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Mobile multi-receiver electromagnetic induction sensors provide simultaneous readings of the apparent
electrical conductivity (ECa) from overlapping soil volumes. Therefore, small contrasting features can be dif-
ficult to identify because they have a limited contribution to the bulk measurement, especially if they are pre-
sent in the subsoil (i.e. beneath the topsoil). Integrating ECa data from simultaneous measurements with
multiple coil configurations has the potential to elucidate the variability within the soil profile as it enables
modelling the electrical conductivity (EC) for distinct depth intervals. Therefore, it was our objective to de-
velop a methodology to enhance the delineation of contrasting subsoil features, such as in-filled gullies
and archaeological features. We selected a 3.5 ha study site where contrasting features were expected. A
three-layered build-up was taken as the initial EC-slicing model. After varying the interface depths, the
shallowest and deepest EC-depth slice showed a clear minimum of their combined variances at interface
depths of 0.36 m, which corresponded to the ploughing depth, and 0.86 m. This implies that the EC-depth
slice in-between these depths, contained a demonstrably higher variability. A sub-area of 0.85 ha was
completely excavated to a depth of 0.7 m, revealing the subsoil features and the host material. An automated
edge detection algorithm showed that the EC-depth slice was superior to any individual ECa measurement
for delineating the contrasting subsoil features. Therefore, we concluded that depth slicing by integrating si-
multaneous ECa signals from a multi-receiver EMI sensor clearly improved the identification of subsoil
features.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Electromagnetic induction (EMI) is considered very suitable to
map the subsoil variability because of its ability to map the apparent
electrical conductivity (ECa), which in a non-saline soil is essentially
controlled by soil texture and water content (Saey et al., 2009b).
ECa can be defined as the depth weighted average of the electric con-
ductivity of a column of material to a specific depth, expressed in mil-
liSiemens per metre (mS m−1). Although useful for investigating the
lateral spatial soil variation, the measured ECa provides limited infor-
mation on how conductivity varies vertically because the relationship
between a specific soil and a particular ECa reading is not straightfor-
ward (Corwin and Lesch, 2005).

Advanced EMI instruments increasingly provide comprehensive
data sets that can be used to quantify the subsoil variability (Pellerin
and Wannamaker, 2005). The depth of penetration of the electromag-
netic signal is influenced by the instrument's coil orientation, the coil
rights reserved.
separation and the measurement frequency. Therefore, data from
multi-frequency (Brosten et al., 2011; Tromp-Van Meerveld and
McDonnell, 2009) and multi-receiver (Monteiro Santos et al., 2010;
Saey et al., 2009a) instruments increase the possibilities to infer depth
variations in soil properties. Brosten et al. (2011) produced a three-
dimensional EC-volume frommulti-frequency ECa data. These inverted
EC models show changes in lateral and vertical EC distribution. With
multi-receiver instruments, the use ofmultiple configurations improves
the possibilities of identifying different subsoil features. This leads to a
better interpretation (Saey et al., 2011b) for a variety of applications
like precision agriculture (Vitharana et al., 2008), archaeology (Saey et
al., 2011a), groundwater resource evaluation (Brosten et al., 2011), con-
taminant distribution mapping (Lee et al., 2006; Martinelli et al., 2012)
and vadose zone hydrology (Robinson et al., 2012).Measurementswith
these multi-receiver EMI instruments can be inverted to provide
quantitative electrical conductivity estimates as a function of depth.
Monteiro Santos et al. (2010) invertedmulti-receiver ECa data collected
with a DUALEM-421S instrument using a smooth inversion algorithm,
to construct a global image of the subsurface distribution of EC and
therefore to discern changes with depth. Combining multiple signals
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of a multi-receiver EMI proximal soil sensor implies measuring the ECa
of overlapping soil volumes (Beamish, 2011), because the different coil
configurations provide simultaneous measurements with different
depth sensitivity (Saey et al., 2009a). Therefore, small contrasting fea-
tures can be difficult to identify because they have a limited contribu-
tion to the bulk measurement, especially if they are only present in
the subsoil. The integration of the simultaneous measurements has
the potential to improve the discrimination of these small features by
modelling the conductivity in-between distinct depth intervals.

The objective of this research was to improve the delineation of
contrasting subsoil features within different soil layers. By integrating
the multiple ECa measurements of a multi-receiver EMI sensor, the
layer with the highest conductivity contrast is to be identified by
varying its interface depths. This way, the potential to discriminate
between the contrasting soil features within this layer should be en-
hanced. Furthermore, an edge detection algorithm will be applied to
evaluate the straightforwardness of the model for delineating subsoil
features in the depth slices.

2. Site description

The study site that we selected was a 3.5 ha agricultural field that
was intensely occupied during medieval times (Lehouck, 2010). The
study site is located in the western part of the Belgian coastal plain
(central coordinates: 51°06′39″N and 2°41′55″E) (Fig. 1).

Throughout the entire study area, soil characteristics are rather
uniform. Tertiary deposits form the sandy substrate (C2) and are
overlain with Quaternary and Holocene deposits forming a ploughed
clayey A-horizon (A) and a largely unaltered C1 layer (Vandenbohede
and Lebbe, 2011). The current microrelief in this area results from
both natural and man-induced processes (Baeteman, 1991; Ervynck
et al., 1999). The site was surveyed with an EMI proximal soil sensor
Fig. 1. Localisation of the study site in Belgium and topographic map with indication of the b
Belgian metric Lambert 72 projection).
to map the archaeological landscape prior to the conversion into a
larger golf terrain.

3. Electromagnetic induction instrument

EMI instruments use a transmitter coil (Tx) and one or more receiv-
ing coils (Rx) to measure the EM field coupling in the affected medium.
For applications inmapping the soil variability, they typically operate at
small Tx–Rx separations and at low frequency (e.g. b15 kHz). The com-
bined separation-frequency EM attribute is designed to provide a mea-
sure of the subsoil conductivity across a depth scale that is determined
by the Tx–Rx separation and the coil orientations used (Beamish, 2011).
The DUALEM-21S electromagnetic induction sensor, used in this study,
consists of one transmitter and four receiver coils. These four receiver
coils are located at spacings of 1, 1.1, 2 and 2.1 m from the
transmitter. The 1 m and 2 m transmitter-receiver pairs are in a hori-
zontal coplanar coil mode (respectively HCP,1 and HCP,2), while the
1.1 m and 2.1 m pairs are placed in a perpendicular coil mode (respec-
tively PERP,1 and PERP,2). McNeill (1980) approximated the Maxwell's
equations describing the depth sensitivity of each coil configuration by
analytical equations defined by the cumulative response from the soil
volume above a depth Z (in m) for the horizontal coplanar dipole
mode (RHCP(Z)). Dualem Inc (2007) developed the equation of the cu-
mulative response for the perpendicular dipole mode (RPERP(Z)) based
on Wait (1962):

RHCP;X Zð Þ ¼ 1− 4⋅ Z
2

X2 þ 1

 !−0:5

ð1Þ

RPERP;X Zð Þ ¼ 2
Z2

X2 4⋅ Z
2

X2 þ 1

 !−0:5

ð2Þ
oundaries of the golf court, study and excavation sites (coordinates are according to the
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with X being the transmitter-receiver spacing, and both RHCP(Z) and
RPERP(Z) are expressed as percentage of the measured signal, relative
to 1.

The depth of exploration (DOE) differs for the different coil config-
urations as follows: PERP,1=0.5 m, PERP,2=1.0 m, HCP,1=1.6 m
and HCP,2=3.2 m. These are the depths at which 70% of the mea-
sured response of the coil configuration is attributed to the soil vol-
ume from the soil surface up to these depths. So 30% of the
response originates from soil material below the DOE.

4. ECa survey

The study site was surveyed with the DUALEM-21S EMI instru-
ment. Measurements were performed at 1.7 m apart parallel lines,
and approximately 5 measurements were logged within a 1 m track.
Measurements of each particular coil configuration were performed
simultaneously. Ordinary point kriging (Goovaerts, 1997) was then
used to interpolate these data to a 0.5 by 0.5 m grid. This geostatistical
technique ensures unbiased estimates with minimal estimation vari-
ance. Moreover, kriging includes declustering the sensor data, which
accounts for the denser within-line measurements (0.2 m). Ordinary
kriging weights are derived from a variogram, which is a model of
the spatial structure (Goovaerts, 1997; Webster and Oliver, 2007).
Fig. 2. Variogram models of the ECaPERP,1 (a), ECaPERP,2
We modelled the variograms by manually fitting a variogram model
to the data. A maximum of 64 neighbours was used within a circular
search area around the location being interpolated. The variograms
models are shown in Fig. 2. The ECa of the HCP coil configurations
proves to contain a larger spatial structure than the ECa of the PERP
coil configurations. Moreover, the larger the DOI, the smaller the nug-
get effect or random noise.

Table 1 shows the descriptive statistics of the four ECa measure-
ments taken at the study site. The increase of the average ECa with
increasing DOE, i.e. from the PERP,1 to the PERP,2 up to the HCP,1
coil configurations, implies an elevated soil EC in the top 1.5 m.
Below this depth, EC does not increase, indicating constant soil char-
acteristics such as soil texture and soil moisture content. Further-
more, the high maximum value of ECaPERP,1 and the negative
minimum values from all coil configurations indicated the presence
of metal objects in the topsoil (Saey et al., 2011b). Fig. 3 shows the
four ECa maps of the study site. Here, different linear and meander-
ing features were observed across the study site and analogue pat-
terns can be seen in all measurements. The clear distinction
between these features is caused by a large EC contrast between
the clayey topsoil and the underlying sand. This enhances the dis-
crimination potential of the filled-in ditches and gullies (De Smedt
et al., 2012).
(b), ECaHCP,1 (c) and ECaHCP,2 (d) measurements.

image of Fig.�2


Table 1
Descriptive statistics (DOE: depth of investigation (m), m: mean (mS m−1), min: mini-
mum (mS m−1), max: maximum (mS m−1), std: standard deviation (mS m−1)) of the
four coil configurations of the 98132 ECa measurements within the 3.5 ha study site.

Variable DOE m min max std

ECaPERP,1 0.5 21 −32 133 5.3
ECaPERP,2 1.0 27 −15 54 6.1
ECaHCP,1 1.6 32 −53 58 5.6
ECaHCP,2 3.2 33 −9 59 5.4
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5. EC-depth modelling

In a layered-soil model, the relative contribution of all material up to
a depth Z below the EMI sensor to themeasured ECa is given by Eqs. (1)
Fig. 3. ECaPERP,1 (a), ECaPERP,2 (b), ECaHCP,1 (c) and ECaHCP,2 (d) measurements (converted to
transects AB and CD.
and (2) for both HCP and PERP coil configurations. Taking these defini-
tions into account, the response of an N-layered soil is calculated by
adding the contributions from each layer independently, weighted
according to their EC and Z (Saey et al., 2009a):

ECa ¼ R Z1ð Þ⋅EC�
1 þ

XN−1

j¼2

R Zj

� �
−R Zj−1

� �h i
⋅EC�

j þ 1−R ZN−1ð Þ½ �⋅EC�
N ð3Þ

A combination of these equations enables to invert the ECa data,
whereas the modelled EC can be discerned within discrete depth inter-
vals. Since the DUALEM-21S sensor measures the ECa simultaneously
with four different coil configurations, we can assume a three-layered
soil model where the layers have a constant thickness. From this, a set
of four equationswith five unknownparameters can be derived. This al-
lows to invert the simultaneous ECameasurements to obtain the EC⁎ of
a reference temperature of 25 °C) with localisation of the excavated site (polygon) and

image of Fig.�3


Fig. 4. σEC1*×σEC3* as the minimisation function as a function of the depth z, with indi-
cation of the optimum z of 0.36 m.
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the shallow (EC1*), middle (EC2*) and deeper (EC3*) soil layers with in-
terface boundaries at Z1 and Z2. Z1 is the depth of the boundary between
the shallow and middle soil layers and Z2 is the depth of the interface
between the middle and deeper soil layers.

The following set of equations was defined, taking the height of
the DUALEM-21S sensor above the soil surface (Zs) into account:

ECaPERP;X ¼ RPERP;X Z1 þ Zsð Þ−RPERP;X Zsð Þ
h i

⋅EC�
1 þ

h
RPERP;X Z2 þ Zsð Þ

−RPERP;X Z1 þ Zsð Þ
i
⋅EC�

2 þ 1−RPERP;X Z2 þ Zsð Þ
h i

⋅EC�
3

ð4Þ

ECaHCP;X ¼ RHCP;X Z1 þ Zsð Þ−RHCP;X Zsð Þ
h i

⋅EC�
1 þ

h
RHCP;X Z2 þ Zsð Þ

−RHCP;X Z1 þ Zsð Þ
i
⋅EC�

2 þ 1−RHCP;X Z2 þ Zsð Þ
h i

⋅EC�
3

ð5Þ

with RPERP,X(Z) and RHCP,X(Z) the cumulative responses above a depth
Z for the PERP and HCP mode and transmitter-receiver coil spacing X
(either 1 m or 2 m).

To focus on the contrasting subsoil features on our study site, we
aimed at improving the contrast between the features and the back-
ground value of one layer with a fixed thickness. We aimed at develop-
ing a filter that amplifies the maximum horizontal conductivity
gradient. Therefore, the interface depth Z1 was varied to account for
the layer(s) with the highest conductivity contrast. This was done for
a range of Z1 values going from 0.1 to 2 m with a step interval of
0.2 m. Because the DOEs of both the PERP,1 and PERP,2 coil configura-
tions and the PERP,2 and HCP,1 coil configurations differ by 0.5 m, Z2
was taken as Z1+0.5 m. Subsequently, EC1*, EC2* and EC3* were calcu-
lated across 2 transects (AB and CD, Fig. 3c) by solving the set of 4 equa-
tions using the Levenberg–Marquardt algorithm (Marquardt, 1963) at
each measurement point of the transect. The variances of EC1*, EC2*
and EC3*were calculated for the range of Z1 values across both transects
and compared to obtain an optimal value of Z1.We aimed atminimising
the variances of both EC1* and EC3* or maximising the variance of EC2*,
because the subsoil featureswere assumed to be located below the top-
soil, within this simulated soil layer. An optimumvalue for Z1 was found
for both EC1* and EC3* as their multiplied total variances σEC1*×σEC3*

across both transects showed a clear minimum. The optimum Z1 was
found at 0.36 m (Fig. 4), which corresponds to the depth of the plough
layer. Consequently, the three final depth slices were set to 0–0.36 m
(topsoil), 0.36 m–0.86 m (highest subsoil EC variability) and below
0.86 m (deeper subsoil layers).

The three resulting EC* maps are given in Fig. 5. EC1* (Fig. 5a)
shows that, whereas the topsoil (0–0.36 m) mainly contains noise,
the EC2* map (0.36–0.86 m) (Fig. 5b) amplifies the subsoil variability
in the measurements. Compared to the four individual ECa measure-
ments (Fig. 3), the range of the EC2* values is larger, resulting in more
distinct conductivity differences between the features and the back-
ground (Fig. 5b). In the modelled EC3*, only a limited number of fea-
tures appear, indicating that these features extend into the deeper
soil layers.

6. Excavation results

A subarea of 0.85 ha was excavated down to 0.7 m (polygon on
Fig. 3) and all subsoil features were digitised (Fig. 6). The meandering
features proved to be small tidal creeks. The linear structures were
found to be ditches, representing field boundaries and the enclosure
of a medieval farmstead and farmyard (not marked on Fig. 6). Both
ECa measurements and EC2*-depth slice were evaluated at the exca-
vated site. ECaPERP,2 (Fig. 3b) and ECaHCP,1 (Fig. 3c) provided subtle in-
dication of the ditches and the small tidal creek. However, they could
be more clearly delineated based on the EC2* map (Fig. 5b). The con-
tinuity of both ditches and creeks could even be traced beyond the
borders of the excavation zone.
7. Verification

To compare the measured ECas and modelled ECs with field veri-
fications, we digitised the subsoil features based on the excavation re-
sults. This verification image was classified into two classes: class 1
combined the pixels without distinct features and class 2 bundled
the larger features as obtained from the excavation results. After-
wards, we stratified the four ECa-measured and three EC⁎-modelled
maps according to this verification image. To compare the variability
in both zones, we calculated the coefficient of variation (CV), defined
as ratio between the standard deviation and the mean (Table 2). A
clear distinction in CV was observed: CVs of EC2* for both zones
were considerably higher than for all ECa measurements, demon-
strating that the modelled EC2* contains a higher variability than
the ECa measurements. On the other hand, the differences in mean
values between the zones were highest for EC2*. The differences are
expressed by the relative difference (RD). For the ECa measurements
and modelled EC⁎s, this RD was calculated as:

RD ¼ Xzone2−Xzone1

Xzone2
ð7Þ

with X being the modelled mean EC⁎ or ECa measurements.
The relative difference between the zones proved to be substan-

tially higher for the EC2*-depth slice, as can be seen in Table 2.

8. Evaluating discrimination potential: edge detection

Edge detection is a tool for feature detection in image processing.
This technique selects pixels identifying locations where the brightness
of the image changes abruptly (Accame and De Natale, 1997). So edge
detection provides an objective measure to find sharp image disconti-
nuities. Among the edge detection methods proposed, the Canny edge
detector (Canny, 1986) is the most rigorously defined operator and it
is widely used (Ding and Goshtasby, 2001). The Canny method iden-
tifies edges by looking for local maxima of the image gradient. The gra-
dient is calculated using the derivative of a Gaussian filter. This method
is less likely to be fooled by noise and thus able to detect weak edges.

Fig. 7 shows the results of the Canny edge detection for both ECaPERP,2
and EC2*. ECaPERP,2 was selected from the four ECa measurements as the
soil volume from this coil configuration pair (DOE: 1.0 m) corresponds
best to the excavation results (to a depth of 0.7 m). Furthermore, these

image of Fig.�4


Fig. 5. Modelled conductivity map within a depth of 0 and 0.36 m (EC1*) (a), within 0.36 and 0.86 m (EC2*) (b) and below 0.86 m (EC3*) (c).
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measurements contain the largest variability of the four ECa measure-
ments (Table 1).

The automated Canny filter from the software package Matlab
(Mathworks Inc., Massachusetts, USA) was applied to both images on
Fig. 7. A two-element vector, which contains a low and high threshold,
was needed for the automated filter. The high threshold was chosen to
be 0.15, which implies the low threshold to be 0.06 (or 0.4×0.15).With
these values, the delineated edges coincided best with the feature
boundaries, deduced from the excavation results. The edge detection
of themodelled EC2* clearly correspondsmore to the excavation results
than the feature boundaries found on the ECaPERP,2 data. As such, the
modelled EC2* clearly allows a more straightforward delineation of
the subsoil features (Fig. 6). Therefore, this technique proves to be a
qualitative method to recognise these contrasting subsoil features.
9. Conclusions

This study showed that the detected subsoil features could be
more effectively delineated using EC-depth slicing, especially when
interface depths can be identified that account for the layer with
the highest EC variability. Assuming a layered earth where the layers
have a constant thickness, the application of this EC-depth slicing
procedure enhances the maximum horizontal conductivity gradient.
This method amplifies the lateral conductivity contrasts in a specific
layer, but is less suited to study the variability of the conductivity
with depth. Integrating the ECas of simultaneous measurements by
multiple receivers of an EMI instrument adds discriminating potential,
compared to individual measurements. The more straightforward de-
lineation of contrasting features on the EC-depth slice with the highest

image of Fig.�5


Fig. 6. Digitised map of the excavated archaeological features at a depth of 0.7 m.

520 T. Saey et al. / Geoderma 189–190 (2012) 514–521
variability was proven by performing an edge detection procedure.
Hereby, more feature boundaries were automatically detected on the
EC-depth slice with the highest conductivity contrast.

To conclude, the developed EC-depth slicing approach provides in-
sights into the multi-receiver EMI data by enhancing the contrast be-
tween subsoil features and the background within predefined layers.
This can be done for a variety of applications in order to distinguish sub-
tle anomalies, invisible on the single sensor measurements. Moreover,
this approach could be applied to reduce the effort of field soil surveys
and verifications with the aim at guiding additional prospection tech-
niques, such as excavations.
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Table 2
Descriptive statistics (m: mean (mS m−1), CV: coefficient of variation (%) and RD: rel-
ative difference (%)) of the four ECa measurements and modelled EC1*, EC2* and EC3*
and stratified according to the two classes of the validation image.

Variable Class 1 (without) Class 2 (with) RD

m CV m CV

ECaPERP,1 19 21 21 15 10
ECaPERP,2 24 21 26 15 8
ECaHCP,1 29 16 31 12 6
ECaHCP,2 30 12 31 10 3
EC1* 20 25 21 28 5
EC2* 37 52 45 38 18
EC3* 31 8 30 11 3
References

Accame, M., De Natale, F.G.B., 1997. Edge detection by point classification of Canny fil-
tered images. Signal Processing 60, 11–22.

Baeteman, C., 1991. Chronology of coastal plain development during the Holocene in
West Belgium. Quaternaire 2, 116–125.

Beamish, D., 2011. Low induction number, ground conductivity meters: a correction
procedure in the absence of magnetic effects. Journal of Applied Geophysics 75,
244–253.

Brosten, T.R., Day-Lewis, F.D., Schultz, G.M., Curtis, G.P., Lane, J.W., 2011. Inversion of
multi-frequency electromagnetic induction data for 3D characterization of hydrau-
lic conductivity. Journal of Applied Geophysics 73, 323–335.

Canny, J., 1986. A computational approach to edge detection. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 8, 679–698.

Corwin, D.L., Lesch, S.M., 2005. Characterizing soil spatial variability with apparent soil
electrical conductivity. Computers and Electronics in Agriculture 46, 103–133.

De Smedt, P., Saey, T., Lehouck, A., Stichelbaut, B., Meerschman, E., Islam, M.M., Van De
Vijver, E., Van Meirvenne, M., 2012. Exploring the potential of multi-receiver EMI
survey for geoarchaeological prospection: a 90 ha dataset. Geoderma (accepted).

Ding, L., Goshtasby, A., 2001. On the Canny edge detector. Pattern Recognition 34,
721–725.

Dualem Inc, 2007. DUALEM-21S User's Manual. Dualem Inc., Milton, Canada.
Ervynck, A., Baeteman, C., Demiddelde, H., Hollevoet, Y., Pieters, M., Schelvis, J., Tys, D.,

Van Strydonck, M., Verhaege, F., 1999. Human occupation because of a regression,
or the cause of a transgression? A critical review of the interaction between geo-
logical events and human occupation in the Belgian coastal plan during the first
millenium AD. Probleme der Küstenforschung im südlichen Nordseegebied 26,
97–121.

Goovaerts, P., 1997. Geostatistics for Natural Resources Evaluation. Oxford University
Press, New York USA.

Lee, B.D., Jenkinson, B.J., Doolittle, J.A., Taylor, R.S., Tuttle, J.W., 2006. Electrical conduc-
tivity of a failed septic system soil absorption field. Vadose Zone Journal 5,
757–763.

Lehouck, A., 2010. Het verdwenen landschap en de etymologie van Koksijde. Een land-
schapshistorische benadering op basis van plaatsnamen. In: De Caluwe, J., Van
Keymeulen, J. (Eds.), Voor Magda, Artikelen voor Magda Devos bij haar afscheid
van de Universiteit Gent. Academia Press, Gent, pp. 397–419.

Marquardt, D., 1963. An algorithm for least-squares estimation of nonlinear parame-
ters. SIAM Journal on Applied Mathematics 11, 431–441.

Martinelli, H.P., Robledo, F.E., Osella, A.M., de la Vega, M., 2012. Assessment of the dis-
tortions caused by a pipe and an excavation in the electric and electromagnetic re-
sponses of a hydrocarbon-contaminated soil. Journal of Applied Geophysics 77,
21–29.

McNeill, J.D., 1980. Electromagnetic terrain conductivity measurement at low induc-
tion numbers. Technical Note TN-6, Geonics Limited. Missisauga, Ontario, Canada.

Monteiro Santos, F.A., Triantafilis, J., Bruzgulis, K.E., Roeb, J.A.E., 2010. Inversion of mul-
ticonfiguration electromagnetic (DUALEM-421) profiling data using a one-
dimensional laterally constrained algorithm. Vadose Zone Journal 9, 117–125.

Pellerin, L., Wannamaker, P.E., 2005. Multi-dimensional electromagnetic modeling and
inversion with application to near-surface earth investigations. Computers and
Electronics in Agriculture 46, 71–102.

Robinson, D., Abdu, H., Lebron, I., Jones, S., 2012. Imaging of hill-slope soil moisture
wetting patterns in a semi-arid oak savanna catchment using time-lapse electro-
magnetic induction. Journal of Hydrology 416–417, 39–49.

Saey, T., Simpson, D., Vermeersch, H., Cockx, L., Van Meirvenne, M., 2009a. Comparing
the EM38DD and DUALEM-21S sensors for depth-to-clay mapping. Soil Science So-
ciety of America Journal 73, 7–12.

Saey, T., Van Meirvenne, M., Vermeersch, H., Ameloot, N., Cockx, L., 2009b. A
pedotransfer function to evaluate the soil profile textural heterogeneity using
proximally sensed apparent electrical conductivity. Geoderma 150, 389–395.

Saey, T., De Smedt, P., Meerschman, E., Islam, M.M., Meeuws, F., Van De Vijver, E.,
Lehouck, A., Van Meirvenne, M., 2011a. Electrical conductivity depth modelling
with a multireceiver EMI sensor for prospecting archaeological features. Archaeo-
logical Prospection, http://dx.doi.org/10.1002/arp. 425 (published online).

Saey, T., Van Meirvenne, M., Dewilde, M., Wyffels, F., De Smedt, P., Meerschman, E.,
Islam, M.M., Meeuws, F., Cockx, L., 2011b. Combining multiple signals of an electro-
magnetic induction sensor to prospect land for metal objects. Near Surface
Geophysics 9, 309–317.

Tromp-van Meerveld, H.J., McDonnell, J.J., 2009. Assessment of multi-frequency elec-
tromagnetic induction for determining soil moisture patterns at the hillslope
scale. Journal of Hydrology 368, 56–67.

Vandenbohede, A., Lebbe, L., 2011. Groundwater chemistry patterns in the phreatic
aquifer of the central Belgian coastal plain. Applied Geochemistry, http://
dx.doi.org/10.1016/j.apgeochem.2011.08.012.

Vitharana, U.W.A., Saey, T., Cockx, L., Simpson, D., Vermeersch, H., Van Meirvenne, M.,
2008. Upgrading a 1/20,000 soil map with an apparent electrical conductivity sur-
vey. Geoderma 148, 107–112.

Wait, J.R., 1962. A note on the electromagnetic response of a stratified earth. Geophysics
27, 382–385.

Webster, R., Oliver, M.A., 2007. Geostatistics for Environmental Scientists, Second edi-
tion. John Wiley & Sons, Chichester.

http://dx.doi.org/10.1002/arp. 425
http://dx.doi.org/10.1016/j.apgeochem.2011.08.012
image of Fig.�6


Fig. 7. Measured ECaPERP,2 and modelled EC2* of the excavated site, with indication of the feature delineations based on the edge detection algorithm.
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