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Summary 
 
Site-specific soil management seeks to address the within-field soil variability to 

guide soil management decisions. Detailed soil information is a prime 

requirement, but most of the currently available soil survey information does not 

satisfy this sufficiently. Therefore, this gap of soil information has been indicated 

as one of the major obstacles that prevent the progress of site-specific soil 

management. There is a need for cost effective, accurate and quantitative soil 

spatial inventory techniques to create detailed maps of key soil properties. This 

research was conducted to evaluate the potential of two ancillary information 

sources, namely soil apparent electrical conductivity (ECa) measured with an 

EM38DD sensor and elevation data obtained by airborne laser scanning to provide 

detailed soil information needed for site-specific soil management. Within this 

broad objective, case studies were conducted in three different study sites in 

Flanders, Belgium.  

Despite their shortcomings, choropleth soil maps remain the most widespread 

source of information on soil resources. Since most nationwide soil surveys were 

conducted in the second half of the previous century, a need for upgrading 

emerges to provide the current soil information needs. We evaluated the utility of 

detailed ECa observations to upgrade a part of the 1:20,000 choropleth soil map of 

Belgium. This study was conducted on a 14 ha area in the sandy silt region near 

Melle, which had been mapped twice in the 1950s: first, during the national soil 

survey yielding a 1:20,000 soil map, and second, during a detailed investigation of 

a research farm resulting in a 1:5000 map. The first map failed to identify the 

within-field variability of soil properties: top and subsoil textural fractions, organic 

C, pH and depth to a Tertiary clay substratum (Dts). This clearly emphasized the 

need for upgrading to provide soil information at a within-field scale. The detailed 

1:5000 map was able to provide information on the within-field variation of Dts 

with a sufficient accuracy. But it failed to characterize the within-field variation of 

the remaining soil properties. The ECa survey provided 9192 measurements of ECa 
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Summary 

within the study area and these data were used as a covariate to predict Dts. The 

accuracy of two prediction techniques was evaluated: predictions based on the 

depth sensitivity function and regression kriging. The predictions were validated 

using 46 independent observations of Dts. A depth sensitivity function, which was 

calibrated using 20 Dts observations showed a high accuracy of prediction with a 

mean estimation error (MEE) of 0.08 m and a correlation coefficient (r) of 0.91. 

However, it was also shown that these predictions can be further improved by 

employing regression kriging with some extra Dts observations (n = 60): MEE = 

0.02 m and r = 0.95. The 1:20,000 soil map was upgraded by incorporating the 

predictions of Dts made using regression kriging. An assessment of the map 

accuracy indicated that even after classification, the Dts classes were better 

predicted by the sensor data than the 1:5000 map which was based on 210 auger 

observations.  

Recent advances in proximal soil sensing, terrain modelling and yield mapping 

have made available large quantities of information about the within-field 

variability of soil and crop properties. But the selection of the key variables for the 

identification of management zones which are required for site-specific soil 

management is not straightforward. We investigated a procedure for this selection. 

An 8 ha agricultural field near Leefdaal in the Loess belt of Belgium was 

considered for this study. The available information consisted of: (i) top- and 

subsoil samples taken at 110 locations, on which soil properties namely, textural 

fractions, organic C, CaCO3 and pH were analysed, (ii) ECa obtained through an 

EM38DD sensor, and (iii) wetness index, stream power index and slope angle 

derived from a detailed digital elevation model. A principal component analysis, 

involving 12 soil and topographic properties and two ECa variables, identified 

three components explaining 70.1 % of the total variability. These three 

components were best represented by pH, ECa which was strongly associated with 

texture, and organic C. However, organic C was closely related to some more 

readily obtainable topographic properties, and therefore elevation was preferred. A 

fuzzy k-means classification of these three key variables produced four potential 
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management classes. Three-year average standardized yield maps of grain and 

straw showed productivity differences across these classes, but mainly linked to 

their landscape position.  

Variability in soil texture has a profound effect on soil management, especially in 

texturally complex soils such as polder soils. The conventional approach of point 

sampling requires a high sampling intensity in order to take into account such 

spatial variation. We investigated the use of two ancillary variables for the detailed 

mapping of soil texture and subsequent delineation of potential management 

zones. In an 11.5 ha arable field in the polder area near Watervliet, the geometric 

mean of the ECa measured in both vertical and horizontal orientations strongly 

correlated with the heterogeneous subsoil clay content (r = 0.83), but the 

correlation was weaker with the homogenous topsoil clay content (r = 0.40). The 

topsoil gravimetric water content at wilting point (θg (-1.5 MPa)) correlated strongly 

(r = 0.96) with the topsoil clay content. Thus maps of topsoil and subsoil clay 

contents were obtained from 63 clay analyses supplemented with 117 θg (-1.5 MPa) 

and 4048 ECa measurements, using standardized ordinary cokriging. Three 

potential management classes were identified based on the spatial variation of both 

top and subsoil clay contents. The influence of subsoil textural variation on the 

behaviour of crop was illustrated by an aerial image of the sugar beet crop, 

confirming the reliability of the results.  

The ability to delineate potential management classes is not sufficient to 

implement site-specific soil management. The agronomic relevance of these 

classes should also be validated. Thus we investigated the relevance of the 

potential management classes of the Watervliet field for site-specific water and 

nitrogen management. During the growing season of 2005, we monitored the top- 

and subsoil NO3-N and moisture content and found strong differences among 

zones. The crop biomass at harvest (roots plus leaves) was markedly variable 

between classes (ranging from 106 to 150 Mg ha-1), as well as sugar content 

(ranging from 15.7 to 17.2 %). But due to a compensation effect between the crop 

biomass and sugar accumulation, differences in sugar yield and financial income 
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between classes were relatively small (the income ranged from 3958 to 4245 € ha-

1). These results clearly emphasized that potential management zones delineated 

on the basis of the variation in soil texture are highly suitable for the site-specific 

management of soil nitrogen and water.  

The three case studies presented in this dissertation consistently showed that 

proximal soil sensing of ECa is a very satisfactory method for elucidating the soil 

variability at a within-field scale while economizing on invasive soil samples. 
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Samenvatting 
 
Plaatsspecifiek bodembeheer is gericht op de binnenin-perceels bodemvariabiliteit 

om bodembeheersbeslissingen te vergemakkelijken. Een eerste vereiste hiervoor is 

nauwkeurige bodeminformatie, maar de huidige beschikbare bodeminformatie 

vervult deze conditie echter onvoldoende. Dit tekort is één van de grootste 

hindernissen die de ontwikkeling van plaatsspecifiek bodembeheer in de weg 

staan. Er is nood aan kost-effectieve, nauwkeurige en kwantitatieve ruimtelijke 

bodeminventarisatietechnieken die toelaten gedetailleerde kaarten van 

bodemeigenschappen te maken. Dit onderzoek evalueerde de mogelijkheden van 

twee secundaire informatiebronnen om gedetailleerde bodeminformatie nodig voor 

plaatsspecifiek bodembeheer te verschaffen. Deze twee bronnen waren bodem 

elektrische geleidbaarheid (ECa) opgemeten met een EM38DD sensor en 

hoogtemetingen bekomen met een luchtgebaseerde laserscanner. Binnen deze 

brede doelstelling werden gevalstudies uitgevoerd in drie verschillende 

studiegebieden in Vlaanderen, België.  

Ondanks hun gebreken blijven chloropleth bodemkaarten nog steeds de meest 

aanvaarde vorm van bodeminformatie. Aangezien de meeste nationale  

bodemsurveys uitgevoerd werden in de tweede helft van de vorige eeuw, is er een 

behoefte ontstaan om deze informatie op te waarderen zodat kan voldaan worden 

aan de huidige bodeminformatie vereisten. We evalueerden de bruikbaarheid van 

gedetailleerde ECa observaties, bekomen met een EM38DD bodemsensor, om een 

deel van de 1:20,000 chloropleth bodemkaart van België op te waarderen. Deze 

studie werd uitgevoerd op een gebied van 14 ha in de zandige leemstreek nabij 

Melle. Het gebied werd twee keer gekarteerd in de jaren `50: eerst gedurende de 

nationale bodemsurvey wat resulteerde in een 1:20,000 bodemkaart en een tweede 

maal tijdens een gedetailleerd onderzoek van de proefhoeve wat een 1:5000 

bodemkaart opleverde. De eerste kaart slaagde er niet in de binnenin-

perceelsvariabiliteit van volgende bodemeigenschappen te identificeren:
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 textuurfracties van de boven- en ondergrond, organische C, pH en diepte tot een 

Tertiar kleisubstraat (Dts). Dit toonde duidelijk de nood tot opwaardering aan zodat 

binnenin-perceels bodeminformatie beschikbaar zou zijn. De gedetailleerde 1:5000 

kaart verschafte voldoende nauwkeurige informatie over de binnenin- perceels Dts  

variabiliteit. De binnenin-perceelsvariatie van de overige bodemeigenschappen 

kon echter niet gekarakteriseerd worden. Binnen het studiegebied werden 9192 

ECa metingen gebruikt als een co-variabele om Dts te voorspellen. De 

nauwkeurigheid van twee voorspellingstechnieken werd geëvalueerd: 

voorspellingen gebaseerd op de diepte-gevoeligheidscurve en regressie kriging. De 

voorspellingen werden gevalideerd op basis van 46 onafhankelijke Dts observaties. 

Een diepte-gevoeligheidsfunctie, opgesteld aan de hand van 20 Dts observaties 

vertoonde een hoge voorspellingsnauwkeurigheid met een gemiddelde 

schattingsfout (MEE) van 0.08 m en een correlatiecoefficient (r) van 0.91. Deze 

voorspellingen konden echter nog verbeterd worden met de regressie kriging 

techniek op basis van 60 extra stalen: MEE = 0.02 m en r = 0.95. De 1:20,000 

bodemkaart werd opgewaardeerd door integratie van de Dts voorspellingen 

bekomen met regressie kriging. Zelfs na classificatie werden de Dts klassen beter 

voorspeld door de sensorgegevens dan door de 1:5000 bodemkaart die gebaseerd 

was op 210 boringen.  

Recente vorderingen in de beschikbaarheid van proximale bodemsensoren, terrein 

modellering en opbrengstkartering verschaffen een grote hoeveelheid informatie 

over de binnenin-perceelsvariabiliteit van bodem- en gewaseigenschappen. De 

selectie van sleutelvariabelen voor de identificatie van beheerszones nodig voor 

plaatsspecifiek bodembeheer is echter geen eenduidige taak. Een procedure voor 

deze selectie werd ontwikkeld voor een 8 ha landbouwperceel in de leemstreek 

van België. De beschikbare informatie bestond uit: (i) stalen van de boven- en 

ondergrond op 110 locaties, geanalyseerd op textuur, organische C, CaCO3 en pH, 

(ii) ECa metingen, en (iii) topografische indices bekomen op basis van een digitaal 

terrein model. Een principale componenten analyse op basis van deze gegegevens 

identificeerde drie componenten die samen 70.1 % van de totale variabiliteit 
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verklaarde. Deze drie componenten werden best vertegenwoordigd door pH, ECa 

dat sterk gerelateerd is met textuur en organische C. Omdat organische C sterk 

gecorreleerd is met gemakkelijk te bekomen topografische eigenschappen werd 

hoogte als derde sleutelvariabele verkozen. Een fuzzy k-means classificatie van 

deze drie variabelen resulteerde in vier mogelijke beheersklassen. Op basis van 

gestandardiseerde opbrengskaarten van graan en stro, uitgemiddeld over drie jaar, 

werden productiviteitsverschillen tussen deze klassen aangetoond die echter de 

grootste relatie vertoonden met hun landschapspositie. 

Variabiliteit in bodemtextuur heeft een grote invloed op het bodembeheer, zeker in 

complex texturele bodems zoals in de polders. De klassieke aanpak om zulke 

variabiliteit in rekening te brengen is een puntbemonstering met een intensieve 

staalname. Het gebruik van twee secundaire variabelen voor het gedetailleerd 

karteren van bodemtextuur en vervolgens het afbakenen van potentiële 

beheerszones werd onderzocht. In een 11.5 ha landbouwperceel in de polderstreek 

nabij Watervliet werd de ECa opgemeten in zowel de horizontale als verticale 

oriëntatie. Het geometrisch gemiddelde van de beide ECa metingen was sterk 

gecorreleerd met de heterogene kleiconcentratie in de ondergrond (r = 0.83), 

terwijl de correlatie met de homogene kleiconcentratie in de bovengrond slechts 

zwak was (r = 0.40). Het gravimetrisch vochtgehalte bij het verwelkingspunt 

(θg (-1.5 MPa)) was echter zeer goed gecorreleerd met het kleigehalte van de 

bovengrond (r = 0.96). Kaarten van het boven- en ondergronds kleigehalte werden 

bekomen met gestandardiseerde ordinaire cokriging op basis van 63 klei analyses 

aangevuld met respectievelijk 117 θg (-1.5 MPa) en 4048 ECa metingen. Op basis van 

de ruimtelijke variatie in het boven-en ondergronds kleigehalte werden drie 

potentiële beheerszones afgebakend. De invloed van de ondergrondse texturele 

variabiliteit op het gedrag van het gewas werd aangetoond aan de hand een 

luchtfoto van het suikerbietgewas op dit veld en bevestigde de betrouwbaarheid 

van deze resultaten.  

De mogelijkheid om potentiële beheerszones af te bakenen is echter niet 

voldoende om plaatsspecifiek bodembeheer toe te passen. De landbouwkundige 

 



Samenvatting 

relevantie van deze zones moet ook gevalideerd worden. In een laatste gevalstudie 

werd de relevantie van de potentiële beheerszones onderzocht voor plaatsspecifiek 

water- en stikstofbeheer. Tijdens het groeiseizoen van 2005 werd het NO3-N- en 

vochtgehalte van de boven- en ondergrond opgevolgd en sterke verschillen tussen 

de zones werden gevonden. Bovendien varieerde niet alleen de suikerbietbiomassa 

bij oogst (wortels plus bladeren) tussen de klassen (gaande van 106 tot 150 Mg ha 

 -1), ook het suikergehalte vertoonde sterke verschillen (variërend van 15.7 tot 

17.2 %). Echter door een compensatie-effect tussen de gewasbiomassa en de 

suikeraccumulatie waren de verschillen in suikeropbrengst en financiële inkomsten 

tussen de klassen relatief klein(de inkomsten varieerden tussen 3958 en 4245 € ha-

1). Deze resultaten bewezen duidelijk dat potentiële beheerszones afgebakend op 

basis van bodemtextuur zeer geschikt zijn voor het plaatsspecifiek beheer van 

bodemstikstof en bodemvocht.  

De drie gevalstudies voorgesteld in dit werk toonden consistent aan dat proximale 

ECa bodemsensoren een geschikt middel zijn om bodemvariabiliteit op een 

binnenin-perceelsschaal te identificeren en dat ze toelaten te besparen op invasieve 

bodemstalen. 
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Chapter 1: General introduction 

1.1. Overview 

The world’s food demand is steadily increasing as the world's population crosses 

the six billion mark and is expected to increase by another three billion over the 

next three decades. This is further aggravated by the higher food demand for a 

richer diet by those ascending the economic ladder. As a consequence, the global 

demand for food is projected to double within the first three decades of this 

century (Daily et al., 1998). The world’s food crisis already became evident as a 

steady increase in food prices and public unrest can be seen in different parts of 

the world demanding the access to food. Therefore, humankind has to face the 

onerous challenge of meeting the increasing world’s food demand. From the 

perspective of soil management, two options are available to boost the global food 

production: increase the total cultivated land area or increase the productivity of 

existing arable lands. The first option has become difficult to realize as per capita 

availability of arable lands has markedly depleted during the last decades and is 

projected to decline from about 0.23 ha in 2000 to about 0.15 ha by 2050 (Lal, 

1991). This suggest that an increase of the productivity of existing arable lands 

through better soil management is the most appropriate means of meeting the ever 

increasing food demands. 

Volatility in the cost of agricultural inputs, fuel and the income generated from 

farm products has lead to instability in the farm economy (Seelan et al., 2003). 

This has caused gradual shift of the work force attached to the agriculture sector 

into other industrial sectors. Therefore, this scenario has called for the introduction 

of modern technologies to improve crop yield, provide information to enable better 

in-field management decisions, reduce chemical and fertilizer costs through more 

efficient application, permit more accurate farm records and finally to increase the 

profit margin. 

The pressure to increase the food production from limited available lands has lead 

to an excessive use of inorganic and organic fertilizers. This has resulted in a 

widespread nitrogen and phosphorous contamination in water supplies, related 

largely to agriculture (Baligar et al., 2001; Carpenter et al., 1998). Nevertheless, by 
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1990, agricultural practices like poor soil water management on irrigated crop 

lands has contributed to the degradation of 38 % of the approximately 1.5 billion 

crop land world wide and since then the losses have continued at a rate of 5 – 6 

million hectares annually (World Resources Institute, 1998). These evidences have 

emphasized the need of improved better soil management practices in order to 

preserve the environmental quality and finite natural resources for the future 

generations.  

Site-specific soil management is viewed as one of the most viable means of 

increasing the productivity of existing arable lands while minimizing the over 

utilization of finite natural resources and the detrimental environmental impacts of 

associated agrochemical pollutants (Corwin and Lesch, 2005a; Robert, 1993). 

Through efficient use of soil inputs, this strategy has the potential to improve the 

agricultural producer’s net income (Lambert and Lowenberg-DeBoer, 2000). Site-

specific soil management implies the concept of managing soils based upon the 

spatial variation within a field (Larson and Robert, 1991). By applying this simple 

concept, the management practices such as plant nutrient, soil water applications 

and tillage practices are fine tuned at a within-field scale with the aim of cost 

effectively maximizing crop production and making efficient use of agro-

chemicals to minimize detrimental environmental impacts (Larson et al., 1997; 

Mulla and Schepers, 1997). 

 

1.2. Research problem and objectives 

To implement site-specific soil management practices, within field areas called 

management zones displaying similar behaviour with respect to specified 

characteristics (e.g. yield potential, leaching potential, moisture supply capacity, 

trafficability, workability and root penetration) should be identified (Dobermann et 

al., 2004). This, in turn demands detailed quantitative information about the 

variation of soil properties. Traditional small-scale soil maps, which were made 

for regional land use planning, are not capable of providing soil information in a 

sufficient detail to support site-specific soil management (Robert, 1993). This 
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deficiency of soil information has been emphasized as one of the obstacles that 

prevents the progress of site-specific soil management (Johnson and Robert, 1998; 

Robert, 2002). Therefore, in most countries, there is a need for acquiring detailed 

soil information or upgrading the existing soil maps by incorporating new 

information (Visschers et al., 2007). Traditionally, within-field soil variation is 

identified and mapped by analyzing soil samples taken from many evenly spaced 

augerings throughout the field (Wollenhaupt et al., 1997). However, the cost and 

time constraints have restricted the viability of this approach (Plant, 2001). Thus 

there is a need for cost effective, accurate and quantitative soil spatial inventory 

techniques to create detailed soil maps (Bouma et al., 1999; Cook et al., 1996; 

Dobermann et al., 2004; Sylvester-Bradley et al., 1999). Soil spatial inventory 

techniques involve the procedures of determining the pattern of soil cover, 

characterizing it, and presenting it in an understandable and interpretable form to 

various users (Rossiter, 2005)  

Recent advances in proximal and remote sensing and on-the-go soil measurements 

have made several types of potential ancillary information available for spatial 

characterization of soil properties (Adamchuk et al., 2004). However, their utility 

for predicting soil variation in different soil-scapes combined with appropriate 

pedometrical techniques is yet to be explored. 

The overall objective of this research was to investigate spatial inventory 

techniques in support of site-specific soil management. More specifically, two 

types of ancillary information, apparent electrical conductivity measured with an 

EM38DD sensor and elevation data obtained by airborne laser scanning were 

evaluated for their potentials to accurately map soil variability with a minimum 

effort of invasive field sampling. Through this, attempts were made to bridge the 

soil information gap that slows down the progress of site-specific soil 

management. Within the frame work of this broad objective, case studies were 

conducted in three different study sites in Flanders, Belgium. Each of case studies 

highlights more specific objectives which are reported in chapters four through six. 
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1.3. Structure of the dissertation 

This dissertation is structured in seven chapters. The first chapter presents the 

research problem and the overall objective of this study. The next chapter further 

extends the theoretical and research backgrounds of this work through a literature 

review on site-specific soil management.  

The materials and methods shared by the three studies reported in this dissertation 

are described in chapter three. Special attention is given to the introduction of 

sampling strategies and techniques used for spatial data analysis. Further, this 

chapter details the pedogenesis of the soils of Flanders to facilitate the reader to 

understand the results and discussions presented in chapters four through six.   

 

Chapter four is based on the publication:  

U.W.A. Vitharana, T. Saey, L. Cockx, D. Simpson, H. Vermeersch and M. Van 

Meirvenne. 2008. Upgrading a 1/20,000 soil map with an apparent electrical 

conductivity survey. Geoderma 148:107-112. 

The choropleth soil maps constructed at a detail level can be useful to provide the 

spatial information needed for site-specific soil management. Identification of this 

potential is essential to understand the requirement of upgrading of these maps. In 

line of this problem setting, the first part of this chapter evaluated the potentials of 

two scales of choropleth soil maps (i.e. 1:20,000 and 1:5000) to predict variation 

of soil properties at a within-field scale. The focus of the subsequent sections of 

this chapter was to evaluate the potency of EM38DD sensor to upgrade the 

Belgian national soil map (scale 1:20,000) by incorporating accurate information 

on the depth to a clayey substratum. In relation to this objective, the challenge of 

using a minimum number of invasive soil samples while gaining maximum 

prediction accuracy was also addressed.   
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Chapter five is based on the publication: 

U.W.A. Vitharana, M. Van Meirvenne, D. Simpson, L. Cockx, and J. De 

Baerdemaeker. 2008. Key soil and topographic properties to delineate potential 

management classes for precision agriculture in the European loess area. 

Geoderma 143:206-215. 

In some situations, a variety of ancillary information is available to support 

detailed soil mapping. However, selecting of the key variables for an identification 

of potential management zones is not straight forward. The study reported in this 

chapter was conducted in a loess soil to formulate a procedure for this selection of 

variables to delineate potential management classes.  

 

Chapter six is presented as two parts. Part I is based on the publication: 

U.W.A. Vitharana, M. Van Meirvenne, L. Cockx and J. Bourgeois. 2006. 

Identifying potential management zones in a layered soil using multiple sources 

of ancillary information. Soil Use and Management 22: 405-413. 

Variation in soil texture has a profound effect on soil management, especially in 

texturally complex soils such as the polder soils of Belgium. In contrast to the 

study presented in the preceding chapter, topographic attributes derived from 

elevation data were of little use for soil prediction in the flat polder landscape. 

Thus, this research addressed the potentials and weaknesses of EM38DD sensor 

for the detailed mapping of soil texture and subsequent delineation of potential 

management zones. 

 

Part II is based on the publication:  

U.W.A. Vitharana, M. Van Meirvenne, D. Simpson, L. Cockx and G. Hofman. 

2008. Agronomic consequences of potential management zones delineated on 

the basis of EM38DD measurements. Near Surface Geophysics 6(5): 289-296. 

Delineation of potential management zones itself is not adequate to implement 

site-specific soil management. The agronomic relevance of these zones should also 

be validated. Thus, in this part, the relevance of the potential management zones 
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delineated in the preceding section was evaluated for site-specific water and 

nitrogen management. Finally, the yield differences across management zones 

under uniform soil management were investigated to identify the potential 

production benefits from the proposed site-specific soil management practices. 

Chapter 7 summarizes the general conclusions of this dissertation, and gives some 

recommendations for further research. 
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Chapter 2: Site-specific soil management: Literature review 

 

2.1. Introduction 

Being a relatively novel approach, the principles of site-specific soil management 

are still evolving. This is partly reflected by a range of definitions found in the 

literature with contrasting ideologies (McBratney et al., 2005). The key concepts 

of site-specific soil management are often misinterpreted (Taylor and Whelan, 

2008). Moreover, the related research findings are being continually reported in 

peer reviewed journals and conference proceedings. In light of that, the objective 

of this chapter is to provide a conceptual basis for site-specific soil management 

with relevant research findings. 

 

2.2. Site-specific soil management 

Traditional soil management for crop production ignores the inherent within-field 

soil variability and considers the agricultural fields as homogenous units. 

Management practices such as tillage, irrigation and application of agrochemicals 

are undertaken according to so-called blanket recommendations, i.e. one 

application rate for an entire field or in some instances even for an entire region. 

The application rates are usually determined to meet the mean requirement of the 

field. However, when the within-field soil variation is substantial, such 

management may result in poor input use efficiencies due to the over-treatment in 

some parts of the field and under-treatment in others. This eventually leads to 

waste of inputs causing increased management costs, loss of net economical 

returns, waste of energy and more importantly environmental problems such as 

surface and ground water pollution (Robert, 1993). The increasing awareness 

about sustainable management of soil resources while enhancing its productivity 

and ecosystem health has strongly motivated to find alternative approaches for the 

traditional whole-field based soil management.  

Site-specific soil management has been evolved as a potential alternative 

management strategy that markedly progressed since its inception in early 1990s. 

This allows growers to optimize the soil management practices according to the 

within-field level soil and crop spatial and temporal variation. For example, an 
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area of the field showing low levels of a given nutrient would receive higher than 

the average rate of fertilizer, while an area showing high nutrient levels would 

receive lower or no fertilizer input. The principle of tailoring soil management 

practices to the site-specific needs is far from new. When, soil management 

practices were carried out manually in smaller fields than the ones existing today, 

farmers had a considerable opportunity to understand the within-field soil 

variation. In these circumstances, fields were managed on site-specific basis, for 

example, little extra manure was added to the spots that looked infertile. However, 

with the enlargement of fields, intensive production and mechanization in the latter 

half of the last century, it was not possible to take within-field variation into 

account for soil management due to insufficient technology. Sylvester-Bradley et 

al. (1999) mentioned that the advances in technology in four main areas: global 

positioning systems for georeferencing, soil and crop sensing, computing and 

variable rate application of inputs are the main contributing factors for the 

initiation of site-specific soil management applicable for present day crop 

production.  

Definitions of site-specific soil management are numerous. Often, definitions are 

provided within the context of precision agriculture, which encompasses the 

application of site-specific management practices for a range of agricultural 

enterprises such as dairy farming through viticulture to field crop production. 

Some of them not necessarily include soil management practices. McBratney 

(2005) provided a generic definition: “a kind of agricultural system that increases 

the number of (correct) decisions per unit area of land per unit time with 

associated net benefits”. In order to make it more applicable for site-specific soil 

management, this definition can be narrowed down to “matching resource 

application and agronomic practices with soil attributes as they vary across the 

field”. Site-specific soil management practices are called as the ‘differential’ 

management of within-field variation as opposed to the ‘uniform’ management 

undertaken in traditional management (Figure 2.1).  

 

 11



Chapter 2: Site-specific soil management: Literature review 

 

 
 

Figure 2.1. Site-specific soil management (SSSM) versus traditional soil management. In 

the traditional approach all fields planted to the same crop (e.g., sugar beet (S) or potato (P)) 

are managed uniformly, thus applications do not vary much between and within-fields (left 

side). In the site-specific approach, each field planted to the same crop may be treated 

differentially (e.g., P1 is different from P2). Also, some operations can be varied within-

fields (right) (source: Dobermann et al., 2004). 

  

2.2.1. Benefits of site-specific soil management 

The success of any novel approach depends upon its benefits. Since site-specific 

soil management is still in its evolving phase, the progress depends on the 

scientifically validated evidences for the benefits claimed for the concept 

(Stafford, 2000). The benefits of site-specific soil management can be categorized 

into two areas: profitability for the producers and ecological and environmental 

benefits to the public. Mostly these benefits are inter-related. Dobermann et al. 

(2004) listed four requirements to be fulfilled to achieve the benefits of site-
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specific soil management, namely (i) a significant spatial variation exists at the 

within-field scale that can be measured accurately, (ii) the influence of this 

variation on management practices is significant, predictable and less confounded 

by non-soil related factors, (iii) site-specific application of inputs can be done 

accurately, and (iv) the extra cost is kept low.  

 

Profitability 

Site-specific soil management allows farmers to change the application rate and 

timing of water, fertilizer and other agrochemicals within-field. Therefore, a profit 

increase can be originated from the higher yields with higher inputs for some parts 

of the field given the value of the extra yield outweighs the cost of the extra inputs 

and the technology, or where the cost savings in input exceed the reduced value of 

the yield either through the achievement of the same yield but with less inputs or a 

lower yield with less input. Site-specific application of lime has been proven to be 

successful in clay-pan soils of the United States (Wang et al., 2003). Raper et al. 

(2007) evaluated the site-specific tillage operation, where the depth of tillage was 

adjusted to match the depth of compaction. Site-specific sub-soiling practice 

produces corn and cotton yields equivalent to those produced by uniform deep 

tillage while saving the cost of fuel for the tillage operation. Alimardani et al. 

(2007) reported an energy saving of 50 % and a fuel saving of 30 % by site-

specific tillage as compared to uniform-depth tillage in an agricultural filed 

dominated with loamy sand. Site-specific irrigation management is more likely to 

be economically viable for high-value crops. A field study carried out by King et 

al. (2006) demonstrated the economic benefits of site-specific irrigation 

management on potatoes, where it increased the total yield, marketable yield, and 

gross income relative to uniform irrigation management. The economical 

advantages of differential nitrogen fertilizer applications in Western Australia was 

reported by Robertson et al. (2007). The results of a long term (1996 to 2001) site-

specific management project conducted in UK indicated a considerable efficiency 

of cereal production through the differential application of N (Godwin et al., 

2003a). Depending upon field and the year, between 12 % and 52 % of the area 
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under the investigation responded positively, with an overall benefit of €36/ha. 

Maleki et al. (2008) reported a 336 kg ha-1 increment of maize yield through site-

specific application of soil phosphorous. 

 

Environment 

Water pollution due to the excessive use of agrochemicals is increasingly 

becoming a major environmental concern among the general public. This has 

convinced legislators to establish directives in many countries including USA, 

Australia, UK, Germany and Belgium in order to force farmers to significantly 

reduce the usage of agrochemicals. Site-specific soil management allows farmers 

for precise and targeted application of agrochemicals, accurately record all field 

treatments and transfer of these recorded information with the harvested product 

(Stafford, 2000). Therefore, these practices not only reduce the environmental 

impacts from traditional agriculture but also assist in the enforcement of 

environmental legislations. Moreover, it is likely that through environmental 

legislations, levies will be introduced for chemical fertilizers and this would make 

site-specific soil management more attractive to gain profits. Numerous studies 

have shown the environmental benefits of site-specific management through 

reductions in nitrogen leaching (Godwin et al., 2003a; Whitley et al., 2000; Wong 

et al., 2005), run off loss of phosphorus (Lambert et al., 2006; Söderström et al., 

2005) and herbicides (Gerhards and Christensen, 2003).  

  

2.3. Site-specific soil management cycle 

Site-specific soil management is a system approach which consists of three key 

components: (i) Monitoring of soil spatial and temporal variation, (ii) analysis of 

spatial data and (iii) managing variation (Figure 2.2). These components operate as 

a cycle for the functioning of site-specific soil management as a single system. A 

seasonal evaluation of the outcome is performed in relation to the specific 

objectives of the site-specific soil management, e.g., optimizing production 

efficiency and profits, improved product quality, energy conservation and surface 
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water and environmental protection. This is to fine tune the system by making 

necessary management changes. 
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Figure 2.2. The components of site-specific soil management cycle. 

 

The Global Positioning System (GPS) plays a central role in all site-specific soil 

management components by providing accurate information of the location. In the 

early days of site-specific soil management, use of GPS for geo-referencing was 

unreliable and expensive. The inaccuracies of measurements (with errors of ± 

10 m horizontal and ± 30 m vertical spaces) were resulted by the intentional 

downgrading, also known as Selective Availability (SA) of satellite signals by the 

US Department of Defence (Langley, 1997). The SA was disabled in mid 2000, 

allowing the use of commercial GPS with an acceptable positioning accuracy. 

Since the year 2003, the satellite based GPS signal corrections became available. 

This includes the correction signals transmitted by three different satellite systems 

covering a large part of the earth: WAAS (Wide Area Augmentation System) by 
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US, EGNOS (European Geostationary Navigation Overlay Service) by the 

European Community and MSAS (Multi-Functional Satellite Augmentation 

System) by Japan and other Asiatic countries. These systems provide a GPS 

accuracy of 1 to 2 m for horizontal space free of charge enabling precise mapping 

of within-field variation and subsequent management. Moreover, the maturity of 

GPS hardware technologies have reduced the weight and prices of receivers 

dramatically. 

 

2.3.1. Monitoring of the soil spatial and temporal variation 

Monitoring of within-field spatial and temporal variability of soil properties is the 

initial and an essential step in the site-specific soil management. The national 

polygon-based soil maps are the commonly available sources of soil information. 

However, most of these maps are not at the appropriate level of accuracy and in 

sufficient detail as required for within-field level soil management. Therefore, 

compilation of detailed and quantitative soil data bases is usually a prerequisite to 

implement site-specific soil management.  

On the basis of the frequency of sampling, Bouma et al. (1999) identified two 

types of soil information required for site-specific soil management (Figure 2.3). 

The first type represents the spatial variation of primary soil data and topographic 

data. This temporally stable information is usually characterized once for a 

particular field. The second type of soil information includes soil fertility and 

hydraulic data which are temporally unstable and required to obtain regularly to 

guide soil management decisions. 

Initial studies on site-specific soil management were based on data acquired by 

grid sampling in the field. The optimum grid spacing is a function of spatial 

variability in the field, which is often unknown priori. This approach have had 

limited success due to the cost constraints and insufficient characterization of the 

spatial variability. For example, to map soil nutrient patterns accurately, Webster 

and Oliver (1992) recommended a sampling distance of less than 40 m. Sylvester-

Bradley et al. (1999) argued that this entails over six times as many samples as the 
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sampling procedures generally adopted in the European countries. However, 

recent technological advances in soil and crop sensing have largely minimized 

field sampling and laboratory analysis procedures to acquire soil spatial 

information. At present a range of sensing methods are being used to characterize 

the within-field soil variation. These sensors are capable of providing either direct 

or indirect measurements of soil properties.  
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Figure 2.3. Soil information needs for site-specific soil management. 

 

2.3.1.1. Invasive and non invasive soil sensors 

Soil information obtained using invasive and non-invasive (proximal) sensors have 

proven to be useful for monitoring spatial and temporal variability of soil. Invasive 

methods require a direct contact with the soil to obtain measurements, whereas the 

non invasive methods provide estimates of soil properties at various depths 

without a direct contact. Both types of sensors can be inter-phased with a GPS 

receiver and attached to a tow-vehicle to obtain geo-reference measurements on-

the-go. The main advantage of soil sensors lies in the fact that a large number of 

observations can be taken with little field sampling effort. Such exhaustive soil 
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information serves as a proper start for an accurate characterization of soil 

variation. Some of these sensors are capable of directly measuring the soil 

properties and others provide ancillary information (or secondary information) to 

estimate soil properties through (non) geostatistical techniques. Adamchuk et al. 

(2004) identified several types of soil sensors on the basis of their measurement 

principle: 

• electrical and electromagnetic sensors measure the apparent electrical 

conductivity of the soil, 

• optical and radiometric sensors make use of spectral scanners to detect 

the level of energy absorbed or reflected by the soil particles, 

• mechanical sensors measure forces resulting from a tool engaged with the 

soil, 

• acoustic sensors quantify the sound produced by a tool interacting with 

the soil, 

• pneumatic sensors assess the ability to inject air into the soil, 

• electrochemical sensors  measure soil chemical properties.  

These sensors are at various stages of development and commercialization. A 

comprehensive review about the current status of the soil sensors belong to each 

category is given by Adamchuk (2008; 2004).  

Soil apparent electrical conductivity (ECa) sensing is one of the widely applied 

techniques in site-specific soil management. Geospatial measurements of ECa are 

reliable, quick, easy and cheap to obtain. Nevertheless, the commercialization of 

the ECa measurement equipments has made it popular among researchers, 

agricultural planners and farmers. According to Corwin and Lesch (2003) three 

pathways of current flow inside the soil system contribute to the ECa. These are: 

(1) via salts in the soil liquid phase occupying large pores (2) in moist soils via the 

exchangeable cations associated with clay minerals, and (3) via the solid phase 

through soil particles in direct and continuous contact with one another. The 

electrical conductivity of these pathways is largely influenced by a number of soil 

properties: soil salinity, clay content, cation exchange capacity, clay mineralogy, 
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pore size distribution, soil moisture content and temperature. This creates the 

potentiality of ECa measurement to predict the soil property that dominantly 

influences the measurements. A number of studies have addressed the potential of 

ECa to predict soil textural fractions (Domsch and Giebel, 2004; Vitharana et al., 

2006; Weller et al., 2007). The suitability of ECa as a surrogate for the available 

water capacity was explored by Brevik et al. (2006). Further, ECa measurements 

were used indirectly to infer the exchangeable Ca and Mg, cation-exchange 

capacity (McBride et al., 1990), groundwater recharge (Cook and Kilty, 1992) and 

soil drainage class (Kravchenko et al., 2002). Anderson-Cook et al. (2002) and 

James et al. (2003) used ECa to delineate soil type boundaries. 

Two types of sensors are currently available for the field measurement of ECa: 

electrical resistivity (ER) and electromagnetic induction (EMI) based sensors. 

Both techniques are well suited as a soil information gathering tool because their 

volume of influence covers the rooting depths of many crops. These measurements 

are less influenced by the very short scale soil variation (< 1 m) which is of little 

importance for management.  

The basic configuration of ER based sensor is referred to as a Wenner array, which 

has four electrodes inserted into soil at equal distances. An electrical potential 

difference is applied to the two transmitter electrodes (current electrodes) and that 

results in an introduction of an electrical current in the soil. Subsequently, the ECa 

is determined through the soil resistivity measured by two receiver electrodes 

(potential electrodes). The ER sensing concept forms the basis of a widely used 

commercial product, the Veris 3100 (Veris Technologies., Salina, USA). This 

mobile measuring system (Figure. 2.4a) uses six rolling coulters for electrodes and 

simultaneously generates shallow (0–30 cm) and deep (0–100 cm) measurements 

of ECa (Lund et al., 1999). A non invasive ER sensor called OhmMapper 

(Geometrics Inc., San Jose, USA) is currently available, but its potentials for the 

prediction of soil properties are not well explored.  

The EMI based sensor uses the principle of the propagation of alternating 

electromagnetic fields through the soil to measure ECa. Therefore, there is no need 
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of direct contact between the soil and the sensor to obtain measurements. The most 

often used EMI based ECa sensor is EM38 (Figure 2.4b) (Geonics Ltd., 

Mississauga, Ontario, Canada). The other commercialized EMI instruments 

include, EM31 and EM34 from the same manufacturer, the DUALEM instruments 

(DAULEM Inc., Milton, Ontario, Canada) and GEM instrument series (Geophex 

Ltd., Raleigh, NC, USA). Those sensors show differences in depth densities and 

physical construction, but the operating principle is common to all. Therefore, 

details of the operating principle of EMI sensor category is provided in the 

materials and methods chapter using the EM38 sensor as an example, which was 

used throughout this research.  

Each of the commercial ECa sensors has operational advantages and 

disadvantages. The Veris 3100 is a heavy equipment and requires a tractor or truck 

to pull it through the field limiting its use to firm and unplanted fields. This sensor 

is not suitable to obtain measurements in stony soils. The lightweight EMI based 

sensors require little power to pull through the field and make it possible to collect 

data under wet or dry soil conditions. Unlike the ER sensor, the instrument 

operation is not restricted by internal nature of soil materials. Also, it is possible to 

collect data even during crop growth. Generally, the EMI sensors require the user 

to complete a daily calibration procedure before use. However, the newest range of 

EMI sensors from DUALEM contains an automatic calibration procedure. 

Changes in ambient conditions such as air temperature, humidity, and atmospheric 

electricity (spherics) can affect the stability of EM38 measurements. Sudduth et al. 

(2001) reported a drift of EMI based ECa measurements which was not 

consistently related to ambient conditions. They suggested that drift compensation 

be accomplished by a calibration transect or frequent recalibration of EMI sensors. 

In contrast, the ER sensor requires no user calibration and the measurements are 

less influenced by ambient conditions 

A noticeable improvement can be seen in the development of on-the-go optical 

soil sensors that are capable of measuring top soil (0 – 20 cm) spectral reflectance 

at visible (VIS; 400-700 nm) near-infrared (NIR; 700-2500 nm) spectral ranges. 

 20



Chapter 2: Site-specific soil management: Literature review 

 

Viscarra Rossel et al. (2006) reported that the soil spectral reflectance at the mid-

infrared range (MIR; 2500-25,000 nm) is capable of providing accurate 

predictions of soil properties such as pH, textural fractions, organic C and P. 

However, development of on-the-go MIR sensing systems has not been done to 

date, due to the complexities and expensiveness of the instrumentation. 

Investigations have revealed strong correlations between NIR reflections and 

organic C (Shonk et al., 1991), soil moisture, total C, total nitrogen, pH and 

Mehlich 1 Phosphorous (Christy et al., 2003; Maleki et al., 2008; Mouazen et al., 

2007). An on-the-go NIR soil sensor has been commercially implemented (Figure 

2.4c) mainly for the research purposes (Christy, 2008). The shank mounted 

spectrophotometer of this sensor measures the reflectance of soil at wavelengths 

ranging from 950 nm to 1650 nm and at a depth of approximately 7 cm below the 

soil surface. The high cost of the equipment, difficulty to operate the fragile sensor 

systems in fields with gravel or stones and also the need of tedious calibrations to 

predict soil properties are some of the drawbacks in the optical on-the-go soil 

sensors. However, attempts have been made to generate global (Brown et al., 

2006) and regional level (Mouazen et al., 2007) models to predict range of soil 

properties using VIS and NIR sensing. 

The proximal sensing of gamma radiation from the top 30 – 50 cm of soil has been 

tested for inferring the variation of soil properties. Viscarra Rossel et al. (2007) 

used hyperspectral gamma radiation measurement with on-the-go gamma-ray 

spectrometer to predict clay, coarse sand and Fe contents in the 0-15 cm soil layer 

and pH and coarse sand contents in the 15-50 cm soil layer.  

The mechanical sensors also have been tested to acquire spatial information about 

soil mechanical resistance and compaction (Andrade-Sanchez et al., 2007; 

Mouazen et al., 2005; Sirjacobs et al., 2002). However, none of these devices are 

commercially available. Acoustic and pneumatic sensors have been investigated 

for determining several soil physical properties such as the structure and bulk 

density. Currently, these relationships are inadequately understood and additional 

research is needed. Several investigations have been conducted to use the soil 
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 22

sensing systems with ion-selective electrodes or ion-selective field effect 

transistors in order to determine the soil nutrient availability and pH. Commercial 

introduction of the automated soil pH measurement system (Veris Technologies, 

Kansas, USA) is an outcome of the several years of research (Figure 2.4d). The 

sampling device of this sensor scoops a small amount of soil, presses it against an 

electrode to record the reading and then a cleaning mechanism rinses the system to 

prepare for the next sample.  

(c) 

(a) 
 

(b) 

 
(d)  

 
Figure 2.4. Soil sensors for site-specific soil management (a) electrical resistant based ECa 

sensor (b) electromagnetic induction based EM38 sensor (c) NIR sensor and (d) pH sensor. 
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Adamchuk et al. (2007) concluded that the use of this sensor can significantly 

increase the accuracy of soil pH maps and therefore increase the profitability 

through site-specific lime application. 

 

2.3.1.2. Yield monitoring 

Monitoring of crop yield has become increasingly popular due to the 

commercialization of combine mounted yield sensors for grain crops. The spatial 

variation revealed by yield monitoring brings two messages: (a) substantial soil 

productivity differences exist within-field and (b) under or over utilization of the 

crop inputs in some parts of the field. These two pieces of information has 

convinced producers that uniform soil management for crop production may not 

always be appropriate. Therefore, yield maps are often considered as an eye 

opener to adopt site-specific soil management.  

The yield monitors measure the volume or mass-flow rate of the harvested crop 

and then integrate this flow rate to generate a time-periodic yield (kg s-1) record. 

By determining the area harvested by the combiner during a particular time 

interval (i.e. distance travelled x swath width), the onboard field computer records 

the yield in units of mass per unit area (e.g. kg ha-1). The onboard GPS receiver 

provides location information. The operator can control the measurement density 

by regulating the driving speed and data recording frequency (Birrell et al., 1996). 

These data are processed to generate yield maps that depict the spatial patterns of 

production potential. The yield monitors for grain crops are now in a 

technologically very advanced status. Also, yield monitor systems for many other 

crops including cotton (Sui et al., 2004), peanut (Rains et al., 2005), potato 

(Persson et al., 2004), sugar cane (Magalhaes and Cerri, 2007), sugarbeet 

(Hennens et al., 2003) and tomato (Pelletier and Upadhyaya, 1999) have been 

researched.  

Theoretically, yield maps could reflect partially the within-field soil variation. 

Therefore, numerous studies have used either single or multiple years of yield 

maps as a guide for site-specific soil management through the differential 
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application of crop inputs (Lark and Stafford, 1997; Stafford et al., 1996). Sudduth 

et al. (1996) observed that yield variation largely corresponds to landscape and soil 

physical properties related to water distribution and water availability rather than 

to the soil nutrient status. However, it is often highlighted that the relationship 

between the spatial variation of crop yield and soil productivity is complicated by 

other factors influencing yield, such as pest and weed infestations, the weather 

conditions that prevailed during a particular growing season and even the field 

management practices. Therefore, Boydell and McBratney (2002) advocated that 

at least five to seven years of yield maps are required to infer reliably the 

variability of soil properties through yield maps. However, such long sequences of 

yield maps are rarely available in European countries, where yield mapping is not 

a routine practice. On the other hand, the yield monitors can cause considerable 

errors in estimation of yield due to their improper calibration, mass or flow sensor 

errors, variations in combine speed, noise introduced by machine vibration and 

varying terrain. Therefore, a substantial pre-processing effort is required in order 

to extract information from yield monitor data (Simbahan et al., 2004). 

 

2.3.1.3. Remote sensing 

Remote sensing of electromagnetic radiation reflected by surface soil provides a 

great deal of information on the variation of the top few centimetres of soil. Thus, 

the images of bare soil, captured either from an aircraft or satellite platforms have 

been widely used to predict the soil variability (Moran et al., 1997). The majority 

of these studies have focused on the reflective region of the electromagnetic 

spectrum (300 – 2800 nm). Multispectral airborne (green, red, near infrared) and 

satellite images (SPOT and LandsatTM) have been used as covariates for 

predicting soil particle size distribution with varying levels of success (Barnes and 

Baker, 2000; Zhai et al., 2006). Several researchers have related soil organic 

carbon variation to soil reflectance data (Chen et al., 2005; Henderson et al., 1992; 

Sullivan et al., 2005). Remotely sensed microwave data (passive and active) have 

been employed to characterize the spatial distribution of soil moisture (Mattikalli 

et al., 1998; Simmonds and Burke, 1998). Microwave imagery has the strong 
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advantage of being able to penetrate clouds, which is extremely useful when 

images are captured from high altitude. Moreover, soil moisture has been 

correlated to visible and thermal infrared reflectance of bare soil fields (Scott et 

al., 2003). Despite the relations among soil reflectance and soil properties, the 

utility of remotely sensed images have shown limited success for site-specific soil 

management. The main reason is its inability to infer the soil variation throughout 

the root zone. Moreover, to characterize within-field soil variation, it needs images 

with high spatial resolution. Often such high resolution images are too costly to 

obtain. The changes in surface tillage condition, moisture content, atmospheric 

effects, observation conditions, vegetation cover and plant residue may influence 

the reflectance properties, thus weakening the spectral responses due to the target 

soil properties (Zhang et al., 2002). Therefore, timing of the acquisition of satellite 

images determines its usability. The user has little control over the timing of the 

satellite image acquisition. 

 

2.3.1.4. Crop sensors 

The response of crops to differences in soil conditions can also be used as indirect 

information to characterize within-field soil variation. The spatial variation of crop 

cover has been researched to predict the soil nutrient deficiencies, soil moisture 

availability and salinity (Moran et al., 1997). The advantage of this method over 

the bare soil imagery is that the crop response integrates the soil conditions of the 

entire root zone. Recently, a number of field vehicle mounted proximal crop 

sensors have been developed to deliver crop information on-the-go. The designing 

focus of the majority of these sensors was to provide crop information just before 

the soil nutrient applications. Recent commercialization of the tractor mounted 

Yara N-sensor (Yara International ASA, Norway) is a typical example. This 

sensor uses the leaf reflectance between the spectral range of 720-740 nm as an 

indicator of crop N status and relates to the N demand. Berntsen et al. (2006) 

reported promising benefits of N fertilizer management with the Yara N-sensor. 

Recently, an on-the-go mechanical sensor for measuring crop biomass has been 
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developed by Ehlert and Dammer (2006) and they used it to guide differential 

application of nitrogen. Evans et al. (2000) used an array of irrigation machine 

mounted infrared thermometers to measure the canopy temperature to control 

irrigation events. Recent developments of crop sensors are well documented in the 

proceedings of the Precision agriculture conferences held in the recent past and it 

is likely that some of them will reach the commercial market in the near future.  

 

2.3.2. Analysis of spatial data 

The first step of site-specific soil management generates large amounts of geo-

referenced data. These data should be stored and analyzed in order to identify the 

within-field variation and to guide differential soil management practices. 

Therefore powerful data storing and processing tools play a crucial role in site-

specific soil management. Geographical information systems (GIS) provide data 

base management tools to organize the data, both in spatial and attribute space, in 

a form which permits to be stored efficiently and retrieve quickly for updating and 

analysis. Data sets must also be subjected to an exploratory data analysis to 

identify outliers and measurement errors. Nevertheless, the spatial data gathered in 

different sampling densities are needed to be interpreted, compared and integrated 

to deduce information. This can be done only after bringing point data into 

continuous data layers or maps with a common grid configuration. This is 

accomplished by interpolating point data to a user defined grid using an 

appropriate prediction technique. Most GIS systems provide set of tools that can 

be used for spatial data analysis and integration (Burrough and McDonnell, 1998). 

The statistical techniques used in spatial data analysis will be discussed in the next 

chapter within the context of the research methodology. 

 

2.3.3. Managing variation 

Once the information about the within-field variation is known, the next steps are 

the use of this information to determine the appropriate site-specific management 

practices and their implementation. Decision supporting tools allow land managers 
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to decide on the appropriate site-specific management strategies. McBratney et al. 

(2005) identified that the development of decision support tools is one of the key 

areas in site-specific soil management needing lots of research input. A 

multidisciplinary team effort is a prime requirement in this regard. Currently 

available decision support systems such as WHEATMAN, COTTONLOGIC and 

APSIM are being used at within-field level assessment of decision. The potentials 

of crop models and scenario analysis have also been tested to identify optimal 

within-field management strategies (de Jonge et al., 2007; Miao et al., 2006; Thorp 

et al., 2007). 

Managing the soil variability can be accomplished either by a sensor based or a 

map based approaches (Adamchuk et al., 2007; Morgan and Ess, 1997; Zhang et 

al., 2002). The sensor based approach (Figure 2.5a) measures the soil variation 

using a mobile sensor and controls the management practices like application rates 

of inputs simultaneously (in real time). By detecting and managing the within-field 

variation on-the-go, the need for a GPS is eliminated and post processing soil data 

for management decisions is greatly reduced. Generally, this approach is not 

popular because the sensing equipments are too expensive, not sufficiently 

accurate or not yet available (Chang et al., 2003). Nevertheless, the operator has 

less chance to detect erratic measurements and consequent management errors. 

The within-field variability and the application rate data are not essentially 

recorded in the sensor based approach. But, these data have a direct importance to 

evaluate the site-specific management process. Recently, Maleki et al. (2008) have 

successfully implemented a sensor based soil Phosphorus management system for 

the maize crop. Further, by comparing the uniform management, they have 

reported an improvement in the use efficiency of phosphorus fertilizers and also an 

increment of maize yield. The map based approach (Figure 2.5b) on the other 

hand, uses the spatial variation information obtained through field sampling or 

sensing techniques to delineate within-field subunits called management zones. 

Subsequently, the management options for each zone are defined on the basis of 

decision support systems. The result is a set of management maps, each providing 

application rates of different management inputs at every location of the field. 
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Finally, this information is fed to the data processor of the farm machinery 

employed with a variable rate applicator. 

 

 

 

(a) 

(b) 

Figure 2.5. (a) The sensor based and (b) map based approaches for managing within-field 

soil variation. 

 

In the map based approach, a GPS receiver is essential to synchronize the 

information available in the maps and the variable rate applicator in order to 

change the application of inputs on-the-go. Additionally, sub-meter accuracy 
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information about the application rates are recorded for the future use. The map 

based approach is currently the most evolved approach for site-specific soil 

management. 

 

Management zones  

Management zones are within-field subunits, each having relatively a homogenous 

combination of soil properties that identifies a single or range of management 

strategies. Bouma et al. (1999) recognized the management zones as areas of land 

acting significantly different in terms of the soil functions and solute movement. 

Therefore, management zones can be considered as decision units in site-specific 

soil management. Differential management strategies can be variable rates of 

fertilizer and amendments like lime, tillage or even sub soiling. Zhang et al. (2002) 

indicated that the information needed for the management zone delineation of a 

particular field may be different for different management practices.  

 

 “Management zone” and “management class” are often used in site-specific soil 

management research as interchangeable terms. According to Taylor et al. (2007) 

these terms are needed to be used with caution. They pointed out that a 

management class is the area to which a particular agronomic treatment may be 

applied, whereas a management zone is a spatially contiguous area to which a 

particular treatment may be applied. Therefore, a management class may consist of 

a number of zones, whereas a management zone can belong only to one 

management class. 

A variety of data layers, including soil property maps, topographic attributes, soil 

drainage classes, proximally and remotely sensed soil information, yield maps and 

farmer’s knowledge have been used with varying success to delineate management 

zones (Chang et al., 2003). Literature reports about three main approaches of 

management zone delineation in relation to the spatial information used. The first 

approach uses a single information layer such as a soil nutrient concentration or 

pH to identify management zones, targeting differential management of a single 

crop input. This approach demands a generation of variability maps at every 
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growing season. The second approach relies on a sequence of yield maps as the 

only information to delineate management zones (Boydell and McBratney, 2002; 

Brock et al., 2005; Lark, 1998). Kitchen et al. (2005) highlighted that terms 

“productivity zones” or “yield zones” may be more appropriate synonyms and that  

less management attention can be given to the poor yielding zones while optimally 

managing the medium to high yielding zones. Robertson et al. (2007) mentioned 

considerable financial gains through this approach. Further, some researchers have 

tried to find out soil factors underlying the within-field production potential in 

order to decide about best management practices (Cox and Gerard, 2007; Lark and 

Stafford, 1997; Ping et al., 2005). However, since the relationship between the 

spatial variability of crop yield and soil variability is often very complex 

(McBratney and Pringle, 1997), this approach often considers that the within-field 

yield variation occurs due to a single primary factor or several interacting factors. 

The main drawback of yield based management zone delineation is the need of 

multiple years of yield data (Dobermann et al., 2003) to delineate stable zones. 

Nevertheless, yield maps may not necessarily reflect soil variation since excessive 

application of crop inputs can mask the influence of soil variation on the yield. For 

example, within-field areas which are susceptible for nitrogen leaching may not 

appear in the yield maps when an excessive application of nitrogen has been 

applied. The third approach uses a combination of data layers, namely soil 

attributes, yield data and the topography to delineate management zones (Fraisse et 

al., 2001; Frogbrook and Oliver, 2007; Taylor et al., 2003; Vrindts et al., 2005). 

The selection of suitable data layers is often done on the basis of expert knowledge 

about the soil genesis of the area and their relevance to site-specific soil 

management. 

Managing variability through the management zones should bring the expected 

objectives of site-specific soil management. Therefore, generally the delineated 

management zones are treated as potential management zones till their usability is 

evaluated and being confirmed. 
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Numerical methods for management zone delineation 

A number of procedures have been tested to identify the boundaries of 

management zones based upon single or multiple layers of input data. These 

procedures range from the simple map overlaying (Kitchen et al., 1998) and hand 

drawing (Fleming et al., 2004) to the more widely used multivariate unsupervised 

cluster analysis (Boydell and McBratney, 2002; Vrindts et al., 2005). 

Unsupervised cluster analysis techniques recognize the natural grouping of input 

data in a multi-dimensional attribute space (Jensen, 1996). Fraisse et al. (2001) 

used the iterative self-organizing data analysis technique (ISODATA) to define 

management zones. To obtain better results with ISODATA, the data sets should 

have similar variances and follow an approximate normal distribution. These two 

requirements have restricted its popularity. The fuzzy k-means unsupervised 

classification has become very popular for management zones delineation due to 

its capability of handling data sets with different distributions. Moreover, it 

provides different indices to find out optimum number of classes suit for the data 

sets. A management zones delineation software called Management Zone Analyst 

(MZA) has been developed by Fridgen et al. (2004) on the basis of fuzzy k-means 

unsupervised classification algorithm. The next chapter provides a detailed 

description of the fuzzy k-means unsupervised classification.  

 

2.4. Conclusions 

This chapter provided the basic concepts of site-specific soil management. The 

whole management process can be summarized into a few steps: assessment of the 

within-field variation, identification of potential management zones and 

differential management of crop inputs across these zones. The potential and 

proven economic and environmental benefits have brought an expectation that 

most of the traditional cropping systems will gradually shift towards site-specific 

soil management. Moreover, environmental legislation with regard to the 

minimization and optimal use of inputs and the market pressures for traceability 

will force producers to seriously consider about site-specific management. Much 
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of the technology for the identification and the management of variation are in 

place. But, wide adoption of the site-specific soil management can only be 

expected upon the application of these technologies under different soil 

environments and farming conditions.  
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3.1. Introduction 

The objective of this chapter is to present the spatial inventory techniques 

employed in this dissertation to characterise the within-field soil variation and 

subsequent delineation of the management zones. Firstly, soil sampling 

procedures, different types of soil information sources and the spatial analysis 

procedures used in this research are described. Next, an overview of the geology 

and the soil formation of Flanders is provided. This is to explain the potential 

causes of the within-field soil variability and also to formulate a basis of the 

selection of study fields for case studies presented in this dissertation. Finally, an 

introduction to the national soil map of Belgium is provided to present the 

currently available sources for the soil spatial information 

 

3.2. Spatial sampling  

To understand the within-field soil variability, it is necessary to conduct a spatial 

survey by taking soil samples at different locations. This section provides a 

discussion on the sampling schemes used in this research. However, in depth 

information about sampling procedures can be found in de Gruijter et al. (2006) 

and Yates (1981). 

The term “support” is used in the spatial sampling literature to explain the area or 

volume of the physical sample on which the measurement is made (Burrough and 

McDonnell, 1998). For example, if three sub samples were collected and bulked 

within an area of 2 m x 2 m, the support would then be a square of the same 

dimensions. If the physical dimension of a sample is negligible compared to the 

size of the study area, samples can be referred to as point samples. In spatial 

sampling, it is advised to adhere to a constant support during the entire sampling 

campaign. 

 

Simple random and grid sampling 

When deciding on a sampling scheme for spatial studies, one must create a 

sampling configuration which satisfies two objectives: to accurately characterize 
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the spatial variation and to provide adequate information for the estimation (or 

interpolation) of the values of soil properties at unsampled locations. A 

distribution of sample locations at a range of distances (from few to some tens of 

meters) at all the directions is essential for an accurate characterization of the 

spatial variation (Webster and Oliver, 1990). Precise spatial estimations can only 

be guaranteed if the sample locations are spatially evenly distributed over the 

study area. Simple random sampling is one of the often used options, in which 

sampling locations are selected such that every location of the study area has an 

equal chance (probability) of being selected. This is achieved by randomly 

selecting x and y coordinate pairs using a table of random numbers or a random 

number generator software. Figure 3.1a shows such a random sampling scheme 

which consist of 49 samples. Although, this sampling scheme provides clusters of 

samples facilitating the characterizing of the short and long scale spatial variation, 

these clusters may be preferentially located in the field causing wrong conclusions 

on the overall spatial variation. Also, a uniform distribution of sampling locations 

can not be expected with random sampling. Alternatively, the use of a regular grid 

sample scheme provides a good spatial coverage, but to characterize the short 

scale variability the grid spacing should be very small, needing a large number of 

samples. Note also that the estimation of spatial variation by a regular grid 

sampling can be biased, if the sampling grid coincides with a regular pattern of 

land management such as drainage tubes. 

Knowing the weaknesses and strengths of both strategies, we combined grid and 

random sampling schemes to obtain soil information for this research. This was 

achieved by firstly defining a grid by taking time, financial and laboratory 

limitations into account. To position the grid in a probabilistic way, the first 

sampling point was located randomly within the first grid cell. Subsequently, a 

random sample was added within each grid cell. This was done by superimposing 

a fine grid on each cell as a reference system and picking an x coordinate and a y 

coordinate randomly. This procedure was repeated till all grid cells are assigned 

with a random sample location. Figure 3.1b provides an example for a random 

plus a grid sampling scheme. 
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Figure 3.1. (a) Simple random sampling scheme of 49 locations and (b) grid sampling 

configuration (grid spacing of 14 m) with added couple random sample located within each 

grid cell (crosses and dots represent random grid samples, respectively) 

 

Sampling for model calibration 

In the site-specific soil management studies, it is often needed to obtain soil 

observations to establish the relationships between targeted soil variables and 

ancillary information like ECa to use them as predictor variables. The potential 

management zones may also be sampled for further characterization to decide on 

management options. In both instances, the sample configuration should be 

decided in a way to represent the feature space of ancillary information, rather than 

optimizing the coverage of geographical space. 

One of the approaches is the stratified random sampling (Webster and Oliver, 

1990). Here, the study area is divided into few strata on the basis of the variation 

of the ancillary information and then within each stratum a number of sample 

locations are randomly identified. The potential management zones are then 

considered as different strata. However, this approach does not guarantee the full 

coverage of the attribute space. Consequently, the relationship established may not 

be adequately representing the data range of the ancillary information. 
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Purposive sampling is another widely used approach (Bianchini and Mallarino, 

2002; Lund et al., 1999). A purposive sample is a sample which is selected by the 

researcher purposively or subjectively. The researcher attempts to obtain a sample 

that appears to be representative of the ancillary information and will try to ensure 

that the range of the variable values is included. The main advantages of this 

method are: sampling cost can largely be reduced by selecting a few but 

representative samples and the background knowledge about the field variability 

can be incorporated when the sampling configuration is decided upon. However, 

the use of this method is not convenient when samples have to be selected on the 

basis of several layers of ancillary information. Therefore, Minasny and 

McBratney (2006) introduced a sampling method called conditioned Latin 

hypercube sampling. This is a stratified random procedure that provides an 

efficient way of sampling variables from their multivariate distributions. This 

sampling approach considers that distributions of multiple variables (p variables) 

are represented as p dimensions of a Latin hypercube. Then a sample collection of 

size n from multiple variables is randomly drawn such that for each variable the 

sample is marginally maximally stratified. Also, this procedure ensures that the 

selected samples exist in the real world. A sample is maximally stratified when the 

number of strata equals the sample size n and when the probability of falling in 

each of the strata is n-1. The conditioned Latin hypercube sampling procedure can 

also be used when only a single ancillary variable is available (see section 4.6.3.1). 

  

3.3. Selection of soil variables and laboratory analysis 

The within-field variation of four stable soil properties namely, texture, pH and 

organic C and CaCO3 content were investigated in study areas chosen for this 

research. The relevance of these temporally stable soil attributes for site-specific 

soil management was the basis of their selection (Bouma et al., 1999). Soil texture 

is a physical property which has a direct effect on porosity, water, heat and 

nutrient fluxes, water and nutrient holding capacity and the soil structural form and 

stability. The organic C content represents the soil biological status and also 

interacts with soil texture influencing its related characteristics. Nevertheless the 
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within-field variation of organic C can considerably affect the inherent nutrient 

supply capacity of the soil. Thus, soil texture and organic C content are two key 

inputs of the decision support tools to determine the soil management practices 

such as nutrient application, irrigation and land preparation. Also information 

about the variation of CaCO3 and pH is needed to evaluate the chemical status of a 

soil and direct site-specific lime applications.  

 

3.3.1. Analysis of soil texture, organic carbon and CaCO3 content 

Soil textural analysis was performed using the pipette method following the 

procedure described by Gee and Bauder (1986). Twenty grams of air dried soil 

was treated with HCl to destroy carbonates. Subsequently, the organic materials 

were destroyed by heating the soil sample with H2O2 (30 %) at 70 0C until the 

reaction stops. The sample was washed with distilled water for three times to 

remove the excess HCl. After that, a mixture of sodium hexametaphosphate 

((NaPO3)6) and sodium carbonate (Na2CO3) was added to disperse the soil 

particles. The sand fraction was separated by wet sieving through a 50 μm sieve 

and weighed after oven drying. The remaining clay and silt fractions (0 to 50 μm) 

were taken into a one-litre volumetric cylinder and volumerized using distilled 

water. Immediately after thoroughly shaking the soil solution, a suspended sample 

consisting of silt and clay fractions was pipetted out at room temperature and oven 

dry weight was determined. A sample of clay in the soil suspension was pipetted 

out after allowing the silt fraction to settle for 6 hrs and 31 minutes at 29 0C. The 

oven dry weight of the clay fraction in the pipetted sample was determined. The 

silt content was calculated by subtracting the weight of clay fraction from the dry 

weight of the firstly pipetted sample. Subsequently, the percentage sand, silt and 

clay fractions were calculated. 

The organic C content was determined by the Walkley and Black method 

described by Nelson and Sommers (1996). One gram of the soil sample was 

treated with potassium dichromate (K2Cr2O2) and H2SO4, in order to oxidize the 

organic matter. Upon completion of the oxidation phase, the unused or excess 
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dichromate ions (Cr2O7
-2) were determined to compute the organic C content. 

Therefore, the digestate was back titrated with ferrous sulphate (FeSO4). Since the 

mean recovery of organic C by this method is 76 % (Walkley and Black, 1934), a 

correction factor of 1.33 was applied to calculate the organic C content (%). The 

calcium carbonate content was obtained by treating 1 g of soil with H2SO4, and 

subsequent back titration of the unused H2SO4 with NaOH.  

 

3.3.2. pH-KCl 

Soil pH-KCl was determined by mixing 10 g of air dried soil with 25 ml of 1M 

KCl. After 10 minutes pH-KCl was measured with pH meter. 

 

3.4. Ancillary information 

Two sources of ancillary information were consistently used in this research, 

namely ECa and elevation. Therefore, the purpose of presenting the following sub 

sections is to provide a theoretical basis for their measurement principles and 

analysis procedures.  

 

3.4.1. Apparent electrical conductivity measurement with EM38DD sensor  

Electromagnetic induction based dual-dipole soil sensor, EM38DD was used to 

acquire ECa data. The EM38DD sensor consists of two EM38 units fixed 

perpendicular to each other (see further). A schematic diagram of an EM38 sensor 

unit is presented in Figure 3.2 showing its construction and operating principle. 

This sensor unit consists of two electrical coils, a transmitter coil (Tx) and a 

receiver coil (Rx), which are embedded in a wooden frame with an inter-coil 

spacing (S) of one meter. Calibration controls and a digital display of ECa 

measurements are included in the sensor. Analog data output is provided to allow 

the measurement to be recorded in a data logger or a field computer through a 

serial port.  

During the operation, the Tx is energized with an alternating current with a 

frequency (f) of 14.6 kHz. This creates an alternating primary magnetic field (Hp) 
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around the Tx, which propagates into the soil generating electric fields according 

to the Faraday’s law. McNeill (1980) mentioned that the resulted soil subsurface 

current flows take entirely horizontal pathways irrespective of the characteristics 

of the soil mass. Furthermore, the current flow at any point in the soil is 

independent of the current flow at any other point since the magnetic coupling 

between the current loops is negligible. These currents, in turn, induce a secondary 

magnetic field (Hs) in the soil. The induced field is superimposed on the primary 

field and both Hp and Hs are measured in the receiver coil. McNeil (1980) derived 

the instrument measurements of ECa (S m-1) as:  

                                       ⎟
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where Hs and Hp represent the intensities of the secondary and the primary 

magnetic fields at Rx (A m-1), μ0 is the magnetic permeability of air (4π10-7 H m-1), 

S (m) is the inter-coil spacing and ω denotes the angular frequency (rad s-1) of the 

instrument which equals to 2πf (operating frequency, f  is expressed in Hz) . Hp is 

determined before the field ECa surveying by calibrating the sensor in free space 

(2 m above ground), allowing the sensor to directly use Hs for the ECa calculation. 

 

 
 
Figure 3.2. Diagram showing the operation of electromagnetic induction based EM38 

sensor (source: Robinson et al., 2004). 
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The relationship given in the equation 3.1 is only valid for the conditions that the 

EMI instrument is operating at low induction number (β): 

                                            

0μ2π
2δ

β

fEC

SS

a

==                                     (3.2) 

where δ is the skin depth, defined as the depth at which the transmitted magnetic 

field strength decays to e-1 (i.e., 37 %) of its initial magnitude at a reference point. 

Equation 3.2 indicates that for an EMI sensor with fixed f and S, the only factor 

determining the magnitude of β is soil ECa. McNeill (1980) asserted that the 

constraint of low β (<< 1) holds in soil environments where ECa is ≤ 100 mS m-1.  

The EM38 sensor can be operated in two perpendicular orientations, with the 

transmitter and receiver coils in either vertical (Figure 3.2) or horizontal plane. 

Technically these two operating modes are referred to as vertical and horizontal 

dipole modes, respectively, on the basis of the orientations of magnetic dipoles. 

Importantly, these two different modes of operation produce different responses 

from soil material at different depths. According to McNeil (1980), the depth 

sensitivity functions for these modes are: 

                                       [ ]2/32 )14/(4)( +=Φ zzzV                                 (3.3)  

                                    [ ]2/12 )14/(42)( +−=Φ zzzH                             (3.4)  

and respective ECa measurements are given as: 
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where ΦV(z) and ΦH(z) refer to the relative contribution to the secondary magnetic 

field (or depth sensitivity) arising from a horizontal thin layer of soil (dz) at any 

depth z below the instrument, when the EMI sensor is operating at vertical and 

horizontal modes, respectively. Depth below the instrument is expressed as a 



Chapter 3: Materials and methods 
 

 

 42

normalized depth; i.e. the depth divided by the inter-coil spacing. Since the EM38 

sensor has an S of one meter, the normalized and actual depths are identical. The 

equations 3.1 to 3.6 suggest that the depth sensitivity of EMI sensing is not only 

dependent on the coil orientations but also on the S. An increase in depth can be 

obtained by increasing S (under the constraint of low induction number, equation 

3.2). Since, S is fixed at 1 m, the EM38 sensor measurements mainly reflect the 

ECa in the root zone. Electromagnetic induction sensors with larger S are available 

for a variety of applications (Hendrickx and Kachanoski, 2002). Figure 3.3 

illustrates the depth sensitivity or relative response functions of the vertical and 

horizontal dipole modes of the EM38. It can be noted that when the sensor 

operates in the vertical dipole mode, soil material located at a 0.4 m gives the 

maximum contribution to the ECa measurement but the contribution from the soil 

material at 1.5 m is still significant. Further, the near surface material makes a very 

small contribution to the measurement. On the other hand, the instrument is most 

sensitive to the conductivity of the near surface soil when it operates in the 

horizontal dipole mode.  

 

 
 

Figure 3.3. Comparison of depth sensitivity of the vertical and horizontal dipole modes of 

EM38 sensor. 
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Both ECaV and ECaH measurements are required for comprehensive 

characterizing of the top and the sub soil conductivities. Therefore, recently 

Geonics Ltd. developed a new version of EM38 sensor by coupling two individual 

sensors perpendicular to each other. This version is known as the EM38DD 

(Figure 3.4) and it allows obtaining simultaneous ECa measurements in both 

horizontal and vertical dipole modes. 

 

 

1 

2

Figure 3.4. EM38DD sensor showing the vertical (1) and horizontal (2) dipole units. 

 

Mobile ECa measurement system 

The EM38 sensor was originally designed to measure soil salinity by means of a 

hand held operation. Recently, mobilized systems were developed enabling the 

user to obtain a large number of field measurements within a small time. Figure 

3.5 shows the mobile ECa measurement system used in this research which was 

developed by the Research Group of Soil Inventory Techniques (Onderzoeksgroep 

Ruimtelijke Bodeminventarisatietechnieken - ORBit) of the Department of Soil 

Management. The mobile measurement system consists of five main components: 

the EM38DD sensor, a GPS receiver, a field computer, an All Terrain Vehicle 

(ATV) and a GPS based guidance system.  

The EM38DD sensor is housed in a rugged non-metallic sled to make it possible to 

pull it by the ATV. The GPS receiver used in this system is a Trimble AgGPS®332 
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(Trimble Inc., Colorado, USA), which provides a positioning accuracy of < 10 cm 

with an OmniSTAR HP differential correction (OmniSTAR Inc., Texas, USA). 

The Allegro field computer unit (Juniper Systems Inc., Utah, USA) acts as the 

hardware interface to connect the EM38DD and the GPS receiver through two 

serial ports. The HGIS software (Starpal Inc., Colorado, USA) installed in the field 

computer combines the ECa with the location data from the GPS and stores it in 

the hard disk drive. Moreover, this software provides an option to control the 

timing of data acquisition either at each second or at sub-second intervals. 

Generally, the mobile system is operated along transects separated by a predefined 

distance to obtain measurements in an approximate grid sampling configuration. 

The AgGPS® EZ-Guide system (Trimble Inc., Colorado, USA) guides the operator 

to drive precisely along parallel tracks.  

 

 

 

 

 

 

 

 

 

 

 
 

3 

2 

1 
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Figure 3.5. Mobile ECa measurement system equipped with 1. Field computer, 2. AgGPS 

EZ-Guide system, 3. GPS antenna and receiver, 4. EM38DD sensor housed in the sled and 

5. All Terrain Vehicle (ATV). 

  

Prior to the field measurements, the EM38DD sensor is calibrated according to the 

guidelines provided by the manufacturer. Corwin and Lesch (2003) highlighted 

that the changes in ambient conditions such as air temperature, humidity and 
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atmospheric electricity can affect the stability of the instrument. Therefore, after 

the calibration, the ECa was measured at a reference point in the study field and 

this was repeated in hourly intervals to check the instrument stability. If 

considerable drift in the measurements were noticed, the equipment was 

recalibrated to assure the consistency of the measurements. 

On the completion of field survey, the acquired data were transformed to a 

personal computer. The subsequent analysis involved two main steps. Firstly, the 

location data recorded in geographic coordinate system (according to WGS1984) 

were projected to Belgian Lambert72 coordinate system. Secondly, measurement 

anomalies resulting from interferences of metal objects were removed through an 

exploratory data analysis.  

  

3.4.2. Digital Elevation Model  

Topography is one of the major causes of soil heterogeneity (McBratney et al., 

2003). Therefore, topographic attributes derived from square-grid digital elevation 

models (DEMs) have often been used as ancillary information for the spatial 

predictions of soil properties (Moore et al., 1993; Thompson et al., 2006) and also 

to delineate potential management zones (Parent et al., 2008). The source of 

elevation data for DEMs can be from the field measurements using theodolites, 

GPS receivers, stereo aerial photographs, scanner systems in satellites or aircrafts 

or digitizing of contour lines on paper maps (Burrough and McDonnell, 1998). 

Among them, the latter is not often favoured due to the fact that interpolating 

digitized contours to a regular grid can result in the creation of severe artefacts in 

the resulting DEM surface.  

Elevation collected by airborne laser altimetry (Light Detection And Ranging -

LiDAR) (OC-GIS Vlaanderen, 2003) was used in this research. These data have a 

measurement density of approximately one point measurement per each 16 – 

20 m2 and are characterized by very small average horizontal and vertical 

measurement errors, 0.14 and 0.20 m, respectively. Three key steps were followed 

to analyze elevation data: (1) Interpolation of elevation data and removal of pits, 
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(2) Delineation of catchment area (3) Calculation of primary and secondary 

topographic attributes. 

 

3.4.2.1. Interpolation and removal of pits 

The elevation data set which was used in this study was already pre-processed by 

the data provider. These data were interpolated with ordinary block kriging to 

generate square-grid DEMs. The grid interval was chosen to be compatible with 

the grids of other primary and secondary variables.  

Digital elevation models may contain grid cells surrounded by neighbours that all 

have a higher elevation. These pits (or depressions) are often artefacts of the DEM 

gridding process, as opposed to few which are real (e.g. lakes). These local pits 

cause unrealistic terminations of surface water flow paths leading to an inaccurate 

estimations of specific catchment area (see further), thus the secondary 

topographic attributes. Therefore, it is advised to remove pits before proceed with 

topographic analysis (Burrough and McDonnell, 1998). Different pit removal 

algorithms are available. In this research the method published by Jenson and 

Domingue (1988) which made available in the Idrisi Kilimanjaro software (Clark 

labs, Worcester, MA, USA) was used. In this procedure, the cells contained in 

depressions are raised to the lowest elevation value on the rim of the depression.  

 

3.4.2.2. Delineation of catchment area 

Surface water flow processes that determine the soil spatial variation generally 

operate within a catchment scale (Hall and Olson, 1991). Therefore, the 

topographic attributes were calculated on the basis of the catchment area which 

envelopes the study area. The catchment delineation procedure developed by 

Jenson and Domingue (1988) was used. Idrisi Kilimanjaro software was used to 

implement this step. Generally, this important step is not followed when 

calculating topographic attributes (e.g. Moore et al., 1993) mainly due to limited 

availability of elevation data. However, access to a complete elevation data set 

made it possible to incorporate this step in the current research (see chapter 5).  
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3.4.2.3. Calculation of primary and secondary topographic attributes 

A number of primary and secondary topographic attributes can be derived from a 

DEM. Primary attributes are computed directly from the DEM and the calculation 

of secondary attributes involves a combination of primary attributes. An extensive 

overview of these topographic attributes is provided by Moore et al. (1991), 

Burrough and McDonnell (1998) and Wilson and Gallant (2000). In this research, 

the most relevant topographic attributes for spatial prediction of soil variation were 

selected. These included, primary topographic attributes namely, slope (Sl) and 

specific catchment area (As) and secondary topographic attributes namely, wetness 

index (WI) and stream power index (SPI). These attributes were calculated using 

SimDTA software tool developed by Qin et al. (2007) . 

 

Slope 

Slope measures the rate of change of elevation in the direction of steepest decent 

(Wilson and Gallant, 2000). In this study, the slope in degrees was calculated 

locally for each grid cell (local slope) on the DEM from elevation values (z(xα)) 

within a 3 x 3 cell window (Figure 3.6) moved over the surface.  

 

 
 

Figure 3.6. A 3 x 3 moving window for estimating the primary and secondary topographic 

attributes (h = grid spacing).  
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The Zevenbergen and Thorne (1987) formula was used for calculating the local 

slope of individual grid cells. This method uses the first order derivatives (zx and 

xy) estimated using centred finite differences (Wilson and Gallant, 2000). For 

example the slope angle of the centre grid cell x9 is calculated as:  
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Specific catchment area 

The specific catchment area (m2 m-1) is the upslope area above a unit length of a 

contour. This attribute provides indications about the run off volume and the 

runoff rate at a particular location on the earth surface. In grid based DEMs, As is 

determined by taking the sum of the areas of grid cells in the upslope area that 

contributes to the water flow thorough a particular cell, i.e. upslope contributing 

area (A in meters), and dividing the same by contour length orthogonal to the 

direction of flow (L in meters). To compute As, the drainage topology or the flow 

direction of each grid cell to the downstream neighbour or neighbours should be 

determined. Two flow algorithms are available for determining As: single flow 

direction (SFD) and multiple flow direction (MFD) algorithm (Wolock and 

Mccabe, 1995). Both algorithms use 3 x 3 cells moving window approach to 

determine the flow direction of a particular grid cell. The basic idea of SFD 

algorithms is that water from a grid cell should flow only into one of the eight 

neighbouring cells and MFD allows the accumulated upslope contributing area for 

any one cell is to be distributed amongst all downslope directions. In this study, 

the MFD was preferred over the SFD algorithms due to its evident weaknesses; the 

inability to model divergence of flow and the production of parallel flow lines 

(Wilson and Gallant, 2000). The MFD algorithm developed by Qin et al. (2007) 

was used. This algorithm is an improved version of the MFD algorithm developed 
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by Quinn et al. (1991). The fraction (F) of the upslope contributing area of the 

central grid cell x9 (Figure 3.6) flow towards a neighbouring cell xα in the down 

slope direction (i.e. F(xα)) is calculated as: 
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where Sl(xα) is slope angle from the central grid cell to neighbouring cell xα, L(xα) 

is the contour length orthogonal to the direction of flow, which equals to 0.5h in 

cardinal directions and 0.35h in diagonal direction and p is the flow partition 

exponent (p > 0). Generally, p is set to a constant value, e.g. p = 1 (Quinn et al., 

1991) or 6 (Holmgren, 1994) causing limitations to adopt the partition of flow 

according to local terrain conditions.  The formula used in this study replaced the p 

by a varying flow-partition exponent which was determined through a flow-

partition exponent function based on local terrain conditions identified through 

maximum slope gradiant (Qin et al., 2007). Note that β of the equation 3.8 (β = 

1,…, n) indicate the number of neighbouring cells (n ≤ 8) to which the upslope 

area for x9 is distributed. 

By multiplying F(xα) by A(x9) the amount of upslope contribution area that 

receives from the grid cell x9 to the cell xα can be calculated.  So, by summing up 

the surface area of xα and contributing areas from its eight neighbours, A(xα) can 

be calculated. Finally, specific catchment area of xα can be calculated by: 

                                    
∑

=
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)(
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α

α
α x

x
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As                               (3.9) 

where is the sum of contour lengths orthogonal to the direction of flow 

neighbouring to xα. 
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Wetness index 

The wetness index reflects the tendency of surface flow water to accumulate at any 

point in the catchment  (Moore et al., 1988). It is defined as a ratio between the 

specific catchment area and the slope: 

                                                 ⎟
⎠
⎞

⎜
⎝
⎛=

Sl
AsWI

tan
ln                                         (3.10) 

where Sl is measured in degrees.  

 

Stream power index 

The stream power index is a measure of the erosive power of flowing water and 

calculated as (Wilson and Gallant, 2000):  

                                                SlAsSPI tan×=  .                                       (3.11) 

 

3.5. Methodology of spatial data analysis 

The analysis of sampled soil data started with the exploratory data analysis. The 

objectives of this step were: to verify the correctness of the acquired data and also 

to get familiar with the different data sets and their quantitative relationships. The 

next step involved the characterization of the scale of spatial variation of variables 

and prediction (or interpolation) of values at un-sampled locations. The 

geostatistical interpolation techniques were used as a tool to proceed through this 

step. The resulting continuous surface maps helped to interpret the spatial patterns 

of different variables and their comparison. Finally, these map layers were 

integrated using a clustering procedure called fuzzy k-means to delineate the 

potential management zones. 

 

3.5.1. Exploratory data analysis 

Univariate description 

This step involves the inspection of the data distribution of each variable and the 

computation of summery statistics. The data distributions were visualized by 
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means of histograms. The symmetry of a data distribution was inspected by means 

of a Kolmogorov-Smirnov test for normality and by calculating the coefficient of 

skewness.  

Asymmetric distributions arise from a few extremely small or large values 

(outliers) which can affect the descriptive statistics and the characterization of 

spatial variation. Plotting the values of observations in a location map was used to 

verify whether extreme values are linked to the measurement errors or to several 

mixed populations within the study area. If the outliers resulted from measurement 

errors, corresponding samples were reanalyzed. If there was no sound basis to 

correct or discard the extremes, robust statistics such as the median were used to 

describe the samples in conjunction with the more conventional descriptive 

statistics (Goovaerts, 1997). The transformation of data, e.g. log-transformation 

(Webster and Oliver, 2001) is often performed in order to reduce the influence of 

extreme values on spatial analysis. However, considering the problems associated 

with back transformation (Goovaerts, 1997), the data transformations were not 

considered in this study. 

The calculated summery statistics included: the median, mean, standard deviation 

and variance. The ratio of the standard deviation to the mean )/( zs is the 

coefficient of variation (CV), which is usually presented as a percentage. It was 

useful for comparing the variation of different sets of observations of a single 

variable.  

 

Bivariate description 

This step of the exploratory data analysis was performed to find out the 

relationships between pairs of variables observed at the same location. If two 

random variables Zi and Zj are measured on n locations, zi(xα), zj(xα), α = 1,2,…,n, 

the relationship between these two variables can be visually examined in a scatter 

plot in which each data pair is plotted against one another. 
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The strength of the linear relationship between the two variables was determined 

by calculating the Pearson correlation coefficient (rij). This is the standardized 

form of the covariance (Cij): 

                                           
ji
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ij ss

C
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=       ]1,1[−∈                                   (3.12) 
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si and sj are the standard deviations of Zi and Zj, respectively and mi and mj denote 

their arithmetic means.  

The equivalent robust statistic for rij is the Spearman rank correlation ( ) which 

considers the relationship between the ranks of data r(zi(xα)) and r(zj(xα)): 
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where  and  represent the arithmetic mean and the standard deviation of n 

ranks of Zi. A large deviation between  and  indicates a non-linear 

relationship between the two variables or the presence of marked asymmetry. 

Rim Ris

ijr R
ijr

 

3.5.2. Geostatistical analysis  

Geostatistics embodies a set of statistical tools to describe and model the spatial 

variation of the soil and crop variables and use this information to make unbiased 

predictions at un-sampled locations. It is based on the theory of regionalized 

variables introduced by the French scientist Matheron in the mid 1960s. Several 

text books provide excellent discussions on the currently available geostatistical 

tools (Goovaerts, 1997; Isaaks and Srivastava, 1989; Webster and Oliver, 2001). 



Chapter 3: Materials and methods 
 

 

 53

Therefore, only a short description of a few selected geostatistical tools used in 

this research is presented below. 

 

3.5.2.1. Characterizing the spatial variation by the variogram  

The semivariance quantifies the degree of the spatial relationship or spatial 

correlation between two observations. The calculation of the semivariance is based 

on the intrinsic hypothesis proposed by Matheron (1965). The intrinsic hypothesis 

states that the expected difference between the values of a random variable Z 

observed at two places separated by a distance vector h (lag distance) is zero and 

does not depend on the position x: 

                                           0)]()([ =+− hxx ZZE .                                   (3.15) 

Further, it also assumes that the variance of the differences depends on h and not 

on the absolute position:  

                         (3.16) )γ(2])}()([{)}]()([{ 2 hhxxhxx =+−=+− ZZEZZVar

where the quantity γ(h) is known as the semivariance at lag h. The average 

semivariance for any lag h can then be estimated by (Webster and Oliver, 1990): 
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−∑ }                        (3.17) 

where z(xα) and z(xα+h) are observations of Z at xα and xα+h, and N(h) is the number 

of observation pairs separated by lag h. A plot of the semivariances against the lag 

distances is known as the experimental variogram. The variogram serves as the 

central tool of geostatistics providing a description of the scale and pattern of the 

spatial variation. If the spatial variation is independent from direction, an 

omnidirectional experimental variogram can be calculated for the entire study area 

(Figure 3.7a).  
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Figure 3.7. (a) Omnidirectional experimental variogram (dots) and (b) directional 

experimental variograms (dots east-west, crosses north south). The solid curves represent 

the fitted spherical models. 

 
On the other hand, if the spatial variation is directionally dependent, a directional 

experimental variograms need to be calculated (Figure 3.7b). Data outliers can 

greatly affect the stability of the experimental variogram. Therefore, a temporary 

masking of outliers can be required to calculate the experimental variogram, 

otherwise the use of a robust variogram can be considered (Goovaerts et al., 1997). 

Webster and Oliver (2001) suggested that at least 50-100 data points are necessary 

to achieve a stable experimental variogram. 

Typically, a variogram increases from the low values near to the origin to the 

larger values as h increases, reflecting that the dissimilarity between the 

observations increases with the increasing lag distance. The steeper the slope, the 

more the dissimilarity with increasing distance. The dissimilarly increases until it 

eventually reaches a maximum value of γ(h) at which the variogram flattens. This 

is called the sill variance. The lag h at which the variogram reaches the sill 

variance represents the range of spatial correlation. The observations within the 

range are spatially correlated, but those greater than the range are considered as 

spatially independent. By definition, the semivariance at lag zero is itself zero, as 

depicted by Figures 3.7 a and b. But, often for soil data the variogram intercepts 

the ordinate at a positive semivariance value, the nugget variance. This represents 

the spatially correlated variation over distances less than the smallest sampling 
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interval, any measurement errors and any other random variation. Therefore the 

ratio of the nugget effect to the sill, or the relative nugget effect, (RNE, expressed 

in %) can be calculated to indicate the proportion of spatially unstructured 

variation in relation to the total variation. According to Cambardella et al. (1994), 

ratios from 0 % to 25 % indicate a strongly structured spatial dependence. 

Numbers ranging from 25 % to 75 % point to a moderately structured variability 

and ratios larger than 75 % are indicative of a weakly structured correlation 

coupled with a high degree of unexplained variability.  

The geostatistical interpolation techniques use the variogram model to obtain 

unbiased predictions. Therefore, a continuous function or a theoretical model is 

fitted to the experimental variogram in order to obtain semivariance values at any 

possible lag h. Figure 3.8 shows three commonly used theoretical models 

(Goovaerts et al., 1997). These models are bounded in the sense that they reach a 

sill either at a particular range (spherical model) or asymptotically (exponential 

and Gaussian model): 

                for all models                                                                     (3.18) 0)0(γ =
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• Exponential model (Exp) 
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• Gaussian model (Gau) 
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where a is the range, h represents the lag distance, C0 is the nugget variance and C0 

+ C1 equals the sill variance. For the exponential and Gaussian models, the 

practical range is defined as the distance at 95 % of the sill. Combinations of 

variogram models, known as a nested model can also be fitted to an experimental 

variogram.  
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Figure 3.8. Spherical, exponential and Gaussian models with an identical nugget effect 

(C0 = 0.1), range (a = 10 m) and sill (C1 = 1). 

 

There are different methods to select the most appropriate theoretical model, 

ranging from automatic to visual approaches where the model fitting is judged 

from a graphical point of view. In this research an intermediate approach was used 

where the model fitting was optimized by minimizing the weighted sum of squares 

(WSS) of the difference between experimental ( ) and model ( ) 

semivariance values (Goovaerts, 1997): 

)(γ̂ kh )γ( kh
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The weight, given to each lag hk was calculated by dividing the number of 

data pairs that contribute to the estimate by the squared .  
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*

In this research, experimental variogram calculation was performed using the 

Variowin software (Pannatier, 1997). 

 

3.5.2.2. Spatial prediction with kriging 

Kriging is a geostatistical tool for the prediction of the value of a variable at an 

unsampled location on the basis of sample observations made in its 

neighbourhood. It is a weighted linear estimator where the weights are derived 

using the variogram ensuring an unbiased estimation with a minimum estimation 

error (Webster and Oliver, 1990). Therefore, in comparison to the other prediction 

methods, such as inverse distance interpolation and a Triangulated Irregular 

Network (TIN), kriging provides a Best Linear Unbiased Estimate (BLUE) 

(Burrough and McDonnell, 1998). A variety of kriging algorithms are available. 

Algorithms such as ordinary and simple kriging use the target (primary) variable to 

make predictions. On the other hand, techniques such as co-kriging use the joint 

spatial variation of the target variable and densely measured ancillary variables, 

such as ECa, to improve the prediction accuracy. In this dissertation, ordinary 

kriging was used as a common methodology for the prediction of soil and crop 

variables. This section provides only a brief introduction on ordinary kriging. 

Other methods are discussed together with the related studies. 

Consider a random variable Z that has been measured at n locations, z(xα), α = 

1,…,n, the kriging estimator at an unsampled location x0 can be written as: 

                                            (3.23) ])()([λ)()(
)0(
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where n(x0) is the number of neighbourhood measurements z(xα) used for 

estimating , are the weights assigned to data z(xα) which are 

considered to be a realization of the random variable 
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)( αxm are the expected values (or means) of  and , respectively. 

The weights are calculated by minimizing the estimation error variance: 

are the expected values (or means) of  and , respectively. 

The weights are calculated by minimizing the estimation error variance: 

)( 0xZ )( αxZ

                                                              (3.24)                                                               (3.24) 2
00

*
0

2 )}]()([{)( xxx ZZEs −=

under the constraint of unbiasedness under the constraint of unbiasedness 

                                          .                                  (3.25)                                           .                                  (3.25) 0)]()([ 00 =−∗ xx ZZE

  

Ordinary kriging Ordinary kriging 

The ordinary kriging estimates correspond to the same support of the observations, 

even when the prediction results are displayed as a raster. Therefore, ordinary 

kriging is often referred to as ordinary point kriging. Ordinary kriging is applicable 

in situations where m(x) of equation 3.23 is unknown. Therefore, it is assumed that 

m(x) is stationary within the local neighbourhood. Accordingly, the ordinary 

kriging estimator is written as: 

The ordinary kriging estimates correspond to the same support of the observations, 

even when the prediction results are displayed as a raster. Therefore, ordinary 

kriging is often referred to as ordinary point kriging. Ordinary kriging is applicable 

in situations where m(x) of equation 3.23 is unknown. Therefore, it is assumed that 

m(x) is stationary within the local neighbourhood. Accordingly, the ordinary 

kriging estimator is written as: 

                          with          .                  (3.26)                           with          .                  (3.26) ∑
=

=
)0(

1α
αα0

* )(λ)(
x

xx
n

OK zz 1λ
)0(

1α
α =∑

=

xn

The ordinary point kriging weights are obtained by solving a set of equations 

deduced by minimizing the error variance under the constraint of unbiasedness. 

The resulting ordinary point kriging system is given as: 

The ordinary point kriging weights are obtained by solving a set of equations 

deduced by minimizing the error variance under the constraint of unbiasedness. 

The resulting ordinary point kriging system is given as: 
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where is the semivariance between the sampling locations  and , 

and is the semivariance between sampling location and the 

unsampled location x , these can be obtained from the fitted variogram. The 
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quantity  is the Lagrange multiplier introduced to minimize the ordinary kriging 

variance under the constraint of unbiasedness. The most straightforward method to 

solve the ordinary kriging system is through matrix algebra:  

ψ

                                                  [λ] = [A]-1 [B]                                              (3.28) 

where 
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Ordinary kriging provides an error variance (kriging variance) which is computed 

as: 
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The kriging variance value attached to each prediction can be used to evaluate the 

relative prediction precision in terms of the global variance modelled by the 

variogram. This helps to locate additional sampling locations to optimize the 

prediction. 

Ordinary block kriging 

Ordinary point kriging is an exact interpolator, i.e. the estimated value at a 

sampling site is identical to the observed value. Therefore, attribute maps 

constructed through ordinary point kriging often contain many sharp spikes or pits, 

which are of little relevance for the management. Ordinary block kriging provides 

a smooth attribute map by estimating average values over a certain area or grid 

cell, termed as a ‘block’ B. In the case of square blocks, the estimation procedure 

involves that the block B is discretized into N2 number of points ( ). 

The block kriging estimator can be written as: 
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The ordinary block kriging system is given as: 
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where is the average semivariance between block B, represented by N2 

number of points inside the block. 

)( α Bx −

The ordinary block kriging system can also be represented as a matrix system, 

where [A] and [λ] remain identical as in the point kriging system. However, [B] 

changes to: 
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Due to the merits of ordinary block kriging over the ordinary point kriging, 

attribute estimations to a common grid were done using block kriging throughout 

this dissertation. However, it is not recommended to use block kriging for 

attributes that can not be averaged linearly. Therefore, soil pH, defined as the 

logarithm of [H+] was predicted using ordinary point kriging.  

 

Accuracy assessment of spatial prediction methods 

Knowledge of the accuracy of spatial estimates is needed to allow their credible 

use. Spatial estimation procedures can be validated through two approaches: cross 

validation and independent validation. In cross validation (Isaaks and Srivastava, 

1989), (also referred to as leave-one-out validation) one observation is removed 

and estimated with the remaining neighbourhood observations. Subsequently, the 

removed observation is added and another observation is removed. This process is 

repeated until all observations are estimated. Then the observations and 

corresponding estimates are compared to quantify the accuracy. The cross 

validation can not be treated as an independent validation procedure since all the 

observations are used to calculate the variogram. On the other hand, an 

independent validation uses an optional set of observations. The validation is 

performed by making estimations at validation sampling points. Let,  and 

, α = 1,…,n denote n number of observations and corresponding 

estimations, respectively, a combination of validation indices can be used to assess 

the accuracy:  

)( αxz
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• Mean estimation error (MEE) 
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The MEE measures the bias of the estimation. The values near to zero inform 

unbiased estimations.  

• Root mean squared estimation error (RMSEE) 
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Generally, RMSEE is evaluated in comparison to the standard deviation of the 

data. 

• Pearson correlation coefficient 

The Pearson correlation calculated between  and indicates the 

strength of the linear relationship.  

)( αxz )( α
* xz

In this research, geostatistical software, GSLIB (Deutsch and Journel, 1998) was 

used to perform spatial predictions. 

 

3.5.3. Fuzzy k-means classification 

The geostatistical analysis generates single or multiple layers of soil information, 

each with an identical grid configuration. The next step is to partition each grid 

cell (xα), (or object) into a management zone by means of a uni- or multivariate 

classification algorithm. The classical approach is to classify each object into a 

crisp (hard) class on the basis of predefined class boundaries. However, 

geographical phenomena, like soil or topographic properties do not posses rigidly 

defined cut off boundaries, rather they vary gradually and continuously in a 

manner forming diffuse boundaries between classes (Dale et al., 1989). 

Classification of these variables in to crisp classes causes a considerable loss of 
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information (Burrough and McDonnell, 1998). Therefore, the classical 

classification approach was not preferred for management zones delineation.  

The fuzzy k-means classification (Bezdek, 1974; Bezdek, 1981; McBratney and de 

Gruijter, 1992) developed upon the fuzzy set theory (Zadeh, 1965) was used in this 

research to delineate management zones. Fuzzy k-means classification overcomes 

the weakness of the classical approach by partitioning objects into continuous 

classes. This is accomplished by assigning partial memberships to objects. A 

membership value of 1 is assigned to the objects that exactly match the class 

centre (centroid), whereas other objects receive membership values depending on 

their degree of closeness to the class centroid. The membership assignment for 

each object is performed through a membership function developed for each class 

on the basis of the uni- or multiple attribute space. The membership function of a 

fuzzy set can take different forms: normal, log normal, rectangular, hyperbolic or 

Gausssian (McBratney and Odeh, 1997).  

Consider a set of n grid cells (zi(xα), α = 1,..., n) each having p attributes (i = 1,..., 

p) grouped into k classes (c = 1,…, k), the fuzzy k-means classification involves 

operations that satisfy three conditions: 
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where indicates the membership of xαth grid cell for the cth class. The first 

condition indicates that the sum of memberships of individuals across all k classes 

sums to 1. The second condition ensures the absence of empty classes. The third 

condition allows the assignment of memberships between and including 1 and 0. 

The classification is achieved by minimizing the fuzzy k-means objective function 

cm αx



Chapter 3: Materials and methods 
 

 

 64

J(M,C), which is the sum-of-square error as a function of each object by the centre 

of its class: 
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where M is a n x k matrix of membership values, C is a k x p matrix of the class 

centroids, is the vector representing  p variable values 

at the grid cell , 

T
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αx ),...,( 1 cpcc ccc = is the vector representing p centroids of class 

c, is the squared distance between and according to a chosen 

distance metric and φ is the fuzziness exponent which determines the degree of 

fuzziness of the classification (ranges between 1 and infinity, representing a crisp 

and a complete fuzzy classification, respectively). The choice of the distance 

metric and the fuzziness exponent directly influence the classification results. Two 

distance dependent metrics are commonly used: 

),( α
2

ccxd αx cc

• Euclidean distance 

Euclidean distance gives equal weights to all measured attributes. Therefore it is 

insensitive to statistically dependent variables (Bezdek, 1981). The Euclidean 

distance is calculated as: 

                                  .                         (3.38) ).()(),( ααα
2

c
T

cc cxcxcxd −−=

Euclidean distance is not recommended in situations where different variables 

consist of widely varying averages and standard deviations, since the classification 

can be biased towards the larger varying attributes. 

• Mahalanobis distance 

The Mahalanobis distance is calculated as: 

                              )()(),( α
1T

αα
2

ccc cxcxcxd −−= ∑ −                      (3.39) 

where denotes the variance-covariance matrix. Introduction of ∑ ∑  to the 

equation 3.38 standardizes the different attributes while taking the correlation 
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between variables into account. Therefore, the classification result is not much 

influenced by the distribution of the attributes and their statistical dependence.  

There is no objective method to find out the optimum φ value. Odeh et al. (1992) 

suggested for soil data to set φ at 1.35 as a default value.  

McBratney and de Gruijter (1992) summarized the fuzzy k-means algorithm as 

below: 

1. Choose the number of classes k, with 1 < k < n. 

2. Choose a value for the fuzziness exponent ϕ, with ϕ > 1; 

3. Choose a definition of distance in the variable-space; 

4. Choose a value for the stopping criterion ε (ε =0.001 gives reasonable 

convergence); 

5. Initialize the membership matrix M = M0, with random memberships. 

6. Start the iteration process (it = 1,2,3….) and continue till 1−− itit MM  ≤ 

ε. 

 

Identification of the optimal number of classes 

The calculation of validity indices, fuzziness performance index (FPI) and the 

normalized classification entropy (NCE) allows finding out the optimum number 

of classes (k). FPI is a measure of the degree of the membership sharing between 

clusters which ranges between 0 and 1. An NCE value of 1 corresponds to the 

maximum fuzziness and a value of 0 indicates a non fuzzy classification. Roubens 

(1982) indicated FPI as below: 
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where k is the number of classes and F is the partition coefficient: 

                                                ∑∑
==

=
k

c
c

n
m

n
F

1

2
α

1α

1
x .                                      (3.41) 



Chapter 3: Materials and methods 
 

 

 66

NCE is an estimate of the amount of disorganization created by a given number of 

classes, and it is also ranges between 0 and 1. NCE is mathematically given as 

below: 

                                                   
k

HNCE
log

=                                           (3.42) 

where H is the entropy function: 
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.                     (3.43) 

To find out the optimum number of classes, the classification was performed for a 

range of classes and the resulting FPI and NCE values were plotted against the 

number classes. The class number that minimizes FPI and NCE was considered as 

the optimum (Odeh et al., 1992). 

In this research, fuzzy k-means classification was performed using FuzME 

software (Minasny and McBratney, 2002). 

 

3.6. Geology and soils of Flanders 

The Flanders region covers more than one third of the land area of Belgium 

(Figure 3.9). The present soil scapes of Flanders are mainly resulting from the 

geological processes which occurred during the Tertiary and the Quaternary 

periods (Table 3.1).  

 
 

Figure 3.9. A map of Belgium showing the Flanders region. 
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Flanders was flooded by the sea during the Ypresian age of the early Eocene. 

During this marine period, a 100 m – 200 m thick glauconitic clay layer (Ieperiaan 

clay) was deposited. However, at the end of the Ypresian age, the sea level 

receded, resulting in the deposition of a sand layer. Above this “Ieperiaan sand”, 

the “Paniseliaan” deposits (also belonging to the Ypresian age) can be found. It 

consists of a 100 m thick clay layer covered by a thinner sand layer.  

 

Table 3.1. International geological time scale of the Tertiary and the Quaternary 
periods (Palmer, 1983). 

Period Epoch Age Time (million 

years) 

Holocene  0.01 - present Quaternary 

Pleistocene Calabrian 1.0 - 0.01 

Pliocene (Late) Piacenzian 3.4 - 1.0 

Pliocene (Early) Zanclean 5.3 - 3.4 

Miocene (Late) Messinian 6.5 - 5.3 

 Tortonian 11.2 - 6.5 

Miocene (Middle) Serravallian 15.1 - 11.2 

 Langhian 16.6 - 15.1 

Miocene (Early) Burdigalian 21.8 - 16.6 

Tertiary (Neocene) 

 Aquitanian 23.7 - 21.8 

Oligocene (Late) Chattian 30.0 - 23.7 

Oligocene (Early) Rupelian 36.6 - 30.0 

Eocene (Late) Priabonian 40.0 - 36.6 

Eocene (Middle) Bartonian 43.6 - 40.0 

 Lutetian 52.0 - 43.6 

Eocene (Early) Ypresian 57.8 - 52.0 

Paleocene (Late) Selendian 63.6 - 57.8 

Tertiary 

(Paleocene) 

Paleocene (Early) Danian 66.4 - 63.6 

 

The stratification and the sandwiched fossil fauna and flora suggest constant 

fluctuations of the sea level causing continental and marine phases. The last sea 
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intrusion in the Eocene took place in the Bartonian age. The sediments deposited 

during this period were rich in clay (Bartoon clay). After the Bartonian age, the 

entire Flanders region experienced a 30 million years long continental phase. The 

transgression in the Messinian age of the late Miocene was the last marine phase 

during the Tertiary period that submerged Flanders. The climatic fluctuations 

occurred during the Quaternary period are responsible for the formation of the 

present day soil cover and its characteristics. The Pleistocene epoch of the 

Quaternary period was dominated by four glacial periods, each separated by a 

warmer interglacial period. Intensive erosion processes occurred during these 

periods formed a ridge-and-valley landscape while resulting in the exposure of the 

different Tertiary strata. For example, Figure 3.10 shows the different Tertiary 

materials exposed on the slopes of hills in southern East-Flanders as a result of soil 

erosion. 

During the youngest glacial epoch, the Weichselian (70000 -10000 years ago) the 

sea level was approximately 120 m - 70 m below the present level. Entire Flanders 

experienced a peri-glacial climate with a permafrost soil and tundra type of 

vegetation. The present North Sea was dry and it was covered by thick sediments 

deposited by the rivers of past glacials. The northern winds caused a massive 

eolian transport of soil materials from the North Sea towards Northern Europe. 

 

Legend 
D = Diestiaan 
B = Bartoon 
Le = Lediaan 
Pz = Paniseliaan zand 
Pk = Paniseliaan klei 
Iz = Ieperiaan zand 
Ik = Ieperiaan klei 

 
Figure 3.10. Tertiary materials exposed on the north facing slopes of southern East-
Flanders, letters, D, B, Le, Pz, Pk, Iz and Ik indicate Tertiary layers (source: Province 
Oostvlaanderen, Geologische kaart). 
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The subsequent deposition pattern was mainly governed by the particle size. The 

largest particles were transported through saltation and deposited first in the low 

lands. Smaller particles like fine sand (50 μm – 200 μm) were transported by wind 

over longer distances and deposited in the northern part of Flanders. Silt (and to 

some extend clay) particles (< 50 μm) were transported in suspension (called loess 

material) over longer distances and to higher elevations. So they were deposited 

over the southern part of Flanders where the valley-and-ridge landscape was more 

prominent. Between the sand cover and the loess deposits a transition area is found 

with mixtures of sand and silt (silty sand to sandy silt). A general soil map (Figure 

3.11) reflects this soil textural gradient along the north-south direction.  

The surface topography (paleotopography) at the time of these aeolian deposition 

occurred, and the erosion processes thereafter, have greatly influenced the 

thickness of the Quaternary cover of the middle and the southern parts of Flanders. 

On the steep and convex slopes these layers are very shallow, or sometimes even 

absent exposing different Tertiary layers. These sediments are thick on gentle 

slopes with northern exposure and significantly thinner on the slopes facing 

towards the south. The aeolian sedimentation process stopped about 10000 years 

ago as the glacial period came to an end. Consequently, the sea level rose and the 

North Sea formed again separating the existed land bridge between the continent 

and the UK. The inland rivers were formed as the permafrost disappeared. The 

subsequent erosion and sedimentation processes largely influenced the current day 

soil spatial variability. 
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Figure 3.11. General soil map of Flanders and the locations of the three study areas (1) 

Watervliet (2) Melle and (3) Leefdaal (source: Flanders, a geographical portrait, 

geographical information and documentation centre, After R. Tavernier). 

 
A series of sea intrusions that occurred during the warmer periods in the Holocene 

epoch has further modified the soils of the northern areas of Flanders. The first 

marine transgression called “Flandrian transgression” took place 7300 – 4300 

years ago. After a regressive phase, the coast was flooded again in the 2nd, 4th and 

11th centuries. These sea inundations caused a deposition of clay rich sediments 

over the Quaternary sand cover along the coast. From the 11th century onwards, 

the inhabitants of the coastal areas constructed dikes in order to protect their lands. 

The soils in these areas are known as “polder clay” (Figure 3.11). 

 
3.7. Study area selection 

The previous section explained why the soils of Flanders considerably change 

from the north to south. This large scale variation was taken into account during 

the study area selections. Three study areas, namely Melle, Leefdaal and 

Watervliet (Figure 3.11) were chosen for this research. The study area localized in 
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Melle represents the soils dominated with a sandy silt texture. The investigations 

conducted at the Leedaal field represent the silt textured loess region characterized 

with undulating topography caused by Tertiary layers. To represent the polder 

soils of the northern part, a study area was selected in the “Watervlietse” polders. 

The research findings at these locations are presented as case studies in the next 

chapters. 

 

3.8. The national soil map of Belgium 

The national soil survey of Belgium began in 1947 and aimed to facilitate the 

regional scale agricultural land use planning. The field work was conducted at a 

scale of 1:5000 which involved soil augering to a standard depth of 125 cm unless 

obstacles were encountered. The field observation density was approximately 1 –

1.5 locations for ha. Additionally, soil profile descriptions and horizon sampling 

have been conducted to support the soil survey. By 1989 the identification, 

classification and mapping of the soils of Belgium was complete. Presently, 373 

out of 441 map sheets have been published at a scale of 1:20,000 with associated 

explanatory booklets.  

The targeted user groups of the national soil map were the agricultural and rural 

land use planners. Therefore, the chosen map legend had to be easily 

understandable, not only for a soil scientist but also for a user having only a basic 

knowledge in soil science. The legend characterizes the soils at series level on the 

basis of top-soil textural classes, natural drainage classes and the nature of the 

profile development. These series are denoted by a code with three letters. The 

top-soil textural class is indicated by a first capital letter. They are identified 

according to the Belgian soil texture triangle (Figure 3.12a). These textural classes 

are: Z (zand – sand), S (lemig zand – silty sand), P (licht zandleem – light sandy 

silt), L (zandleem – sandy silt), A (leem – silt), E (klei – clay) and U (zware klei – 

heavy clay). The diameters of sand (50 μm – 200 μm), silt (2 μm – 50 μm) and 

clay (< 2 μm) are identical to the ones defined by the United States Department of 

Agriculture (USDA). However, the textural classes are markedly different 
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compared to the classes defined in the nowadays internationally used USDA 

textural triangle (Figure 3.12b). A large intra-class variation in classes like L, E 

and U is a main weakness of the Belgian textural triangle. Throughout this 

dissertation, the soil textural classes are referred to the Belgian texture triangle 

unless specifically mentioned.  
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Figure 3.12. (a) Belgian and (b) USDA soil texture triangles. 

 

The second letter specifies the soil drainage. The coding of the drainage class 

depends on the textural class and on the starting depths of mottling and permanent 

reductions features, e.g. 

• .a.: very dry 
                     . 
                     . 

• .i.: very wet for sandy textures (Z, S and A). 

The third letter of the code indicates the level of the profile development. Some of 

the examples are: 

• ..a: textural B (or Bt) horizon 

• ..b: B horizon with an apparent colour or structural difference 

• ..c: crushed, discontinuous or degraded Bt horizon 

• ..g: humus and/or iron podzol B horizon 

• ..h: crushed humus and/or iron podzol B horizon 
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Variants of soil series are identified on the basis of the presence of a substratum. 

Therefore, type and the depth of the substratum is denoted by a prefix letter. For 

example, the presence of a Tertiary clay substratum at different depths is denoted 

by: 

• u…: at shallow depths (0 – 0.75 m) 

• (u)…: at moderate depths (0.75 m – 1.25 m) 

• u- …: at shallow to moderate depths. 
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4.1. Introduction 

Choropleth or polygon soil maps are the most prevalent source of soil information 

available for soil management decisions (Beckett and Webster, 1971; Dent and 

Young, 1981; Rossiter, 1996). Many countries posses nationwide soil maps 

produced during the ‘golden-era’ for soil survey (the 1950s and 1960s) and land 

evaluation (the 1970s and 1980s) (Manderson and Palmer, 2006). The density of 

field observations as well as the soil surveyors conceptual predictive models 

employed for classical soil surveying are not sufficient to predict the continuity of 

spatial variability (Heuvelink and Webster, 2001). Therefore, soil surveying 

typically predicts soil spatial variations by partitioning similar soils in the 

landscape into discrete entities called mapping units. On a soil map, these map 

units are shown as polygons across which the soil properties are considered to be 

significantly different and within which the properties are relatively homogenous 

(Dijkerman, 1974). Therefore, within a mapping unit average of a particular soil 

property is to serve as its soil map based prediction (Webster and Oliver, 2001).  

The predictive quality of polygon soil maps is largely determined by the map scale 

which is defined as the ratio of the distance shown on the map to the 

corresponding distance on the ground. Intuitively, the predictions will be more 

accurate as soil surveying is done at a detailed scale. Concerning the data 

requirements of site-specific soil management, the map scale should be detailed 

enough to discern within-field variations. The minimum legible area, i.e. the 

smallest land area that can be legibly represented on the map at a given scale 

(Forbes et al., 1987), can be used as a basis for the scales of soil maps suitable for 

acquiring soil information for site-specific soil management. Table 4.1 shows 

minimum legible areas for some common polygon soil map scales. If we assume 

an average field size of 3 ha, the maps prepared at a scale larger than 1:25000 

could be capable of providing some soil information needed for site-specific soil 

management.  
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Table 4.1. Minimum legible areas for some common map scales (source: Forbes et al., 

1987). 

Map scale Minimum legible area (ha) 

1:5000 0.1 

1:10,000 0.4 

1:15,000 0.9 

1:20,000 1.6 

1:25,000 2.5 

1:50,000 10 

1:100,000 40 

1:200,000 160 

1:250,000 250 

 

Usually, soil mapping units are designated with qualitative terms which 

correspond to the level of soil classification. Therefore, map unit based prediction 

of quantitative soil data, which are needed for site-specific soil management, is not 

straight forward. One method of extracting quantitative soil information from soil 

maps is by consulting the survey report or memoir (Dent and Young, 1981), which 

gives the average soil properties within mapping units. These averages are 

reported on the basis of field or laboratory analysis of the properties of a 

representative profile(s) of the soil located within the mapping unit. The accuracy 

of this prediction depends on the variability within the mapping unit  (Webster and 

Oliver, 2001) which is not essentially included in the soil survey report. Therefore, 

these predictions are subjected to an unknown degree of uncertainty and have only 

a small relevance on soil management decisions. Moreover, all required soil 

properties may not have been included in the map and thus in the accompanying 

survey report. As an alternative method, soil properties required can be measured 

at a number of locations within the mapping unit and their arithmetic means can be 

considered as map unit based predictions. Then, the estimated variances can be 

used to quantify the uncertainty in the prediction (Brus et al., 1992; Leenhardt et 

al., 1994; Webster and Oliver, 2001).  
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The predictive quality of soil maps in relation to the soil information needed for 

land use planning on a regional scale has been the focus of many researchers 

(Beckett and Webster, 1971; Leenhardt et al., 1994; Lin et al., 2005; Webster and 

Beckett, 1968). However, limited attention has been given to assess the potentials 

of choropleth soil maps for providing soil information needed for site-specific soil 

management. To address this research gap, the following research questions were 

answered in this chapter by means of a case study: (1) is the spatial variability of 

soil properties structured within a 14 ha field at the sandy silt region? (2) Are the 

1:20,000 and more detailed 1:5000 soil maps suitable to provide soil information 

for site-specific soil management? and (3) Can ECa information obtained with 

proximal sensing be used as an ancillary soil information to upgrade the 1:20,000 

soil map with a minimum effort of invasive soil sampling? 

 

4.2. Materials and methods 

4.2.1. Study area and soils 

The study area is located in Melle in East Flanders, with central coordinates: 50o 

58’ 42” N and 3o 49’ 00” E (Figure 4.1). This 14.6 ha area is a part of the Ghent 

University agricultural research farm situated in the sandy silt region of Flanders 

and most of the lands of this region are used for crop cultivation. The soils of this 

region are formed from wind blown Pleistocene loess materials (sandy silt in 

texture) deposited during the Quaternary period. The loess material is underlain by 

clayey to sandy Tertiary marine sediments (Paniselian). The loess cover can have a 

substantial thickness in the depressions (5 m - 10 m), but it can diminish to some 

tens of centimetres on the ridges. Therefore, the spatial variation of the thickness 

of the loess cover has a very strong influence on both the water economy and on 

the development of the soil profile throughout the region. This study area was 

chosen because it is typical of the landform commonly found in the region. The 

topography of the study area comprises a long gentle slope along the north-east 

direction, while the highest position lies in the western corner. 
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Figure 4.1. Localisation of the study area. 

 

The management history of the study area revealed that arable crop cultivation has 

been practiced in the western part while the eastern part has been used as pasture 

land for a half a century or more. For the arable part, there has been a regular 

rotation of crops namely maize, red clover, hay-grass, winter-wheat, summer-

wheat, summer-barley, and fodder beets over time. These crops are usually 

harvested dry to serve as fodder for farm cattle. 

 

4.2.1.1.  National soil map (1:20,000) 

The soils in the study area have been surveyed under the Belgian national survey 

(section 3.8). The published 1:20,000 map (Figure 4.2) has identified the presence 

of two soil series. Approximately two-third of the area belongs to the ‘Ldc’ series, 

which represents a sandy silt topsoil texture (‘L’), moderately wet conditions 

(drainage class ‘d’) with a strongly degraded textural B-horizon (profile 

development type ‘c’). The remaining part of the study area is characterized by the 

soil series ‘Lcc’, with a similar topsoil texture and profile development but with 

drier moisture conditions (drainage class ‘c’). Both soil series inferred that there is 

no Tertiary material present within the top 1.25 m. These soil types correspond to 
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Albeluvisols according to the World Reference Base for Soil Resources (WRB) 

classification system (ISSS Working Group Reference Base, 1998). 

 

Figure 4.2. The 1:20,000 soil map of the study area. 

 

4.2.1.2. Detailed soil map (1:5000) 

The study area has been surveyed to a greater detail in 1951 by Dr. F. Moormann 

of the Soil Survey Centre of the Ghent University. The aim of this soil survey was 

to provide accurate soil information for agronomic research planning in the 

experimental farm. The mapping was done by taking auger observations down to a 

depth of 1.25 m. The average density of observations was 15 per ha, totalling 

approximately 210 observation within the study area. The outcome of the survey 

was a 1:5000 soil polygon map (Figure 4.3). It should be noted that such detailed 

soil maps are rarely available in Belgium. The soil series were delineated in a 

different manner compared with the legend used for the 1:20,000 map. The top (0 

– 0.7 m) and subsoil (0.7 m – 1.25 m) texture and drainage condition have been 
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included in the map legend. In addition, three subtypes were identified on the basis 

of depth to the Tertiary material. The depth limits were slightly modified: 0.6 and 

1.2 m instead of 0.75 and 1.25 m as used in the 1:20,000 map. The 1:5000 map 

shows (Figure 4.3) a more detailed description of the soil variability in the study 

area, and seven soil series and three subtypes can be observed.  

 

 

Figure 4.3. The 1:5000 soil map of the study area. 

 

4.3. Soil sampling and laboratory analysis 

To investigate the spatial variability of the soil in the study area and to quantify the 

predictive quality of the two maps, soil samples were taken at 135 geo-referenced 

locations. This included 80 samples obtained at the nodes of a 50 m x 50 m grid 

and 55 random samples located within grid cells (Figure 4.4a). Samples were 

taken from two depths 0 - 30 cm and 50 - 80 cm, representing the top- and subsoil. 
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At each sampling point, three samples were taken by means of gauge auger within 

a 1 m radius and mixed to obtain a bulked sample. Air dried soil samples were 

analyzed for particle size distribution, organic C content and pH (in KCl).  
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Figure 4.4. (a) The grid plus random sampling scheme showing 135 locations and (b) a 

depth observation showing the boundary (arrow) between loess material and the underlying 

Tertiary clay substratum. 

 
Due to the practical difficulties associated with field observations, the depth to the 

Tertiary clay substratum (Dts) was only determined at 60 locations. This includes 

the 55 random sampling locations and five additional positions located along the 

edges of the study area. At all locations a distinct and abrupt boundary was 

observed between the loess cover and the underlying Tertiary clay substratum 

(Figure 4.4b) within a depth of 3 m. Sometimes pebbles indicated the presence of a 

former erosion surface on top of the Tertiary substratum facilitating its 

identification. 
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4.4. Electrical conductivity measurements 

An apparent electrical conductivity survey of the study area was conducted in 

April 2006. The mobile measurement system with EM38DD sensor (Figure 3.5) 

was driven at a speed of about 15 km h-1 along two 4 m spaced parallel lines. The 

measurements were recorded at a frequency of 1 Hz, and resulted in 9586 ECaH 

and ECaV measurements in the entire study area. The survey was conducted over 

two days. Initially, three quarters of the study area was surveyed. The remaining 

part was inaccessible and thus it was surveyed after two weeks. The two data sets 

were subjected to exploratory data analysis in order to remove measurement 

anomalies. 
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ECa-Vday1 = 0.78 ECa-Vday2 + 9.76 
R2 = 0.77 

 
Figure 4.5. Scatter plot between the nearest neighbourhood observations of ECaV of the 

surveying day 1 (ECaVday1) and day 2 (ECaVday2) and the fitted linear regression 

relationship. 

 

Totally, 394 observations, having extremely large ECa values due to the influence 

of the metal fence around and inside the study area, were removed from the two 

sets of data. Due to the different ambient conditions and soil moisture conditions 

prevailed during the two days of measurements, ECa measurements needed to be 
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converted to a common basis. Therefore, the measurements taken on the second 

day were adjusted in order to be compatible with those of the first day. The 

adjustment procedure involved the pairing of all measurements made on the two 

survey days which lie within a distance of 4 m. Then, a regression relationship was 

fitted between them. Finally, this relationship was used to transform the 

measurements taken on the second day such that they are compatible with the 

measurements made on the first day. Figure 4.5 shows the scatter plot and the 

regression relationship calculated for ECaV data (coefficient of determination, R2 = 

0.77). The ECaH data also showed a similar strong linear relationship (R2 = 0.73).  

 

4.5. Data analysis 

4.5.1. Spatial analysis 

Before spatial analysis, soil data were subjected to exploratory analysis. 

Experimental variograms were computed and modelled to describe the structure of 

the spatial variation of soil properties. Subsequently, these soil properties were 

ordinary block kriged to a common grid (2.5 m x 2.5 m) in order to elucidate their 

spatial variations. However, due to the compositional nature of textural fractions 

(individual elements sum to 100 %), spatial prediction of three textural fractions 

with ordinary kriging was not straight forward. Any spatial prediction technique 

that is used to estimate the components of a composition should meet two basic 

requirements (de Gruijter et al., 1997):  

1. estimated component of a composition must be non negative 

                            (4.1) pizi 1,...                     0)( α
* =≥x

where denotes the estimate of the ith component of a regionalized 
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Unlike the other soil attributes, the elements of a composition are subject to non-

stochastic constraints. This means, a regionalized composition with p components 

is not drawn from the p dimensional real space Rp, but from a p-1 dimensional 

simplex Sp embedded in the real space. As a result of this, ordinary kriging of 

separate components of a composition often fails to meet the second requirement. 

Consequently, this violates the unbiasedness constraint which is fundamental to 

kriging (Odeh et al., 2003). To deal with the restrictions associated with the 

analysis of compositional data, Aitchison (1986) proposed the transformation of Sp 

corresponding to the compositional data to the Rp-1 through additive log-ratio 

transformation (ALR): 

                                ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

)(
)(

ln)(
α

α
α x

x
x

k

i
i z

z
y      i = 1,…,p (4.3) 

where is the ALR transformation of and is the kth 

component of the composition. Pawlowsky-Glahn and Olea (2004) showed that 

the choice of the kth component chosen for the denominator does not influence the 

analytical results (e.g. prediction results) of ALR transformed data. Therefore, the 

ALR transformation can be considered as order invariant.  

)( αxiy )( αxiz )( αxkz

Accordingly, the textural fractions were ALR transformed before spatial analysis. 

After performing variogram analysis and ordinary kriging of the ALR transformed 

data, predictions were back-transformed by means of additive generalized logistic 

transformation (Aitchison, 1986): 
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x
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4.5.2. Assessment of predictive quality of polygon maps 

Consider a soil mapping unit k, which is sampled randomly at nk locations, the 

prediction at any location within the same mapping unit is given by (Webster and 

Oliver, 2001): 
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where kz  is the estimated mean of the mapping unit k and iλ is the weight 

assigned to each observation. The mean squared error of prediction (MSEk) is 

given as:  

 )11(2

k
kk n

MSE += σ  (4.6) 

where represents the variance within the mapping unit k. In classical soil 

mapping, surveyors try to maintain the same categorical level for all the mapping 

units in a particular survey, e.g. all soil series or all soil families (Webster and 

Oliver, 2001). Therefore, it can be assumed that the variance within mapping units 

is approximately the same for all. In these circumstances  in the above equation 

can be replaced by , the average or pooled within-mapping unit variance. This 

equation informs that the predictive accuracy of a polygon map is largely decided 

by the pooled within-mapping unit variance and therefore, can be used to estimate 

the predictive quality of a map (Leenhardt et al., 1994).  

2
kσ

2
kσ

2
wσ

In light of the foregoing, the predictive quality of the two maps of differing scales 

were evaluated using an intra-class correlation , which relates the pooled 

within-mapping unit variance to the total variance (Webster and Oliver, 1990): 
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given that,  222 σσσ BWT +=
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where  is the total variance and  denotes the variation among mapping unit 

means (between-mapping unit variance). For each soil property, one way analysis 

of variance (ANOVA) was used to compute ,  and , which estimate , 

 and , respectively. These were used to estimate the intra-class correlation 

( ) values of two polygon maps for all soil properties. The  (constrained in 

the range 0 ≤  ≤ 1) is the proportion of variance in the data explained by the 

classification and analogous to coefficient of determination (R2) in regression 

analysis. Evidently, larger values of  caused by larger values of  and smaller 

values of , suggest a more precise delineation of map units and better 

predictive quality of a map. Among the different parameters that can be used to 

evaluate the predictive quality of soil maps, e.g. map purity and map bias (Van 

Meirvenne, 1998), the advantage of using  is that it can be used to evaluate the 

predictive quality of a map for any soil property irrespective of the soil variables 

used in the map legend.  
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4.6. Results and discussion 

4.6.1. Spatial variability of soil properties 

The results of the exploratory and geostatistical analysis of the observed soil 

properties are presented in this section. The objective is the examination of the 

extent of within-field variability present in the study area. For clarity, the 

variations within the top and subsoils and the variation of the depth to the Tertiary 

clay substratum are presented under separate sections.  

 

4.6.1.1. Descriptive statistics  

Some descriptive statistics of the measured soil properties are given in Table 4.2. 

The Kolmogorov-Smirnov test for normality showed normal distribution (at 5 % 

level of probability) for all the properties except top and subsoil organic C (Figure 
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4.7) and subsoil clay content. This is further explained by their skewness 

coefficients given in Table 4.2. The mean particle size of the topsoil corresponds 

to sandy silt texture class as given by the 1:20,000 soil map. However, the CVs of 

textural fractions (16.2 – 20.7 %) implied a considerable variation.  

 

Table 4.2. Descriptive statistics of sampled soil properties. 

  Mean Min Max Variance CV (%) Skewness 

Topsoil (n = 135)       

Clay (%) 12.3 8.3 20.3 4.7 17.7 0.54 

Sand (%) 49.7 31.8 69.3 64.5 16.2 0.32 

Silt (%) 38.1 21.9 52.1 61.9 20.7 -0.41 

Organic C (%) 1.74 1.06 3.2 0.21 26.46 0.80 

pH-KCl 5.38 4.27 6.74 0.21 8.5 0.48 

Subsoil (n = 135)       

Clay (%) 16.7 5.4 44 42 38.9 1.73 

Sand (%) 49.5 13.7 82 249.9 31.9 0.04 

Silt (%) 33.8 7.2 56.5 135.1 34.4     -0.22 

Organic C (%) 0.2 0.04 0.51 0.01 44.1 0.91 

pH-KCl 5.4 4.1 7.1 0.19 8 0.12 
       

Dts (m, n = 60) 1.6 0.5 2.9 0.42 41.1 0.18 
       

ECa (mS m-1 , 
n = 9192)       

ECaV  47.2 22.2 78.0 141.6 25.3 0.07 

ECaH 38.9 20.8 64.4 59.3 19.8 0.15 

 

The texture data of topsoil samples was superimposed on the Belgian textural 

triangle in Figure 4.6a, which classified 78 % of the observations into sandy silt 

and a majority of the remaining observations were classified to light sandy silt 

textural class. Therefore, 22 % of the topsoil samples had a different textural class 

than that predicted by the 1:20,000 soil map (sandy silt). The subsoil textural 

fractions showed much larger variability in comparison to the topsoil. This was 

clearly reflected by their CVs which were almost twice as large as the 
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corresponding topsoil fractions. Nevertheless, the textural classes were distributed 

over five textural classes (Figure 4.6b), silty sand (12.6 %), light sandy silt 

(8.9 %), sandy silt (48.9 %), clay and heavy clay (29.2 %) implying a larger 

heterogeneity of the texture of the subsoil 
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Figure 4.6. The distribution of (a) topsoil and (b) subsoil textural data on the Belgian 

textural triangle.  

 

The organic C content of the topsoil was distinctively larger than that of the 

subsoil. The histogram of the topsoil organic C content showed sub populations 

(Figure 4.7a). However, this pattern was less pronounced in the histogram of the 

subsoil organic C content (Figure 4.7b).  
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Figure 4.7. Histograms of (a) topsoil and (b) subsoil organic C (%) contents. 
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The distributions of the topsoil and subsoil pH values showed an equal level of 

variation (CV = 8 %) with similar mean values (pH = 5.4), being slightly acid. 

The Dts observations revealed the presence of the Tertiary clay substratum at very 

shallow (0.5 m) to deeper (2.9 m) depths across the study area (Table 4.2). 

Nevertheless, a large variation was evident when the CV was considered. Contrary 

to the Dts predictions made by the 1:20,000 soil map (i.e. Dts should be > 1.25 m in 

100% of observations, see section 4.2.1.1.), 12 %, 28 % and 60 % of the 

observations belonged to the shallow (≤ 0.75 m), moderate (> 0.75 m and ≤ 1.25 

m) and deep (> 1.25 m) depth classes, respectively. 

 

4.6.1.2. Spatial variability of topsoil properties 

The experimental variograms and models fitted for the topsoil properties are given 

in Figure 4.8 and the model parameters are listed in Table 4.3. The bounded 

variogram models (spherical and exponential) suggested the absence of spatial 

trends for the topsoil properties (Webster and Oliver, 2001). The ALR transformed 

clay content showed anisotropic variations along two principal directions: N220E 

and N68 0W. Directional variograms consisted of different sill and range 

parameter values implying the presence of a zonal anisotropy in the study area 

(Goovaerts, 1997). The sill variances indicated that clay content is spatially more 

heterogeneous in the direction of N68 0W. The ranges of directional variograms 

suggested that the spatial continuity of clay content measurements extend 

predominantly along the N68 0W direction (203.3 m). There were no prominent 

direction dependencies observed for the spatial variations of topsoil sand content, 

organic C content and pH value, thus omni-directional variograms were adequate 

to model their spatial variations. The small RNE values in the variograms (Table 

4.3), indicated that the variations of topsoil properties are spatially strongly 

structured.  
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Figure 4.8. (a) Directional experimental variogram (dots: N22 0E and crosses: N68 0W 

direction) and fitted models (curves) for  topsoil  clay and omnidirectional experimental 

variograms and fitted models for (b) sand (c) organic C content and (d) pH. 

 

Table 4.3. Model parameters of the fitted variogram models for the topsoil properties  

Variogram parameters Property Direction Model 
Nugget Sill Range (m) 

RNE (%) 

Clay*  N220E Exp 0.00 0.04 141.2 0.00 
 N680W Exp 0.00 0.08 203.3 0.00 

Sand* Omni Exp 0.00 0.11 210.0 0.00 
Organic C Omni Exp 0.02 0.15 263.9 13 

pH Omni Exp 0.01 0.17 182.0 6 
* Additive log ratio transformed 
 
The zonal anisotropy of the topsoil clay content was incorporated into the ordinary 

kriging system employing the methodology described by Goovaerts (1997). The 

maps of kriged predictions for topsoil properties are shown in Figure 4.9. The 

topsoil sand map (Figure 4.9a), showed that the sand content is generally smaller 

(32 - 40 %) in the western part than in the eastern part of the study area (50 – 

60 %). The reverse was true for the silt content. In contrast, the clay content map 

(Figure 4.9b) showed marked differences over short distances. Localized areas 



Chapter 4: Utility of choropleth soil maps for site-specific soil management and map upgrading using 
proximal soil sensing 

 

 92

with small and large clay contents could be found both in the western and eastern 

parts of the study area.  
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Figure 4.9. Kriged estimates of topsoil (a) sand (%), (b) clay (%), (c) texture classes, (d) 

organic C (%) and (e) pH. 
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Figure 4.9. Continued… 

 

Figure 4.9c shows the distribution of textural classes derived from the interpolated 

texture maps. The soil texture of a large part of the study area (11.8 ha) was sandy 

silt while a band covering a small area (2.7 ha) contained a light sandy silt soil. 

This indicated that the topsoil texture of a majority of the study area has been 

accurately classified (sandy silt texture) in the 1:20,000 soil map.  

The spatial distribution of the topsoil organic C content (Figure 4.9d) was strongly 

influenced by the type of land use. The concentration of soil organic C content in 

pasture was approximately two times greater than that in arable field. This is 

confirmed by the distribution of organic C content on the two land uses shown by 

the box plot (Figure 4.10a). Such an enrichment of organic C content on pasture 
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lands is not uncommon (Dell and Sharpley, 2006). As Haynes et al. (2003) pointed 

out, the large turnover of the extensive, dense grass root system is the main cause 

of the enrichment of the organic C content in pasture fields even though above 

ground inputs in form of stem and leaf tissue and animal dung also occur. In 

contrast, in arable land, much of the plant material is removed for animal food and 

a relatively small amount is returned back to the soil. In addition, soil tillage 

aerates the soil and breaks up the organic residues, making them more susceptible 

to microbial decomposition. Nevertheless, a smaller variation of organic C content 

within the arable field (CV = 10 %) was observed in comparison to the pasture 

field (CV = 20 %). Contrary to the general spatial trend, a rectangular patch of low 

organic C content can be noticed in the north-western corner of the pasture land. It 

is likely that this part of the field might have been used for arable farming in the 

recent past.  

The spatial distribution of pH also showed a clear relationship to land usage 

(Figure 4.9e). Generally, the pH values in the arable field was slightly larger than 

in the pasture field (Figure 4.10b).  
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Figure 4.10. Box plots showing the variation of the topsoil (a) organic C and (b) pH in 

arable and pasture fields. The ends of bars indicate the 25th and 75th percentiles. The median 

is indicated by a line, and the symbols represent the data outliers. 
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The lower pH values observed in the pasture field can be related to higher 

microbial activities present in organic C rich soil environments. Therefore, the 

organic and inorganic acids produced by the enhanced microbial activity can have 

a strong influence on the lower pH in the pasture field. 

The spatial variation of organic C content and pH highlights the fact that human-

induced changes to the soil can have a strong influence on their within-field 

variability. Therefore, the information about the management history such as 

previous field allocations and the type of land use could be useful as categorical 

ancillary information for characterizing within-field soil spatial variability. 

 

4.6.1.3. Spatial variability of subsoil properties 

The experimental variograms for subsoil properties and the models fitted are 

shown in Figure 4.11 and Table 4.4 gives the model parameters.  
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Figure 4.11. Omni directional experimental variograms (dots) and fitted models (curve) 

for subsoil (a) clay, (b) sand, (c) organic C and (d) pH. 
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Unlike in the topsoil, directional dependency was not evident for the spatial 

variation of subsoil clay content, therefore an experimental isotropic variogram 

was used. This emphasized that the variation of clay content in the top and subsoil 

layers are controlled by different processes. The patterns of variation of other soil 

properties were also fairly similar in all directions. The extent of the spatial 

continuity of all subsoil properties was generally smaller than their topsoil 

counterparts (compare range values in Tables 4.3 and 4.4). Moreover, the small 

RNE values of subsoil properties (> 25 %), except clay content (28.3 %), indicated 

that their spatial variations are strongly structured. 

 

Table 4.4. Model parameters of the fitted variogram models for the subsoil properties. 

Variogram parameters Property Direction Model 
Nugget Sill Range (m) 

RNE (%) 

Clay* Omni Exp 0.04 0.14 124.4 28.3 
Sand*  Omni Sph 0.09 0.51 77.5 17.6 
Organic C Omni Exp 0.002 0.009 107.4 22.2 
pH Omni Exp 0.00 0.176 103.4 0.0 
* Additive log ratio transformed 

 

The maps of kriged predictions for subsoil properties are shown in Figure 4.12. 

The sand content map (Figure 4.12a) showed that the values were vary to a greater 

extent in the western part of the study area. The larger sand contents distributed in 

the areas located at higher elevations, i.e. in the western corner, as well as on 

lower elevations, i.e. in the north eastern corner, suggested that the landscape 

processes have no relevance on its spatial distribution. The smaller values occurred 

on a relatively large area in the western part. The sand content was generally large 

and less variable in the eastern part. The spatial distributions of silt and clay 

contents (Figure 4.12b) were very similar to that of the sand content but opposite 

in magnitude. The subsoil texture classes map presented in Figure 4.12c captured 

largely the distributions of sand and clay contents. A major part of the study area 

(8.6 ha) belonged to sandy silt soils and the remaining area contains mainly clayey 
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soils (4.6 ha). Texture classes silty sand, light sandy silt and heavy clay were 

distributed on relatively smaller areas (< 0.8 ha). The individual textural fractions 

and textural classes resembled to large extent the Dts map (see further).      
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Figure 4.12. Kriged estimates of subsoil (a) sand (%), (b) clay (%), (c) texture classes, (d) 

organic C (%) and (e) pH. 
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Figure 4.12. Continued… 

 

The larger subsoil organic C (Figure 4.12d) was observed in the low lying north 

eastern area (pasture field) and in the western part (arable field) of the study area 

where high clay contents were observed (Figure 4.12b). Therefore, unlike the 

topsoil, the distribution of the subsoil organic C content did not have a distinct 

relationship with land use. Low lying landscape positions are known to accumulate 

organic materials due to lower microbial decomposition attributed to poor aeration 

as well as due to the deposition of eroded soil material. It is a well known fact that 

organic C content tends to increase with clay content because of the formation of 

clay-humus complexes that protect organic matter from degradation (Brady and 

Weil, 1999). The influence of land use could also be detected for the subsoil pH 

(Figure 4.12e), but not as prominently as in the topsoil. 
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4.6.1.4. Spatial variability of depth to the Tertiary clay substratum 

The experimental variogram calculated for Dts observations and the fitted spherical 

model (Figure 4.13a) showed a strong spatial structure (RNE = 15 %) and a spatial 

continuity extending up to 226.5 meters. The kriged estimates of Dts are given in 

Figure 4.13b. It can be observed that the Tertiary clay substratum occurs quite 

deep (1.5 - 2.7 m) in the western corner of the study area, which coincided with 

the highest soil surface elevations within the study area. Importantly, shallow to 

moderate depths (0.4 - 1.50 m) were mapped over a large part of the western half 

of the study area. This shallow position of the substratum can be expected to 

influence crop performance and soil management through limiting soil drainage 

and the soil volume available for crop growth. In the eastern part, the substratum 

was predicted to occur at deep (1.5 - 3.0 m).  
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Figure 4.13. (a) Experimental variogram calculated for Dts (dots) and fitted exponential 

model (curve, range = 226.5 m, sill = 0.3, nugget = 0.02 and RNE = 15 %), (b) kriged 

estimates of depth to the Tertiary substratum (m). 

 

The within-field variation of Dts obtained through the field observations disagreed 

considerably with that provided by the 1:20,000 soil map (Figure 4.2). However, 

the sub units of the more detailed 1:5000 map (Figures 4.3 and 4.14) resembled 

closely the observed spatial distribution of Dts. 
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The spatial variation of Dts strongly coincided with the spatial patterns of topsoil 

sand content (Figure 4.9a) as well as subsoil sand and clay contents (Figures 4.12a 

and b). This graphical interpretation was evident due to the strong correlations 

observed between Dts (n = 60) and the corresponding observations of topsoil sand 

content (r = 0.74) and subsoil sand content (r = 0.57) and subsoil clay content (r = 

-0.60). These results suggested that the Dts, has a direct influence on the particle 

size distribution of the overlying soil material. It is likely that the soil processes 

such as cryoturbation that occurred during the last glacial period has mixed the 

Tertiary clay with the aeolian material causing this variability. Although, the 

topsoil clay content distribution (Figure 4.9b) also showed some resemblance to 

the variation of Dts, the clay contents at 60 observation points was poorly 

correlated with the Dts (r = 0.15). Besides, the elevation showed a weak but a 

somewhat larger correlation to clay content (r = 0.29). It is likely that the variation 

of clay content is confounded by the influence of the Tertiary clay substratum as 

well as the geomorphic processes of erosion, transportation and deposition. This 

was further confirmed by the variogram analysis, which showed distinct 

differences in spatial variation along the direction of the main elevation gradient 

and its perpendicular direction. 

 

4.6.2. Predictive quality assessment of polygon soil maps 

4.6.2.1. Predictive quality of the 1:20,000 map  

Two map units of the 1:20,000 map (Figure 4.2) were considered to calculate the 

for all the investigated soil properties. Table 4.5 lists their pooled within-class 

variances and  values. For all soil properties, except subsoil organic C content 

and pH, the soil map has within-class variances smaller than the total variance 

(compare with Table 4.2). However, the reduction in total variance by the map 

units was not substantial. As a consequence, the values corresponding to both 

top and subsoil properties and Dts were also small.  

2
iR

2
iR

2
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The intra-class correlation values for soil physical properties ranged from 0.02 

(topsoil clay content) to 0.19 (Dts) indicating a poor predictive quality of the 

1:20,000 soil map.  

Table 4.5. Within-class variances ( ) and intra-class correlation values ( ) of the 

1:20,000 soil map. 

2
Ws 2

iR

 2
Ws  2

iR  
Topsoil   
Clay (%) 4.6 0.02 
Sand (%) 56.0 0.13 
Silt (%) 52.6 0.15 
Organic C (%) 0.18 0.17 
pH 0.19 0.09 
Subsoil   
Clay (%) 37.1 0.12 
Sand (%) 224.9 0.10 
Silt (%) 127.8 0.05 
Organic C (%) 0.01 0.00 
pH 0.19 0.00 
   
Dts (m) 0.3 0.19 

                          

 

Subsoil organic C and pH showed no reduction in the total variance portioned by 

the two mapping units, thus the 1:20,000 soil map has no relevance for predicting 

their variability. Moreover, the same is true for topsoil organic C and pH, for 

which the map was only able to explain 9 % and 17 %, respectively, of the total 

variability. Webster and Beckett (1968) and Marsman and de Gruijter (1986) have 

also reported very poor predictive qualities of soil maps ( < 0.28) for soil 

chemical properties.  

2
iR

The values of all measured soil properties indicated that their spatial prediction 

at a within-field scale, on the basis of mapping units will be subjected to a 

substantial prediction error. As Lin et al. (2005) pointed out, the prediction 

2
iR
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accuracy of a particular map depends on the scale of spatial variation that needs to 

be resolved. Therefore, it should be emphasized that this poor prediction accuracy 

of the 1:20,000 map can not be generalized. Although it was not possible to 

accurately predict soil properties at a within-field scale level, its ability to predict 

soil properties at regional scale as shown by Van Meirvenne (1998) should not be 

undermined. 

 

4.6.2.2. Predictive quality of 1:5000 soil map 

The classification criteria of the 1:5000 soil map allowed for the derivation of 

three individual soil map layers detailing the variability of the topsoil (Figure 

4.14a), the subsoil (Figure 4.14b) and the depth the Tertiary clay substratum 

(Figure 4.14c). These class delineations were used to calculate values of the 

corresponding soil properties (Table 4.6).  

2
iR

According to the variation of topsoil textural fractions, on the 1:5000 soil map 

three distinctive areas were identified. The soil surveyors have used a detailed 

version of Belgian soil texture triangle (16 classes) for map unit delineation, 

intending to minimize the within-class variation. However, Table 4.6 suggests that 

the reduction of total variation (compare with Table 4.2) achieved due to this 

partition was not as substantial as expected. As a consequence, the textural 

fractions, which were explicitly used for the classification showed small  

values ranging from 0.06 to 0.14. Surprisingly, the values of sand and silt 

contents were smaller than the values observed for the 1:20,000 map. The topsoil 

organic C content and pH values also showed small  values. This suggested 

that no improvement in prediction accuracy of any of the topsoil properties has 

been achieved through the use of a detailed soil mapping. 

2
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2
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2
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Figure 4.14. Mapping units of the 1:5000 soil map showing the variations of (a) topsoil 

and (b) subsoil texture and (c) depth to the Tertiary clay substratum (m). 

 
The partition of variance by six subsoil classes showed the largest intra-class 

correlation values (> 0.30) for the soil textural fractions. The soil map is not useful 

with respect to the predictive quality of the organic C content and pH ( < 0.05).  2
iR

The inconsistency in predictive quality observed for the top and subsoil texture can 

be linked to the spatial variation in these two layers. It is evident that the soil 

surveys were able to partition the variation of highly varying subsoil textural 

fractions (Table 4.2) to a better manner compared to less varying topsoil texture. 

This clearly highlights the fact that the success of classical soil surveying is largely 

influenced by the variability of the soil environment. This statement is supported 

by the findings of Voltz and Webster (1990), who concluded that the partition of 

soil variation into map units becomes satisfactory where the soil changes abruptly, 

but not so well where the soil changes gradually.  
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Table 4.6. Within-class variances ( ) and intra-class correlation values ( ) of the 

1:5000 soil map. 

2
Ws 2

iR

 2
Ws  2

iR  
Topsoil   
Clay (%) 4.1 0.14 
Sand (%) 60.4 0.06 
Silt (%) 57.7 0.07 
Organic C (%) 0.16 0.24 
pH 0.19 0.08 
Subsoil   
Clay (%) 29.4 0.30 
Sand (%) 166.4 0.33 
Silt (%) 105.5 0.32 
Organic C (%) 0.01 0.04 
pH 0.18 0.05 
Dts (m) 0.2 0.62 

 

The three depth classes of 1:5000 soil map (Figure 14.14c) explained a much 

larger proportion of the variance of Dts ( = 0.62) than it did for the other 

properties. This suggests that the major contributions to the variance are the 

changes across boundaries and these could be represented satisfactorily at 1:5000 

soil map level. According to published values (Webster and Oliver, 1990) it is 

evident that the 1:5000 map is capable of accurately predicting Dts in the study 

area.

2
iR

 

4.6.3. Upgrading the Belgian national soil map using a ECa data 

The results presented above clearly demonstrated the requirement of upgrading the 

Belgian national soil map by incorporating accurate soil information. The 

traditional way to upgrade a soil map is to conduct a new survey, either at a similar 

scale but focussing on soil properties that have not been considered in the original 

soil survey (McGrath and Loveland, 1992), or at a more detailed scale to obtain a 

better representation of the spatial variability of the mapped soil properties (Dent 
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and Young, 1981). More recently, map upgrading attempts have been made by 

combining the predictions obtained by interpolating soil observations with 

predictions by soil polygon maps (Van Meirvenne et al., 1994). But these invasive 

methods require large field survey efforts and thus they are often limited by the 

cost and time constraints associated with intensive field sampling and laboratory 

analysis (Oberthür et al., 1996). Recent developments in proximal non-invasive 

soil sensing techniques including ECa sensing, offer new opportunities to improve 

the accuracy of soil maps with considerable reductions in sampling effort 

(Adamchuk et al., 2004).  

The focus of the subsequent sections of this chapter is to evaluate the potency of 

the use of ECa to upgrade the soil map. Depth to the Tertiary clay substratum is 

selected as the target soil variable for map upgrading because of its dominant 

influence on soil properties such as hydraulic conductivity, lateral movement of 

soil water and agrochemicals and thus the site-specific soil management. 

Nevertheless, as seen in section 4.6.1.4 the composition of surface soil materials is 

also determined by Dts. In previous work conducted in elsewhere, it has also been 

found that similar restrictive soil substrata have a direct influence on the variation 

of yield (Kitchen et al., 1999) as well as on management practices like nutrient and 

water management (Hummel et al., 1996; Thompson et al., 1991).  

The map upgrading procedure adopted in this study involves three steps; (1) 

prediction of Dts using densely measured ECa, (2) replacement of incorrect Dts 

information presented in the map with new information to generate an upgraded 

1:20,000 soil map and (3) assessment of the achieved improvement in map 

accuracy in comparison with the 1:5000 soil map. 

 

4.6.3.1. Spatial distribution of ECa and its relationship with Dts 

On average, the 9192 ECaV measurements were larger than the collocated ECaH 

measurements (Table 4.2 in page 86), which indicated the presence of a more 

conductive subsoil underlying a topsoil of lower conductivity. The CV of the two 

measurements indicated a larger variation of ECaV. However, both measurements 
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showed an approximately symmetric distribution, as shown by their near to zero 

coefficient of skewness. Moreover, a very strong correlation between both 

measurements (r = 0.98) and identical spatial patterns indicated a large degree of 

similarity in both measurements. Therefore, only the ordinary kriged 

map of ECaV measurements is presented in Figure 4.15.  
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Figure 4.15. Kriged estimates of ECaV (mS m-1) 

 

The spatial distribution of the ECaV data markedly resembled the ordinary kriged 

maps of subsoil textural fractions and depth to the Tertiary clay layer (Figures 

4.12a to c and 4.13b, respectively). The lowest readings (i.e., < 40 mS m-1) were 

observed in the western corner and in the eastern part of the field where the 

Tertiary clay layer was identified at relatively greater depth. The largest ECaV (> 

65 mS m-1) values were distributed over the western part of the study area, where 

the clay layer was located at relatively shallow depths.  

Strong negative correlations were found between Dts and both ECaV (r = -0.90) 

and ECaH (r = -0.87). Considering the higher correlation and deeper sensing 

depth, the ECaV measurements were preferred as an ancillary variable to predict 

Dts. Several authors have reported a strong response of ECa measurements to a 

range of subsoil features. This has enabled their use for estimating depth to 

permafrost (Kawasaki and Osterkamp, 1988), depth of sand deposition resulting 
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from flooding (Kitchen et al., 1996), mapping surface soil  thickness (Boettinger et 

al., 1997; Bork et al., 1998) and for the evaluation of edaphic discontinuities (Saey 

et al., 2008; Stroh et al., 2001).  

Figure 4.16 explains the reasons for the negative relationship observed between 

ECa and Dts. Recalling section 3.4.1, the response of EM38 sensor is an integration 

of soil conductivity with depth, as weighted by relative response function. When 

the Tertiary clay substratum appears near to the soil surface (low Dts, Figure 

4.16a), the highly conductive Tertiary clay materials occupy a large volume of the 

soil mass below the sensor. This results in the generation of large primary 

electrical current loops, as shown schematically by the thickness of the ellipses, 

thus giving rise to strong secondary magnetic fields at the receiver coil. 

Consequently, the sensor readings become large.  

 

 

(a) (b) 

 
Figure 4.16. Schematic presentation showing the response of the EM38 sensor in vertical 

dipole mode when (a) the Tertiary clay substratum occurs at shallower and (b) at deeper 

depths. 

 
On the other hand, the occurrence of the substratum at greater depths below the 

surface increases the contribution of loess materials for the overall ECa values 

(Figure 4.16b). Consequently, the strength of the induced soil primary electrical 
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current loops and the resulting secondary magnetic fields at the receiver coil 

become low. The result is relatively low ECa readings. 

4.6.3.2. Spatial prediction techniques 

A number of geostatistical interpolation techniques have been tested to predict 

sparsely measured primary soil variables supported by densely measured ancillary 

variable(s). For more descriptions of the theory and the applications opof these 

techniques, see McBratney et al. (2003). Among the different techniques, 

regression kriging has proven to be an accurate method, especially in 

circumstances where a strong empirical relationship can be established between 

the primary and ancillary variables (Hengl et al., 2004). It is important to note that 

the regression kriging procedure needs a considerable number of observations of 

the primary variable (> 60) in order to establish an empirical relationship and for 

subsequent interpolation of residuals (see further). Moreover, these samples should 

optimize both the attribute space of ancillary variables and geographical space. 

This requirement can greatly undermine the advantage of using ancillary 

information in circumstances where sampling of primary variables involves a lot 

of cost and time. The latter is especially true for Dts observations. Therefore, as an 

alternative, a model derived on the basis of the depth sensitivity function of EM38 

sensor (McNeill, 1980; Saey et al., 2008) can be used to directly transform the ECa 

measurements to Dts. We hypothesized that the number of observations of the 

primary variable can be considerably reduced employing this approach since the 

nature of the relationship between the primary and ancillary variables is known a 

priori. Therefore, having proposed two possible methods of predicting Dts, this 

study considered the usability of these two approaches in relation to the prediction 

accuracy and required number of samples. The regression kriging procedure was 

adopted with all observations of the primary variable (60 points). The method 

based on the depth sensitivity function was tested for three different sample 

numbers: 60, 40 and 20.  

The prediction accuracies of these methods were evaluated using 46 additional 

observations of Dts and by calculating the MEE, RMEE and r for the observed and 
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the corresponding estimates. Observations along three transects were taken 

ensuring that both the smallest and the largest Dts values predicted by EMI sensing 

and the 1:5000 map have been sampled.  

Regression kriging 

According to the regression kriging procedure outlined by Hengl et al. (2004), the 

methodology employed to estimate Dts at any unsampled location (z*(x0)) can be 

summarised in five steps: (1) interpolation of ECaV to a 2.5 m x 2.5 m grid by the 

ordinary kriging procedure (2) establishment of a regression relationship between 

Dts and ECaV which is used to predict Dts at all grid locations x0, yielding 

; (3) calculation of residuals r(xα) at the 60 locations where Dts has been 

measured, xα (α = 1,…, 60) as:  

)( 0
*

, xrtsD

)}()({)( α
*

,αα xxx rtsts DDr −=  (4.8)  

(4) interpolation of these residuals to all grid nodes x0 using simple kriging with a 

mean of zero and the variogram of the residuals and (5) estimation of  at all 

grid nodes by taking the sum of and  the interpolated residuals : 

*
tsD
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Predictions based on the depth sensitivity function 

Recall the depth sensitivity function of ECaV measurement is provided by equation 

3.3. The integral of the depth sensitivity function gives the cumulative response 

function of ECaV measurements (Rv(z)) (McNeill, 1980):  

                                      (4.10) ∫ Φ=
α

z vv zzR dz)()(

Rv(z) provides the relative contribution for a ECaV measurement from all the 

materials below a depth z (m). Specifically, the Rv(z) function for the EM38 sensor 

can be written as: 

                                     . (4.11) 5.02 )14()( −+= zzRv
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This function is illustrated in Figure 4.17.  
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Figure 4.17. Cumulative response function of EM38 sensor for measurements taken in the 

vertical dipole mode in a homogenous material. 

 

Equation 4.11 can be used to construct a relationship between ECaV and Dts. 

Consider the two-layered soil matrix observed in this area with loess on the 

surface and an underlying Tertiary clay layer. If we consider a location on the field 

xα where the Tertiary clay layer is measured at Dts, the cumulative response arising 

from below this depth can be written as Rv(Dts(xα)), whereas the cumulative 

response from the loess material is given as 1- Rv(Dts(xα)). Assuming the electrical 

conductivities of Tertiary clay  and loess  are uniform, the 

instrument reading can be modelled as: 

)( ,clayaEC )( ,loessaEC

       clayatsvloessatsva ECDRECDRVEC ,α,αα ))](([))]((1[)( ⋅+⋅−= xxx .   (4.12) 

Inversely, Rv(Dts) at an unsampled location (x0) can be modelled if ECaV (x0), 

 and  are known: clayaEC , loessaEC ,
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The calculated cumulative response can be substituted into equation 4.11 

to obtain the modelled : 

)( *
tsv DR
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Direct conversion of ECaV measurements to Dts using the depth sensitivity 

function was not possible in this study, since clayaEC, and loessaEC ,  were unknown. 

Therefore, these unknown parameters were estimated iteratively on the basis of Dts 

observations by minimizing the least squares function:  

  (4.15) [ ] min)()(
2

1
α

*
α =−∑

=

n

i
tsts DD xx

where n indicates the number of calibration observations. 

Ideally, for a successful calibration of a prediction model, samples should be 

selected in such a way as to represent the data distribution (or attribute space) of 

the ancillary variable (see section 3.2). Thus, to calibrate the model (equation 4.15) 

a representative subset of ECaV measurements should be selected from the whole 

data set followed by the observations of corresponding Dts. However, since the 60 

Dts observations were taken independent of the ECa measurements, this sampling 

procedure could not be used to evaluate the prediction accuracy by decreasing the 

number of samples. Therefore, an alternative approach was used. This included 

two main steps: first, the ECaV values corresponding to the 60 Dts observations 

were recorded, then a Latin-hypercube sampling procedure (section 3.2) was used 

to pick subsets of samples of ECaV (n = 40 and 20) and the corresponding Dts 

measurements were taken for model calibration.  
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4.6.3.3. Performance of different prediction techniques 

The relationship between ECaV and Dts was empirically fitted by an exponential 

regression (Figure 4.18a) with a coefficient of determination (R2) of 0.80: 

            Dts = 6.7 exp(-0.03 ECaV). (4.16)   

An exponential relation can be expected since the response of EM38 

measurements reduces non-linearly with an increasing depth (Figure 4.17).  
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(a) (b) 

Figure 4.18. Depth to the Tertiary clay substratum (Dts) as a function of apparent 

electrical conductivity in the vertical dipole mode (ECaV) with (a) fitted empirical 

exponential regression and (b) depth sensitivity function calibrated with 20 samples 

(crosses: calibration samples; dots: remaining samples). 

 

Non-linear empirical relationships between interface depths of contrasting soil 

layers and ECa were reported by Doolittle et al. (1994) and Cockx et al. (2007). 

However, these relationships have generally been established for the layers located 

within the depth of exploration of the EMI sensor. This depth is defined as the soil 

depth that contributes for a 70 % of the instrument response and for EM38 sensor 

in the vertical dipole mode this is 1.5 m (Figure 4.17). The results of this study 

indicated that such relationships remain unchanged even for mapping materials 

located well below this depth. 
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An isotropic spherical variogram was found to represent best the spatial variation 

of the residuals (Figure 4.19). The absence of a nugget variance suggested a strong 

spatial structure of the residuals, indicating the potential of regression kriging.  
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Figure 4.19. Experimental variogram (dots) calculated for residuals of Dts and fitted 

spherical model (curve, range = 75.6 m, sill = 0.07, nugget = 0.0 and RNE = 0 %). 

 

The predictions of Dts obtained with regression kriging are given in Figure 4.20. 

The short scale variations of Dts which were almost absent in the ordinary kriged 

estimates (Figure 4.13b), became apparent in the Dts predictions by regression 

kriging.  
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Figure 4.20. Predictions of Dts made with (a) regression kriging and (b) the model based 

on the depth sensitivity function calibrated with 20 depth observations. 
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As expected, regression kriged Dts (Figure 4.20a) resembled largely the ECaV map 

(Figure 4.15) due to the strong dependency between these two variables. This also 

illustrates the risk that predictions of Dts through regression kriging can be 

vulnerable to artefacts in the ECa data. Therefore, the pre-processing of ECa data is 

an essential step to enhance the credibility of the predictions. 

The validation results of the different prediction methods are listed in Table 4.7. 

The MEE of regression kriging was close to zero (0.02 m) and this indicated the 

unbiasedness of prediction. This was further evident by the large r accompanied 

by the scatter plot of observed and predicted depths being aligned close to 1:1 line 

(Figure 4.21). An average prediction error (RMEE) of 0.24 m is highly acceptable 

given the standard deviation of this variable (0.65 m) and the measurement errors 

associated with auger observations in the field. 

 

Table 4.7. Validation results of regression kriging (RK) and predictions based on the 

depth sensitivity function. (TM-60, TM-40 and TM-20 denote the models based on depth 

sensitivity function parameterized using 60, 40 and 20 calibration samples). 

Prediction method MEE (m) RMEE (m) r 

RK 0.02 0.24 0.95 

TM-60 0.09 0.32 0.91 

TM-40 0.11 0.33 0.91 

TM-20 0.08 0.32 0.91 

 

The and calculated for the predictions based on the depth 

sensitivity function changed slightly with the number of calibration samples (Table 

4.8). Thus, corresponding models also overlap considerably (e.g. Figure 4.18b). 

Equally larger R2 values of all models (Table 4.8) showed that the models were 

capable of explaining more than three quarters of the total variation (> 76 %) of 

the Dts measurements. These results bring us to the conclusion that the field 

sampling effort can greatly be reduced through an appropriate selection of 

calibration samples. 

loessaEC , clayaEC ,



Chapter 4: Utility of choropleth soil maps for site-specific soil management and map upgrading using 
proximal soil sensing 

 

 115 

0 0.5 1 1.5 2 2.5 3
Observed depth (m)

0

0.5

1

1.5

2

2.5

3

Pr
ed

ic
te

d 
de

pt
h 

(m
)

            
0 0.5 1 1.5 2 2.5

Obse
3

rved depth (m)

0

1

2

3

Pr
ed

ic
te

d 
de

pt
h 

(m
)

 

(a) (b) 

 
0 0.5 1 1.5 2 2.5 3

Observed depth (m)

0

1

2

3

Pr
ed

ic
te

d 
de

pt
h 

(m
)

            
0 0.5 1 1.5 2 2.5

Obse
3

rved depth (m)

0

1

2

3

Pr
ed

ic
te

d 
de

pt
h 

(m
)

 

(c) (d) 

 
Figure 4.21. Scatter plots of observed depth versus predicted Dts by (a) regression kriging 

and the depth sensitivity function using (b) 60, (c) 40 and (d) 20 calibration samples. 

 

Table 4.8. Electrical conductivities (mS m-1) of loess and clay layer calculated using the 

depth sensitivity function with varying number of calibration samples and coefficient of 

determination (R2) values of the models. 

calibration samples 
loessaEC ,  clayaEC ,  R2(*) 

60 7.15 124.16 0.78 

40 6.21 128.29 0.76 

20 7.71 121.20 0.78 

(*) calculated on the basis of 60 Dts measurements. 
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No visible differences could be noticed between the maps of Dts predicted based on 

the depth sensitivity function with varying number of calibration samples. Therefore, 

Figure 4.20 shows only the predictions made with the smallest number of 

calibration samples (20).  

Table 4.7 lists the validation indices calculated with the depth sensitivity function 

based predictions. The similarity of the indices showed that the number of samples 

used for the calibration of the model had no influence on the accuracy of the 

predictions. The values of MEE pertaining to predictions were close to zero, but 

slightly larger than those of the regression kriging predictions. This overestimation 

of Dts can also be observed in the scatter plots (Figures 4.21b to d). These further 

indicated that the over estimations were biased towards the smaller values of Dts. 

The RMSSE and r values showed slightly lower prediction accuracy in comparison 

to regression kriging.  

In conclusion, among the methods evaluated, regression kriging is the best choice 

for predicting Dts using ECa data if a large number of Dts observations can be 

afforded. However, given the much lesser number of samples needed to ensure a 

reasonable accuracy of prediction, the depth sensitivity function based approach of 

predicting Dts can also be considered as an appropriate approach with a limited 

number of Dts observations.  

 

4.6.3.4. Upgrading the 1:20,000 soil map 

Given the higher accuracy of regression kriging, these estimates were used to 

upgrade the 1:20,000 soil map. The upgrading of the 1:20,000 choropleth soil map 

can be done either by incorporating the predicted Dts information as a continuous 

layer into the 1:20,000 digitized soil map or by redefining the soil series based on 

this new information. Here we implemented the second approach in order to 

facilitate a comparison of the upgraded map with the two choropleth maps. 

Therefore, the Dts predictions were classified according to the 1:20,000 map 

legend (Figure 4.22a) and subsequently these classes were also added to the soil 
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map. A few very small map units (< 0.1 ha) were omitted. The resulting upgraded 

1:20,000 soil map is given in Figure 4.22b. 
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Figure 4.22. (a) Predicted Dts classified according to the legend of the 1:20,000 Belgian 

national soil map and (b) the 1:20,000 soil map upgraded by incorporating predicted Dts. 

The inner thick boundary separates the two soil series Lcc and Ldc. 

 

The upgraded 1:20,000 soil map divided the two original soil series into six 

variants. The western half of the study area has been considerably modified when 

compared with the original map (Figure 4.2). Unlike the original map, nearly half 

of the upgraded map is covered with soil series denoting the presence of a shallow 

(prefix ‘u’) or a moderately deep (prefix ‘(u)’) Tertiary clay substratum. The 

classification of the predicted Dts map into substratum classes according to the 

conventional legend did not include Dts classes below the lower limit of 1.25 m. 

Therefore, no modifications took place in the eastern part of the study area. 

According to the upgraded map, the Tertiary clay layer occurs at depths of less 

than 1.25 m in about 6.2 ha of the study area. This considerably exceeds the 

minimum legible area of the 1:20,000 soil map (Table 4.1). Therefore, it is 

understandable that the poor map accuracy is not due to the scale of the soil map. 

To determine the exact reasons, the original, 1:5000 scale field survey reports of 

the Belgian national soil survey (section 3.8) were consulted. These reports (more 
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than half a century old) are archived at the Department of Geology and Soil 

Science, Faculty of Sciences of the Ghent University. Figure 4.23a shows an 

extract of an original field survey report indicating the observations carried out in 

the study area. The total number of field observations made in the within our study 

area was 18. This represents a sample density of 1.2 observations for a hectare. 

The observed soil series were denoted using a 3 to 4 letter code (see section 3.8). 

The occurrence of a Tertiary clay substratum at a depth < 1.25 m was reported at 

five locations mainly in the western half of the field (encircled on Figure 4.23a). 

However, this information was not included for map unit delineation (Figure 

4.23b). It is possible that the soil surveyors came to a conclusion that the shallow 

presence of the substratum was too erratic to allow mapping. So, neither on the 

1:20,000 soil map nor the accompanying booklet, this information was mentioned.  

 

4.6.3.5. Evaluation of the accuracy of the upgraded map 

To evaluate the accuracy of the upgraded map with comparison to original 

1:20,000 and 1:5000 maps, class predictions from each map were compared with 

the 46 validation observations. The result were summarised in a confusion matrix 

(Lillesand and Kiefer, 1994). Every element of this matrix (xlk) represents the 

number of ground truth observations belonging to the depth class k which belong 

to class l of the soil map. The diagonal elements (xkk) represent the agreement 

between the observations and map predictions. The overall map accuracy (θ1) was 

calculated as: 

                        ∑
=

=
K

k
kkx

n 1
1

1θ  (4.17)   

with n the total number of validation observations and K the number of classes. 

All favourable θ1 values do not implicate high map accuracies, because some 

classes may occupy much larger areas than other and thus dominate validation 

sample (Finke, 2007). 
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(a) 

 

 

(b) 

Figure 4.23. (a) Original 1:5000 field report of the Belgian national soil survey 

indicating the soil auger observations conducted in the study area, the encircled codes show 

the occurrences of Tertiary materials at a depth < 1.25 m, and (b) the manual delineations of 

soil series based on the field observations (the last letter z indicates the presence of 

subsurface sandy material). Note that the fields of the study area are indicated with bold 

lines. 
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Therefore, the interpretation of θ1 needs to be supplemented with a kappa index of 

overall agreement (κ) obtained from (Cohen, 1960):  

             
2

21

θ1
θθ

κ
−
−

=  (4.18)   

given that  ∑
=

••=
K

k
kk xx

n 1
22

1θ  with  and  the marginal sums of rows and 

columns respectively of the confusion matrix. This index provides an indication of 

the non-coincidental agreement between the observations and the predictions and 

ranges from -1 to 1. Landis and Koch (1977) divided this range into classes with 

the aim of providing an indication of the degree of correspondence: ≤ 0 = poor, 

0.01 – 0.20 = slight, 0.21 – 0.40 = fair, 0.41 – 0.60 = moderate, 0.61 – 0.80 = 

substantial and 0.81 – 1 = almost perfect. 

•kx kx•

To quantify and compare the different map accuracies, both θ1 and κ were 

calculated for the 1:20,000 (Figure 4.2), 1:5000 (Figure 4.3) and the upgraded soil 

map (Figure 4.22b). The 1:20,000 soil map, which did not indicate any variation in 

Dts, had θ1 = 0.60 with κ = 0. Obviously these values indicated a poor map 

accuracy with respect to the prediction of Dts. The 1:5000 soil map had a larger 

overall accuracy (θ1 = 0.83) and a kappa index of κ = 0.70, which represents a 

substantial correspondence between the observed and predicted depth classes. The 

upgraded map with the EMI sensor was found to be the most accurate, with θ1 = 

0.89 and κ = 0.82. 

 

4.7. Conclusions 

The geostatistical analysis of soil variation addressed the first research question of 

this case study, i.e. is the variation of the soil properties spatially structured at a 

within-field scale? The variogram analysis showed that a large proportion of the 

total variation of all top and subsoil properties and Dts (at least 71 %) were 

accounted for by the spatially structured component of the variogram model. 

Therefore, the random or unexplained variations of these properties were very 

small. The average spatial continuity of the top (200 m) and subsoil (100 m) 
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properties and Dts (206.5 m) indicated that their spatial variation can be partitioned 

into within-field subunits (or potential management zones) which are large enough 

for the implementation of site-specific soil management decisions. Also, it became 

clear that the spatial distributions of the topsoil and subsoil texture were largely 

influenced by the underlying Tertiary clay substratum. Therefore, characterization 

of the spatial variation of Dts is a key step for resolving the soil variation in the 

sandy silt region. The usefulness of classical soil-landscape models for 

characterizing the spatial variation of Dts is doubtful due to the lack of 

correspondence between the existing topography and Dts, which indirectly 

represents the paleotopography. The spatial variation of topsoil organic C and top 

and subsoil pH values emphasised the usefulness of categorical data on the history 

of land use when characterizing their spatial variations. These observations 

allowed to conclude that the spatial variation of the properties investigated, 

namely, top and subsoil textural fractions, organic C content, pH and Dts are 

spatially well structured at a within-field scale. 

Assessment of the predictive quality of soil maps allowed us to answer the second 

question, i.e. are the 1:20,000 and more detailed 1:5000 soil maps suitable to 

provide soil information for site-specific soil management? The low intra-class 

correlation values of the 1:20,000 soil map for all the investigated soil properties 

(< 0.19) clearly reflected the presence of a substantial within-map variation. 

Therefore, the prediction of soil properties based on the 1:20,000 mapping units 

will be erratic and not serve the detailed and accurate soil information needs for 

site-specific soil management. Thus, upgrading of this 1:20,000 soil map is a 

necessity to provide such detailed soil information. The same conclusion is valid 

for the 1:5000 soil map for all the properties investigated, except for Dts 

. The large number of field observations (approximately 210 samples) 

undertaken in the study area allowed the surveyors to classify Dts with a high 

accuracy. Thus, the information about Dts provided by the 1:5000 map is useful for 

site-specific soil management. 

)62.0( 2 =iR
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The third research question addressed in this study was: can ECa information 

obtained through proximal sensing be used as an ancillary source of soil 

information for upgrading the 1:20,000 soil map? The selected soil variable for 

map upgrading was the Dts. Firstly, regression kriging which combined 60 Dts 

observations and 9192 ECaV observations to predict Dts, resulted in the highest 

prediction accuracy. Nevertheless, almost a similar accuracy of prediction was 

achieved by calibrating the depth sensitivity function of the EM38 sensor with 

only 20 Dts observations. Secondly, the upgraded 1:20,000 soil map using Dts 

predictions obtained through regression kriging showed an almost perfect thematic 

accuracy. Interestingly, the accuracy was much better than of the 1:5000 soil map 

which was constructed using three times as many field observations. Therefore it 

is evident that ECa measurements obtained through proximal soil sensing could be 

used as ancillary information to upgrade the 1:20,000 soil map in the sandy silt 

region by adding accurate information on the depth to the Tertiary clay 

substratum.  
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Key soil and topographic properties to delineate 
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5.1. Introduction  

Soils derived from loess parent materials are recognized as among the most fertile 

of Europe. Consequently, they have been under intensive agriculture for centuries. 

A number of studies addressed the general fertility status (Brahy et al., 2000) and 

erodibility (Govers, 1991) of this soil material covering an undulating Tertiary 

landscape. Limited attention has been given to the within-field soil variability 

because loess soils are considered to be very homogeneous. Yet, Reyniers et al. 

(2006) observed important within-field variations in crop yield as a result of soil 

and landscape variability. However, they used only a one-year observation of crop 

yield. Although yield maps have been strongly promoted as a measure of crop 

productivity guiding the delineation of management zones for site-specific soil 

management (Jaynes et al., 2005), they often display a large temporal variation 

due to varying weather conditions, uneven management practices and influences 

of pest and diseases. To account for these variations, Lamb et al. (1997) and 

Boydell and McBratney (2002) suggested that more than five years of yield data 

are required to identify stable management zones. 

Traditional general purpose soil maps, typically drawn on a scale between 

1:20,000 and 1:200000, were made for regional land use planning and are 

therefore not suitable to provide detailed information about the within-field 

variability. Soil inventory by intensive soil sampling and subsequent interpolation 

is not a realistic alternative due to cost constraints. Thus there is a need for cost-

effective, accurate and quantitative ways to inventorize soil information at a very 

detailed scale (Cook et al., 1996). 

Recent advances in proximal and remote sensing and on-the-go soil and crop 

measurements have made available several types of ancillary information. Since 

these sources are capable of producing detailed spatial information, they offer a 

large potential to characterize the within-field soil and crop variation. 

Nation-wide accurate elevation data are becoming accessible allowing the 

generation of DEMs. From these, several terrain attributes, for example slope 

properties or erosion indices (Wilson and Gallant, 2000) can be obtained, which 

 124 



Chapter 5: Key soil and topographic properties to delineate potential management zones in a loess soil 

have a direct link with pedogenic processes. Franzen et al. (2002) delineated 

potential management zones on the basis of topographic information, and Fraisse 

et al. (2001) found that management zones were closely associated with yield 

variation attributed to soil water availability influenced by topography.  

Another widely used source of ancillary information is the measurement of soil 

ECa by either electromagnetic induction or electrical resistivity measurements. 

Mobile ECa measurement systems, in conjunction with a GPS, are capable of 

producing a large number of georeferenced data in a short period of time. One 

system frequently used is the electromagnetic induction sensor EM38DD. Under 

non-saline conditions, ECa is mainly related to clay, water and organic matter 

content (Corwin and Lesch, 2005b). Since these are very important properties for 

soil management, ECa has been used frequently to delineate management zones 

(e.g. Cockx et al., 2005; Kitchen et al., 2005; Vitharana et al., 2006).  

Due to the growing availability of all these information sources, and their derived 

products, there is a risk of over-information (Van Meirvenne, 2006). Although 

different ancillary information sources may reflect different levels of soil spatial 

variability, inter-correlations (i.e. partial duplication of information) between them 

are common. However, in spite of the large number of papers addressing the use of 

different ancillary information sources, little attention has been given to integrate 

such information.  

This research aims at identifying the key soil and topographic properties required 

to delineate potential management classes in an agricultural field in the Loess belt 

of the Belgium. This area, having been cultivated since historical times and 

displays complex patterns of soil development due to the interaction of different 

types of soil parent material and slope processes. Data layers involved in this study 

were: (i) top- and subsoil textural fractions, organic C, CaCO3 (%) and pH-KCl 

determined at 110 locations, (ii) ECaV and ECaH measurements obtained by an 

EM38DD sensor and (iii) a highly accurate and detailed DEM from which several 

topographic attributes were calculated. The crop productivity trends across 
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potential management classes were investigated using a three years sequence of 

grain and straw yield data.  

5.2. Materials and methods  

5.2.1. Study field  

The investigated field was an 8 ha parcel located in Leefdaal (50º 50’ 40” N, 

4º 36’ 35” E), in Flanders, Belgium. It is situated in the Belgian loess belt (Figure 

5.1). The loess parent material is a Pleistocene aeolian sediment which originally 

had a thickness ranging from a few decimetres to approximately 10 m (see section 

3.6). Around Leefdaal, these sediments were deposited on Tertiary glauconitic 

sands. The unweathered, loess was rich in CaCO3 (10–20 %), but, decalcification 

has been active for approximately 10000 years. This acidification resulted in an 

eluviation of clay particles creating the typical horizon sequence of loess soils of 

Belgium: an acidic and clay eluviated plow layer Ap followed by E, a clay 

illuviated Bt, a decalcified C1, a CaCO3 containing C2 (loess parent material) and 

the underlying Tertiary substrate 2C. Because of the high erodibility of the loess-

derived silty soil, the topography plays a significant role in soil development 

through erosion and deposition (Desmet and Govers, 1995). On the slopes, most of 

the loess, or even all of it, may have been eroded, while in valley bottoms colluvial 

deposits with a mixed composition are found. 

 

      
 
Figure 5.1. The location of the study field in the Belgian loess belt and the study field 

boundary demarcated on a satellite image. 
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The availability of multiple-year yield data (yield mapping is not yet a standard 

practice in Belgian agriculture) and the growing interest on the feasibility of site-

specific soil management in this agriculturally important area, were the main 

reasons for selecting this field for the study. Moreover it displays an undulating 

topography, which is common in most parts of the European loess area. The field 

has been cultivated with winter wheat (Triticum aestivum), barley (Hordeum 

vulgare) and sugar beet (Beta vulgaris) in rotation for many years using 

conventional rain fed and under uniform management practices. Generally soils in 

this area are classified as Luvisols in the WRB (ISSS Working Group Reference 

Base, 1998). The Belgian soil map classified the study field as “Aba” soil series, 

which represents a silt topsoil texture (‘A’) and well drained conditions (drainage 

class ‘b’) with a argillic B horizon. In general, lime application is routinely 

performed in the loess region to minimize the influence of soil acidity on crop 

production.    

 

5.2.2. Acquisition of spatial data layers 

5.2.2.1. Soil sampling and ECa measurements 

In November 2004, soil samples were taken from 110 locations (Figure 5.2) at two 

depth intervals (0-30 cm and 50-80 cm). Half of the sampling locations were 

located on the nodes of a 40 m regular grid and the other half as a random pair 

associated to each grid node (see section 3.2). At each location a pooled sample 

was obtained from three augerings taken within a one meter radius. All sampling 

locations were georeferenced using a GPS receiver with a positional accuracy of 2 

to 3 m and converted to the Belgium national coordinate system (Lambert72). Air 

dried samples were sieved through a 2 mm sieve and analyzed for a range of 

agronomically important stable soil properties closely linked with the pedogenesis 

of loess-derived soils. These included organic C (%), pH (in a 1 N KCl solution), 

CaCO3 (%) and textural fractions.  

To obtain ECa measurements, the mobile measurement system with the EM38DD 

sensor was driven at a speed of about 15 km h-1 along 4 m spaced parallel lines. In 
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this way, georeferenced ECa measurements were recorded on-the-go at 1 Hz 

yielding an approximate measurement density of one observation per 20 m2. After 

the removal of measurement anomalies, the remaining 5534 ECa measurements 

were used for further analysis. 

After the exploratory data analysis, soil properties and ECa measurements were 

geostatistically analyzed. Experimental variograms (omnidirectional in the absence 

of anisotropy, else directional) were computed and theoretical models were fitted 

to them. Interpolation to a 5 m grid was performed with ordinary kriging. 
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Figure 5.2. The grid plus random sampling scheme showing 110 locations. 

 

5.2.2.2. DEM generation and topographic attributes calculation 

Elevation data collected by airborne laser scanning (OC-GIS Vlaanderen, 2003) 

were used in this study (section 3.4.2). These data were interpolated to a 5 m grid 

using ordinary block kriging to generate the DEM of a large area (560 ha) within-

which the study field is centrally located. The catchment area (drainage basin) of 

the study field was delineated from the DEM by using the algorithm of Jenson and 

Domingue (1988). The catchment had a surface area of 95 ha and its DEM (Figure 

5.3a and b) showed that the major flow line (thalweg) of the catchment runs 

through the field which is located near to the catchment’s outlet. The field 
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topography consists of two plateaus (in the east and west, the latter being the 

larger) gently sloping towards the narrow valley floor of the thalweg. A 

topographic discontinuity of almost 2 m height and 200 m length crosses the field 

(Figure 5.3c). This is most likely to be the remnant of a former hedge that might 

have reduced local erosion. The panoramic view of the study field presented in 

Figure 5.4 clearly visualizes this feature along with the undulating topography. 

 

 

(a) 

 

      
166200 166600 167000 167400

Easting (m)

169400

169800

170200

170600

171000

N
or

th
in

g 
(m

)

50

58

66

74

82

90

98

Elevation 
(m)

  
166880 166980 167080 167180

Easting (m)

170320

170420

170520

170620

170720

56
58
60
62
64
66
68
70
72

Elevation
(m)

 

(b) (c) 

 
Figure 5.3. (a) Perspective view of the DEM of the catchment area, (b) contour map of the 

catchment area and the (c) DEM of the study field. The inner boundary of the field depicts 

the topographic discontinuity. 
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The primary (slope and specific catchment area) and secondary topographic 

attributes (WI and SPI) were calculated form the delineated catchment (refer to 

section 4.2 for details). Since, the field observations suggested that the topographic 

discontinuity is due to a former hedge row along the discontinuity, it needed to be 

included in the runoff modelling. Therefore, a height barrier along the 

discontinuity was defined in the catchment DEM before calculating the specific 

catchment area.  

 

 
 
Figure 5.4. Panoramic view of the study field indicating the topographic discontinuity 

(arrow). 

 

5.2.3. Identification of key information layers and delineation of management 

zones 

Figure 5.5 outlines the data analysis steps involved in identifying key information 

layers and delineation of management zones. This analysis procedure consisted of 

two main steps: principal component analysis (PCA) and fuzzy k-means 

classification.  

 

5.2.3.1. Principal component analysis 

PCA was used to identify key variables which account for soil variability in the 

study field. PCA is a multivariate statistical method that is often used for 

dimension reduction of multivariate data sets. This is achieved by the 
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transformation of p dimensional original variables, Z1, Z2,…, Zp to a fewer number 

of principal components (PCs) PC1, PC2,…, PCq with a minimum loss of 

information. The details of PCA can be found elsewhere (Davis, 1986). 

 
Figure 5.5. Data analysis procedure for the selection of key variables and delineation of 

management zones. Steps 1 – 2 show the insertion of p primary and ancillary variables for 

principal component analysis (PCA), step 3 represents the selection of q principal 

components (PCs) provided that q < p, step 4 indicates the selection of a q number of 

variables on the basis of loadings of extracted PCs and the management zone delineation 

sing fuzzy k-means classification (FKM) is represented by steps 5 and 6. u
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The 110 top and subsoil properties and their collocated ECa and topographic 

attributes extracted from interpolated maps were subjected to a PCA to identify the 

key variables. To avoid spurious correlations due to the compositional nature of 

the textural fractions, only the clay fraction was used as an input. The input data 

set for PCA consisted of 14 variables. Principal component analysis is sensitive to 

the scales (therefore the variances) on which the original observations are 

recorded. Since the different variables used in this study comprised of different 

units, their scales were standardized to ensure a standard deviations of one and a 

ed correlation coefficients to the 

 of eigenvalues against the PC with which it is associated. Typically, the 

 represent the contribution of each 

riginal variable to the corresponding PC. All these calculations were performed 

sing SPSS (v. 12.0, SPSS Inc., Chicago, IL). 

 

mean of zero. Thus, the correlation matrix, and not the covariance matrix, was 

used in the PC (or eigenvector) calculation. 

Interpretable PCA results can only be expected when the input variables are 

reasonably correlated (Davis, 1986). Therefore, before the PCA, the adequacy of 

inter-correlations between variables was tested using Bartlett’s test of sphericity. 

The Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy was evaluated to 

ensure the applicability of the data set for a PCA. The KMO measure is an index 

for comparing the magnitudes of the observ

magnitudes of the partial correlation coefficients. A high KMO (between 0.5 and 

1) is recommended for proceeding with PCA.  

The selection of the number of retained PCs was based on the analysis of the 

explained variances by each PC represented by a scree plot (Catell, 1966). This is 

a plot

smaller eigenvalues representing random variations, tend to lie along a straight 

line.  

To improve the interpretation of the retained PC’s, a varimax rotation was applied. 

Finally, for each of the retained components, a representative key variable was 

identified based on the factor loadings, which

o

u
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5.2.3.2. Fuzzy k-means classification 

Kriged maps of the selected q variables were classified into potential management 

classes using a fuzzy k-means classification procedure. Therefore, each map grid 

node (total 2969) with q variables were treated as objects for classification. The 

fuzziness exponent was fixed to the conventional value of 1.35 (Odeh et al., 1992) 

and the Mahalanobis’ distance metric (equation 3.39) was used as it accounts for 

the differences in variances (Bezdek, 1981). The classification was repeated for a 

range of classes, i.e. k was set to a value between 2 and 8. The optimum k-value 

was identified on the basis of minimizing two cluster validity indices, the FPI and 

the NCE. The class number that corresponds to the largest membership value 

received by each grid cell was recorded and these values were mapped to produce 

e management zones map. 

content) and straw yield maps were 

th

 

5.2.4. Crop productivity among potential management classes 

Yield measurements were taken during the growing seasons of 2000, 2003 (in both 

years winter wheat was grown) and 2004 (barley) using a harvester mounted with 

the experimental grain, straw and moisture sensors of the Laboratory for 

Agricultural Machinery and Processing of the K.U.Leuven. The georeferencing of 

yield measurements taken at 1 m intervals was performed using a Trimble 

AgGPS132 DGPS system with sub-meter accuracy. The raw yield data were pre-

processed to compensate for the systematic and random errors in this data 

(Reyniers, 2003). The data pre-processing procedure involved: removal of data 

with obvious positional errors, correction of measurement shifts caused by 

environmental factors and effects of noise on sensor signals and the removal of 

irrelevant data. The data acquisition and the pre-processing were conducted by 

Laboratory for Agricultural Machinery and Processing of the K.U.Leuven. 

Comprehensive details of the procedure can be found in Reyniers (2003). The 

grain (adjusted to 15 % reference moisture 

constructed using ordinary block kriging. 
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Due to the temporal instability of yield data, Stafford et al. (1996) and Colvin et al. 

(1997) suggested the use of the average of multiple years of yields to identify the 

productivity differences across management zones. Generally, this patio-temporal 

trend of yield is determined by averaging the yield at each grid cell over a 

sequence of yield maps. Since different grain crops were involved in this study, 

these simple averaging techniques could not be used to investigate the yield trends 

across potential management classes. Therefore the standardized yield at each grid 

cell for a lated as follows

          

given year was calcu  (Blackmore, 1999):  

           100)()( α
α ×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

t

t
t y

ys xx                                  (5.1

where )( αxts is the standardised yield (%) at grid cell )( αx in the year t, )( αxty is 

the interpolated yield (t ha-1) of the same grid cell and 

      ) 

ty  is the average yield for 

the same year. Subsequently, an average standardized yield map was obtained by 

averaging the standardized yield at each grid cell over the three year period 

onsidered. These average standardized yield map was used to identify the 

s management zones. 

5.3. Results and discussion 

st of the thalwag which is referred to as the 

c

productivity differences acros

 

5.3.1. Spatial distribution of topographic attributes 

The spatial distribution of the slope across the study field is presented in Figure 

5.6a. Confirming the field observations, a strip situated to the west of the thalweg 

had a relatively steeper slope (8 – 16 %). For the convenience of interpretation of 

the spatial variation, this area is hereafter referred to as the western slope of the 

field. The plateaus located in the NW and SW corners of the field can be clearly 

distinguished by the smaller slopes (1 - 6 %). Somewhat larger slopes were also 

present in the area located to the ea

eastern slope of the field. The plateau located in the SE corner of the field is not 

clearly expressed by the slope map. 
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The WI map of the field (Figure 5.6b) derived from the DEM of the entire 

catchment (Figure 5.3a) showed large values in the valley floor. Since the major 

flow line of the catchment passes through this valley, this area is likely to be the 

wettest area of the field. The rest of the field showed intermediate to small WI 

values. However, larger WI values were observed along the eastern slope of the 

field in contrast to the western slope. Given similar slope gradients across both 

slopes, it is likely that the comparatively larger upslope area corresponding to the 

eastern slope (Figure 5.3a and b) has resulted in the higher values of WI. 

Importantly, this suggested that relatively wet soil conditions exist along the 

eastern slope of the field in comparison to the western slope and the plateaus. 
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Figure 5.6. Spatial distribution of topographic attributes; (a) slope (%), (b) wetness index 

(WI) and (c) stream power index (SPI). 
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Large SPI values were found on both slopes (Figure 5.6c), which resulted from the 

combined effect of a large upslope contribution area and a steep slope angle (on 

both slopes the slope angle ranged between 8 and 16 %), reflecting a larger 

tendency for surface soil loss by runoff. However, on the western slope the 

topographic discontinuity caused smaller SPI values on downslope since it acted 

, on the plateau areas located in the 

were smaller. 

r normality indicated non-normal distributions (at 

n the 

.0 to 5.8 % (CV of 167 %) in the topsoil and from 0.0 to 16.9 % in the 

as a barrier for overland water flow. Naturally

NW and SW corners, the SPI values 

5.3.2. Spatial distribution of soil attributes  

5.3.2.1. Exploratory data analysis 

Descriptive statistics of the soil properties are given in Table 5.1. The 

Kolmogorov-Smirnov test fo

5 % level of probability) associated with all the properties except topsoil organic C 

and pH, subsoil clay and pH and ECa measurements. This is further reflected by 

the coefficients of skewness. 

The median values of the textural fractions of the top and the subsoils were almost 

identical (about 16 % clay, 13.5 % sand and 69 % silt) resulting in the texture 

class, silt loam, which is typical of soils developed in loess (Govers, 1991). 

However, the sand fraction showed a large variability with a CV of 45 % i

topsoil and 65 % in the subsoil (ranging from 5.7 to 69.3 %). The organic C 

contents were small, ranging from 0.52 to 1.01 % in the topsoil (with a CV of 13 

%) and from 0.04 to 0.69 % in the subsoil (with a much larger CV of 57 %).  

A large variability was encountered for the pH. In this field, pH values ranged 

from 4.7 to 7.5 in the topsoil and from 4.7 to 7.7 in the subsoil. These differences 

in pH were remarkable, since this field has been under arable land use for a long 

period of time and good agricultural practice requires this soil property to be 

closely monitored. However, it is most likely that only average pH values (around 

6.2) were considered by the advisory institution thus masking the within-field 

variability. Linked to the soil pH, the CaCO3 content also varied largely, ranging 

from 0
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subsoil (CV of 189 %). This was an indication of the presence of decalcified loess 

he 

field. 

Ta umm tisti sam il p s (n ) and  = 55

  M  V e Sk

and CaCO3 rich loess parent material in the surface soil in different parts of t

 

ble 5.1. S ary sta cs of pled so ropertie  = 110 EC  (na 34). 

Mean edian Min Max arianc CV ewness 
Topsoil         

Clay (%) 15.6 16.2   8.4 19.1 05.2 014.7 -1.35 

Sand (%) 15.2 13.4 08.2 46.1 46.9 045.1 2.80 

Silt (%) 69.2 70.5   44.3 75.5 28.6 007.7 -2.97 

Or )   0 0   0

0   

CaCO 0    
Sub

ganic C (% .77 0.76 0 0.52 1.01  00.01 013.0 -0.04 

pH-KCl 06.19   6.00 0 4.73  07.49   00.54 011.90  0.25 

3 (%) 
soil

00.78   0.28 0 0.00  05.76  01.70 167.20 2.7 
 

  

  

  0 0      0     0  00.02 056.6  1.62 

p 0     0

Ca ) 0        

EC

       

Clay (%) 16.8 16.8   11.5  20.9 0  6.0 014.6 -0.38 

Sand (%) 14.3 14.3 05.7  69.3   85.2 064.5  3.82 

Silt (%) 68.8 68.8 15.5  78.0 72.7 012.4 -4.29 

Organic C (%) .25 0.25 .04 .69 

H-KCl 06.23   6.23   4.69     7.72  0.71 13.50  0.28 

CO3 (% 02.73   2.73   0.00   16.91  26.53 88.70  1.88 

a  (mS m-1) 

       

   23.8 04.0 012.0 0.33 

11.9 11.9   5.7    18.6 03.6 016.0 0.33 
ECaV  16.6 16.6   8.2 

ECaH 
 

5.3.2.2. Top and subsoil properties  

Table 5.2 lists the Pearson and Spearman rank correlations between the top and 

subsoil properties. Moderate to strong correlations were observed between the top 

and subsoil for all properties except for the organic C content. Similar top- and 

subsoil spatial patterns were observed for all soil properties except organic C, 

which was quite uniform in the topsoil. Moreover, variability of subsoil organic C 

in loess landscapes is an important indication of colluvial deposits due to slope 

processes. It can also be beneficial to crop performance due to improved water and 
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nutrient holding capacity in the deeper layers. The CaCO3 and pH strongly co-

varied (Table 5.2), their spatial distributions were almost identical. Therefore, 

ence of a zonal anisotropy for soil pH which 

 

oreover, it is commonly observed that N-W facing slopes have a thinner loess 

over due to the prevailing N-W winds during the deposition period (Pleistocene). 

 
 
 

variogram analysis results and the ordinary kriged maps of only topsoil clay 

content, pH and subsoil organic C content are presented in this section.  

Figure 5.7 shows the experimental variograms and the fitted theoretical models of 

selected soil properties. Model parameters are listed in Table 5.3. The 

semivariances of all properties except topsoil pH did not vary with the direction. 

Therefore, the spatial variations of these properties were represented by 

omnidirectional variograms. The directional variograms of topsoil pH showed 

greater spatial continuity and less variation along the N-S direction (range = 

86.4 m and sill = 0.43) in comparison to the E-W direction (range = 63.0 m and 

sill = 0.68). This reflected the exist

needed to be incorporated in ordinary kriging. The variograms of all selected soil 

variables had a zero nugget effect.  

Topsoil clay (Figure 5.8a) was uniform over most of the area, with typical values 

for loess soil (15 - 16 %). However, across the eastern slope, an approximately 

triangular area with a decreased clay content (9 - 13 %), and consequently, an 

increased sand content, was found. The western border of this area was located 

next to the valley bottom (Figure 5.3c) and coincided with large SPI values (Figure 

5.5c). Therefore it was likely that water erosion occurring in this part of the field 

may have completely removed the loess cover, exposing the underlying Tertiary 

sandy material (the 2C horizon). This was confirmed by the presence of surface 

gravel (with diameters of between 0.2 and 7.5 cm) in this part of the field.

M

c
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Over a large part of the field, the subsoil organic C content was low (< 0.25 %) 

(Figure 5.8b). But locally an increased level (> 0.45 %) was found, mainly along 

the valley floor. The possible reason for this was the deposition of eroded topsoil 

aterial from the slopes, together with reduced conditions for mineralization due 

to increased wetness (as indicated by the WI, Figure 5.6
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Figure 5.7. Omnidirectional experimental variogram (dots) and fitted models (curve) for 

) topsoil clay (b) subsoil organic C and directional experimental variograms and fitted 

T  M e e fitte he top H, 

subsoil organic C and ECaV. 

riogr arame

(a

models of topsoil (c) pH (crosses: N-S and dots: E-W directions). 

 

able 5.3. odel param ters of th d variogram models for t soil clay, p

Va am p ters Property Direction Model 
Nugget Sill Range ) 

R ) 
(m

NE (%

Cl y  a O  mni Sph 0.00 6.2 95.2 0.00 
Or  ganic C Omni Sph 0.00 0.  02 64.9 0.00 

pH E-W Sph 0.00 0.68 63.0 0.00 
 N-S Sph 0.00 0.43 86.4 0.00 

ECaV Omni Exp 0.00 5.3 136.9 0.00 
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The map of topsoil pH (Figure 5.8c) showed a N-S oriented band of high pH 

values (> 6. r the western slope, more or less parallel to the valley bottom. 

Within thi , larger top- and subsoil CaCO3 ntents were found.  
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Figure 5.8. Maps of kriged estimates for (a) topsoil clay content (%), (b) subsoil organic C 
(%) and (c) topsoil pH. 

 

This suggested that on this slope, the decalcified Ap, E, Bt and C1 horizons have 

been removed, exposing the CaCO3 rich loess parent material (C2 horizon). This 

indicated less severe erosive conditions than on the eastern slope, where all loess 

material had been removed. The presence of a hedge in the past, which has 
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resulted in the topographic discontinuity, might have reduced the erosive power on 

this slope, as reflected by the reduced SPI values over this area (Figure 5.6c). 

Additionally, S-E facing slopes were originally covered by thicker loess layers. 

The rest of the field generally has a lower pH (< 5.8), with no CaCO3 in the top or 

subsoil. This variability, obviously, has important implications for lime 

pplications, which is a routine practice by the farmers in this area. In some areas 

ern slope) liming is required, whereas 

in the western slope this is not so. 

aV and 

2005b; Vitharana et al., 2006) reported similar relationships between ECa and soil 

a

in this field (along the plateaus and the east

 

5.3.2.3. Apparent electrical conductivity  

Table 5.1 shows the descriptive statistics of the measured ECa values. The average 

ECaV was 16.6 mS m-1 while the average ECaH was 11.9 mS m-1. The lower 

values of ECaH indicated a lower topsoil conductivity which might have been the 

result of the somewhat drier state of the topsoil, compared to the subsoil. Both the 

variables had a similar variance and similar CV (12 % for ECaV and 16 % for 

ECaH), which indicated a moderate level of variability, compared to most of the 

other soil properties. A strong correlation (r = 0.90) was found between EC

ECaH. This is in addition to the similar omnidirectional variograms and spatial 

variation patterns of both the measurements. Therefore, only the variogram 

analysis results and the kriged map of ECaV are reported in this section.  

Figure 5.9a shows the experimental variogram calculated for ECaV and the fitted 

exponential model. The absence of a nugget effect, thus zero relative nugget effect 

(Table 5.3) of the variogram reflected a strong spatial structure pertaining to the 

ECaV measurements. The spatial continuity of ECaV extended approximately 

137 m in the field studied. The interpolated map of ECaV (Figure 5.9b) shows low 

conductivity values on the eastern slope (< 14.5 mS m-1), which coincides with the 

spatial pattern observed on the topsoil clay (Figure 5.8a) and sand maps. This was 

confirmed by the rather strong correlation that exists between ECaV and topsoil 

clay (r = 0.7) and sand (r = -0.7). A number of studies (e.g. Corwin and Lesch, 
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textural fractions. The valley floor was distinct on the ECa map, with large values 

(> 18.5 mS m-1) reflecting the wetter soil conditions and the increased organic C 

conte subsoil. The rest of the field was fairly homogeneous with moderate 

ECa es. 
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5.4. Identification of key variables  

The Bartlett’s test of sphericity indicated a significant correlation between the 

variables since the correlation matrix was statistically different from an identity 

matrix (χ2 = 1192.5, p < 0.05). The KMO measure was 0.67, wh

required value of 0.50 for principal component analysis. Both tests suggested that 

the multivariate data set with 14 variables is appropriate for PCA. 

The scree plot from the PCA is given in Figure 5.10. It showed a typical 

declination of eigenvalues with increasing PC number; a typical sharp decrease for 

the first few (four in this case) factors, then levelling off. Cattell (1966) 

recommended the use of the PCs before the “elbow” (i.e. one less than the PC 

number at the point at which the curve bends) for further analysis. In Figure 5.10, 

PC4 coincides with the elbow of the curve and also contributes only a li
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total variation there onwards (< 7.7 %). Therefore, the first three PCs were 

retained and used in the further analysis by means of a varimax rotation. 
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Figure 5.10. Scree plot for soil and topographic data. 

 

The first 3 PCs accounted for 70.1 % of the total variance. Out of this, 33.6 % was 

accounted for by the first PC, while the second and third PCs accounted for 22 % 

and 14.5 % of the variation, respectively. Table 5.4 gives the communalities and 

loadings of the soil variables on the 3 rotated PCs. The communality of a 

particular variable gives the proportion of its variation represented by the extracted 

a tent. 

The third component represented mainly top- and subsoil organic C (the largest 

PCs. The smallest communality was 0.33, while most were larger than 0.55. This 

showed that the three retained PCs accounted for most of the variance in the 

original dataset. 

Figure 5.11 gives the loading plots of the three principal components. The first PC 

(PC1) was strongly related to the top- and subsoil pH and CaCO3 content, with 

subsoil pH having the largest loading on PC1 (0.877). Also the slope showed a 

strong association with this PC. The second PC which accounted for 21.3 % of the 

total variance, had the strongest contribution from the two ECa variables (the 

largest loading on PC2 was for EC V: 0.949) and top- and subsoil clay con
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loading on PC3 was for subsoil organic C: 0.707), elevation and the WI. SPI was 

only weakly associated to the three PCs and appeared to be less informative.  

T ng hre ) used 

in Fi

Principal component loadings 

able 5.4. Factor loadi

gure 5.11. 

 of the rotated first t e PC with labels (inside parenthesis

Variable and label 

on 

Communal

firs ’s identificati

ity of 

t 3 PC PC1 PC2 PC3 

Topsoil 

organic C (1) 0.55 0.048 0.187 0.714 
pH (2) 0.88 0.820 0.368 0.260 
CaCO3 (3) 0.67 0.815 0.067 -0.041 

Subsoil 

Clay (4) 0.79 0.294 0.772 -0.334 

organic C (5) 0.73 -0.301 -0.119 0.789 
pH (6) 0.83 0.877 0.101 0.222 
CaCO3 (7) 0.74 0.847 -0.059 -0.148 

ECa and topographic attributes 

Clay (8) 0.59 -0.134 0.694 -0.303 

EC V (9) a 0.91 0.046 0.949 0.098 
EC H (10) a

Elevation
0.89 0.136 0.932 0.073 

 (11) 

) 

WI (13) 

0.62 -0.246 0.340 -0.669 
Slope (12 0.55 0.698 0.040 -0.243 

0.66 -0.418 -0.389 0.581 
SPI (14) 0.33 -0.041 -0.511 0.263 

 

The PCA results suggested an independent soil spatial behaviour along three major 

properties dominated by pH, ECa and organic C. Currently, intensive observations 

of ECaV and pH can be obtained by commercially available on-the-go sensors 

(Adamchuk et al., 2007, see section 2.3.11). On-the-go sensors suitable for organic 

C determinations (e.g. NIR sensor) are just becoming operational in practice. 

Therefore, elevation was selected as an easy-to-obtain surrogate for organic C, 
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since it had the second largest loading on PC3 after top- and subsoil organic C. 

However, Moore et al. (1993) observed a strong association between organic C 

and WI in a different landscape setting. 
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ond PC and (b) first and third PC. 

Label identifications and loading values are given in Table 5.4. 

 Thus, ordinary 

(a) 

(b) 

Figure 5.11. Rotated loading plots of the (a) first and sec

 

5.5. Delineation of potential management zones  

As a result of the PCA, elevation, topsoil pH and ECaV were identified as the key 

variables for characterizing the soil spatial variation in this field.
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kriged values of these variables (Figures 5.3c, 5.8c and 5.9) were used as inputs 

for the fuzzy k-means classification. Consequently, the nodes of the grid cells (5 m 

x 5m) were treated as multivariate objects for classification.  

Figure 5.12 shows the plot of the FPI and NCE performance indices (see section 

3.5.3) against the number of classes. The optimum number of classes for each 

computed index exists when the index is minimum, representing the least number 

of members sharing (FPI) or the greatest amount of organization (NCE) as a result 

f this classification. It can be noticed that both FPI and NCE were minimized for 

four classes, i.e. k = 4. This means that the spatial variation in the study field can 

be optimally partitioned into four within-field units or management zones. 
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Figure 5.12. Fuzziness performance index (FPI) and normalized classification entropy 

(NCE) corresponding to different numbers of classes. 

 

The classification did not produce contiguous classes

considered as potential management zones. Therefore, according to the 

recommendations made by Taylor et al. (2007) (see section 2.3.3) fuzzy k-means 

classes were referred to as potential management classes.  
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The map of the potential management classes shown in Figure 5.13a was obtained 

by a generalization of the fuzzy k-means class membership map by removing a 

few small island clusters which were not feasible for practical site-specific 

management purposes.  
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Figure 5.13. (a) Potential management classes delineated using tops

elevation, (b) elevation along A-B with indication of the potential man

oil pH, ECaV and 

agement zones and 

(c) classes draped on the DEM. 

(a) (b) 

(c) 
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A clear link between these management classes and the landscape position was 

visible when a cross-section of elevation across classes is used (Figure 5.13b) and 

the draping the management classes on the DEM (Figure 5.13c). 

Class 1 occupied the southwest, northwest and southeast parts of the field and 

covered the largest area. Three zones of this class covered the highest plateau and 

upslope positions in the field, i.e. the areas least modified by slope processes. In 

this class the typical Ap-E-Bt-C1-C2-2C acidic silt loam soil of the loess area was 

sser eroded western slope where the CaCO3 rich loess 

re the 2C sandy substrate is 

c C remained similar (Table 5.5).  

lass 4 represented the valley floor where texture, pH and CaCO3 content were 

er, especially in the 

ng 

found. This was confirmed by the average soil properties of the samples located 

within this class (Table 5.5). The average soil properties of class 1 were therefore 

used as a reference for comparing the properties of the other classes.  

Class 2 coincided with the le

parent material was exposed (C2 layer), partially limited by the topographic 

discontinuity. Soil texture was similar to class 1, but class 2 had a higher pH and 

CaCO3 content (Table 5.5).  

Class 3 covered the severely eroded eastern slope, whe

partially exposed. Due to tillage, this sand has been mixed with the remaining silt 

loam resulting in the doubling of the average sand content when compared to class 

1, but pH and organi

C

quite similar to class 1, but the organic C content was high

subsoil (Table 5.5). 

 

5.6. Crop productivity and potential management classes 

The three-year (years 2000, 2003 and 2004) average standardized yield maps of 

grain and straw (%) are shown in Figures 5.14a and 5.14b. Visually, no stro

relationship could be observed between grain yield and management class, but for 

straw there was a better correspondence between yield and management class. In 

particular, class 4 (the valley floor) had on average a higher straw productivity. 
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The three-year average standardized grain and straw yields were split according to 

management class and the results are given in Table 5.5. Straw yield was more 

ariable than that of grain. The highest produc ccurred in class 4: 104.7 % 

for grain and 108 . 

Table 5.5. Mean values of soil propert eld data for each potential management 

tandard ee

ea

v tivity o

.2 % for straw

ies and yi

class (with s  deviations betw n brackets). 

M n  

      Class 1        Class 2       Class 3       Class 4 

Topsoil 

Clay (%)    16.20 (1.3)    16.80 (0.9)    12.50 (2.9)    15.00 (2.1) 

Silt (%)    70.70 (1.8)    71.10 (1.9)    62.60 (9.5)    69.40 (3.3) 

Sand (%)    13.00 (2.1)    1 )    24.70 (11.4)    15.50 (3.5) 

 (%)    

)    

2.00 (2.1

pH    05.60 (0.4)    07.00 (0.4)    05.50 (0.4)    06.20 (0.5) 

Organic C 0   0.72 (0.08)    00.78 (0.12)    00.76 (0.09)    00.83 (0.12)

CaCO3 (%    00.16 (0.14)    01.90 (1.87)    00.30 (0.20)    00.38 (0.16)

Subsoil 

Clay (%)    18.70 (1.2)    16.80 (1.7)    14.70 (2.8)    15.70 (2.6) 

Silt (%)    70.00 (2.0)    72.40 (3.2)    59.20 (16.7)    69.70 (2.7) 

Sand (%)    11 6.9)    14.70 (4.3) 

%)  

aCO3 (%)    00.22 (0.27)    07.41 (6.81)    00.74 (1.25)    00.35 (0.24) 

.30 (1.8)    10.80 (3.1)    26.10 (1

pH    05.50 (0.5)    07.10 (0.5)    05.90 (0.6)    06.10 (0.4) 

Organic C (    00.2   (0.06)    00.19 (0.07)    00.27 (0.12)    00.40 (0.15) 

C

Three-year average standardized yield 

Grain (%)    95.70 (7.1)    99.40 (8.5)   103.7 (7.6)   104.7 (7.7) 

Straw (%)    94.40 (9.3)    98.70 (11.1)   102.9 (11.6)   108.2 (11.7) 

 

The lowest yield was found in class 1: the plateau and upslope areas. Classes 2 and 

3 had intermediate yield, with class 3 slightly above average and class 2 slightly 

below average. The sandy substrate of class 3 did not result in a yield decline 

during the three years considered. The relatively clay rich class 1 produced lower 
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yields, indicating that during those years, crop productivity did not fully reflect the 

general soil fertility variation in the field studied. However the yield trends 

represented to some degree the delineated management classes in relation to the 

landscape position (Figures 5.13b and c). 

       

 
Figure 5.14. Three-year average standardized yield map of (a) grain and (b) straw. 

 

Therefore, in the three years considered, crop productivity was likely driven by 

variations in the availability of moisture related to the landscape position. Weather 

records of these three growing seasons indicated that average (year 2000) to rather 

dry weather conditions (years 2003 and 2004) prevailed. So it is possible that the 

crop might have benefited from the wetter conditions prevalent along the valley 

floor and in the eastern slope while the reverse occurred in areas of higher 

elevations. However, it should be noted that under predominantly wet climatic 

conditions this relationship may be reversed. In the case of an extreme rain event, 

temporary flooding or fully saturated conditions might damage or even completely 

estroy the crop growing in the valley floor. As such, crop productivity in the 

alley floor is likely to vary much more greatly from year to year than at the other 

t al. (2003) and Reuter et al. (2005) made similar observations 

 

d

v

locations. Kaspar e

when investigating the relationships between landform units and yield potential. 
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5.7. Conclusions 

A strongly structured spatial variation of several soil properties was found to be 

present at a within-field scale in a loess-derived soil with undulating topography. 

Although the overall soil texture was a homogeneous silt loam, on the eastern 

slope the soil texture was sandier, organic C increased in the subsoil of the valley 

and both CaCO3 content and pH were much higher along a band on the western 

by elevation, which is the second most 

, the three-year 

 for the delineation of potential management classes. Since similar 

It can be concluded that in loess areas, ith complex soil-landscape interactions, 

pH, ECa and elevation can be defined as he key properties for the delineation of 

potential management classes for site-specific soil management. 

slope. These patterns originated, most likely, from different levels of soil erosion. 

These differences support the implementation of differential soil management 

practices at a field scale. 

A PCA highlighted the importance of pH, ECaV (as a surrogate for soil texture) 

and organic C content as key independent variables for characterizing the overall 

soil variation. Since on-the-go sensors for organic C are only just becoming 

operational, this parameter was replaced 

dominant variable on the principal component associated with organic C variation. 

In this way all three key properties could be investigated without intensive soil 

sampling and costly laboratory analyses.  

These three key variables were used to identify and delineate four classes using a 

fuzzy k-means algorithm. Clear differences in top- and subsoil properties and 

landscape position were found between these classes. Furthermore

average standardised grain and straw yields were different across the four classes. 

The differences in yield were more due to differences in topography in the four 

classes and less due to the spatial variability of the soil properties.  

The results indicated that the variability of pH, soil texture and organic C was 

suitable

pedogenic processes have occurred in most parts of the undulating European loess 

landscape, it can be expected that these findings can be extended to a broader 

scale.  

w

 t
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Part 1: Delineation of potential management zones in a polder area 

 

6.1. Introduction 

Site-specific soil management is the process of adjusting agricultural practices 

within-fields according to measured spatial variation. It has become an alternative 

to the traditional uniform management of agricultural fields to increase the 

profitability of crop production while reducing undesirable environmental impacts 

by regulating production inputs according to local needs (Godwin et al., 2003a). 

nal studies 

Identification of the within-field variability and division of a field into sub-units 

called management zones are therefore decision supporting steps in site-specific 

soil management (Sylvester-Bradley et al., 1999).  

The Polder region of northwest East-Flanders, Belgium, extends over 6840 ha. 

This highly productive agricultural area with fairly large fields has received 

attention for possible implementation of site-specific soil management, to optimize 

yield and to minimize environmental impact from uniform application of 

agrochemicals. Investigating the spatial variation of soil texture of a 1 ha subfield 

within this area, Van Meirvenne and Hofman (1989) found a lithologic 

discontinuity between 40 and 50 cm depth and a more spatial variation in the 

subsoil texture than in the topsoil. However, existing soil maps or regio

(e.g. Van Meirvenne et al., 1990) are not informative enough to reveal the detailed 

within-field variability of soil texture. Yet, soil textural variability is a major factor 

determining the yield variation (Earl et al., 1996; Stafford et al., 1996). 

The production of detailed digital soil texture maps requires considerable sampling 

and laboratory analysis. Alternatively, spatial information on an easy-to-measure 

ancillary variable can reduce this effort through selection of a carefully designed 

sampling scheme (Lund et al., 1999). Further, such ancillary information can be 

used to improve soil texture prediction using multivariate (geo)statistical 

approaches. Many studies have addressed the usefulness of ancillary information 

for predicting soil texture usually based on Jenny’s (1941) mechanistic model of 

soil development. Topographic attributes have been found to be very useful where 
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there are distinct topographic variations (e.g. Odeh et al., 1995). But, it has little 

relevance for accounting textural variability in a Polder region with nearly flat 

topography. Alternatively, Odeh and McBratney (2000) used remotely sensed data 

to map topsoil clay content. However, the use of remotely sensed data for textural 

mapping is not advantageous due to the inability to infer subsoil textural variation. 

For textural mapping of polder soils Van Meirvenne and Hofman (1989) used a 

cost-effective measurement based on gravimetric water content at a matric 

potential of -1.5 MPa (θg (-1.5 MPa)) (conventionally known as “wilting point”). 

Soil’s apparent electrical conductivity (see section 2.3.1.1 and 3.4.1) has become 

one of the most reliable and frequently used ancillary information to resolve the 

spatial variability of soil texture (Corwin and Lesch, 2005a; Kitchen et al., 1999; 

t ensures the 

Williams and Hoey, 1987). The practical utility of ECa to map texture remains 

elusive because of the complex interactions between ECa and range of soil 

physical and chemical properties (McCutcheon et al., 2006). 

Co-kriging is a multivariate extension of kriging in which the ancillary 

information is incorporated in the estimation at unsampled locations. The 

unbiasedness of ordinary co-kriging is ensured by forcing the primary data weights 

to sum to one whereas the weights of each ancillary variable are constrained to 

sum to zero. This “traditional” co-kriging procedure has been often used for the 

prediction of a variety of soil variables (Triantafilis et al., 2001; Van Meirvenne 

and Hofman, 1989; Vauclin et al., 1983; Vaughan et al., 1995). However, Isaaks 

and Srivastava (1989) emphasized that under the unbiasedness constraints of 

traditional co-kriging most of ancillary data weights tend to be small restricting its 

influence. They proposed to use a single constraint that forces all primary and 

ancillary weights to sum to one. Deutsch and Journel (1998) used the term 

“standardized” co-kriging for this modified version since i

unbiasedness of the estimator by rescaling all ancillary variables to the same mean 

as the primary variable. However, little evidence is available to justifying the 

comparative advantages of the two approaches (Goovaerts, 1998).  
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The objectives of the first part of this chapter are to explore the utility of ECa 

sensing and the suitable co-kriging method to elucidate the soil textural variability 

 a pold

8DD sensor be used as ancillary 

format

proved by means of 

aditional or standardized ordinary co-kriging? 

ld textural variation of the Polder area spatially 

 delineate potential management zones? 

 

ield in the polder area in northwest East-Flanders, 

elgium (central coordinates: 51o 16’ 17” N, 3o 40’ 35” E, Figure 6.1). The West, 

East and Northern boundaries of Polder area share the border between the 

Netherlands and Belgium.  

 

in er area. To meet these objectives, three research questions are answered:  

 (1) Can ECa measured with the EM3

in ion to elucidate the spatial variability of soil texture in the Polder area? 

 (2) Can the prediction accuracy of soil texture be im

tr

 (3) Is the within-fie

structured enough to

6.2. Materials and Methods 

6.2.1. Study area  

The study site was an 11.5 ha f

B

 
 

igure 6.1. The polder area of northwest East-Flanders in Belgium (top left), the location F
of study field within this area (bottom left) and an aerial image of the study field (line 

shows the field boundary, right). 
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A series of marine transgressions following the last glaciation resulted in the 

deposits which form the parent material of these polder soils. Consequently the 

topsoil consists of Holocene alluvial silt to clay sediments deposited over 
th

nd a moderately wet soil (d) 

 model indicated that the elevation of the study area ranges 

etween 2.6 m to 4.0 m above the mean sea level. However, it can be observed in 

Figure 6.2 that the majority of the area is nearly flat with an elevation between 

3.2 m and 3.8 m.  

 

Pleistocene aeolian material with a predominantly sandy texture. From the 11  

century onwards dikes were constructed to protect this region against new marine 

invasions and later the land was reclaimed for agriculture by artificial drainage.  

Soils in the polder area are classified as Fluvisols in WRB (ISSS Working Group 

Reference Base, 1998). According to the national soil map (scale 1:20,000), the 

study area is composed of one dominant soil series: sEdp, indicating a clayey 

topsoil texture (E) with a shallow sandy substrate (s) a

with little profile development (p). Rain-fed agriculture is practiced in the study 

field and typical crop rotation is potato (Solanum tuberosum L.), sugar beet (Beta 

vulgaris L.) and winter wheat (Triticum aestivum L.). 

A digital elevation

b
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Figure 6.2. Digital elevation model of the study field (0.3 m contour intervals). 
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The maximum slope angle within the field is 1.8 degrees. Tang et al. (2002) 

emphasized that in areas where the slope if less than four degrees, the topographic 

ttributes such as WI and SPI are not informative. Therefore, we considered the 

ation in this 

ore stable and prevalent at 

048 

Ca measurements were retained for further analysis. The spatial distributions of 

stigated by calculating the variograms and 

a

topographic indices to be of little relevance for modelling soil vari

field.  
 

6.2.2. Apparent electrical conductivity mapping and soil analysis 

The apparent soil electrical conductivity of the field was measured on 17th 

November, 2003 with the dual dipole electromagnetic sensor EM38DD. Some 

studies suggest that ECa and texture relations are m

higher water contents (Auerswald et al., 2001; Godwin and Miller, 2003). 

Therefore, as recommended by Waine (1999) the measurements were taken when 

the soil moisture content was close to field capacity. 

To obtain ECa measurements, the mobile measurement system with EM38DD 

sensor (see section 3.4.1) was driven at a speed of about 15 km h-1 along 5 m 

spaced parallel lines. Georeferenced ECa measurements were recorded every 

second yielding an approximate measurement configuration of 5 m by 4 m. After 

the removal of measurement anomalies through exploratory data analysis, 4

E

both ECaV and ECaH were inve

subsequently ordinary block kriging of measurements to a 2.5 m x 2.5 m grid. 

 

6.2.3. Soil sampling and analysis 

In order to investigate the relationships between ECa and soil texture, a purposive 

sampling scheme with 63 sampling points was selected based on the ECa pattern 

(Figure 6.3), so that spatial patterns such as the linear feature in the western part of 

the field were included. The geographical coordinates of the sample locations 

identified on the ECaV map were uploaded to a GPS. At the field, these locations 

were tracked through GPS aided navigation. Topsoil (0 - 40 cm) and subsoil (50 - 

80 cm) samples were taken at each sampling point, excluding any transition zone 
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between the two layers. Three soil samples within a one meter were pooled to 

obtain a bulked sample. Air dried samples were crushed and sieved through a 

2 mm sieve for soil textural analysis by the pipette method after pre-treatment for 

organic residues and CaCO3 removed. The θg (-1.5 MPa) was measured for topsoil 

samples using a pressure plate apparatus. The measurements were made on 

disturbed samples since soil structure does not significantly influence the value of 

θg (-1.5 MPa). The samples were placed on the porous plate of the apparatus. Then an 

air pressure of 1.5 MPa was applied above the porous plate and at the point of 

 ECaV 

sampling points was not measured, but co-located ECa data for 

ross-variogram calculations (see further) were estimated using punctual ordinary 

s (Kerry and 

 

f cros ogram  

joint ionalization) between the two variables is 

estimated through the calculation of experimental cross-variogram. Provided there 

hydrostatic equilibrium, the gravimetric moisture contents of the samples were 

measured. As an optional variable the soil organic C content was determined by 

the conventional Walkley and Black method.  

At this stage of sampling, it was hypothesized that the ECaH and

measurements would be sufficient to predict both top and subsoil textural 

variability. On the basis of the ECa results, the sampling procedure was extended 

to obtain an addition set of samples to measure the θg (-1.5 MPa) (see further). 

The ECa at the 63 

c

kriging to examine the relations between ECa and other soil propertie

Oliver, 2003).  

6.2.4. Spatial prediction of soil texture using ordinary co-kriging 

Calculation and modelling o s-vari

The first step of co-kriging involves quantification of the spatial correlation of 

primary (Z1) and densely measured ancillary variables (Z2) through their 

experimental variograms, )(γ11 h and )(γ 22 h , respectively (section 3.5.2.1). 

Hereafter, these two variograms are referred to as “direct-variograms”. Next, the 

spatial correlation (or co-reg
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are samples where both Z1 and Z2 have been measured the cross-semivariance 

)γ( 12 for lag h can be calculated as: 

{ }{ })()()()(
2

1)(γ 22

)(

1112 hxxhxxh
h

+−+−= ∑ αααα zzzz
N

N
   (6.1) 

)( 1h =i

zation: any 

itself a regionalized var ust 

be positive or zero (Webster and Oliver, 2001). To ensure this condition, the matrix of 

where N(h) is the number of pairs of comparisons at lag h, z1(xα) and z1(xα+h) are 

the measured values of the primary variable and z2(xα) and z2(xα+h) are the measured 

values of the ancillary variable at xα and xα+h, respectively. A plot of cross- 

semivariances against the lag distance is known as the experimental cross- 

variogram. 

Modelling direct- and cross-variograms is much more difficult than in the univariate 

case. Difficulties lie in a condition imposed in describing the co-regionali

linear combination of variables is iable and its variance m

direct- and cross-variograms must be positive semi-definite (Goovaerts, 1997). 

Therefore, the direct and cross variograms should be jointly modelled while fulfilling 

the Cauchy-Schwart inequality for all lags (Webster and Oliver, 2001): 

                                    )(γ)(γ)(γ 221112 hhh ⋅≤                                (6.2) 

In this study, a linear model of coregionalization (LMC) was used for direct- and 

cross-variogram model fitting (Goulard and Voltz, 1992). We used the FACTOR2D 

program developed by Pardo-Iguzquiza and Dowd (2002) to fit a LMC. Due to the 

limited number of soil samples taken in this study, the directional dependent 

spatial variation was not considered for experimental variogram calculations.  

A pl relation (Wackernagel,  

check to describe the strength of the co-regionalization. This hull showed the 

bou ial correlation of two v ape 

of th t- and cross- variog

are given as: 

ot of the hull of perfect cor 1995) served as a visual

ndary where the joint spat ariables is perfect. The sh

e hull is similar to the direc rams and the model parameters 
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22,011,0,0 CCC hull ⋅=±                                 (6.3)                                        

22,111,1,1 CCC hull ⋅=±                                                                        (6.4) 

                                           2211 aaahull                                     (6.5) 

where C0,hull, C1,hull and a are the nugget, scale and range values (see section 

3.5.2.1) for the theoretical models that correspond to the hull.  

Traditional versus standardized ordinary co-kriging 

⋅=±

This study investigated the relative improvements of prediction accuracies of 

trad ndardized versions of ordinary co-kriging. S ary 

kriging, both versions of ordinary co-kriging assume that the means of primary 

ry c ging 

12α
2α222α

11α
1α111α01

where n (x ) and n (x ) the number of observations of Z  and Z  used for the 

interpolation, respectively and are the wei

weights of the ancillary variable tend to be small, thus reducing the influence of 

the ancillary information. These shortcomings lead to the development of 

itional and sta imilar to ordin

and ancillary variables are locally stationary. For the case of a single ancillary 

variable (Z2), the traditional ordina o-kri estimator of Z1
* at x0 is given by: 

                      ∑∑ +=
)0(2)0(1

* )(λ)(λ)(
xx

xxx
nn

ZZZ                (6.6) 
==

1 0 2 0 1 2

and ghts given to these 11αλ 22αλ

observations. The estimator is unbiased under the following constraints on co-

kriging weights: 

                                 ∑
=

=
)0(1

11α
11α 1λ

xn

 and ∑
=

=
)0(2

12α
22α 0λ

xn

                           (6.7) 

Weights of traditional ordinary co-kriging are obtained through solving the system 

of linear equations with two unbiasedness constraints (Goovaerts, 1997). 

There are two shortcomings associated with the unbiasedness constraints imposed 

in traditional ordinary co-kriging: (1) some of the ancillary data weights become 

negative, thereby increasing the risk of getting inaccurate estimates (2) most of the 
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standardized (or rescaled) ordinary co-kriging (Deutsch and Journel, 1998; Isaaks 

and  the two unbiasedness y a 

single constraint that requires all primary and ancillary data weights to sum to one: 

single constraint the unbiasedness of the ordinary co-kriging estimator 

is ensured by rescaling the ancillary variable so that its mean is equal to that of the 

prim ble. Therefore, the co-kriging estimator of standardized  is 

given by: 

2 2 note means of primary and ancillary variables, respectively, 

ns. The co-kriging weights are obtained by 

 

and act  with two validation indices;  

(see section ative improvement of predict

ed 

Srivastava, 1989), where  constraints are replaced b

                                ∑∑
==

=+
)0(2

12α
22α

)0(1

11α
11α 1λλ

xx nn

.                           (6.8) 

Under the 

ary varia co-kriging

             ∑∑
==

+−+=
)0(2

12α
122α222α

)0(1

11α
1α111α0

*
1 ])([λ)(λ)(

xx

xxx
nn

mmZZZ       (6.9) 

where m  and m  de

are estimated by their sample mea

solving an ordinary co-kriging system with a single unbiasedness constraint 

(Goovaerts, 1997).  

Evaluation of prediction accuracy 

The topsoil and subsoil clay contents were predicted using ordinary kriging and 

the two co-kriging approaches mentioned above. The GSLIB programs (Deutsch 

and Journel, 1998) were used to implement all prediction methods. The prediction 

accuracies of different methods were assessed by cross-validation. The cross- 

validation results were interpreted using Pearson correlation between estimated

ual values, combined  the MEE and the RMSE

3.5.2.2). The rel ions (RI %) by traditional 

and standardiz ordinary co-kriging over the ordinary kriging was calculated as: 

                             
OK

pOK

RMSE
RMSERMSE

RI
100(

=
)−                        (6.10) 
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where RMSEOK and RMSEp are root mean square errors for ordinary kriging and a 

given co-kriging method, respectively.  

 

6.2.5. Management zones delineation 

Kriged maps of top and subsoil textural fractions were classified into potential 

management zones using a fuzzy k-means classification procedure. Therefore, 

each map grid node with top and subsoil texture data was treated as object for the 

classification. The fuzziness exponent was fixed to the conventional value of 1.35 

(Odeh et al., 1995). The classification was repeated for a range of classes, i.e. k 

was set to a value between 2 and 5. The optimum k-value was identified on the 

asis of minimizing two cluster validity indices, the FPI and the NCE. The class 

membership value received by each grid 

 values were mapped to produce the management zones 

he summary statistics for ECa measurements are given in Table 6.1. The 

nd ECaH data 

e not nor is (a  le f ). T is y the 

re y lar effi  of e

 

T Summary statistics of ECa (mS m ) measurements (n = 4048). 

  Mean Median Min Max Variance CV Skewness  

b

number that corresponds to the largest 

cell was recorded and these

(or classes) map.  

 

6.3. Results and discussion 

6.3.1. ECa measurements 

T

Kolmogorov-Smirnov test for normality indicated that both ECaV a

ar mally d tributed t 5 % vel o probability his confirmed b

lativel ge co cients skewn ss.  

able 6.1. -1

ECaV 26.7 26.1 18.5 46.9 020.7 017.0 1.39 

ECaH 21.4 20.7 12.2 36.4 014.1 017.6 1.02 

ECaGM 23.9 23.3 15.5 41.0 015.5 016.5 1.34 
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The measurements revealed that the large electrical conductivity observed mainly 

in the southern part of the field was the reason for the positively skewed data 

istribution. The ECaV was larger than the simultaneously measured ECaH. 

However, a strong overall correlation (rR = 0.75 and r = 0.81) was found between 

these measurements. Despite the expected differences as a result of contrasts in 

soil texture between topsoil and subsoil, the ordinary kriged ECaH and ECaV maps 

showed similar patterns (Figure 6.3).  

 

d

 
 
Figure 6.3. Interpolated values in mS m-1 for (a) ECaH and (b) ECaV with the 63 sampling 

locations shown as dots. 

 
A distribution of larger and smaller ECa values can be seen in the southern and 

western parts of the field. Two linear features with moderate ECa values were 

observed on the ECa maps, one diagonally dissecting the western part having 

smaller ECa values and the other extending parallel to the eastern boundary of the 

tween the ECaV field with narrow side branches. Given the overall similarity be

and ECaH data, we decided to pool the two signals for further analysis by taking 

the geometric mean (GM): ECaGM = (ECaV x ECaH)0.5 which is more stable 

averaging operator for skewed distributions than the arithmetic mean (Corwin and 

Lesch, 2005a). Summery statistics of ECaGM data are also presented in Table 6.1. 
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6.3.2. Soil textural variation and its relationship with ECaGM 

Because our sampling efforts focussed on the areas of greatest variation, care must 

be taken in using these data to describe the population. The purposive sampling 

might result in preferential selection of clusters of high or low values causing a 

bias towards estimates of population parameters. If an area is preferentially 

sampled, the bias of population estimates can be eliminated by declustering the 

data set (Isaaks and Srivastava, 1989). To detect preferential sampling, a cell 

declustering algorithm (Goovaerts, 1997) was applied. If preferential sampling has 

een done, there should be a considerable difference between the declustered and 

able 6.2) 

or the data dis s lly f s

esults sug ested that lthough t sampling as ECa directed, it was not 

y locate reas w gher o er values of soil propertie

ecluster  non-declustered m f top and s il properties. 

Cl ) Silt (%) Sand (%) Orga  (%) θg (-1.5 MPa) (%) 

b

the original sample means. We found that neither the declustered mean (T

n tributions ubstantia  changed or any of the oil properties. 

These r g  a he  w

preferentiall d in a ith hi r low s.  

 

Table 6.2. D ed and eans o ubso

 ay (% nic C

Topsoil      

Declustered 19.2 36.2 44.8 0.8 9.2 

Non-declustered 19.1 36.3 44.6 0.9 9.4 

Subsoil      

Declustered 10.2 20.6 69.1 0.2 - 

Non-declustered 10.2 20.9 68.9 0.2 - 

 

The exploratory analysis results of top and subsoil properties are reported in Table 

6.3. All the subsoil properties showed slightly skewed distributions resembling the 

ECa data whereas data on the topsoil properties were fairly symmetrically 

distributed. The Kolmogorov-Smirnov test for normality indicated that all soil 

properties were normally distributed (at 5 % level of probability).  

The CVs of the topsoil properties varied between 11 and 22.6 %, whereas the CV 

as between 29.2 and 69.3 % for the subsoil properties. From the results it can be w
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concluded that the topsoil was more homogeneous than the subsoil. According to 

the Belgian soil texture classes (section 3.8) the sandy silt and clay were the 

minant classes soi . H er, x wa d 

e textural cl rang from  to lay (Figure 6.4b).

 

Ta m tisti top nd subsoil cla , or  and 

a) (n 7). 

  M M V e Sk

do  of top l (Figure 6.4a) owev  subsoil te ture s distribute

over fiv asses ing  sand  c   

ble 6.3. Sum ary sta cs for soil a y, silt ganic C (n = 63) 

topsoil θg (-1.5 MP  = 11

ean Median Min ax arianc CV ewness  

Topsoil        

Clay (%) 19.1 19.2 14.3 23.7 06.0  12.9 -0.03 

Silt (%) 36.3 33.9 20.8 54.2 67.2 022.6  0.52 

Sand (%) 44.6 46.8 23.4 64.8 96.8   22.0     -0.13 

Organic C (%) 0.9   0.9 00.6 01.3 0  0.02 016.5  0.23 

θg (-1.5 MPa)  9.4 0  9.40 06.6 13.8 01.1   11.0 0.37 

bsoilSu         
Clay (%)     10.2     8.5    3.2   26.5 33.5   56.6 1.14 

Silt (%)     20.9   18.8    3.7   60.2 209.9   69.3 1.36 

Sand (%)     68.9   72.8  13.6   92.9 404.9   29.2    -1.30 

Organic C (%)       0.2     0.2    0.0     0.6       0.02   56.9 0.91 
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Figure 6.4. The distribution of (a) top and (b) subsoil texture according to the Belgian 

textural triangle.  
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Topsoil organic C content had a moderate to poor relationship with topsoil textural 

fractions (r = -0.42 for sand and 0.20 for clay). This was not true for subsoil 

organic C, which showed a strong correlation with subsoil textural fractions   

(r = -0.88 for sand and 0

       

.89 for clay). The cross-variogram between topsoil 

rganic C and clay (Figure 6.5a) was a pure nugget effect, indicating an absence of 

ny structured spatial correlation between the two variables. In contrast, the 

experimental cross-variogram between subsoil organic C and clay content (Figure 

6.5b) depicted a clear structure, indicating the presence of a spatial correlation 

between the two variables. 
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Figure 6.5. Experimental cross-variograms between (a) topsoil clay and organic C and (b) 

subsoil clay and organic C. 

 

The poor relationship of topsoil textural fractions with organic C can be explained 

through two underlying reasons. First, incorporation of farm manure to the topsoil 

is routinely practiced in the polder region. This uniform application of organic C 

could mask its relationship with soil texture. Second, the variation of topsoil 

texture is not substantial as that of the subsoil (Table 6.3). Thus, the influence of 

the variation of soil texture might not be adequate to produce a clear relationship 

with organic C. The relationship between subsoil organic C and textural fractions 

agrees the observations made by Nichols (1984) and Burke et al. (1989). Brady 

and Weil (1999) explained the association between organic matter content and fine 

textured soils on the basis of three underlying reasons: (1) Restriction of aeration 

by micro pores causing a reduction of the rate of organic matter oxidation, (2) 

(a) (b) 
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Protection of the organic matter from degradation through the formation of clay-

humus complexes. (3) Slowing down of organic matter degradation due to the 

poorly drained conditions created by the heavy soil texture. All these reasons can 

cause an accumulation of organic matter resulted in a positive relationship 

between organic C and increasing clay and silt contents.  

Clay content can influence other soil physical-chemical properties such as water 

holding capacity, hydraulic properties and cation exchange capacity, and therefore 

the influence of subsoil clay content on overall soil functioning cannot be 

neglected. The ratio between subsoil and topsoil variances was the largest for the 

clay fraction and thus clay content was selected as the target variable to describe 

riations in soil texture for both layers. The correlations between top and subsoil 

tal and vertical dipole modes, thus their geometric means 

xhibited strong correlations (r ≥ 0. h subsoil tent. Ho h 

aH exh  poor cor ns (r ≤ 0.40  topsoil clay nt. 

  

able 6.4. Pearson correlation between top- and subsoil clay (%) and EC (mS m-1) and 

va

clay contents and ECa measurements are presented in Table 6.4. The ECa 

measured with horizon

e 80) wit  clay con wever, bot

ECaV and EC ibited a relatio ) with  conte

T a 

θg (-1.5 MPa) (%) (n = 63). 

 ECaH  ECaV  ECaGM  θg (-1.5 MPa)  

Topsoil Clay 0.44 0.36 0.40 0.96 

Subsoil Clay 0.80 0.82 0.83 - 

 

It is surprising to notice a weak correlation exhibited by ECaH, which is 

theoretically more sensitive for the surface soil electrical conductivity. The depth 

sensitivity curve of ECaH measurements (McNeill, 1980), presented in section 

3.4.1 is helpful to explain the probable reasons for the poor correlation. It can be 

shown that top soil (0 - 40 cm) contributes to ECa measurements by 50 %. This 

means that the subsoil material (> 40 cm) still has a considerable contribution to an 

ECaH measurement. Because there is a much stronger variability of subsoil texture 

and organic C in comparison to the topsoil, it is likely that the measured ECaH 
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patterns have been influenced by the variability of subsoil properties. This might 

have masked the relationship between ECaH and topsoil texture. Further 

provement of the relationship may be achieved through partitioning the depth 

d subsoil conductivities. Researchers 

thods

he θg (-1.5 MPa) measurements 

e sum

b

 between clay and θg (-1.5 MPa) was accounted by 

f perfect correlation 

as plotted with the cross-variogram (Figure 6.6c dashed lines). Webster and 

Oliver (2001) emphasised that if the cross-variogram lies close to the hull then the 

im

intergraded ECa measurements into top an

have tried complicated inversion processes like Tikhonov Regularization to 

construct such depth profiles of ECa (Borchers et al., 1997; Hendrickx et al., 2002) 

with varying success. However, these me  were not considered in this study. 

 
6.3.3. Mapping of topsoil clay content  

Given the weak correlation, ECaGM was considered as unsuitable ancillary 

information for mapping topsoil clay content and therefore the usefulness of 

another easy to obtain soil variable, θg (-1.5 MPa), was investigated. In comparison to 

soil textural analysis by the pipette method, t

conducted with a pressure plate apparatus are quicker and cheaper. A strong linear 

relationship (r = 0.96) was found between topsoil clay and θg (-1.5 MPa). Therefore, 

we sampled the topsoil at 54 additional locations on a 50 m by 50 m grid over the 

field and determined θg (-1.5 MPa) for these samples. Th mery statistics of 

θg (-1.5 MPa) measurements are provided in Ta le 6.3. 

Figure 6.6 shows the omnidirectional experimental direct- and cross-variograms 

with fitted models. The model parameters are listed in Table 6.5. The relative 

nugget effect of the topsoil clay content indicated a strong spatial dependence. 

Also, the 72.5 % of joint variation

its spatial component. The RNE of θg (-1.5 MPa) slightly exceeded the 25 % boundary 

of strong spatial dependence given by Cambardella et al. (1994), thus θg (-1.5 MPa) 

was moderately spatially dependent. The range of the cross-variogram indicated 

that the positive spatial correlation between θg (-1.5 MPa) and topsoil clay content 

extends to a distance of 127.6 m.  

To interpret the strength of the coregionalization, the hull o

w
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spatial correlation between the two variables is strong. The fitted cross-variogram 

model obtained with a LMC lies within and very close to this hull, indicating a 

strong coregionalization between topsoil clay and θg (-1.5 MPa). 

 

                  

 
 

Figure 6.6. Experimental direct-variograms of (a) topsoil clay, (b) θg (-1.5 MPa) and (c) the 

cross ed a of cor  lines 

cross-variogram represent th o

 

Tab l param the d io mod  the t ay an

ss- . 

Variogram parameters 

-variogram fitt with the line

e hull of p

r model 

erfect p

egionalization. The dashed

 ne e co

on the 

sitive and gativ rrelation. 

le 6.5. Mode eters of irect- var gram els for opsoil cl d 

θg (-1.5 MPa) and the cro variogram

Property Direction Model RNE 
Nugget Sill Range (m) (%) 

Clay Omni Sph 0.99 7.09 127.6 14.00 
θg (-1.5 MPa) Omni Sph 0.30 1.09 127.6 27.50 

Clay x θg (-1.5 MPa) Omni Sph 0.44 2.51 127.6 17.5 
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The cross-validation results for topsoil clay prediction by the three kriging 

methods are given in Table 6.6. The r and RMSEE values indicated that the 

incorporation of ancillary information for topsoil clay mapping has slightly 

improved the prediction accuracy. The RI values suggested that, in comparison to 

the ordinary kriging, the standardized ordinary co-kriging improved the prediction 

ccuracy by 4.3 % whereas the improvement by traditional ordinary co-kriging 

 

number of additional samples of θ Pa).  pr icti n m ods showed 

MEE values close to zero justifyin b ess co n to geostatistical 

interpolatio ques. 

 

a

was 3.8 %. However, the improvement is small, possibly due to the limited

g (-1.5 M  The three ed o eth

g the un iasedn mmo  

n techni

Table 6.6.  Cross-validation indices between predicted and actual values of topsoil clay. 

 MEE RMSEE r  RI 

OK 0.0002 1.86 0.60  - 

TOCK 0.485 1.79 0.71  3.8 

SOCK 0.414 1.78 0.71  4.3 

OK: ordinary kriging; OCK: ordinary cokriging. r: Pearson correlation coefficient; MEE: 

mean estimation error; RMSEE: root mean-squared estimation error and RI: relative 

improvement of prediction. 

 

Figure 6.7a shows the topsoil clay content map constructed using standardized 

rdinary co-kriging based on 63 clay contents supplemented with 117 θg (-1.5 MPa) 

mogeneity of topsoil texture as revealed 

owed the latter to be 

considered as ancillary information for subsoil clay mapping. We used the same 

o

measurements. This map illustrates the ho

in the exploratory data analysis. The topsoil clay content ranges between 19 – 

23 % over a large area of the field whereas only a small area in the north-western 

part of the field contains less clay (14 – 19 %). 

 

6.3.4. Mapping of subsoil clay content  

The strong correlation between subsoil clay and ECaGM all
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co-kriging methods as in topsoil clay mapping. The experimental direct- and cross-

variograms fitted with the linear model of coregionalization are shown in Figure 

6.8. A spherical function was fitted to the both direct- and experimental cross-

variograms and the model parameters are given in Table 6.7. 

 
Figure 6.7. Predicted clay contents in % by standardized ordinary co-kriging for (a) 

topsoil (b) subsoil (maps are shown with the same legend to facilitate comparison).  

 

The small relative nugget effect values (≤ 11.07 %) of both direct- and cross-

variograms suggested the variation of individual properties and their joint variation 

are strongly spatially dependent. The cross-variogram model inferred that the 

.8) 

howed that standardized ordinary co-kriging produced the most accurate 

predictions with the smallest RMSEE value and largest r. In comparison to the 

ordinary kriging, the standardized ordinary co-kriging improved the RMSEE by 

12.6 % whereas the improvement of traditional ordinary co-kriging was 4.0 %.  

 

coregionalization between subsoil clay and ECaGM extended approximately 143.1 

m. Moreover, this is a very strong coregionalization as evident from the fitted 

cross-variogram model that located within and close to the positive hull of perfect 

correlation (Figure 6.8c). 

Cross-validation of subsoil clay prediction by the three methods (Table 6

s
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Figure 6.8. Experimental direct variograms of (a) subsoil clay, (b) ECaGM and (c) cross-

variogram with the fitted linear model of coregionalization. The dashed lines of the cross-

variogram represent the hull of perfect positive and negative correlation. 

 

Table 6.7. Model parameters of the direct-variogram models for the subsoil clay and 

ECaGM and the cross-variogram. 

Variogram parameters Property Direction Model 
Nugget Sill Range (m) 

RNE 
(%) 

Clay Omni Sph 1.02 25.07 143.1 4.00 
ECaGM Omni Sph 1.38 12.47 143.1 11.07 
Clay x 

ECaGM 
Omni Sph -1.14 14.25 143.1 0 
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The relative improvement in prediction accuracy by standardized ordinary co-

kriging is larger than in topsoil, possibly due to the large number of observations 

of ECa. Clearly, the assignment of more weight to the ancillary information is an 

advantage, especially when dense ancillary information is available. Similar to 

topsoil clay mapping, all methods produced unbiased subsoil clay estimates with 

MEE values well below the standard deviation (5.8 %).  

 

Table 6.8. Cross-validation indices between predicted and actual values of topsoil clay. 

 MEE RMSEE r  RI 

OK -0.004 3.73 0.77  - 

TOCK 0.148 3.58 0.79  4.0 

SOCK -0.030 3.26 0.81  12.6 

OK, ordinary kriging; OCK, ordinary cokriging. r, Pearson correlation coefficient; MEE, 

mean estimation error; RMSEE, root mean-squared estimation error and RI, relative 

prediction improvement. 

 

Figure 6.7b shows the subsoil clay content map constructed using standardized 

ordinary co-kriging based on 63 texture analyses combined with 4048 ECaGM 

measurements. In contrast to the topsoil clay distribution a distinctive pattern of 

spatial variation in clay content is evident in the subsoil clay map and it fairly 

resembles the ECa map. The western and northern parts of the field contain little 

subsoil clay ranging about from 4 to 8 %. A strip at the southern part of the field 

contains clayey subsoil (16 – 26 %). The other parts of the field and especially the 

linear features identified on the ECa map consist of moderate subsoil clay ranging 

from 8 to 16 %. Most likely these linear features represent the branches of a creek 

network through which marine transgressions from the Schelder estuary occurred. 

The moderate clay contents observed in these creeks reflects clayey materials 

deposited as a consequence of the marine transgressions. A similar but still active 

creek network still remain at some locations of the Schelder estuary (Figure 6.9). 
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(a) (b) 

 
Figure 6.9. Unburied creek network in the (a) Schelder estuary and (b) a close view of a 

creek. 

 
6.3.5. Delineation of potential management zones 

The information on the spatial variation of top and subsoil clay could be used to 

support site-specific soil management by identifying classes showing clear clay 

content differences. We used the fuzzy k-means unsupervised classification 

scheme to identify classes showing differences in top and subsoil clay. Thus, 

standardized ordinary kriged top and subsoil clay contents (Figures 6.7a and b) 

were used as inputs for the fuzzy k-means classification. Therefore, the nodes of 

the grid cells (2.5 m x 2.5 m) were the multivariate objects for classification. The 

Euclidean distance that gives equal weight to all measured variables was used as 

the distance metric. The reasoning behind this selection was to enhance the 

influence of highly variable subsoil clay content on the overall classification.  

Figure 6.10 shows the plot of the FPI and NCE performance indices (see section 

3.5.3) against the number of classes. The optimum number of classes for each 

computed index is when the index is at the minimum, representing the least 

membership sharing (FPI) or greatest amount of organization (NCE) as a result of 

the classification. It can be noticed the minimizing of both FPI and NCE at three 

classes, i.e. k = 3. Figure 6.11a shows spatial distribution of the three classes. The 
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class centroids of the three classes had similar topsoil clay contents (class 1: 

18.4 %, class 2: 20.5 % and class 3: 19.6 %). However, the subsoil clay contents 

varied more strongly: the smaller in class 1 (6.8 %), moderate in class 2 (11.0 %) 

and larger in class 3 (20.1 %). 

  

2 3 4 5
Number of classes

0.12

0.16

0.2

0.24

0.28

FP
I o

r N
C

E

FPI
NCE

 
 
Figure 6.10. Fuzziness performance index (FPI) and normalized classification entropy 

(NCE) correspond to different number of classes. 

 
The classes produced by the fuzzy k-means classification contained isolated small 

zones which are not very useful from a practical management point of view. 

Therefore, the fuzzy classes map was post-processed to obtain generalized 

potential management zones which are larger and spatially contiguous sufficient to 

allow site-specific management practices. First, an image filtering technique was 

applied to the classified image to smoothen the classes. We used a moving window 

(7 x 7 cells) to replace the value of a cell (i.e. the centre point of the moving 

window) based on the mode of the class values within the moving window. Then 

the remaining isolated small clusters were merged with the surrounding class. The 

resulted generalized potential management classes map is shown in Figure 6.11b. 
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Figure 6.11. (a) Classes (1 to 3) obtained with Fuzzy k-means classification of top and 

subsoil clay contents (b) and generalized potential management classes. 

  

Class 2 was the largest occupying an area of 5.9 ha, whereas class 1 and 3 covered 

4.4 ha and 1.2 ha, respectively. The 63 soil samples (topsoil and subsoil) were 

attributed to the three management classes. Classes 1, 2 and 3 contained 28, 28 and 

7 samples, respectively. Table 6.9 provides the mean values for each soil variable 

per class and the associated standard deviation values (between brackets). It is 

shown that the topsoil of the study field was quite homogeneous, in comparison to 

the subsoil. But the texture of class 1 was sandier than of the other two classes. 

Also, the differences of topsoil organic C across classes was limited. On the other 

hand, the subsoil was more heterogeneous: class 1 was dominated by very sandy 

soil, whereas class 3 remained rich in clay and silt and class 2 had an intermediate 

composition. This tendency was also reflected by organic C, the more clay the 

higher the values of organic C. 

Given the textural differences between potential management classes, possible 

applications on the crop management can be suggested with respect to the 

influence of clay content on other soil physical-chemical properties. Water and 

nutrient management can be considered as key crop management practices to be 
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changed on the basis of delineated management zones to obtain the benefits of 

site-specific soil management.  

 

Table 6.9. Mean values of soil textural fractions and organic C for each potential 

management class (with standard deviations between brackets). 

Mean  

      Class 1        Class 2       Class 3 

Topsoil 

Clay (%) 18.4 (2.0) 20.5 (2.0) 19.9 (1.4) 

Silt (%) 30.3 (4.5) 38.7 (6.1) 50.6 (1.8) 

Sand (%) 51.2 (6.3) 40.8 (6.8) 29.5 (2.8) 

Organic C (%) 0.81 (0.13) 0.86 (0.15) 0.94 (0.11) 

Subsoil 

Clay (%) 5.6 (1.3) 11.8 (2.7) 22.7 (2.9) 

Silt (%) 10.3 (4.5) 23.3 (5.7) 54.4 (6.3) 

Sand (%) 84.1 (5.6) 64.9 (8.1) 23.0 (8.6) 

Organic C (%) 0.24 (0.05) 0.27 (0.10) 0.47 (0.10) 

 

Management strategies can only be defined after further investigation of the 

influence of soil textural differences across management zones on overall soil 

quality. However, the influence of variation in soil properties on crop behaviour 

can be qualitatively illustrated by an aerial photograph (Figure 6.12) which shows 

the sugar beet crop in July 1989. 

The image closely resembles the spatial patterns observed on the ECa maps, 

particularly the ECaV map (Figure 6.3b). The vegetation in the sandy subsoil zone 

(class 1 of Figure 6.11b) appears in light grey whereas in the clayey subsoil area 

(classes 2 & 3 of Figure 6.11b) it is darker. These differences in vegetation clearly 

reflect the influence of subsoil texture on crop behaviour. The differences of crop 

behaviour across zones might have been originated by a single or a combination of 

factors that determine the crop growth. Kravchenko et al. (2003) found that subsoil 
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physical properties are of greater importance for understand the behaviour of crops 

and thus the crop yield when water availability is a leading yield-limiting factor. 

 

 
 
Figure 6.12. Oblique aerial image of the study field in July 1989 (© Dept. Archaeology 

and Ancient History of Europe, Ghent University, Belgium, Photo: J. Semey). 

 

The linear features (creeks) identified on ECa maps (Figure 6.3a & 6.3b) are also 

apparent in the aerial image. The narrow parallel linear features in the image 

represent the former drainage ditch network constructed at the time of land 

reclamation. These observations strengthen the utility of aerial images as an 

ancillary information source to resolve soil spatial variation. However, in practice, 

obtaining a geometrically accurate aerial images involves large costs. In contrast, 

obtaining an ECa inventory as ancillary information for textural mapping is much 

more practicable and less dependent on weather or crop conditions. 

 

6.4. Conclusions 

This study can be considered as an extension to previous research to understand 

the soil variation in a polder-landscape. Invasive sampling was the only option 
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available in late 1980s to resolve the soil spatial variation in the polder area (e.g. 

Van Meirvenne and Hofman, 1989). Due to cost and labour constraints, previous 

studies were mainly restricted to small within-field blocks. Then the results had to 

be projected in the broader scale to explain the soil variation over the entire 

landscape. The results of the present study indicated that such a generalization of 

variation can result in a large uncertainty. For example, if a subfield experimental 

plot is accidentally located within a buried creek, the soil variation explanation 

from it may be largely deviated form the reality. This study clearly emphasised the 

fact that the technological improvements in proximal soil sensing and 

georeferencing have allowed researchers to change this classical way of exploring 

soil variation.  

The correlation and co-regionalization analysis provided answers for the first 

research question “Can ECa measured with EM38DD sensor and θg (-1.5 MPa) be 

used as ancillary information to resolve the spatial variation of soil texture in 

Polder area?” Apparent electrical conductivity measured in both vertical and 

horizontal dipole orientations showed strong linear relationships with the subsoil 

clay content. Moreover, the cross-variograpy showed that this relationship was 

equally strong in the spatial context. This indicated that the ECa measured with 

EM38DD sensor is a highly suitable ancillary information source for subsoil clay 

content mapping in this area. Although, this is not true for topsoil clay content 

mapping, the strong spatial relationship between the topsoil clay and the θg (-1.5 MPa) 

indicated that the latter is a suitable ancillary variable to map topsoil clay content 

in the polder area. Having clearly recognized a larger subsoil textural 

heterogeneity in comparison to the topsoil and its relevance for site-specific crop 

management, one can solely rely on ECa measurements to design an invasive soil 

sampling scheme and subsequently to characterize the within-field soil textural 

variation in this area. Moreover, these findings can be potentially extended for 

mapping the soils developed from alluvial and marine deposits. It is well known 

that the surface materials of these soil-scapes are generally homogenous and the 

subsoil variation is mainly determined by the topography existing at the time of 

flooding and sedimentation. 
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The second research question asked was “Can the prediction accuracy of soil 

texture be improved by means of traditional or standardized co-kriging?” The 

cross-validation results for both top and subsoil clay predictions indicated that two 

co-kriging methods are capable of improving the prediction accuracy. 

Nevertheless, these results also suggested that it is beneficial to use standardized 

ordinary co-kriging instead of traditional ordinary co-kriging.  

Three findings allowed to investigate the third research question “Is the within-

field textural variation of Polder area spatially structured enough to delineate 

potential management zones?” First, the classification of the top and subsoil clay 

allowed to delineate three relatively large management classes. Second, subsoil 

clay content was substantially different between these classes. Third, a clear visual 

resemblance between management classes and the aerial image of sugar beet crop 

indicated the potential relevance of management classes for crop performance. On 

the basis of these observations, it can be concluded that within-field textural 

variation of Polder area is spatially structured enough to delineate potential 

management zones. 
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Part 2: Agronomic relevance of potential management classes delineated in a 

polder area 

 
6.5. Introduction 

There is little doubt that drinking water contamination by NO3
- is one of the 

environment issue of greatest concern for soil management (Keeney, 1982). The 

major human and animal health problems associated with consumption of 

excessive NO3
- in drinking waters or foods are Methemoglobinemia in infants, 

carcinogenic effects from nitrous compounds and nitrate poisoning in livestock 

animals (Pierzynski et al., 2000). Moreover, nitrate enrichment in surface water 

bodies can contribute to the process of eutropication (Carpenter et al., 1998). 

Nitrogen is a key input in maximizing yield and economic returns to farmers thus 

its proper management is essential to improve farm profits. Site-specific 

management of soil N is found to be one of a pertinent strategies to improve the 

efficiency of N use in order to maximize profits while minimizing the associated 

environmental effects (Khosla et al., 2008; Larson et al., 1997; Mulla and 

Schepers, 1997). This has a particular importance for the polder area since the 

shallow (1.2 m) depth to the ground water level in the polder area (Van Meirvenne 

et al., 1990) enhances the risk of ground water pollution with NO3
-. Nevertheless, 

the potential of NO3
- leaching is largely influenced by the soil textural composition 

(Meisinger and Delgado, 2002) which is found to be highly variable in the polder 

soils. Therefore, it is very important to understand the effect of the management 

classes on the dynamics of soil nitrogen in order to evaluate the potential of site-

specific N management in this area.  

In rainfed agriculture, within-field variation of soil water availability can cause a 

significant influence on the crop growth in the different parts of a field and 

therefore the overall productivity (Kravchenko et al., 2005). The use efficiency of 

nutrients is also known to be influenced by the soil moisture availability (White, 

1997). As a consequence, poor water management can also indirectly contribute to 

nutrient losses from the soil-crop system causing the contamination of ground and 

surface waters. Therefore, exploring the applicability of site-specific water 
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management in the study area is very important to optimize the productivity while 

minimizing negative environmental impacts. The improvement of crop yields and 

the net economic returns is the most convincing stimulant for farmers to adopt 

site-specific soil management practices (Lowenberg-DeBoer and Swinton, 1997). 

Therefore, Godwin et al. (2003b) stated that profitability analysis is an essential 

component in site-specific soil management research.  

In line of this background literature, the second part of this research was intended 

to understand the agronomic relevance of management classes by providing 

answers to the following questions: 

(1) Do soil water retention characteristics, nitrogen and water dynamics 

vary across potential management classes? 

(2) Can variation of nitrogen and moisture contents across management 

classes affect the sugar beet yield and the farmers income? 

 
6.6. Materials and methods 

6.6.1. Land management practices 

To evaluate soil and crop variables across management classes, the growing 

season of 2004 - 2005 was monitored. It started early October 2004, after the 

harvest of potatoes, when the farmer ploughed the field incorporating uniformly 

composted poultry manure at a rate of 11 Mg ha-1. According to the information 

provided by the farmer the depth of fertilizer incorporation was 35 – 40 cm. Three 

samples of poultry manure were analysed for total N content by Kjeldahl method 

(Bremner and Mulvaney, 1982). The inorganic forms of N in these samples (NH4-

N and NO3-N) were extracted using 2 M KCl solution and measured by steam 

distillation with MgO and Devarda’s alloy (Keeney and Nelson, 1982). The 

analysis indicated an average total N content of 2.9 % and NO3-N and NH4-N 

contents of 0.07 % and 0.04 % respectively. Accordingly, the poultry manure 

application corresponds to an equivalent total nitrogen fertilization of 

320 kg N ha-1. On 28th and 29th March 2005 sugar beets were sown with an 

approximate spacing of 44 cm between and 20 cm within rows. According to 
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information provided by the farmer, the crop was not given any additional N-

fertilization nor irrigation during the entire growing season. An intermediate 

application of fungicides was done as a precautionary measure. Harvesting of 

sugar beets was done in mid October 2005. 

 
6.6.2. Field sampling scheme 

To examine the nitrogen and moisture dynamics and yield differences across 

management classes, 10 monitoring (or sampling) points were established (Figure 

6.13).  
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Figure 6.13. Ten monitoring points posted on the management class map. 

 
Monitoring points were located purposively to represent three potential 

management classes, so they cannot be considered as pure random samples. This 

limited the possibilities for statistical processing of data, as discussed further. 

However, the choice of purposive sampling allowed us to locate samples to 

strengthen the interpretation of results. For example, the samples 2, 3 and 4 were 

located at a very close proximity but they still were distributed across two 

management classes. Therefore, differences of nitrogen content between these 

samples can easily be attributed to the differences in management classes. The 
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main reason for limiting this number of locations to 10 was the limited field 

accessibility granted by the farmer during the growing season. 

 

6.6.3. Measurements of nitrogen and moisture 

To measure soil nitrogen and moisture contents, samples were taken over two 

depth increments: 0 – 30 cm and 30 – 60 cm. At each sampling location three 

samples were taken within 1 m radius and these were mixed to obtain a bulked 

sample that corresponds to each depth interval. The soil sampling was carried out 

at five time events over the growing season. The monitoring dates were: 18th May, 

20th June, 11th July, 14th August and 13th October 2005.  

The analytical facilities available at soil laboratory of Department of Soil 

Management, Ghent University were used to determine inorganic N and soil 

moisture contents. To avoid microbial transformations of N, the samples were 

stored at -180C until the analysis of mineral nitrogen contents. The mineral forms 

of soil nitrogen were extracted with a 1 N KCl solution. The filtered extracts were 

analyzed for NH4-N and NO3-N with a continuous-flow auto analyser (ChemLab 

System 4). In this system, nitrate is transformed to nitrite using enzymatic 

reduction and the resulting nitrite is measured calorimetrically at 520 nm after 

reaction with sulphanilamide and N-(1-naphthyl)-ethylene diamine. The procedure 

to determine ammonium involved colorimetry at 650 nm after reaction with 

sodium salicylate and sodium dichloroisocyanurate. The gravimetric moisture 

content of samples was determined by putting a known weight of a soil sample in 

an oven at 1080C till it reaches to a constant weight. The weight loss (soil 

moisture) was expressed as a percentage of the dry weight of the soil sample. 

Additionally, soil water retention characteristics of each management class were 

determined. Therefore, undisturbed core samples were taken from the mid point of 

the depth intervals at sampling locations 4, 1 and 8, representing management 

classes, 1, 2 and 3, respectively. The volumetric moisture contents of these 

samples were determined at eight soil-matric potential heads (-10 to -15300 cm) to 
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construct the soil water retention curves for each management class at two 

sampling depths.  

 
6.6.4. Measurement of sugar beet yield 

6.6.4.1. Leaves and roots biomass 

On 13th October 2005, i.e. day before the harvesting date, samples were taken for 

the yield analysis. Above ground biomass (leaves and shoots) and root samples 

were collected manually from 2.25 by 3.5 m rectangular area located very near to 

the places where the soil was sampled for nitrogen and moisture analysis to avoid 

the inclusion of crop plants which were damaged during soil sampling. The 

weights of fresh beets (including soil attached to the beets) and of leaves were 

determined on the field. A sub sample of the beets from each monitoring point was 

taken to the Iscal sugar beet processing factory of Moerbeke, Belgium, to 

determine the net weight of samples and sugar content. Total biomass was 

obtained by adding the weight of the fresh leaves to the weight of the fresh roots 

without attached soil. 

 
6.6.4.2. Income analysis 

The sugar beet harvest of the study field was received by the CMS sugar factory in 

The Netherlands. Therefore, the income analysis was based on the pricing formula 

adopted by this factory. Net fresh weight of beets and sugar content were 

considered for pricing. Currently, the sugar extractability is not taken into account 

for pricing. 

The standard price for sugar beet was determined for a sugar content of 16 %, 

which was 45 euro per Mg. The supplier was paid additional 9 % of the standard 

price for each 1 % increment in the sugar content. Similarly, a price reduction was 

applied if the sugar content was less than 16 % in a way that the value of the 

harvest sharply decreases as the sugar content drops (Table 6.10). The farmer also 

received 2.35 euros per Mg fresh beet as a compensation for the beet pulp. This 

pulp is a remnant of the sugar extraction process and is sold as organic manure. 
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Generally, the sugar content measurements are taken on a subsample taken from 

each batch received by the factory. 

 

Table 6.10. Percentage of standard price (45 euro) added or deducted on the basis of sugar 

content. 

Sugar content (%) % price addition (+) or reduction (-) 

17.1 - 18 +18 

16.1 – 17 +9 

16 0 

16 – 15.1 -9 

15 – 14.1 -19 

14 – 13.5 -31 

< 13.5 -51 

 

6.6.4.3. Data analysis 

The nitrogen and moisture dynamics, yield quality and quantity differences 

between three management classes were analyzed by comparing means and its 

standard error, se,i, obtained as: 

                                       
i

i
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, =                                     (6.11) 

with  the sample variance of class i, and ni the number of observations in class 

i. The sampling scheme used in this study was not neither random nor 

independent. Therefore, statistical significant of the differences of means were not 

tested. In addition to the mean comparison, zone differences of biomass yield were 

further analyzed by calculating the intra-class correlation values (equation 4.7). 

Statistical analysis was performed with SPSS 15 software. 

2
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6.7. Results and discussion 

6.7.1. Textural composition of monitoring points and soil moisture retention 

curves 

The soil textural compositions of the monitoring points were averaged on the basis 

of management classes and are given in Table 6.11. The top (0 – 30 cm) and 

subsoil (30 – 60 cm) compositions of the management classes was similar to the 

composition calculated with the 63 samples (Table 6.9). Therefore, it is evident 

that the monitoring points adequately represented the soil texture of the 

management classes. 

 

Table 6.11. Average values of the textural fractions and standard error of the mean (in 

brackets) per management class on the basis of 10 monitoring points. 

Mean  

      Class 1        Class 2       Class 3 

0 – 30 cm 

Clay (%) 17.1 (0.4) 18.8 (0.9) 20.3 (1.1) 

Silt (%) 29.8 (1.4) 36.4 (1.4) 51.3 (1.5) 

Sand (%) 53.1 (1.5) 44.8 (4.1) 28.4 (2.5) 

30 – 60 cm 

Clay (%) 5.8 (0.5) 12.4 (0.9) 22.0 (0.4) 

Silt (%) 5.4 (0.9) 22.8 (1.1) 53.1 (3.5) 

Sand (%) 88.8 (1.1) 64.8 (0.6) 24.9 (3.4) 

 

For samples taken at three management classes, the volumetric moisture contents 

at different pressure heads (or matric potentials) are listed in Table 6.12. To these 

experimental data at each depth, the soil water retention curve was fitted using the 

Van Genuchten (1980) equation:  
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where θ is the volumetric water content (cm3 cm-3), h gives soil-matric potential 

head (cm), θs and θr represent saturated and residual water contents (cm3 cm-3). 

The symbols, α (cm-1), n and m are empirical fitting parameters with their 

limitations being α > 0, n > 1 and 0 < m < 1. Between m and n the following 

relationship holds: m = 1 – 1/n.  

 

Table 6.12. Volumetric water contents at different matric potential heads of soil samples 

taken in three management classes at two depth intervals. 

Volumetric water content (%) at matric potential head (cm) Class Depth 

(cm) -10 -30 -50 -70 -100 -330 -1020 -15300 

1* 0 – 30 38.2 35.7 34.4 33.8 32.8 31.3 28.7 19.6 

 30 – 60 38.4 36.7 34.7 32.5 29.4 14.2 11.4 8.6 

2** 0 – 30 41.2 37.2 35.6 34.7 33.4 31.7 28.7 19.3 

 30 – 60 41.6 39.1 37.1 35.7 33.5 23.6 21.7 14.1 

3*** 0 – 30 40.4 36.6 35.1 34.4 33.3 30.8 28.7 18.6 

 30 – 60 39.7 37 35.8 35.2 34.2 33.7 31.2 19.1 

Correspond to samples obtained at the monitoring points *4, **1 and ***8 

 

The estimates of θs, θr and the Van Genuchten equation fitting parameters were 

obtained through an iterative procedure using the RETC software (US Salinity 

Laboratory, CA, USA). Table 6.13 lists these estimates and R2 values of soil water 

retention curves. A good fit of the Van Genuchten equation for experimental data 

was indicated by large R2 values (> 0.92). The curves and experimental values are 

presented in Figure 6.14 (note that pressure heads are expressed as pF values (pF = 

log10|h|)).  

The structure and texture of a particular soil largely determines the shape of its 

water retention curve (Brady and Weil, 1999). A well structured soil has a larger 

total pore space resulting mainly from a greater amount of large pores in which 

water is held with little tenacity. As a consequence, the soil structure 
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predominantly influences the shape of the moisture retention curve in the portion 

where the pF values are between 0 and 3 (Koorevaar et al., 1983). 

 

Table 6.13. Parameters and coefficient of determination (R2) of the fitted Van Genuchten 

equation of the soil moisture retention curves.  

Management 

class 

Depth (m) θs (%) θr (%) α (cm-1) n  R2 

1 0 – 30 40.0 0.0 0.0703 1.0914 0.97 

 30 – 60 38.0 9.0 0.0099 2.3070 0.99 

2 0 – 30 44.3 0.0 0.1433 1.0981 0.97 

 30 – 60 42.7 10.0 0.0205 1.3735 0.98 

3 0 – 30 42.1 0.0 0.0823 1.1029 0.97 

 30 – 60 40.0 0.0 0.0245 1.1063 0.92 

 

The shape of the reminder of the curve generally reflects the influence of soil 

texture. This is mainly through the specific surface of the soil material. For 

example, a fined textured soil holds much more water at higher pF values than 

sand does and the water content gradually decreases as the pressure head 

increases. 

The top soil water retention curves of the three management classes overlapped for 

pF values greater than 2.5 (Figure 6.14). However, slight differences in their 

shapes can be observed at lower pF values. The soil of class 1 has a steeper curve 

than the other two classes. It is likely that a comparatively better structure in 

classes 2 and 3 has caused a greater soil water retention at lower pF values. This is 

further confirmed by the density of the topsoil of class 1, which was 

higher (1663 kg m-3) than of class 2 (1526 kg m-3) and class 3 (1388 kg m-3). The 

influence of the differences of subsoil texture on soil water is clearly evidenced by 

their water retention curves (Figure 6.14b). The water holding capacity throughout 

the entire range of pF values was smallest in the subsoil of management class 1, 

which is sandier in texture. 
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Figure 6.14. Soil water retention curves for soil depth intervals: (a) 0 – 30 cm and (b) 30 – 

60 cm, of three management classes (symbols denote the experimental values). 

 
Distinct differences of moisture retention can also be observed between the class 2 

and 3, where the latter contains more clay and silt (Table 6.9) and showed the 

greatest water holding capacity. At lower pF values, differences of water retention 

narrowed due to abundance of macro pores in the subsoil of management class 1. 

These results indicated that the textural differences across management classes 

have a direct influence on the top and subsoil water retention characteristics. This 

can have implications on other hydraulic properties such as available water 

capacity and hydraulic conductivity. Therefore, differences in both water and 

solute balances across management classes can be expected in this study field.   

 

6.7.2. Nitrogen and moisture dynamics across management classes 

For the five monitoring dates, average and associated se,i values of the top and 

subsoil NO3-N contents across potential management classes and associated 

standard errors are presented in Figure 6.15. At the start of the growing season 

(18th May), marked differences of NO3-N contents were noticed in both top and 

subsoil. The NO3-N content of the topsoil layer of fine textured management 
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classes 2 (198 kg ha-1) and 3 (203 kg ha-1) were similar but much larger than in the 

sandier class 1 (110.3 kg ha-1). The associated se,i values further explain these 

differences. On average class 2 and 3 had 80 and 84.5 % more NO3-N content in 

comparison to class 1.  
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Figure 6.15. Average NO3-N content in soil depth intervals (a) 0 – 30 cm and (b) 30 – 60 

cm for each monitoring date across potential management classes. Vertical error bars show 

the ± standard error of sampling means. 

 

For the subsoil layer, a similar trend of the average NO3-N contents was observed 

across management classes. The average NO3-N contents of class 2 (115 kg ha-1) 

and class 3 (101 kg ha-1), were 77 and 55 % larger as compared with class 1 
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(64.7 kg ha-1). It is interesting to notice marked differences of NO3-N contents in 

the monitoring points 2, 4 and 3 which were located very close to each other but 

they represent two management classes (see Figure 6.13). For example, the subsoil 

of monitoring points 2 and 4 located in the class 1 contained 75 and 59 kg ha-1 

NO3-N, whereas the monitoring point 3 in the class 2 had 136 kg ha-1 of NO3-N. 

This particular observation stressed that fact that the observed differences of 

means have no association with manure application.  

The differences in mean NO3-N suggested that a considerable amount of 

uniformly applied N-fertilizer and residual mineral N of the previous crop was lost 

during the winter and early spring in class 1. In cropped fields, the loss of mineral 

nitrogen forms mainly occur as gaseous, erosional and leaching losses (Follett and 

Delgado, 2002). However, the method of manure application and the prevailing 

soil conditions namely neutral pH and well drainage conditions do not favour the 

gaseous loss of N as NH3 or N2O. Moreover, due to the flat topography, the 

contribution of soil erosion for the loss of NH4-N or NO3-N is also negligible. 

Therefore, NO3-N leaching can be considered as the main cause of the loss of 

nitrogen in the study area. In general, any downward movement of water through 

the soil profile will cause leaching of NO3-N, with the magnitude of the N loss 

proportional to the concentration of NO3
- in the soil solution and the volume of 

leaching water (Pierzynski et al., 2000). It is well known that sandy soils are more 

susceptible for nitrogen leaching in comparison to finer textured soil (Delgado, 

2001; Juergens-Gschwind, 1989). This was further justified by the differences of 

mean NO3-N observed across texturally different three management classes. This 

allows us to confirm that management class 1 with sandy textured subsoil is highly 

sensitive area for nitrogen leaching, especially during the winter due to the 

absence of crop uptake of N. This implies that particularly class 1 should be given 

a careful attention in fertilizer application to avoid losses of NO3-N to the ground 

water during the winter.  

One month after the first sampling (20th June), most of the NO3-N was disappeared 

from the soil (Figure 6.15), most likely it mainly taken up by the sugar beets. As a 
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consequence, the average topsoil NO3-N content of class 1 (41 kg ha-1, se,i = 7 kg 

ha-1), 2 (47 kg ha-1, se,i = 11 kg ha-1) and 3 (49 kg ha-1, se,i = 16 kg ha-1) were 

almost equal. However, a slight difference could be observed in the average 

subsoil NO3-N contents between class 1 (40 kg ha-1, se,i r = 3 kg ha-1) and class 2 

(54 kg ha-1, se,i = 8 kg ha-1) and 3 (58 kg ha-1, se,i = 12 kg ha-1). The rapid decline of 

soil nitrogen levels could be expected, as Armstrong et al. (1986) reported that 

sugar beet plants might need to take up as much as 5 kg N ha-1 day-1 for rapid leaf 

expansion during early stages of its vegetative phase. The same pattern of NO3-N 

was observed by 11th July. At the latter stages of the growing period (14th August 

and 13th October) very low NO3-N contents were observed and top and subsoil 

averages of the three classes were almost identical.  

Very low top and subsoil NH4-N contents were observed during the entire growing 

season. This is a normal observation in most well drained agricultural lands where 

NH4
+ formed during the organic matter mineralization are quickly converted to 

NO3
- through microbial processes (Pierzynski et al., 2000).  

Figure 6.16 summarises top and subsoil moisture dynamics across the potential 

management classes. Throughout the growing period of sugar beet, both the top 

and subsoil of class 1 contained a lower average moisture content compared to the 

other two classes. These differences were more distinct in the subsoil where the 

soil texture differs greatly, indicating possible limitations of soil moisture 

availability for crop growth. 

On most monitoring days except on 13th October, the topsoil moisture content of 

class 2 had a similar average moisture content as class 3 with overlapping standard 

error intervals. However, this was quite different in the subsoil, where marked 

differences of moisture content were observed between these two classes except 

on 20th June. These differences of moisture contents across classes suggested the 

potential of site-specific water management practices in the polder area for 

optimizing crop productivity. 
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Figure 6.16. Average gravimetric moisture content in soil depth intervals (a) 0 –30 cm 

and (b) 30 – 60 cm for each monitoring date across potential management classes. Vertical 

error bars show the ± standard error of sampling means. 

 

6.7.3. Crop yield and farm income across management classes 

The average crop biomass (roots plus leaves) of class 1 was distinctly smaller than 

that of class 2 and 3: 105 Mg ha-1, 147 Mg ha-1 and 150 Mg ha-1, respectively 

(Table 6.14). The results of an ANOVA revealed a large intra-class correlation (Ri
2 

= 0.89) of the crop biomass (Table 6.15). As a consequence, the delineation of 

potential management classes was very successful in differentiating biomass 

production within this field. It is likely that the less available soil nitrogen and 

moisture in class 1 has caused a lower biomass yields. This argument agrees with 

the observations of Milford (2006), who stressed that nitrogen and moisture 

availability at the early stages of sugar beet growth are key factors determining 

total biomass production. 
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An inverse relationship was found for the sugar content: on average it was 17.2 % 

for class 1, 16.3 % for class 2 and 15.7 % for class 3, with very small standard 

errors and a Ri
2 of 0.69. It is well known that crops that are well supplied with 

nitrogen tend to produce a larger yield of beets containing a lower concentration of 

sugar (Draycott and Christenson, 2003). This is further explained in Figure 6.17 

which relates the response of sugarbeet to increasing nitrogen fertilizer amounts. 

Sugar content remains almost constant until close to the optimal dose and after 

which it decreases more rapidly. Therefore, it is very likely that the larger nitrogen 

levels in the soil of class 2 and 3 (Figure 6.15) has caused the lower concentrations 

of sugar in the beets. The larger moisture availability might have further enhanced 

this effect (due to water retention in tap root) resulting in a lower sugar contents.  

Class 1 had the smallest root weights, which are generally the richest in sugar 

content. The opposite was found in classes 2 and 3. As a result the sugar yield was 

more homogeneous, it ranged from 13 Mg ha-1 for class 1 to 14.2 Mg ha-1 for class 

2 which was almost the same for class, and Ri
2 dropped to 0.23. 

The financial income obtained by the farmer reflected this compensation effect. 

Although the delineation of management zones was not able to differentiate the 

income between the classes (with Ri
2 of 0.07 and relatively large standard errors), 

there still was a considerable difference in average income of 287 € ha-1 between 

class 1 and 2. Between class 1 and 3 the difference in average income was 159 € 

ha-1. 

 

Table 6.14. Mean values of crop yield (sugar beets) variables per management class and, 

between brackets, the standard error of the mean. 

Class Biomass  
(Mg ha-1) 

Sugar content (%) Sugar yield 
(Mg ha-1) 

Income 
(€ ha-1) 

1 105.5 (2.5) 17.2 (0.3) 13.0 (0.3) 3958 (72) 

2 147.0 (4.1) 16.3 (0.3) 14.2 (0.4) 4245 (151) 

3 150.3 (4.3) 15.7 (0.2) 14.0 (0.2) 4117 (172) 
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Table 6.15. Results of the ANOVA on the crop yield (sugar beets) variables based on the 

3 management classes. 

 Biomass  
(Mg ha-1) 

Sugar content 
(%) 

Sugar yield 
(Mg ha-1) 

Income 
(€ ha-1) 

2
Ts   472.2 0.59 0.72 56786 
2
Ws  50.3 0.18 0.55 52828 

2
iR  0.89 0.69 0.23 0.07 

 

It should be added that the similarity in income between classes was obtained 

through a completely different soil-crop interaction, notwithstanding the uniform 

management. In class 1 both the NO3-N and moisture content were the lowest, 

resulting in small beets with high sugar contents. 

 

 
Figure 6.17. Response of sugar beet to increasing nitrogen fertilizer amounts. Example for 

a 120 kg N ha-1 optimum application (source: Cariolle and Duval, 2005). 
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In class 3 the beets were the largest, but with the lowest sugar content. Class 2 had 

intermediate values for both variables, resulting in the largest financial income. 

This indicates that if the three management zones would have received a different 

N-fertilization, with N-fertilization split into several applications for class 1 and a 

single but smaller N-application for class 3, both classes could have an increased 

sugar production resulting in an overall increased income. Also, a proper water 

management in class 1 could benefit the crop growth, especially in early growing 

conditions. 

 

6.8. Conclusions 

The focus of this research was to recognize the agronomic relevance of potential 

management classes delineated in section 1 of this chapter. In this context, the first 

research question formulated was “Do the soil water retention characteristics, 

Nitrogen and moisture dynamics under uniform soil management vary across 

potential management classes?” As explained by the soil water retention curves, 

the water retention of the sub soil is highly different across potential management 

classes. However, the same is not true for the comparatively homogenous topsoil, 

where slight differences of water retention between classes were only observed for 

pF values > 2.5. Despite that, during the growing period clear differences of top 

soil moisture contents were evident between the coarse textured class 1 and the 

other two classes. The differences of soil moisture contents in the subsoil were 

substantial between all three classes. Three potential management classes were 

found to reflect clear differences in dynamics of NO3-N during the growing season 

of 2005 and the preceding winter. The soil of class 1 contained less available 

NO3-N at the start of the growing season than the other classes, notwithstanding 

the more or less uniform application of N-fertilization in the previous autumn. 

Through these observations it can be highlighted that soil water retention 

characteristics, nitrogen and moisture dynamics under uniform soil management 

substantially vary across potential management classes. 
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The second research question was “Can the variation of nitrogen and moisture 

contents across management classes affect on the sugar beet yield and farmers 

income?”. The differences between management classes had an impact on the 

sugar beets. The beets grown in class 1 produced clearly less biomass (beet roots 

and leaves), which was compensated by a larger sugar content. As a consequence, 

relatively small differences were found between the zones for the sugar yield and 

the sugar related income by the farmer. However, it should be noted that the 

relatively small differences in income (of about 287 € ha-1) are the result of 

strongly different growing conditions and compensation effects between total 

biomass and sugar accumulation under uniform input application. Consequently 

there is a clear opportunity to optimize the yield while reducing the environmental 

implications by nitrate losses. A different management for the three classes is 

recommended. Class 1, with its permeable sandy subsoil, would benefit from a 

fertilization scheme split into different applications, whereas class 2 and 3 could 

suffice with a single, and probably smaller, N-application. Also, differences in 

water management could be considered. 

As a general conclusion it can be stated that ECa measurements are able to provide 

a stable and relevant basis for delineating agronomically relevant management 

zones. 
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7.1. Introduction 

In this dissertation, the potential use of two types of ancillary information: ECa and 

elevation data was evaluated for the detailed mapping of soil variability with a 

minimum effort of invasive field sampling. Through this objective, attempts were 

made to fulfil the soil information needs for site-specific soil management.  

In this chapter, the major contributions of this research to understand and 

inventorize the soil variability in support of site-specific soil management are 

summarized. Then, some prospects for future research are mentioned.  

 

7.2. General conclusions  

National choropleth soil maps remain the major soil information available in most 

countries. However, assessment of the potentials and weaknesses of these soil 

information inventories in relation to current needs of soil information is essential 

to improve their usability. Through the case study conducted at the Melle site 

(chapter 4), we investigated the adequacy of the 1:20,000 soil map of Belgium to 

provide soil information needed for site-specific soil management. The study 

clearly demonstrated the general weakness of this map in accurately predicting soil 

properties at a within-field scale. Therefore, an upgrading of it by incorporating 

detailed soil information was required. The traditional way to upgrade a choropleth 

soil map is to conduct a new survey, either at a similar scale but focussing on other 

soil properties, or at a more detailed scale with the same soil properties to obtain a 

better representation of their spatial variability. It was a unique opportunity for us 

to assess the second upgrading option using a more detailed 1:5000 choropleth soil 

map of the same area. In comparison to the 1:20,000 soil map, the 1:5000 map was 

able to characterise the within-field variability of depth to the Tertiary clay 

substratum (Dts) with a high accuracy. Therefore the past solution to improve the 

map predictions by increasing the map scale and taking more observations proved 

to be successful for Dts. However, it must be realized that this high accuracy was 

gained through approximately 210 soil augerings. In addition, even with a dense 
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invasive soil sampling, the 1:5000 map failed to characterize the within-field 

variation of soil texture with a sufficiently high accuracy.  

Modern technology, however, allows to proceed a step further in the upgrading of 

soil maps. More than nine thousand ECa observations obtained with the EM38DD 

sensor provided abundant information which could be strongly linked to the Dts. 
By combining a strategic sampling scheme, i.e. Latin-hypercube sampling, with a 

prediction model derived on the basis of the depth sensitivity function of the 

EM38 sensor, we were able to make accurate predictions of Dts only with 20 soil 

augerings. These predictions can be further improved by employing regression 

kriging with some extra samples. For example, the upgraded soil map using ECa 

data and 60 soil augerings showed a better accuracy than the 1:5000 map. It can be 

concluded that proximal soil sensing using the EM38DD sensor is a useful step to 

upgrade the regional scale soil map by adding accurate information on the depth to 

a texturally contrasting subsoil layer.  

The study conducted at the Leefdaal field (chapter 5) revealed a strongly 

structured within-field soil variability present in the European loess area. The 

variations of relatively stable soil properties, such as pH, organic C and soil 

texture are mainly linked to the pedogenic processes as well as slope processes. 

Though loess soils are generally considered to be spatially very homogenous, the 

findings of this research allowed us to disregard this perception. New opportunities 

were opened for site-specific management of loess soils. Elevation, ECaV and soil 

pH were found to be the key variables to characterize the within-field variation 

and ultimately to delineate potential management zones. Among these, elevation 

and ECaV represent easy to acquire surrogates for organic C and texture, 

respectively. Necessity of invasive soil samples to detect the variation of pH in this 

area can be avoided by using a commercially available pH sensor. Moreover, 

terrain attributes, namely slope angle and stream power index, provided a logical 

basis to explain the variations of soil texture and pH through a visualization of soil 

erosion and sedimentation patterns present in this area. Therefore, if sensors for 

ECa and pH measurements would not be available, topographic attributes could be 
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useful to design an optimum sampling scheme to acquire information on texture 

and pH. This research allowed us to highlight three essential spatial inventory 

steps suitable in support of site-specific soil management: (1) acquisition of 

elevation, ECaV and on-the-go pH measurements, (2) classification of these data 

layers, and (3) characterization of texture and organic C contents of each class 

using a few soil samples obtained within each class.  

The research reported in chapter 6 identified a well structured soil textural 

variation in the polder soils of northwest East-Flanders, which had been 

inadequately identified before. The highly heterogeneous subsoil can cause a 

substantial variation of crop performance and therefore, it is a key information to 

be included in the soil spatial inventories in support of site-specific soil 

management. Since the present day flat landscape has no link to the subsurface 

variability, the classical surveying procedure would require large numbers of field 

observations to inventorize this variability. However, we found a strong spatial 

relationship between the ECa measurements and the subsoil clay content. This 

allowed us to accurately map the variation of subsoil clay with a limited number of 

soil textural analysis. The delineated management zones showed substantial 

differences in nitrogen and moisture dynamics and ultimately differences in crop 

yield. Therefore, there is a clear opportunity to practice site-specific management 

in the polder area in order to optimize the yield while reducing the environmental 

implications by nitrate losses. The findings reported in this chapter confirmed that 

the electromagnetically sensed ECa is a promising and cost effective source of 

ancillary information for detailed mapping of the heterogeneous subsoil of the 

polder soils. The mapped subsoil variation has a direct relevance for the site-

specific management of soil water and nitrogen. These findings can be applicable 

for many soils formed in either marine or alluvial deposits. 

 

7.3. Future research issues 

This research reported on the spatial inventory techniques to map within-field 

variation of relatively stable soil properties like, soil textural fractions, pH, organic 
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C and depth to subsurface compacted soil layers. It became evident that the recent 

advances in soil sensing and data processing techniques have opened new 

possibilities to accurately map the variation of these properties with a minimum 

effort of field sampling. The way forward is to use this soil information to 

determine the appropriate site-specific management decisions. Process based 

simulation modelling can be proposed as a suitable approach to achieve this target. 

With this approach, the influence of these stable soil properties on agriculturally 

important soil qualities such as availability of soil moisture, soil nutrient status and 

nitrogen leaching potential could be quantified. Thereafter a proper scenario 

analysis could be used to determine the best site-specific soil management practise 

to gain expected goals of site-specific soil management.  

The three case studies presented in this dissertation consistently showed that 

proximal soil sensing of ECa is a very satisfactory method for elucidating the soil 

variability at a within-field scale. It should be noted that its applicability is equally 

valid for soil mapping at a regional scale and also upgrading of the existing coarse-

scale soil maps. These two are priorities in the developing countries as well as in 

many developed countries for the sustainable use of soil resources through proper 

land use planning. However, up to now, the adoption of proximal sensing of soil 

ECa has not been introduced to developing countries. This is mainly due to the 

high cost1 of equipments and the lack of expertise to operate soil sensing systems 

and analyze and interpret the data. The ample evidences for the utility of 

proximally sensed ECa for soil mapping however are sufficiently convincing that 

such an such investment is worthwhile. 

 
 
 
 
 

                                                 
1 Currently, the EM38DD sensor is no longer production. The upgraded version of this sensor, EM38-
MK2 is available and its quoted price was $ 17,200 as at June 2008. 
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