

FOOD SAFETY EVALUATION OF THE USE OF B. THURINGIENSIS AS A BIOLOGICAL CONTROL AGENT IN PRIMARY PRODUCTION OF LETTUCE

Thomas De Bock^{1,2}, Xingchen Zhao¹, Jelena Jovanovic¹, Andreja Rajkovic¹, Pieter Spanoghe³, Monica Höfte² and Mieke Uyttendaele¹

- ¹ Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- ² Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- ³ Laboratory of Crop Protection Chemistry, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium

Background and research objective

Bacillus thuringiensis (Bt):

(non-treated plants)

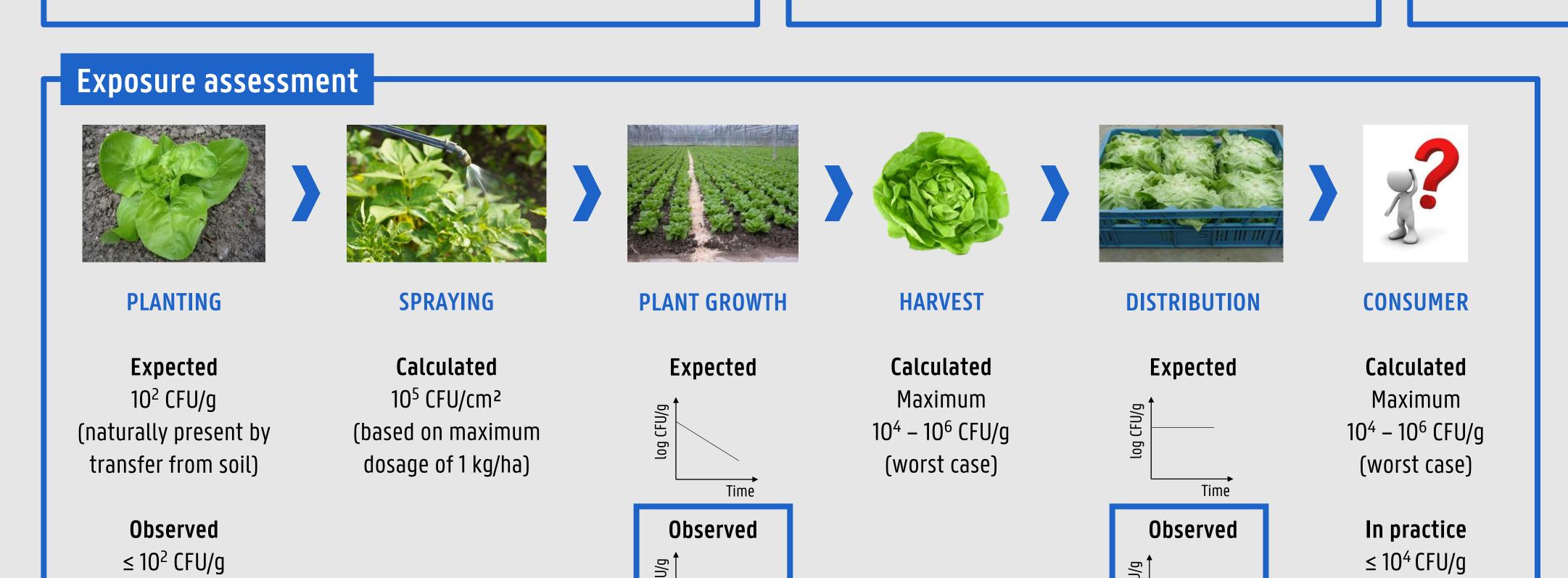
- A soil-dwelling bacterium closely related to the human pathogen *B. cereus*
- An often used microbial control agent

Need to perform a risk analysis

Hazard identification

- Classical cultural detection, nor 16S rDNA sequencing can differentiate *B. cereus* and Bt.
- Two papers report foodborne outbreaks related to Bt.
- One specific outbreak related to biocontrol strain.

Bt established as microbial hazard Needs further study to assess the risk


Hazard characterization

Based on literature (refer to De Bock et al., 2019):

- B. cereus enterotoxin genes: also in Bt.
- Enterotoxin production in vitro: also in Bt.
- Cytotoxic effects in Vero cell assays: also in Bt.
- In vivo experiments & GI tract simulations: contradictory results on Bt spores germination and subsequent enterotoxin production.

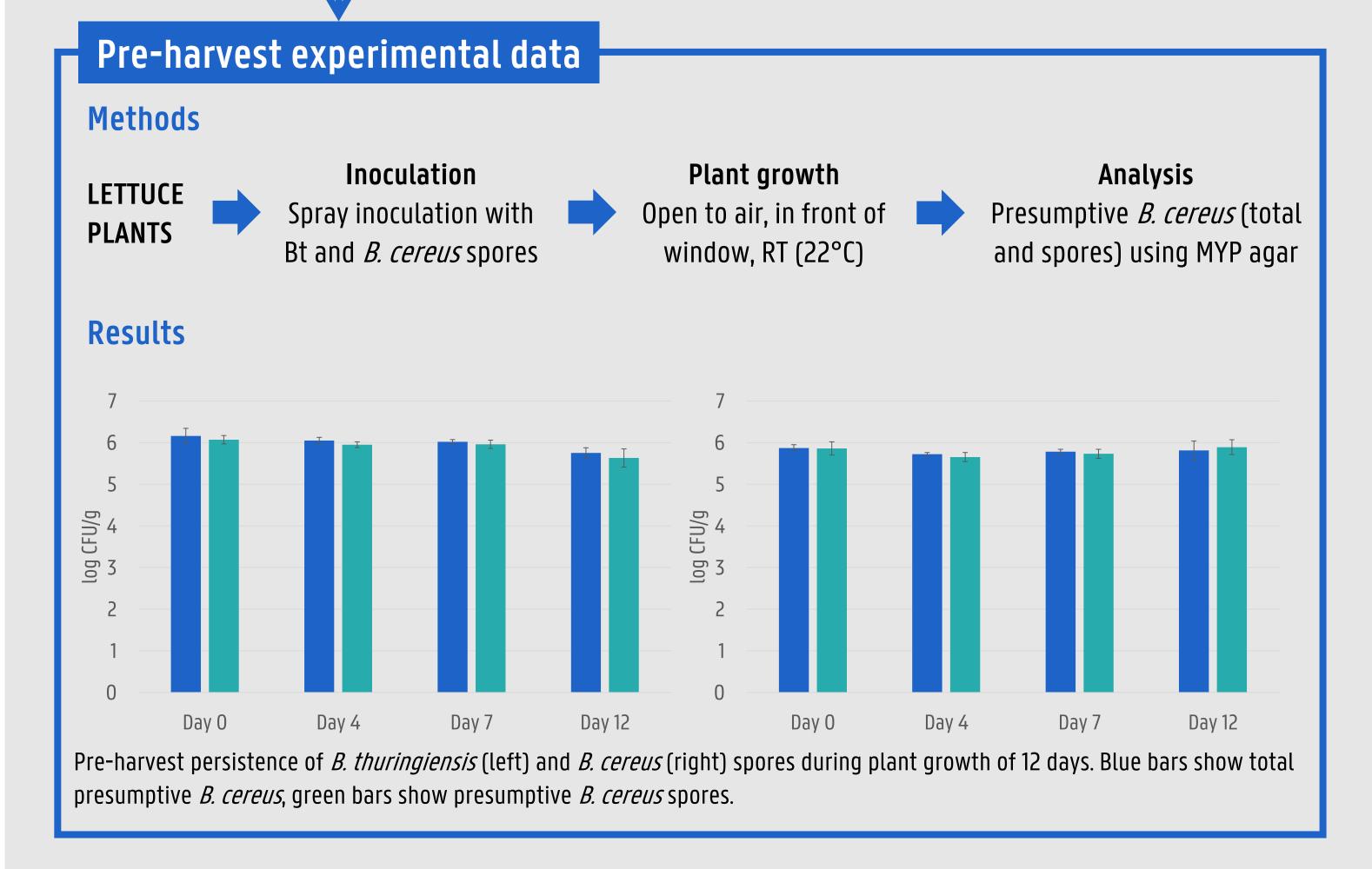
No evidence to conclude that Bt has a higher infective dose compared to *B. cereus*

Suggested: maximum 10⁵ CFU/g as safety limit

Risk characterization

IN THEORY

Maximum concentration > safety limit


Increased risk for foodborne disease

IN PRACTICE

No strong epidemiological evidence

No elevated numbers of presumptive *B. cereus* found on lettuce in retail market

The food safety risk is assumed to be low

Post-harvest experimental data

(butterhead lettuce in

supermarkets)

Methods

Inoculation Spray inoculation with LETTUCE Bt and *B. cereus* spores **LEAVES**

and vegetative cells

Storage Packed in stomacher bags, sealed and stored at 12°C

Analysis Presumptive *B. cereus* (total and spores) using MYP agar

Results

Post-harvest persistence of B. thuringiensis and B. cereus spores and vegetative cells during cold storage (12° C) of 7 days. PBC = presumptive B. cereus, Bt = B. thuringiensis, Bc = B. cereus.

	Day O		Day 7	
Inoculum	Total PBC	PBC spores	Total PBC	PBC spores
Bt (XenTari®) spores	(log CFU/g) 5.82 ± 0.04	(log CFU/g) 5.84 ± 0.02	(log CFU/g) 6.02 ± 0.17	(log CFU/g) 5.94 ± 0.09
Bt (XenTari®) spores	3.03 ± 0.10	3.00 ± 0.00	3.04 ± 0.07	3.02 ± 0.11
Bt (XenTari®) vegetative cells	3.38 ± 0.07	<2.00 ± 0.00	2.16 ± 0.28	<2.00 ± 0.00
Bc (FMFP 311) spores	3.78 ± 0.14	3.73 ± 0.04	3.64 ± 0.17	3.68 ± 0.09
Bc (FMFP 311) vegetative cells	3.46 ± 0.17	<2.00 ± 0.00	<2.00 ± 0.00	<2.00 ± 0.00

Risk management options

Risk interpreted as intolerable

- Maximum concentration may exceed the safety limit, product should be banned.
- Shifts the pesticide usage back to chemical products.

Risk interpreted as tolerable

- Lowering the allowed dose in primary production, lowers the maximum theoretical concentration as well.
- More research needed: possible to lower the dose without lowering the plant protection capacity?

Risk interpreted as acceptable

- Risk is assumed to be low and can therefore be accepted.
- Communication to vulnerable groups not to consume these Bt-treated products.

Contact

Thomas De Bock tacdbock.debock@ugent.be

Universiteit Gent

@ugent

in **Ghent University**

