

HIGH-RESOLUTION MASS SPECTROMETRY-BASED METABOLOMICS AND LIPIDOMICS TO UNRAVEL THE GUT MICROBIOME - DIET AXIS IN HEALTH AND DISEASE

Prof. Lynn Vanhaecke

INTRODUCTION

LIMET = LABORATORY OF INTEGRATIVE METABOLOMICS

Background:

- Faculty of Veterinary Medicine, Department of Translational
 Physiology, Infectiology and Public Health, Laboratory of Integrative
 Metabolomics
- 4 post-doctoral researchers, 13 PhD students and 4 technicians

Research domains:

- Metabolomics and lipidomics in health and disease (incl. wildlife reproduction)
- Nutrimetabolomics and DNA-adductomics in the food-health axis
- Metabolomics in food analysis, environmental and biotechnological applications

MATRICES & EQUIPMENT @ LIMET


Investigated biological matrices:

- Tissue/cell lines
 Saliva
 Seafood
- Urine
 Tomato
 Insects
- Blood
 Wheat
 Water
- FecesRiceYeast

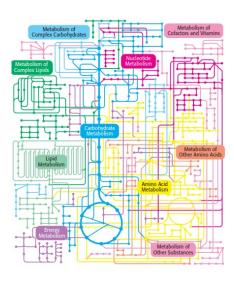
Equipment:

- UHPLC Exploris[™] 120 Orbitrap HRMS
- UHPLC Q- Exactive[™] Orbitrap HRMS
- UHPLC QqQ MS
- HPLC Ion Trap MS
- PDA, Fluorescence, ELSD
- REI-Q-ToF-MS (2), iKnife and OPO laser

Special focus on holistic metabolomics/lipidomics analyses

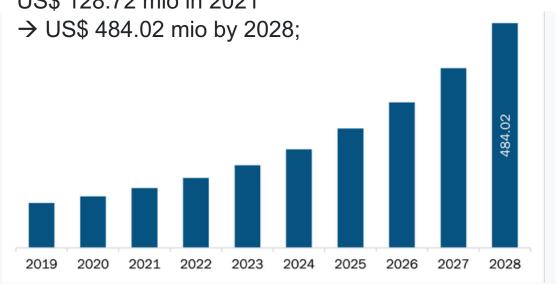
METABOLOMICS:

DNA Genomics

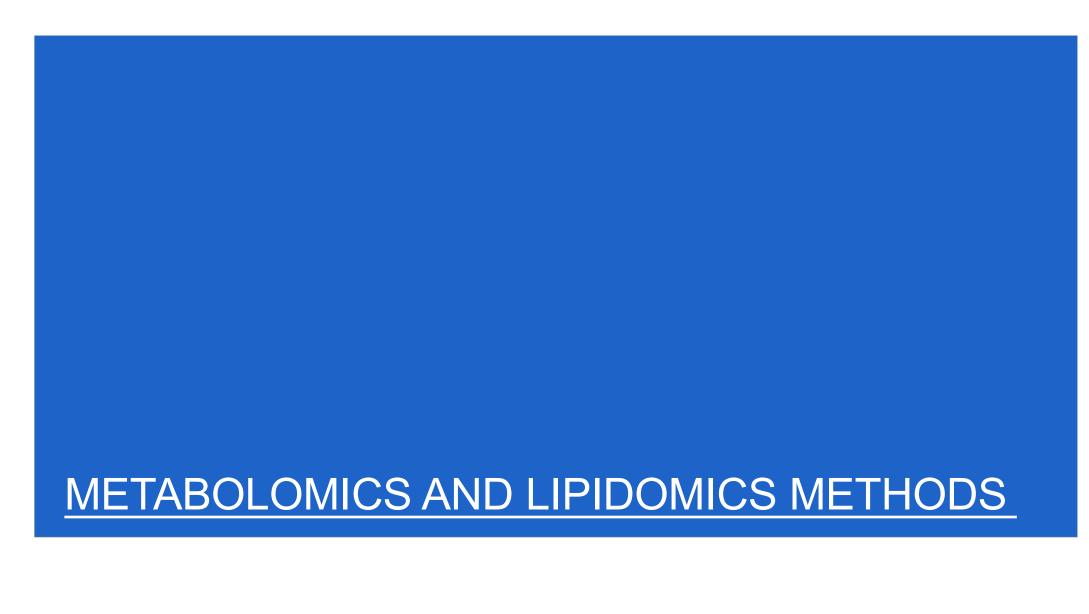

RNA Transcriptomics

Proteins Proteomics

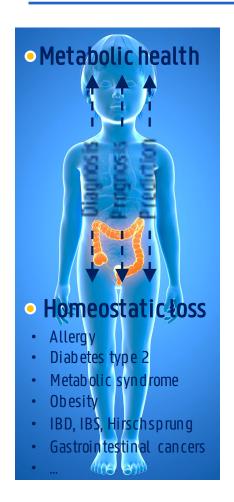
Metabolites Metabolomics



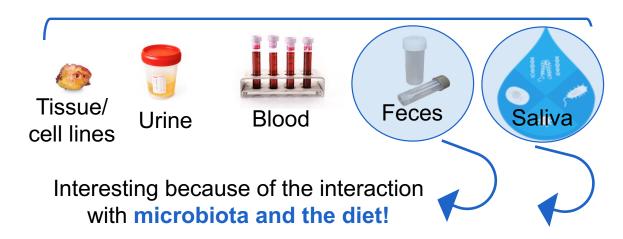
Biological phenotype


Market Europe: **CAGR = 20.8%**

US\$ 128.72 mio in 2021



Main applications (pharma & biotech):


- Biomarker discovery
- Drug discovery
- Toxicology

HOW DO WE PERFORM METABOLOMICS?

Within my lab and in both a clinical and nutritional context, **various matrices** are targeted for metabolomics analyses:

Frequently investigated in light of many conditions that are linked to **GIT imbalance & direct link to diet-microbiome**

Analytical methods have been developed for the various matrices for both polar metabolites and lipids

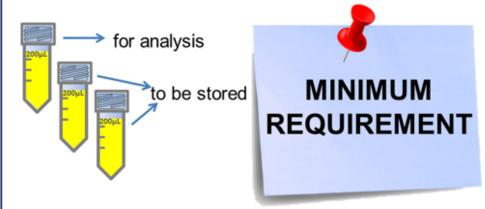
NUTRIMETABOLOMICS: STATE-OF-THE-ART

Molecular Nutrition Food Research

Review

Nutrimetabolomics: An Integrative Action for Metabolomic Analyses in Human Nutritional Studies

Marynka M. Ulaszewska, Christoph H. Weinert, Alessia Trimigno, Reto Portmann, Cristina Andres Lacueva, René Badertscher, Lorraine Brennan, Carl Brunius, Achim Bub, Francesco Capozzi, Marta Cialiè Rosso, Chiara E. Cordero, Hannelore Daniel, Stephanie Durand, Bjoern Egert, Paola G. Ferrario, Edith J.M. Feskens, Pietro Franceschi, Mar Garcia-Aloy, Franck Giacomoni, Pieter Giesbertz, Raúl González-Domínguez, Kati Hanhineva, Lieselot Y. Hemeryck, Joachim Kopka, Sabine Kulling, Rafael Llorach, Claudine Manach, Fulvio Mattivi, Carole Migné, Linda H. Münger, Beate Ott, Gianfranco Picone, Grégory Pimentel, Estelle Pujos-Guillot, Samantha Riccadonna, Manuela Rist, Caroline Rombouts, Josep Rubert, Thomas Skurk, Pedapati S. C. Sri Harsha, Lieven Van Meulebroek, Lynn Vanhaecke, Rosa Vázquez-Fresno, David Wishard, Guy Vergères , ... See fewer authors



POSSIBLE ANALYSIS TYPES

UNTARGETED ANALYSIS

- LC-MS: polar and medium-polar metabolites
 (i.e., polyphenols and its metabolites, amino acids)
- LC-MS: non-polar metabolites (i.e., lipidomics)
- GC-MS: volatile metabolites
- > GC-MS: metabolites after derivatization
- > NMR

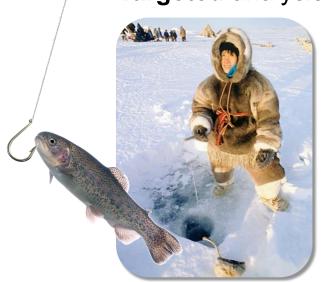
3 ALIQUOTS FOR ONE TYPE OF ANALYSIS (i.e., GC-MS)

TARGETED ANALYSIS

- LC-MS (kits, etc)
- GC-MS quantitative analysis with/without derivatization (i.e., SCFA, sugars etc.)
- Clinical analysis (multiple choices)

In general multiple aliquots of smaller volume (i.e., 200 μ L) are recommended, rather than few aliquots of high volume.

Higher number of aliquots is recommended, which allows for additional analysis (i.e., additional analytical technique that arises in the future)



Molecular Nutrition

MASS SPECTROMETRIC ANALYSIS: DIFFERENT APPROACHES

Targeted analysis

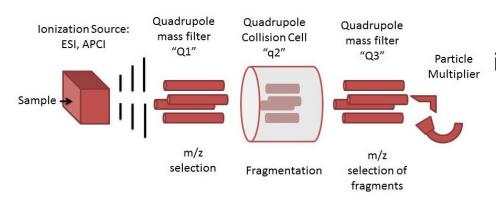
Predefined list

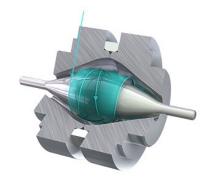
Accurate mass Retention time Isotope profile

Suspect analysis

Specific Database

Accurate mass
Retention time prediction
Isotope profile


Untargeted analysis


No database
Top-down approach

HIGH-END ANALYTICAL MS INSTRUMENTATION

Analytical tools

Advanced instrumentation

HRMS technology

Orbitrap

Alternatively: time-of-flight

QqQ technology

Analysis of a predefined number of target compounds: quantitative

Accurate mass screening of a virtually unlimited number of compounds: (semi-)quantitative

GENERAL MODEL FLOW FOR DATA ANALYSIS

Kruskal-Wallis

Friedman

rank ANOVA

ANOVA

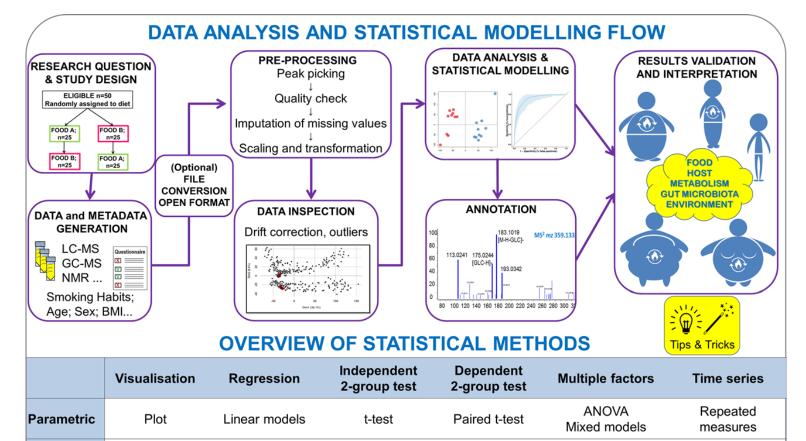
decomposition

Friedman

rank-repeated

ANOVA

decomposition


Wilcoxon

signed-rank

ML-PLS;

ML-RF;

ML-SVM

MW U-test

PLS-DA:

RF; SVM

Rank regr.

Kernel

LOESS

PLS: RF:

SVM

Rank plot

PCA

Non-

parametric

Multivariate

Molecular Nutrition

Nutrimetabolomics: An Integrative Action for Metabolomic Analyses in Human Nutritional Studies

HOW DO WE PERFORM METABOLOMICS: EX. FECES?

Extraction methods:

- Specifically developed for faeces: both for lipids and polar metabolites
- Using low amounts of starting material (100-200 mg dry weight)
- Applying solid- or liquid-liquid extraction

Detection methods:

- Using UHPLC for chromatographic separation
- Using Q-Exactive[™] Orbitrap MS for **detection** (Exploris 120 since mid 2021)
- High-resolution full-scan events for discovery phase (70,000 FWHM)
- MS/MS events for identification purposes (17,500 FWHM)



MS more sensitive than NMR (nanomolar versus μmolar range)

Method application:

- Methods applied in a truly untargeted (holistic) fashion
- But also a large set of analytical standards available for targeted interpretation

HOW DO WE PERFORM METABOLOMICS: EX. FECES?

Polar metabolomics – chemical targets:

- Amino acids
- Amines
- Other N-compounds
- Polyols
- Bile acids
- Carbohydrates
- Short chain fatty acids
- Hydroxy acids
- Multicarboxylic acids
- Monocarboxylic acids

2015

Article pubs.acs.org/ac

Validated High Resolution Mass Spectrometry-Based Approach for Metabolomic Fingerprinting of the Human Gut Phenotype

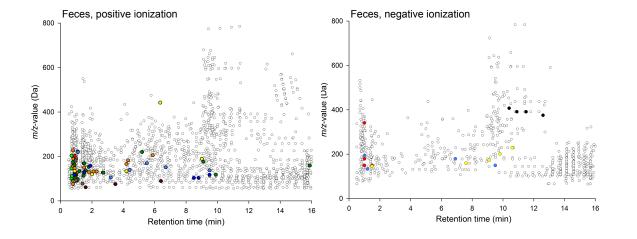
Julie Vanden Bussche,**,† Massimo Marzorati,‡ Debby Laukens,[±] and Lynn Vanhaecke

Lipidomics – chemical targets:

- Fatty acyls
- Phospholipids
- Prenols
- Sterols
- Glycerolipids
- Glycerophospholipids
- Polyketides
- Sphingolipids

Orbitrap Mass Spectrometry

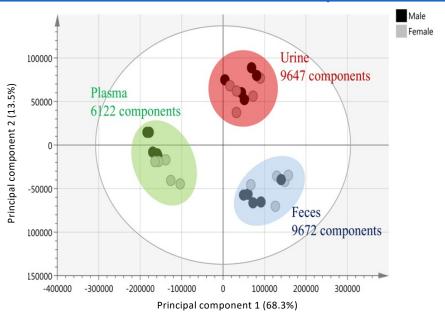
2017


Article pubs.acs.org/ac

Holistic Lipidomics of the Human Gut Phenotype Using Validated Ultra-High-Performance Liquid Chromatography Coupled to Hybrid

Lieven Van Meulebroek, † © Ellen De Paepe, † Vicky Vercruysse, † Beata Pomian, † Simon Bos, † Bruno Lapauw, § and Lynn Vanhaecke* ↑ †

Dr. Lieven Van Meulebroek



[†]Laboratory of Chemical Analysis, Ghent University, Merelbeke, 9820, Belgium

^{*}Laboratory of Microbial Ecology and Technology, Ghent University, Ghent, Belgium

¹Department of Gastroenterology, Ghent University, Ghent, 9000, Belgium

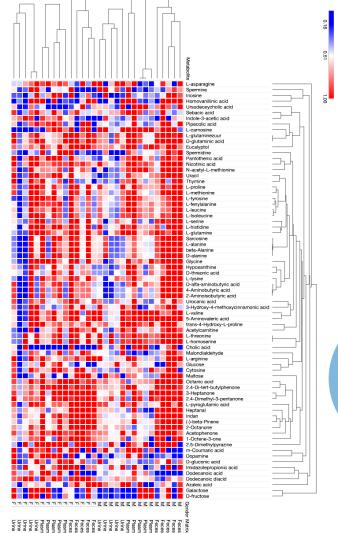
OPTIMAL BIOFLUID (COMBI) FOR METABOLOMICS

Analytica Chimica Acta 1033 (2018) 108-118

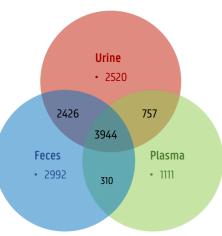
Contents lists available at ScienceDirect

Analytica Chimica Acta

2018


ELSEVIER

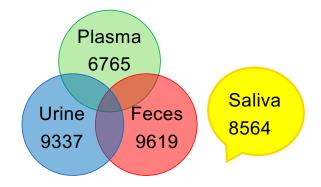
journal homepage: www.elsevier.com/locate/aca


A validated multi-matrix platform for metabolomic fingerprinting of human urine, feces and plasma using ultra-high performance liquidchromatography coupled to hybrid orbitrap high-resolution mass spectrometry

Ellen De Paepe $^{a, 1}$, Lieven Van Meulebroek $^{a, 1}$, Caroline Rombouts a , Steve Huysman a , Kaat Verplanken a , Bruno Lapauw b , Jella Wauters a , Lieselot Y. Hemeryck a , Lynn Vanhaecke $^{a, *}$

Ellen De Paepe

UNIQUE SALIVARY METABOLOMICS METHOD


Untargeted validation: 8564 metabolites (CV < 30%)

✓ Instrumental precision: 86.6%

✓ Inter-assay precision: 83.0%

✓ Intra-assay precision: 76.8%

✓ Linearity (9-point serial dilution: 1 to 0.01): $R^2 \ge 0.90 = 82.7\%$

_		. 1 1**	
-n	MAMANALIC	matahalitac	
	uueenuus	metabolites	

Alcohols

Phenols

Benzenes

Keto acids

Monocarboxylic acids

Dicarboxylic acids

Hybrid peptides

Imidazoles

Pyridines

Fatty acids

Quaternary ammonium salts

Ethers

Carbohydrates

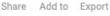
Ketones

Amino acids

Amines

Hydroxy acids

Steroids

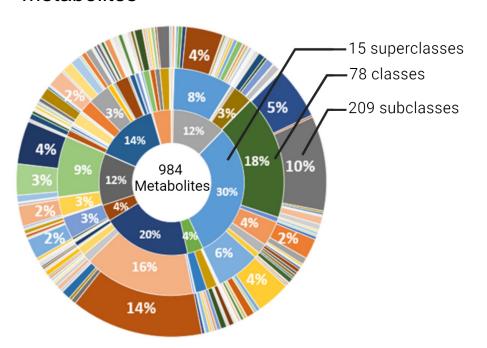

Kathleen Wijnant

Validated Ultra-High-Performance Liquid Chromatography Hybrid High-Resolution Mass Spectrometry and Laser-Assisted Rapid Evaporative Ionization Mass Spectrometry for Salivary Metabolomics

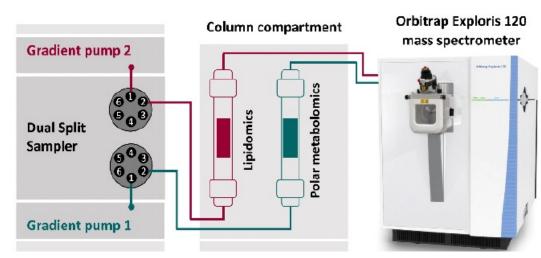
Kathleen Wijnant, Lieven Van Meulebroek, Beata Pomian, Kimberly De Windt, Stefaan De Henauw, Nathalie Michels, and Lynn Vanhaecke*

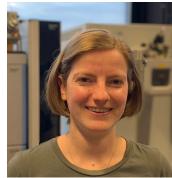
© Cite this: Anal. Chem. 2020, 92, 7, 5116-5124 Publication Date: March 9, 2020 × https://doi.org/10.1021/acs.analchem.9b05598 Copyright © 2020 American Chemical Society

2020



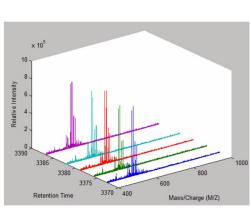
RECENT ANALYTICAL DEVELOPMENTS

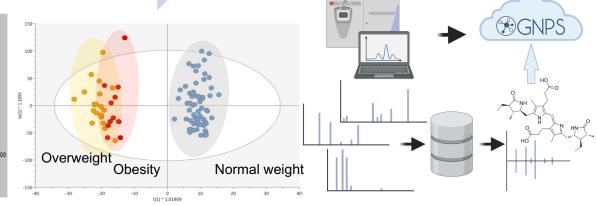

Metabolite ontology search: in-house standard database comprising ca. 750 polar to medium polar and ca. 250 lipid metabolites

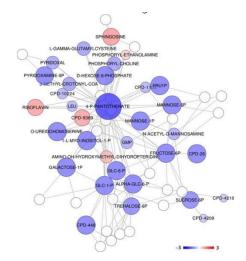

Dual extraction and UHPLC approach metabolomics & lipidomics combined: e.g. 100 mg freeze dried feces

Beata Pomian

DATA ANALYSIS DEVELOPMENTS: AUTOMATION


Dr. Marilyn De Graeve



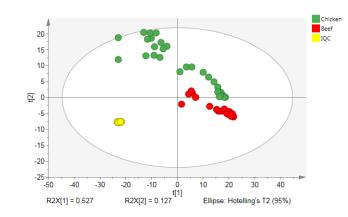

PART II: Statistical analysis

PART III: Annotation

PART IV: Pathway Analysis

DATA ANALYSIS DEVELOPMENTS: INTEGRATION

- Supervised and unsupervised <u>multi-omics</u> analysis (DIABLO and MOFA)
- Spearman-based <u>metabolome driver analysis:</u> clinical data, microbial OTUs, diet, drugs, stress markers, etc.)
- Metabolite <u>abundance predictions</u> (o.a. gradientboosted decision tree) of highly correlated drivers

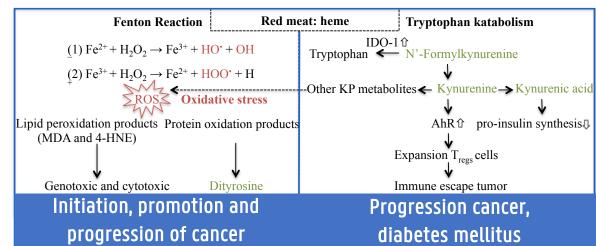

Pablo Vangeenderhuysen

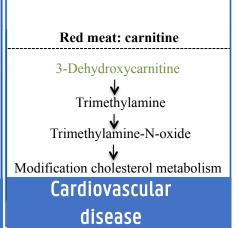
Dr. Marilyn De Graeve

NUTRIMETABOLOMICS AND LIPIDOMICS TO UNRAVEL GUT MICROBIOME-DIET AXIS

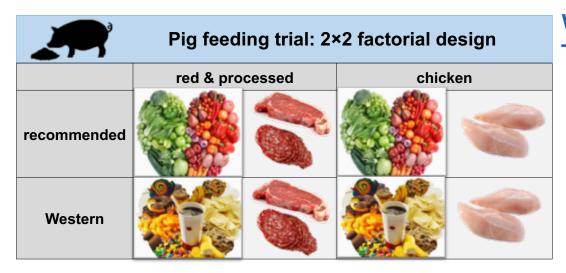
NUTRIMETABOLOMICS: RED VS. WHITE MEAT DIGESTION

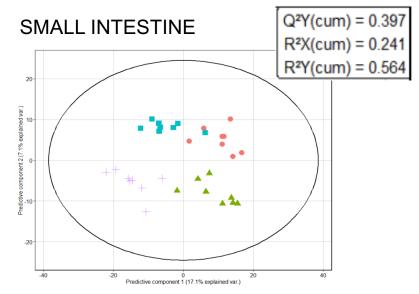
Discovery of 5
discriminating
metabolites
with potential
involvement in
red meat related
diseases


- 3-dehydroxycarnitine
- dityrosine
- kynurenine
- N'-formylkynurenine
- kynurenic acid



Dr. Caroline Rombouts




Rombouts et al., 2017 (Scientific Reports)

NUTRIMETABOLOMICS IN PIGS

WITHIN 2 CONTRASTING DIETS

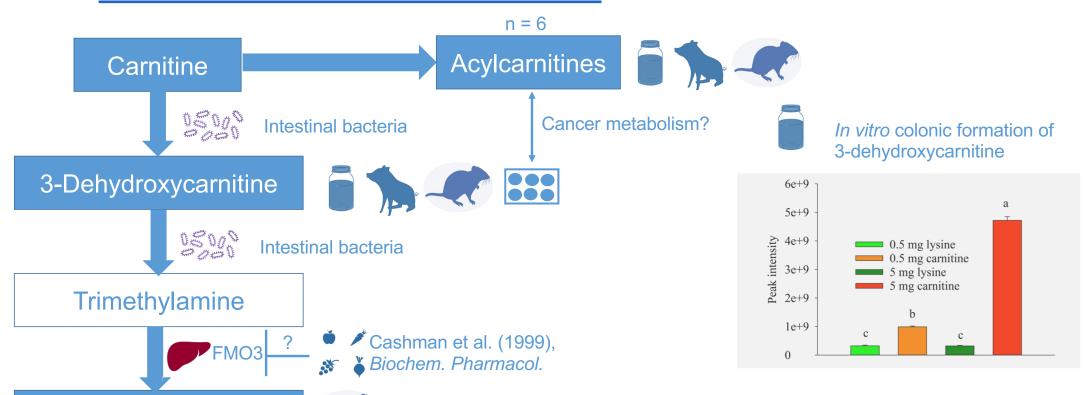
- Recommended chicken
- Recommended red
- Western chicken
- Western red

NUTRIMETABOLOMICS IN PIGS WITHIN 2 CONTRASTING DIETS

E

Dr. Sophie Goethals

Number of differentiating metabolites (VIP >2; p-value < 0.05)


	Small intestine (1851)	Colon (1990)
Meat	64	99
(chicken vs. red & processed)	chicken: 26, red: 38	chicken: 82, red: 17
Background diet	299	321
(prudent vs. Western)	prudent: 66, western: 233	prudent: 128, western: 193

short-chain acylcarnitines carnitine, carnosine 3-dehydroxycarnitine Interesting metabolites anserine anserine 1- or 3-methylhistidine anserine glycidyl esters monoacylglycerols

Untargeted Metabolomics to Reveal Red versus White Meat-Associated Gut Metabolites in a Prudent and Western Dietary Context

Sophie Goethals, Caroline Rombouts, Lieselot Y. Hemeryck, Lieven Van Meulebroek, Thomas Van Hecke, Els Vossen, John Van Camp, Stefaan De Smet, and Lynn Vanhaecke* Mol. Nutr. Food Res. 2020, 2000070

MICROBIAL-CARNITINE DERIVATES HIGHER IN TISSUE UPON RED MEAT DIGESTION

Trimethylamine-N-oxide

↑ in urine of women with CRC, Bae et al. (2014), Cancer Res. Untargeted Metabolomics Reveals Elevated L-Carnitine Metabolism in Pig and Rat Colon Tissue Following Red Versus White Meat Intake

Caroline Rombouts, Lieven Van Meulebroek, Margot De Spiegeleer, Sophie Goethals, Thomas Van Hecke, Stefaan De Smet, Winnok H. De Vos, and Lynn Vanhaecke* Mol. Nutr. Food Res. 2021, 65, 2000463

CLINICAL METABOLOMICS: TYPE 2 DIABETES

Dr. Lieven Van Meulebroek

Type 2 diabetes (n = 41)

- Men and women
- BMI < 35
- 35 to 65 years
- HbA1c > 6%
- UZGent (prof. B. Lapauw)

Normal glycaemic state (n=42)

- Men and women
- BMI < 35
- 35 to 65 years
- HbA1c < 5.5%
- Family

2020 Talanta 217 (2020) 121043

Contents lists available at ScienceDirect

Talanta

journal homepage: www.elsevier.com/locate/talanta

- 1 stool sample
- 1 blood sample
- 1 questionnaire

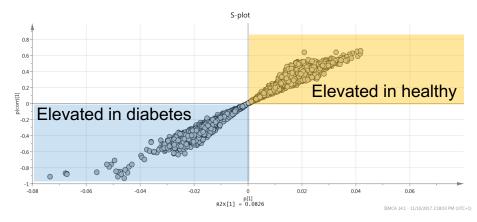
Rapid LA-REIMS and comprehensive UHPLC-HRMS for metabolic phenotyping of feces

Lieven Van Meulebroek^a, Simon Cameron^{b,c}, Vera Plekhova^a, Margot De Spiegeleer^a, Kathleen Wijnant^{a,d}, Nathalie Michels^d, Stefaan De Henauw^d, Bruno Lapauw^e, Zoltan Takats^b, Lynn Vanhaecke^{a,c,*}

TYPE 2 DIABETES STOOL METABOLOMICS STUDY

Lipidomics and polar metabolomics

- Use OPLS-DA model to define components with discriminating potential
- Start search for candidate biomarkers

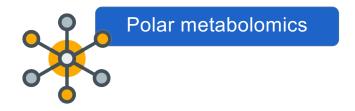


Selection strategy

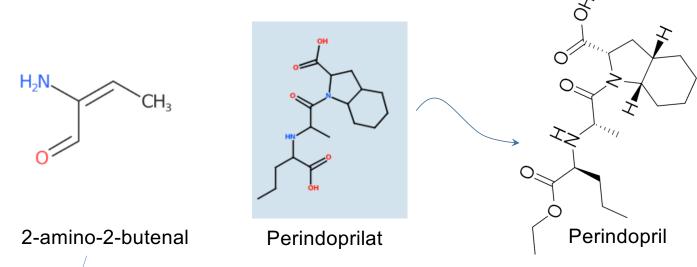
- VIP-score (> 1)
- S-plot (correlation 0.5, covariance 0.02)
- JK-confidence intervals (not across zero)

173 candidate markers

Polar metabolomics

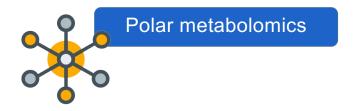

Total of 70 markers

- 27 elevated in diabetes type 2
- 43 elevated in healthy control

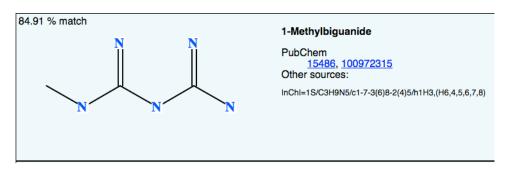

Initial focus on diabetes markers

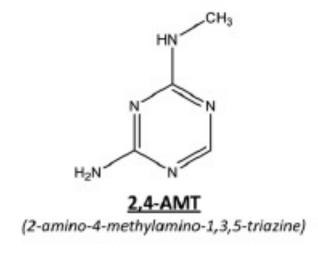
- Non-metformin markers (n = 2)
- Frequent link with metformin (n = 24)

Three are directly linked to metformin
Six are in source fragments of metformin
Thirteen are derived from metformin



Non-metformin markers


Possible role in inflammation


Lowers blood pressure and improves heart functioning

Metformin-linked markers

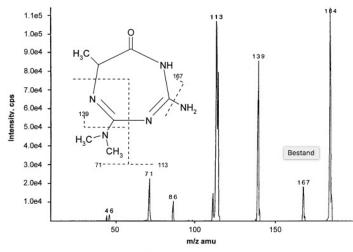
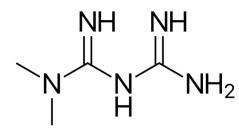
Metformin oxidation products

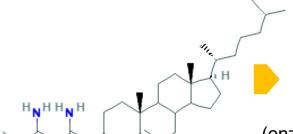
- Collin et al. 2004; OH• -induced oxidation of metformin in aqueous solution.
- Research in context of antioxidant properties of metformin,
 other beneficial effects involved in the prevention of diabetic complications

Metformin-linked markers

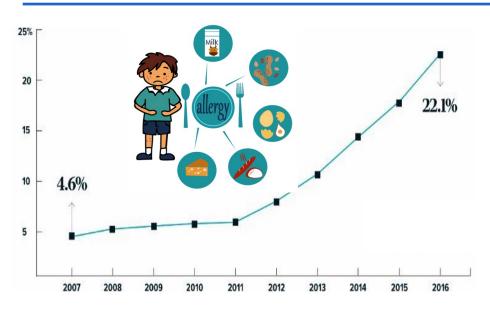
- Metformin reaction products with dicarbonyls
- Dicarbonyl compounds
 - Methylglyoxal and glyoxal

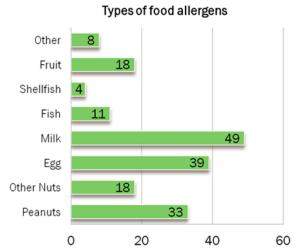
$$H_3C$$
 H
 O
 H
 O
 H


FIG. 2. Mass fragmentation spectrum of synthetic 2-amino-4-(dimethylamino)-7-methyl-5,7-dihydro-6H-[1,3,5]triazepin-6-one (triazepinone) was chemically synthesised and analysed by mass spectrometry as described in Materials and Methods.

- Reactive agents involved in formation of advanced glycation end products (AGEs)
- AGEs are associated with diabetic vascular complications (Ruggiero-Lopez et al. 1999)


- m/z 498.4529 Da, RT 7.62 min
- C31H55N5
- 2-[N'-[(10R,13R,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta [a]phenanthren-3-yl] carbamimidoyl]-1,1-dimethylguanidine



Cholesterol-lowering effects of metformin have been described

(enzymatic impact AMPK, genes and lower formation of LDL)

CLINICAL METABOMOLOMICS: COW'S MILK ALLERGY

Diagnosis

Oral food challenge

→ dangerous

Skin prick test

→ 25% false +

Serum IgE

→ 25% false +

Treatment

Elimination diet

Anaphylaxis treatment

Ellen De Paepe

CLINICAL METABOMOLOMICS: FOOD ALLERGY

Molecular Nutrition Food Research

23 21

ISSN 1613-4125 · MNFRCV 65 (23) (2021) · Vol. 65 · No. 23 · December 2021

A Systematic Review of Metabolic Alterations Underlying IgE-Mediated Food Allergy in Children

Ellen De Paepe, Lynn Van Gijseghem, Margot De Spiegeleer, Eric Cox, Lynn Vanhaecke

First published: 14 October 2021 | https://doi.org/10.1002/mnfr.202100536

Microbial metabolism

SCFAs and bile acids

→ Altered microbial and host metabolic activity

Lipid metabolism

Sfingolipids

→ Hyperresponsive mast cell state

Lipid allergy mediators

→ PAF synthesis during anaphylaxis

Carbohydrate and energy metabolism

- Shift to aerobic glycolysis
- Ketogenesis during anaphylaxis

Amino acid metabolism

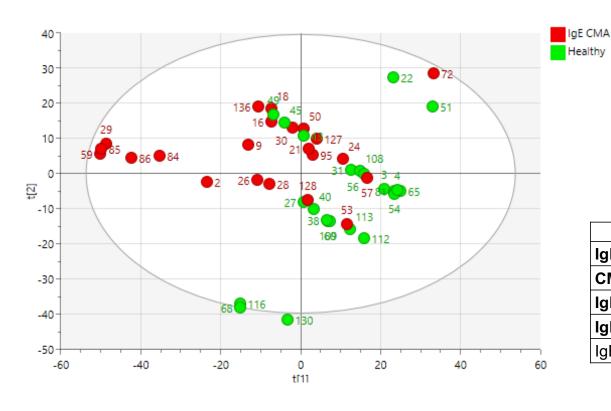
Tryptophan pathway

- ♣Decreased IDO-1 activity
- → Th2-skewed immune environment

Nucleotide metabolism Purine pathway

- → Underlying inflammation

DISCRIMINATE HEALTHY AND IGE MEDIATED CMA

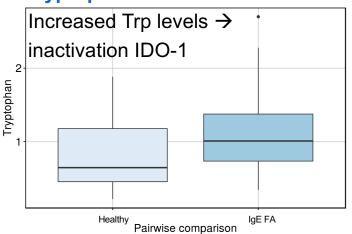


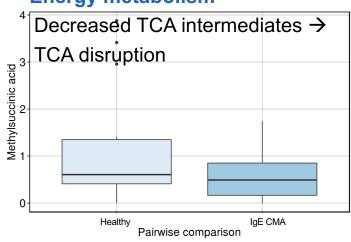
20 healthy

20 IgE mediated CMA

19 non-IgE mediated CMA

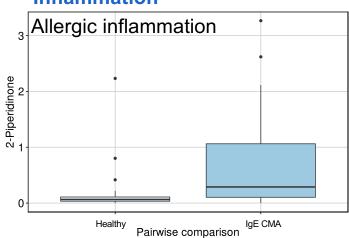
11 other IgE mediated FAs

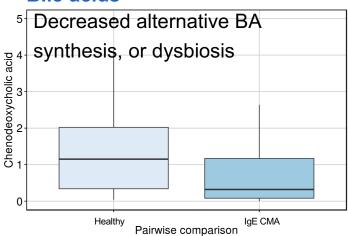

Polar metabolomics feces


	R ² Y	Q ²	<i>p</i> -value
IgE CMA – Healthy	0.866	0.519	5.70e-05
CMA – Healthy	0.979	0.467	0.00029
IgE CMA – IgE other	0.996	0.626	0.0017
IgE CMA – non-IgE CMA	0.986	0.681	1.35e-05
IgE FA – Healthy	0.992	0.297	0.21

DISCRIMINATE HEALTHY AND IGE MEDIATED CMA

Tryptophan metabolism


Energy metabolism

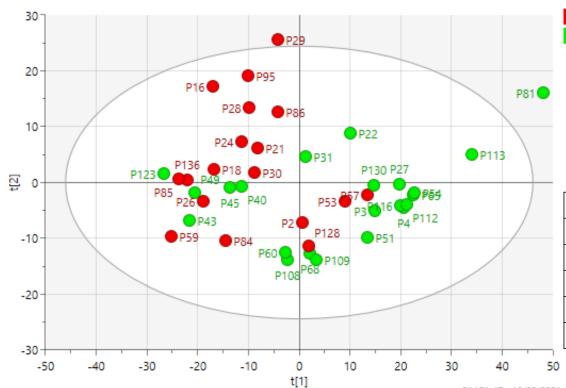

Other alterations

- Nucleotide metabolism

Inflammation

Bile acids

DISCRIMINATE HEALTHY AND IGE MEDIATED CMA

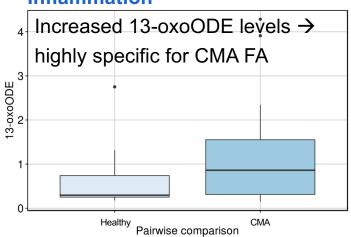


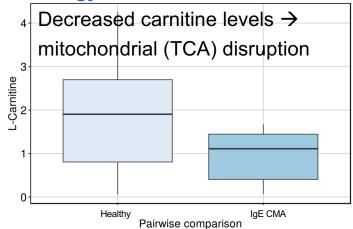
20 healthy

20 IgE mediated CMA

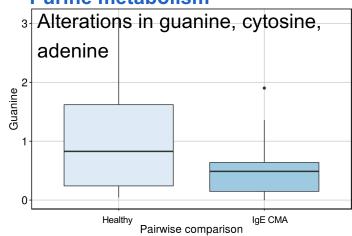
19 non-IgE mediated CMA

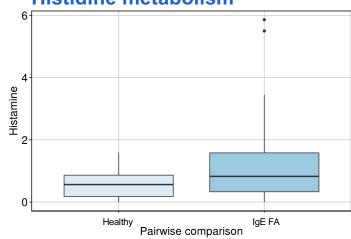
11 other IgE mediated FAs

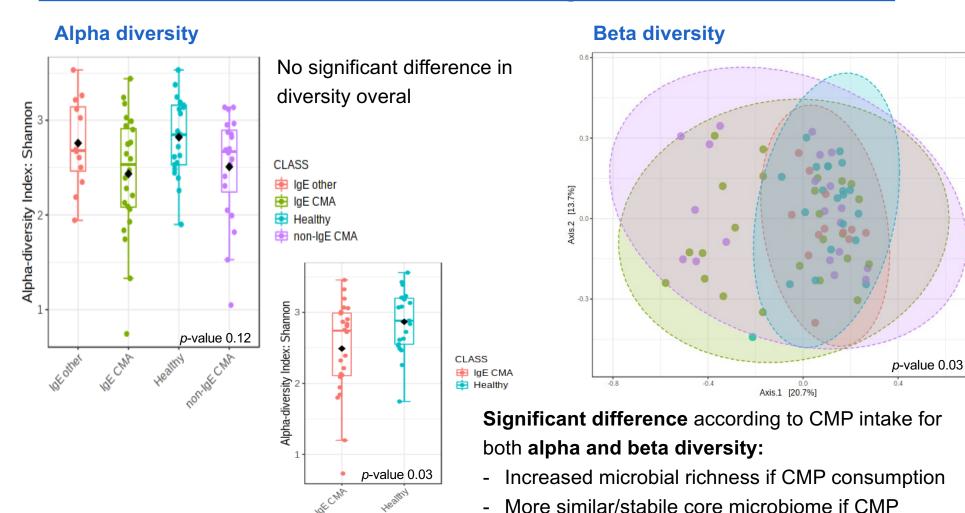

Polar metabolomics **urine**


	R ² Y	Q ²	<i>p</i> -value
IgE CMA – Healthy	0.981	0.462	0.027
CMA – Healthy	0.919	-0.0649	1
IgE CMA – IgE other	0.991	0.0285	0.999
IgE CMA – non-IgE CMA	0.983	0.539	0.011
IgE FA – Healthy	0.984	0.46	0.004

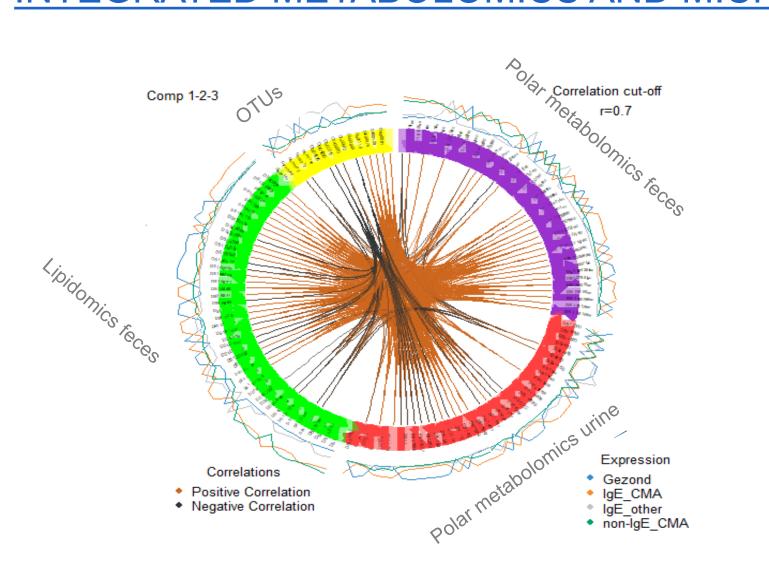
DISCRIMINATE HEALTHY AND IGE MEDIATED CMA


Inflammation


Energy metabolism


Purine metabolism

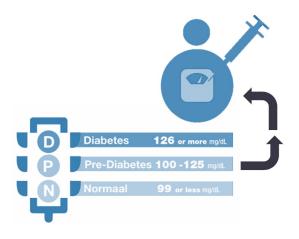
Histidine metabolism



DISCRIMINATE HEALTHY AND IGE MEDIATED CMA

consumption

INTEGRATED METABOLOMICS AND MICROBIOMICS



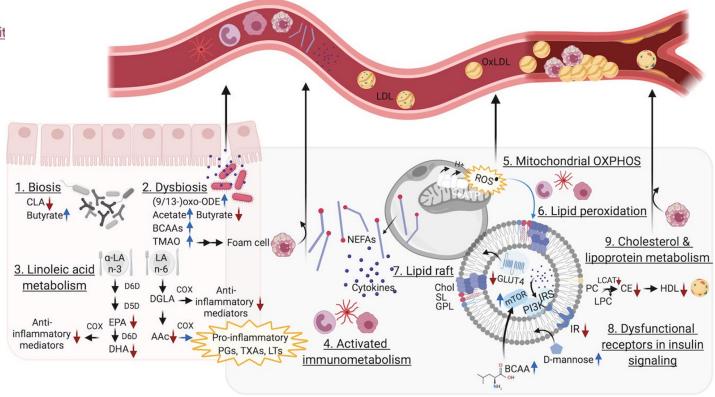
Pablo Vangeenderhuysen

CLINICAL METABOLOMICS: PEDIATRIC OBESITY

- 1. Prediction and prevention of metabolic disorders
- 2. Unraveling the main drivers towards 3P medicine

CLINICAL METABOLOMICS: PEDIATRIC OBESITY

Paediatric obesity: a systematic review and pathway mapping of metabolic alterations underlying early disease processes



Margot De Spiegeleer

Margot De Spiegeleer, Ellen De Paepe, Lieven Van Meulebroek, Inge Gies, Jean De Schepper & Lynn Vanhaecke ⊡

Molecular Medicine 27, Article number: 145 (2021) | Cit

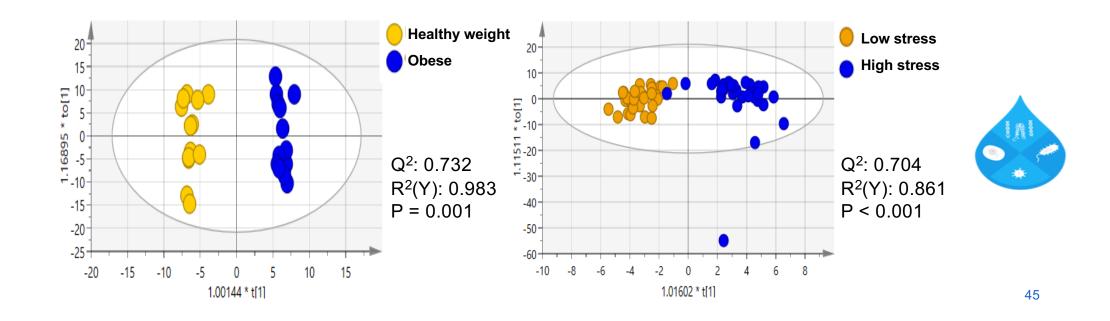
Overview of altered lipid metabolism and visualization of its complex interplay resulting in a sustained oxidative environment and low-grade inflammation.

CLINICAL METABOLOMICS: OBESITY IN CHILDREN

Deeply phenotyped **OPERA** cohort (Prof. S. De Henauw)

137 children, 6-18y

70% normal weight (IOTF \leq 0)


29% IOTF ≥ 1 (overweight or obese, including 9% obese: IOTF 2 or 3)

Kathleen Wijnant

Feature class Feature subgroups Clinical data Cardiometabolic markers Microbiome data **OTUs** Triglycerides (mg/dl) LDL (mg/dl) Antropometric data BMI z-score HDL (mg/dl) IOTF fasting insulin (mU/L) Waist (cm) fasting glucose (mg/dL) Waist-to-height HbA1c (mmol/mol) Fat percentage (%) MeanHR (bpm) Perceived Stress Scale (PSS) Psychological data Inflammation markers Child Depression Index 2 (CDI-2) IL6 (pg/ml) Emotional Eating Scale (EE) IL8 (pg/ml) Relative Cortisol Reactivity Score IL10 (pg/ml) TNF- α (pg/ml) Resting heart rate variability RMSSDms (baseline timepoint S6) (ms) IFN-y (pg/ml) Hair cortisol CRP (mg/l) Positive and Negative Affect Schedule (PANAS) Negative Effect score Appetite markers Biological data Leptin (ng/ml) Age (yrs) Adiponectin (µg/ml) Sex Ghrelin (not active) (pg/ml) GLP1 (pg/ml) **Puberty** Pancreatic polypeptide (PP) (pg/ml) PYY (pg/ml) Screentime (daily) Lifestyle Physical activity (school transport) **Endocrine markers** Physical activity (sports) TSH (mU/L) Physical activity (hrs sports/week) FT4 (pmol/L) Smokina

Chronic Sleep Reduction Questionnaire (CSRQ)

<u>Diet (week intake</u> frequencies)

Drug intake active components | Isotretinoïne

VitaminD

Methylphenidate_hydrochloride

Salbutamol

Setraline

Desloratadine

Cetirizinedihydrochloride

Insulin Melatonin

Fumaraatdihydraat

Budesonide

Levocetirizinedihydrochloride

Fluticasonpropionaat

Levonorgestrel Ethinylestradiol Formoterol

Rupatadine

Magnesiumcitraat

Valsartan
Paracetamol
Metformin

Oxymetazoline_hydrochloride

Prednisolonacetaat Framycetinesulfaat Nafazolinenitraat

Clonidinehydrochloride

High fat snacks

High fat food High sugar snacks

High sugar food Fruit and vegetables

Whole grain products

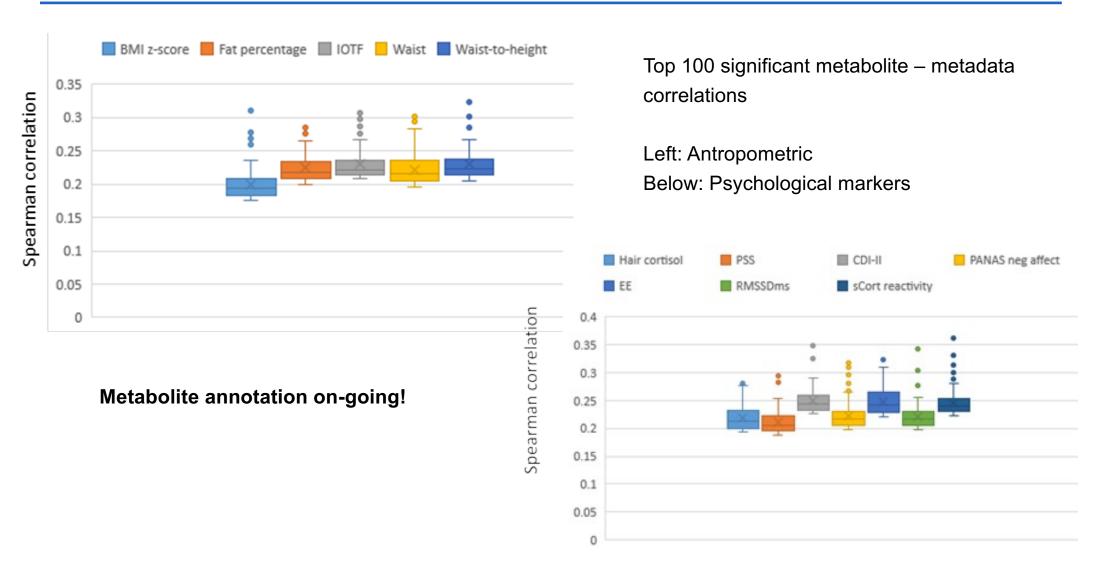
Dairy products

Animal products (meat, fish, eggs)

Coffee Legumes

Cooked vegetables Raw vegetables

Milk Yoghurt Fish Red Meat White Meat


Eggs

Meat alternatives (soy,...)

Cheese
Butter
Olive oil
White bread
Dark bread
White pasta
Whole grain pasta
Grains / Cereals
Nuts and seeds

Dried fruits

CLINICAL METABOLOMICS: OVERWEIGHT-OBESITY IN CHILDREN

METABEASE AND FAME COHORTS

Recruitment phase 1 finalized 03/2022

Recruitment started 03/2022

n = 240

Children TS 0 (6-11y)

Stool, urine and blood samples for metabolomics, microbiome and clinical analyses.

→ 2 follow-up points (Y0, Y1, Y2)

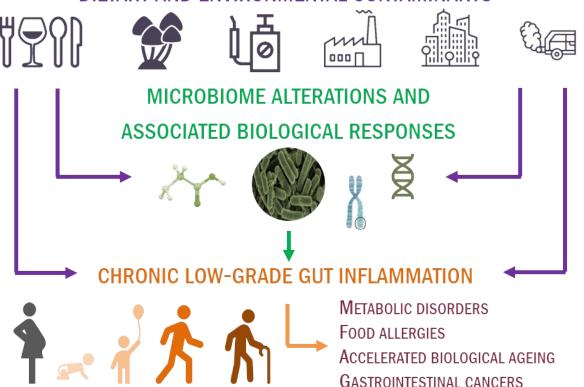
Margot De Spiegeleer

n = 600

Adolescents (12-16y)

Stool, saliva and in patients blood samples for metabolomics, microbiome and clinical analyses.

Questionnaires on dietary intake and stress.



Jasmien Van Arnhem

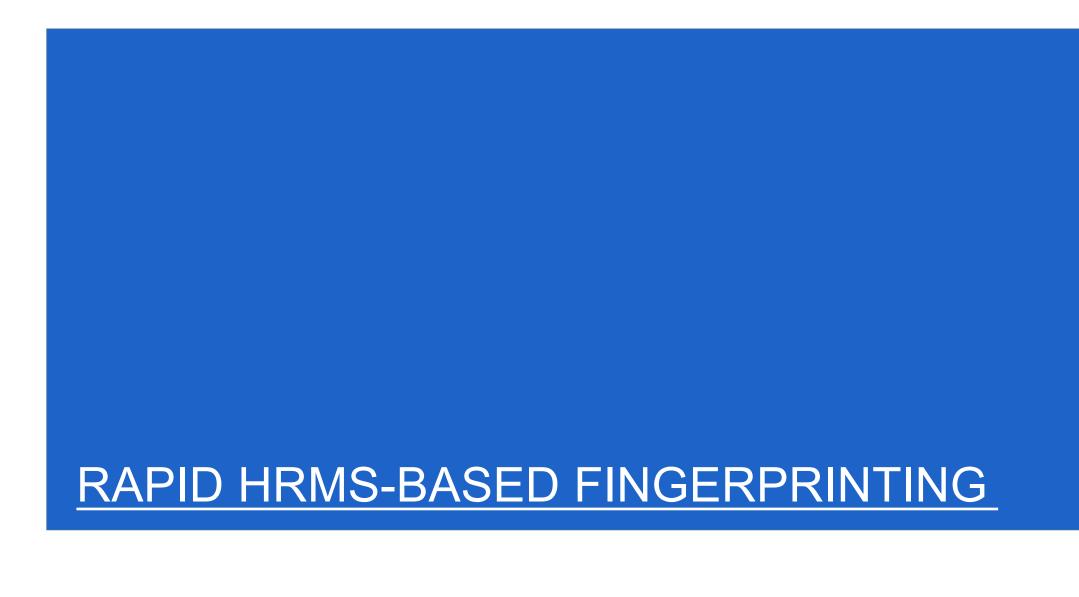
FLEXIGUT - THE FLEMISH EXPOSOME PROJECT

TOWARDS A COMPREHENSIVE UNDERSTANDING OF THE
LIFE-COURSE IMPACT OF DIETARY AND ENVIRONMENTAL EXPOSURE
ON CHRONIC LOW-GRADE GUT INFLAMMATION

DIETARY AND ENVIRONMENTAL CONTAMINANTS

Prof. S. De Saeger

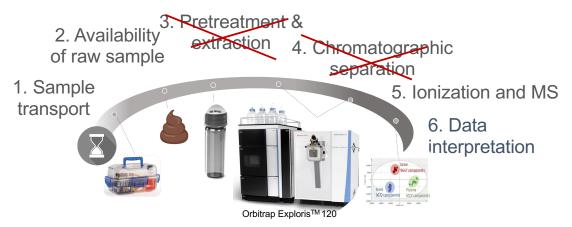
Prof. J. Raes



Prof. A. Covaci
Universiteit

Prof. T. Nawroth

IN SITU OR POINT OF CARE METABOLOMICS: AIMS


- < 50/day
- > 200 EUR/sample

Conventional metabolomics workflow

- > 500/day
- < 50 EUR/sample

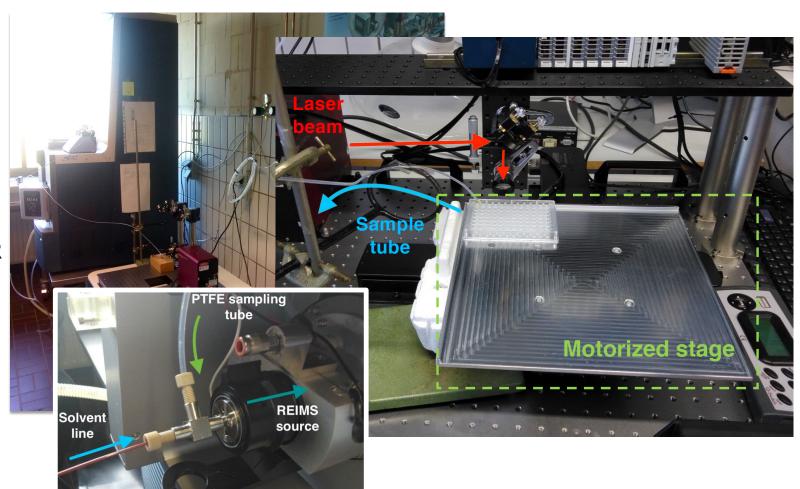
Point-Of-Care metabolomics workflow

2. Availability of raw sample 3. Ambient ionization

1. Sample transport

4. Data interpretation

Vent line


- Extensive sample preparation
- Approx. 30 min/sample
- High labor and material demands

- Limited to no sample preparation
- Approx. 30 sec/sample
- Semi-automated

LA-REIMS: INSTALLATION & EQUIPMENT

Instrumentation

- Xevo G2-XS Q-ToF MS
- REIMS source
- Harvard11 Elite syringe pump
- Opolette 2940 nm mid-IR laser
- Free space optics
- Motorized positioning stage (optional)

PROCEDURE

Sample pre-treatment

Homogenisation, rehydration if lyophilized

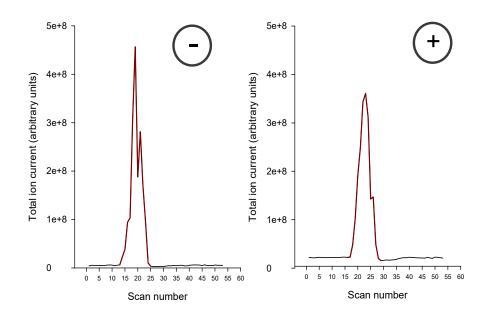
15 – 100 μL

Centrifugation, filtration

No pre-treatment

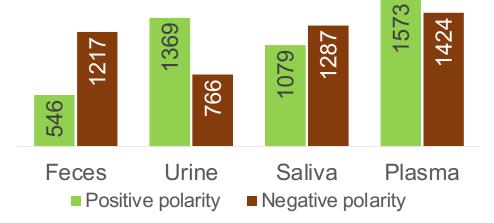
No pre-treatment

Vera Plekhova

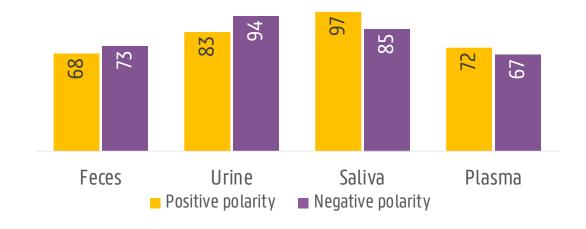

Protocol | Published: 02 August 2021

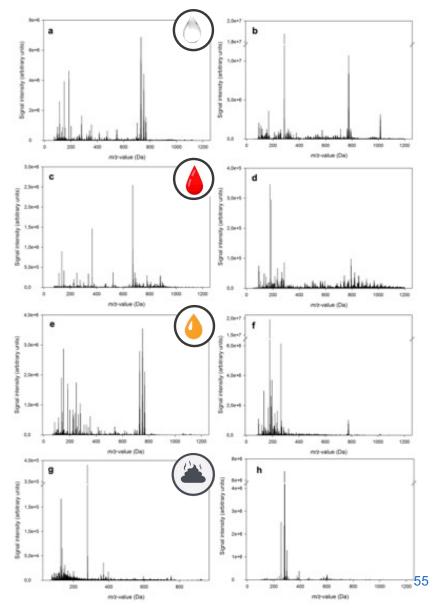
Rapid ex vivo molecular fingerprinting of biofluids using laser-assisted rapid evaporative ionization mass spectrometry

Vera Plekhova, Lieven Van Meulebroek, Marilyn De Graeve, Alvaro Perdones-Montero, Margot De Spiegeleer, Ellen De Paepe, Emma Van de Walle, Zoltan Takats, Simon J. S. Cameron & Lynn Vanhaecke \subseteq

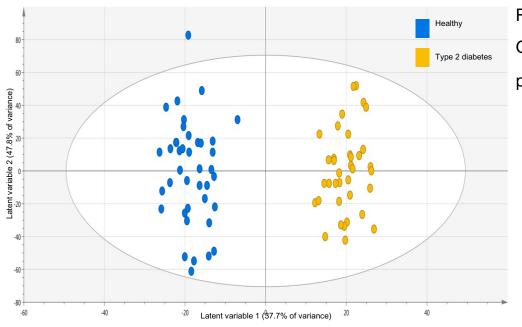

Nature Protocols 16, 4327–4354 (2021) Cite this article

821 Accesses | 1 Citations | 12 Altmetric | Metrics




METHOD PERFORMANCE

Number of detected features



Percent of features with CV below 30% threshold

IN SITU FECAL METABOLOMICS IN T2D

R²(X) 0.420

Q²(Y) 0.662

p-value of 2.3 e⁻¹³

- Fingerprints containing 11,550 features
- 26 discriminating metabolites present
- Potential for POC application!

Proof of principle: LA-REIMS expedient platform to differentiate between normal and high glycemic state!

2020

Talanta 217 (2020) 121043

Contents lists available at ScienceDirect

Talanta

journal homepage: www.elsevier.com/locate/talanta

Valid OPLS-DA model

Rapid LA-REIMS and comprehensive UHPLC-HRMS for metabolic phenotyping of feces

Lieven Van Meulebroek^a, Simon Cameron^{b,c}, Vera Plekhova^a, Margot De Spiegeleer^a, Kathleen Wijnant^{a,d}, Nathalie Michels^d, Stefaan De Henauw^d, Bruno Lapauw^e, Zoltan Takats^b, Lynn Vanhaecke^{a,c,*}

METASAMP®: NOVEL HIGH-THROUGHPUT DIRECT BIOFLUID SAMPLING AND METABOTYPING DEVICE

1467 A1

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date

30 September 2021 (30.09.2021)

WIPO | PCT

English

(10) International Publication Number WO 2021/191467 A1

(51) International Patent Classification:

A61B 10/00 (2006.01) G01N 1/02 (2006.01) G01N 33/50 (2006.01) A61B 10/02 (2006.01)

(21) International Application Number:

PCT/EP2021/058162

(22) International Filing Date:

29 March 2021 (29.03.2021)

(25) Filing Language:

English

(30) Priority Data:

(26) Publication Language:

20166132.9 27 March 2020 (27.03.2020)

(71) Applicant: UNIVERSITEIT GENT [BE/BE]; Sint-Pietersnieuwstraat 25, 9000 Gent (BE),

(72) Inventors: VANHAECKE, Lvnn; Brock 17, 9860 Balegem (BE). DE SPIEGELEER, Margot; Ottergemsesteenweg 4, 9000 Gent (BE), DE CLERCK, Karen; Afsneekouter 48, 9051 Afsnee (BE). GELTMEYER, Jozefien; Rodonkstraat 21, 9030 Mariakerke (BE). SINGH, Varoon; A307, Alok Regency, Nilemore, Nalasopara (West), Palghar, Mumbay 401203 (IN).

CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, IT, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available); ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

of inventorship (Rule 4.17(iv))

with international search report (Art. 21(3))

(74) Agent: VAES, Peter et al.; DenK, iP Leuvensesteenweg 203, 3190 Boortmeerbeek (BE).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,

(54) Title: FIBROUS MAT FOR METABOLOME SAMPLING

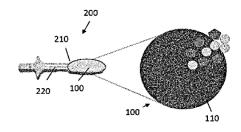
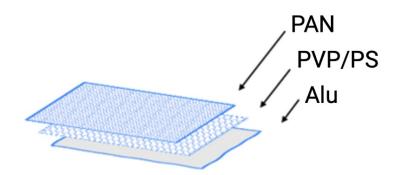
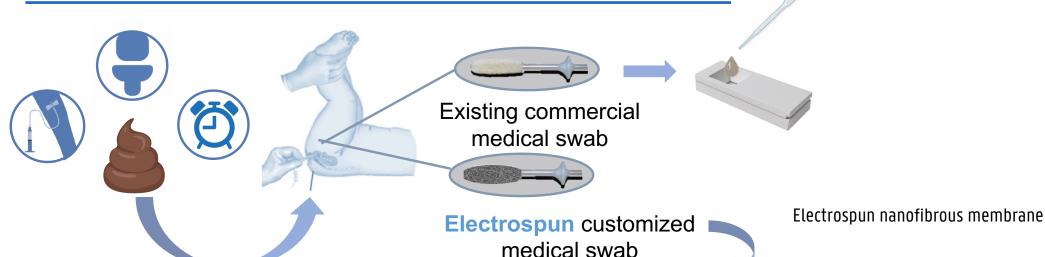
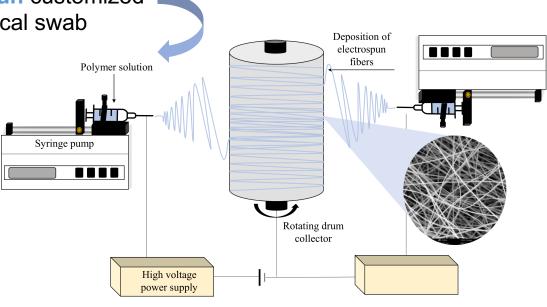
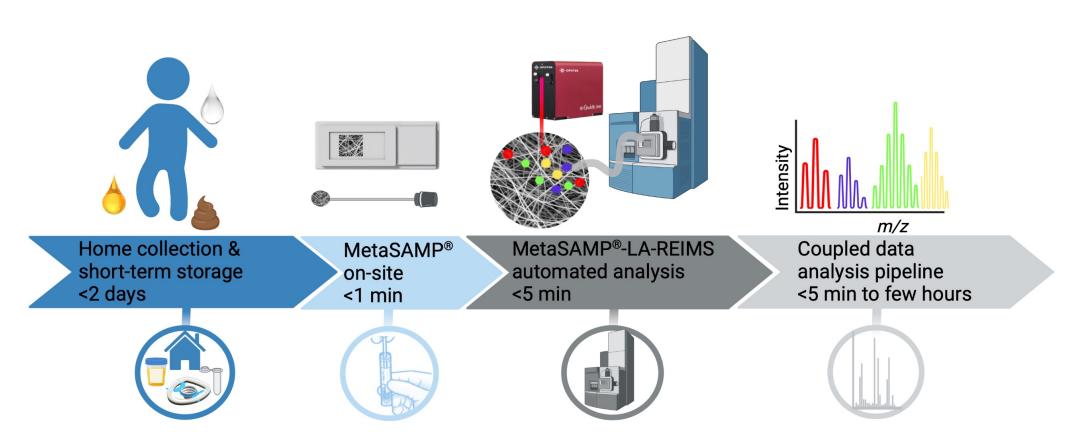
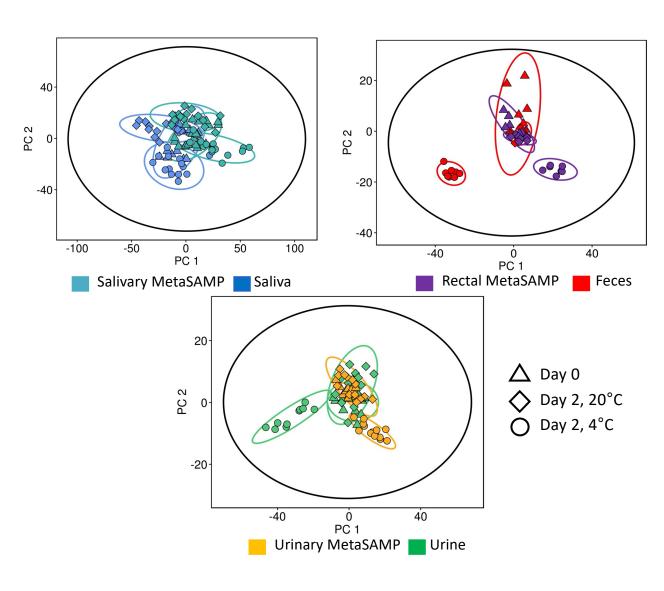
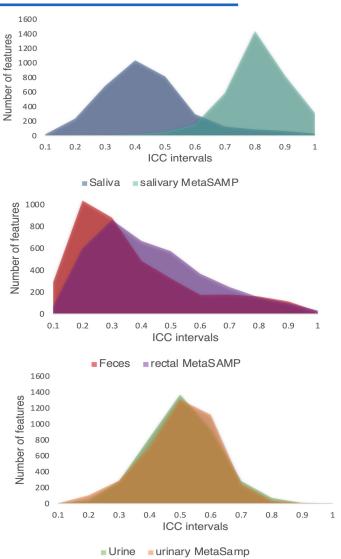




FIG. 1



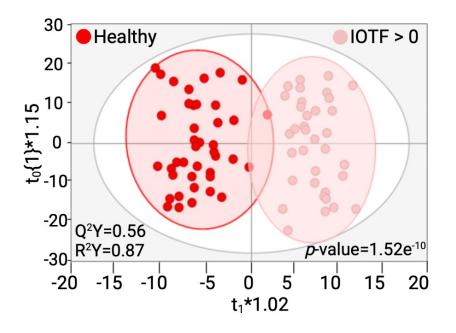

METASAMP®: NOVEL HIGH-THROUGHPUT DIRECT BIOFLUID SAMPLING AND METABOTYPING DEVICE

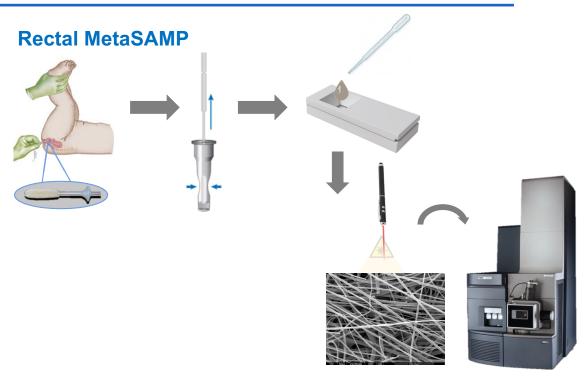

- Direct sampling (no storage, pre-treatment, ...)
- Porous fibrous network
- High surface area
- Enhanced absorption of metabolites



METASAMP®: NOVEL HIGH-THROUGHPUT DIRECT BIOFLUID SAMPLING AND METABOTYPING DEVICE

METASAMP®: SUPERIOR STABILITY UPON SHIPPING

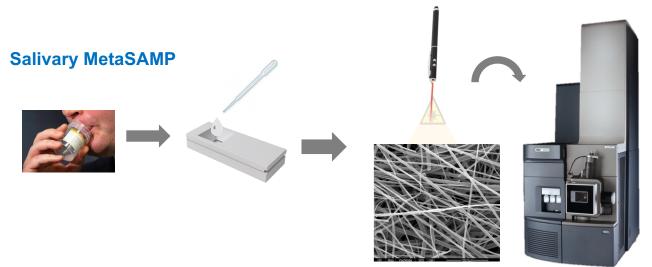



METASAMP®: SUPERIOR CLINICAL PREDICTIVE POWER

MetaBEASE

41 normal weight (IOTF ≤ 0) 35 IOTF ≥ 1 (overweight or obese)

OPLS-DA model parameters

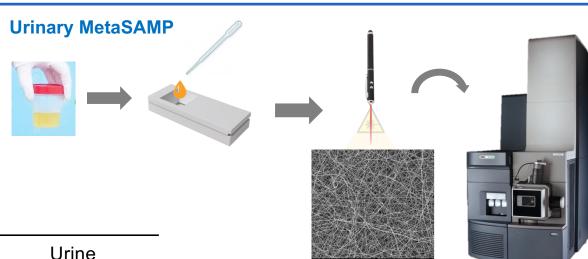

IOTF ≥ 1 vs. healthy (IOTF ≤ 0)	Q ² Y	p-value
Feces	0.40	4.14e ⁻⁶
Rectal MetaSAMP	0.56	1.52e ⁻¹⁰

METASAMP®: SUPERIOR CLINICAL PREDICTIVE POWER

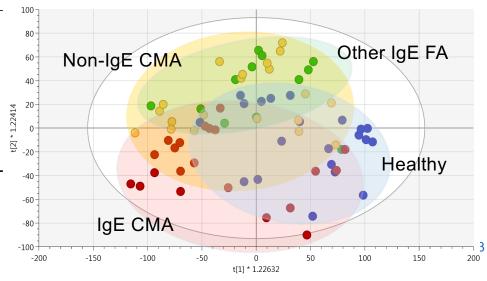

OPERA:

66 normal weight20 overweight11 obese

OPLS-DA model parameters


	Salivary MetaSAMP		Saliva	
	Q ² Y	p-value	Q ² Y	p-value
Obese vs. normal weight	0.545	1.53e ⁻¹⁰	0.442	5.76e ⁻⁹
Obese and overweight vs. normal weight	0.533	4.00e ⁻⁰⁵	0.576	4.06e ⁻¹⁰
Obese vs. overweight	0.698	4.63e ⁻⁰⁵	0.541	2.71e ⁻⁰⁵

METASAMP®: SUPERIOR CLINICAL PREDICTIVE POWER



20 healthy20 IgE mediated CMA19 non-IgE mediated CMA11 other IgE mediated FAs

OPLS-DA model parameters

	Urinary MetaSAMP		Urine	
	Q^2Y	p-value	Q ² Y	p-value
IgE CMA vs. healthy	0.642	1.29e ⁻¹¹	0.523	3.64e ⁻⁷
IgE CMA vs. other IgE FA	0.535	2.24e ⁻⁰⁶	0.536	6.68e ⁻⁶
IgE CMA vs. non- IgE CMA	0.550	0.00038	0.511	0.00010

TAKE HOME MESSAGE

TAKE HOME MESSAGE

- Nutri- or clinical (biofluid) metabolomics workflow: a complex process integrating branching
 into its structure in order to allow for the necessary flexibility associated with the complex
 analysis of human biology as well as with the wealth of technological solutions
- Combing data from dietary intake, gut microbiota, psychological parameters, drug intake, etc. (i.e. the exposome) with the metabolome of biospecimens will further aid to unravel the diet-gut microbiome-health axis and pave the way towards 3P medicine.
- → While physiology and biochemistry of (intermediate) metabolism were largely left behind when the genomics revolution arrived, metabolomics has revived the study of metabolism, as it in essence offers the most direct link to final health outcomes.

Lynn Vanhaecke Prof.

Department of Translational Physiology, Infectiology and Public health LABORATORY OF INTEGRATIVE METABOLOMICS

Institute for Global Food Security, SCHOOL OF BIOLOGICAL SCIENCES

www.vvv.ugent.be

in Ghent University

