengl (2007b) and

Hengl (pers. comm.).

2.5 Comparison of OK and KED

To enable a thorough quality control of the geostatistical analysis, based on both

OK and KED, a five-fold cross validation was performed (Fielding and Bell 1997),

meaning that the sedimentological dataset was split into five partitions and that each

partition was withheld one after the other. Several indices are suitable to evaluate

the interpolation. These indices are all a measure of the estimation error, which is

the difference between the estimated and the observed value:

z1 xað Þ{z xað Þ:

(1) The mean estimation error (MEE), which has to be around zero to have an

unbiased estimator.

MEE~
1

n

Xn

a~1

z1 xað Þ{z xað Þ½ � ð6Þ

(2) The mean square estimation error (MSEE), which has to be as low as possible

and is useful to compare different procedures. The root mean square estimation

error (RMSEE) is used to obtain the same units as the variable. This parameter
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has to be compared to the variance or the standard deviation of the dataset.

MSEE~
1

n

Xn

a~1

z1 xað Þ{z xað Þ½ �2 ð7Þ

(3) The mean absolute estimation error (MAEE), which is similar to the MSEE,

but is less sensitive to extreme deviations.

MAEE~
1

n

Xn

a~1

z1 xað Þ{z xað Þj j ð8Þ

(4) The Pearson correlation coefficient between z*(xa) and z(xa), indicates the

degree of linear correlation between observed and estimated values. This

value has to be considered in combination with the MEE. The correlation

coefficient is, in itself, a measure of the proportion of variance explained,

and hence is related to MSEE.

The validation indices permit comparing the results of OK and KED.

3. Results

3.1 Selection of EGVs as secondary variables for KED

Principal component analyses resulted in nine PCs, explaining 81.4% of the total

variance. Table 1 gives an overview of the selected PCs with the corresponding EGVs

with high factor loads (20.5,r and r.0.5). The Pearson correlation coefficients of all

nine PCs with the values of ds10, ds50, ds90 and silt-clay% and the significant linear

correlations are presented in Table 2. All of the sedimentological variables showed a

significant correlation with PC2 and PC6. A selection of scatter plots is presented in

Figure 3. As the scatter plots of ds10, ds50 and ds90 are very similar for PC2 and PC6,

only the scatter plots of ds90 are given. The correlation coefficient between the silt-

clay% and PC2 and PC6 is very weak and only significant at the 0.05 level (Table 2). As

such, these scatter plots are not presented in Figure 3 and it is expected that the

secondary variables PC2 and PC6 will not contribute significantly to the KED

Table 1. Principal components (PCs) showing significant correlations with the sedimento-
logical variables (cf. Table 2), with their corresponding ecogeographical variables (EGVs) and
factor loads (between brackets). Only those EGVs are given with factor loads ,20.5 or .0.5,

being the EGVs that are most explaining the PCs.

PC1 PC2 PC6

mcurv_13 (20.89) slp_13 (20.89) plcurv_21 (20.67)
mcurv_21 (20.88) slp_21 (20.87) plcurv_13 (20.56)
prcurv_13 (20.83) slp_7 (20.79) plcurv_31 (20.55)
prcurv_21 (20.82) slp_31 (20.76)
mcurv_7 (20.74) fd_13 (0.65)
mcurv_31 (20.72) slp_3 (20.62)
prcurv_31 (20.67) fd_7 (0.56)
prcurv_7 (20.67) fd_21 (0.54)

mcurv5mean curvature, prcurv5profile curvature, slp5slope, plcurv5plan curvature,
fd5fractal dimension, 3, 7, 13, 21 and 33 are multi-scale indices.
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Table 2. Pearson correlation coefficients between the sedimentological variables and the
principal components (PCs) and their statistical significance values (p). Only those PCs and
correlation coefficients are given that have a statistical significant correlation. Those PCs were

used as secondary variables for the Kriging with an external drift analysis.

PC1 PC2 PC6

ds10 Pearson correlation 20.537** 0.355**
p 0.000 0.001

ds50 Pearson correlation 20.524** 0.377**
p 0.000 0.000

ds90 Pearson correlation 20.284** 20.537** 0.387**
p 0.008 0.000 0.000

Silt-clay% Pearson correlation 0.260* 20.263*
p 0.012 0.011

**Correlation is significant at the 0.01 level.
*Correlation is significant at the 0.05 level.

Figure 3. Scatter plots showing the Pearson correlation coefficients (rij) of Table 2 between
ds90 and the principal components (PCs). Correlation coefficients and scatter plots between
ds10, ds50 and PC2 and PC6 are very similar; as such scatter plots are not presented.
Correlation coefficients between the silt-clay% and PC2 and PC6 are very weak. As such,
those scatter plots are not presented.

142 E. Verfaillie et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
e
i
t
 
G
e
n
t
]
 
A
t
:
 
0
8
:
1
4
 
5
 
M
a
r
c
h
 
2
0
0
9



interpolation of the silt-clay%. PC2 was mainly explained by multi-scale slope and

fractal dimension, while PC6 by multi-scale plan curvature (Table 1). Those PCs were

the major contributors for the KED analysis. Moreover, ds90 correlated weakly with

PC1 as well, mainly explained by multi-scale mean and profile curvature. This means

that the sediment variation was mainly correlated with the combined pattern of slope,

fractal dimension and plan curvature and this on different spatial scales.

The correlation coefficients between the sedimentological variables and the other

6 PCs (PC3, PC4, PC5, PC7, PC8 and PC9) were not given, as they were not

statistically significant and thus did not have a linear relation.

3.2 Interpolation with OK and KED

The variograms for OK and KED are presented in Figures 4 and 5 respectively. All

variograms of the sedimentological variables could be fit in a relatively

Figure 4. Experimental and fitted variograms for ordinary Kriging (OK): X-axis represents
lag distance (m) and the Y-axis is the semivariance (units are mm2 for ds10, ds50, ds90 and %2

for silt-clay%). Variogram models are expressed as c(h)5C0 + C1 exp a(h), with C05nugget
effect, C15sill, exp5exponential model and a(h)5practical range. Practical ranges are equal
to the distance at which 95% of the sill has been reached. Directions are expressed as
trigonometric angles (zero degrees5east increasing counter clock wise).
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straightforward way, except that of the silt-clay%, which behaved more unstable,

due to the relative small values of this variable and the impact of a larger-scale trend.

The variogram surface for each sedimentological variable did not show any

obvious anisotropy, still the direction of the strike of the sand dunes (120u, expressed

as a trigonometric angle) was considered as the direction of the highest continuity.

This means that, in this direction, it was expected that the sedimentological variables

were more continuous than in other directions. It is logical that in the direction of

the strike of a sand dune, similar sedimentological characteristics are found, while

those characteristics are different in a perpendicular direction. Two OK variograms

and data grids per sedimentological variable were created, with an omnidirectional

and a directional variogram (being the direction of the strike of the sand dunes). The

two results were compared, based on their validation indices: for ds10 and silt-

clay%, a directional variogram gave the best result, whilst for ds50 and ds90, an

omnidirectional variogram scored best.

For KED, the direction of the strike of the sand dunes, was considered as a drift-

free direction. As such, the variogram of this direction was considered as

omnidirectional and was used for the analysis.

Figure 5 shows the maps of the resulting sedimentological data grids, modeled

with OK and KED. The blanked zones are due to missing data; their surface area

has been enlarged due to the multi-scale analysis (with window sizes of maximum

31 cells).

Figure 5. Experimental and fitted variograms for Kriging with an external drift (KED), in
the direction of the strike of the sand dunes (120u expressed as a trigonometric angle; zero
degrees5east increasing counter clock wise); they are considered omnidirectional, because of
the assumption that this direction is drift-free. The X-axis represents the lag distance (m) and
the Y-axis is the semi-variance (units are mm2 for ds10, ds50, ds90 and %2 for silt-clay%).
Variogram models are expressed as c(h)5C0 + C1 exp a(h), with C05nugget effect, C15sill,
exp5exponential model and a(h)5practical range. Practical ranges are equal to the distance
at which 95% of the sill has been reached.

144 E. Verfaillie et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
e
i
t
 
G
e
n
t
]
 
A
t
:
 
0
8
:
1
4
 
5
 
M
a
r
c
h
 
2
0
0
9



The results of ds10, ds50 and ds90 are very similar. As such, no outliers of extreme
fine or coarse fractions are present; the sediment is very homogeneous and well

sorted. The OK maps are smooth and rather unnatural, in the sense that they show

Figure 6. Sedimentological maps, based on ordinary Kriging (OK) (left) and Kriging with
an external drift (KED) (right).
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concentric patterns around the data points, whilst the KED maps reflect well the

variation of the natural environment. Still, the two methodologies showed the same

trend: coarser grain-sizes on the sand dunes and finer grain-sizes between and away

from the sand dunes. The influence of the underlying topography was very clear in

the results from KED. The same trend, showing a difference between the sand dunes

(low silt-clay%) and the area away from the dunes (higher silt-clay%), held true for

the silt-clay%. The rough, mottled pattern away from the dunes, and visible on all of

the KED maps, was due to the presence of dense colonies of tube worms; their

existence was validated with extensive terrain verification.

3.3 Step 3: comparison of OK and KED

The validation indices are given in Table 3. Kriging with an external drift provided a

better result, compared to OK for all of the indices of ds10, ds50 and ds90. From

this, the KED results of ds10, ds50 and ds90 could be considered better than those of

OK.

For the silt-clay%, the result of OK was highly comparable to the result of KED.

The MEE and Pearson correlation coefficient between the observed and the

estimated values were better for OK compared to KED. The other validation indices

were slightly better for KED compared to OK. This was due to the low correlation

coefficient between silt-clay% and PC2 and PC6 (Table 2), meaning that the

contribution of the secondary variables for KED was limited. The significant

correlation coefficients between ds10, ds50, ds90 and the PCs were all significant at

the 0.01 level, while for silt-clay%, the correlation was significant at the 0.05 level

(the lower the significance level, the stronger the evidence) (Table 2).

Next to the better validation indices, KED gave visually more natural maps.

4. Discussion

The aim of this paper was to create high quality sedimentological data grids, using

multiple sources of secondary information. Next, the following items will be

discussed: the secondary variables for KED and the comparison between OK and

KED.

4.1 Secondary variables for KED

The proposed methodology allowed using a whole set of secondary variables. Here,

34 multi-scale terrain EGVs were derived from the DTM (slope, eastness, northness,

Table 3. Validation indices (cf. Materials and Methods) of different sedimentological data
grids. Except for the MEE and the Pearson correlation coefficient of the silt-clay%, all
validation indices give better results for Kriging with an external drift (KED) compared to

ordinary Kriging (OK).

ds10OK ds10KED ds50OK ds50KED ds90OK ds90KED Sc%OK Sc%KED

MEE 2.44 20.55 6.85 21.22 3.09 2.48 20.42 20.51
RMSEE 63.01 56.50 93.51 82.78 134.78 121.68 13.09 13.04
MAEE 46.32 40.47 71.99 64.69 104.04 93.82 9.90 9.82
r 0.52 0.64 0.55 0.67 0.68 0.75 0.50 0.46

Sc%5silt-clay%, in bold are the best results.
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profile curvature, plan curvature, mean curvature and fractal dimension). All of

them were calculated on five different spatial scales, ranging from fine- to large-

scale. A PCA reduced the large number of secondary variables to nine PCs. Three of

these PCs correlated significantly with the sedimentological variables. The PCA

allowed maintaining a maximum of information, but avoided redundancy of

correlating data.

For all of the sedimentological variables, there was a similar subset of PCs and

EGVs, correlating significantly with the sedimentology (Table 1): mean, profile and

plan curvature; slope and fractal dimension, on all different spatial scales. This

means that a combination of different spatial scales was important in explaining the

sedimentological variation. Mainly the larger window sizes of 13, 21 and 31 (or 65,

105 and 155 m) were well represented, but also the smaller window sizes of 3 and

7 cells (or 15 and 35 m) were important. Mainly the larger distances were well suited

to explain the sedimentological variability imposed by bedforms having wavelengths

of around 100 m (very large dunes sensu Ashley 1990), but the smaller distances

corresponded more with the smaller dunes (large dunes sensu Ashley 1990). Mainly

the EGVs, associated with PC2 and PC6 (multi-scale slope, fractal dimension and

plan curvature), were responsible for the overall sedimentological variation, as all of

the sedimentological variables were correlated with those PCs. Such a slope – grain-

size correlation has also been detected on sandy beaches (McLachlan 1996), while

Azovsky et al. (2000) detected a correlation between grain-size and fractal

dimension. Fractal dimension (Mandelbrot 1983) is often referred to as a measure

of the surface complexity; as such it can be linked to habitat complexity of

macrofauna (Kostylev et al. 2005).

Besides topography, possibly other EGVs correlate with the sedimentology and

could be valuable secondary datasets for a multivariate geostatistical interpolation:

e.g. the correlation between silt and nutrient richness (Greulich et al. 2000); between

sand and organic matter content (Mantelatto and Fransozo 1999); and between

grain-size and bottom current strength (Revel et al. 1996). Still, no high resolution

datasets, other than the DTM, were available for this study area.

Categorical EGVs could be valuable secondary datasets as well (Hengl et al.

2007c). An example of such a dataset could be acoustic seabed classes of the

sediment, derived from the classification of multibeam backscatter strength (Van

Lancker et al. 2007) or side-scan sonar classes. Still, this information was not

available for this study area.

4.2 Comparison of KED and OK

Validation indices, as presented in Table 3, are a valuable tool, though they permit

only a comparison of different interpolation methods, applied on the same dataset.

A ds50OK and a ds50KED map can be compared and the best result can be evaluated.

It is more difficult to compare results from e.g. the ds10KED, ds50KED, ds90KED and

silt-clayKED data grids. To overcome this issue, the correlation coefficients of the

observed versus the estimated values can be compared. For this study, the

coefficient indicates that ds90KED map is the most reliable.

The validation indices can be compared with the accuracy of the sedimentological

variables. The accuracy of the sedimentological analyses is in the range of 1%

(Malvern Instruments 2008). The differences between OK and KED were well above

this analytical accuracy: for example, the RMSEE of ds50 reduced with 10.73 mm

(Table 3), which represents a relative gain of 11.45%. For the silt-clay%, where the
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RMSEE only reduced with 0.05%, the difference in accuracy between OK and KED

was negligible. The interpolation of the silt-clay% was less straightforward than the

interpolation of the ds10, ds50 and ds90. This poor increase in accuracy between

both interpolation methods was mainly due to the small correlation coefficients

between the silt-clay% and the PCs.

5. Conclusion

This paper proposed a multivariate geostatistical approach to obtain high quality

sedimentological data grids of ds10, ds50, ds90 and silt-clay%. Kriging with an

external drift was used with multiple secondary variables on different spatial scales,

all derived from a DTM of the bathymetry. The sedimentological data were also

interpolated with OK, and validation indices enabled to compare both results. For

all of the sedimentological variables, KED gave the best result, although the results

for the silt-clay% for both OK and KED were very similar. The maps, based on

KED, showed a different pattern on the sand dunes and away from and between the

sand dunes. The sand dunes are composed of coarser sand, whilst the zones away

from them have finer grain-sizes. The same difference can be observed for the silt-

clay%: a high silt-clay% away from the dunes is observed and a low silt-clay% on the

sand dunes. This pattern is not at all clear when the results, obtained with OK, were

evaluated.

These highly detailed sedimentological data grids are the key for the adequate

prediction of biological species, communities or habitats. This is especially the

case for the predictive modelling of soft-substrata macrobenthos, of which the

occurrence relates highly with sedimentological gradients (e.g. Degraer et al.

2008).
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