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Abstract

An (Asian) basket option is an option whose payoff depends on the value of
a portfolio (or basket) of assets (stocks). Determining the price of the basket
option is not a trivial task, because in general there is no explicit analytical
expression available for the distribution of the weighted sum of the assets.
We derive analytical lower and upper bounds by using on one hand the method
of conditioning as in Rogers and Shi (1995), and on the other hand results on
a general technique based on comonotonic risks for deriving upper and lower
bounds for stop-loss premiums of sums of dependent random variables (see
Kaas, Dhaene and Goovaerts (2000)).
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1. Introduction

One of the more extensively sold exotic options is the basket option, an option
whose payoff depends on the value of a portfolio or basket of assets. At maturity it
pays off the greater of zero and the difference between the average of the prices of the
n different assets in the basket and the exercise price.

The typical underlying of a basket option is a basket consisting of several stocks,
that represents a certain economy sector, industry or region.

The main advantage of a basket option is that it is cheaper to use a basket option
for portfolio insurance than to use the corresponding portfolio of plain vanilla options.
Indeed, a basket option takes the imperfect correlation between the assets in the basket
into account and moreover the transaction costs are minimized because an investor has
to buy just one option instead of several ones.

For pricing simple options on one underlying the financial world has generally
adopted the celebrated Black & Scholes model, which leads to a closed form solution
for simple options since the stock price at a fixed time follows a lognormal distribution.
However, using the famous Black & Scholes model for a collection of underlying stocks,
does not provide us with a closed form solution for the price of a basket option.
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The difficulty stems primarily from the lack of availability of the distribution of a
weighted average of lognormals, a feature that has hampered closed-form basket option
pricing characterization. Indeed, the value of a portfolio is the weighted average of the
underlying stocks at the exercise date.

One can use Monte Carlo simulation techniques (by assuming that the assets follow
correlated geometric Brownian motion processes) to obtain a numerical estimate of
the price. Other techniques consist of approximating the real distribution of the
payoffs by another more tractable one. For instance, finance people use since ages
the lognormal distribution as an approximation for the sum of lognormals, although
it is common knowledge that this methodology leads sometimes to poor results. An
extensive discussion of different methods can be found in the theses of Arts (1999),
Beißer (2001) and Van Diepen (2002).

Obviously, the payoff structure of a basket option resembles the payoff structure of
an Asian option. But whereas the Asian option is a path-dependent option, that is,
its payoff at maturity depends on the price process of the underlying asset, the basket
option is a path-independent option whose terminal payoff is a function of several
asset prices at the maturity date. Nevertheless, in literature, different authors tried
out initial methods for Asian options to the case of basket options. In this respect, it
seems natural to adapt the methods developed in Vanmaele et al. (2002) for valuing
Asian options and indeed, we have transferred them in a promising way to basket
options.

Combining both types of options one can consider an Asian option on a basket of
assets instead of on one single asset. In this case we talk about an Asian basket option.
Dahl and Benth (2001a,b) value such options by quasi-Monte Carlo techniques and
singular value decomposition.

But as these approaches are rather time consuming, it would be vital to have
accurate, analytical and easily computable bounds of this price. As the financial
institutions dealing with baskets are perhaps even more concerned about the ability of
controlling the risks involved, it is important to offer an interval of hedge parameters.
Confronted with such issues, the objective of this paper is to obtain accurate analytical
lower and upper bounds. To this end, we use on one hand the method of conditioning
as in Rogers and Shi (1995), and on the other hand results on a general technique based
on comonotonic risks for deriving upper and lower bounds for stop-loss premiums of
sums of dependent random variables (see Kaas, Dhaene and Goovaerts (2000)).
All lower and upper bounds can be expressed as an average of Black & Scholes option
prices, sometimes with a synthetic underlying asset. Therefore, hedging parameters
can be obtained in a straightforward way.

A basket option is an option whose payoff depends on the value of a portfolio (or
basket) of assets (stocks). Thus, an arithmetic basket call option with exercise date T ,
n risky assets and exercise price K generates a payoff (

∑n
i=1 aiSi(T )−K)+ at T , that

is, if the sum S =
∑n
i=1 aiSi(T ) of asset prices Si weighted by positive constants ai at

date T is more than K, the payoff equals the difference; if not, the payoff is zero. The
price of the basket option at current time t = 0 is given by

BC(n,K, T ) = e−rTEQ

[(
n∑
i=1

aiSi(T )−K

)
+

]
(1)

under a martingale measure Q and with r the risk-neutral interest rate.
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Assuming a Black & Scholes setting, the random variables Si(T )/Si(0) are lognormally
distributed under the unique risk-neutral measure Q with parameters (r−σ2

i /2)T and
σ2
i T , when σi is the volatility of the underlying risky asset Si. Therefore we do not

have an explicit analytical expression for the distribution of the sum
∑n
i=1 aiSi(T ) and

determining the price of the basket option is not a trivial task. Since the problem of
pricing arithmetic basket options turns out to be equivalent to calculating stop-loss
premiums of a sum of dependent risks, we can apply the results on comonotonic upper
and lower bounds for stop-loss premiums, which have been summarized in Section 2.

The paper is organized as follows. Section 2 recalls from Kaas et al. (2000) pro-
cedures for obtaining the lower and upper bounds for prices by using the notion of
comonotonicity. Section 3 provides bounds for basket options in the Black & Scholes
setting, first by concentrating on the comonotonicity and then by applying the Rogers
and Shi approach to carefully chosen conditioning variables. We also provide upper
bounds by generalizing the Nielsen and Sandmann (2002) idea and by combining it
with the notion of comonotonicity. We discuss different conditioning variables in order
to determine some superiority. Section 4 contains some general remarks. In Section
5, several sets of numerical results are given and the different bounds are discussed.
In particular the correlation among the different underlying assets plays an important
role for determining the sharpest price-intervals. Section 6 discusses the pricing of
Asian basket options, which can be done by the same reasoning. Section 7 concludes
the paper.

2. Some theoretical results

In this section, we recall from Dhaene et al. (2002) and the references therein the
procedures for obtaining the lower and upper bounds for stop-loss premiums of sums
S of dependent random variables by using the notion of comonotonicity. A random
vector (Xc

1 , . . . , X
c
n) is comonotonic if each two possible outcomes (x1, . . . , xn) and

(y1, . . . , yn) of (Xc
1 , . . . , X

c
n) are ordered componentwise.

In both financial and actuarial context one encounters quite often random variables
of the type S =

∑n
i=1Xi where the terms Xi are not mutually independent, but the

multivariate distribution function of the random vector X = (X1, X2, . . . , Xn) is not
completely specified because one only knows the marginal distribution functions of the
random variables Xi. In such cases, to be able to make decisions it may be helpful to
find the dependence structure for the random vector (X1, . . . , Xn) producing the least
favourable aggregate claims S with given marginals. Therefore, given the marginal
distributions of the terms in a random variable S =

∑n
i=1Xi, we shall look for the

joint distribution with a smaller resp. larger sum, in the convex order sense. In short,
the sum S is bounded below and above in convex order (�cx) by sums of comonotonic
variables:

S
` �cx S �cx S

u �cx S
c,

which implies by definition of convex order that

E[(S` − d)+] ≤ E[(S− d)+] ≤ E[(Su − d)+] ≤ E[(Sc − d)+]

for all d in R+, while E[S`] = E[S] = E[Su] = E[Sc].
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2.1. Comonotonic upper bound

As proven in Dhaene et al. (2002), the convex-largest sum of the components of a
random vector with given marginals is obtained by the comonotonic sum S

c = Xc
1 +

Xc
2 + · · ·+Xc

n with

S
c d=

n∑
i=1

F−1
Xi

(U), (2)

where the usual inverse of a distribution function, which is the non-decreasing and
left-continuous function F−1

X (p) is defined by

F−1
X (p) = inf {x ∈ R | FX(x) ≥ p} , p ∈ [0, 1] ,

with inf ∅ = +∞ by convention.
Kaas et al. (2000) have proved that the inverse distribution function of a sum of

comonotonic random variables is simply the sum of the inverse distribution functions
of the marginal distributions. Moreover, in case of strictly increasing and continuous
marginals, the cdf FSc(x) is uniquely determined by

F−1
Sc

(FSc (x)) =
n∑
i=1

F−1
Xi

(FSc (x)) = x, F−1
Sc

(0) < x < F−1
Sc

(1).

Hereafter we restrict ourselves to this case of strictly increasing and continuous marginals.
In the following theorem Dhaene et al. (2002) have proved that the stop-loss pre-

miums of a sum of comonotonic random variables can easily be obtained from the
stop-loss premiums of the terms.

Theorem 1. The stop-loss premiums of the sum S
c of the components of the comono-

tonic random vector (Xc
1 , X

c
2 , . . . , X

c
n) are given by

E
[
(Sc − d)+

]
=

n∑
i=1

E
[(
Xi − F−1

Xi
(FSc (d))

)
+

]
, (F−1

Sc
(0) < d < F−1

Sc
(1)).

If the only information available concerning the multivariate distribution function of
the random vector (X1, . . . , Xn) are the marginal distribution functions of the Xi, then
the distribution function of Sc = F−1

X1
(U) +F−1

X2
(U) + · · ·+F−1

Xn
(U) is a prudent choice

for approximating the unknown distribution function of S = X1 + · · · + Xn. It is a
supremum in terms of convex order. It is the best upper bound that can be derived
under the given conditions.

2.2. Improved comonotonic upper bound

Let us now assume that we have some additional information available concerning
the stochastic nature of (X1, . . . , Xn). More precisely, we assume that there exists
some random variable Λ with a given distribution function, such that we know the
conditional cumulative distribution functions, given Λ = λ, of the random variables Xi,
for all possible values of λ. In fact, Kaas et al. (2000) define the improved comonotonic
upper bound Su as

S
u = F−1

X1|Λ(U) + F−1
X2|Λ(U) + · · ·+ F−1

Xn|Λ(U),
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where F−1
Xi|Λ(U) is the notation for the random variable fi(U,Λ), with the function fi

defined by fi(u, λ) = F−1
Xi|Λ=λ(u). In order to obtain the distribution function of Su,

observe that given the event Λ = λ, the random variable Su is a sum of comonotonic
random variables. If the marginal cdfs FXi|Λ=λ are strictly increasing and continuous,
then FSu|Λ=λ(x) is a solution to

n∑
i=1

F−1
Xi | Λ=λ

(
FSu | Λ=λ(x)

)
= x, x ∈

(
F−1
Su | Λ=λ(0), F−1

Su | Λ=λ(1)
)
, (3)

and the cdf of Su then follows from

FSu(x) =
∫ +∞

−∞
FSu|Λ=λ(x) dFΛ(λ).

In this case, we also find that for any d ∈
(
F−1
Su|Λ=λ(0), F−1

Su|Λ=λ(1)
)

:

E
[
(Su − d)+ | Λ = λ

]
=

n∑
i=1

E

[(
Xi − F−1

Xi|Λ=λ

(
FSu|Λ=λ(d)

))
+
| Λ = λ

]
, (4)

from which the stop-loss premium at retention d of Su can be determined by integration
with respect to λ.

2.3. Lower bound

LetX = (X1, . . . , Xn) be a random vector with given marginal cdfs FX1 , FX2 , . . . , FXn .
We assume as in the previous section that there exists some random variable Λ with
a given distribution function, such that we know the conditional cdfs, given Λ = λ, of
the random variables Xi, for all possible values of λ. This random variable Λ, however,
should not be the same as in case of the upper bound. We recall from Kaas et al.
(2000) that a lower bound, in the sense of convex order, for S = X1 +X2 + · · ·+Xn is

S
` = E [S | Λ] .

This idea can also be found in Rogers and Shi (1995) for the continuous case.
Let us further assume that the random variable Λ is such that all E [Xi | Λ] are non-
decreasing and continuous functions of Λ and in addition assume that the cdfs of the
random variables E [Xi | Λ] are strictly increasing and continuous, then the cdf of S`

is also strictly increasing and continuous, and we get for all x ∈
(
F−1
S`

(0) , F−1
S`

(1)
)
,

n∑
i=1

F−1
E[Xi|Λ] (FS`(x)) = x ⇔

n∑
i=1

E
[
Xi | Λ = F−1

Λ (FS`(x))
]

= x, (5)

which unambiguously determines the cdf of the convex order lower bound S` for S.
Applying Theorem 1 and using (5), the stop-loss premiums of S` can be computed as:

E
[(
S
` − d

)
+

]
=

n∑
i=1

E
[(
E [Xi | Λ]− E

[
Xi | Λ = F−1

Λ (FS`(d))
])

+

]
, (6)

which holds for all retentions d ∈
(
F−1
S`

(0) , F−1
S`

(1)
)
.
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So far, we considered the case that all E [Xi | Λ] are non-decreasing functions of
Λ. The case where all E [Xi | Λ] are non-increasing and continuous functions of Λ
also leads to a comonotonic vector (E [X1 | Λ] , E [X2 | Λ] , . . . , E [Xn | Λ]), and can be
treated in a similar way.

3. Basket options in a Black & Scholes setting

We now shall concentrate on bounds for the basket and Asian basket option by
comonotonicity reasoning and by using the approach of Rogers & Shi which has been
generalized by Nielsen and Sandmann (2002) in case of Asian options.

We denote by Si(t) the price of the i-th asset in the basket at time t. Assume the
basket is given by

S(t) =
n∑
i=1

aiSi(t),

where ai are deterministic, positive and constant weights specified by the option
contract. We assume under the risk neutral measure Q

dSi(t) = rSidt+ σiSidWi(t),

where {Wi(t), t ≥ 0} is a standard Brownian motion associated with the price process
of asset i. Further, we assume the different asset prices to be instantaneously correlated
according to

corr(dWi, dWj) = ρijdt. (7)

Given the above dynamics, the i-th asset price at time t equals

Si(t) = Si(0)e(r− 1
2σ

2
i )t+σiWi(t).

3.1. Bounds based on comonotonicity reasoning

First we note that according to Section 2 it is possible to derive upper and lower
bounds for the stop-loss premium EQ

[
(S− d)+

]
where S is a linear combination of

lognormal variables. For the details we refer to Vanmaele et al. (2002). We can rewrite
the basket as a sum of lognormal variables

S(t) =
n∑
i=1

Xi(t) =
n∑
i=1

αi(t)eYi(t), (8)

where αi(t) = aiSi(0)e(r− 1
2σ

2
i )t and Yi(t) = σiWi(t) ∼ N(0, σ2

i t) and thus Xi(t) is
lognormally distributed: Xi(t) ∼ LN(ln(aiSi(0)) + (r − 1

2σ
2
i )t, σ2

i t).
In this case the stop-loss premium with some retention di, namely EQ

[
(Xi − di)+

]
, is

well-known since ln (Xi(t)) ∼ N
(
µi(t), σ

2
Yi(t)

)
with µi(t) = ln(αi(t)) and σYi(t) = σi

√
t,

and equals for di > 0

EQ[(Xi(t)− di)+] = eµi(t)+
σ2
Yi(t)

2 Φ(di,1(t))− di Φ(di,2(t)), (9)

where di,1 and di,2 are determined by

di,1(t) =
µi(t) + σ2

Yi(t)
− ln(di)

σYi(t)
, di,2(t) = di,1(t)− σYi(t), (10)
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and where Φ is the cdf of the N(0, 1) distribution.
The case di < 0 is trivial.

In what follows we only consider the basket at maturity date T and for the sake of
notational simplicity, we shall not longer denote explicitly the dependence on T in Xi,
αi and Yi.

3.1.1. Comonotonic upper bound. By the lognormality of the components Xi = aiSi in
the sum S (8), the inverse cdfs F−1

Xi
can easily be derived, leading in (2) to

S
c =

n∑
i=1

αie
1
2σ

2
Yi

Φ−1(U),

for any random variable U which is uniformly distributed on the unit interval. Com-
bining Theorem 1 and (9)-(10), and substituting αi and the standard deviation of Yi,
we obtain the following comonotonic upper bound for any K > 0:

BC(n,K, T ) ≤
n∑
i=1

aiSi(0)Φ
[
σi
√
T − Φ−1 (FSc(K))

]
− e−rTK (1− FSc(K)) ,

where FSc(K) follows from

n∑
i=1

aiSi(0)e(r− 1
2σ

2
i )T+ σi

√
T Φ−1(FSc (K)) = K.

Similarly as for the Asian options in Simon, Goovaerts and Dhaene (2000), we can
rewrite this upper bound as a combination of Black & Scholes prices. In fact, noting
that by the lognormality of Si

F−1
aiSi

(p) = aiF
−1
Si

(p) for all p ∈ [0, 1],

it follows from comonotonicity results that it is the smallest linear/weighted combina-
tion of Black & Scholes European call prices dominating the basket option price:

BC(n,K, T ) ≤ e−rT
n∑
i=1

aiE
Q
[
(Si − F−1

Si
(FSc(K)))+

]
=

n∑
i=1

ai
(
Si(0)Φ(di1)− e−rTKiΦ(di2)

)
,

with

Ki = F−1
Si

(FSc(nK)) = Si(0)e(r− 1
2σ

2
i )T+σi

√
T Φ−1(FSc (K))

di1 =
ln
(
Si(0)
Ki

)
+ (r + σ2

i

2 )T

σi
√
T

, di2 = di1 − σi
√
T .

Remark that this comonotonic upper bound is independent of ρij (7), which implies
that even when in practice these correlations are not known we have an upper bound
for the price of the basket option. It is intuitively clear that this upper bound can be
improved by taking these correlations into account.
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3.1.2. Improved comonotonic upper bound. Following Section 2.2, we improve the comono-
tonic upper bound Sc (in convex order) for S (8) by conditioning on some normally
distributed random variable Λ such that Yi | Λ is also normally distributed for all i
with parameters µ(i) = ri

σYi
σΛ

(
λ− EQ [Λ]

)
and σ2(i) =

(
1− r2

i

)
σ2
Yi

:

S
u =

n∑
i=1

αie
riσYiΦ

−1(V )+
√

1−r2
i σYiΦ

−1(U),

where U and V = Φ
(

Λ−EQ[Λ]
σΛ

)
are mutually independent uniform(0,1) random vari-

ables, Φ is the cdf of the N(0, 1) distribution and ri is defined by

ri = r (Yi,Λ) =
cov (Yi,Λ)
σYiσΛ

.

Combining (4) with (9)-(10) and substituting αi and the standard deviation of Yi, we
construct the improved comonotonic upper bound for the basket price BC(n,K, T ):

e−rTEQ
[
(Su −K)+

]
=

n∑
i=1

aiSi(0)e−
1
2σ

2
i r

2
i T× (11)

×
∫ 1

0

eriσi
√
TΦ−1(v)Φ

(√
1− r2

i σi
√
T − Φ−1

(
FSu|V=v(K)

))
dv − e−rTK (1− FSu(K)) ,

where the conditional distribution FSu|V=v(K) is, according to (3), determined by

n∑
i=1

aiSi(0) exp
[
(r − σ2

i

2
)T + riσi

√
TΦ−1(v) +

√
1− r2

i σi
√
TΦ−1

(
FSu|V=v(K)

)]
= K,

and integration with respect to v gives:

FSu(K) =
∫ 1

0

FSu|V=v(K)dv.

We now discuss the choice of the conditioning variable Λ which should not only
be normally distributed but also such that (Yi,Λ) for all i are bivariate normally
distributed. Hence, we define Λ by

Λ =
n∑
i=1

βiσiWi(T ) (12)

with βi some real numbers. The correlation between Yi and Λ is given by

ri =
cov (σiWi(T ),Λ)√

TσiσΛ

=

∑n
j=1 βjρijσj√∑n

i=1

∑n
j=1 βiβjρijσiσj

. (13)

In this paper we consider the following types of conditioning variable Λ.
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• As a first conditioning variable we take a linear transformation of a first order
approximation of S (denoted by FA1):

FA1 =
n∑
i=1

e(r−σ
2
i
2 )TaiSi(0)σiWi(T ), (14)

and the correlation coefficients then read

ri =

∑n
j=1 ajSj(0)e(r−

σ2
j
2 )T ρijσj√∑n

i=1

∑n
j=1 aiSi(0)e(r−

σ2
i
2 )TajSj(0)e(r−

σ2
j
2 )T ρijσiσj

. (15)

• As a second conditioning variable (denoted by FA2), we consider

FA2 =
n∑
i=1

aiSi(0)σiWi(T ). (16)

In this case, the correlation between Yi and Λ is easily found to be

ri =

∑n
j=1 ajSj(0)ρijσj√∑n

i=1

∑n
j=1 aiSi(0)ajSj(0)ρijσiσj

. (17)

Note that FA2 is also a first order approximation of S and in fact of FA1.
• As a third conditioning variable (denoted by GA), we look at the standardized

logarithm of the geometric average G which is defined by

G =
n∏
i=1

Si(T )ai =
n∏
i=1

(
Si(0)e(r−σ

2
i
2 )T

)ai
. (18)

Indeed, we can consider

GA =
lnG− EQ[lnG]√

var[lnG]
=

∑n
i=1 aiσiWi(T )√∑n

i=1

∑n
j=1 aiajσiσjρijT

, (19)

since

EQ[lnG] =
n∑
i=1

ai

(
ln(Si(0)) + (r − σ2

i

2
)T
)

(20)

var[lnG] =
n∑
i=1

n∑
j=1

aiajσiσjρijT. (21)

The correlation coefficients in this case are given by

ri =
cov (σiWi(T ),Λ)√

TσiσΛ

=

∑n
j=1 ajσjρij√∑n

i=1

∑n
j=1 aiajρijσiσj

. (22)
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The improved comonotonic upper bound can be computed separately for each of the
choices (14), (16) and (19).

Similarly to the comonotonic upper bound, we can rewrite the improved comono-
tonic upper bound as a combination of Black & Scholes prices. For this purpose, given
Λ = λ or equivalently given V = v, we introduce some artificial underlying assets S̃i,v
having volatilities σ̃i,v = σi

√
1− r2

i and with initial value

S̃i,v(0) = Si(0)e−
1
2σ

2
i r

2
i T+riσi

√
T Φ−1(v).

We also consider new exercise prices:

K̃i,v = Si(0)e(r−σ
2
i
2 )T+riσi

√
TΦ−1(v)+

√
1−r2

i σi
√
T Φ−1(FSu|V=v(K)).

3.1.3. Lower bound. Following Section 2.3 we condition on some random variable Λ
in order to derive a lower bound. For our purpose, we take (12) as the conditioning
variable and in particular, we consider the three choices FA1, FA2 and GA, mentioned
above. Noting that Yi | Λ is normally distributed with parameters µ(i) and σ2(i) as in
Section 3.1.2, we easily arrive at

S
` ≡

n∑
i=1

EQ [Si(T ) | Λ] =
n∑
i=1

aiSi(0)e(r−σ
2
i
2 r

2
i )T+σiri

√
TΦ−1(V ), (23)

where the random variable V = Φ
(

Λ−EQ[Λ]
σΛ

)
is uniformly distributed on the unit

interval. This sum is a sum of n comonotonic risks under the assumption that for all
i the correlations ri are positive. We shall come back to this issue later on.
Invoking (6) and (9)-(10), and substituting αi and the standard deviation of Yi, we
find the following lower bound for the price of the basket call option:

BC(n,K, T ) ≥
n∑
i=1

aiSi(0) Φ
[
σi
√
Tri − Φ−1 (FS`(K))

]
− e−rT K (1− FS`(K)) (24)

which holds for any K > 0 and where FS`(K), according to (5), solves

n∑
i=1

aiSi(0)e(r− 1
2 r

2
i σ

2
i )T+ riσi

√
T Φ−1(F

S`
(K)) = K. (25)

Similarly as for the upper bounds, the lower bound (24)-(25) can be formulated as
an average of Black & Scholes formulae with new underlying assets and new exercise
prices. The new assets S̃i are with S̃i(0) = Si(0) and with new volatilities σ̃i = σiri
for i = 1, . . . , n. The new exercise prices K̃i, i = 1, . . . , n, are given by

K̃i = S̃i(0)e(r− σ̃
2
i
2 )T+σ̃i

√
TΦ−1(F

S`
(K)).

Indeed,

BC(n,K, T ) ≥
n∑
i=1

ai

[
S̃i(0)Φ (d1i)− e−rT K̃i Φ (d2i)

]
(26)



Bounds for the price of arithmetic basket and Asian basket options 11

with

d1i =
ln
(
S̃i(0)

K̃i

)
+ (r + σ̃2

i

2 )T

σ̃i
√
T

and d2i = d1i − σ̃i
√
T , for i = 1, . . . , n.

Beißer (2001) has obtained the same result by using other arguments. Further
remark that in case ri equals one, the lower bound coincides with the comonotonic
upper bound and we obtain the exact price. In practice we did not find up to now
a conditioning variable Λ such that ri = 1 for all i. But we do have that for the
conditioning variables (14), (16) and (19) the lower bound is quite good. Beißer (2001)
chooses along intuitive arguments the numerator of the standardized logarithm of the
geometric average (19). This is indeed a good choice since the geometric average and
arithmetic average are based on the same information. In this case, the correlation
coefficients in the formulae for the lower bound are given by (22). Note however
that these correlation coefficients are independent of the initial value of the assets
in the basket which can lead to a lower quality of the lower bound when the assets
in the basket have different initial values. Beißer (2001) therefore considers also the
conditioning variable Λ given by (16) with correlations ri (17), which depend on the
weights, the initial values and the volatilities of the assets in the basket.
It is easily seen that the lower bound will coincide for the three different choices of
Λ when the initial values as well as the volatilities are equal for the different assets.
When only the volatilities σi are equal for all i then the correlation coefficients (15)
and (17) coincide and hence also the corresponding lower bounds. Similarly, when only
the initial values are equal the correlation coefficients (17) and (22) lead to the same
lower bound.

Next we go deeper into the assumption of positiveness for the correlation coefficients
ri (13). This condition is needed for S` (23) to be a comonotonic sum.
When the correlations ρij (7) are positive for all i and j then it suffices to take all
coefficients βi also with a positive sign in order to satisfy the assumption. However
when a ρij is negative a general discussion is much more involved. Therefore, we first
look at the special case when n = 2 and ρ12 = ρ21

not= ρ ≤ 0. The conditions r1, r2 ≥ 0
are equivalent to{

β1σ1 − β2σ2|ρ| ≥ 0
β2σ2 − β1σ1|ρ| ≥ 0 ⇔ β2σ2|ρ| ≤ β1σ1 ≤ β2σ2

1
|ρ|
, (27)

and imply that β1 and β2 should have the same sign and differ from zero. For simplicity
assume that β1 and β2 are both strictly positive, then the condition (27) can be
rewritten as

|ρ| ≤ β1σ1

β2σ2
≤ 1
|ρ|
. (28)

Note that since |ρ| ≤ 1, the second inequality is trivially fulfilled when β1σ1 ≤ β2σ2

while in the case β1σ1 ≥ β2σ2 the first inequality is trivial. Hence only one of these
inequalities has to be checked. Beißer (2001) made a similar reasoning but only for the
particular correlation coefficients (17).
When ρ is negative, it can happen that for none of the three choices for Λ, namely
(14), (16) and (19), relation (28) is satisfied. However, since we derived a lower bound
for any Λ given by (12) we are not restricted to the three choices. Indeed, it is always
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possible to find a β1 and β2 since the interval [|ρ|σ2
σ1
, 1
|ρ|

σ2
σ1

] is non-empty.
In fact, one might search for the β1 and β2 which leads to an optimal lower bound.
When we write ri, i = 1, 2 in function of x = β2σ2

β1σ1
, we find that r1 = 1+xρ√

1+x2+2xρ
and

r2 = ρ+x√
1+x2+2xρ

. If one assumes that r2 6= 1 and if we rewrite the equation defining

r2, we find the relation r1 − r2ρ =
√

(1− ρ2)(1− r2
2). As a consequence, the optimal

lower bound becomes the solution to the optimization program

max
r1,r2

LB(r1, r2) =
2∑
i=1

ai[S̃i(0)Φ(d1i)− e−rT K̃iΦ(d1i)] (29)

such that 0 ≤ r1 ≤ 1, 0 ≤ r2 < 1
2∑
i=1

aiK̃i = K

r1 − r2ρ =
√

1− ρ2

√
1− r2

2,

where we used the notation (25)-(26). Solving this problem by Lagrange optimization
leads to a conclusion of three cases:

1. If r2 = 0 and r1 =
√

1− ρ2, which is only possible if ρ < 0, the lower bound is
maximized under the above conditions if

a2K̃2σ2 + ρσ1(K − a2K̃2) ≤ 0 with K̃2 = S2(0)erT .

2. If r1 and r2 are strictly between 0 and 1, r1 and r2 are solutions to the equations:
e−rTϕ(Φ−1(FS`(K)))a1K̃1σ1

√
T − λ2 = 0

e−rTϕ(Φ−1(FS`(K)))a2K̃2σ2

√
T − λ2

(
−ρ+ r2

√
1−ρ2

1−r2
2

)
= 0

a1K̃1 + a2K̃2 = K

r1 − r2ρ =
√

1− ρ2
√

1− r2
2,

which are four non-linear equations in four unknowns r1, r2, λ2,Φ−1(FS`(K)) and
where ϕ is the density function of the N(0, 1) distribution.

3. If r1 = 0 and r2 =
√

1− ρ2, which is only possible if ρ < 0, the lower bound is
maximized under the above conditions if

a1K̃1σ1 + ρσ2(K − a1K̃1) ≤ 0 with K̃1 = S1(0)erT .

We now turn to the general case for n ≥ 3 and at least one correlation ρij , (7), is
strictly negative. As a conclusion of the following statement we see that a lower bound
can be computed also in a general case. However, the optimization program will be
much more involved when there are more than two assets in the basket.

Theorem 2. There always exist coefficients βi ∈ R, i = 1, . . . , n, in (12) such that all
correlations ri, i = 1, . . . , n, (13) are positive.
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Proof. Denoting A for the correlation matrix (ρij)1≤i,j≤n and putting βT = (β1σ1,
. . . , βnσn), the conditions ri ≥ 0, i = 1, . . . , n are equivalent to Aβ ≥ 0.
As all variance-covariance matrices, this matrix A is symmetric and positive semi-
definite. Moreover it is non-singular and positive definite since we assume that the
market is complete.
By a reasoning ex absurdo we show that at least one of the coefficients βi is strictly
positive: Assume that all βi are negative then from Aβ ≥ 0 it follows that βTAβ ≤ 0
which is a contradiction to the positive definiteness of A.
Finally, using the link between the primal and the dual of a linear programming
problem, the assertion can then be proved. �

Note that one could apply the above optimization procedure to the improved comono-
tonic upper bound, however we do not expect that the improvement resulting from the
optimization would lead to the best upper bounds. For a more detailed discussion we
refer to Section 5.

3.2. Bounds based on the Rogers & Shi approach

Following the ideas of Rogers and Shi (1995), we derive an upper bound based on
the lower bound. Indeed, we obtain an error bound

0 ≤ EQ
[
EQ [(S−K)+ | Λ]− (S` −K)+

]
≤ 1

2
EQ

[√
var(S | Λ)

]
. (30)

Consequently, we find as upper bound for the arithmetic basket option

BC(n,K, T ) ≤ e−rT
{
EQ

[
(S` −K)+

]
+

1
2
EQ

[√
var(S |Λ)

]}
. (31)

Using properties of lognormal distributed variables, the second term on the right
hand side can be written out explicitly, giving some lenghty, analytical, computable
expression:

EQ
[√

var(S |Λ)
]

= EQ


 n∑
i=1

n∑
j=1

EQ [aiajSi(T )Sj(T ) | Λ]−
(
S
`
)21/2

 , (32)

where S` was defined in (23) and where the first term in the right hand side equals

n∑
i=1

n∑
j=1

aiajSi(0)Sj(0)e(2r−
σ2
i+σ2

j
2 )T+rijσij

√
TΦ−1(U)+ 1

2 (1−r2
ij)Tσ

2
ij , (33)

with σ2
ij = σ2

i + σ2
j + 2σiσjρij and rij = σi

σij
ri + σj

σij
rj , and where U is uniformly

distributed on the interval (0, 1).
This upper bound holds for any choice of the coefficients βi in the expression of Λ

(12) as long as the correlations ri are positive. This allows us to take the minimum
over several upper bounds. Note also that the error bound (32) is independent of the
strike K.

For Asian option pricing, Nielsen and Sandmann (2002) were able to improve the
Rogers & Shi methodology. We succesfully adapt that approach to the setting of basket
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options.
For any d ∈ R such that Λ ≥ d implies S ≥ K, it follows that

EQ[(S−K)+ | Λ] = EQ[S−K | Λ] =
(
S
` −K

)
+

and, denoting by fΛ(·) the normal density function for Λ, that the error bound (30)
can be replaced by

0 ≤ EQ
[
EQ[(S−K)+ | Λ]−

(
S
` −K

)
+

]
=

∫ d

−∞

(
EQ[(S−K)+ | Λ = λ]−

(
EQ [S | Λ = λ]−K

)
+

)
fΛ(λ)dλ

≤ 1
2

∫ d

−∞
(var (S | Λ = λ))

1
2 fΛ(λ)dλ

≤ 1
2
(
EQ

[
var (S | Λ) 1{Λ<d}

]) 1
2
(
EQ

[
1{Λ<d}

]) 1
2 , (34)

where Hölder’s inequality has been applied in the last inequality and where 1{Λ<d} is
the indicator function.
The upper bound (31) corresponds to the limiting case where d equals infinity.

We can determine d for the three different Λ’s (14), (16) and (18), such that Λ ≥ dΛ

implies that S ≥ K. Bounding the exponential function ex below by its first order
approximation 1 + x with x = σiWi(T ), respectively x =

(
r − σ2

i

2

)
T + σiWi(T ), the

integration bound corresponding to Λ = FA1 given by (14), respectively to Λ = FA2
given by (16), is found to be

dFA1 = K −
n∑
i=1

aiSi(0)e(r−σ
2
i
2 )T , (35)

respectively, dFA2 = K −
n∑
i=1

aiSi(0)(1 + (r − σ2
i

2
)T ). (36)

When Λ is the standardized logarithm of the geometric average (GA), see (19), we use
the relationship S ≥ G ≥ K and (20)–(21) in order to arrive at

dGA =
ln(K)−

∑n
i=1 ai

(
ln(Si(0)) + (r − σ2

i

2 )T
)

√∑n
i=1

∑n
j=1 aiajσiσjρijT

. (37)

We remark that for the optimized choice of Λ such d cannot be determined.
Note that in contrast to (32), the error bound (34) now depends on K through

d. Therefore we expect that the upper bound containing the error bound (34) will
be sharper than the corresponding upper bound with error bound (32). However we
should draw the attention to the fact that in the error bound (34) an additional error
is introduced through Hölder’s inequality which can be larger than the improvement
by the use of the integration bound d.

Now we shall derive an easily computable expression for (34).
The second expectation term in the product (34) equals FΛ(d), where FΛ(·) denotes
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the normal cumulative distribution function of Λ. The first expectation term in the
product (34) can be expressed as

EQ
[
var (S|Λ) 1{Λ<d}

]
= EQ

[
EQ[S2|Λ]1{Λ<d}

]
− EQ

[
(EQ[S|Λ])21{Λ<d}

]
. (38)

The second term of the right-hand side of (38) can according to (23) be rewritten as

EQ
[
(EQ[S|Λ])21{Λ<d}

]
=
∫ d

−∞
(EQ[S|Λ = λ])2fΛ(λ)dλ

=
n∑
i=1

n∑
j=1

aiajSi(0)Sj(0)e(2r−
σ2
i r

2
i+σ2

j r
2
j

2 )T

∫ d

−∞
e(σiri+σjrj)

√
TΦ−1(v)fΛ(λ)dλ, (39)

where we recall that Φ−1(v) = λ−EQ[Λ]
σΛ

and Φ(·) is the cumulative distribution function
of a standard normal variable. Applying the equality∫ d

−∞
ebΦ

−1(v)fΛ(λ)dλ = e
b2
2 Φ (d∗ − b) , d∗ =

d− EQ[Λ]
σΛ

, (40)

with b = (σiri + σjrj)
√
T we can express EQ

[
(EQ[S|Λ])21{Λ<d}

]
as

n∑
i=1

n∑
j=1

aiajSi(0)Sj(0)e(2r+σiσjrirj)TΦ
(
d∗ − (riσi + σjrj)

√
T
)
. (41)

To transform the first term of the right-hand side of (38) we invoke (33)and apply (40)
with b = rijσij

√
T = (riσi + σjrj)

√
T :

EQ
[
EQ[S2 | Λ]1{Λ<d}

]
=

n∑
i=1

n∑
j=1

aiajSi(0)Sj(0)e(2r−
σ2
i+σ2

j
2 )T+ 1

2 (1−r2
ij)σ2

ijT

∫ d

−∞
erijσij

√
TΦ−1(v)fΛ(λ)dλ

=
n∑
i=1

n∑
j=1

aiajSi(0)Sj(0)e(2r+σiσjρij)TΦ
(
d∗ − (riσi + σjrj)

√
T
)
. (42)

Combining (41) and (42) into (38), and then substituting FΛ(d) and (38) into (34) we
get the following expression for the error bound, shortly denoted by ε(d)

ε(d) =
1
2
{FΛ(d)}

1
2


n∑
i=1

n∑
j=1

aiajSi(0)Sj(0)e(2r+σiσjrirj)TΦ
(
d∗ − (riσi + σjrj)

√
T
)
×

×
(
eσiσj(ρij−rirj)T − 1

)}1/2

. (43)

3.3. Partially exact/comonotonic upper bound

We combine the technique for obtaining an improved comonotonic upper bound by
conditioning on some normally distributed random variable Λ and the idea of Nielsen
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and Sandmann (2002) described in the previous subsection, in order to develop another
upper bound.
This so-called partially exact/comonotonic upper bound consists of an exact part of
the option price and some improved comonotonic upper bound for the remaining part.
This idea of decomposing the calculations goes at least back to Curran (1994).

For any normally distributed random variable Λ, with cdf FΛ(·), for which there
exists a d such that Λ ≥ d implies S ≥ K and for which Yi | Λ is also normally
distributed for all i, the second term in the equality

e−rTEQ[(S−K)+] = e−rTEQ[EQ[(S−K)+ | Λ]] (44)

= e−rT

{∫ d

−∞
EQ[(S−K)+ | Λ = λ]dFΛ(λ) +

∫ +∞

d

EQ[S−K | Λ = λ]dFΛ(λ)

}
can be written in closed-form along similar lines as (39)-(41):

e−rT
∫ +∞

d

EQ[S | Λ = λ]fΛ(λ)dλ− e−rTK(1− FΛ(d))

= e−rT
n∑
i=1

aiSi(0)e(r− 1
2σ

2
i r

2
i )T

∫ +∞

d

eriσi
√
T Φ−1(v)fΛ(λ)dλ− e−rTK(1− Φ(d∗))

=
n∑
i=1

aiSi(0)Φ(riσi
√
T − d∗)− e−rTKΦ(−d∗), (45)

where d∗ =
d− EQ[Λ]

σΛ
and v =

λ− EQ[Λ]
σΛ

.

In the first term of (44) we replace S by Su in order to obtain an upper bound and
apply (11) but now with an integral from zero to Φ(d∗):

e−rT
∫ d

−∞
EQ[(S−K)+ | Λ = λ]fΛ(λ)dλ

≤ e−rT
∫ d

−∞
EQ[(Su −K)+ | Λ = λ]fΛ(λ)dλ = e−rT

∫ Φ(d∗)

0

EQ[(Su −K)+ | V = v] dv

=
n∑
i=1

aiSi(0)e−
1
2σ

2
i r

2
i T

∫ Φ(d∗)

0

eri σi
√
T Φ−1(v)Φ

(√
1− r2

i σi
√
T − Φ−1

(
FSu|V=v(K)

))
dv

− e−rTK

(
Φ(d∗)−

∫ Φ(d∗)

0

FSu|V=v(K) dv

)
. (46)

For the random variables Λ given by (14), (16) and (19) we derived a d, see (35), (36)
and (37), and thus we can compute the new upper bound.

4. General remarks

In this section we summarize some general remarks:

• The price of the basket put option with exercise date T , n underlying assets and
fixed exercise price K, given by BP (n,K, T ) = e−rTEQ

[
(K − S(T ))+

]
satisfies
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the put-call parity at the present: BC(n,K, T )−BP (n,K, T ) = S(0)− e−rTK.
Hence, we can derive bounds for the basket put option from the bounds for the
call. These bounds for the put option coincide with the bounds that are obtained
by applying the theory of comonotonic bounds or the Rogers and Shi approach
directly to basket put options. This stems from the fact that the put-call parity
also holds for these bounds.
• The case of a continuous dividend yield qi can easily be dealt with by replacing
the interest rate r by r − qi.
• For n = 1 there is only one asset in the basket and hence the comonotonic sums
S
c, Su and S` all three coincide with the sum S which consists of only one term:

this asset. In this case, the comonotonic upper and lower bounds, including the
partially exact/comonotonic upper bound, reduce to the well-known Black &
Scholes price for an option on a single asset. This is also true for the bounds
based on the Rogers & Shi approach since the error bound is zero.
• As for the Asian options (see Vanmaele et al. (2002)), we can easily derive the
hedging Greeks for the upper and lower bounds of a basket option since we found
analytical expressions for these bounds. Moreover the expressions are in terms
of Black & Scholes prices.

5. Numerical illustration

In this section we give a number of numerical examples on basket options in the
Black & Scholes setting.
The first set of input data was taken from Arts (1999). Note that we consider here the
forward-moneyness, which is defined as the ratio of the forward price of the basket and
the exercise price K. The input parameters correspond to a two-dimensional basket.
We first consider equal weights and afterwards, unequal weights. The spot prices are
first assumed to be equal to 100 units, and then allowed to vary. The risk-free interest
rate is fixed at 5% and we assume no dividends. Moneyness ranges from 10% in-the-
money to 10% out-of-the-money. For the time to maturity T two cases are considered
(T = 1, 3 years). For the correlation (7), two values are considered, representing low
and high correlation respectively. We consider equal volatilities (high and low) for both
individual assets in the basket.
Concerning the upper bounds, we present only the results that lead to the best upper
bound together with the corresponding type of the bound. That is, the upper bound
given in the Tables 1 – 3 is the bound which satisfies min(UBΛd,UBΛ, PECUBΛ,
ICUBΛ, CUB), where the bounds were computed for all three choices FA1, FA2 andGA
of the conditioning variable Λ. In general, we have that partially exact/comonotonic
upper bounds (PECUB) are smaller than the improved comonotonic upper bounds
(ICUB), which are themselves better than the comonotonic upper bounds (CUB). The
detailed numerical results for all bounds are available upon request. Notice that, in
general, the Monte Carlo (MC) price is closer to the best lower bound than to the best
upper bound. One can also note that the relative distance between the best lower and
upper bound is smaller for higher correlation.
We start by discussing Table 1 which corresponds to the case of equal weights, spot
prices and volatilities for both assets. In this case the lower bound (24)-(25) applied
with Λ given by (14), (16) and (19), which will be denoted by LBFA1, LBFA2 and
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LBGA, are equal. The optimized lower bound LBopt, which is obtained by solving the
optimization program (29), gave practically the same values, therefore it is not reported
in the table. From all the upper bounds considered, the Rogers and Shi upper bound
UBGAd=LBGAd+e−rT ε(dGA) (43) with d = dGA (37) based on the geometric average,
performs the best.
Table 2 refers to the case of unequal weights and spot prices with equal volatilities.
From Table 2, we notice that LBFA1 = LBFA2 gives sharper results than LBGA.
The lower bound LBopt only slightly improves the lower bound LBFA1. However,
for high volatilities and small ρ, the improvement is significant. As for the upper
bounds, we could observe some pattern, namely for out- and at-the-money options,
and in-the-money options with the maturity of three years, the Rogers and Shi up-
per bound UBFA1d=LBFA1d + e−rT ε(dFA1) performs the best for smaller volatility
(0.2), whereas UBFA2d=LBFA2d + e−rT ε(dFA2) is the best for larger volatility (0.4)
with the exception of three years to maturity out-of-the-money option. In the latter
case the partially exact/comonotonic upper bound PECUBGA (44)-(46) based on the
standardized logarithm of the geometric average outperforms the other bounds for
larger volatility. For in-the-money options with the maturity of one year, the pattern
is reversed compared to that of in-the-money options with three years to maturity. As
mentioned above, we could use the optimization procedure in order to get the best value
for ICUB. However, given the experience with the lower bound and the fact that ICUB
itself is quite a poor choice for an upper bound, we do not expect the improvement to
be so good that it would outperform the best upper bound. Additionally, note that it
is possible to compute Rogers and Shi upper bounds based on the optimized values for
the lower bound. The results, however, did not outperform the best upper bound.
The second set of input data was taken from Brigo et al. (2002). Here we consider
two assets with weights 0.5956 and 0.4044, and spot prices of 26.3 and 42.03, respec-
tively. Maturity is approximately equal to 5 years. The discount factor at payoff is
0.783895779. This example refers to a realistic basket, for which we allow the volatilities
and correlations of individual assets to vary in order to facilitate the comparative price
analysis. From Table 3 we see that the optimized lower bound gives the best value.
The lower bound LBFA2 led to the worst results and is therefore not reported. For
this example the partially exact/comonotonic upper bound PECUBFA2, i.e. with Λ
given by FA2 (16) turns out to be the sharpest upper bound, except for very high
correlation when PECUBGA is to be preferred, and for σ1 = 0.1, σ2 = 0.3 (for both
ρ = 0.2 and ρ = 0.6) when UBGAd is the best. As mentioned before for a negative
correlation between the assets in the basket the lower bound (24) is not applicable if
any of the correlations r1 and r2 is negative. If this happens, one should turn to the
optimization procedure which enables to choose the coefficients β1 and β2 such that r1

and r2 would be positive. Consider a case where σ1 = 0.3, σ2 = 0.6, and ρ = −0.6. In
this instance we have that the correlations r1 and r2 are positive for the conditioning
variables FA1 and GA and therefore we can find the lower bounds based on those
variables: LBFA1= 29.39746493, LBGA= 29.77084284. The optimization procedure
(29) gives LBopt = 29.773172314, which shows again that the geometric average is a
fairly good choice for a conditioning variable when a1 = a2, and S1(0) = S2(0).
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Table 1: Comparing bounds, equal weights and spot prices.

T corr vol MC LBFA1=LBFA2=LBGA UB Type
10%OTM 1 0.3 0.2 2.90 2.8810 3.2428 UBGAd
K = 115.64 0.4 9.12 9.0280 10.2168 UBGAd

0.7 0.2 3.72 3.7172 3.8605 UBGAd
0.4 10.88 10.8647 11.3373 UBGAd

10%OTM 3 0.3 0.2 7.39 7.3290 8.2487 UBGAd
K = 127.80 0.4 18.85 18.4242 21.6818 UBGAd

0.7 0.2 8.92 8.9054 9.2733 UBGAd
0.4 21.66 21.5913 22.8329 UBGAd

ATM 1 0.3 0.2 6.44 6.4245 6.6658 UBGAd
K = 105.13 0.4 12.90 12.8088 13.7572 UBGAd

0.7 0.2 7.35 7.3445 7.4447 UBGAd
0.4 14.64 14.6281 15.0098 UBGAd

ATM 3 0.3 0.2 11.17 11.1071 11.8210 UBGAd
K = 116.18 0.4 22.41 21.9985 24.8118 UBGAd

0.7 0.2 12.69 12.6885 12.9784 UBGAd
0.4 25.12 25.0568 26.1324 UBGAd

10%ITM 1 0.3 0.2 12.37 12.3620 12.4836 UBGAd
K = 94.61 0.4 17.88 17.8093 18.5009 UBGAd

0.7 0.2 13.08 13.0861 13.1412 UBGAd
0.4 19.47 19.4565 19.7426 UBGAd

10%ITM 3 0.3 0.2 16.34 16.2843 16.7788 UBGAd
K = 104.57 0.4 26.62 26.2563 28.5970 UBGAd

0.7 0.2 17.71 17.6942 17.9022 UBGAd
0.4 29.19 29.1130 30.0151 UBGAd

Table 2: Comparing bounds, different weights and spot prices.

LBFA1
T corr vol MC LBGA =LBFA2 LBopt UB Type

10%OTM 1 0.3 0.2 2.57 2.4677 2.5611 2.5611 2.8737 UBFA1d
K = 101.76 0.4 8.07 7.7665 7.9855 7.9855 9.0400 UBFA2d

0.7 0.2 3.28 3.2381 3.2788 3.2788 3.4057 UBFA1d
0.4 9.61 9.4864 9.5767 9.5767 9.9963 UBFA2d

10%OTM 3 0.3 0.2 6.53 6.2970 6.4823 6.4823 7.3026 UBFA1d
K = 112.47 0.4 16.65 15.8604 16.2771 16.2772 18.9776 PECUBGA

0.7 0.2 7.84 7.7706 7.8478 7.8478 8.1762 UBFA1d
0.4 19.07 18.8624 19.0234 19.0234 20.0905 PECUBGA

ATM 1 0.3 0.2 5.69 5.5582 5.6750 5.6750 5.8848 UBFA1d
K = 92.51 0.4 11.39 11.0722 11.3112 11.3113 12.1387 UBFA2d

0.7 0.2 6.47 6.4267 6.4724 6.4724 6.5595 UBFA1d
0.4 12.90 12.7972 12.8889 12.8889 13.2216 UBFA2d

ATM 3 0.3 0.2 9.89 9.6011 9.8066 9.8066 10.4308 UBFA1d
K = 102.24 0.4 19.76 18.9795 19.4182 19.4186 21.9157 UBFA2d

0.7 0.2 11.18 11.0985 11.1778 11.1778 11.4310 UBFA1d
0.4 22.12 21.9132 22.0729 22.0729 23.0263 UBFA2d

10%ITM 1 0.3 0.2 10.90 10.7924 10.8905 10.8906 10.9984 UBFA2d
K = 83.26 0.4 15.78 15.4667 15.7025 15.7027 16.3073 UBFA1d

0.7 0.2 11.52 11.4815 11.5195 11.5195 11.5680 UBFA2d
0.4 17.13 17.0467 17.1329 17.1329 17.3822 UBFA1d

10%ITM 3 0.3 0.2 14.41 14.1593 14.3585 14.3586 14.7923 UBFA1d
K = 92.02 0.4 23.46 22.7133 23.1587 23.1598 25.2074 UBFA2d

0.7 0.2 15.58 15.5092 15.5827 15.5827 15.7644 UBFA1d
0.4 25.69 25.4874 25.6415 25.6416 26.4286 UBFA2d

n = 2, r = 0.05, K: strike price, MC: Monte Carlo price
Table 1: ai = 0.5, i = 1, 2, Si(0) = 100, i = 1, 2
Table 2: a1 = 0.3, a2 = 0.7, S1(0) = 130, S2(0) = 70

LBFA1: lower bound with Λ =
∑n
i=1 βiσiBi(T ), βi = aiSi(0)e(r−σ

2
i
2 )T

LBGA: lower bound with Λ =
∑n
i=1 βiσiBi(T ), βi = ai/

√∑n
i=1

∑n
j=1 aiajσiσjρij

LBopt: lower bound obtained via optimization procedure
UB: the smallest value over all upper bounds considered
Type: indicates which upper bound produces the smallest value
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Table 3: Comparing bounds, different weights and spot prices, different correlations.

Data σ1 σ2 corr MC LBFA1 LBGA LBopt UB Type
n = 2 0.1 0.3 0.2 26.31 26.2206 26.2346 26.2380 26.7612 UBGAd
T = 5 years 0.6 27.48 27.4304 27.4321 27.4356 27.7353 UBGAd
K = 32.661 0.99 28.51 28.5083 28.5083 28.5084 28.5213 PECUBGA
r = 4.8696% 0.1 0.6 0.2 34.15 33.9755 34.0185 34.0233 34.7658 PECUBFA2
a1 = 0.5956 0.6 35.64 35.4995 35.5172 35.5206 35.9272 PECUBFA2
a2 = 0.4044 0.99 36.85 36.8709 36.8713 36.8714 36.8829 PECUBGA
S1(0) = 26.3 0.3 0.6 0.2 39.92 38.8396 38.9627 38.9640 42.6078 PECUBFA2
S2(0) = 42.03 0.6 42.66 42.2886 42.3316 42.3318 43.9641 PECUBFA2

0.99 45.14 45.1919 45.1926 45.1926 45.2273 PECUBGA

6. Asian basket options

An Asian basket option is an option whose payoff depends on an average of values
at different dates of a portfolio (or basket) of assets, or which is equivalent on the
portfolio value of an average of asset prices taken at different dates. The price of a
discrete arithmetic Asian basket call option at current time t = 0 is given by

ABC(n,K, T ) = e−rTEQ

 n∑
`=1

a`

m−1∑
j=0

bjS`(T − j)−K


+


with a` and bj positive coefficients. For T ≤ m−1 we call this Asian basket call option
in progress and for T > m− 1, we call it forward starting.
Remark that the double sum S =

∑n
`=1 a`

∑m−1
j=0 bjS`(T − j) is a sum of lognormal

distributed variables:

S =
mn∑
i=1

Xi =
mn∑
i=1

αie
Yi

with
αi = ad in ebi mod n−1Sd in e(0)e

(r− 1
2σ

2
d i
n
e
)(T−i mod n+1)

and

Yi = σd in eWd
i
n e

(T − i mod n+ 1) ∼ N
(

0, σ2
Yi = σ2

d in e
(T − i mod n+ 1)

)
for all i = 1, . . . ,mn.
Hence, we can apply the general formulae for lognormals from Section 3 (see also
Vanmaele et al. (2002)).

7. Conclusion

We derived lower and upper bounds for the price of the arithmetic basket call
options using and combining different ideas and techniques such as firstly conditioning
on some random variable as in Rogers and Shi (1995), and secondly, results based on
comonotonic risks and bounds for stop-loss premiums of sums of dependent random
variables as in Kaas, Dhaene and Goovaerts (2000), and finally adaptation of the error
bound of Rogers and Shi as in Nielsen and Sandmann (2002). Notice that all bounds
have analytical and easily computable expressions. For the numerical illustration it was
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important to find and motivate a good choice of the conditioning variables appearing in
the formulae. We also managed to find the best lower bound through an optimization
procedure.
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