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Abstract
Brain-Computer Interfaces (BCI’s) are new ways for human beings to interact with a com-
puter, by using only the brain. BCI’s can be very useful for people who have lost the ability
to control their limbs, as BCI’s can give these people the opportunity to, for example, steer a
wheelchair, using Motor Imagery. Motor Imagery is the process where the patient imagines
a movement, resulting in a signal originating from the brain and measurable through EEG.

The biggest challenge for BCI’s is that not everyone has the same brain. Using Machine
Learning, for every new session, the BCI has to learn from the user’s brain, but this learning
takes time. The time that the BCI needs to adapt to the user’s brain in order to correctly
classify their thoughts, is known as the calibration time. Up until now, this calibration could
take up to 20 - 30 minutes, which is an exhausting and tiring amount of time that the patient
has to wait until the system is fully functional.

To solve this problem, the goal of this thesis was to reduce this calibration time as much as
possible. In the first part of this work, a first attempt is done by finding the optimal amount
of features needed for reasonable functioning of the BCI, using all calibration data available.
Averaged over five subjects, the amount of correctly classified thoughts only reached 67±
15%.
To increase the performance of the BCI while reducing the calibration time, Transfer Learning
was used. In Transfer Learning, information extracted from previously recorded subjects
is used as good as possible to reduce the amount of calibration needed for classification
of thoughts coming from a new target subject. Existing techniques were compared and a
new technique was developed, resulting in the need for only 24 seconds of calibration data,
classifying 86±8% of the thoughts correctly.
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Abstract—The goal of this article is to find a method that is
able to reduce the calibration time needed for Motor Imagery
classification, without a loss of performance. For this purpose,
Machine Learning is applied to the subject of Brain-Computer
Interfaces. To illustrate the level of difficulty to find a good Ma-
chine Learning model that performs well for every subject, a
person-specific BCI is optimised with data available from seven
subjects. For the purpose of calibration time reduction, several
Transfer Learning techniques are exploited and a new tech-
nique is proposed. The new Transfer Learning technique re-
duces calibration time while performing even better.

Keywords— Brain-Computer Interfaces, Machine Learning,
calibration time, Motor Imagery, Transfer Learning

I. INTRODUCTION

BY using Brain-Computer Interfaces, people who
have lost the ability to control their limbs are

given the opportunity to, for example, steer a wheel-
chair by using Motor Imagery. Motor Imagery is the
process where the patient imagines a movement, res-
ulting in a signal measurable from the brain, which
is similar to the brain signals when actually planning
and performing the movement [1]. In this article, ima-
ginary left and right hand movement will be the topic
of interest.
To learn from the user’s brain, Machine Learning is
applied to Brain-Computer Interfaces. General con-
cepts of different techniques needed to build a Ma-
chine Learning algorithm are explained in Section II,
a first BCI is built in Section III. Due to interperson
and intersession differences, the BCI needs to adapt
to the user’s brain for every new session, to be able
to correctly classify their thoughts. The time that the
BCI needs for this adaption is known as the calibra-
tion time and up until now, this calibration could take
up to 20 - 30 minutes. With the intention of using
these BCI’s with, for example, ALS patients, this is
an exhausting and tiring amount of time that the pa-
tient has to wait until the system is fully functional.
To overcome this problem, several existing Transfer
Learning techniques are explained in Section IV. Us-
ing these techniques, previously recorded data can be
reused or adapted to improve prediction of tasks per-
formed by new subjects. Different Transfer Learning
techniques are proposed in Section VI with their cor-
responding simulations in Section V. A new Transfer

Learning technique is designed in Section VI with its
results given in Section VII.

II. MACHINE LEARNING

Machine Learning is used to make data-driven
predictions, based on properties of example inputs,
known as the training data or training set. If an un-
derlying model exists, containing the properties of the
data, a Machine Learning algorithm can construct a
model based on the available training data as close as
possible to the underlying model. If the ML algorithm
succeeded, it should be able to correctly predict class
labels of new input samples, known as the test set.
Applying Machine Learning to the subject of Brain-
Computer Interfaces, a set-up as in Figure 1 is used.

?
Signal	
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important	
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Fig. 1. Brain Computer Interface: Overview

Starting with different trials of imaginary move-
ment of the left and right hand, the signals produced
by the user are recorded using EEG. Before giving this
data to an ML algorithm, the trials are pre-processed
by filtering the data within a specific range. This range
will determine which brain wave categories are in-
cluded for further experiments. The main brain waves
measured by EEG include delta waves (<4 Hz), theta
waves (4-7 Hz), alpha waves (8-13 Hz) and beta waves
(14-30 Hz) [2].



After pre-processing, the most useful features are
extracted using Common Spatial Patterns [3]. By
using Common Spatial Patterns, the original EEG-
channels will be linearly transformed, making it easier
to discriminate between two conditions. Feature se-
lection is performed by selecting an amount of new
CSP-channels, also called filter-pairs, and taking their
log variance. These features are given to a classific-
ation model, Linear Discriminant Analysis [4], that
will decide whether the original thought of each trial
was a left or right hand movement. After classification
this signal can be used to, for example, steer a wheel-
chair.
In this work, test accuracy will be the measure of clas-
sifier performance, calculated as the amount of cor-
rectly classified trials divided by the total amount of
trials.

III. A FIRST BCI

By applying the techniques as explained in Sec-
tion II, insight is gained in the working principles of
a Brain-Computer Interface. In the attempt of con-
structing a general BCI with optimal performance, hy-
perparameters are optimised. For a first BCI, the hy-
perparameters will be the amount of CSP-filter pairs
used and the amount of splits in the frequencyband.
By splitting the frequency band in equal parts, every
part will have their own specific CSP-filters, increas-
ing the amount of detail the ML algorithm can cap-
ture. By increasing the amount of CSP-filter pairs,
more information will be available, but being less dis-
criminative. For this experiment, data from 7 subjects
from BCI Competition IV [5], is used. The same set-
up is as in Section II is used, filtering the data from
0 to 40 Hz with a 6th order Butterworth filter, as this
frequency range includes the alpha and beta band.

To determine the best set of hyperparameters, a
cross-validation scheme is used. Per subject, the first
80% of the data is defined as the training set (here:
160 trials), the last 20% is used as the test set (here: 40
trials). To prevent data leakage while optimising the
hyperparameters, the training set is split in 10 equal
folds, with 9 folds serving as training set and the 10th

fold as the validation fold. The amount of splits in fre-
quency band ranges from 0 to 9, the amount of CSP-
filter pairs from 1 to 9. The best person-specific hy-
perparameters are obtained by using the combination
that gives the highest validation accuracy. The corres-
ponding test and train accuracies are given in Figure
2.

This figure shows that the average test accuracy
is only 67±15%. The big difference in test accur-
acy between subjects illustrates the problem that, even
with features optimised per subject and using all cal-
ibration data available, there is no guarantee that the
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Fig. 2. The train and test accuracies reached when using person-
specific optimal features.

classifier will perform well. The high train accuracies
of 98±3% indicate the possible occurance of overfit-
ting, even when using regularisation. The overall con-
clusion that can be drawn, is that the level of difficulty
to construct a general BCI for every subject is high
and other measures have to be taken, especially with
the goal of reducing the calibration time without a de-
crease in performance.

IV. TRANSFER LEARNING

Using Transfer Learning, the reduction of train-
ing data due to a lower calibration time can be com-
pensated by using training data from previously recor-
ded subjects. By using more data, the classification
performance can increase, however, due to the dif-
ference in the statistical distribution of data recorded
from previous subjects, this data has to be transferred
to the new subject in a way that it is used as efficient
as possible.

For this purpose, several Transfer Learning tech-
niques were investigated. Two naive Transfer Learn-
ing techniques, called Majority Voting and Aver-
aging Probabilities, who respectively, classify ac-
cording to a majority of votes of different classifiers,
or average the probabilities of the predictions of dif-
ferent classifiers. As these techniques don’t use data
from the target subject, they are not suited for proper
Transfer Learning. A third technique, called Covari-
ance Shrinkage (CS), regularizes the CSP and LDA
algorithms based on data from a selected optimal sub-
set of source subjects [6].

The most interesting Transfer Learning technique
for calibration time reduction is Data Space Adap-
tion (DSA) [7]. The goal of DSA is to reduce the
dissimilarities between the target subject and the kth

source subject, by adapting the target subject’s data in
such a way that their distribution difference is minim-



ised. This first step of the DSA algorithm is called the
subject-to-subject adaptation. Arvaneh et. al [7] as-
sume that the difference between the source subject k
and the target subject’s data can be observed in the
first two moments of the EEG-data and construct a
transformation matrix accordingly.

For each source subject k the optimal linear trans-
formation matrix Mk (see Formula 1)is built based on
the covariance matrices Σ1 and Σ2 for each condition
of the target subject and Σ̃k,1 and Σ̃k,2 for each condi-
tion of the source subject k. The covariance matrices
are calculated using the sample covariances. † stands
for taking the pseudo-inverse of the matrix.

Mk =

√
2
(

Σ̃−1k,1Σ1 + Σ̃−1k,2Σ2

)†
(1)

Using this transformation matrix, the target sub-
ject’s data V is transformed to minimise the distribu-
tion difference with the kth source subject according
to

V transformed
k = Mk V (2)

The second step of the algorithm is the selection of
the best calibration model. After the transformation
of the target subject’s data, the distribution difference
ought to be minimised, but one source subject may be
more similar to the target subject’s data than another
one. Therefere, the most similar source subject has to
be found.

This is done by first adapting the target subject’s
data according to the transformation matrix Mk as in
Formula 1 and classifying the adapted data using the
model trained on the corresponding source subject.
The source subject that results in the highest valida-
tion accuracy is selected as the best calibration ses-
sion.

If more than one source subject would result in
the same classification accuracies, a selection is done
based on the smallest KL-divergence [7] between the
target subject’s transformed data and a source subject.

The Data Space Adaption algorithm has been
proven to substantially reduce calibration time,
without the need for a large database of previously
recorded sessions. Another advantage is that it can
easily be implemented in online applications, as the
calculation of the transformation matrix and the adap-
tion of the new target’s data can be done in less than a
second[7].

V. SIMULATIONS

In this work, for comparison of the four Transfer
Learning techniques, only 5 out of 7 subjects from

the competition set are used, as these 5 subjects per-
formed the same imaginary movement tasks being left
and right hand movement. Averaging test accuracies
of these 5 subjects, calculated on the last 40 trials of
each target subject, the test accuracy is plotted against
the amount of calibration trials used from the source
subject in Figure 3, ranging from 10 to 160 training
trials, using different Transfer Learning techniques.
For this set-up, the data was filtered from 8 - 35 Hz,
using a Butterworth filter of the 6th order, as this range
includes the most important brain waves categories for
Motor Imagery classification[8]. 3 CSP-filter pairs are
extracted as features and given to a regularised Linear
Discriminant Analysis model for classification. No
error bars are shown for clarity of the graph, as the
standard deviation varies from 7 to 20%, with no rela-
tion to the amount of calibration trials.
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Figure 3 shows that, on average, Data Space Ad-
aption will always result in the highest test accuracy,
independent of the amount of calibration trials used
from the target subject. As a baseline, the grey line
indicates the test accuracy when no Transfer Learning
is used. The naive Transfer Learning methods, ob-
viously, result in the same test accuracies for every
amount of calibration trials, as it does not use in-
formation from the target subject and is quickly out-
performed by the standard approach without Trans-
fer Learning. Covariance Shrinkage does, on average,
give higher test accuracies than when using no Trans-
fer Learning, but when looking subject-specific, in 3
out of 5 cases, the test accuracies were the same as
without the usage of a Transfer Learning technique.
As DSA can, on average, reach test accuracies of
74±14% using only 10 calibration trials, further in-
vestigation is done on how to improve this technique
to be able to reach even higher test accuracies with a
minimal amount of calibration data.



VI. DESIGN OF A NEW TRANSFER LEARNING
TECHNIQUE

As explained in IV, the DSA algorithm consists
of a step where the best calibration model is chosen.
When leaving out this selection and looking at the test
accuracies reached with consecutively every source
subject serving as the calibration model, it was clear
that the selection process did not always pick the best
source subject for classification of the target subject’s
data. For some target subjects, this erroneous assign-
ment of best calibration model results in sudden de-
creases in test accuracy if the addition of new cal-
ibration data has large influences on the covariance
matrices needed in Formula 1.

These shortcomings in mind, a new technique is de-
veloped exploring three different paths:
DSA/CS - Accumulate source subject data

In this approach, data of a subset of source subjects
is accumulated. The subset is chosen according to
the Subject-Selection Algorithm (as used by Lotte
and Guan [6]). Based on the accumulated data, the
transformation matrix M (Formula 1) is calculated,
the classifier is trained on the accumulated data and
tested with the target subject’s data.

DSA - Averaging probabilities (AP)
The same set-up as for DSA is used, except, instead
of selecting the best calibration source subject, mul-
tiple calibration models are used, and for each trial,
the class probabilities are averaged.

DSA - Maximum probability (MP)
The same approach as in DSA - Averaging prob-
abilities is used, but instead of averaging the class
probabilities, the highest probability produced by a
classifier determines the class label.

Using these three methods, new experiments are
performed using the same parameters as in Section V.
As our goal is to reduce calibration time, the aim of
the new method should be to give high test accuracies
with a low amount of calibration data, hence Figure
4 only shows test accuracies higher than 0.5, for an
amount of calibration data varying from 2 to 40 trials,
averaged over 5 subjects.

From Figure 4, it is clear that, on average, DSA -
MP gives the highest test accuracies for every amount
of calibration data. DSA - AP is the second best
method. DSA/CS doesn’t even always give better res-
ults than the standard DSA approach, therefore, this
technique will be left out for further research. When
looking subject-specific, these conclusions are a little
different, as DSA - MP does not always results in the
highest test accuracies, but in 82.5% of the experi-
ments, either DSA, DSA - AP or DSA - MP give the
highest test accuracy. To guarantee that the highest
test accuracy is reached, a new method is constructed
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that should result in an upper boundary of these three
methods.

Upon further investigation of DSA - AP and DSA -
MP on why they misclassify certain trials, it became
clear that these methods are complementary. If the
classifiers produce probabilities that indicate that the
classifier is indecisive (probabilities close to 50%),
DSA - MP should be used, to find the most certain
classifier. If, on the other hand, all classifiers produce
reliable probabilities, it is better to use DSA - AP, as
a single classifier with a slightly higher probability (in
the case of DSA - MP) could shift the class label in
the other direction, even if the majority of classifiers
would predict otherwise.

These findings are used to construct an algortihm
for a new Transfer Learning technique. The algorithm
will, dependent on whether a classifier is biased or if
it’s validation accuracy is low, remove the respective
source subject from the further decision making pro-
cess. To determine whether a classifier is biased, a
method was constructed that can predict if the pre-
dictions of the corresponding classifier are consistenly
the same (if 90% of the class labels are equal). In that
case, the corresponding source subject is removed. If
the validation accuracy, as the validation accuracy for
standard DSA in Section IV, is lower than 70%, the
source subject is also removed from the further de-
cision making process.

VII. RESULTS

The results of the final method are plotted in Figure
5. On average, the final method outperforms every
other technique. When looking subject-specific and
only at the experiments using 40 calibration trials or
less, for subject B (see Figure 6), the final method
doesn’t always leads to the highest test accuracies, but
at least it doesn’t drop towards test accuracies of only
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Fig. 6. Subject B

50% like DSA. For subject C (see Figure 7), the final
method always performs best. For other subjects, not
illustrated here, similar conclusions can be drawn.

Based on the findings for every subject, with a
single exception for 6 calibration trials when testing
for subject E, the test accuracy of the final Transfer
Learning technique never drops below 67%. The most
important gain in performance is, that when only hav-
ing 2 calibration trials available, the test accuracy is
minimally 70%. With respect to, when having 4 cal-
ibration trials available, only reaching 52±6% on av-
erage when not applying Transfer Learning, this is an
improvement of at least 15% in the worst case scen-
ario. On average, when using the final method and
4 calibration trials, the test accuracy is 86±8%. This
clearly manifests that, by applying Transfer Learning
and reducing the amount of calibration, there was ab-
solutely no reduction in performance.
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VIII. CONCLUSION AND FUTURE WORK

In order to construct a Machine Learning model for
Brain-Computer Interfaces that uses as little calibra-
tion data as possible, without a reduction of system
performance, a first step was taken by constructing
a person-specific BCI. Eventhough sufficient training
data was available, for some subjects, a testing of 70%
wasn’t even reached [9]. The constructed BCI was
very user-dependent and needed a lot of calibration
data. By investigating some Transfer Learning tech-
niques, as in Section IV, improvements were observed
in the context of increasing test accuracies with less
calibration time. With room for improvement being
present, a new method was developed giving prom-
ising results. The strength of this final method is its
robustness in comparison to DSA. Where the perform-
ance of DSA can suddenly decrease when new calib-
ration data becomes available, the new method is less
sensitive to alterations in calibration data. With re-
gards to an application of a BCI to steer a wheelchair,
this advantage of the final method is an important as-
pect in sending the wheelchair towards the right dir-
ection, even if the user was confused or distracted for
a short period of time. The final method might not al-
ways be stated as the best method for every amount of
calibration data, but by further alterations in the selec-
tion criterion, the results can be promising.

With regards to the goal of reducing the calibra-
tion time as much as possible, this requirement is full-
filled, as the amount of trials is reduced to the min-
imal amount of trials possible, still reaching average
test accuracies of 85±10%, needing only 24 second
for calibration.

In the construction of a new method, based on com-
parisons between old and new techniques, it might not
be overlooked that an optimal method was constructed
based on data from only 5 subjects. To work around



this restriction, the steps taken in the process to con-
struct a final method, were not based on the averages
of the performance of these 5 subjects, but on target-
specific results. As these results still might depend on
the specific data used in the experiments, it might be
useful to go over the same steps and reasonings, but
with a larger or a different dataset. By expanding the
dataset with different categories of imaginary move-
ment, like foot movement or eye blinking, the general-
isation properties of the Transfer Learning techniques
could also be studied.
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Chapter 1

Introduction

1.1 Brain-Computer Interfaces

A Human Computer Interface (HCI) using a keyboard or mouse as an interface to communic-

ate between human and computer is very common. Unfortunately, people unable to generate

the necessary muscular movements cannot use these standard HCI’s.

With growing recognition of the needs and potential of people with disabilities and new un-

derstanding of the brain function, Brain-Computer Interfaces (BCI’s) needed to be developed.

BCI’s only use the brain as a way of communicating between the human brain and an external

device, giving people a way to communicate or to control technology, without the need for

motor control [1].

By doing so, BCI’s can be a way to improve or recover the mobility of patients with severe

motor disorders, e.g. amyotrophic lateral sclerosis (ALS) [2], brainstem stroke, cerebral palsy

or spinal cord injury. A wheelchair can be controlled with Motor Imagery [3], a P300-speller

allows word spelling but can also be used to control a house environment; opening doors,

turning on lights [4], etc. The future may even hold options to bypass damaged sections of

the spinal cord, allowing actual movement of the paralysed limbs with only the thought of

movement [5].

However, the application of a BCI reaches further than only for injured people. Applications

can be found in the gaming area or in surgery, as a surgeon may need more than muscles to

control movements. And even while focussing on applying BCI’s, new knowledge is gained

about the functionality of the brain.

1
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1.2 From brain to computer

To measure brain activity, the methods can be divided in three main categories: invasive,

partially-invasive and non-invasive measurements.

Figure 1.1: EEG as an example of non-invasive measurements, ECoG for partially-invasive measure-

ments and Local Field Potentials as invasive measurements. The invasiveness depending

on interaction with the respective layers of the brain (Source: http://www.schalklab.

org/research/brain-computer-interfacing.

1.2.1 Invasive measurements

The most invasive way to record brain signals is by implanting electrode arrays into the pa-

tient’s cortical tissue, recording extracellular potentials from nearby neurons. The recordings

have high spatial resolution, but require tens or hundreds of small electrodes being implanted

in the brain. These are prone to failure on biocompatibility level if brain tissue reacts with

the implants and therefore not suitable for long-time performance stability [6].

1.2.2 Partially-invasive measurements

Electrocorticography (ECoG) is a less invasive technique that does require surgery, but

electrodes are implanted subdurally on the surface of the brain, without the need for cortical

penetration. The signals acquired by ECoG have a very high signal-to-noise ratio, are less

susceptible to artifacts than EEG and have a high spatial and temporal resolution (<1 cm

and <1 ms respectively) [7]. Therefore they are useful to reveal functional connectivity in

the brain and resolve finer task-related spatial-temporal dynamics, giving new insights in

our understanding of large scale cortical processes, which can improve communication and

control.

The clinical risk is lowered and gives better long-term stability as the surgery is less invasive,

but has the downside of having to record data within clinical settings, making it hard to

obtain lots of data [8].

http://www.schalklab.org/research/brain-computer-interfacing
http://www.schalklab.org/research/brain-computer-interfacing
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1.2.3 Non-invasive measurements

In this work, non-invasive BCI’s will be used, measuring signals from outside of the skull.

The big advantage includes not having to perform surgery, but has the disadvantage of signals

being deformed and deflected by the bone tissue of the skull, creating noise and making it

harder for a computer to interpret [1].

EEG (electroencephalograpy)

When the billions of neurons in our brain communicate, they do this by generating and

propagating action potentials. These electrical changes induce dendritic current, creating an

electric field that can be measured by the electrodes. In electroencephalography the oscil-

lations of potential differences are measured outside the scalp using electrodes, representing

the synchronous activity of these neurons [9].

When using wet electrodes, a conductive gel is applied for better transduction of charge

between scalp and electrode. In comparison to dry electrodes, which don’t use a gel, wet

electrodes are less pleasant for the user due to the sticky products and the long application

process (about 30 minutes), but they are relatively cheap and disposable making them more

readily available in clinical settings [10].

To be able to better compare recordings for different persons, the electrodes are placed on

the head at fixed locations according to the international 10-20 system, based on standard

landmarks of the skull (see Figure 1.2). These marks are labeled according to the different

areas with Fp, F, C, P, T and O representing the fronto polar, frontal, central, parietal,

temporal and occipital areas, respectively [11].

Figure 1.2: Position of the electrodes according to the international 10-20 system (Source: http:

//www.nrsign.com/eeg-10-20-system/).

The patterns recorded by the electrodes are called brain waves. These brain waves are

as unique as our fingerprints, but change with age, sensory stimuli, brain disease and the

chemical state of the body. The brain waves shown in an electroencephalogram fall into four

general categories, based upon their frequency content [12] (see Figure 1.3).

http://www.nrsign.com/eeg-10-20-system/
http://www.nrsign.com/eeg-10-20-system/
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• Delta waves (<4 Hz): high amplitude waves seen during deep sleep.

• Theta waves (4-7 Hz): more common in children and sometimes seen in adults when

concentrating.

• Alpha waves (8-13 Hz): relatively regular, rhythmic, low-amplitude waves when in a

relaxed state.

• Beta waves (14-30 Hz): less regular than alpha waves and occur when mentally alert,

focussing on a problem or visual stimulus.

Alpha waves	
  – awake but	
  relaxed

Beta waves	
  – awake,	
  alert

Thetawaves	
  – common	
   in	
  children

Delta	
  waves	
  – deep sleep

1-­‐second	
  interval

Figure 1.3: 4 main categories of brain waves [12].

Because of the distance between the electrodes and the origin in the brain, the measured

signal is the result of the activity of thousands of neurons, making it hard to distinguish

exactly where the activity came from, resulting in poor spatial resolution. The measurement

of signals not originating from the brain, called artifacts, is another drawback. These may

arise due to power line noise (50 or 60 Hz), or due to biological reasons, such as eye blinking,

limb movement, chewing or heartbeats. But as the temporal resolution is high, being in the

millisecond range, it is the best modality for real-time applications and will be used for this

master thesis.
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MEG (magnetoencephalography)

MEG works according to the same principle as EEG, where electric fields arise due to the

induced dendrite currents from the synchronous firing of the neurons, but measures magnetic

fields instead of electric fields. Whereas EEG uses electrodes placed on the scalp, MEG uses

sensor coils that do not touch the patient’s head [13].

Regardless of the higher spatiotemporal resolution that MEG achieves, the popularity of this

method is rather low due to some technical issues. As shielding from the relatively stronger

earth’s magnetic fields is necessary, the measurements must be done in a shielding room,

making it unattractive for daily, mobile use [14].

fMRI (functional magnetic resonance imaging)

In contrast to EEG and MEG, fMRI measures the blood oxygen level-dependent (BOLD) sig-

nal with a high spatial resolution, covering the whole brain. BOLD imaging uses hemoglobin

as a contrast agent, whereas oxygenated Hg and deoxygenated Hg have different magnetic

properties. [15] As this is no direct measurement of neuronal activity, there is a physiolo-

gical delay of 3 to 6 seconds before signal changes are observed. Data processing introduces a

second delay of 1.3 seconds [16], but with increased availabilty of high-field MRI scanners and

fast data acquisition scanners, this delay might be further reduced in the future [17]. However,

the delay due to the hemodynamic response will remain constant, even with faster measuring

and calculation techniques, making fMRI not suitable for fast real-time applications [18].

1.3 The brain signal as information carrier

Depending on the task we want the BCI to fullfill, different types of brain signals can be used.

It is important that the signal can easily be identified and is easy to control by the user. The

two main groups that are most frequently used in EEG recordings can be distinguished as

evoked signals and spontaneous signals, used for the P300-speller and in Motor Imagery

respectively.

1.3.1 P300-speller

The P300-speller is used for spelling words or sentences by flashing rows and columns on a

screen [19]. The user is asked to react to the target stimulus, which induces an amplitude

increase in the measured signal called an Event-Related Potential (ERP) . The P300-wave

is a type of ERP waveform, shown in Figure 1.4, occuring as a positive deflection after a

latency period of approximately 300 ms [20].

ERP’s fall under the category of evoked signals, as they occur by sensory, tactile or cognitive

stimuli. Independent on the type of stimulus, the P300-wave is measured best at the level of

the parietal lobe.
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Figure 1.4: The P300 wave starts to peak 300 ms after the tar-

get stimulus (Source: http://www.extremetech.com/extreme/

134682-hackers-backdoor-the-human-brain-successfully-extract-sensitive-data).

1.3.2 Motor Imagery

In this master thesis, imaginary movements will have to cause the change in EEG signals.

These signals will be classified as spontaneous signals, as they are not evoked by an external

stimulus. As it is broadly accepted that mental imagination of movements creates similar

brain signals in the same regions as when preparing or performing the movement, [21] Motor

Imagery can be seen as mental rehearsal of a movement, without the respective motor output.

When preparing and planning the movement, this leads to amplitude suppresion, called

event-related desynchronisation (ERD) , followed by an amplitude enhancement, called event-

related synchronisation (ERS). In the alpha band (mu band), the desynchronisation starts 2.5

seconds before movement-onset, peaks after movement-onset and recovers back to baseline

within a few seconds. In the beta band, the desynchronisation is only short-lasting, immedi-

atly followed by synchronisation reaching a maximum in the first second after the movement.

In the gamma band, synchronisation reaches a maximum right before movement-onset, but

these gamma oscillations are rarely found in a human EEG [22]. In Figure 1.5 the time

course for ERD and ERS can be seen for the three different frequency bands, the vertical line

indicating the offset of movement.

The most prominent EEG changes will be localised over the corresponding primary sensor-

imotor cortex contralateral to the movement as indicated in Figure 1.6 [20]. E.g. When

executing/imaging left-hand or right-hand movement, the ERD and ERS will be seen over

http://www.extremetech.com/extreme/134682-hackers-backdoor-the-human-brain-successfully-extract-sensitive-data
http://www.extremetech.com/extreme/134682-hackers-backdoor-the-human-brain-successfully-extract-sensitive-data
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the contralateral hand area, showing different time courses over the alpha and beta bands.

When performing classification in Motor Imagery, it comes down to finding the place and the

frequency band where the movement is expressed best.
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Post-­‐movement
beta ERS
14	
  – 18	
  Hz

Mu	
  ERD
10	
  – 12	
  Hz

Gamma	
  ERS
36	
  – 40	
  Hz

C3	
  -­‐ channel

ER
D	
  
/	
  E

RS
	
  %

-­‐6	
  	
  	
  	
  	
  	
  	
  -­‐5	
  	
  	
  	
  	
  	
  	
  -­‐4	
  	
  	
  	
  	
  	
  	
  -­‐3	
  	
  	
  	
  	
  	
  	
  -­‐2	
  	
  	
  	
  	
  	
  	
  -­‐1	
  	
  	
  	
  	
  	
  	
  	
  0	
  	
  	
  	
  	
  	
  	
  	
  1	
  	
  	
  	
  	
  	
  	
  	
  2	
  	
  	
  	
  	
  	
  	
  	
  	
  3

250

200

150

100

50

0

-­‐50

-­‐100

Figure 1.5: ERD and ERS in the alpha, beta and gamma band measured by the C3 electrode during

right finger lifting (Source: http://www.bbci.de/supplementary/conditionalERD/).

Figure 1.6: Sensorimotor cortex showing the origin of different movements (Source: http://keck.

ucsf.edu/~sabes/SensorimotorCortex/M1.htm).

http://www.bbci.de/supplementary/conditionalERD/
http://keck.ucsf.edu/~sabes/SensorimotorCortex/M1.htm
http://keck.ucsf.edu/~sabes/SensorimotorCortex/M1.htm


Chapter 1. Introduction 8

1.4 Difficulties

Synchronicity Synchronous BCI’s work in a cue-paced mode, meaning that the time in-

tervals in which communication is possible, is paced by the BCI. The EEG-signal can

be analysed in predefined time windows, but this severely limits the autonomy of the

user, allowing only one thought per time window. Asynchronous BCI’s on the other

hand, allow the user to communicate whenever they want, making it self-paced and

much more flexible. This freedom of communication leans more towards reality, but as

it expects continuous analysing, classification will become a more difficult task [23].

Inter-subject variability As not everyone has the exact same brain, or has the same capab-

ility to steer their thoughts, BCI performance depends strongly on the user. Algorithms

[24] are being developed where the BCI can automatically identify its current user and

adapt the classification parameters to maximise BCI performance, making it easier to

initialise the BCI, without the need for manual setup.

Intersession differences Between different sessions, variations may also occur, due to fa-

tigue, medication, sickness, hormones, but also due to a slightly different placing of

the cap. Current development of data space adaption techniques [25] to minimise the

intersession differences, may be a solution.

1.5 Goals

Using this data, it will become clear that due to interperson and intersession differences, it is

nearly impossible to find a good Machine Learning model that performs well for every subject.

Therefore calibration has to be done at the beginning of every new session. Unfortunately,

this calibration is tiring and demotivating for patients, especially for our target audience,

being for example ALS patients.

As there is always a trade-off between calibration time and performance of the system, my

goal is to reduce this calibration time as much as possible without losing performance, by

applying Transfer Learning techniques [26]. Using these techniques, previously recorded data

can be reused or adapted to improve prediction of tasks performed by new subjects, hopefully

resulting in a reduction of calibration time and ultimately in an unsupervised Motor Imagery

BCI.

1.6 Overview

In Chapter 2, general concepts of different techniques needed to build a Machine Learning

algorithm are explained. Using these concepts, the framework of Transfer Learning is de-

scribed, introducing methods as found in literature.

With this knowledge, in Chapter 3, a first person-specific BCI is built and optimised. Second,

simulations are performed using a BCI with Transfer Learning, constructed based on the
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Transfer Learning principles as explained in Chapter 2.7. These simulations will show the

need for a new Transfer Learning method that reduces the calibration time as much as pos-

sible, without a decrease in performance. Therefore, a new Transfer Learning technique

is proposed in Chapter 4. The results obtained with the new technique are illustrated in

Chapter 5.



Chapter 2

Methods

2.1 Machine Learning

According to Arthur Samuel in 1959, Machine Learning is “The field of study that gives

computers the ability to learn without being explicitly programmed”.

Machine Learning is indeed used when static instructions, like handcrafted rules and heur-

istics, are unfeasible to design and program. A Machine Learning algorithm is used to make

data-driven predictions based on properties of example inputs, known as the training data

or training set. Take a look at for example face recognition. It is nearly impossible to make

rules for the recognition of a face, as there will be an overload of rules and exceptions to

these rules. Therefore, if an underlying model exists, containing the properties of the data,

Machine Learning is the preferred technique that will try to construct a model based on the

available training data, as close as possible to the underlying model.

The general framework for Machine Learning is stated as follows (see Figure 2.1) [27]:

A training set contains N labeled samples (x1, x2,... xN ), making it a supervised learning

problem, as the class labels for all samples are known and are kept in a target vector (t1,

t2,... tN ). The training samples x together with their target vector t are used to tune the

parameters of the model, constructing an output function y(x). If the hypothesis for the

model performs well, y(x) should be able to predict the correct class labels of new input

samples x, known as the test set.

The ability of a model to correctly classify new samples that are different from the training

set is known as generalisation. Generalisation is an important aspect of Machine Learning,

as it is unlikely to encounter all possible inputs during training.

A second important aspect in Machine Learning is pre-processing the data. Pre-processing,

also referred to as feature extraction, is used for two reasons:

The first reason is to hopefully be able to solve an easier problem in a new (lower-dimensional)

space, for example, using averages of image intensities in subregions of an image as features

has been proven to work well in face detection. [28]

10



Chapter 2. Methods 11

Labeled training	
  set
x1,	
  x2,	
  …	
  xN

with target	
  vector
t1,	
  t2,	
  …	
  tN

Train	
  a	
  model

Output	
   function
y(x)	
  =	
  t

Check	
  
hypothesis	
  on	
  
training	
  set

Predict labels of	
  
test	
  set

Figure 2.1: The general framework for a Machine Learning algorithm.

The second reason is to speed up computation time. For example, if face-detection has to be

applied on video data using only the pixel values as inputs, the input data that is given to a

complex ML algorithm is high-dimensional, resulting in long computation times. If instead

features are found that are fast to compute without losing discriminative information, this

process is better suited for real-time face detection.

In the case of supervised classification, with the importance of regularisation and the process

of feature extraction in mind, a Machine Learning algorithm should be able to predict repro-

ducable, reliable class outcomes. Because a Machine Learning algorithm is built on previously

learnt relations or trends in the data from the training set and can have the capability to

uncover hidden insights in the data, it can find regularities that are used to classify new data.

2.1.1 Pitfalls

Overfitting

The first major challenge in Machine Learning that has to be tackled is overfitting. Stated

simply, if the hypothesis of our model is too complex in comparison to the amount of data

available, our model will overfit. In terms of classification accuracy, overfitting occurs when

with increasing complexity, the training error decreases, but the testing error increases.

In the case of polynomial fitting, it is shown in Figure 2.2 that with increasing order M of

the polynomial, the curve is better fitted to the training data, but will perform poorly on

new data. This can be interpreted as the curve becoming tuned to random noise that may

be present in the training set, instead of being able to fit new data.
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Figure 2.2: Overfitting example: The green line shows the underlying polynomial curve, the red line

is the polynomial curve with order M used by the model to predict new data. With

increasing order of the polynomial, the training data is fitted better, but if M becomes

greater than 3, the model starts to overfit and the test error will increase [29].

A straightforward way to solve the problem of overfitting is by using more data, as this allows

the model to be more complex, but with training data often being sparse, other solutions are

needed.

Two other good ways to solve overfitting is by reducing the number of features by feature

selection and by performing generalisation. In the example of polynomial curve fitting, this

would mean reduction of the order of the curve. Using generalisation, large weights are

penalised to prevent the coefficients of the model reaching too large values and becoming too

complex.

Curse of dimensionality

The curse of dimensionality, as named by R. Bellman [30], is most easily explained using an

example of a classification problem.

An example of a classification problem in 2D-space is illustrated in Figure 2.3. The output of

the classification problem should be whether it will rain the next day or not. The axis x1 and
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x2 can be seen as two features, for example being the humidity of the air and the pressure.

The data-space is divided in nine equal subcells and if the classification occurs based on the

majority of labels present in a subcell, the label of the question mark would be a green cross.
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Figure 2.3: Example of a 2D classification problem using majority voting.

In the 2D-space example of Figure 2.3, the data-space is divided in nine equal subcells. When

expanding to three-dimensional space, the data would be divided in nine times nine equal

parts, showing that the number of cells grows exponentially with increasing dimension of the

space (see Figure 2.4). Giving a third feature to the classification problem, means that the

training data should also grow to avoid having empty cells. As examples are needed in every

subcell to be able to make a decision for new incoming data points, this is known as the

curse of dimensionality, as with every dimension that is added, the training data has to grow

exponentially.

To anticipate the curse of dimensionality, a rule of thumb for simple classification algorithms

such as Fisher’s linear discriminant, is that if the number of training samples is at least ten

times higher than the number of features, the classification algorithm will still perform well

[31]. If not, dimensionality reduction has to be applied to reduce the number of features, by

feature extraction or feature selection.

2.1.2 Cross-Validation

If parameters of a model would be learnt from the same data as it would be tested on, the

model would always have maximal accuracy. For this reason, when using this model on new

unseen data, the performance would be much lower.
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Figure 2.4: Illustration of the curse of dimensionality. With D going from one to three dimensions,

the number of cells grows, inducing the need to have more data points to have at least

one data point in each cell [29].

This is the case if, like in Figure 2.2 for M = 9, the model is built based on the blue dots,

and also tested on these blue dots, resulting in 100% accuracy. This situation is known as

overfitting. Therefore it is common practice to split the data in a training and a testing set.

The model and its parameters are built based on the training set, holding the test set aside

until the model is finished.

When optimising the parameters of the model, such as the amount of CSP-filters used (ex-

plained in Chapter 2.5), the risk of overfitting on the test set is still present. Due to the

parameters of the model being tuned until optimal performance is reached, information from

the test set can leak into the model, referred to as data leakage, and the generalisation

properties of the model are jeopardized. Therefore, another part of the dataset, called the

validation set, is held out. Training will still be performed on the training set, but evalu-

ation is done on the validation set until satisfying results are obtained. The final model is

applied on the test set.

As the set is now divided in three parts, a training set, a validation set and a test set,

the amount of data available for training is again reduced and parameters can depend on

a particular choice of training and validation set. This is the point where Cross-Validation

comes forward.

k-fold Cross-Validation splits the training set in k folds, whereas k − 1 folds are used for

training and the kth fold is the validation fold. This process is repeated k times, resulting

in k validation accuracies, which are averaged to give an indication on how well the model

performs. Optimising parameters of a model using k-fold Cross Validation is computationally

more expensive, but uses all data to make a reliable model. The process of k-fold Cross-

Validation using ten folds is illustrated in Figure 2.5.
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Figure 2.5: A cross-validation scheme showing the process of training a classifier using different

subsets of the training data.

An important remark in the partitioning of the dataset, is the ensurance of a balanced dataset.

This means that in every set or fold, there should always be as much trials from class one as

there are from class two. If the sets are be unbalanced, having mostly trials from one class, it

is possible that the model overfits to the class most present and doesn’t learn features from

the nearly absent class.

2.1.3 Machine Learning for Brain-Computer Interfaces

Applying Machine Learning to the subject of Brain-Computer Interfaces, a set-up as in Figure

2.6 is used.

Starting with different trials of imaginary movement of the left and right hand, the signals

produced by the user are recorded using EEG. Before giving this data to an ML algorithm,

the trials are pre-processed using a filter (see Chapter 2.3) and the most useful features

are extracted (see Chapter 2.4 and 2.5). After pre-processing, the features are given to a

classification model (see Chapter 2.6) that will decide whether the original thought of

each trial was a left or right hand movement. Using this output from the classifier, it can be

applied for e.g. steering a wheelchair.

1Sources: www.wadsworth.org/educate/wolpaw.htm;www.planningdemocracy.org.uk; Motor Imagery

and Direct Brain-Computer Communication, G. Pfurtscheller et al.; Optimizing Spatial Filters for Robust

EEG Single-Trial Analysis, B. Blankertz et al.; www.spinlife.com/images/product/19949.jpg

www.wadsworth.org/educate/wolpaw.htm; www.planningdemocracy.org.uk
www.spinlife.com/images/product/19949.jpg
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?
Signal acquisition through EEG Feature	
  extraction Classification

Figure 2.6: Brain-Computer Interface: Overview1.

2.2 Data

For the research in this thesis, dataset 1 from BCI Competition IV [32] is used. For the

construction of this dataset, healthy subjects were asked to perform cued Motor Imagery

without feedback. Each subject could select two tasks from three classes being left hand,

right hand and foot.

7 subjects were recorded, each instructed to perform a Motor Imagery task while a visual cue

of 4 seconds was displayed, repeating this process 200 times. Those 200 iterations or trials

were interleaved with 2 seconds of blank screen and 2 seconds of a fixation cross in the centre

of the screen. With a sample frequency of 100 Hz, 4 seconds of Motor Imagery give us 400

useful samples, each containing information from 59 EEG channels.

2.3 Signal acquisition and preprocessing

To measure the signals produced by the brain, EEG is used. With the data recorded using

59 electrodes, the electrodes are placed conforming the 10-20 system, adding extra electrodes

according to a 10% division [33] to fill in intermediate gaps between the existing fixed locations

by the 10-20 system.

As explained in section 1.2.3, brain waves can be divided in four different categories based

on their frequency range. Gamma waves are added as the fifth category, covering the range

from 25 - 100 Hz as they have proven to play a role in all sensory modalities [34].

To remove unwanted artifacts and extract the most important information from the EEG-

measurements, the data is pre-processed. By filtering the data within a range of 0 to 40 Hz,

the frequency spectrum includes the alpha and beta band. For this purpose, a Butterworth-

filter of the 6th order will bandpass-filter the signal between the desired frequencies. A
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Butterworth-filter is commonly used, as it is maximally flat in the passband and rolls off

towards zero without ripple.

2.4 Spatial Filtering

The importance for spatial filtering arises due to the poor spatial resolution of EEG measure-

ments. As mentioned before, this poor spatial resolution is the result of a signal caused by the

activity of thousands of neurons. A simulation using a volume conductor model of the head,

showed that only as little as 5% of the measured signal comes from sources directly under a

1 cm diameter of the respective electrode. 50% comes from within a 3 cm diameter and 95%

from within a 6 cm diameter [35]. This confirms that it is hard to distinguish exactly where

the activity came from.

For left and right hand movement it is known that the main signal will be above the con-

tralateral corresponding primary sensorimotor cortex, but with possible effects of artifacts or

noise, the task still remains difficult [36].

In spatial filtering, signals from multiple electrodes are linearly combined, which makes it

easier to locate the source origin, as the increase in signal-to-noise ratio results in being able

to extract more discriminative information from the EEG signals.

Three different spatial filtering techniques will be discussed: Common Average Referencing,

Laplace Filtering and Common Spatial Patterns. The first two methods are based on channel

re-referencing and are explained shortly. The last method makes use of class information and

is the method used in this thesis and in many other researches.

2.4.1 Common Average Referencing (CAR)

In Common Average Referencing, the average value of all EEG-channels is subtracted from

the electrode of interest [37].

V CAR
i = Vi −

∑N
j=1 Vj

N
(2.1)

Vi is the potential difference measured at electrode i, with N being the total number of EEG

channels.

By taking the average, this method can reduce the impact of signals that are present in a lot

of channels and will highlight local signals. On the other hand, if not all channels contain

this signal, ghost potentials may arise in the channels that don’t.
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2.4.2 Laplace Filtering

Using Laplace Filtering, the average of only the neighbouring electrodes is subtracted, instead

of the average of all electrodes. In this way, the noise is only reduced in a region of interest.

There are two types of Laplace filters: the small Laplacian and the large Laplacian. The small

Laplacian subtracts the average of the nearest four neighbours, whereas the large Laplacian

subtracts the average of the four next-nearest neighbours [38]. As illustrated in Figure 2.7a

& 2.7b, the orange marked electrode is the one being re-referenced and the blue marked

electrodes indicate the respective neighbours.

(a) Small Laplacian. (b) Large Laplacian.

Figure 2.7: Laplacian filtering example (Source: www.fieldtriptoolbox.org).

2.4.3 Common Spatial Patterns (CSP)

As explained before, ERD and ERS are the signals that indicate Motor Imagery activity.

By observing these simultaneously attenuated and enhanced EEG rhythms, classification of

different types of brain states can be done. To this extent, Common Spatial Patterns will be

used, as it is a technique that was already of common use in statistical pattern recognition

and has proven its efficiency in finding spatial structures of ERD and ERS in BCI settings

over the last 15 years [39] [40].

The problem tackled by CSP is illustrated in Figure 2.8. Figure 2.8a shows an example of

some original EEG data of two different trials over time, as measured from channel C3 and

C4. These are the two channels that measure signals originating from the main location

for left and right hand movement. As the origin of the signal is determined as the channel

that shows the highest variance over time, the assignment to the axis that shows the highest

variance should be straightforward as these trials are measured by the two electrodes that are

www.fieldtriptoolbox.org
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the main source of two different Motor Imagery signals. Nevertheless, it is not clear whether

the variance for the trial as indicated by the red crosses shows highest variance on the C3 or

C4 axis. The same problem arises for the trial as plotted in blue circles.

CSP will solve this problem by linearly transforming the data from the original EEG-channels

into new channels, resulting in the transformed trials as in Figure 2.8b. Using the new CSP-

channels, CSP1 and CSP2, makes it easier to discriminate between two conditions.

The general framework of CSP is built on maximising the variance of one condition while

minimising it for the other. In Figure 2.8b it is indeed indisputable that the red crosses

show highest variance on the CSP2 axis and the blue circles on the CSP1 axis. The linear

transformation of the original EEG data is also known as CSP-filtering the data. The manner

in which the linear transformation is constructed and executed, is explained in the next

section.
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Figure 2.8: (a) With the original EEG-data of two different trials it is hard to discriminate in which

direction the variance is highest. (b) After CSP-filtering the data, it is much more clear

that the red crosses show the highest variance on the axis of CSP2 and the blue dots on

axis CSP1 [36].

Calculation of the CSP-filters

A CSP-filter is calculated based on the potential differences Vj , with a dimensionality of Nch

x Tj , with Nch the number of EEG channels and Tj the number of samples for that trial.

Each trial Vj is labeled, implicating that the use of CSP-filters is a supervised technique.

To CSP-filter the signal, a projection matrix is calculated to transform the original EEG data

(see Figure 2.9).
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Figure 2.9: The transformation of the original EEG data with CSP-filters is a linear transformation.

Nch is the number of EEG channels and Tj the number of samples for that trial.

The projection matrix W will have as much filters as there are channels and the columns of

the matrix will carry the weights to make linear combinations of the original EEG channels,

thereby deciding which EEG-channels carry the most information.

The first half of the projection matrix will maximise the variance for class one and minimise

it for class two, while the second half of the projection matrix will maximise the variance for

class two and minimise it for class one.

Under the assumption that the signal is band-pass filtered, the projection matrix is construc-

ted as follows:

Starting with the potential differences Vj from trial j, the covariance matrices are calculated

for both classes with C1 holding the left hand trials and C2 holding the right hand trials:

Σ1 =
∑

j∈C1

VjV
T
j

trace(VjV T
j )

(2.2)

Σ2 =
∑

j∈C2

VjV
T
j

trace(VjV T
j )

(2.3)

The overall covariance matrix is composed as Σ = Σ1 + Σ2.

This covariance matrix is diagonalised and the eigenvalues and eigenvectors can be found in

E and M respectively.

MTΣM = E (2.4)

To make sure that UΣUT = I, the whitening transformation [40] is performed as follows:

U = P−
1
2MT (2.5)

Next, R1 is calculated and diagonalised, with D and Z containing the eigenvalues and eigen-

vectors respectively.

R1 = UΣ1U
T (2.6)
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ZTR1Z = D (2.7)

It is important that the eigenvalues on the diagonal of D are sorted in ascending order, ≥ 0

and ≤ 1.

With Z sorted according to D, the filters W can be calculated as

W = ZTU (2.8)

The original EEG-data can be transformed to V CSP = WV Original, whereas each row of

V CSP can be seen as a new CSP-channel. Due to the sorting of D, the first filter-pair, as

shown in Figure 2.10, contains the most discriminative information. The second filter-pair

will contain less discriminative information. When looking at the variances of each channel,

the first row of a CSP-filtered signal from class one will have the highest variance and the

last row the lowest, whereas if the same CSP-filter would be applied on a class two signal, the

first row of this CSP-filtered signal would show a low variance and the last row the highest

variance. This results in the biggest difference in variance being between the first and the

last channel of the CSP-filtered signal. By extracting more filter pairs or CSP-channels, more

information is available, but with increasing amount of channels, this information becomes

less discriminative as illustrated in Figure 2.10.

If the projection matrix W , as mentioned before, was able to properly maximise the variance

for one class, while minimising it for the other, it will be much easier to correctly classify a

trial.

CSP-­‐filtered	
  data

1

59

1 400
1st pair	
  of	
  filters:
Contains	
  most	
  information

2nd pair	
  of	
  filters:
Contains	
  less	
  information

…

…

Figure 2.10: The first filter-pair extracts the most discriminative information, the second filter-pair

extracts less discriminative information. 400 is the number of samples in a trial, 59 is

the amount of EEG-channels used for measurements.

Limitations

The first limitation of using CSP-filters for feature extraction, is that the classification prob-

lem is limited to a two-class problem. There are extensions to multi-class CSP approaches

[41], but this is beyond the scope of this thesis.
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A second limitation of CSP-filters, is that CSP-filters are not based on neurophysiological

information, but that it is just an algorithm that maximises and minimises variances between

two classes without any background information. As estimating covariance matrices with

sample covariance is known to be a nonrobust estimator, it will be sensitive to artifacts and

noise, which will have big influences on the CSP-filters. Especially when the training set is

relatively small, CSP is well-known to overfit.

2.5 Feature Extraction

If all EEG-data points would be used, the dimensionality of the data would be too high to give

to a classifier, so the most relevant features are extracted. As CSP is designed to discriminate

between conditions by optimizing the variances, the log variances of the CSP-filtered signal

can be used as features fi, i being the respective CSP-channel.

fi = log(V AR(V CSP
i )) (2.9)

Based on the amount of features needed, an amount of CSP-channels, also called filter pairs,

is used. When selecting a pair of filters, the outermost channels are chosen, as those filters

correspond to the highest and lowest eigenvalues by construction, and thus contain most

information.

2.6 Classification

The last important part of a Brain-Computer Interface is the correct prediction of the inten-

ded movement, using the extracted feature vectors. This prediction depends strongly on the

type of classifier, but the number of features and the amount of training data available also

plays a significant role.

Two commonly used classifiers in Motor Imagery classification are Linear Discriminant Ana-

lysis (LDA) and Support Vector Machines (SVM) [42].

The base of both techniques relies on the ability to discriminate between two conditions based

on features vectors fi. As these feature vectors are multi-dimensional, the problem would

become simpler if the dimensionality of these feature vectors is reduced.

The goal of LDA is to create a hyperplane that separates both classes with the class of the

feature vectors depending on the side of the vector regarding to the hyperplane. SVM’s

use the same principle to discriminate between classes, but the hyperplane is selected based

on a maximisation of margins. Regardless of the fact that SVM’s have good generalisation

properties and are insensitive to overtraining and the curse-of-dimensionality, LDA is more
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popular, as it is a simpler technique with lower computation time. On the other hand, LDA

does not perform well on complex nonlinear data, but the advantages of SVM’s come at the

cost of speed of execution, which is not desirable bearing in mind the goal of an online system.

Therefore only LDA is discussed.

2.6.1 Linear Discriminant Analysis (LDA)

As mentioned, the goal of this technique is to find a projection vector w that maximally

separates the feature vectors fi by projecting the multi-dimensional feature vectors onto one

dimension, without inducing loss of information [29].

The simplest way to separate the two classes is by projecting onto one dimension based on

maximal separation of the projected class means.

With C1 holding the left hand trials and C2 holding the right hand trials, the means of the

feature vectors are calculated based on class. N1
s being the total amount of left hand trials,

N2
s being the total amount of right hand trials.

m1 =
1

N1
s

∑

i∈C1

fi (2.10)

m2 =
1

N2
s

∑

i∈C2

fi (2.11)

When only using the means as a separation measure, the maximisation problem becomes:

m∗1 −m∗2 = wT (m1 −m2) (2.12)

with m∗1 and m∗2 the class means of the projected data. A Langrange multiplier is used to

perform constrained maximisation, where w = m1 −m2 is the solution to the maximisation

problem.

As seen in the left part of Figure 2.11 this approach results in too much overlap, which is due

to the class distributions having strongly nondiagonal covariances.

Fisher’s solution to this problem is to maximise a function that, while maintaining a large

separation between the class means, also makes the variance small within each class, resulting

in a minimal class overlap.

With the within-class covariance matrix Sw being

Sw =
1

N − 1


∑

i∈C1

(fi −m1)(fi −m1)T +
∑

i∈C2

(fi −m2)(fi −m2)T


 (2.13)

and the between-class covariance matrix SB:

SB = (m1 −m2)(m1 −m2)T (2.14)
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Figure 2.11: Left: The construction of a hyperplane based on maximising the difference between

the class means results in too much overlap. Right: A better separation of the two

conditions as a result of also minimising the within-class variance while maintaining a

large difference between class means [29].

the Fisher criterion can be written as:

J(w) =
wTSBw

wTSww
(2.15)

By differentiating this formula with respect to w, the Fisher criterion is maximised when

(wTSBw)Sww = (wTSww)SBw (2.16)

As we do not care about the magnitude of w but only the direction, the scalar factors can be

dropped. By multiplying both sides with S−1
w we obtain:

w∗ = S−1
w (m1 −m2) (2.17)

This result is also known as Fisher’s linear discriminant, but despite the name containing the

word discriminant, it is a more a direction for projection.

With this projection vector, the transformed means of the classes can be calculated as

m∗1 = wTm1 (2.18)

m∗2 = wTm2 (2.19)

and the transformed feature vectors become

f∗ = wT f (2.20)

As seen in the right part of Figure 2.11, the feature vectors are now optimally separated.

To assign a label to each trial, the euclidian distance is calculated between the transformed

feature vectors f∗ and the transformed means m∗1 and m∗2. Based on the smallest euclidian

distance to either means, the trial is assigned a left or right class label.
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Regularisation

Linear Discriminant Analysis is known to overfit in high-dimensional feature spaces when only

a few data points are given. If overfitting occurs, the within-class covariance matrix Sw can

become singular, as the large eigenvalues are estimated too large and the small eigenvalues

too small, making the matrix impossible to invert or the estimation of w imprecise.

To solve this problem a technique called shrinkage will be used. This technique compensates

for this systematic bias of Sw, that could cause a decrease in classification performance. To

counterbalance this error, Sw is replaced by

S̃w = (1− λSw) + λνI (2.21)

with ν the average eigenvalue trace of Sw.

This results in a shrinked covariance matrix S̃w having the same eigenvectors, but with

shrinked eigenvalues towards the average ν. This is illustrated in Figure 2.12: the left part

shows data points drawn from a Gaussian distribution, with their true covariance matrix in

orange and the unregularised estimated covariance matrix in cyan. When applying shrinkage,

an approximation of the true covariance matrix is made as a linear interpolation between the

empirical covariance matrix in cyan, where λ = 0 and the LDA is unregularised, and a

spherical covariance matrix in black, where λ = 1.

topography and provide thus a survey of the spatial distribution of
discriminative information, see Fig. 8 (a).

In this case, we can see that relevant information originates from
central locations (P3), but evenmuchbetter discriminability is provided
by occipital regions (vN2 component). The fact that classification in the
matrix speller is mainly based on visual evoked potentials rather than
the P3 was only recently reported (Treder and Blankertz, 2010; Bianchi
et al., 2010). The separability map found here is completely in line with
neurophysiological plausibility, but in other paradigms itmight indicate
the need for further preprocessing of the signals.

Classification in the spatial domain

ERPs exhibit a particular spatial distribution during the peak times
of their subcomponents. Spatial features calculated from single time
points (or potential values obtained by averaging within a given time
interval) have been introduced in Features of ERP classification
section. Depending on the experimental setting, classification of such
spatial feature may already yield powerful classification, given an
appropriate selection of the time interval. But there is often a complex
of several ERP components that contribute to the classification. In that
case, spatio-temporal features can enhance the result, see Classifica-
tion in the spatio-temporal domain section.

For spatial features, a classifier with ‘maximum’ shrinkage (γ=1)
uses the pattern of the difference of the two classes as projection

vector, see also Fig. 5. This corresponds to a rather smooth
topography, and might therefore seem neurophysiologically more
plausibe. The more intricate spatial filters we get with little shrinkage
account for the spatial structure of the noise and hold therefore the
potential of more accurate classification, see Fig. 9 and the discussion
in Understanding linear classifiers section. In this sense, the shrinkage
parameter reflects our belief in the estimation of the noise. If the noise
(covariance matrix) can be estimated very well, it should be taken
into account for classification without restriction (γ=0, i.e., ordinary
LDA). But if the spatial structure of the noise cannot be reliably
estimated from the training data one should disbelief it and shrink
towards the no-noise assumption (γ=1) in order to avoid overfitting.
The procedure for the selection of the shrinkage parameter γ provides
a trade-off, that was found to work well for classification of ERP
components.

Fig. 11 (left part) shows the classification results of spatial features
extracted at different time intervals for the example data set using
ordinary LDA (the right panel of that figure is explained in the next
section).

Classification in the spatio-temporal domain

A good way to get an overview of where the discriminative
information lies in the spatio-temporal plane is to visualize a matrix
of separability measures to the spatio-temporal features of the

Fig. 8. Temporal and spatial classification. (a) The classification error of temporal features extracted from the time interval 115–535 ms was determined for each single channel. The
obtained values are visualized here as scalp topography by spatially interpolating the values assigned to each channel position and displaying the result as color coded map. (b) The
classification error of spatial features was determined for each time interval of 30 ms duration, shifted from 0 to 1000 ms. (c) Classifier as spatial filter: A linear classifier was trained
on spatial features extracted from the time interval 220–250 ms (shaded in subplot (b)) of the running example data set. The resulting weight vector can be visualized as a
topography and can regarded as a spatial filter.

Fig. 7. Left: Eigenvalue spectrum of a given covariance matrix (bold line) and eigenvalue spectra of covariance matrices estimated from a finite number of samples drawn (N=50,
100, 200, 500) from a corresponding Gaussian distribution. Middle: Data points drawn from a Gaussian distribution (gray dots; d=200 dimensions, two dimensions selected for
visualization) with true covariance matrix indicated by an orange colored ellipsoid, and estimated covariance matrix in cyan. Right: An approximation of the true covariance matrix
can be obtained as a linear interpolation between the empirical covariance matrix and a sphere of appropriate size.

821B. Blankertz et al. / NeuroImage 56 (2011) 814–825

Figure 2.12: Left: data points from a Gaussian distribution in grey, the true covariance matrix in

orange and the unregulzarized estimated covariance matrix in cyan. Right: The same

unregularised estimated covariance matrix in cyan, a spherical covariance matrix in

black and a linear interpolation between these two as the shrinked estimate of the

covariance matrix in orange[43].

For determination of the optimal shrinkage parameter λ, an analytic method found by Ledoit

and Wolf is used [44]. This formula is designed to minimise the Frobenius norm between the
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shrunk covariance matrix and the unknown true covariance matrix and has as a consequence

that stronger shrinkage is applied when the sample-to-sample variance of entries from the

empirical covariance matrix is large.

Using the Ledoit-Wolf formula doesn’t always lead to the best classification results, especially

if the number of trials available is low, resulting in possibly bad estimations of the covariance

matrices used in Sw. But as this technique is easy to implement and computationally cheaper,

it is the preferred technique for regularisation. In the formula for the computation of the

optimal parameter, N is the number of trials, Σ indicates taking the sum and T = νI with I

the identity matrix.

λ =
N − 1

N

∑(√
Sw(N − 1)−

√
Sw

N−1
N

)

∑√
Sw − T

(2.22)

2.6.2 Classifier performance

For evaluation of the classifier, different measures can be used, all derived from the confusion

or error matrix[45]. A confusion matrix gives a more detailed view on correct and incorrect

classification of trials. In the case of a binary classification, the confusion matrix holds the

number of true positives (TP), true negatives (TN), false positives (FP) and false negatives

(FN) as illustrated in Table 2.1.

Table 2.1: Confusion matrix of a binary classification problem.

Prediction outcome

+1 -1

Actual Value
+1 TP FN

-1 FP TN

As no measure can be defined as the best measure for every purpose and different measures

can even be contradictive as they don’t represent accuracy in the same way, it is critical to

choose an appropriate accuracy measure.
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Here, two accuracy measures are presented:

Accuracy The simplest performance measure is the test accuracy, which is calculated as the

number of correctly classified samples against the total amount of samples, or according

to Formula 2.23 as calculated with the confusion matrix.

Accuracy =
TP + TN

TP + TN + FN + FP
(2.23)

Area Under Curve A very popular performance measure is the Area Under Curve. The

AUC is calculated as the area under the Receiver Operating Characteristic (ROC)

curve, which is a plot of the True Positive Rate (TPR) against the False Positive Rate

(FPR) (see Formula 2.24 and 2.25) [46]. A higher AUC indicates higher performance of

the classifier. An AUC of 0.5 corresponds to random assignment, an AUC of 1 indicates

perfect classification.

TPR =
TP

TP + FN
(2.24)

FPR =
FP

FP + TN
(2.25)

If the dataset is unbalanced or certain outcomes have more weight (like in cancer recurrence),

accuracy is not the preferred performance measure. For example, classifying 90 samples

labeled with ‘negative for cancer’ and 10 labeled with ‘positive for cancer’, the accuracy can

be 90% if all samples are labeled with ‘negative for cancer’, without capturing the essence of

the data, and in this case, missing the recurrence of cancer for 10 patients. For unbalanced

datasets, AUC is a more powerful measure as, in this case, it would only be 0.5, implying

random assignment of the labels.

As, in this thesis, a balanced dataset is used with equal importance for left and right hand

assignment, accuracy will be the preferred classifier performance measure.
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2.7 Transfer Learning

As the goal of this thesis is to reduce calibration time without a decrease in performance,

the reduction of training data due to a lower calibration time can be compensated by using

training data from previously recorded subjects. Using more data will result in an increase

in classification performance, however, due to the difference in the statistical distribution of

data recorded from previous subjects, this data has to be transferred to the new subject in a

way that it is used as efficient as possible.

First, two naive Transfer Learning techniques will be discussed that combine information

from different classifiers, without adaption of data. Next, a Transfer Learning technique

is explained that regularises the CSP and LDA algorithms based on data from previously

recorded subjects, referred to as ‘Covariance Shrinkage’ throughout this thesis. The last

discussed technique uses a Data Space Adaption (DSA) algorithm that linearly transforms

the target subject’s data based on previously recorded subjects to minimise the distribution

differences between the target subject and the previously recorded subjects, also known as

source subjects.

2.7.1 Naive Transfer Learning

Majority Voting

The simplest technique to combine the outcomes of different classifiers is by majority voting.

Per trial, each classifier predicts an outcome and the outcome receiving most votes wins. This

technique is simple, but overlooks other information given by the classifiers.

Averaging probabilities

By averaging the probabilities of the predictions of the classifiers, more information is used

and the assignment of the label is based on the class with the highest summed probability.

A B C DTrain

Test E E E E

Classification E

Left /	
  Right Left /	
  Right

(a) Majority Voting.

A B C DTrain

Test E E E E

Classification E

P(left)	
  
P(right)

P(left)	
  
P(right)

(b) Averaging Probabilities.

Figure 2.13: Naive Transfer Learning algorithms.
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2.7.2 Covariance shrinkage

The hypothesis used by Lotte and Guan [47] is that it is possible to find common information

in the EEG-data measured from different subjects, despite large inter-subject variabilities.

However, it is still important to find the most relevant subjects, as not all subjects may be

significant to use. With the correct set of other subjects, their information is integrated in

the algorithm as a regularisation term in the estimation of the covariance matrices in CSP

and the estimation of the means in LDA:

Σ̃t = (1− λ)Σt + λ
1

St(Ω)

∑

i∈St(Ω)

Σi (2.26)

µ̃t = (1− λ)µt + λ
1

St(Ω)

∑

i∈St(Ω)

µi (2.27)

Σt, µt and Σ̃t, µ̃t represent the unregularised and regularised version of the covariance matrix

and the means. Ω contains the whole set of previously recorded subjects, S(Ω) holds the

selection of subjects used for target t and λ is the optimal regularisation parameter.

With this technique it may be possible to set up a robust BCI with little calibration data

from the target subject, by selecting an optimal set of targets and a regularisation parameter.

Subject Selection Algorithm

Instead of using all other previously recorded data, an optimal subset will be chosen based

on the algorithm described by Lotte and Guan [47], illustrated in Figure 2.14.

Using subject A as the target subject and B, C, D, E,... as the subjects from which an

optimal subset has to be chosen, the algorithm is based on the following guidelines:

• Training of the classifier is always done on the subset (unless it is empty) plus one of

the subjects from the remaining set. Testing is done on the training data available from

the target subject.

• During the subject selection algorithm, subjects are added to the subset and removed

from the remaining set as illustrated in Figure 2.14
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Test	
  data:

Total	
  set	
  of	
  available subjects: B …D E

A

C

B …D EC

B …D EC F

B …D FC GE

…D FC GE B H

…D FC GE B H

…D FC GE B

…

Subject	
  Selection	
  Algorithm

1.

2.

3.

4.

5.

6.

Selected subset Remaining setStep

Figure 2.14: The subject selection algorithm. An orange box indicates the addition of a subject

to the subset while removed from the remaining set. A green box indicates that this

subject is the best choice from the pool of remaining subjects for that specific case.
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As described in Figure 2.14, the algorithm is performed as follows:

1. Browsing through the remaining set, the best subject is the one that, when trained on,

results in the highest training accuracy on target subject A. In the example of Figure

2.14, subject C performs best.

2. Subject C is added to the subset and removed from the remaining set. To search for a

subject that works best in combination with C, for each other subject the covariance

matrix is combined with that of C by averaging. Training accuracies are determined in

the same way.

3. Subject E is added to the subset and removed from the remaining set. The same steps

are performed as in 2.

4. Subject B is added to the subset and removed from the remaining set.

5. If there are three or more subjects in the subset, the algorithm will reinvestigate the

option if training accuracies would be higher if one of these subjects would be left out.

In this case, subject C can be left out and will be readded to the remaining set.

6. With C removed, the algorithm continues to find a new subject to add to the subset.

7. ...

The algorithm is continued until an optimal subset is found that maximises the training

accuracy for our target subject A.

Regularisation parameter

For the determination of the optimal regularisation parameter λ the calculation of three

accuracies is needed.

1. Target Accuracy: The test accuracy when Leave-One-Out-Validation (LOOV) is

performed on only the target subject

2. Selected Accuracy: The test accuracy for training with the complete range of other

source subjects and testing on the target subject

3. Random Accuracy: The test accuracy of the target subject determined by a classifier

performing at chance level
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With these accuracies, λ can be seen as the amount of data from other subjects that should

be included for training of the classifier.

• When tested on only the target (= Target Accuracy), the model performs better than

when including all other subjects (= Selected Accuracy), λ = 0.

• If, when using a classifier performing at chance level (= Random accuracy), the model

performs better than by only using the data of the target, the other subjects are used

to train the model, or λ = 1, as the target data is not appropriate to train a satisfactory

BCI.

• Otherwise, if Selected Accuracy > Target Accuracy > Random Accuracy:

λ =
SelectedAccuracy − TargetAccuracy

100−RandomAccuracy (2.28)

In this case, the higher the Selected Accuracy in comparison to the Target Accuracy,

the higher λ should be as more confidence should be given to the EEG signals from the

other subjects.

2.7.3 Data Space Adaption (DSA)

Arvaneh et. al [48] propose an new algorithm that reduces calibration time by using a

subject-to-subject adaption algorithm, without the need for a large pool of previously recor-

ded sessions, here also called historic sessions or subjects.

The algorithm consists of two main steps: first, subject-to-subject adaption is performed,

second, the best calibration model is selected.

Subject-to-subject adaption

The goal of the transformation is to reduce the dissimilarities between the kth source subject

and the target subject’s data, by adapting the target subject’s data in such a way that their

distribution difference is minimised. Arvaneh et. al [48] assume that the differences between

the source subjects k and the target subject’s data can be observed in the first two moments

of the EEG-data and construct a transformation matrix based on calculations with the means

and covariance of the EEG-data.

This results in an optimal linear transformation matrix Mk for each source subject k, using

the covariance matrices Σ1 and Σ2 for each condition of the target subject and Σ̃k,1 and Σ̃k,2

for each condition of the source subject k as calculated in Formula 2.2 and 2.3, using the

sample covariances. † stands for taking the pseudo-inverse of the matrix.
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Mk =

√
2
(

Σ̃−1
k,1Σ1 + Σ̃−1

k,2Σ2

)†
(2.29)

Using this transformation matrix, the target subject’s data is transformed to minimise the

distribution difference with the kth source subject according to

V transformed
k = Mk V (2.30)

Selection of the best calibration model

After the transformation of the target subject’s data, the distribution difference ought to be

minimised, inferring that there still can be a difference. As one source subject may be more

similar to the target subject’s data than another, the aim of the second step of the algorithm

is to find the most similar source subject.

This is done by first adapting the target subject’s data according to the transformation

matrix Mk as in Formula 2.29 and classifying the adapted data using the model trained on

the corresponding source subject. The source subject that results in the highest classification

accuracy is selected as the best calibration source subject.

If more than one source subject would result in the same classification accuracies, a selection

is done based on the smallest KL-divergence between the target subject’s transformed data

and a source subject. The best source subject based on smallest KL-divergence is calculated

as follows:

k∗ = argmink∈φ

2∑

j=1

1

2
(trace(Σ−1

k,jM
T
k ΣjMk)− ln(

det(MT
k ΣjMk)

det(Σ̃k,j)
)− d) (2.31)

with d the dimensionality of the data.

The Data Space Adaption algorithm has been proven to substantially reduce calibration time,

without the need for a large database of previously recorded sessions. Another advantage is

that it can easily be implemented in online applications, as the calculation of the transform-

ation matrix and the adaption of the new target subject’s data can be done in less than a

second [48].
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Simulation Results

3.1 A first BCI

To gain insight in the working principles of a Brain Computer Interface, the previously

explained techniques will be applied to the data as recorded from 7 subjects in dataset 1,

BCI Competition IV [32].

For every subject in this dataset, the following structure is used to build a machine learning

model that predicts the class of the imaginary movement, as recorded with EEG.

1. Preprocessing: The EEG-data is bandpass filtered from 0 to 40 Hz, as this frequency

range includes the alpha and beta band. In this set-up, a Butterworth-filter of the 6th

order is used.

2. Feature Extraction: To extract the most important properties from the EEG-signal,

the training data is split in different frequency bands and filtered using CSP. By splitting

the data in different frequency bands, every band will have their own specific CSP-filters,

increasing the amount of detail.

3. Classification Model: Using the extracted features, a regularised LDA classifier is

trained. The shrinkage parameter is calculated according to Ledoit-Wolf’s formula (see

Formula 2.6.1).

4. Classify new data: To classify new data, based on the model constructed with the

training data, CSP-filtering is applied to the test set as calculated in Feature Extrac-

tion and the LDA as trained in Classification Model will predict the class labels.

34
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3.1.1 Hyperparameters

Making an attempt to construct a robust BCI with optimal performance, hyperparameters

are optimised. In the set-up of our machine learning model, the amount of splits in the

frequency band and the amount of CSP filter pairs are the two hyperparameters that will

influence the performance of the BCI.

The first hyperparameter is the amount of splits in frequency band. The frequency range is

splitted in equal parts, with no correlation between the scientific brain-wave distribution as

in Figure 3.1.

0"– 40"Hz

0"– 20"Hz 20"( 40"Hz

0"– 10"Hz

0"– 13.33"Hz 13.33"– 26.67"Hz 26.67"( 40"Hz

10"– 20"Hz 20"( 30"Hz 30"( 40"Hz

…

Figure 3.1: The splits in the frequency band are made by equally dividing the ranges from 0 to 40

Hz.

The second hyperparameter is the amount of filter-pairs extracted from the CSP-filtered

data as explained in Chapter 2.4.3. One should keep in mind that using too much features

in comparison to the amount of training data, could induce overfitting.

3.1.2 Optimisation process

To determine the best set of hyperparameters, the cross-validation scheme as in 2.1.2 is used.

Per subject, the first 80% of the data is defined as the training set, the last 20% is used as the

test set. To prevent data leakage while optimising the hyperparameters, the training set is

split in 10 equal folds, with 9 folds serving as training set and the 10th fold as the validation

fold.

For every subject the process as explained in Chapter 3.1 is applied. In the second step the

amount of splits in frequency band ranges from 0 to 9 and the amount of CSP filter-pairs

from 1 to 9.

For every combination of splits and filter-pairs, due to the use of Cross-Validation, 10 valid-

ation accuracies are acquired, averaged and stocked in a 10 x 9 matrix. The person-specific

optimal amount of splits and filter-pairs is determined as the combination that leads to the

highest validation accuracy.
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This optimisation process is repeated for every subject, resulting in a person-specific optimal

set of hyperparameters. By averaging the validation matrices obtained over each subject, a set

of averaged optimal hyperparameters can be used for the construction of a general BCI, which

should be applicable on any new subject. The features that resulted in the highest validation

accuracies are documented in Table 3.1. Their corresponding test and train accuracies are

illustrated in Figure 3.2. For details, see Appendix A.

# splits in frequency band # CSP-filter pairs

Subject A 6 2

Subject B 3 1

Subject C 7 3

Subject D 5 1

Subject E 8 1

Subject F 8 3

Subject G 6 7

Average Subject 8 3

Table 3.1: Person-specific and general optimal hyperparameters.

Figure 3.2 shows that the average test accuracy is only 67±15%. The standard deviaton

having high values means that the difference in test accuracies between subjects is rather

high, in this case ranging from 50 to 80%. This illustrates the problem that, even with

features optimised per subject and using all the calibration data available (160 training trials

per subject), there is no guarantee that the classifier will perform well. Subject D, E and G

have test accuracies higher than 75%, but the others don’t reach the threshold of 70 % of

proper BCI performance [49]. Some explanations for these bad results could be the patient

being tired or distracted during recording, or that they were just not able to steer the BCI

properly.

As the average train accuracy is 98±3%, even with the usage of regularisation, the main

explanation for the weak performance of the BCI is the data overfitting to the training

set. With 160 training trials available, it is expected that the system would have good

generalisation properties if the amount of features is in proportion to the amount of training

data available (preferably less than 16 trials in this case, as explained in Chapter 2.1.1). In

Table 3.1, with the amount of features calculated as (number of splits in frequency band) x

2 x (number of CSP-filterpairs), only subject B, D and E require a small amount of features,

but not necessarily reaching high test accuracies. This reveals the fact that using a low

amount of features doesn’t guarantee the prevention of overfitting. Using a too low amount

of features could also induce underfitting, if the BCI wasn’t able to capture the essence of

the data.

To see if it is possible to create a robust BCI, the performance of the BCI is compared to

a BCI using the averaged best features (8 splits in frequency band and 3 CSP-filterpairs).
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Figure 3.2: The train and test accuracies reached when using the person-specific optimal features.

A second comparison is done with a BCI using only two splits in the frequency band and

3 CSP-filterpairs (see Figure 3.3). These splits are based on the alpha band (8-13 Hz) and

beta band (13-30 Hz), as these two frequency bands contain the most relevant information

for Motor Imagery applications. The delta (0-4 Hz) and gamma band (4-8 Hz) are left out

as literature has proven better performance when restricting the frequency range from 8 - 30

Hz [40] [39].

Figure 3.3 shows that the performance on the test set is not guaranteed to be highest when

the personal best features are used. This is due to the possible occurence of overfitting, as

the amount of features were optimised for the training data, and not for the testing data.

This can result in other combinations of features being better for the unseen test data.

Using only the alpha and beta band, the test accuracy is higher for every subject (except

for subject A) than when using the personal best features. This may be due to the proper

amount of features (= 2 x 2 bands x 3 CSP-filterpairs), avoiding overfitting and by only using

frequency bands that are medically relevant.

On average, the last method performs best, but with the standard deviations being high,

it is not possible to draw conclusions on which hyperparameters perform best. The only

conclusion that can be drawn is the high level of difficulty to construct a proper BCI model

for every subject.
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Figure 3.3: Comparison of the test accuracies when using person-specific optimised features, an

averaged optimal amount of features and when only using data from the alpha and beta

band.

3.2 Transfer Learning

With the problem of constructing highly performing BCI’s, illustrated in Figure 3.2 and

Figure 3.3, some Transfer Learning techniques will be tested to see if it is possible to reach

higher test accuracies, with less training data from the new subject.

In Transfer Learning, the data transferred between subjects doesn’t necessarily has to be

derived from the same task (e.g., left hand movement, right foot movement,...), but it has to

be similar.

In this work, only data from subjects that did perform the same tasks is used, as this gives

a first indication of the possibilities that Transfer Learning techniques hold. Therefore, from

here on, subject A and subject F will be left out as the imaginary movement of those subjects

were left hand and foot movement and the other majority of subjects chose left and right

hand movement.

Later on, this can be expanded to transferring data originating from different tasks.

For clarity of the graphs, in the upcoming figures, no error bars are shown when averaging

results over subjects, as the standard deviations can vary from 7 to 20%, with no relation

to the amount of calibration trials. By only comparing 5 subjects, the average can give an

indication of the performance of the methods, but for accurate comparisons, the investigation

has to be done subject-specific.
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First, four Transfer Learning techniques from literature will be evaluated on our dataset.

These standard techniques are compared and explored further to build a new Transfer Learn-

ing technique that should reduce the calibration time as much as possible.

3.2.1 State of the art techniques

In the first comparison the four following techniques are used: Majority Voting, Averaging

Probabilities, Covariance Shrinkage and Data Space Adaption as explained in Chapter 2.7.

To see the influence of the amount of calibration trials on the performance of the classifier,

several experiments are done with the training set size ranging from 10 to 160 trials, in steps

of 10 trials. The test set will contain the last 40 trials.

Comparison between methods: 3 - 40 Hz

In Figure 3.4, results from five methods are compared: using no Transfer Learning, using

two naive Transfer Learning techniques, being Majority Voting and Averaging Probabilities

and using two Transfer Learning techniques from literature, being Covariance Shrinkage and

Data Space Adaption. Having data available from five source subjects, different experiments

are executed with a variable amount of calibration trials, ranging from 10 to 160 trials from

every source subject. Testing is done on the last 40 trials of the target subject. During

pre-processing (as in Chapter 3.1), the data is filtered from 3 - 40 Hz. The delta waves are

left out, as these occur during relaxation and sleep, not during Motor Imagery. According to

literature [47][48], no splitting in the frequency band is done. Concerning CSP-filtering, the

three most discriminative pairs of filters are used as features and given to a regularised LDA

classifier.

From Figure 3.4a, it is clear that DSA, on average, gives the best results, as the test accuracy

is highest for every amount of calibration data. Covariance Shrinkage, on average, doesn’t

always score better than when using no transfer learning. In some cases (see Figure 3.4f) it

does give higher performance, even close to the results obtained by DSA, but for the other

subjects, Covariance Shrinkage performs only a little better or the same in comparison to

when not applying Transfer Learning.

The sudden decrease in performance of Covariance Shrinkage for subject G when using 80, 90

and 100 calibration trials, may be due to a shift in the calibration data, causing the selection

of the best subset or the regularisation parameter (as in Formula 2.28) to change.

The Naive Transfer Learning techniques, being Majority Voting and Averaging Probabilities,

on average, give the same results being 53±5% and 3% respectively. When not much cal-

ibration data is available (<50 trials), for subject B, C and E, they score better than when

applying no Transfer Learning, but as the performance stays relatively low, independent of

the amount of calibration data, there is no future in these naive Transfer Learning techniques.
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(b) Target subject B
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(c) Target subject C
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(e) Target subject E

20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

Number of calibration trials

T
e

s
t 

A
c
c
u

ra
c
y

 

 

No Transfer Learning

Covariance Shrinkage

DSA

Majority Voting

Averaging Probabilities

(f) Target subject G

Figure 3.4: Comparison of different Transfer Learning techniques, filtering from 3 - 40 Hz.
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What is odd in these graphs is that the test accuracy for subject B, C and D, when not

applying Transfer Learning, does not increase with more calibration trials becoming available.

It might be that the range of 3 - 40 Hz is not optimal for Motor Imagery classification, so in

the next comparison a different frequency band is used.

Comparison between methods: 8 - 35 Hz

In Figure 3.5, the same comparison as in 3.2.1 is done, with the only difference the data

being filtered from 8 - 35 Hz, as this was the frequency range used in the papers describing

the method of Covariance Shrinkage and DSA. By only using the frequencies from 8 - 35 Hz,

alpha waves, beta waves and the beginning of gamma waves are measured. These include the

most import wave categories for Motor Imagery classification. [22]

On average, when comparing Figure 3.4a and Figure 3.5a, it seems like the performance of

DSA is lower when filtering from 8 - 35 Hz, but when looking subject-specific, the difference

in performance between this frequency range and when filtering from 3 - 40 Hz is not signi-

ficant when using less than 20 calibration trials (p>0.2).

What does decrease, is the robustness of DSA. For subject B and G, the DSA line shows

different peaks between certain amounts of calibration data. This is due to the altering in

covariance matrices when new training data becomes available, resulting in a different choice

of the best source subject. If hereafter, more calibration trials are added, the algorithm sta-

bilises back into their previous better working form and the right source subject is rechosen.

The performance of Covariance Shrinkage, on average, does increase significant when nar-

rowing down the frequency spectrum. On the other hand, when looking at subject B, C and

E, the Covariance Shrinkage line stays the same as when no Transfer Learning is used. Only

for subject B and G it can give higher test accuracies.

The performance of the BCI when not using Transfer Learning does look more logic in this

frequency range. It starts off with a low test accuracy and increases with more training data

becoming available.

The naive Transfer Learning techniques still show low performance, for the same reason as

in the other frequency range, as they don’t use properties of the calibration trials.

The high performance of DSA for the 3 - 40 Hz frequency band, may be due to the particular

choice of subjects in our dataset, but might not work as good in a more general system. As

the frequency range of 8 - 35 Hz is more related to Motor Imagery classification and gives

more logical results when not applying Transfer Learning, this range will be used for further

experiments.
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(b) Target subject B
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20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

Number of calibration trials

T
e

s
t 

A
c
c
u

ra
c
y

 

 

No Transfer Learning

Covariance Shrinkage

DSA

Majority Voting

Averaging Probabilities

(e) Target subject E
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Figure 3.5: Comparison of different Transfer Learning techniques, filtering from 8 - 35 Hz.



Chapter 4

Design of a new Transfer Learning

method

In this chapter, a new Transfer Learning method is proposed to overcome the problem of

interperson and intersession differences, resulting in long calibration times. The new method

should reduce the calibration time, while maintaining a high level of performance.

By studying the results acquired in Chapter 3, a new Transfer Learning method is built by

combining or adapting the Transfer Learning methods from literature, in order to better

classify data from a new unseen subject.

To design this method, further investigation is done on the working principles of Covariance

Shrinkage (Chapter 2.7.2) and Data Space Adaption (Chapter 2.7.3).

4.1 Working principles of Covariance Shrinkage and Data Space

Adaption

In Covariance Shrinkage a Subject Selection Algorithm (see Section 2.7.2) is used, meaning

that not necessarily all the data of the previously recorded source subjects is used to construct

the covariance matrix in regularizing CSP and LDA. To see the effects of the Subject Selection

Algorithm, results were produced by using all source subjects, instead of selecting a subset

of source subjects. In the following graphs, this method is called ‘Covariance Shrinkage - No

subset’.

In Data Space Adaption, after having performed the Subject-to-Subject adaptation, there

is a selection of the best calibration model (see Section 2.7.3). To see what the effect of

this selection is, this selection is left out. Instead of choosing the best calibration model, all

models can now predict labels of new incoming trials and afterwards, the best calibration

model is chosen based on the highest test accuracy. This technique is not allowed in Machine

Learning algorithms, as it uses posterior information being the test accuracy, but here it

is only used for illustration purposes, to check whether the selection method of DSA works

43
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optimal. This method is called ‘DSA - Idealistic’ in the following graphs.

In Figure 4.1 five methods are plotted: No Transfer Learning as a baseline, Covariance

Shrinkage and DSA as previously plotted and the adapted versions of Covariance Shrinkage

and DSA.

Figure 4.1a shows that, on average, the idealistic version of DSA scores better, for every

amount of calibration trials. Looking at Figure 4.1b the problem with the sudden decrease

in performance when going from 10 to 20 trials, is solved by using the idealistic version. This

means that, by the addition of new calibration data, another source subject was chosen for

transfer of data, but not the one that resulted in the highest test accuracy. As, for subject

B, E and G, the idealistic DSA scores better or equal to the standard DSA, it is clear that

there is still room for improvement in the DSA algorithm, including removal of the stability

problem for subject B, E and G, as sudden drops in test accuracy are unwanted results.

When comparing the performance of Covariance Shrinkage with and without a selection of

subsets, from the average test accuracy in Figure 4.1a no conclusions can be drawn. When

looking at every subject individually, choosing all source subjects either works worse (as

in subject B), a little better (as in subject C until 60 trials), but for subject C (from 60

trials), D (from 40 trials) and E (from 30 trials), the choice of subset did not alter the

results, as the regularisation parameter (see Formula 2.28) stayed at zero, independent of the

subset of source subjects. A detailed comparison of the chosen subset and the corresponding

regularisation parameter with and without a selection of subsets can be found in Appendix

B.
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(b) Target subject B

20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

Number of calibration trials

T
e

s
t 

A
c
c
u

ra
c
y

 

 

No Transfer Learning

Covariance Shrinkage

Covariance Shrinkage − No subset

DSA

DSA − Idealistic

(c) Target subject C
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(d) Target subject D
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(e) Target subject E
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Figure 4.1: Illustration of the working principles of Covariance Shrinkage and Data Space Adaption.
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4.2 Adaption of existing methods

Based on the comparisons done between different Transfer Learning techniques in Chapter

3.2.1 and 4.1, it is clear that none of these methods result in a classifier that always performs

best, for every subject. Therefore, it is interesting to investigate new possibilities that could

increase the performance of these techniques with as little calibration data as possible.

4.2.1 DSA/CS - Accumulate source subject data

The first idea is a combination of the two promising Transfer Learning methods, Data Space

Adaption and Covariance Shrinkage.

• With the Subject-Selection Algorithm from Covariance Shrinkage, define the best sub-

set.

• Place the trials of these subjects after each other, as if the data would come from one

target.

• Transform the calibration data of the target subject according to the transformation

matrix M (as calculated in Formula 2.29), using the covariance matrices of the accu-

mulated source subject data.

• Train the classifier with the accumulated source subject data and test it on the trans-

formed new trials.

4.2.2 DSA - Averaging probabilities (AP)

For the second idea a variant of Data Space Adaption is used.

• As in DSA, the calibration trials are transformed with a transformation matrix Mk,

based on the covariance matrices of each source subject k.

• Instead of selecting one best calibration model, multiple calibration models are selected,

by picking the ones that give the highest validation accuracies.

• As different classifiers are constructed based on different source subjects, for each trial,

the classifiers will output probabilities that are averaged.

By averaging the probabilities over the remaining classifiers, the drawback from the original

DSA algorithm, where new calibration data could induce a different choice of best source

subject, could be reduced, by averaging influences of multiple classifiers.

The choice for averaging the probabilities instead of using Majority Voting, is based on the

fact that by averaging probabilities, the effect of insecure classifiers is reduced. If three

insecure classifiers would predict a left-hand trial, and a fourth confident classifier would
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predict a right-hand trial, Majority Voting would result in a left-hand trial, while Averaging

Probabilities would result in a right-hand trial.

It was visible during the experiments, that almost always every source subject was chosen

based on validation accuracy, therefore this pre-selection of subjects is left out, resulting in

a method that averages the outputs of all classifiers.

4.2.3 DSA - Maximum probability (MP)

The third idea works according to the same principle as DSA - Averaging probabilities, but

instead of averaging the probabilities of the different classifiers, the trial will be classified

according to the class to which the highest probability was given by a classifier. As for

DSA - AP, there will be no pre-selection of subjects based on validation accuracy.

4.2.4 Comparison

In Figure 4.2 and Figure 4.3these ideas are compared to the existing methods for every source

subject. The new methods are plotted with solid lines, the old techniques from literature are

plotted in dashed lines. As the focus of the new Transfer Learning technique lies on using

as little calibration data as possible, these experiments are performed with a training set

size varying from 2 to 30 calibration trials, in steps of 2 trials, after which experiments are

performed in steps of 10 trials in training set size. To be able to see the small differences

between test accuracies, only the range from 50% to 100% is plotted.

From Figure 4.2 it is clear that no new method can be identified as the best performing

method for every target, neither based on the average performance, neither on individual

performance of the methods.

As our goal is to reduce calibration time, the aim of the new method should be to give high

test accuracies with a low amount of calibration data, hence the focus of the comparison is

on the left part of the graphs in Figure 4.2. A more detailed view on the experiments done

using two to 40 calibration trials is shown in Figure 4.3.

For subject B and subject D, DSA - AP and DSA - MP don’t give the best results, but

at least the test accuracies remain stable with few calibration data, in comparison to the

performance of DSA/CS and DSA.

For subject C and subject G, DSA - AP and DSA - MP do give the best overall results, so

in these cases, the first idea is discarded.

For subject E, the best method depends on the number of calibration trials, with test ac-

curacies for all methods fluctuating when few calibration data is given. This may be due to

the first consecutive trials of subject E being indecisive or unclear to the BCI.
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(c) Target subject C

20 40 60 80 100 120 140 160
0.5

0.6

0.7

0.8

0.9

1

Number of calibration trials

T
e

s
t 

A
c
c
u

ra
c
y

 

 

No Transfer Learning

DSA

DSA / CS

DSA − AP

DSA − MP

(d) Target subject D
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(e) Target subject E
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Figure 4.2: Comparison of No Transfer Learning, DSA and three new methods.
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(b) Target subject B
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(c) Target subject C
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(e) Target subject E
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Figure 4.3: Comparison of No Transfer Learning, DSA and three new methods, focusing on the

experiments done with 40 calibration trials or less.
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Using a dependent t-test, it can be measured whether the test accuracies across 5 subjects

differ significantly when using one method or the other. In Figure 4.4, the performance of DSA

is compared to DSA-AP and DSA-MP respectively. It is seen that the p-value for both null-

hypothesis (H0 (DSA = DSA-MP) andH0 (DSA = DSA-AP)), for every amount of calibration

trials used, is always bigger than p = 0.05, so the null-hypothesis is not rejected. Only using

2 calibration trials, the null-hypothesis can be rejected with a p-value of respectively 0.02

and 0.03.
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Figure 4.4: P-values for both null-hypothesis H0 (DSA = DSA-MP) and H0 (DSA = DSA-AP),

showing that the null-hypothesis can not be rejected.
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4.3 New Transfer Learning Technique

Based on the comparisons made in Figure 4.2, a new method is constructed. As neither DSA

- AP or DSA - MP reached significantly better results than DSA (see Figure 4.4), the new

method will combine the approaches of DSA - AP and DSA - MP.

This choice of methods relies on the fact that, depending on the amount of calibration data,

one of these three methods will give the highest test accuracy, as was illustrated in Figure 4.2.

To guarantee that the highest test accuracy is always reached, a new method is constructed

that should result in an upper boundary of DSA, DSA - AP and DSA - MP.

To be able to meet these conditions, further investigation is done on where DSA - AP and

DSA - MP make mistakes in classifying trials.

If DSA - AP is used, which averages the probabilities of the classifiers for every class, trials

are classified wrong if the decision is made based on a majority of classifiers, which are unsure

of their decision, prevailing the classifier that is sure of his decision to dominate. An example

can be seen in Table 4.1.

Table 4.1: Example of a possible outcome when predicting the class label for a trial of target subject

B, which should be a right-hand trial. When averaging the probabilities, the class label is

left, while when using the maximum of the probabilities the class label would be correctly

predicted as right.

P(Left) P(Right) Average(Left) Average(Right)

Source subject C 0.65 0.35 0.525 0.475

Source subject D 0.65 0.35 Maximum(Left) Maximum(Right)

Source subject E 0.6 0.4
0.65 0.8

Source subject G 0.2 0.8

This gives rise to a first criterion that the new method should remove or ignore the outcomes

of an unsure classifier.

If DSA - MP is used, which classifies based on the classifier that gives the highest probab-

ility, trials are classified wrong if one of the classifiers gives a very high probability, but the

other ones were right, with respectively a lower probability, illustrated in Table 4.2. This

brings to mind that even though accuracies are high, this doesn’t mean that they correctly

predict a class label. The new method should thus be able to detect classifiers that give high

probabilities, but don’t result in high performance.

Based on these findings, it is clear that DSA - AP and DSA - MP are complementary, but a

criterion has to be found whether to use the one or the other.
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Table 4.2: Example of a possible outcome when predicting the class label for a trial of target subject

B, which should be a left-hand trial. When taking the maximum of the probabilities, the

decision is a right-hand trial, while the majority of predictions is a left-hand trial.

P(Left) P(Right) Average(Left) Average(Right)

Source subject C 0.1 0.9 0.625 0.375

Source subject D 0.8 0.2 Maximum(Left) Maximum(Right)

Source subject E 0.8 0.2
0.8 0.9

Source subject G 0.8 0.2

In Algorithm 1, the set-up of the new Transfer Learning technique is described. Dependant

on whether a classifier is biased or if it’s validation accuracy is low, the source subject is

removed from the decision making process. These two specifications will be explained later.

The following variables and methods are used in Algorithm 1:

• Dc: training data from the target subject.

• Dt: new test data from the target subject.

• Dk, k ∈ {0, ..., Ns}: previously recorded data from the source subjects, with Ns the

total amount of source subjects.

• CalculateM(X,Y) constructs the transformation matrix MY using the estimated covari-

ance matrices of subject X and Y to minimize their distribution differences, according

to Formula 2.29.

• ApplySource(X,Y, MY ) will calculate the validation accuracies when transforming the

data of subject Y, using MY to minimize the distribution differences between subject

X and Y.

The threshold of 70% for validation accuracies was chosen by comparing results when varying

this parameter from 60 to 90% in steps of 5%.

A classifier is labeled as biased if its predictions are consistently the same. How a classifier

is determined to be biased is illustrated with an example in Figure 4.5.

In this figure, 20 calibration trials of subject B are available. To see whether classifier C is a

biased classifier, data of other source subjects is used.

In step 1, data of the subsequent source subjects are adapted towards the available calibration

data, here D’, E’ and G’. In this way, more data is constructed with the same distribution as

target subject B.

In step 2, the testing of the BCI is mimiced by transforming D’, E’ and G’ (to minimise

distribution differences with subject C) towards D”, E” and G”, on which the BCI is tested

in step 3, after training on the 200 trials of source subject C.
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Algorithm 1 New Transfer Learning technique

Determine the transformation matrices and validation accuracies using the

calibration data Dc

BiasedClassifier() . Will set FlagBiased = True when biased

while k ≤ Ns do

Mk = CalculateM(Dc, Dk)

ValAcc = ApplySource(Dc, Dk,Mk)

if ValAcc ≤ 0.7 then

FlagV alidation(k) = True

end if

end while

Determine which source subjects of Dk should be left out, and whether the

probabilities should be averaged (standard) or use the maximum probability

of the remaining source subjects (if maxProb = True).

if (# FlagV alidation == True) ≥ Ns/2 then

if (# FlagBiased == True) <Ns/2 then

Remove the biased source subject from Ds

end if

maxProb = True

else

Remove the source subject with FlagV alidation = True

if (# FlagBiased == True) <Ns/2 then

Remove the biased source subject from Ds

else

maxProb = True

end if

end if

Determine the test accuracy with Dt

while k ≤ Ns do

Probabilities(k) = ApplySource(Dt, Dk,Mk)

end while

if maxProb == True then

Use the maximum probability of Probabilities(k)

else

Average the probabilities of Probabilities(k)

end if
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The BCI is trained according to the same principles as for DSA, using the same amount of

calibration trials from respectively D, E and G, with subject C serving as the source subject.

For testing, 40 trials are used. If, for more than half of the temporary classifiers, more than

90% of the trials are labeled the same, the source subject C is flagged as biased.

This threshold of 90% was chosen by comparing results when varying this parameter from

70 to 95% in steps of 5%.

Target subject:	
  B Classifier to be checked if biased:Source subject	
  C
Number of	
  calibration trials:	
  20 Other source	
  subjects:	
  Subject	
  D,	
  E	
  and G

Construct	
  
transformation

matrices

MDàB

MEàB

MGàB

Transform

D	
  à D’

E	
  à E’

G	
  à G’
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transformation

matrices

MD’àC
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Figure 4.5: From target subject B, 20 calibration trials are available. For the transformation between

target subject B and the source subjects in step 1 and the transformation in step 2, the

same amount of trials from the source subjects are used.



Chapter 5

Experimental Results

The results of the new Transfer Learning technique are plotted in Figure 5.1. The new

method is indicated with a red solid line.

Based on Figure 5.1a, the new method could be labeled as the best performing one, but when

looking subject-specific, the results vary.

For subject C and subject G, the new Transfer Learning technique scores best for every

amount of calibration data. For subject G, there is a slight decrease in performance for 6

calibration trials, but the performance is not as dependant on the amount of calibration trials

as in DSA.

For subject B, the new method’s accuracy mostly stays below the one of DSA, but at least

it doesn’t suddenly drop to accuracies below 60%.

For subject D, the results are not optimal with few calibration data. One can see that the

accuracies for the new method stay above 80%, but the variation from 2 to 20 calibration

trials is high. This may be due to the discrimination based on low validation accuracies or

biased classifiers, not being able to point the best source subject/subjects to use, as DSA

sometimes results in higher accuracies up until 50 calibration trials.

For subject E, the same conclusion can be made with regards to the performance of DSA,

with the difference of the new method being more stable than DSA (except for the peak in

the beginning).

In Figure 5.2, the same results are shown, but only the experiments using 40 calibration trials

or less, and focusing on the range of test accuracies above 50%. The numeric results can be

found in Appendix C.
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(c) Target subject C
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(d) Target subject D
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(e) Target subject E
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Figure 5.1: Comparison of No Transfer Learning, Majority Voting, DSA and the new Transfer Learn-

ing technique.
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(b) Target subject B
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(c) Target subject C
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(d) Target subject D
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(e) Target subject E
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Figure 5.2: Comparison of No Transfer Learning, Majority Voting, DSA and the new Transfer Learn-

ing technique, focused on the experiments done with 40 calibration trials or less.



Chapter 6

Conclusion and future work

By using Brain-Computer Interfaces, people who have lost the ability to control their limbs

are given the opportunity to steer an application using Motor Imagery, but due to interperson

and intersession differences, the BCI needs to adapt to the new user’s brain to be able to

correctly classify their thoughts, for every use of the application. This calibration could take

up to 20 - 30 minutes, giving a lot of room for improvement.

The difficulty of constructing a good BCI was proven by the low testing accuracies that were

reached when constructing a person-specific BCI, even though sufficient training data was

available. As for some targets the testing accuracy didn’t even reach 70%, but for some users

the BCI could reach 90% performance, the system is clearly user-dependent.

Averaging the optimal settings of the person-specific BCI’s resulted in higher accuracies for

some targets, but on average, no significant difference was noted (p=0.45). Averaging optimal

settings when only using frequency bands common in Motor Imagery classification (the alpha

and beta band), could also lead to higher accuracies for some targets, but with these results

not scoring significantly worse (p=0.33), it is an indication for further use of this frequency

band only.

These first experiments gave rise to two problems: the system being very user-dependent

and the need for a lot of calibration data. These findings dictate the fact that advanced

techniques will be needed to guarantee a good performance of the BCI, independent of the

user performing the Motor Imagery task and preferably with as little calibration data as

possible.

In this attempt, several experiments were done using different Transfer Learning techniques.

By comparing different Transfer Learning techniques, varying from naive methods as aver-

aging probabilities and majority voting, to methods that transform the test data according

to covariance matrices, it became clear that none of these methods could be labeled as the

one that would always result in the highest performance. When getting to the bottom of the

techniques that performed significantly better than when not using Transfer Learning at all,

the need for improvement of DSA arose.
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This shortcoming of DSA was the baseline for the construction of a new method. The main

problem of the current Transfer Learning techniques is finding the best subject from which

information can be transferred, or in some cases, the best subjects. In the case of multiple

subjects being a good fit for the job, the outputs of the classifiers could either be averaged

or the maximum could be taken. Experimenting with these ideas, showed that neither one

of these approaches induces the highest possible performance for every amount of calibration

data. Where one method performs bad, the other one will perform well.

These findings led to a new Transfer Learning technique that combined both averaging the

outputs of different classifiers and taking the maximum probability produced by a classifier.

The amount of classifiers on which Transfer Learning is applied and the preferred method

used, is based on a selection criterion.

The strength of this new Transfer Learning technique is its robustness in comparison to

DSA. Where the performance of DSA suddenly decreases when new calibration data becomes

available, the new method is less sensitive to alterations in calibration data. With regards

to an application of a BCI to steer a wheelchair, this advantage of the new method is an

important aspect in sending the wheelchair towards the right direction, even if the user was

confused or distracted for a short period of time. The new method might not always be

stated as the best method for every amount of calibration data, but by further alterations in

the selection criterion, the results can be promising.

At the moment, as seen in Figure 5.1, with a single exception for 6 calibration trials when

testing for target E, the test accuracy of the new Transfer Learning technique, never drops

below 67%. The most important gain in performance is that, when only having 4 calibration

trials available, the test accuracy is minimally 77%. With respect to, when having 4 calibra-

tion trials available, only reaching 52±6% on average when not applying Transfer Learning.

In the worst case scenario, there is even an improvement of 38%. On average, when using the

final method and 4 calibration trials, the test accuracy is 86±8%. This clearly manifests that,

by applying Transfer Learning and reducing the amount of calibration, there was absolutely

no reduction in performance.

With regards to the goal of reducing the calibration time as much as possible, this requirement

is fullfilled, as the amount of trials is reduced to the minimal amount of trials possible (one

trial of each class), still reaching average test accuracies of 85±10%.

In the construction of a new method, based on comparisons between old and new techniques,

it might not be overlooked that an optimal method was constructed based on data from only

5 subjects. To work around this restriction, the steps taken in the process to construct a

new Transfer Learning technique were not based on the averages of the performance of these

5 subjects, but on target-specific results. As these results still might depend on the specific

data used in the experiments, it might be useful to go over the same steps and reasonings,

but with a larger or a different dataset.
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Another path that can be explored is by adding more Motor Imagery tasks to the classification

problem, to study the generalisation properties of the Transfer Learning method. For the

application of steering a wheelchair, this could be the addition of a stop and backwards

command. The removal of restricting the BCI to be synchronous would also be a big step in

the right direction, as it gives the possibility to the user to communicate at their own pace.

But before exploiting these options, further thought should be given on how to eliminate the

calibration procedure and making it an online application that learns from the user, while

already performing the first movements, preferably in the right direction.



Appendix A

Hyperparameters for a first BCI

To determine the best set of hyperparameters, the validation matrices are averaged over all

subjects. This resulted in the validation matrix as in Table A.1. The rows indicate how much

splits in the frequency band are used, the columns indicate the amount of CSP-filters used.

These validation accuracies are averages, so the low average validation accuracies are due to

some subjects for whom it is hard to construct a proper BCI (like for subject B, who never

results in validation accuracies higher than 0.543). On the other hand, subjects like D and

G, easily reach validation accuracies of 0.8 or higher.

On average, according to a validation accuracy of 0.693, the best hyperparameters are ob-

tained, as highlighted, when splitting the frequency band in 8 equal splits and using 3 CSP

filter pairs.

1 2 3 4 5 6 7 8 9

0 0.467 0.477 0.472 0.485 0.478 0.489 0.489 0.489 0.487

1 0.515 0.514 0.541 0.563 0.555 0.549 0.537 0.540 0.546

2 0.564 0.587 0.576 0.593 0.581 0.568 0.55 0.542 0.559

3 0.618 0.631 0.634 0.635 0.621 0.615 0.603 0.602 0.615

4 0.604 0.667 0.645 0.645 0.641 0.622 0.646 0.632 0.610

5 0.637 0.644 0.652 0.642 0.620 0.629 0.614 0.610 0.622

6 0.662 0.678 0.683 0.668 0.652 0.647 0.645 0.640 0.636

7 0.654 0.680 0.682 0.6625 0.651 0.65 0.635 0.632 0.630

8 0.657 0.692 0.693 0.651 0.649 0.656 0.634 0.622 0.629

9 0.655 0.690 0.685 0.647 0.647 0.657 0.637 0.630 0.622

Table A.1: Validation accuracies averaged over all source subjects. The rows indicate how much

splits in the frequencyband are used, the columns indicate the amount of CSP-filters

used.

The test and train accuracies reached with person-specific optimal features are seen in Table

A.2. The test accuracies obtained when using person-specific optimal features, averaged

optimal features and when using only the alpha and beta band are seen in Table A.3.
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Test Accuracy Train Accuracy

Subject A 0.500 0.969

Subject B 0.525 0.925

Subject C 0.600 1.000

Subject D 0.775 0.975

Subject E 0.900 0.994

Subject F 0.575 0.988

Subject G 0.800 1.000

Average 0.668 ± 0.217 0.979 ± 0.318

Table A.2: Train and test accuracies reached when using the person-specific optimal features.

Personal best Averaged best Alpha and Beta band

Subject A 0.500 0.675 0.475

Subject B 0.525 0.575 0.600

Subject C 0.600 0.575 0.750

Subject D 0.775 0.950 0.800

Subject E 0.900 0.850 0.950

Subject F 0.575 0.575 0.600

Subject G 0.800 0.700 0.800

Average 0.668 ± 0.217 0.700 ± 0.224 0.711 ± 0.230

Table A.3: Comparison of the test accuracies when using person-specific optimised features, an

averaged optimal amount of features and when only using data from the alpha and

beta band.



Appendix B

Covariance Shrinkage: Subset

selection and regularisation

parameter

The subset that was chosen by the Subject Selection Algorithm as in Chapter 2.7.2, is il-

lustrated in Table B.1. In the columns, the source subjects chosen for the corresponding

target subject in the header are shown. The corresponding regularisation parameter for each

experiment is added in Table B.2. In both tables, each row represents a new experiment

using a bigger amount of calibration trials.

In this table, the regularisation parameter when using the complete set of source subjects is

added for comparison. It is clear that there is no big difference in regularisation parameter

when a different subset is used. For subject C, D and E, the regularisation parameter is

mostly zero, so an altering in subset can not have an influence on the test accuracy. If the

regularisation parameter is non-zero, the subset chosen by the Subject Selection Algorithm

is nearly always a set of three out of four subjects, and as visible in Figure 4.1, for target

subject B, the addition of a fourth source subject lowers the test accuracy, where for target

subject G, the test accuracy slightly increases when adding a fourth source subject.
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Subject B Subject C Subject D Subject E Subject G

10 C G B, C D, G C, D, E

20 D, E, G B, C B, C, D, E

30 D, E, G B, C, D, E

40 D, E, G D, E, G B, C, D, E

50 D, E, G D, E, G C, D, E

60 D, E, G C, D, E

70 C, D, E C, D, E

80 C, D, E C, D, E

90 C, D, E C, D, E

100 C, D, E C, D, E

110 C, D, E C, D, E

120 C, D, E C, D, E

130 C, D, E C, D, E

140 C, D, E C, D, E

150 C, D, E C, D, E

160 C, D, E C, D, E

Table B.1: The subset of source subjects as chosen by the Subject Selection Algorithm (see Chapter

2.7.2).
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Subject B Subject C Subject D Subject E Subject G

S NS S NS S NS S NS S NS

10 1.000 0.167 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.778

20 0.000 0.000 1.000 1.000 0.000 1.000 0.143 1.000 1.000 0.769

30 1.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000 1.000 1.000

40 1.000 1.000 0.087 1.000 0.000 0.000 0.000 0.000 1.000 1.000

50 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.667 0.615

60 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.606

70 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.324 0.308

80 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.529 0.486

90 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.458 0.500

100 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.407 0.407

110 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.321 0.367

120 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.222 0.364

130 0.132 0.134 0.000 0.000 0.000 0.000 0.000 0.000 0.093 0.104

140 0.029 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.061 0.059

150 0.012 0.013 0.000 0.000 0.000 0.000 0.000 0.000 0.048 0.050

160 0.057 0.054 0.000 0.000 0.000 0.000 0.000 0.000 0.026 0.025

Table B.2: The regularisation parameter when a subset of source subjects is chosen (S) and when

all subjects are chosen as source subjects (NS).
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Results of the comparison of No

Transfer Learning, Majority Voting,

DSA and the new method

No Transfer Learning DSA Majority Voting New TL technique

2 0.520 0.670 0.520 0.845

4 0.520 0.760 0.520 0.860

6 0.475 0.725 0.520 0.765

8 0.470 0.760 0.520 0.870

10 0.450 0.735 0.520 0.815

12 0.480 0.795 0.520 0.845

14 0.450 0.810 0.520 0.820

16 0.430 0.730 0.520 0.825

18 0.470 0.715 0.520 0.835

20 0.510 0.735 0.520 0.845

22 0.510 0.785 0.520 0.865

24 0.535 0.810 0.520 0.865

26 0.530 0.805 0.520 0.865

28 0.530 0.835 0.520 0.865

30 0.495 0.825 0.520 0.870

40 0.565 0.800 0.520 0.865

Table C.1: Results of a comparison of different Machine Learning techniques, averaged over 5 target

subjects.

66



Appendix C. Results of the comparison of No Transfer Learning, Majority Voting, DSA
and the new method 67

No Transfer Learning DSA Majority Voting New TL technique

2 0.425 0.750 0.550 0.800

4 0.425 0.825 0.550 0.775

6 0.550 0.750 0.550 0.775

8 0.525 0.850 0.550 0.700

10 0.500 0.875 0.550 0.675

12 0.525 0.925 0.550 0.700

14 0.525 0.925 0.550 0.700

16 0.575 0.500 0.550 0.700

18 0.475 0.525 0.550 0.725

20 0.500 0.525 0.550 0.725

22 0.500 0.825 0.550 0.725

24 0.475 0.825 0.550 0.750

26 0.450 0.850 0.550 0.750

28 0.500 0.850 0.550 0.775

30 0.525 0.675 0.550 0.800

40 0.500 0.925 0.550 0.800

Table C.2: Results of a comparison of different Machine Learning techniques, using subject B as

target subject.

No Transfer Learning DSA Majority Voting New TL technique

2 0.575 0.600 0.525 0.700

4 0.575 0.625 0.525 0.775

6 0.525 0.600 0.525 0.775

8 0.525 0.600 0.525 0.775

10 0.475 0.625 0.525 0.775

12 0.425 0.625 0.525 0.750

14 0.325 0.625 0.525 0.750

16 0.250 0.625 0.525 0.775

18 0.400 0.625 0.525 0.775

20 0.425 0.675 0.525 0.775

22 0.475 0.675 0.525 0.775

24 0.475 0.675 0.525 0.775

26 0.475 0.675 0.525 0.775

28 0.400 0.650 0.525 0.775

30 0.450 0.675 0.525 0.775

40 0.500 0.650 0.525 0.775

Table C.3: Results of a comparison of different Machine Learning techniques, using subject C as

target subject.
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No Transfer Learning DSA Majority Voting New TL technique

2 0.550 0.725 0.500 0.850

4 0.550 0.825 0.500 0.875

6 0.450 0.875 0.500 0.925

8 0.475 0.825 0.500 0.950

10 0.550 0.900 0.500 0.800

12 0.600 0.825 0.500 0.925

14 0.525 0.900 0.500 0.800

16 0.475 0.900 0.500 0.850

18 0.525 0.925 0.500 0.850

20 0.625 0.925 0.500 0.850

22 0.600 0.850 0.500 0.875

24 0.675 0.925 0.500 0.875

26 0.600 0.850 0.500 0.850

28 0.575 0.850 0.500 0.875

30 0.575 0.950 0.500 0.875

40 0.650 0.950 0.500 0.900

Table C.4: Results of a comparison of different Machine Learning techniques, using subject D as

target subject.

No Transfer Learning DSA Majority Voting New TL technique

2 0.500 0.675 0.450 0.950

4 0.500 0.925 0.450 0.925

6 0.425 0.800 0.450 0.550

8 0.450 0.925 0.450 0.950

10 0.300 0.675 0.450 0.850

12 0.425 1.000 0.450 0.875

14 0.475 1.000 0.450 0.875

16 0.425 1.000 0.450 0.850

18 0.450 0.900 0.450 0.875

20 0.500 0.900 0.450 0.925

22 0.500 0.875 0.450 1.000

24 0.575 0.875 0.450 0.975

26 0.575 0.950 0.450 1.000

28 0.650 0.925 0.450 0.975

30 0.425 0.925 0.450 0.950

40 0.700 0.950 0.450 0.925

Table C.5: Results of a comparison of different Machine Learning techniques, using subject E as

target subject.
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No Transfer Learning DSA Majority Voting New TL technique

2 0.550 0.600 0.575 0.925

4 0.550 0.600 0.575 0.950

6 0.425 0.600 0.575 0.800

8 0.375 0.600 0.575 0.975

10 0.425 0.600 0.575 0.975

12 0.425 0.600 0.575 0.975

14 0.400 0.600 0.575 0.975

16 0.425 0.625 0.575 0.950

18 0.500 0.600 0.575 0.950

20 0.500 0.650 0.575 0.950

22 0.475 0.700 0.575 0.950

24 0.475 0.750 0.575 0.950

26 0.550 0.700 0.575 0.950

28 0.525 0.900 0.575 0.925

30 0.500 0.900 0.575 0.950

40 0.475 0.525 0.575 0.925

Table C.6: Results of a comparison of different Machine Learning techniques, using subject G as

target subject.
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