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Bounds for the price of discretely sampled arithmetic Asian options

Abstract

In this paper the pricing of discretely sampled European-style arithmetic Asian options
with fixed and floating strike is studied by deriving accurate lower and upper bounds. For
a lower bound, we adapt the idea of Rogers and Shi (1995) and we use in addition results
based on comonotonic risks. For an upper bound we first use a general technique for deriving
upper (and lower) bounds for stop-loss premiums of sums of dependent random variables, as
explained in Kaas, Dhaene and Goovaerts (2000) and we further use the ideas of Rogers and
Shi (1995) and Nielsen and Sandmann (2002). We obtain analytical and easily computable
bounds. We also study the hedging problem. Several sets of numerical results are included.

| Introduction

In this paper the pricing of discretely sampled European-style arithmetic Asian options with fixed
and floating strike is studied. Asian options are path-dependent contingent claims with pay-offs
that depend on the average of the underlying asset price over some prespecified period of time,
often a low number of trading days in the discrete case. Such contracts form an attractive spec-
ification for thinly traded asset markets where price manipulation on or near a maturity date is
possible. In markets where prices are prone to periods of extreme volatility the averaging performs
a smoothing operation. For buyers as well as for writers, an Asian option is a useful hedging in-
strument. These Asian options provide for the buyer a cost efficient way of hedging cash or asset
flows over extended periods, e.g., for foreign exchange, interest rate, or commaodities like oil or
gold. For the writer of an Asian option, the advantages include more manageable hedge ratios and
the ability to unwind his position more gracefully at the end.

Asian options can also be part of complex financial contracts and strategies, like retirement
plans or catastrophe insurance derivatives. Indeed, as explained in Nielsen and Sandmann (2002),
a typical investment plan of a retirement scheme could include fixed periodic payments invested in
a specified risky asset. An Asian option on the average return can be used to guarantee a minimum
rate of return on the periodic payments. On the other hand, Cat-calls are catastrophic risk options
which include Asian options on the average of an underlying index (see Geman (1994)).

Within the Black & Scholes (1973) model, no closed form solutions are available for Asian
options involving the discretely sampled arithmetic average. For unlike options on geometric
average, the density function for the arithmetic average is not lognormal and has no explicit rep-
resentation. A variety of methods for the European case and especially continuous fixed strike
options have been developed while only a few papers deal with the more practical case of discrete
arithmetic averaging. A partial list includes (for references see for example Klassen (2001) and
Vece' (2001)): Monte Carlo or quasi-Monte Carlo methods, exact expressions involving Laplace
transforms or an infinite sum over recursively defined integrals, convolution methods using the fast
Fourier transform, analytic approximations based on moment matching or conditioning on some
average, a number of PDE methods, tree methods.



An accurate lower and upper bound in the case of continuous averaging was obtained by the
method of conditioning in Rogers and Shi (1995). We adapt this idea to the case of discrete av-
eraging and use in addition results based on comonotonic risks (see Kaas, Dhaene and Goovaerts
(2000) and Dhaene et al. (2002)). This approach leads to an accurate, analytical, easily computable
lower bound for the price of an Asian option. For an upper bound we follow different approaches,
one that is based on a general technique for deriving upper (and lower) bounds for stop-loss premi-
ums of sums of dependent random variables, as explained in Kaas, Dhaene and Goovaerts (2000),
another that follows again the ideas of Rogers and Shi (1995) and Nielsen and Sandmann (2002),
and a third one that combines the two methods. They all lead to analytical, computable upper
bounds. We compare all approaches and compare our results to those of Jacques (1996), who
approximates the distribution of the arithmetic average by a more tractable one.

As in Nielsen and Sandmann (2002), we then study the hedging of Asian options by calculating
the Delta, Gamma and Vega of the lower and upper bounds.

An arithmetic Asian European-style call option with exercise date. averaging dates and
fixed exercise pricés, generates af' a pay-off

1 n—1
(EZS(T—z) —K) ,
=0 +
wherez, = max{z,0} andS(T — i) is the price of a risky asset at tiffe— i, =0,...,n — 1.
The price of the call option at current time= 0 is given by

<RZ_IS(T—Z') —nK) ]

under a martingale measuteand withr the risk-neutral interest rate. Throughout the paper we
consider ‘forward starting’ Asian options which means that at the current(irtiee averaging

has not yet started and that theariablesS(7"—n+1),...,S(T") are random. This case states in
contrast with the case that—n+1 < 0 where only the price§(1),...,.S(T") remain random. In
literature, this Asian option is called ‘in progress’. Most papers treat only standard Asian options
which is the case dI' = n — 1. Note however that our results for forward starting Asian options
can immediately be translated to results for Asian options in progress.

Assuming a Black & Scholes setting, the random variabIEgE — i)/S(0) are lognormally dis-
tributed under the unique risk-neutral measreith parameterér — o2 /2)(T — i) ando?(T —1),

whengo is the volatility of the underlying risky asset. Therefore we do not have an explicit analyti-
cal expression for the distribution of the aver%gE?;o1 S(T —1i) and determining the price of the
Asian option is a complicated task. From (1) it is seen that the problem of pricing arithmetic Asian
options turns out to be equivalent to calculating stop-loss premiums of a sum of dependent risks.
Hence we can apply the results on comonotonic upper and lower bounds for stop-loss premiums,
which have been summarized in Section II.

Simon, Goovaerts and Dhaene (2000) derived and computed in a general framework an analyti-
cal expression for the so-called ‘comonotonic upper bound’, which is in fact the smallest linear
combination of prices of European call options that bounds the price of an European-style Asian
option from above. Nielsen and Sandmann (2002) studied both upper and lower bounds for an
European-style arithmetic Asian option in the Black & Scholes setting. In particular, they derive

e*T’T
(1) AC(n,K,T) = E°
n
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the Simon, Goovaerts and Dhaene upper bound using Lagrange optimization. Nielsen and Sand-
mann (2002) also apply the Rogers & Shi reasoning in the arithmetic case by using one specific

standardized normally distributed conditioning variable.

Independently, we derive more general lower and Rogers & Shi upper bounds in the sense that we
allow for other normally distributed conditioning variables.

Next, we improve the Rogers & Shi upper bounds and obtain another so-called partially ex-
act/comonotonic upper bound which consists of an exact part of the option price and some im-
proved comonotonic upper bound for the remaining part. This idea of decomposing the calcu-
lations in an exact part and an approximating part goes at least back to Curran (1994). This last
upper bound generalizes an analogous bound of Nielsen and Sandmann and provides a closed-form
expression for it.

The procedures in this paper can also be used to derive directly upper and lower bounds for the
price of arithmetic Asian put options. We price here, instead, the fixed strike put options by means
of the put-call parity.

An arithmetic Asian European-style put option with exercise djte averaging datesy <
T + 1) and floating exercise price with percentageyenerates af’ a pay-off

(% s —i)- 65(T)>

By using a change of numeraire, we can evaluate these financial instruments as well. In inde-
pendent work, Henderson and Wojakowski (2002) use the same change of numeraire to obtain
symmetry results between forward starting floating and fixed strike Asian options in case of con-
tinuous sampling. We show that their results can be extended to discretely sampling and we give
also bounds for the Asian floating options in progress. In fact, Henderson and Wojakowski (2002)
consider the case of a continuous dividend yield his case can also be easily dealt with in our
context, by replacing the interest ratby » — §. We only treat the continuous dividend yiele@x-

plicitly in our generalization of the Henderson and Wojakowski symmetry results to the arithmetic
discrete sampling case.

The paper is composed as follows. Section Il recalls from Kaas et al. (2000) procedures for
obtaining the lower and upper bounds for prices by using the notion of comonotonicity. Section
lll applies these procedures in the case of a sum of lognormal variables. Section IV provides
bounds for the fixed strike Asian options in the Black & Scholes setting, first by concentrating
on the comonotonicity and then by applying the Rogers and Shi approach to carefully chosen
conditioning variables. We also provide upper bounds by generalizing the Nielsen and Sandmann
idea and by combining it with the notion of comonotonicity. Several sets of numerical results are
given and the different bounds are discussed. We further derive hedging formulae for the lower
and upper bounds. Section V treats the floating strike Asian options in the Black & Scholes setting.
Section VI concludes the paper.

I Some theoretical results

In this section, we recall from Dhaene et al. (2002) and the references therein the procedures for
obtaining the lower and upper bounds for stop-loss premiums of Suaisdependent random
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variables by using the notion of comonotonicity. A random ve¢fof, ..., X¢) is comonotonic
if each two possible outcomés,, ..., z,) and(yi,...,y,) of (X§,..., X¢) are ordered compo-
nentwise.

In both financial and actuarial context one encounters quite often random variables of the type
S = >, X; where the terms; are not mutually independent, but the multivariate distribution
function of the random vectak’ = (X, X»,..., X,,) is not completely specified because one
only knows the marginal distribution functions of the random variablesin such cases, to be
able to make decisions it may be helpful to find the dependence structure for the random vector
(X1,...,X,) producing the least favourable aggregate claéimsth given marginals. Therefore,
given the marginal distributions of the terms in a random varigbte}"" | X;, we shall look for
the joint distribution with a smaller resp. larger sum, in the convex order sense. In short, the sum
S is bounded below and above in convex ordet,{) by sums of comonotonic variables:

S* Zex S Zex $* Zex S,
which implies by definition of convex order that
E[(S* — d)4] < B[S — d)4] < B[(S" — d)4] < E[(S° — d)4]

for all  in R*, while E[S*] = E[S] = E[S"] = E[S].

A. Comonotonic upper bound

As proven in Dhaene et al. (2002), the convex-largest sum of the components of a random vector
with given marginals is obtained by the comonotonic sifre= X{ + X+ --- + X with

Se £ > ),
=1
where the usual inverse of a distribution function, which is the non-decreasing and left-continuous
function F';' (p) is defined by
Fi'(p) =inf{z € R| Fx(z) >p}, pe0,1],

with inf ) = +o0 by convention.

Kaas et al. (2000) have proved that the inverse distribution function of a sum of comonotonic
random variables is simply the sum of the inverse distribution functions of the marginal distri-
butions. Therefore, given the inverse functid@sj, the cumulative density function (hereafter
denoted by cdf) of° = X7 + X5 + --- + X can be determined as follows:

Fse(r) = sup{p€[0,1] | Fse(z) > p} =sup{p € [0,1] | F&.'(p) <}

(2) = sup {p e[0,1] ] Y Flp) < x}

=1



Hence, in case of strictly increasing and continuous marginals, thésedf) is uniquely deter-
mined by

(3) ZF (Fse (x)) =z,  Fg'(0) <z < Fgl(1).

Hereafter we restrict ourselves to this case of strictly increasing and continuous marginals.

In the following theorem Dhaene et al. (2002) have proved that the stop-loss premiums of a
sum of comonotonic random variables can easily be obtained from the stop-loss premiums of the
terms.

Theorem 1. The stop-loss premiums of the sfrof the components of the comonotonic random
vector(X{, X5, ..., X¢) are given by

ol ZE[X Fi! (P (d)) } (Fgl(0) < d < FZ'(1)).

If the only information available concerning the multivariate distribution function of the random
vector(Xl, ..., X,) are the marginal distribution functions of thg, then the distribution function
of S¢ = F (U) + Fy)(U)+ -+ F'(U) is a prudent choice for approximating the unknown
dlstrlbutlon function ofS = X; + --- 4+ X,,. Itis a supremum in terms of convex order. It is the
best upper bound that can be derived under the given conditions.

B. Improved comonotonic upper bound

Let us now assume that we have some additional information available concerning the stochastic
nature of( X, ..., X,,). More precisely, we assume that there exists some random vatiatité

a given distribution function, such that we know the conditional cumulative distribution functions,

given A = )\, of the random variabled’;, for all possible values okf. In fact, Kaas et al. (2000)
define the improved comonotonic upper bofcas

S* = FX\A(U)—l—F |A(U)+"'+F§5\A(U)v

whereF'y IA(U) is the notation for the random variabfgU, A), with the functionf; defined by

filu,A) = Fy. |A ,(u). In order to obtain the distribution function 8f, observe that given the
eventA = ), the random variablg* is a sum of comonotonic random variables. Hence,

Su‘A)\ Z X|A /\ , pe[ovl]

GivenA = ), the cdf ofS* is defined by

qumA:)\()—sup{pGOl |Z X‘A/\ <:1:}.
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The cdf ofS* then follows from

Fsu(l’) = /+oo Fgu|A:/\(l’) dFA(/\)

—00

If the marginal cdfsF'x,;x—, are strictly increasing and continuous, thén ,—,(x) is a solution
to

4) Z X, |A A (Foejama(@) ==, (Fsul\A )\(0)7FS_“1| A:/\(l)>‘

In this case, we also find that for adye ( S“|A ,(0), Fs_um A(1)) :

E[S"—d), | A=A ZE[(X FXﬁAA(FSuMA(d)))JF\A:/\},

from which the stop-loss premium at retentidrof S* can be determined by integration with
respect to\.

C. Lower bound

Let X = (X4,...,X,) be a random vector with given marginal cdiy,, F'x,, ..., Fx,. We
assume as in the previous section that there exists some random vaneititea given distribution
function, such that we know the conditional cdfs, given= ), of the random variableX;, for

all possible values ok. This random variablé, however, should not be the same as in case of
the upper bound. We recall from Kaas et al. (2000) how to obtain a lower bound, in the sense of
convex order, foS = X; + X5 + - - - + X, by conditioning on this random variable. We remark
that this idea also can be found in Rogers and Shi (1995) for the continuous case.

Let us denote the conditional expectationSy
S*=FE[S|A].

Let us further assume that the random variable such that alF’ [ X; | A] are non-decreasing and
continuous functions af. The quantiles of the lower bourid then follow from

Z E[X|A] ):ZE[XHA:FA_I@)}; pel0,1],

and the cdf of’ is according to (2) given by

Fse(x) = sup {pG [0,1] | iE [Xi | A=Fy'(p)] Sx}.

=1

If we now additionally assume that the cdfs of the random variabl€X; | A| are strictly
increasing and continuous, then the cdSbfs also strictly increasing and continuous, and we get

forallz e (Fg'(0), Fg.' (1)),

(5) Z oy (Fee(@) =2 & DY E[X;|A=F' (Fs(2)] ==,

=1
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which unambiguously determines the cdf of the convex order lower bstfat S. Using Theo-
rem 1, the stop-loss premiums®fcan be computed as:

E[ ] ZE[ [Xi | A] - [Xz'|A:FA_1(FSZ(d))D+]7

which holds for all retentiong € (F,' (0), Fg' (1)) .

So far, we considered the case thatfllX; | A] are non-decreasing functions &f The case
where allE' [X; | A] are non-increasing and continuous functiona @flso leads to a comonotonic
vector(E [ X | A],E[X2 | A],..., E[X, | A]), and can be treated in a similar way.

Il Sums of lognormal variables

In this section, we study upper and lower boundsEft{n(S — d)+} whereS is a linear combination
of lognormal variables. Let us denote

(6) S:zn:Xi:zn:aiey’}
i=1 i=1

with ¥; a normally distributed random variable with me&iY;] and variancey. . In this case the
stop-loss premium with some retentignnamelyE [(X; — d;), |, is well-known sincén (sign (a;) X;) ~
N (i, 02) with

=In|o;| + E[Y:], and o; = oy,

and equals fory;d; > 0

(7) E[(Xz - di)+] = sign (Oéi) 6M+% @(sign (Oéi) di,l) —d; (ID(sign (Oéi) dm),
whered, ; andd, , are determined by

i+ 0?2 —In|d;
(8) dm:'u—i—al n] |, di,QZdi,l_Oi-

0;

The casesyd; < 0 are trivial.

We now consider a normally distributed random variabknd we slightly generalize Theorem
1 of Dhaene et al. (2002) to our more general settings.

Theorem 2. LetS be given by6) and consider a normally distributed random variatlevhich
is positively correlated to alt; in S and such thatY;, A) is bivariate normally distributed for alll
7. Then the distributions of the comonotonic upper bolifhid the improved comonotonic upper



boundS* and the lower boun@* are given by

©) S = D F(U) =) oy ePImmedma ),
i=1 i=1
(10) Su _ Z F);1|A<U) — Z o eE[Yi]+min<I>—1(V)+sign(ai)\/17”2 UYi‘P_l(U)?
=1 i=1
— 3 — - Hrioy, @71 V)Jrl(lfr?)o?
(11) st = Y B [A] =) ap et 0 (e
i=1 i=1

whereU andV = @ (A‘—Ji[A]) are mutually independent uniform(0,1) random variabiess the

o

cdf of theN (0, 1) distribution andr; is defined by
cov [Y;, Al
— >

ri=r(Y,A\) = 0.

Oy, 0A

A. Comonotonic upper bound

Since the cdfsFx, are strictly increasing and continuous, it follows from (3) and (9) that for
x € (Fg.'(0), Fg&.' (1)), the cdf of the comonotonic sufik:(z) can be found by solving

(12) Z o eElYiltsign(ai)oy, @71 (Fee (@) _ o
i=1

From Theorem 1 and (7), we find the following expression for the stop-loss premium at retention
d with Fg.'*(0) < d < Fg.'(1) for Se:

13 B[ ~d),] =D 0T @ [sign(a)a, 07 (B ()] - d(1- Fo(d)).

=1

B. Improved comonotonic upper bound

We now determine the cdf & and the stop-loss premiutd [(S* — d). |, where we condition
on a normally distributed random variableor equivalently on the uniforf®, 1) random variable
introduced in Theorem 2:

(14) V=2a (A;EW) .

oA

The conditional probabilityFs.,—,(z) also denoted bys.(z | V' = v), is the cdf of a sum of
n comonotonic random variables and follows erij:U(O) << FS]}V:v(l), according to (4)
and (10), implicitly from:

(15) Z o o ElYil+rioy, @7 (v)+sign(ai)\/1-r2 o, @~ (Fu (a[V=0)) _ ,.

=1



The cdf ofS* is then given by
1
(16) Fsu (ﬂf) = / FSu|V:v(x)dU.
0

We now look for an expression for the stop-loss premium at retedtwith F. SW _,0)<d<
Foiy_,(1) for S®
(&7

ple-a,] = [ Ble mv-vdv—Z/ (@1 v =0-a) |

with d; = F! (Fsu(d |V =wv) |V =v) and withU a random variable which is uniformly

X;|A
distributed on(0, 1). Sincesign(a;)Fy}, (U | V = v) follows a lognormal distribution with mean

and standard deviation: i
(i) = Infau| + E[Y] +rioy, @ '), 0,(i) = /1 - 120y,
one obtains that
(18) d; = a; exp {E [Y;] + rioy, @1 (v) + sign(ai)\/l—iﬁayi(b_l (Fsuvzv(d)):| :
The well-known formula (7) then yields

=1

with, according to (8),

po(i) + 03(i) — In |d;]
di,l = . ;

o, (1)

di,2 = di,l - Uv(i)-

Substitution of the corresponding expressions and integration over the interijaleads to the
following result

B[ = d),] = ae M+t 09
=1

1
X / e W (sign(ozi)\/l —r2oy, — ®! (Fsuv_v(d>)> dv
0

(19) —d(1- Fa(d).

C. Lower bound

In this subsection, we take for simplicity of notation all > 0. Further, we assume that the
conditioning variableA is normally distributed and has the right sign such that the correlation
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coefficientsr; are all positive. These conditions ensure t8atis the sum ofn comonotonic
random variables.
SinceE[X; | A] is non-decreasing, we can obtdik () according to (5) and (11) from

(20) ZO‘@ E[Yil+rioy, @ (Fg(2))+3 (112 )0, —

Moreover ass’ is the sum of: lognormally distributed random variables, the stop-loss premium
at retentioni(> 0) can be expressed explicitly by invoking Theorem 1 and (7):

@) B[ -d), ] =Y roy - 07 (Fe(d))] — d (1 Fa(d).

IV Fixed strike Asian options in a Black & Scholes setting

In the Black & Scholes model, the price of a risky as§é8{t), ¢t > 0} under the risk-neutral
measurg) follows a geometric Brownian motion process, with volatiktynd with drift equal to
the risk-free force of interest

dS(t)

—= =rdt dB(t t>0
where{B(t), t > 0} is a standard Brownian motion process un@erHence, the random vari-

ablesﬁ are lognormally distributed with parametérs— —)t andto?.

We now shall concentrate on bounds for the fixed strike Asian option by comonotonicity rea-
soning and by using the approach of Rogers & Shi which has been generalized by Nielsen and
Sandmann (2002). We only write down the formulae of the forward starting Asian options.

A. Bounds based on comonotonicity reasoning

We remark that the Asian option pricing in the Black & Scholes setting is in fact a particular case
of sums of lognormal variables in Section Ill. Indeed, let us look at the price of the Asian call
option with exercise pric&’, maturity datel” and averaging ovet prices of the underlying with

T—n+12>0:
—rT

AC(n, K, T) = — E°[(S—nK),]
with
n—1 n—1 ,
(22) S=Y S(T—i)= Z §(0)elr=F)T=)+oBT=i)
=0 i=0

This can be rewritten as a sum of lognormal random varialiles:y"" " a,e** with
Y, = oB(T — i)~ N(0,0*(T — i)
o2

(23)
a = S(O)e(’”’T)( -9,
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Lower bound

Lower bounds forAC'(n, K, T") can be obtained from Section Ill.C. We investigate different con-
ditioning random variable4. Taking into account that we aim to derive a closed-form expression
for the lower bound, we defing as a normal random variable given by

(24) A=) "BB(T —1i), B; € RY.

The choice of the weights; is motivated by the reasoning that the quality of the stochastic lower
boundE?[S | A] can be judged by its variance. To maximize the quality, this variance should be
made as close as possible to[arIn other words, the average value

E@ [var[S | A]] = var[S] — var [E9[S | A]]

should be minimized.
Intuitively, to get the best lower bound,andS should be as alike as possible. Therefore, we have
selected the following two candidates forwhich turn out to give very good results:

1. alinear transformation of a first order approximatiorﬁﬁ;o1 S(T —1) in (22), as proposed
in a general setting by Kaas, Dhaene and Goovaerts (2000):

(25) A=Y =T R(T — ),

2. the standardized logarithm of the geometric average VH?;J S(T — i) as in Nielsen
and Sandmann (2002):

I ne) n—1
(26) AzlnG E°[InG] _ 1 B(T — i),
varln Gl s BT i) 4
where
n—1 n—1n-1 n
var[» B(T —1)] = min(T — i, T — j) = n*T — —(n — 1)(4n + 1).
1=0 =0 7=0

We have that; | A = \ is normally distributed with mean "= \ and variance™*(T — i)(1 — 77)
where

27) r= = VBT DA Sy Bymin (T — i, T — j)
Z - \/T-iO’A \/mO'A ’
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Hence, for any random variabléwhich is uniformly distributed on the unit interval, we find from
Theorem 2

n—1
(28) ZEQ T—i) | A] 2L S(0) S =% b )T =rbopr /T8N W),
=0

which is a sum of, comonotonic risks. Applying (21), we find the lower bound:

AC(n, K, T) > [(S* — nK),]

(29) = 500 e_” o [O’pT NT —i— (Fse(nK))} — e K (1 — Fg(nK))

n
=0

which holds for anyK” > 0. In this case[s:(nK) follows from (20) which now reads:

(30) Z exp [(r — —2,0T ) (T —i) 4 0 pr_iNT —i ! (Fg (nK))} = nk.

This lower bound differs for the two choices (25) and (26 \ofonly by the expression (27) for
the correlation coefficieni;_;:

02 -
S e T min (T — i, T — j)

1 pr_; =
pT \/T—iO’A
with
n—1 n—1
o3 = e(“%)(ZT =D min (T —4,T — §)
i=0 j=0
Z gmm (T —i, T —j) n(T —1i) — (n—i—;)(n—i)
2. pr—i = 2 n 2 n -
\/nT—gn—l)(éln—l—l)\/T—z VT —2(n—1)(dn+ 1)VT —i
sinceo, = 1.

We note that the closed-form solution of the lower bound in Nielsen and Sandmann (2002) is a
special case of (29) and (30). We also noticed that the lower bound when conditioning on the ge-
ometric average coincides with the so-called “naive” approximation of Curran (1994). Moreover,
choosing another normal conditioning varialdlegformulae (29)-(30) still hold by substituting the
right o, andpr_;.

In fact, the lower bound can be written for a general normally distributed conditioning variable
A, satisfying the assumptions of Theorem 2, as an average of Black & Scholes formulae for an
artificial underlying asset of which the price proceXs) is a geometric Brownian motion with
S(0) = S(0) and with a non-constant volatiliy; = op;_; at time instancd’ — i:

52 N~ )
S(T o Z) _ g(o)e(rfé)(sz)JraiB(sz).
The exercise prices under consideration are

K FE[S( N (FSZ(nK)) = S(()) (T**)(T i) +6V/T—i®~ ( sé(”K))
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Indeed, the lower boundC(n, K, T') can easily be transformed into

e~ T n—1 EQ 5, - R B 1 n—1 7MS d 7TT[~((I) ]
- Z [(S( _512( () — e TRid (o))
where
+ ) (T —i) —In (£
diy = <r - ) ( i <S(0)> = 6,V/T —i— & (Fg(nK)),

ovT —1
dy; = di;— VT —i=—0" (Fse(nK)).

Comonotonic upper bound

We now rewrite the upper bound of Simon, Goovaerts and Dhaene (2000) for the price of an Asian
call option in the present settings. From (13), we find

AC(n, K, T) < ZTEQ [(S°—nK),] = e;:TEQ (i Fab oy (U) — nK> ]
_ e ZEQ {( — Fyip )(Fsc(nK)))J
(31) = @ nz e [ax/T —i— & (Fse (nK))} —e"TK (1 - Fse(nK)),

which holds for anyK” > 0.

The remaining problem is how to calculdie: (n k). The latter quantity follows from

N by (Fse(nk)) = nkK,

or, equivalently (see (12)),
0) Z;exp {(r - %) (T — i) +oVT —i ! (Fse(nK))| = nkK.

In this way, Simon, Goovaerts and Dhaene (2000) found the smallest linear combination of prices
of European call options that bounds the price of an European-style Asian option from above:

n—1

D (S(0)e 0 (dy;) — e K P(dai)),

=0

1
n
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with

o2 . - 1
K FST(T )(FSC(“K)) e S(O)e(’r*?)(Tf'L)‘HT\/T*Z‘I) (Fsc(nK))

(7“+U—22)(T— i) —In <SI(<
oVT —i
dgi = dh' — O'\/T —1 = —<I>*1(F5c(nK)).

Using Lagrange optimization, Nielsen and Sandmann (2002) also obtained a similar expression
for this optimal combination.

dli: ) —O'\/T  — O~ (Fsc(nK))

Improved comonotonic upper bound

As in Section IlI.B., we consider a normal conditioning random variable. An improved comono-
tonic upper bound for the Asian option price is

—rT —rT

—E9[(8 —nK),] < en

where according to (19) and (14):

(32) AC(n, K,T) =

E°[(S" —nK),],

E°[(S" — nK),]

|
N

n

_ S(O)GT(T—i)e—ﬁpQT%(T—i)

s
Il
o

1
% / ePT—iUm®71(D)@ ( 1— p%iz oVl —1i— (I)il (FSuV:v(nK))> dv
0
(33) —nK (1 - Fsu(nK)).

The conditional distributiotfs. -, (nK') follows from (18):
n—1

(34) nK = Zai exp |:pT_i(T\/T — i ®d N (v) 4+ /1 — p%_oVT — idt (Fsuwzv(nK))]
1=0

whereq; = S(O)e(r‘é)(T"'), (23), and the cdf 08" is obtained from (16).
We found that the conditioning variable

(35) A= Zﬁka, with W, i.i.d. N (0, 1) such thatB(T ZW’“ i=0,..n—1,
k=1

with all 5, equal to a same constant (for simplicity taken equal to one) leads to a sharper upper
bound than other choices f@f or than the conditioning variables in the lower bound.

ForA =Y _ W, L B(T) the correlation terms have the form:

cov(B(T'—i),A)  T—i VT -1
VT —ion  VT-iNT VT '

14

(36) Ty = Pr—i =

1=0,...,n—1,



and the dependence structure of the terms in theStoorresponds better to that of the terms in
the sun'S than for other choices of. Investigating the correlations

L ). FolL ] — e[pT*ipT*j+\/T2T4\/1*,0%,]-}02@\/@ 1
r[ s—oin(U)s Fa_jal )] = N W

60'2 min(T—3,T—j5) _ |

T[S(T—Z)vs(T_])] = \/60'2(T—i) — 1\/6‘72(T_j) — 17

it can be seen that fgr;_; given by (36) these correlations not only coincide #e£ j but also
when one of the indicesor j equals zero. Moreover, far#£ j, the differences

‘[pT—ipT—j + \/1 — p%_i\/l — p%_j]O'Q\/T —i\/T — j — o*min(T — i, T — j)

are small for alk andj in {0,...,n — 1} in comparison to other choices &f

As in case of the lower bound, we can rewrite the upper bound as an expression of Black
& Scholes formulae for an underlying ass#tt) with S(0) = S(0) and with volatilitiess; =

oy\/1—=p7_;
52 o )
S(T — Z) = g(O)e(T*TZ)(T*Z)JrUiB(Tfl).

Indeed, an equivalent expression for (33) is rewritten as

-rT 1 n—1
Sl (8" —nK),] = / 1 Z T oVT=1 7} (0) =5 g (T—i)
o "5

n
X {e—”‘§<0)c1> (dys(v)) — e T K;(v) @ (d%(v))} dv
with exercise prices defined by
Riv) = S(0)et DI040/ T (B 00)

and

=

i(v)

(0) ) =6iVT —i— &7 (Fsup—y(nK))

oY

dii(v) = <r : 71) (;;%ln (

do;(v) = di;(v) —GVT —i= - (Fsuy—p(nk)).

B. Bounds based on the Rogers & Shi approach
Following the ideas of Rogers and Shi (1995), we derive an upper bound based on the lower bound.
Indeed, applying the following general inequality for any random vari&bénd Z from Rogers
and Shi (1995):
1
< + — <=
0<E[E[Y'|Z]-E[Y | 2] < 2E[ var(YyZ)]
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to the case ol” being Z?:‘Ol S(T — i) — nK andZ being our conditioning variabl& given by
(24), we obtain an error bound

(37) 0< E9[EQ[(S —nK)" | A] - (S' — nK)*] < %EQ [ var(s | A)] .

Consequently, we find as upper bound for the arithmetic Asian option

—rT

(38) AC(n,K,T) <

{EQ (S —nK)*] + %EQ [ var(s| A)} } .

n

Using properties of lognormal distributed variables, the second term on the right hand side can be
written out explicitly, giving some lenghty, analytical, computable expression:

39) E° [ var(S|A)] — E@ [(EQ [S? | A] - B9[S | AF)UQ}

hirar—"

=0 5=0

= E°

where the first term in the expectation in the right hand side equals

n—1n—1
1

(40) Q;j exp (rijaaijq)_l(U) + 5(1 — 7’%)02022]) :

=0 j=0
with

52
(41) aay = SOPew |- Frer i),
(42) gij = V(T —=i)+ (T —j)+2min(T —4,T — j),
VI —1 T—7

(43) Tij = pPT—i + / PT—j>

Tij ij
and wherd/ is uniformly distributed on the intervao, 1).

This upper bound also holds when starting from a lower bound with a normal conditioning
variable A different from (24). This allows us to take the minimum over several upper bounds.
Note also that the error bound (37) is independent of the sffike

For A given by (26), Nielsen and Sandmann (2002) were able to strengthen the error bound of
Rogers and Shi. We show that also fogiven by (25) this technique works to strengthen the error
bound (37) and hence to sharpen the upper bound (38).

Using the property that® > 1 + z and relations (22)-(23) and (25), we obtain

n—1

S = ”i >Z%+S Jo > er=FIOB(T — ).
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K- Z;:ol @
S(0)o
mation of the first order approximation (FA) 8f we have forA > dp, with
nk — Z?;ol g(o)e(r—%(T—i)
S(0)o ’

HenceS > nK whenA is larger than’ L. Thus in case of\ being a linear transfor-

(44) dpa =

that

EC[S—nK), | A] = E°[S —nK | A] = (S —nK), .
In general, ford € R such thatA > d implies thatS > n K, it follows that by using the notation
fa(+) for the normal density function of:

0 < EQ[BO(S - nK), |A] - (8~ nK),]

:/ (EQ[(S—nK)+|A:)\]—(EQ[S|A:)\]—nK)+>fA(>\)d>\

—00

I 1
< 5[ 1A= aen

@) = (B far S0 1))t (52 na))

where Hlder’s inequality has been applied in the last inequality and whgtrey, is the indicator
function.

The upper bound (38) corresponds to the limiting case wiieguals infinity. Further note that

in contrast to (37) the error bound now dependgsothroughd.

We stress that the error bound (45) holds for any conditioning random normal vafiahkzt
satisfies the assumptions of Theorem 2 and for which there exists an integrationd=uaoidthat

A > dimpliesS > nK. ForA given by (26), Nielsen and Sandmann found that the corresponding
d is given by

(46) L) Y -
U\/nQT —gn(n—1)An+1)

which we denote byi;4 for reminding the fact thak is the standardized logarithm of the geomet-
ric average.

Now we shall derive an easily computable expression for (45). The second expectation term in
the product (45) equal, (d) whereF) () denotes the normal cumulative distribution function of
A. The first expectation term in the product (45) can be expressed as

(47) E® [var(S|A) 1acay] = E9 [E9[S*|A]l{acqy] — E9 [(EC[SIA])?Lia<ay] -

The second term of the right-hand side of (47) can according to (28) be rewritten as

B9 [(E9ISIA) Linea] = [ (E9ISIA = )P Fa(A)aA

2

d
— S0 er(zT—i—j)—%(pQT_i(T—z‘)er%_j(T—j))/ e"(PTﬂ‘VT—”PTfJ‘VT—j)‘I’_l(”)fA()\)d/\

i=0 j=0 —c0

9
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where we recall that—!(v) = 2= EQ[A and ®(-) is the cumulative distribution function of a
standard normal variable. Applylng the equality

d ) 2 _ Q
(49) / PO £ (NN = eT D (dF —b), dF = w,

00 OA

with b = o (pr—ivVT — i + pr—;v/T — j) we can expres&© [(E?[S|A])*1{r<q)] @S

n—1 n—1
E0) (0SS TS (0 gl T pr T )
=0 5=0

To transform the first term of the right-hand side of (47) we invoke (40)-(43) and apply (49) with
b= 1ij004 = 0 (priVT — 1+ prj\/T — j)

E? [E°S? | All{acay]

= Y3 [ BUs@ - aSr - A= Hax

n—1 d
- 22 =) @T—i=j)+3(1- 23)020%/ €177 0) £ (A)dA
i=0 j=0 %
n—1n—-1
(51) _ S(O)Q 67“(2T—i—j)+a2 min(T—i,T—j)(I) (d* . J(pT—i /T — 3 +pT—j /T _]>> )
i=0 j=0

Combining (50) and (51) into (47), and then substitutiiigd) and (47) into (45) we get the
following expression for the error bound, shortly denoted (a3)

S(0 1
) = 2 (r (@)
n—1 n—1
% { 6r(QT i—j)+o2pr_ipr—ivT—i/T q)< (pT z\/—+pT ; /T ])) %
i=0 j—0
% <602(min(T*ivT*j)*PT—ipT—j\/ﬂ\/T—*j) _ 1> }é )

This error bound coincides with the one found in Nielsen and Sandmann (2002) for the special
choice (26) forA and the corresponding; (46).

C. Partially exact/comonotonic upper bound

We combine the technique for obtaining an improved comonotonic upper bound by conditioning
on some normally distributed random varialdleand the idea of Nielsen and Sandmann (2002)
described in the previous subsection, in order to develop another upper bound. This so-called
partially exact/comonotonic upper bound consists of an exact part of the option price and some
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improved comonotonic upper bound for the remaining part. This idea of decomposing the calcu-
lations in an exact part and an approximating part goes at least back to Curran (1994). This upper
bound also corresponds to the upper bound denote:dgﬁyin the paper of Nielsen and Sandmann
(2002).

For any normally distributed random varialewith cdf F,(-), for which there exists d such
thatA > d impliesS > n K and which satisfies the assumptions of Theorem 2, the second term in
the equality

—rT efrT

(8 = nK)y] = —E®[EC[(S = nK), | Al

e

(52) = ;:T {/d EC[(S —nK); | A = NdFA(\) + /;OO ECS—nK |A= )\]dFA(A)}

[e.e]

can be written in closed-form along similar lines as (48)-(50):

efrT

[ BB = R0 - T - Fr@)

n
6_7'T il 1.2 2 . +oo |
= 2 ST | e T O i - TR (L a())
n d
=0
S —1
(53) = Z e "D (pr_ioNT —i—d*) — e T K®(—d*),
=0
— E9[A — E9[A
whered* = 7d [A] andv = 7)\ Al

In the first term of (52) we replace by S* in order to obtain an upper bound and apply (33) but
now with an integral from zero t®(d*):

—rT

- / " B9 nK), | A = Afx(N)dA

n —00

—r d —r ®(d*)
< £ i / EQUS* — nK), | A= Nfa(\)dr = & ! / ER[(S* = nK), | V =] dv
0

n n

—00

SO0) = . s
_ 2\ =i ,—% pp_;(T—1)
” ;e e
(d*) -
X / ePT-ioVIT=IET ) g ( 1—p2 ,oNT —i— ! (FSuV:v(nK))) dv
0

(d*)
—e TR | ®(d*) - / Fsuy—p(nK)dv | .
0

(54)

For the random variables given by (25) and (26) we derivedda see (44) and (46), and thus we
can compute the new upper bound. Recall that these choiced@hot lead to the best improved
comonotonic upper bound. The best choicd is- B(T") for which we do not find the necessary
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d in this new upper bound. However, we expect that the contribution of the exact part (53) which
is the second term in (52) will compensate for the somewhat lower quality &t the

Finally, we note that the bour(df;G in Nielsen and Sandmann (2002) was derived for the special
conditioning variable\ given by (26), and that they need an optimization algorithm to find the
weightsa; such that their upper bound for the first term in (52), namely

GTZT ni: d EC[(S(T — i) — amK)4 | A = A fa(N)dA,
i—0 J—o0

is minimized. With our method we explicitly have the optimal weightor a given or v:

1
“=rh sr—aia=r(Foy=o(nk)

_ S(}? e(r—é)(T—i)erT,im/T—z‘ O ()44 /1=pF_, oVT—i & (Foujy—y (nK)).
n

D. General remarks

In this section we summarize some general remarks:

1. Denoting the price of an arithmetic European-style Agaboption with exercise daté, n
averaging dates and fixed exercise pic®y AP(n, K,T'), we find from the put-call parity
at the present:

(55) AC(n, K,T) — AP(n, K,T) = 50)1—e

—e"TK.
n 1l—e™

Hence, we can derive bounds for the Asian put option from the bounds for the call. These
bounds for the put option coincide with the bounds that are obtained by applying the theory
of comonotonic bounds or the Rogers and Shi approach directly to Asian put options. This
stems from the fact that the put-call parity also holds for these bounds.

Note that for numerical computations,sifand7” are expressed in days thershould be
interpreted as a daily compounded interest rate which equals a yearly compounded interest
rate divided by the number of (trading) days per year.

2. The case of a continuous dividend yiéldan easily be dealt with by replacing the interest
rater by r — 4.

3. When the number of averaging datesqualsl, the Asian call option reduces to a European
call option. It can be proven that in this case the upper and the lower bounds for the price
of the Asian option both reduce to the Black & Scholes formula for the price of a European
call option. For the improved comonotonic upper bound this is true thanks to the special
choice of A = B(T'), while for the upper bound (38) it holds since the conditioning variable

A equalsGrB(T).
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4. The lower and upper bounds are derived for forward starting Asian options but they can
easily be adapted to hold for Asian options in progress. In thisEase + 1 < 0 and only

the prices of5(1), ..., S(T) remain random such that the price of the option reads:
efrT [ /n—1
— Q )=
AC(n,K,T) —E (2; S(T — ) nK) J

- en E® (%S(T—i)—(n[(—fS(T—i))) ]

Thus substitutinge X' — Z?;Tl S(T — i) for nK and summing for the average oveirom
zero to7" — 1 instead ofn — 1 the desired bounds follow.

E. Numerical illustration

In this section we give a number of numerical examples in the Black & Scholes setting. We discuss
our results and compare them to those found in the literature and to the Monte Carlo price. Further,
we approximates by a lognormal distribution which is the closest in the Kullback-Leibler sense.
We also measure the closeness of the lower and upper bounds in the distributional sense.

Comparing bounds

In this section we discuss our results and compare them with those of Jacques (1996) where the
distribution of the sun® of lognormals, (22), entering in the arithmetic Asian option was ap-
proximated by means of the lognormal (LN) and the inverse Gaussian (IG) distribution. For the
comparison we also included the upper bounds based on the method of Rogers and Shi, (38), and
of Nielsen and Sandmann, (45).

We show here one set of numerical experiments where we consider a forward starting Asian op-
tion with fixed strike having the same data as in the paper of Jacques (1996): an initial stock price
S(0) = 100, an annual (nominal, daily compounded) interest rate%f(Be. r = In (1 + %%2)

daily), a maturity of 120 days and an averaging periaaf 30 days. The values of the volatility

are on annual basis. As a benchmark we included the price obtained via Monte Carlo simulation
by adapting the control variate technique of Kemna and Vorst (1990) to discretely sampled Asian

options. The number of simulated Monte Carlo paths We¥)0.

As we see from Table 1, the lower bounds B and LBGA, for the conditioning on\ given
by (25) and (26), are equal up to five decimals. They both perform much better than the lower
bound LBB; where we conditioned on = Zfil Wi 2 B(T) (cfr. (35)), as was expected.
The improved comonotonic upper bound ICUB, (32)-(33), is smaller than the comonotonic upper
bound CUB, (31), from Simon et al. (2000), as stated in the theory. The Rogers and Shi upper
bound UBFA, (38), performs better than ICUB, except when the option is deep in-the-money. We
also included the upper bound W based on the lower bound LIB- according to (38) but with
conditioning onA = Zle W, < B(T) (cfr. (35)). The bad performance is due to the fact that
B(T) differs much fromsS for n larger than one and hend&’ [var'/?(S| B(T))] is large, while
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for A, (25) or (26), this ternE? [var'/?(S| A)] is very small becaus& enS are very much alike.

It seems that the relative difference between a lower bound and an upper bound increases with
K. For the upper bounds UBA and UBB7 this is clear, since for different values &f a same
constant is added while the value of the lower bound is decreasing.

The improved upper bound UBA,; which is based on the lower bound GA plus a pricing error

cfr. (45)-(46), performs the best of all upper bounds considered. HowevearAl®hich is the

lower bound LBFA plus the error bound(dg4) given by (44) and (52), performs good as well.

For this set of parameters, the values for the partially exact/comonotonic upper bound PECUB,
(52)-(54), are smaller than those for the improved comonotonic upper bound ICUB but, as the
results in Table 1 show for the case/dfgiven by (26), they are not that good as we would have
expected.

Comparing UB"A with UBFA,, we note that making the error bound dependent on the exercise
price K has led to an improvement except for a volatility equaltband X' = 80. An expla-

nation is that the Elder inequality introduces an additional error which can be larger than the
improvement that is obtained by introducing the integration baiind

Table 1 also reveals that the lognormal (LN) approximation as well as the inverse Gaussian
(IG) approximation of Jacques (1996) underestimate systematically the price of the option since
the prices are smaller than the (comonotonic) lower boundsA.Bnd LBGA. Moreover, they
are lower than the respective Monte Carlo prices. Further, note that the precision of the simulated
prices decreases as the volatilityncreases. The Monte Carlo approach systematically seems to
underestimate the true price, especially for at- and out-of-the-money options for which the Monte
Carlo price falls slightly below the lower bounds.

The effect of the averaging period and of interest rates on the bounds

For different sets of parameters, we have computed the lower and the upper bounds together with
the price obtained by Monte Carlo simulattoriThe latter is based on generatib@000 paths.

This has been done in particular for four different options: the first with expiration date at time
T = 120 and30 averaging days, the second with expiration at tifne 60 and30 averaging days,

the third one with again expiration tinieé = 120 but only 10 averaging days, and as the last one

we considered the case where averaging was done over the whole petrizoodalys. In all cases

we considered thé following exercise prices(: 80, 90, 100 and110, three values((2, 0.3 and

0.4) for the volatility o, and the two different flat risk-free interest rate$% and9% yearly. The

initial stock price was fixed af(0) = 100.

The absolute and relative differences between the best upper and lower bound increase with the
volatility and with the exercise price, but decrease with the interest rate. The results further suggest
that all intervals are sharper for options that are in-the-money. For fixed maturity, the length of the
intervals reduces with the number of averaging dates. However for a fixed averaging period the
effect of the maturity date seems to be less clear.

We can conclude that the difference between the lower boundsAL&d LBFA is overall
practically zero. The upper bound @B is in general the best but for example whegs: 0.05,
K =100 ando = 0.4, UBFA, turns out to be smaller than WUB1,.

1The tables with the results discussed in this paragraph are available on request.
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Comparison of lower and upper bounds as in Nielsen and Sandmann (2002) with our bounds

In this section we use the data from Nielsen and Sandmann (2002) in order to compare their
different upper bounds with our results (we kept their notation for respective bounds). They give
as input datar = 0.25, r = 0.04, S(0) = 100, T' = 3 years. Note that they use price averaging
over the whole periodn( = 3 years) where averaging takes place each month (in the previous
sections the averaging was done daily).

The first column of Table 2 shows the selection of strike prices from Nielsen and Sandmann (2002).
In addition to the strike prices used in the above sections we also inckided0 and K = 200

as examples of extreme in- and out-of-the-money options. The column RS contains the Rogers
and Shi upper bound based on the geometric average conditioning variable antegitlal to
infinity.

Nielsen and Sandmann (2002) derive another upper bGl;ir?dwhich depends on coefficients
satisfying>." , a; = 1. The last three columns in Table 2 show the bou@y$’ for different
choices of coefficients,;. The columns labelled a@j"G andCfI’G are computed for the choice of

a; = a! (special choice by Nielsen and Sandmann) ane- % respectively. The columﬁ*;}*’G
presents the results for the optimal sequence of the weigsrelation to theCf;G bound (i.e.

the sequence which minimizes the upper boaiﬁd;).

We note again that the partially exact/comonotonic upper bound PECUB is smaller and thus better
than the improved comonotonic upper bound ICUB for exercise prices in the sang&0 (not

all values are reported in Table 2), but for deeply out-of-the-money options there is a switch and
ICUB becomes better and even far= 200 outperforms all other the upper bounds including the
choices of Nielsen and Sandmann.

Distributional distance between the bounds and lognormal approximation of

As already mentioned, the sum of lognormal random variables is not lognormally distributed.
However, in practice it is often claimed to be approximately lognormal. In this section we aim to
guantify the distance between the distributiorSp{6), and the lognormal family of distributions

by means of the so-called Kullback-Leibler information. We also use the Hellinger distance in
order to measure the closeness of the derived lower and upper bounds. This section uses the ideas
from Brigo and Liinev (2002) and we refer to this paper for definitions.

Firstly, note that it is possible to calculate the Kullback-Leibler distance (KLI) of the distribu-
tion of the sunt from the lognormal family of distributiong in the following way

D(p(x),L£) = Ep[np] + %*Ep [ln (%)]

2
2( T )| _ T
g (s)] - (50 (5))) D ’
wherep(z) denotes the density function 8f and £, is the expectation with respect  This

distance is readily computed, once one has an estimate of th8 ttaasity and of its first two
log-moments.

(56) +% In (27TS(0)2
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The distance (56) can be interpreted as the distance of the distribut®frah the closest log-
normal distribution in Kullback-Leibler sense. The latter is the distribution which shares the same
log-momentsZ,[In(+)]*,¢ = 1,...,m with the distribution ofS.

This provides an alternative way to the lognormal approximation of Jacques (1996) in order to
compute the price of the Asian call option. Namely, we can estimate the parameters of the closest
lognormal distribution based on the simulat&dand then apply the standard Black & Scholes
technique in order to find the price. This method is considerably easier to implement than that of
Jacques (1996). However, to obtain a correct price approximation, more simulations are needed
than for the usual Monte-Carlo price estimate.

In Table 3 we present the results obtained in evaluating the Kullback-Leibler distance for the
sum of lognormal$ through a standard Monte Carlo method with000 antithetic paths, for the
parameters in Table 1. In the brackets we show the sample standard errors (S.E) for both quantities.
In order to have an idea for what it means to have a KLI distance of aboRtbetween two
distributions, we may resort to the KLI distance of two lognormals, which can be easily computed
analytically, see e.g. Brigo and Liinev (2002). It appears that we find a KLI distance comparable
in size to our distances above if we consider for example two lognormal densities with the same
mean but different standard deviations. Then a KLI distance of approximatyamounts to a
percentage difference in standard deviations of ab@&it. This gives a feeling for the size of the
distributional discrepancy our distance implies.

o S(S.E) KLI (S.E)

0.2 | 3079.000 (3.255420) 0.0221168 (0.002064689)
0.3 | 3078.555 (4.905087)  0.0220335 (0.002086076)
0.4 | 3078.558 (6.579753) 0.0219415 (0.002109625)

Table 3: Distance analysis.

In Table 4 we show the corresponding lognormal price approximation. These values seem to indi-
cate that this method performs better than the moment-matching method as presented in Jacques
(1996), but still underestimates the price. This indicates that even the optimal lognormal distribu-
tion (in KLI sense) does not attribute enough weight to the upper tail.

K | 0=002|0=0.03|0c=0.04
80 | 22.00133 | 22.30572 | 23.02679
90 | 12.75699 | 13.91766 | 15.41261
100 | 5.515920 | 7.525337 | 9.550753
110 | 1.647747 | 3.508497 | 5.504232

Table 4: Price approximation based on the closest lognormal distribution in Kullback-Leibler
sense.

In Table 5 we display the Hellinger distances between the densiti#s (28), when the con-
ditioning variableA is given by (25) (hereafter denoted$is,), and of the comonotonic susf,
(9). It appears that increasing the volatilitythe densities tend to move further away from each
other. We also computed the distance between the densiti¥s,aind ofS% , which isS* with
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4 HD(waﬁ ‘)
0.2 | 0.023339455
0.3 | 0.138331889
0.4 | 0.312827667

Table 5: Hellinger distance between comonotonic lower and upper bouhd of

conditioning variablé\ (26). This distance was found to be of the magnitudgiof3, and slightly
decreasing with increasing

F. Hedging the fixed strike Asian option

From the analytical expressions for the lower and the upper bounds we can easily obtain the hedg-

ing Greeks which are summarized in Table 6. We heavily rely on the Black & Scholes expressions
that we found for these bounds.

V Floating strike Asian options in a Black & Scholes settings

The price at current time= 0 of a floating strike Asian put option with percentages given by

(Z S(T —i) — nﬁS(T))

In the Black & Scholes model, the following change of measure leads to results dealt with in
Section Ill. Let us define the probability equivalent ta?) by the Radon-Nikodym derivative

aQ  S(T) o>
a0~ 30T exp(—?T +oB(T)).

—rT
eT’EQ
n

APF(n,B,T) =

(57)

Under this probNabiIit)Q, BEt) = B(t) — ot is a Brownian motion and therefore, the dynamics of
the share undep are given by
dS(t) 2 A
— = dt + odB(t).
(58) S0 (r+o°)dt + 0dB(t)
Let us first consider the case of a forward starting floating strike Asian optior/witt-1 > 0.
Using the probability?), the floating strike Asian option with percentagés given by

5(0) (Z?JS(T—i>_ﬁn> ]
S(T) a

APF(n,B3,T) = 2“2 E@
n
From this formula, one can conjecture that a floating strike Asian put option can be interpreted
as a fixed strike Asian call with exercise prig&(0). Henderson and Wojakowski (2002) have ob-
tained symmetry results between the floating and fixed strike Asian options in the forward starting
case of continuous sampling.
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Bound Delta (A)
P —ri
LBA e @(pr_ioV/T — i — &~ (Fy (nK)))
cuB e (o T — i — & (Fse (nK)))
Rl
ICUB |  I2(v)dv
P, ‘ R gy
PECUB | 7o' “@(pr_jovi—i—d*)+ %) L(v)dv + [x(d*) + [1(®(d*))e (") 3255
RiP_
UBA 01 pq(v)dv
UBAg | Arpa + g(d*)[1 + n(d*)]
GammarT’)
n < i U= i
LBA e*TTnhm_ gp(@fl(Fsz(nK)))h A KiapT_i\/f{”—i
l2 P |71
CUB | e Tn % (@1 (Fse (nK))) I 1Kza\/T—z
h i,Z1 . L F— #-1
ICUB e~ Tn % <p(<1>_1(F5u|V:U(nK))) Ki(w)pi(v)e " T=0g 1 —p2_NT—i dv
0 i=0
h i
e T P’ﬂ * * 9 * * * 24* * *
PECUB | —S5— " 1) pi(®(d")) + 212(®(d*)) + B9 (@) 2055 + X(d*) gz + () 11(@(d"))
hKiZq><d) ) < oy A !
+e " T'n 50 P(P7 " (Fsu |y =y (nK))) Ki(pi(w)e ™ T 1—p2 VT—i dv
Y i=0
UBA | I'npa
h
UBA4 | Tipa + 39(d*) (14n(d*))n (d*>+a"<“ 2
Vega (V)
—rT npn 1 ; -1
LBA n i=0 KzPT zV - <P( (Fse(nK)))
—rT hP 1
CuB | & L KiV/T 72‘ ©(®~1(Fse (nK)))
z
ICUB ' ah(”)d
d
’ * i * %] 0d™* e T 5 Pnfl * ; z ®(d") 811(1})
PECUB | [x(d*) + I1(®(d"))p(d")] G5 + S0)p(d*) 2y pi(®(@)pr—iVT —i+ panll
z, 0
—_T 1
UBA | Vipa + “—5(0) L 9,
" o q(v) 9o
UBAg | ViBa + S(O) (d*)C(d*)%
Notations
2
pi(ﬂ) :6(7‘_UTP%"fi)(T_i)ePT,io'\/T—i &1 (v) g(d*) — %q}(d*)l/Qh(d*)l/Q
@ =17 2O 00y 0) — TR0 ) | () = S 4 O
W =n o @ @=0 L @ 2,4 T 3@ T R(d®)  od*
- >
) v e—rT « « *
Lv) =533 = <=7 pi(0)®(d1,i(v)) n(d*) = SR¢(d) 7455
=0
h i
2, . . . - . * 2 gk
iy = e (T ) o ior s VTN W) =) ~&' (555" +osor
<t
P 2 - -
gij =" CTIm I Pr P VIV (65 — 1) (@) =e  Top(d*) K — 20" pi(®(d"))
1=0 T
#
) o . _ P sy P} 2
h(d*) = 2ij®(d" —o(pr—iVT —i+pr—; T —3)) a(v) = =5y~ = pi(v)p;(v)eij — pi(v)
i=0 j=0 =0 j=0 1=0

Table 6: Delta, Gamma and Vega for bounds.
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In Section F., we prove similar results in case of the discretely sampled Asian options. The symme-
try results become very useful for transferring knowledge about one type of an option to another.
Writing down the formulae fo(T" — ) andS(T') in the Black & Scholes setting leads to

_ Z?:_ol S(T » — z+o(B(T Y—B(T)) =
5= S(T) ¢ Z

=0 1=0
with a; = e~ +%) and withY; = o(B(T — i) B(T)) a normally distributed random variable

with meanE® [¥;] = 0 and variancey, = io”. Note thatoe™ is in fact a constant. Clearly is
a sum of lognormal variables and thus we can apply the results of Section Ill.

Denoting the price of an arithmetic floating strike European-style Aselhoption with exer-
cise datél’, n averaging dates and percentatgey ACF'(n, 5,T), we find from the put-call parity
at the present:

(59) APF(n, B.T) — ACF(n, 3.7) = 201 =™

n 1—eT

— BS(0).

Hence, we can derive bounds for the Asian floating strike call option from the bounds for the put.

In the remaining of the section, we only work out in detail the forward starting case as the ‘in
progress’ case can be dealt with in a similar way.

A. Lower bound

In order to obtain a lower bound of good quality for the forward starting Asian option, we consider
as conditioning variable a normal random variallerhich is as much alike &$. Inspired by the
choice for the fixed case, we take

(60) A= Zﬁz — B(T))

o2\ . . . .
with 3; some positive reals. In particular f6f = e~ "+%)? we find the first order approximation
In G—E[ln G]

of S. If 5; equalsﬁ for all 7, thenA = ~JinGl is the standardized logarithm of the
geometric averagg:

" N ) 1
6l) G-= (]_]0 %) - (gexp [—(r + %)i Y o(B(T i) - B(T))D :
with

E9InG] = —(r+ %2)”; 1

var[lnG] = Z—zn_: j_: min(i, j) = Z—z <%n3 - %nQ + %n) |



This choice ofA is similar to the choice (26) of Nielsen and Sandmann (2002) in the fixed strike
setting.

For generals;, we have thalt; | A = X is normally distributed with meani%f/\ and variance

oy, (1 —r?) wherer, = 0 and fori > 1

cov (BT =)= B(T),A) ¥} gmin (i, )
Vio Vi /S S B min (1)

For both choices of\ that we consider, these correlationsare positive. We thus find from (21)
the following lower bound for the price of the forward starting Asian floating put option:

(62) Ty =

APF(n,3,T) > @ ni: e [am/é — 37 (Fy. (nm)} — S(0)3 (1 — Fee(nf)),

whereFs (nf3) is obtained from (20) fox = ng.

B. Comonotonic upper bound

Applying (13) we get the following explicit formula of the comonotonic upper bound for the
forward starting Asian floating strike options:

n—1

APF(n,p,T) < @ Z e P [aﬂ — & (Fse(nB))| — S(0)3 (1 — Fse(nf3)),

=0
which holds for any3 > 0 and whereFs.(n3) follows from (12) forz = np.

C. Improved comonotonic upper bound

Analogous to the case of the improved upper bound for the Asian fixed strike, we have found that
also in the Asian floating strike case, the conditioning variable

ZWk, with T, i.i.d. N(0, 1) such thatB(T ZWk, i=0,. —1,

k=1

leads to a sharper upper bound than other choices, for example the conditioning variable in the
lower bound.
The theory of comonotonicity (see (19) and (17)) then leads to the following upper bound

053 (8 -]

n—1

50 2oy [N o vie S
i)ze 2ty Z/ CrioVie ) g (ﬂaﬂ_cp 1(F5u|vzy(nﬁ))) dv

i= 0

—5(0) (1 Fsu(nf3))
with the correlations given by, = \/; 1 =1,. — 1l andry, = 0. Invoking (15)-(16), the

conditional distribution’s.|y,—,(x) and the cdf oS“ can be obtained.
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D. Bounds based on the Rogers & Shi approach

By a similar reasoning as in Section IV.B., it is easy to derive an upper bound based on the lower
bound by following the ideas of Rogers and Shi (1995) and Nielsen and Sandmann (2002). Indeed,
by using our conditioning variabl& given by (60), we obtain

APF(n,3,T) < @ {E@ [(S* — nB)*] + g(d)}

whered is such thaS > ng if A > d and with

1
2

n—1n-1
% { e —r(i+j)+o? r,rjxffq)( o 0. T@\/_+TJ\/_ ) ( a2 mm(i,j)—rirj\/z_'\/j) _ 1)}

whered — 4=£94] and F, () stands for the normal cumulative distribution function/gfand
with correlatlonSr defined in (62).

In particular for the linear transformation of the first order approximation (FAJ,aiamely

A=Y B(B(T — i) — B(T)) with §; = e 0+ )1,
~ ng— Y. 01 e—(r+

dpa =
o

For 3; = ZVar([In G| with the geometric average (GA) defined in (61)A equals the standardized
logarithm of the geometric average and the correspondimguals

o2\ n—
S m@) )
ca = o 1,3 1,2 1 '

n

E. Partially exact/comonotonic upper bound
Along similar lines as in Section IV.C., we can derive a partially exact/comonotonic upper bound

by recalling that for some normally distributed varialdl¢here exists @ such thatA > d implies
S > ng:

N e D (r0Vi — dF) — S(0)3P(—dY)



— EQJA — EQJA
d—[] andv = )\—H
OA oA i
The first two terms are composing the exact parf{&EQ[(S — nf)], while the last two terms
define the improved comonotonic upper bound for the remaining part of it.

whered* =

F.  Symmetry results for arithmetic Asian options

Henderson and Wojakowski (2002) have obtained symmetry results between the floating and
fixed strike Asian options in the forward starting case of continuous sampling. They consid-
ered the Black & Scholes dynamics for the underlying asset with a continuous dividend yield
0. In order to generalize their results, we introduce some generalized notation. In particular,
ACF(5(0), %,5, r,T,n,0) denotes the European-style floating strike Asian call option with
percentag%% and maturity datd” which is forward starting withh terms and with the first term

beingS(0), where(S(t)); denotes as usual a Black & Scholes process with initial v&lie and
with dividend yieldr. The short-term constant interest rate eqdals

For fixed strike options, we introduce a similar notation. Rét( K, S(0),r,0,T,n, T —n+1)
be a fixed strike Asian put with fixed exercise prigeand maturity daté/’ which is forward
starting withn terms and with the first term beirtgf7" — n + 1), where(S(t)); denotes as usual a
Black & Scholes process with initial valug0) and with dividend yield. The short-term constant
interest rate equals

Using these notations, we obtain the following symmetry results, which are proved in the Ap-
pendix.

Theorem 3.

AP(K,S(0),r,6,T,n,T —n+1) = ACF(S(0), %,6, r,T,n,0)

ACF(S(0),8,r,0,T,n, T —n+1) = AP($5(0),5(0),0,7,T,n,0)
and

AC(K, S(0), 7,6, T,n, T —n+1) — APF(S(0), % 5,7, T,m, 0)

APF(S(0),3,7,6,T,n,T —n+1) = AC(3S(0),5(0),8,r,T,n,0).

G. Numerical illustration

In this section we shall give a numerical example of a floating strike Asian put option.

In Table 7 we display different lower and upper bounds for a floating strike Asian put option
with an initial stock priceS(0) = 100, a maturity of120 days and an averaging periadof 30
days. The choices for volatility and risk-free interest rate are the same as in Section IV.E. The
percentagée’ is chosen so thatS(0) corresponds to the respective strikein Section IV.E. We
obtained Monte Carlo price estimates (based @00 simulated paths) by adapting the Kemna
and Vorst (1990) control variate technique. Indeed, by applying the change of measure (57), we
can interpret a floating strike Asian put option as a fixed strike Asian call option with exercise
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1.583292.

Note that by using the put-call parity result (59) one can easily obtain the price for the floating

price 55(0). Hence we can simulate the dynamics of the stock price according to (58), and use
strike Asian call option. For example, consider the entry in Table 7 With 1.0, 0 = 0.2, and

the geometric averade given by (61) as our control variate.
UBGA,; = 1.388847, UBFA, = 1.388792, PECUB =.557532, ICUB =1.575395, and CUB

r = 0.05. By applying (59), we obtain, for instance, that EB = 1.387410, LBGA = 1.387411,
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We observe similar behaviour of the bounds as for the fixed strike Asian option apart from
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some interesting particular cases:

1. foro = 0.2,0.3,0.4 and3 = 0.8 the lower and the best upper bounds coincide up to three
or four decimals and thus give almost exact results;

2. foroc = 0.2 and0.3, andg = 1.1 the value for upper bound W4, is larger than the one
for UBFA which must be caused by the additionddltier inequality in the derivation of the
error boundt(dga);

3. the partially exact/comonotonic upper bound PECUB is always smaller than ICUB and is
even the best of all upper bounds o= 0.2 andg = 1.1.

Note that forG = 0.8 (¢ = 0.2,0.3) — which is a case of theoretical interest — the values of
PECUB and ICUB suffer from numerical instabilities caused by the involved numerical integra-
tion.

VI Conclusions

We derived accurate lower and upper bounds for the price of discretely sampled European-style
arithmetic Asian options with fixed and floating strike. Hereto we used and combined different
ideas and techniques such as firstly conditioning on some random variable as in Rogers and Shi
(1995), secondly results based on comonotonic risks and bounds for stop-loss premiums of sums
of dependent random variables as in Kaas, Dhaene and Goovaerts (2000), and finally adaptation of
the error bound of Rogers and Shi as in Nielsen and Sandmann (2002). All bounds have analytical
expressions. This allows a study of the hedging Greeks of these bounds. For the numerical experi-
ments it was important to find and motivate a good choice for the conditioning variables appearing
in the formulae. We note that the expressions found for the bounds are not only analytical but also
easily computable. The numerical results in the tables show that the upper boutl; iBin

general the best one except for extreme values of the strike firice; then ICUB or PECUB
outperforms all the other upper bounds.

In a forthcoming paper, we use this approach to derive upper and lower bounds for basket
options and Asian basket options. We also concentrate on the derivation of bounds for Asian
options by using binomial trees.

Further, we plan to derive bounds for the Asian options in case the underlying follows mixed jump-
diffusion dynamics. These results are in particular interesting for pricing catastrophe insurance
derivatives as Cat-calls (see Geman (1994)).
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Appendix A. Proof of symmetry results in Theorem 3

Proof. We only prove the first symmetry result since the others follow along similar lines.
AP(K,S(0),r,6,T,n,T —n+1)

= "TE? (K - % nz‘i S(T — i)) ]

_ g0 [e==9T 5(T) (KS(O) 1 ”z‘: S(T — @')5(0))

_ T ([;?T(; _% '15(0)exp {_(T_(H“;)Ha (B(T—z’) —B(T)>]>J ,

where we defined as before the probabiliyequivalent taQ by the Radon-Nikodym derivative
but now by stressing the dividend yield

dQ S(T 2

Under this prob~abilit)Q~, B(t) = B(t) — ot is a Brownian motion and therefore, the dynamics of
the share undep are given by

dS(t) . 2 »
S0 - ((r—9)+0%)dt + odB(t).

Due to the independent incremenBT’—i) — B(T)) has the same distribution &) and— B(3),
and we can concentrate on the procg$gt)), defined by

S*(i) = S(0) exp [—(r — 0+ %)7; + aé(i)} .
Indeed, then

B % n—1
AP(K,S(0),r,0,T,n,T —n+1) = e *TE? <KS (T) —%st)) ]
L i=0 +

5(0)
o [[(KS(T) 1
= e g EQ -( S(()) — E 2 S(Z)) +]

with the process$S(t)), defined by
S(i) = S(0) exp [—(r .y %)i + UB(Z')}

with (B(t)), a Brownian motion undep).
As a conclusion,

AP(K,S(0),r,6,T,n,T —n+1) = ACF(S(0), %, 5,7, T,n,0),
which was to be shown. &
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