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INTRODUCTION

The ocean floor is a heterogeneous environment
with marine biota patchily distributed. Therefore,
diversity and densities of marine communities tend to
be higher in localized areas (Reese & Brodeur 2006).
Moreover, the marine seabed is increasingly disturbed
and degraded by bottom trawling, sand extraction,
dredging and dumping, which inevitably reduces bio-
logical diversity. Identification of diversity hotspots is a
major concern in diversity conservation, and the iden-
tification of these marine, biological hotspots is a grow-
ing area of research (Malakoff 2004, Reese & Brodeur
2006). Biodiversity indices are often used to describe
these areas of biological interest. However, studies
investigating diversity in large areas are scarce, due to

the high costs involved in such a labour-intensive pro-
cess, and most studies result in point observations,
while there is a growing need for full coverage maps.

Geostatistical interpolation techniques offer a pow-
erful and cost-effective alternative; based on available
point observations of communities and full coverage
maps of relevant environmental data, full coverage
maps of diversity can be constructed. Kriging has been
developed for spatially structured mining data (Math-
eron 1963) and is widely used in the terrestrial envi-
ronment to create maps of chemical properties of soil
and air (Hengl et al. 2004, Hoek et al. 2008, Van Meir-
venne et al. 2008) and more recently it has been
applied to model faunal (Walker et al. 2008) and floral
(Hernández-Stefanoni & Dupuy 2007) distributions. In
the marine environment, it has been employed to map
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soil characteristics (Verfaillie et al. 2006), distribution
patterns of marine species (Mello & Rose 2005, Rios-
Lara et al. 2007, Degraer et al. 2008) and, to a lesser
extent, diversity (Reese & Brodeur 2006). In the present
study, 2 conceptually different approaches were used:
(1) interpolation relying only on point observations of
the diversity index, known as ordinary kriging (OK)
and (2) interpolation based on both point observations
and full coverage environmental maps, known as
regression kriging (RK).

In the present study, we focused on free-living
marine benthic nematodes, a taxon within the meio-
fauna, comprising metazoans passing through a 1 mm
mesh sieve but retained on a 38 µm mesh sieve. To our
knowledge, these geostatistical techniques have not
been applied before on Nematoda. This is surprising
since these free-living roundworms represent the
highest metazoan diversity in many benthic environ-
ments in terms of species numbers (Heip et al. 1985):
>50 species are commonly found in a single 10 cm2

core. Owing to their interstitial lifestyle, properties of
the sediment, such as grain size distribution, the silt-
clay fraction and food availability, have a strong influ-
ence on the diversity and composition of nematode
assemblages (Heip et al. 1985, Vanreusel 1990, Vincx
1990, Steyaert et al. 1999). Nematode communities
seem to be resilient to disturbance, and their restora-
tion occurs easily after temporal, low impacts
(Kennedy & Jacoby 1999, Schratzberger et al. 2002),
making them a perfect community to model based on
long-term environmental and full coverage data.
Previous research on the predictability of nematode
diversity did indeed yield accurate predictive models
(Merckx et al. 2009); yet, these were not area-covering
models.

The research area is the Southern Bight of the North
Sea. The seafloor is not at all homogeneous as it is
characterized by sand dunes and a wide range of
sediment types, varying from muddy to sandy environ-
ments (Van Hoey et al. 2004). The coastal area is
characterised by a high amount of total suspended
matter, chlorophyll a (chl a) and silt-clay fraction, espe-
cially near the Belgian coast. The primary objective of
the present study was to create accurate biodiversity
maps of the nematode diversity of the Southern Bight
of the North Sea.

MATERIALS AND METHODS

Study area. The research area, with a total surface of
about 18 000 km2, is situated in the Southern Bight
of the North Sea, near the Belgian and the Dutch
coastal area (latitude: 51°6’2’’ to 52°59’19’’N; longi-
tude: 2°14’39’’ to 4°30’43’’E).

Nematode data. The nematode data were retrieved
from the MANUELA database. Within the EU Network
of Excellence MarBEF, MANUELA is a Research Pro-
ject focusing on meiobenthic assemblages. The
MANUELA database was compiled capturing the
available data on meiobenthos on a broad European
scale (Vandepitte et al. 2009). For the present paper,
the area of research was restricted to the Southern
Bight of the North Sea, since, firstly, full coverage envi-
ronmental maps were available for the entire region
and, secondly, results were not biased by sampling
strategy because all data were collected by a single
institute, the Marine Biology Research Group of Ghent
University. The resulting dataset consisted of 562 sam-
ples belonging to 153 different stations (Fig. 1). These
data included information on 99 966 nematodes identi-
fied to species level and collected in the time frame
from 1972 to 2004. Different sampling gears were used
to collect these data: 49% of the samples were taken
with a Reineck boxcorer, 31% with a Van Veen grab,
19% with a Nioz boxcorer and 1% by divers. All sub-
samples were taken with Perspex cores, with a surface
area of 10 cm2.

Environmental data. The source of the environmen-
tal data can be divided into 2 groups: from maps
acquired by remote sensing and from maps derived
from data sampled in the field.
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Fig. 1. Study area and location of the sampling stations (•)
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The first group of data was derived from remote
sensing by the MERIS spectrometer on board the
Envisat satellite of the ESA Data and comprises data on
total suspended matter and chl a in the water column
(Park et al. 2006). For the time frame from 2003 to 2005,
80 maps of chl a and 90 maps of total suspended mat-
ter were available. These maps were reduced to
3 maps for each variable, containing biologically rele-
vant information: the minimum, maximum and aver-
age values. This data reduction technique is often
applied in ecological modelling (Loiselle et al. 2008,
Cunningham et al. 2009, Echarri et al. 2009). Through
sedimentation and degradation, chl a and total sus-
pended matter enrich the bottom organic matter
(Druon et al. 2004). This input of organic matter is
known to influence nematodes directly, as it serves as
a food source (Vanaverbeke et al. 2004, Franco et al.
2008), or indirectly, as microbial degradation often
results in oxygen-stressed sediments (Graf 1992),
which can have a strong adverse effect on nematode
diversity (Steyaert et al. 1999).

The second group comprised data on sediment char-
acteristics and bathymetry. The sediment was descri-
bed by the median grain size and the silt-clay fraction.
These maps were supplied by the Renard Centre of
Marine Geology, Ghent University (Verfaillie et al.
2006), and by the TNO Built Environment and Geo-
sciences ’Geological Survey of the Netherlands’. The
bathymetrical data were provided by the Ministry of
the Flemish Community Department of Environment
and Infrastructure, Waterways and Marine Affairs
Administration, Division Coast, Hydrographic Office
and completed with data from the Hydrographic
Service of the Royal Netherlands Navy and by the
Directorate-General of Public Works and Water
Management of the Dutch Ministry of Transport, Pub-
lic Works and Water Management. The silt-clay frac-
tion and the median grain size are important factors

determining meiobenthic diversity (Heip et al. 1985,
Steyaert et al. 1999, Vanaverbeke et al. 2002, Merckx
et al. 2009). Depth in shallow waters does not directly
affect the nematode community, but it modifies the
effects of other factors, such as trophic conditions, sed-
iment properties and current properties.

An overview of the range of the environmental data
in the dataset is shown in Table 1. The range is calcu-
lated for both the dataset, used to build the model, and
for the full coverage maps, used for model application.

Diversity indices. As nematodes can occur in large
numbers, nematode identification is generally carried
out on a subsample. Subsamples consist mostly of
200 individuals, although the exact number of identi-
fied nematodes varies between samples. Therefore, we
used a diversity measure that is independent of sam-
pling effort: the expected number of species. The ES(n)
is the expected number of species if the sample were of
the smaller size n (Hurlbert 1971). When individuals
are independently sampled with similar probability
from a small sample, the expected species richness is
(Sanders 1968, Hurlbert 1971, Simberloff 1972):

(1)

where N is the total number of individuals in the sam-
ple, S is the total number of species (i.e. species rich-
ness), xi is the number of individuals of species i in the
sample and n is the number of individuals in the sub-
sample. The term inside the summation sign is the
probability that a sample of n individuals will contain
species i (Gotelli & Graves 1996). Previous research on
the predictability of nematode diversity showed that
models developed for ES(25) yielded good predictions
(Merckx et al. 2009).
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Table 1. Range and median values of diversity indices (first 2 parameters) and environmental variables of the dataset used to 
build the models (database), and of the environmental variables in the maps (maps)

Database Maps
Parameter Description Min. Max. Median Min. Max. Median

S Species richness 1 77 30
ES(25) Expected species richness 1 19 13
d50 Median grain size (µm) 99 541 261 4 692 317
Silt-clay Silt-clay fraction (%) 0.01 95 1.3 0 84 0.053
TSM_mean Average total suspended matter (g m–3) 1.9 24 8.1 1.0 24 2.6
TSM_max Maximum total suspended matter (g m–3) 3.8 50 28 2.3 66 7.3
TSM_min Minimum total suspended matter (g m–3) 0.55 10 1.2 0.2 14 0.8
Chl_mean Average chl a (µg l–1) 2.0 12 4.9 1.3 26 3.2
Chl_max Maximum chl a (µg l–1) 4.3 35 22 2.7 39 12
Chl_min Minimum chl a (µg l–1) 0.04 2.3 1.3 0.04 20 1.1
Depth Depth of the water column (m) 2 44 15 –1.3 53 26
Year Year of sampling 1971 2004 1985
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The species richness (S), although not independent
of sampling effort, was included in the analysis as well,
since it is the most commonly used index and is
representative for most of the samples because the
sampling methodology remained unchanged over the
years. The range of diversity indices in the dataset is
shown in Table 1.

Geostatistical modelling. Geostatistics offers power-
ful interpolation methods for spatial analyses, espe-
cially in a patchy environment. The cornerstone in
geostatistics is the modelling of the variogram (Web-
ster & Oliver 2007). It represents the average variance
between observations separated by a distance h and
has a strong descriptive and interpretative power for
the structure of the spatial variability of a variable. The
variogram is estimated by (Journel & Huijbregts 1978,
Goovaerts 1997):

(2)

with γ(h) being the variogram for a distance vector
(lag) h between observations z(xα) and z(xα + h) of the
diversity at the locations xα and xα + h and with N(h)
being the number of pairs separated by h.

A variogram is represented as a graph and reveals
the underlying spatial pattern of variables, having more
similar values when they are spatially closer. The ex-
perimental variogram is a plot of the calculated γ(h) val-
ues versus the lag h, while the theoretical variogram is
the curve fitted through these points, yielding a contin-
uous function of γ(h) (Fig. 2). This curve fitting proce-
dure is a crucial step in variogram analysis (Webster &
Oliver 2007). Four important variogram parameters can

be derived: the sill, the range, the nugget and the
model. The ‘sill’ represents the total variance of the
variable and is the maximum of the variogram model.
The ‘range’ is the maximal spatial extent of spatial
correlation between observations of the variable. At
lags larger than the range, the expected difference be-
tween observations is maximal (being the sill) and inde-
pendent of the distance. The extrapolation of the vari-
ogram model to lags of 0 is called the ‘nugget variance’
and represents sources of random noise, such as sam-
pling errors and variability at distances closer than the
smallest sampling lag. The relative structural variance,
i.e. the proportion of total variance that can be attrib-
uted to the spatial autocorrelation, can be derived from
the variogram: it is the total variance minus the nugget,
divided by the total variance. The theoretical variogram
can be composed of nested models or structures. Com-
mon models are the spherical, exponential, Gaussian
and power model. If the variable shows anisotropic
variability, directional variograms can be derived (Jour-
nel & Huijbregts 1978, Verfaillie et al. 2006). All vari-
ograms were calculated and constructed with the soft-
ware Variowin 2.2 (Panatier 1996).

In biological applications it is common to collect
replicate samples at nearly the same sampling point to
check for local variation in species communities. These
replicates have the same geographical coordinates,
but are in reality some metres apart, since they result
from different drops. Due to limitations of the software,
it is impossible to use these replicates in variogram
modelling since they have the same coordinates.
However, by randomly adding a realistically small
variation, within a range of metres, these replicates
can be used to accurately estimate the nugget effect.

Two geostatistical interpolation techniques were
used in the present paper: OK and RK. OK does not
need auxiliary information. However, when such infor-
mation is available and it is related to the variable of
interest, RK often outperforms OK because it exploits
this additional information (Hengl et al. 2007b).

The OK algorithm uses a weighted linear combina-
tion of sampled points situated around the location x0,
where the interpolation is conducted. Observations
closer to x0 get a higher weight than observations
further away. An underlying assumption for OK is that
the mean value is locally stationary; thus, it has a
constant value inside the interpolation window. The
algorithm can be written as:

(3)

with n(x0) being the total number of observations in the
interpolation window around x0 and λα being the
weight attributed to the observation Z(xα). The weights
λα are obtained by solving a set of equations involving
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Fig. 2. Experimental variogram (d) and the fitted theoretical
variogram (line). The latter is a function describing the degree
of spatial dependence of a spatial variable. The plot shows the
relation between  the semivariance γ of the variable and the
distance h between paired data. The nugget (or nugget vari-
ance) is the variance at the limit as the lag tends to zero; the
sill is the limit of the variogram at infinite lag distances and
the range is the distance at which the difference between the 

variogram and the sill becomes negligible
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knowledge of the variogram, and they are chosen in
such a way that the prediction error variance is mini-
mized (Webster & Oliver 2007).

When exhaustive secondary information is available,
RK can be used alternatively. Predictions by RK
involve 2 steps: first, the relationship between the
primary variable and the secondary environmental
variables at the sampling locations are modelled by a
linear regression, and this model is then applied to the
unsampled locations using the environmental vari-
ables at this location. Second, the residuals of this
linear model are subjected to simple kriging (SK) with
an expected mean of 0 (Deutsch & Journel 1992).

The linear model can be written as a linear combina-
tion of the environmental variables:

(4)

where qk(x0) is the value of the independent variable k
at the location x0, 

^βk is the estimated regression coeffi-
cient of the variable k and p is the number of depen-
dent variables. In the current study, the regression
coefficients are estimated in 2 ways: by ordinary least
squares (OLS) and generalised least squares (GLS).
The latter is an iterative technique (Carroll & Rupert
1988), which takes the spatial correlation between
observations into account (Cressie 1993). Different
steps were carried out for both linear regression tech-
niques. First, variables where standardized to a mean
of 0 and a standard deviation of 1, to understand the
relative importance of each environmental variable
(Schroeder et al. 1986). Secondly, multicollinear vari-
ables with a Pearson correlation coefficient of >0.8
were removed, and, ultimately, by backwards selec-
tion, only the highly significant terms were retained
from a second-order full model. Normality of the resid-
uals was checked at a significance level of p < 0.05. In
case no normality was found, the primary variable was
log-transformed.

As mentioned before, RK combines 2 approaches:
linear regression (the first term in Eq. 5) and simple
kriging with an expected mean of 0 for the residuals of
the linear model (the second term in Eq. 5). Thus, the
complete model can be written as (Hengl et al. 2007b):

(5)

where e(xα) is the residual at location xα.
Validation. A quality control of the different models

was performed using a validation dataset containing
30% of all the samples, leaving 70% of the data for the
training set. Samples were randomly assigned to the
validation set; however, replicates were kept in the
same dataset. Replicate samples are, due to spatial
autocorrelation, more alike than other samples. If

replicate samples are distributed over both sets, the
values of the validation set will be predicted accu-
rately, since similar values are present in the training
set. This will result in overly optimistic model statistics.
As a consequence, keeping replicates in the same
dataset will give a more realistic estimation of the
accuracy of the geographic interpolation. This valida-
tion dataset was used exclusively at the completion of
the analysis to compare the performance of the differ-
ent modelling techniques. Therefore, 5 statistics were
calculated: the mean estimation error (MEE) (Eq. 6),
the root mean-square estimation error (RMSEE)
(Eq. 7), the mean absolute estimation error (MAEE)
(Eq. 8), the Pearson correlation coefficient and the
Spearman rank correlation coefficient.

(6)

(7)

(8)

where n is the number of validation points, z(xα) is the
measurement and z∗(xα) is the estimation at the same
location. The MEE determines the degree of bias in the
estimates; the RMSEE, like the MAEE, evaluates the
magnitude of the average error; however, the latter is
less sensitive to outliers. The Pearson correlation coef-
ficient indicates the strength of the linear relationship
between the predicted and the observed values of the
validation set, and the Spearman rank correlation coef-
ficient is the non-parametric estimation of the correla-
tion between the observed and predicted values.
Another way to analyse the validation error is by
applying Chebyshev’s inequality theorem. According
to his theorem the proportion of normalized errors
should be ≤1/9 (Hengl 2007a).

Practically, 5 different models were compared with
this validation set: the model obtained by OK, the lin-
ear models determined by OLS and GLS without
kriging (the first term in Eq. 5), and both linear models
combined with kriging (both terms in Eq. 5). Based on
the results of this validation set, the models with the
best values for the test statistics were selected, and the
whole dataset was used to create the final maps.

RESULTS

Linear regression with OLS and GLS

For each diversity index, 2 linear models are con-
structed (Table 2). After selecting the most significant
variables, the final models include only 2 or 3 vari-
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ables, namely the silt-clay fraction, minimum values of
total suspended matter and the year of sampling. It is
clear from Table 2 that the silt-clay fraction has the
strongest explanatory power of all models. At least
10 observations are recommended per predictor to
prevent overfitting (Hengl et al. 2007b). This condition
is clearly met: in the training set there are 406 observa-
tions and 5 predictor variables. The coefficients of the
2 regression techniques are similar, indicating that no
strong spatial clustering is present between the points
(Hengl et al. 2004).

Variogram analysis

For each diversity index 3 variograms are modelled:
1 used for OK and 2 for RK. The latter 2 are inferred
from the residuals of both linear regression techniques,
OLS and GIS (Fig. 3). Directional variograms that were
apparent in earlier research on the Belgian Continen-
tal Shelf (Verfaillie et al. 2006) do not improve model
performance and are omitted from the results. The
variograms for OK reveal a strong spatial structure for
both diversity indices, with a range of >40 km and a
relative structural variance of almost 90%, which indi-
cates that a large fraction of the total variance can be
linked to spatial processes (Table 3). For this database,
replicate samples were taken within ranges of metres,

while the total area has a maximum cross section of
250 km; thus, the variation between replicate samples
is at the same time an accurate estimate of the nugget.
The variograms used for RK and inferred from the
residuals of the linear regression models show a signif-
icant decrease in range and sill for both diversity
indices. This reflects the effect of the linear regression:
a considerable amount of variation in the data is
explained by the linear regression, and the extent of
the spatial dependency of the residuals is much
smaller than that of the original diversity index. For
instance, the initial relative structural variance is about
90% for both parameters and decreases to about
65–69% with GLS. The range decreases by 84% for
ES(25) and with >90% for S.

For ES(25) both modelling techniques result in the
same decrease of the relative structural variance. For
the species richness, however, there is a marked differ-
ence between GLS and OLS: GLS is able to explain
more of the relative structural variance than OLS,
indicating a better performance of this modelling
technique.

Independent validation

The independent validation set enables us to com-
pare the efficiency of the different modelling tech-
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Table 2. Estimates of the regression coefficients of the linear models and coefficient of determination (R2) of the models. The log-
arithm of the species richness, log(S), and the expected species richness, ES(25), were modelled by ordinary least squares (OLS) 

and generalised least squares (GLS). See Table 1 for definitions of parameters

Model Intercept Silt-clay (Silt-clay)2 TMS_min Year R2

Log(S) OLS 2.76 –0.81 0.34 –0.33 0.15 0.68
GLS 2.75 –0.87 0.33 –0.28 0.10 0.66

ES(25) OLS 9.53 –5.36 1.73 –1.57 0.73
GLS 9.49 –5.33 1.59 –1.36 0.73

Fig. 3. Theoretical variograms of S (left) and ES(25) (right) (see Table 1) fitted to the experimental values of the diversity index
and used for ordinary kriging (m), to the residuals of the ordinary least squares (OLS) model (•), and to the residuals of the 

generalised least squares (GLS) model (×). The latter 2 are used for regression kriging
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niques. Both regression techniques improve the model
for ES(25) and S considerably compared to OK
(Table 4). Therefore, the relation between the diversity
and the environmental variables exists and explains a
considerable amount of the variation in diversity.
Nevertheless, there is still some spatial pattern present
in the residuals; hence, other unknown or fine-scaled
factors may contribute to the geographical distribution
of nematode diversity.

Comparison of both regression techniques for both
diversity indices shows that GLS offers the best mod-
els, kriging with GLS enhances some, but not all, of the
model performance indices. The major improvement is
found for the MEE; thus, kriging can account for the
remaining bias of the linear models. For species rich-
ness, there is a clear difference between the Pearson
correlation and Spearman rank correlation coeffi-
cients, indicating that there are some strong outliers
present in the residuals. This is less pronounced for
ES(25). Overall, higher correlation values were found
for ES(25). All models meet Chebyshev’s inequality
condition, implying that there is not an unusually high
number of locations where the errors are much higher
than at other stations.

Final maps

Final maps were constructed with all the available
data (Fig. 4), resulting in 2 similar charts: near the Bel-
gian coast there is a very low diversity. On average,
only 9 species per sample were found in this region
and ES(25) is about 4.4, while, for the whole region, an
average number of 30 species per sample were found,
yielding an average ES(25) of 11.8. Further offshore,
the diversity increases considerably. Within this
diverse area, there are small patches with high and
low diversity, resulting from individual sampling
points with higher or lower diversity than the sur-
rounding samples. The range of these patches is larger
for ES(25), since the range of the spatial dependency of
the residuals is larger for this index.

DISCUSSION

Linear regression

The final linear regression functions all comprise a
linear and quadratic function of the silt-clay fraction,
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Table 3. Variogram parameters (see Fig. 3 for description). OK: ordinary kriging; RK: regression kriging; OLS: ordinary least 
squares; GLS: generelised least squares

Nugget Range Sill Relative structural Model
(km) variance (%)

S OK S 44 42.7 320 88 Spherical
RK Residuals OLS 37 3.2 90 71 Spherical

Residuals GLS 34 2.6 76 69 Spherical

ES(25) OK ES(25) 4.3 47.5 36.5 89 Spherical
RK Residuals OLS 3.1 13.6 5.8 65 Spherical

Residuals GLS 3.0 10.9 5.6 65 Spherical

Table 4. Statistics of predicted and observed values of the independent validation set. Best values for each diversity index are in
bold. MEE: mean estimation error; RMSEE: root mean-square estimation error; MAEE: mean absolute estimation error; OK:

ordinary kriging; RK: regression kriging. See Table 1 for further definitions

Biodiversity Linear Kriging MEE RMSEE MAEE Pearson Spearman
index model technique

S No model OK 0.39 14.99 11.35 0.37 0.83
OLS No kriging 1.17 12.41 10.08 0.61 0.85
OLS RK 0.56 12.35 9.86 0.60 0.85
GLS No kriging –0.53 11.76 9.46 0.63 0.86
GLS RK –0.37 11.84 9.42 0.62 0.87

ES(25) No model OK 0.02 3.63 2.52 0.57 0.87
OLS No kriging –0.26 2.67 2.14 0.80 0.84
OLS RK 0.04 2.56 2.04 0.80 0.87
GLS No kriging –0.51 2.65 2.14 0.81 0.85
GLS RK –0.06 2.55 2.03 0.80 0.88
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which results in a positive parabola with a minimum
diversity situated around 60% silt-clay. Consequently,
the influence of mud is not unequivocal; when the silt-
clay fraction exceeds this threshold, the influence
becomes less detrimental. This is contradictory to the
general belief that the silt-clay fraction has a purely
adverse effect on nematode diversity (Heip et al. 1985,
Vanreusel 1990, Vanaverbeke et al. 2002). However, in
the case of strongly oxidized sediments, a positive
relation between the silt-clay fraction and nematode
diversity has been reported before (Steyaert et al.
1999). A full coverage map of the redox potential was
not available; however, organically enriched benthic
environments are often encountered in areas with a
high load of total suspended matter (TSM). High TSM
values result in a reduced environment, and low values
may permit highly oxidized sediments. Consequently,
the negative correlation of species diversity with TSM
may account for this effect.

The linear models indicate that in recent years the
observed species richness (S) has increased. But this
‘effect’ is observed because in the last decade only
environments with <20% mud, thus with high species
richness, were sampled. However, the relationship
between the year of sampling and ES(25) is not signif-

icant. Similarly to S, low values of ES(25) were not
found during the last decade, but the maximum values
stayed almost the same over the whole period, remain-
ing at a value of 20. This is due to the fact that ES(25) is
a standardization technique and is bound to an upper
limit of 25.

Both diversity indices represent different aspects of
the nematode assemblages: ES(25) is strongly influ-
enced by the evenness of the nematode assemblage
and to a lesser extent by species richness. Earlier
research (Merckx et al. 2009) already pointed out that
evenness results in the best predictive models. More-
over, ES(25) is not dependent on sampling effort if
sample area (cross-section) is the same for all samples
and can therefore more readily be applied to heteroge-
neous data, originating from different sources.

Model comparison

According to the results of the independent vali-
dation set (Table 4), RK performs better than OK
in all cases. Therefore, the environmental variables ex-
plain a substantial part of the variation in the diversity
of the nematode assemblage. The different variogram
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Fig. 4. Maps of the generalised least squares models, predicting the nematode diversity after kriging of diversity indices S (left) 
and ES(25) (right). Grey lines in water are bathymetric lines. See Table 1 for definitions
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parameters underpin this result: the sill and range are
much smaller for the variograms of the residuals.

The nugget is accurately estimated by including the
sample replicates in the analysis. Since the purpose of
replicates is indeed to assess the variance between
samples, it is, at the same time, an excellent estimate
for the local variation between samples. Instead of
lumping or averaging these data, it is useful to keep
them apart. In this way there are 2913 station pairs
within the smallest range found (2.6 km for the resi-
duals of GLS of S), rather than only 23 pairs within this
lag class, if replicates were to be averaged, which
is less than the recommended 30 to 50 pairs (Journel &
Huijbregts 1978). In this case, the remaining spatial
pattern in the residuals of the species richness
would remain undetected and only a nugget effect
would have been observed. As a consequence, the best
model would have been the linear model without
kriging.

Comparing both regression methods points out that,
especially for S, GLS outperforms OLS. This is not sur-
prising, since the iterative process of GLS minimizes
spatial autocorrelation and estimates the regression
coefficients more accurately. However, according to
Kitanidis (1993), OLS may often be satisfactory be-
cause the iterative process of GLS, after an initial OLS,
results in a negligible difference in the regression
parameters, which was the case for ES(25) in our
research.

Kriging improves, although to a lesser extent, the lin-
ear regression models. For data which are unevenly
distributed, e.g. the samples on Kwintebank (51° 15’ N,
2° 40’ E), kriging has a declustering effect, because it
takes both the distance to the interpolation point and
the sampling configuration into account. Therefore, it
is preferable to non-declustering techniques, such as
linear regression (Verfaillie et al. 2006).

Final maps

The resulting maps of species richness S and ex-
pected species richness ES(25) look quite similar,
although both indices represent different aspects of
diversity; S gives an indication of the number of spe-
cies that are expected to be found in a 10 cm2 sample
in a certain area, while ES(25) expresses both species
richness and evenness. Thus, it seems that, in nema-
tode samples in the North Sea, both species richness
and evenness increase in offshore regions. This is in
strong contrast with the coastal region. Especially the
region south of the Scheldt estuary has a very low
diversity. This area is characterised by sediments with
a high amount of silt-clay and a water column with ele-
vated concentrations of chl a and TSM. Low nematode

diversity in oxygen-stressed, fine sediments has been
described before (Vincx 1990, Steyaert et al. 1999), but
a link, although indirect, between nematode diversity
and water column characteristics has never been
shown before. Indeed, oxygen stress in marine sedi-
ments is caused by the microbial mineralisation of
water column-derived organic matter (Graf 1992), and
our model indicates the link between water column
processes and benthic diversity patterns.

Limitations to this research

Hengl et al. (2007b) pointed out some limitations to
RK concerning data quality, undersampling and
extrapolation. Our data are historical data, supplied by
different researchers within the Marine Biology Sec-
tion of Ghent University. This has the advantage that
sampling and identification techniques are similar.
However, different types of sampling effort (e.g. small
subsamples or complete cores identified) may have
been applied depending on the intention of the origi-
nal research. These differences can influence S, but
will only slightly affect ES(25).

The predictive maps are created for a large area and
are based on the data from 153 different stations and
562 samples. Variograms are typically derived from
100 to 200 observations, and, the larger the number of
stations, the more precise the estimation is (Webster &
Oliver 2007). The results of the validation set indicate
that kriging only slightly improves the model, which is
probably due to the large average distance between
the sampling points. The distance between the sam-
pling points is often larger than the range of spatial
autocorrelation of the residuals, so kriging will not
alter the values of these points. Including new data
points will result in intersecting ranges for the residu-
als as well, and kriging will then result in better
estimates.

Extrapolation of the model outside the feature area
can be interpreted in 2 ways: extrapolation outside the
geographical area and extrapolation for unknown
environments. Concerning the geographical extrapo-
lation, special caution should be taken when deriving
data near the border of an area or in regions where few
samples were taken. Regarding the environmental
extrapolation, clearly the model is only suitable for
known environments. Particularly for this research, all
samples were taken with cores in soft sediments.
Consequently, in environments where this sampling
technique is not applicable, no data are available;
therefore, the model is only valid for well-known sandy
environments and cannot extrapolate for, e.g., hard
substrates. It is clear from Table 1 that the data in the
dataset cover nearly the complete range in the maps of
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the environmental variables. Only the most extreme
values are not represented in the dataset. For these
data, as well as unrepresented combinations of the
environmental data, the model should be interpreted
with caution.

Another potential issue is the limited variation in the
environmental variables for the offshore region and
the large distance between the sampling points. Since
no environmental parameter could be identified that
explains the differences in diversity in this region, the
best model is the average value of the diversity indices
for this area.

The kriging algorithm is based on the assumption
that the measurements at a certain point are error-free,
which is usually acceptable given the much larger
spatial variability. The station values obtained by the
GLS regression are corrected by the kriging algorithm
with the in situ measured values. Consequently, the
stations appear to be spots on the map. To optimize
these maps, more relevant environmental variables and
more sampling points would be needed in this area.

CONCLUSIONS

The growing need for detailed maps of biodiversity
hotspots can be successfully fulfilled by regression and
interpolation techniques, such as GLS and RK. When
data are assembled from different sources, it is advis-
able to use diversity indices that are not dependent on
sampling effort. In our case, ES(25) resulted in the best
models: highest correlations and no outliers. The diver-
sity of marine nematodes is substantially influenced by
mud and TSM, which is also reflected in the resulting
map with a species-poor area near the Belgian coast.

Acknowledgements. This research is funded by the Fund for
Scientific Research (FWO) of the Flemish government
(FWO07/ASP/174). The authors thank all the data providers!
The environmental data were gathered from different
institutes: the ESA and MUMM/RBINS are acknowledged
for providing and processing MERIS data (chlorophyll and
TSM data, www.mumm.ac.be/BELCOLOUR); the Renard
Centre of Marine Geology (RCMG, www.rcmg.ugent.be) of
Ghent University and the Hydrographic Service of the Royal
Netherlands Navy and the Directorate-General of Public
Works and Water Management of the Dutch Ministry of
Transport, Public Works and Water Management, for the
oceanographic and sedimentological data. Special thanks to
the Flanders Marine Institute (VLIZ, www.vliz.be) for help in
building the biological database. This research was con-
ducted within the MANUELA framework (www.marbef.org/
projects/Manuela), which is a Responsive Mode Project
undertaken as part of the MarBEF EU Network of Excellence
‘Marine Biodiversity and Ecosystem Functioning’, which is
funded by the Sustainable Development, Global Change and
Ecosystems Programme of the European Community’s Sixth
Framework Programme (Contract No. GOCE-CT-2003-

505446). This publication is Contribution Number MPS-
09033 of MarBEF. This research was also supported by the
GENT-BOF Project 01GZ0705 Biodiversity and Biogeogra-
phy of the Sea (BBSea). We also thank the reviewers for their
in-depth questions and helpful suggestions to improve the
quality of this manuscript.

LITERATURE CITED

Carroll RJ, Ruppert D (1988) Transformation and weighing in
regression. Chapman and Hall, New York, NY

Cressie NAC (1993) Statistics for spatial data. John Wiley &
Sons, New York, NY

Cunningham HR, Rissler LJ, Apodaca JJ (2009) Competition
at the range boundary in the slimy salamander: using rec-
iprocal transplants for studies on the role of biotic interac-
tions in spatial distributions. J Anim Ecol 78:52–62

Degraer S, Verfaillie E, Willems W, Adriaens E, Van Lancker
V, Vincx M (2008) Habitat suitability modelling as a map-
ping tool for macrobenthic communities: an example from
the Belgian part of the North Sea. Cont Shelf Res 28:
369–379

Deutsch CV, Journel AG (1992) GSLIB: geostatistical software
library and user’s guide. Oxford University Press, New
York, NY

Druon JN, Schrimpf W, Dobricic S, Stips A (2004) Compara-
tive assessment of large-scale marine eutrophication:
North Sea area and Adriatic Sea as case studies. Mar Ecol
Prog Ser 272:1–23

Echarri F, Tambussi C, Hospitaleche CA (2009) Predicting the
distribution of the crested tinamous, Eudromia spp. (Aves,
Tinamiformes). J Ornithol 150:75–84

Franco MA, Soetaert K, Van Oevelen D, Van Gansbeke D,
Costa MJ, Vincx M, Vanaverbeke J (2008) Density, verti-
cal distribution and trophic responses of metazoan
meiobenthos to phytoplankton deposition in contrasting
sediment types. Mar Ecol Prog Ser 358:51–62

Goovaerts P (1997) Geostatistics for natural resources evalua-
tion. Oxford University Press, New York, NY

Gotelli NJ, Graves GR (1996) Null models in ecology. Smith-
sonian Institution Press, Washington, DC

Graf G (1992) Benthic–pelagic coupling: a benthic view.
Oceanogr Mar Biol Annu Rev 30:149–190

Heip C, Vincx M, Vranken G (1985) The ecology of marine
nematodes. Oceanogr Mar Biol Annu Rev 23:399–489

Hengl T (2007a) A practical guide to geostatistical mapping of
environmental variables. Office for Official Publications of
the European Communities, Luxembourg

Hengl T, Heuvelink GMB, Stein A (2004) A generic frame-
work for spatial prediction of soil variables based on
regression-kriging. Geoderma 120:75–93

Hengl T, Heuvelink GBM, Rossiter DG (2007b) About regres-
sion-kriging: from equations to case studies. Comput
Geosci 33:1301–1315

Hernández-Stefanoni JL, Dupuy JM (2007) Mapping species
density of trees, shrubs in a tropical forest, using field
measurements, multispectral imagery and spatial interpo-
lation. Biodivers Conserv 16:3817–3833

Hoek G, Beelen R, de Hoogh K, Vienneau D, Gulliver J, Fis-
cher P, Briggs D (2008) A review of land-use regression
models to assess spatial variation of outdoor air pollution.
Atmos Environ 42:7561–7578

Hurlbert SM (1971) The non-concept of species diversity: a
critique and alternative parameters. Ecology 52:577–586

Journel AG, Huijbregts CJ (1978) Mining geostatistics. Acad-
emic Press Inc, London

144



Merckx et al.: Mapping North Sea nematode diversity

Kennedy AD, Jacoby CA (1999) Biological indicators of
marine environmental health: meiofauna — a neglected
benthic component? Environ Monit Assess 54:47–68

Kitanidis PK (1993) Generalized covariance functions in esti-
mation. Math Geol 25:525–540

Loiselle BA, Jørgensen PM, Consiglio T, Jiménez I, Blake JG,
Lohmann LG, Montiel OM (2008) Predicting species distri-
butions from herbarium collections: Does climate bias in
collection sampling influence model outcomes? J Biogeogr
35:105–116

Malakoff D (2004) New tools reveal treasures at ocean hot
spots. Science 304:1104–1105

Matheron G (1963) Principles of geostatistics. Econ Geol
58:1246–1266

Mello LG, Rose GA (2005) Using geostatistics to quantify sea-
sonal distribution and aggregation patterns of fishes: an
example of Atlantic cod (Gadus morhua). Can J Fish Aquat
Sci 62:659–670

Merckx B, Goethals P, Steyaert M, Vanreusel A, Vincx M,
Vanaverbeke J (2009) Predictability of marine nematode
biodiversity. Ecol Modell 220:1449–1458

Panatier Y (1996) Variowin: software for spatial data analysis
in 2D, statistics and computing. Springer-Verlag, New
York, NY

Park Y, Van Mol B, Ruddick K (2006) Validation of MERIS
water products for Belgian coastal waters: 2002–2005. In:
Proceedings of the 2nd working meeting on MERIS and
AATSR calibration and geophysical validation (MAVT-
2006). ESA Special Publications, ESRIN, Frascati

Reese DC, Brodeur RD (2006) Identifying and characterizing
biological hot spots in the Northern California Current.
Deep-Sea Res II 53:291–314

Rios-Lara V, Salas S, Bello-Pineda J, Irene-Ayora P (2007) Dis-
tribution patterns of spiny lobster (Panulirus argus) at
Alacranes reef, Yucatan: spatial analysis and inference of
preferential habitat. Fish Res 87:35–45

Sanders HL (1968) Marine benthic diversity: a comparative
study. Am Nat 102:243–282

Schratzberger M, Dinmore TA, Jennings S (2002) Impacts of
trawling on the diversity, biomass and structure of meio-
fauna assemblages. Mar Biol 140:83–93

Schroeder LD, Stephan PE, Sjoquist DL (1986) Understanding
regression analysis: an introductory guide. Sage Publica-
tions, Beverly Hills, CA

Simberloff DS (1972) Properties of the rarefaction diversity
measurement. Am Nat 106:414–418

Steyaert M, Garner N, Van Gansbeke D, Vincx M (1999)
Nematode communities from the North Sea: environmen-
tal controls on species diversity and vertical distribution
within the sediment. J Mar Biol Assoc UK 79:253–264

Van Hoey G, Degraer S, Vincx M (2004) Macrobenthic com-
munity structure of soft-bottom sediments at the Belgian
Continental Shelf. Estuar Coast Shelf Sci 59:599–613

Van Meirvenne M, Meklit T, Verstraete S, De Boever M, Tack
F (2008) Could shelling in the First World War have
increased copper concentrations in the soil around Ypres?
Eur J Soil Sci 59:372–379

Vanaverbeke J, Gheskiere T, Steyaert M, Vincx M (2002)
Nematode assemblages from subtidal sandbanks in the
Southern Bight of the North Sea: effect of small sedimen-
tological differences. J Sea Res 48:197–207

Vanaverbeke J, Steyaert M, Soetaert K, Rousseau V, Van
Gansbeke D, Parent JY, Vincx M (2004) Changes in struc-
tural and functional diversity of nematode communities
during a spring phytoplankton bloom in the southern
North Sea. J Sea Res 52:281–292

Vandepitte L, Vanaverbeke J, Vanhoorne B, Hernandez F,
Bezerra TN, Mees J, Vanden Berghe E (2009) The
MANUELA database: an integrated database on
meiobenthos from European marine waters. Meiofauna
Mar 17:35–60

Vanreusel A (1990) Ecology of free-living marine nematodes
in the Voordelta (Southern Bight of the North Sea). I.
Species composition and structure of the nematode
communities. Cah Biol Mar 31:439–462

Verfaillie E, Van Lancker V, Van Meirvenne M (2006) Multi-
variate geostatistics for the predictive modelling of the
surficial sand distribution in shelf seas. Cont Shelf Res
26:2454–2468

Vincx M (1990) Diversity of the nematode communities in the
Southern Bight of the North Sea. Neth J Sea Res 25:
181–188

Walker JS, Balling RC, Briggs JM, Katti M, Warren P, Wentz
EM (2008) Birds of a feather: interpolating distribution
patterns of urban birds. Comput Environ Urban Syst 32:
19–28

Webster R, Oliver MA (2007) Geostatistics for environmental
scientists. John Wiley & Sons, New York, NY

145

Editorial responsibility: Hans Heinrich Janssen,
Oldendorf/Luhe, Germany

Submitted: June 11, 2009; Accepted: February 3, 2010
Proofs received from author(s): April 28, 2010


	cite2: 
	cite3: 
	cite4: 
	cite5: 
	cite6: 
	cite7: 
	cite8: 
	cite9: 
	cite10: 
	cite11: 
	cite12: 
	cite13: 
	cite14: 
	cite15: 
	cite16: 
	cite17: 
	cite18: 
	cite19: 
	cite20: 
	cite21: 
	cite22: 
	cite23: 
	cite24: 
	cite25: 
	cite26: 
	cite27: 
	cite28: 
	cite29: 
	cite30: 
	cite31: 


