Chapter 1

Remembering General Chemistry:

Electronic Structure and Bonding

Paula Yurkanis Bruice University of California, Santa Barbara

What is Organic Chemistry?

Organic compounds: from living organisms

 (with a vital force)Inorganic compounds: from minerals
(without a vital force)

ammonium cyanate an inorganic mineral

an "organic" compound
Organic compounds are compounds that contain carbon.

What Makes Carbon So Special?

- Atoms to the left of carbon give up electrons.
- Atoms to the right of carbon accept electrons.
- Carbon shares electrons.

The Structure of an Atom

an atom

Protons are positively charged.
Neutrons have no charge.
Electrons are negatively charged.
atomic number = \# of protons atomic number of carbon $=6$

Neutral carbon has
six protons and six electrons.

Isotopes

All Carbon Atoms Have the Same Atomic Number = \# of protons

Carbon Atoms Can Have the Different Mass Numbers

$$
\text { Mass Number }=\# \text { of protons }+\# \text { of neutrons }
$$

The Distribution of Electrons in an Atom

Table 1.1 Distribution of Electrons in the First Four Shells

	First shell	Second shell	Third shell	Fourth shell
Atomic orbitals	s	s, p	s, p, d	s, p, d, f
Number of atomic orbitals	1	1,3	$1,3,5$	$1,3,5,7$
Maximum number of electrons	2	8	18	32

- The first shell is closest to the nucleus.
- The closer the atomic orbital is to the nucleus, the lower its energy.
- Within a shell, $s<p$.

Atom	Name of element	Atomic number	$1 s$	$2 s$	$2 p_{x}$	$2 p_{y}$	$2 p_{z}$	$3 s$
H	Hydrogen	1	\uparrow					
He	Helium	2	$\uparrow \downarrow$					
Li	Lithium	3	$\uparrow \downarrow$	\uparrow				
Be	Beryllium	4	$\uparrow \downarrow$	$\uparrow \downarrow$				
B	Boron	5	$\uparrow \downarrow$	$\uparrow \downarrow$	\uparrow			
C	Carbon	6	$\uparrow \downarrow$	$\uparrow \downarrow$	\uparrow	\uparrow		
N	Nitrogen	7	$\uparrow \downarrow$	$\uparrow \downarrow$	\uparrow	\uparrow	\uparrow	
O	Oxygen	8	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	\uparrow	\uparrow	
F	Fluorine	9	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	\uparrow	
Ne	Neon	10	$\uparrow \downarrow$					
Na	Sodium	11	$\uparrow \downarrow$	\uparrow				

- Aufbau principle: An electron goes into the atomic orbital with the lowest energy.

$$
1 s<2 s<2 p<3 s<3 p<3 d
$$

- Pauli exclusion principle: No more than two electrons can be in an atomic orbital.
- Hund's rule: An electron goes into an empty degenerate orbital rather than pairing up.

Atoms in the First Column of the Periodic Table Lose an Electron

An atom is most stable if its outer shell is either filled or contains 8 electrons.

Lithium and sodium achieve a filled outer shell by losing an electron.

Atoms on the Right Side of the Periodic Table Readily Gain an Electron

Fluorine and chlorine achieve a filled outer shell by gaining an electron.

A Hydrogen Atom Can Lose or Gain an Electron

A hydrogen atom achieves an empty shell by losing an electron or a filled outer shell by gaining an electron.

Achieving a Filled Outer Shell by Sharing Electrons

A bond formed by sharing electrons is called a covalent bond.

Achieving a Filled Outer Shell by Sharing Electrons

How Many Bonds Does an Atom Form?

notice that each $\mathrm{O}, \mathrm{N}, \mathrm{C}$ is surrounded by 8 electrons, and each H is surrounded by 2 electrons

Nonpolar and Polar Covalent Bonds

Nonpolar covalent bond = bonded atoms are the same or have similar electronegativities.

$$
\mathrm{H}-\mathrm{H} \quad \mathrm{~F}-\mathrm{F} \quad \mathrm{C}-\mathrm{C} \quad \mathrm{C}-\mathrm{H}
$$

Polar covalent bond = bonded atoms have different electronegativities.

The Greater the Difference in Electronegativity, the More Polar the Bond

Nonpolar covalent bond: electonegativity difference < 0.5
Polar covalent bond: electonegativity difference 0.5-1.9
Electronegativity difference > 1.9: electrons are not shared; atoms are held together by the attraction of opposite charges

Dipole Moment

Dipole moment $=$ size of the charge x the distance between the charges

Table 1.4	The Dipole Moments of Some Common Bonds		
Bond	Dipole moment (D)	Bond	Dipole moment (D)
$\mathrm{H}-\mathrm{C}$	0.4	$\mathrm{C}-\mathrm{C}$	0
$\mathrm{H}-\mathrm{N}$	1.3	$\mathrm{C}-\mathrm{N}$	0.2
$\mathrm{H}-\mathrm{O}$	1.5	$\mathrm{C}-\mathrm{O}$	0.7
$\mathrm{H}-\mathrm{F}$	1.7	$\mathrm{C}-\mathrm{F}$	1.6
$\mathrm{H}-\mathrm{Cl}$	1.1	$\mathrm{C}-\mathrm{Cl}$	1.5
$\mathrm{H}-\mathrm{Br}$	0.8	$\mathrm{C}-\mathrm{Br}$	1.4
$\mathrm{H}-\mathrm{I}$	0.4	$\mathrm{C}-\mathrm{I}$	1.2

The greater the difference in electronegativity, the greater the dipole moment and the more polar the bond.

Electrostatic Potential Maps

Lewis Structures

Formal Charge

Formal Charge =
the \# of valence electrons -
(the \# of lone-pair electrons + the \# of bonds)

Carbon Forms Four Bonds

If carbon does not form four bonds, it has a charge (or it is a radical).

Nitrogen Forms Three Bonds

ammonia

hydrazine

Nitrogen has one lone pair.

If nitrogen does not form three bonds, it is charged.

ammonium ion

amide anion

Oxygen Forms Two Bonds

hydrogen peroxide

Oxygen has two lone pairs.

If oxygen does not form two bonds, it is charged.

Hydrogen and the Halogens Form One Bond

A halogen has three lone pairs.

If hydrogen or halogen does not form one bond, it has a charge (or it is a radical).

H^{+}	$\mathrm{H}{ }^{-}$	H-	:Ḅr:-	: B r -
hydrogen ion	hydride ion	hydrogen radical	bromide ion	bromine radical

The Number of Bonds Plus the Number of Lone Pairs Equals Four

\# of bonds +
\# of lone pairs
always equals 4

Lewis Structures

How to Draw a Lewis Structure

$\mathrm{NO}_{3}{ }^{-}$

Determine the total number of valence electrons ($5+6+6+6=23$).
Because they are negatively charged, add another electron $=24$.

Avoid O—O bonds.
Check for formal charges.

Kekulé Structures and Condensed Structures

condensed structures $>\mathrm{CH}_{3} \mathrm{Br}$
$\mathrm{CH}_{3} \mathrm{OCH}_{3}$
$\mathrm{HCO}_{2} \mathrm{H}$
$\mathrm{CH}_{3} \mathrm{NH}_{2}$
N_{2}

Kekulé Structures and Condensed Structures

Table 1.5 Kekulé Structures and Condensed Structures

Kekulé Structures

2017 Pearson Education, Ltd.

Kekulé Structures and Condensed Structures

Skeletal Structures

Skeletal structures show the carbon-carbon bonds as lines, but do not show the carbons or the hydrogens that are bonded to the carbons.

```
condensed
``` structures


\section*{s Atomic Orbitals}

\section*{An atomic orbital is the region of space around the nucleus where an electron is most apt to be found.}

\section*{An Electron Behaves Like a Standing Wave}

the upward and downward displacements of the vibrating string have opposite phases

\section*{The Three \(p\) Orbitals}

The lobes of a \(p\) atomic orbital have opposite phases.

\section*{Forming a Sigma Bond}

\section*{Waves Can Reinforce Each Other Waves Can Cancel Each Other}

\section*{Atomic Orbitals Combine to Form Molecular Orbitals}

Orbitals are Conserved \# of Molecular Orbitals = \# of Atomic Orbitals Combined

\section*{Side-to-Side Overlap of In-Phase p Orbitals Forms a \(\boldsymbol{\pi}\) Bond}

\section*{Methane \(\left(\mathrm{CH}_{4}\right)\)}

Representations of Methane

perspective formula

ball-and-stick model

space-filling model

electrostatic potential map

The \(4 \mathrm{C}-\mathrm{H}\) bonds have the same length.
All the bond angles are the same (109.5 \({ }^{\circ}\))

\section*{In Order to Form Four Bonds, Carbon Must Promote an Electron}

\section*{Four Orbitals are Mixed to Form Four Hybrid Orbitals}

An \(s p^{3}\) orbital has a large lobe and a small lobe.

...the \(s\) orbital adds to one lobe of the \(p\) orbital...

\section*{The Carbon in Methane is \(s p^{3}\)}

Carbon is tetrahedral. The tetrahedral bond angle is \(109.5^{\circ}\).

\section*{The Bonding in Ethane}

ethane

© 2017 Pearson Education, Ltd.

\section*{Ethane}

\section*{Representations of Ethane}

perspective formula

ball-and-stick model

space-filling model

\section*{End-on Overlap of Orbitals Forms a \(\sigma\) Bond}

\section*{Ethene (Ethylene)}

Carbon bonds to 3 atoms, so it needs to hybridize 3 atomic orbitals.

\section*{An \(s p^{2}\) Carbon Has Three \(s p^{2}\) Orbitals and One p Orbital}

\section*{The Bonding in Ethene}

\section*{Ethene}

\section*{Representations of Ethene}

ball-and-stick model

space-filling model

\section*{Ethyne (Acetylene)}

\section*{\(\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}\)}

Carbon bonds to 2 atoms, so it needs to hybridize 2 atomic orbitals.

\section*{The Two sp Orbitals Point in Opposite Directions; The Two \(p\) Orbitals are Perpendicular}

\section*{The Bonding in Ethyne}

\section*{Ethyne}

\section*{Representations of Ethyne}

ball-and-stick model

space-filling model

electrostatic potential map

\section*{The Carbon in the Methyl Cation and in the Methyl Radical are \(\boldsymbol{s p}^{\mathbf{2}}\)}

\section*{Representations of Methyl Cation}

electrostatic potential map

Representations of the Methyl Radical

angled side view
ball-and-stick models

electrostatic potential map

\section*{The Carbon in the Methyl Anion is \(\boldsymbol{s p}^{\mathbf{3}}\)}

\section*{Representations of the Methyl Anion}

\section*{Ammonia \(\left(\mathrm{NH}_{3}\right)\)}

Nitrogen has 3 unpaired valence electrons and forms 3 bonds.
Nitrogen does not have to promote an electron.

\section*{The Bonds in Ammonia \(\left(\mathrm{NH}_{3}\right)\)}

If N used \(p\) orbitals to form bonds, the bond angles would be \(90^{\circ}\).
The observed bond angles are \(107.3^{\circ}\), so nitrogen must used hybridized orbitals.

\section*{Ammonia}

\section*{Representations of Ammonia}

\section*{The Ammonium Ion \(\left(+\mathrm{NH}_{4}\right)\)}

Representations of the Ammonium Ion

electrostatic potential map

\section*{Water \(\left(\mathrm{H}_{2} \mathrm{O}\right)\)}

Oxygen has 2 unpaired valence electrons and forms 2 bonds. Oxygen does not have to promote an electron.

\section*{The Bonds in Water \(\left(\mathrm{H}_{2} \mathrm{O}\right)\)}

The observed bond angles are \(104.5^{\circ}\), so oxygen must used hybridized orbitals.

\section*{Water}

\section*{Representations of Water}

electrostatic potential map

\section*{The Bond in a Hydrogen Halide}

A halogen has 1 unpaired valence electron and forms 1 bond.
A halogen uses hybrid orbitals.
- The 3 lone pairs are energetically identical.
- Lone pairs position themselves to minimize electron repulsion.

\section*{Hydrogen Fluoride}

\section*{Representations of Hydrogen Fluoride}

perspective formula

ball-and-stick model

electrostatic potential map

\section*{Overlap of an \(s\) Orbital with an \(s^{3} p^{3}\) Orbital}

\section*{The Length and Strength of a Hydrogen Halide Bond}

Table 1.6 Hydrogen-Halogen Bond Lengths and Bond Strengths
\begin{tabular}{|c|c|c|}
\hline Hydrogen halide & Bond length (A) & Bond strength (kcal/mol) \\
\hline \[
\mathrm{H}-\mathrm{F} \quad \mathrm{H}_{\mathrm{F}}
\] & 0.917 & 136 \\
\hline \(\mathrm{H}-\mathrm{Cl}\) & 1.275 & 103 \\
\hline \(\mathrm{H}-\mathrm{Br}\) & 1.415 & 87 \\
\hline \[
\mathrm{H}-\mathrm{I}
\]
I & 1.609 & 71 \\
\hline
\end{tabular}

\section*{Hybridization and Molecular Geometry}

\(s p^{3}\)
\(109.5^{\circ}\)
tetrahedral

\(s p^{2}\)
\(120^{\circ}\)
trigonal planar
\[
\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}
\]
\[
s p
\]
\[
180^{\circ}
\]
linear

The orbitals used in bond formation determine the bond angle.

\section*{Single Bond: \(1 \sigma \quad\) Double Bond: \(1 \sigma+1 \pi\) Triple Bond: 1 б + 2 п}

\section*{Hybridization of \(\mathrm{C}, \mathrm{N}\), and O}

\section*{Bond Strength and Bond Length}

The more bonds holding 2 atoms together,
the stronger and shorter it is.

bond strength decreases as bond length increases

The greater the electron density in the region of overlap, the stronger and shorter the bond.

\section*{Hybridization Affects Bond Length and Bond Strength}

bond strength increases as bond length decreases

The more \(s\) character in the orbital, the stronger and shorter is the bond.

\section*{Hybridization Affects the Bond Angle}

The more \(s\) character, the greater the bond angle.

\section*{Hybridization, Bond Angle, Bond Length, Bond Strength}

Table 1.7 Comparison of the Bond Angles and the Lengths and Strengths of the Carbon-Carbon and Carbon-Hydrogen Bonds in Ethane, Ethene, and Ethyne
Molecule
Hybridization of carbon
Bond angles
Length of
\(\mathrm{C}-\mathrm{C}\) bond
(̊)

Strength of
C-C bond
(kcal/mol)
(kcal/mol)

\section*{Length of \(\mathrm{C}-\mathrm{H}\) bond} (£)

> Strength of C-H bond (kcal/mol)
\(s p^{3}\)
\(s p^{2}\)
ethene
\(\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}\)
ethyne
\(s p\)
1.54
\(109.5^{\circ}\)
ethane

-
\(180^{\circ}\)

五
\(\square\)
90.2
1.10
101.1
110.7
1.08
- 110.7
174.5
230.4
1.06
133.3

\section*{Summary}
- The shorter the bond, the stronger it is.
- The greater the electron density in the region of
- orbital overlap, the stronger the bond.
- The more \(s\) character, the shorter and stronger the bond.
- The more \(s\) character, the larger the bond angle.

\section*{A п \(\quad\) Bond is Weaker Than a \(\sigma\) Bond}

strength of the double bond \(=174 \mathrm{kcal} / \mathrm{mol}\) strength of the \(s p^{2}-s p^{2} \sigma\) bond \(=-112 \mathrm{kcal} / \mathrm{mol}\) strength of the \(\pi\) bond \(=62 \mathrm{kcal} / \mathrm{mol}\)
a \(\pi\) bond is weaker than a \(\sigma\) bond

\section*{Dipole Moments of Molecules}

\section*{Dipole Moments of Molecules}
```

