

FOOD SAFETY EVALUATION OF THE USE OF *B. THURINGIENSIS* AS A **BIOLOGICAL CONTROL AGENT IN PRIMARY PRODUCTION OF LETTUCE**

<u>Thomas De Bock^{1,2}, Xingchen Zhao¹, Jelena Jovanovic¹, Andreja Rajkovic¹, Pieter Spanoghe³, Monica Höfte² and Mieke Uyttendaele¹</u> ¹ Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium ² Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium ³ Laboratory of Crop Protection Chemistry, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium

Background and research objective

Bacillus thuringiensis (Bt):

- A soil-dwelling bacterium closely related to the human pathogen *B. cereus*
- An often used microbial control agent 2)

Hazard identification

B. cereus: emetic and diarrhoeal syndrome.

- Classical cultural detection, nor 16S rDNA sequencing can differentiate *B. cereus* and Bt.
- Two papers report foodborne outbreaks related to Bt.
- One specific outbreak related to biocontrol strain.

Hazard characterization

Based on literature (refer to De Bock et al., 2019):

- *B. cereus* enterotoxin genes: also in Bt.
- Enterotoxin production in vitro: also in Bt.
- Cytotoxic effects in Vero cell assays: also in Bt.
- In vivo experiments & GI tract simulations: contradictory results on Bt spores germination and subsequent enterotoxin production.

Does the use of Bt-containing Plant Protection Products (PPPs) lead to an increased risk for food intoxications when plant becomes food? Need to perform a risk analysis

Bt established as microbial hazard Needs further study to assess the risk No evidence to conclude that Bt has a higher infective dose compared to *B. cereus* Suggested: maximum 10⁵ CFU/g as safety limit

Exposure assessment

PLANTING

Expected 10^2 CFU/g (naturally present by transfer from soil)

Observed $\leq 10^2 \text{ CFU/g}$ (non-treated plants)

SPRAYING

Calculated 10^{5} CFU/cm² (based on maximum dosage of 1 kg/ha)

Time

Time

Observed

HARVEST

Calculated

Maximum

 $10^4 - 10^6 \text{ CFU/g}$

(worst case)

DISTRIBUTION

Expected

CONSUMER

Calculated Maximum

Time

 $10^4 - 10^6 \text{ CFU/g}$ (worst case) In practice

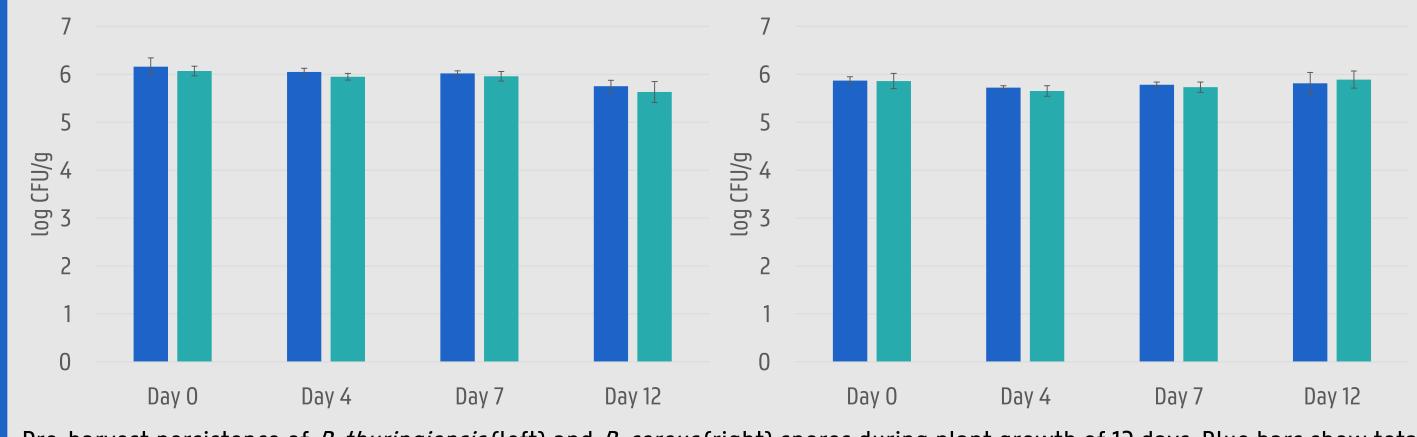
 $\leq 10^4 \, \text{CFU/g}$ (butterhead lettuce in supermarkets)

Risk characterization

IN THEORY Maximum concentration > safety limit Increased risk for foodborne disease

IN PRACTICE

No strong epidemiological evidence No elevated numbers of presumptive *B. cereus* found on lettuce in retail market The food safety risk is assumed to be low



Pre-harvest experimental data

Methods


Results

Pre-harvest persistence of *B. thuringiensis* (left) and *B. cereus* (right) spores during plant growth of 12 days. Blue bars show total presumptive *B. cereus*, green bars show presumptive *B. cereus* spores.

Post-harvest experimental data

Methods

Results

Post-harvest persistence of *B. thuringiensis* and *B. cereus* spores and vegetative cells during cold storage (12°C) of 7 days. PBC = presumptive *B. cereus*, Bt = *B. thuringiensis*, Bc = *B. cereus*.

	Day O		Day 7	
Inoculum	Total PBC (log CFU/g)	PBC spores (log CFU/g)	Total PBC (log CFU/g)	PBC spores (log CFU/g)
Bt (XenTari®) spores	5.82 ± 0.04	5.84 ± 0.02	6.02 ± 0.17	5.94 ± 0.09
Bt (XenTari®) spores	3.03 ± 0.10	3.00 ± 0.00	3.04 ± 0.07	3.02 ± 0.11
Bt (XenTari [®]) vegetative cells	3.38 ± 0.07	<2.00 ± 0.00	2.16 ± 0.28	<2.00 ± 0.00
Bc (FMFP 311) spores	3.78 ± 0.14	3.73 ± 0.04	3.64 ± 0.17	3.68 ± 0.09
Bc (FMFP 311) vegetative cells	3.46 ± 0.17	<2.00 ± 0.00	<2.00 ± 0.00	<2.00 ± 0.00

Risk management options

Risk interpreted as intolerable

Risk interpreted as tolerable

- Maximum concentration may exceed the safety limit, product should be banned.
- Shifts the pesticide usage back to chemical products.
- Lowering the allowed dose in primary production, lowers the maximum theoretical concentration as well.
- More research needed: possible to lower the dose without lowering the plant protection capacity?

Risk interpreted as acceptable

- Risk is assumed to be low and can therefore be accepted.
- Communication to vulnerable groups not
- to consume these Bt-treated products.

Contact

lin

Thomas De Bock tacdbock.debock@ugent.be

Ghent University

