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Abstract

Biophysically realistic models of the cochlea are based on cascaded transmission-
line (TL) models which capture longitudinal coupling, cochlear nonlinearities, as
well as the human frequency selectivity. However, these models are slow to com-
pute (in the order of seconds/minutes) while machine-hearing and hearing-aid
applications require a real-time solution. Consequently, real-time applications
often adopt more basic and less time-consuming descriptions of cochlear pro-
cessing (e.g., gammatone, CARFAC and MFCC models) even though there are
clear advantages in using more biophysically correct models (e.g., phase). To
overcome this, this dissertation combines nonlinear Deep Neural Nets (DNN)
with nonlinear TL cochlear models to build a real-time model of the cochlea,
able to capture the biophysical properties associated with the TL model. The
DNN model was trained using a speech dataset at a fixed sound level, but per-
formed well on a set of basic auditory stimuli of various stimulus levels and
frequencies to assess the coupling, tuning and nonlinearity of the new model.
The normal-hearing DNN model was afterwards adjusted, by means of transfer
learning, to simulate frequency-specific patterns of cochlear gain loss profiles,
yielding a set of normal-hearing and hearing-impaired DNN models which can
be computed in real-time, are differentiable, and can serve as the next generation
of hearing-aid and machine hearing applications.
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Abstract—Biophysically realistic models of the cochlea are
based on cascaded transmission-line (TL) models which capture
longitudinal coupling, cochlear nonlinearities, as well as the
human frequency selectivity. However, these models are slow
to compute (in the order of seconds/minutes) while machine-
hearing and hearing-aid applications require a real-time solution.
Consequently, real-time applications often adopt more basic and
less time-consuming descriptions of cochlear processing (e.g.,
gammatone, CARFAC and MFCC models) even though there are
clear advantages in using more biophysically correct models (e.g.,
phase). To overcome this, this dissertation combines nonlinear
Deep Neural Nets (DNN) with nonlinear TL cochlear models
to build a real-time model of the cochlea, able to capture the
biophysical properties associated with the TL model. The DNN
model was trained using a speech dataset at a fixed sound level,
but performed well on a set of basic auditory stimuli of various
stimulus levels and frequencies to assess the coupling, tuning
and nonlinearity of the new model. The normal-hearing DNN
model was afterwards adjusted, by means of transfer learning, to
simulate frequency-specific patterns of cochlear gain loss profiles,
yielding a set of normal-hearing and hearing-impaired DNN
models which can be computed in real-time, are differentiable,
and can serve as the next generation of hearing-aid and machine
hearing applications.

Index Terms—Cochlear models, real-time applications, deep
neural networks, hearing-impairment, transfer learning

I. INTRODUCTION

Generally accepted as one of the most complex pathways
in the human body, hearing can be seen as a deep and elegant
combination of linear and nonlinear aspects. This complexity
can be largely attributed to the inner ear’s cochlea where
frequency selectivity across characteristic frequencies (CF),
longitudinal coupling and level-dependent compression are
giving rise to a highly nonlinear behaviour. Posing a difficult
task to approach the hearing organ by numerical model
representations.

These models are being classified in one of two categories:
perceptual, functional models or biophysical models.
Perceptual models (e.g., gammatone [1] [2], MFCC [3])
reproduce the overall input-output relation of the auditory
system while disregarding the underlying biophysical
subprocesses [4]. Biophysical models (e.g., transmission-line
models [5]), on the other hand, are more focussed on
implementing the correct biological processes that can be
found in the cochlea.

Literature shows that, although biophysical models are
grasping better the full range of above mentioned hearing

characteristics, it is the collection of linear perceptual models
that is being deployed in various hearing applications (e.g.,
ASR, noise suppression). This can be related to the fact that
they, as opposed to the nonlinear biophysical models, lack
computational complexity. It should however be clear that
this, ever-present, compromise of computational speed and
biophysical correctness is far from ideal.

This paper aims to solve this presented research gap by
providing a real-time variant of a biophysically correct, non-
linear cochlear model. This instantaneous character is achieved
by applying deep neural network (DNN) techniques to train
a fast operating convolutional neural network (CNN) able to
account for normal-hearing (NH) cochlear behaviour. Since
present models have the ability to include hearing-impaired
(HI) profiles as well, another goal is pursued in this paper: an
extension of the first (NH) DNN towards a structure that is
able to approximate HI cochlear processing as well. The used
method for this latter task will be based on transfer learning.

II. COCHLEAR MECHANICS

Inside the field of cochlear modeling it is known that the
human cochlea accounts for two essential nonlinearities [6]:

1) Compression at high sound-level: Whereas the cochlear
peak response shows linear growth with level for low-to-
moderate sound levels, the response grows compressively for
higher sound intensities [7].

2) Sharper cochlear tuning for softer sounds: : Basilar
membrane (BM) filters have a sharper shape for softer
sounds. [8].

The combination of these aspects of cochlear nonlinearity
(i) together with a correct expression of the frequency-selective
cochlear tuning (ii) and the ability to capture the natural
longitudinal coupling of the BM filters (iii), can be seen
as valid criteria for a biophysically correct cochlear model.
The combination of these criteria can only be found in the
advanced transmission-line (TL) model of Verhulst et al. [9],
hence it is this model that will be adopted as reference model
in this research. The model uses a cascaded TL to model the
cochlear mechanics and travelling waves [5], [10] to correctly
account for the above mentioned features [11]. Since this
model also holds the possibility to render a HI version of
the cochlear processing (by adapting the model parameters
responsible for cochlear gain), it is convenient to use it since
the second task can be performed on it as well.
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Fig. 1. The AECNN architecture used in this research (An 8 layer architecture is depicted here as an example): The architecture makes use of an
encoder-decoder [13], [14] structure, where an audio input of sample length 2048 is first processed by an encoder (comprised of a few CNN layers), which
encodes the audio signal into a condensed representation. These CNN layers, which were chosen over other neural net approaches since it’s most related to
cochlear filtering, make use of strided convolutions, meaning the filters are shifted by a time-step of 2, reducing the temporal dimension by half after every
CNN layer. Thus, after N CNN layers in the encoder, the audio signal is encoded into a condensed representation which is of size 2048/2N x kN , where kN
is the number of filters in the Nth CNN layer. This encoded representation is then mapped to the corresponding BM displacements using a decoder which
uses deconvolutional or transposed-convolutional layers where the temporal dimension is doubled after every layer. The decoder also contains N deconvolution
layers, yielding back the starting temporal dimension of 2048 samples. The number of filters used in the final CNN layer of the decoder is set to be equal to
the number of cochlear sections NCF that were available in the reference TL model’s output (set to 201 in this research to reduce training time, resembling
a frequency range of 100 Hz - 12 kHz [12]). Thus the output of the proposed AECNN model is of size 2048 x NCF . U-shaped skip connections are added
as well, since, due to the use of strided convolutions in the CNN layers, the encoder might lose some important information such as temporal alignment and
phase information. These connections will hence bypass the relevant information from the encoder to the decoder.

III. MATERIALS AND METHODS

The cascaded approach of the TL represents the cochlea
as a coupled structure, where the response of one cochlear
section (CS) is depending on the responses of all previous
sections. Since the characterization of cochlear mechanics
and travelling waves will be based on the BM displacements
of these CS (linked to a certain characteristic frequency
(CF) to correctly follow the human tonotopy map [12]),
modeled by ordinary differential equations in the TL model,
these (displacements across CS) will serve as benchmark
values to correctly model the cochlear processing. Hence the
evaluation of the performance of the trained DNN will be
largely based on how the neural network is predicting these
BM displacements. The assumption was made that suppose
the DNN would be able to output BM movements similar to
the ones predicted by the TL model, when given the same
audio input, it would also be able to grasp the underlying
cochlear mechanics.

This resembling ability is achieved by deep learning: A
DNN can be seen as a combination of (hidden) layers which
on their part are characterized by a large number of filter
weights, responsible for recognizing patterns and structures
in the input data. During a learning phase (further referred to
as training), these weights are updated in a way that they are
minimizing a certain loss term (based on the difference of
the desired and the predicted output for a given input). This
training is done by ’showing’ a large number of input-output

combinations to the network, so the NN can learn what the
relation is between the input and the output data. In this
particular case: how does the BM displacements (output) look
for a certain audio input.

Fig. 1. depicts an example of the DNN architecture that
will be used in this project to accomplish this task. How the
training of this architecture is done is described in the next
section.

A. Preprocessing Pathway
1) Data collection: First, audio (2310 spoken sentences)

was collected from the TIMIT dataset [15], which were
adjusted such that the RMS energy of the signal had a sound
pressure level of 70 dB (resembles best standard conversa-
tional speech levels and includes both louder and more silent
instantaneous amplitudes).

2) Resampling: The TIMIT dataset has a sampling fre-
quency of 16 kHz, whereas the reference model demands an
input sampling frequency of 100 kHz, hence an upsampling
was performed on the TIMIT data. Since the TL model will,
on the other hand, output a signal with a sampling frequency
of 20 kHz, the same TIMIT data needed to be upsampled to 20
kHz as well, this to have the same sampling frequency in the
input/output pairs used in the training phase of the AECNN.

3) The reference TL model: Subsequently, the upsampled
data was given as an input to the Verhulst et al. model [9].This
model predicted the BM displacements across the 201 CF for
each speech fragment.



4) Slicing of data: Since the proposed AECNN architecture
was set up to only process input data with a sample length of
2048 (see Fig. 1.), both the TIMIT data, as well as the output
of the TL model, were sliced in chunks of 2048 samples (102.4
ms) and stored. It’s the combination of the TIMIT fragment
and accompanying TL output that will form the utterances that
are being fed to the network during training.

B. Machine Learning Parameters

Before training is initiated, some fixed parameters and
hyperparameters needed to be chosen. The fixed parameters
stayed the same for the entire research and consisted of
the amount of filters per layer kN (128), the batch size
(32 samples), the number of epochs (20), the optimizer
(Adam [16]) and the type of loss function (L1 loss, mean
absolute error). We refer to dedicated literature for a detailed
explanation of these parameters [17]. The hyperparameters,
having the most overall effect on the performance of
the trained models, were the variable settings during this
research. These will be discussed in the next section. After
the completion of this initialization process, training was
started and after 20 epochs, the NH DNN version of the TL
model was formed.

This entire architecture and training framework was de-
veloped using a Keras [18] machine learning library with a
TensorFlow [19] back-end.

IV. RESULTS - NH AECNN

As stated above, the variation of hyperparameter values was
investigated in this research, in search of the best performing
neural network architecture. These parameters (listed in Table
I) are all, in a direct or indirect manner, affecting the time
and memory cost of running the DNN training phase, hence
making it crucial design parameters.

TABLE I
INVESTIGATED HYPERPARAMETERS (PARAMETERS WHICH PROVIDED THE

BEST PERFORMANCE ARE IN BOLD TEXT).

Hyperparameter Investigated values
Learning rate 0.001 - 0.0004 - 0.0001
Layer depth 4 - 6 - 8
Filter length 31 - 63 - 127
Nonlinear activation function PReLU - tanh

Time and memory cost however, which are general at-
tributes of each trained DNN, don’t necessarily reveal how
well the model is performing at the required task, hence
three additional performance measurements (discussed in the
following three sections) were done in the evaluation process.
This returned that the 6 layers, 127 filter length, 0.0001
learning rate, tanh model gave the best overall performance
measurements. This model, with 16,955,008 trainable param-
eters, was trained on 2310 TIMIT training utterances, which
gave a total training time of roughly 40 hours (for 20 epochs).
After training, a L1 loss term of 0.0148 was achieved (for
comparison: the worst performing model returned a 0.0404
loss term).

A. Performance on Basic Auditory Input Stimuli

An audio (or speech) fragment can be seen as a combination
of basic components such as click impulses and pure tones
varying in frequency. Since the DNN is not trained (the
TIMIT corpus only contains speech samples) on those types
of basic stimuli, commonly used in cochlear mechanics
studies, they are a good performance measure to evaluate
how the trained models are performing.

The left column of Fig. 2. depicts the three basic stimuli
(input level of 70dBSPL) which will be fed to the trained
architecture: a 100 µs click and pure tone stimuli of 1 kHz
and 4 kHz. The cochlear dispersion based on the reference
TL model is shown in the second column, followed by the
predicted response by our trained AECNN. The final plot in
every row reveals the difference between the two former ones.
The depicted model is the previous mentioned 6 layers, 127
filter length, 0.0001 learning rate, tanh model. For numerical
evaluation, the mean square error of the 411,648 values
(201 cochlear sections x 2048 samples) was calculated. This
relative measure allowed to compare the different models in
a numerical manner, based on their predictive performance
on the above stated stimuli. Here again, the depicted model
performed among the best, as can be seen on the figure:
doing an excellent job at predicting the BM displacements
for (unseen) basic input stimuli.
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Fig. 2. Performance best AECNN model on basic auditory input stimuli.
(Left column) Input pressure [Pa] in the time domain [ms] for the three
different stimuli (click, pure tone 1 kHz and pure tone 4 kHz). (Middle
columns) Output cochlear dispersion of the TL and trained NH AECNN
model: BM displacements for the selected 201 CS, for their respective input
signal. (Right column) Difference between the two previous depicted outputs.

Starting from these previous plots, the RMS value (in dB),
for each of the 201 CS outputs, was calculated. Once all of
these RMS values are plotted according to their corresponding
CF on a frequency axis, so called excitation patterns are
formed. Doing this for multiple sound levels (ranging from
10 dBSPL to 90 dBSPL) will allow to visualize the degree of



level-dependency in between those excitation patterns. This
level-dependency should follow a nonlinear behaviour, due to
cochlear compression, across the sound levels.

Fig. 3. depicts these excitation patterns for both the best
performing model with a PReLU as nonlinear activation
function and the best performing overall model (tanh activation
function). As can be seen, only the tanh-inspired model is
able to capture the desired level-dependency. This proves the
computational power of DNN structures: the AECNN was only
trained on 70 dBSPL sound fragments and hence it would
be expected that only 70 dBSPL sounds could be predicted
correctly (which was only the case for the PReLU model).
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Fig. 3. Comparison of excitation patterns - Variable nonlinear activation
function. Cochlear excitation patterns calculated as the RMS value of the
BM displacement (yBM ) per cochlear section for a stimulation with a 1 kHz
pure tone (top row), 4 kHz pure tone (middle row) and click stimulus (bottom
row) with intensity levels ranging between 10 and 90 dBSPL. The depicted
models are the reference TL model (left) and AECNN architectures varying
in nonlinear activation function (PReLU - tanh). It shows that only the tanh
model is able to correctly capture the level-dependency characteristic.

B. Performance on Test Set

Since the trained DNN should also be able to correctly
predict cochlear outputs for speech fragments that were not
part of the training dataset, the models were not only tested
on basic input stimuli. A test set, containing 64 unseen speech
fragments, was selected from the TIMIT corpus. Thereafter a
segment of 2048 samples was chosen from each of the 64
fragments and was fed to both the reference TL model and
the trained neural network architecture. Here again, the MSE
of all 411,648 values was calculated and used in addressing
the overall performance. This again favoured the 6 layers, 127
filter length, 0.0001 learning rate, tanh model.

C. QERB

The final performance measurement was the resulting equiv-
alent rectangular bandwidth or the QERB . This can be used

as a quantification of the sharpness of cochlear tuning [20]
as a function of level, one of the cochlear attributes that was
demanded to be included in the trained DNN. This QERB

value as a function of frequency follows a typical curve for
humans [20]. This value is described as:

QERB =
CF

ERB
(1)

Where CF is again the characteristic frequency coupled to
a certain cochlear section and ERB the, CF-dependent, equiv-
alent rectangular bandwidth: the bandwidth of a rectangular
filter with the same peak response that passes the same total
power of a power spectrum that is driven by the same stimulus.
This power spectrum is calculated from the fast Fourier
transform of the stimulus’ impulse response at a specific CF.
For the evaluation here, a 100 µs click stimulus [21], [22] was
used. QERB values for both the PReLU and tanh variant of
the best performing model are plotted in Fig. 4. and Fig. 5.
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Fig. 4. QERB values for a trained PReLU AECNN. QERB values
computed for the energy underneath the power spectrum of CF impulse
responses to a 100 µs click of different intensities (40 and 70 dB). Simulations
are shown for the TL model (red), trained PReLU AECNN model (blue) and
a literature human QERB estimate [20]. The AECNN is not able to account
for the level-dependency present in cochlear tuning.
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for the energy underneath the power spectrum of CF impulse responses to a
100 µs click of different intensities (40 and 70 dB). Simulations are shown
for the TL model (red), trained tanh AECNN model (blue) and a literature
human QERB estimate [20]. The AECNN is able to account for the level-
dependency present in cochlear tuning.

D. Context

Although the performance of the AECNN on the QERB

values is very good for the tanh-inspired model, Fig. 5. also
reveals a slightly lower performance for the lower frequency
range. A possible explanation can be found in the applied pro-
cessing pathway, where slicing of both the TIMIT dataset and
the TL reference model output to segments of 2048 samples
was done. However, to receive the reference TL model output,
the full length of a training example was presented at the input,



thus including the context (the samples that are proceeding and
succeeding) of each sample. This context however is partially
lost for the first samples when sliced. This means that the
AECNN was trained on examples (the reference model output)
that contained information linked to the proceeding context
of the cropped audio sample, information that the AECNN
cannot see. It is possible that this slightly poorer resemblance
for the lower frequency values can be explained by this. This
incorporation of context for the data used in the AECNN
training phase can be seen as an extension of this research.

V. RESULTS - HI AECNN
Using the best performing NH AECNN model as a starting

point to train a HI version of the AECNN, capable of
representing hearing loss profiles in its output was the next
step in this research.

Training was done, based on input-output combinations
of the same TIMIT dataset, but now passed trough the
reference TL model that was made hearing-impaired by
CF-dependent adjusting of the parameters responsible for
simulating cochlear gain. This produced wider cochlear
filters, associated with outer hair cell damage [9].

The hearing impaired profiles that were addressed in this
research included a ’slope’ hearing loss profile, inducing
a sloping gain loss starting at a CF of 1 kHz, and a ’flat’
hearing loss profile, that has a constant gain loss over the
entire frequency spectrum. The most severe 35 dB variant of
both profiles was selected [9].

The used training method was transfer learning [23], the
machine learning technique where a model, trained on one
task, is reused as a starting point to train a model on a second
-related- task. Transfer learning assumes that the learned
features of the first task, are general and hence transferable
to the second task. This approach significantly decreased the
number of training utterances since, whereas the NH training
needed 2310 training utterances, only 50 additional utterances
were used in transfer learning since hearing aspects, that are
not altered by cochlear gain loss, were already present in the
trained NH AECNN, hence didn’t need to be learned again.
The HI AECNN variants (slope 35/flat 35) of the NH, 6 layers,
127 filter length, 0.0001 learning rate, tanh-model were trained
in only 10 minutes and had an average loss term of 0.0043.

A. Performance on Basic Input Stimuli
The excitation patterns for the HI AECNN versions are

depicted on Fig. 6., proving that the trained HI models
were able to correctly capture the nonlinear level-dependency
present in the HI TL model’s excitation patterns.

B. QERB

The corresponding QERB plots for both the slope 35 and
the flat 35 hearing loss profile are depicted in Fig. 7. and
Fig. 8. Disregarding the suboptimal low frequency results
(see Subsection IV-D), it can be stated that the HI tuning
characteristic is correctly grasped by the AECNN.
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Fig. 6. Comparison of excitation patterns - HI slope 35 and flat 35 hearing
loss profiles. Cochlear excitation patterns calculated as the RMS value of the
BM displacement (yBM ) per cochlear section for a stimulation with a 1 kHz
pure tone (top row), 4 kHz pure tone (middle row) and click stimulus (bottom
row) with intensity levels ranging between 10 and 90 dBSPL. This for both the
best performing model for a slope 35 hearing loss profile (left) and a flat 35
hearing loss profile (right). Each case depicts the reference TL model on the
left, and the HI AECNN architecture output, for the considered hearing loss
profile, on the right. Both AECNN models were trained via transfer learning
on the 6 layer-tanh architecture for an additional 50 (HI) training utterances.
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Fig. 7. QERB values for trained HI AECNN - slope 35. QERB values
computed for the energy underneath the power spectrum of CF impulse
responses to a 100 µs click of different intensities (40 and 70 dB). Simulations
are shown for the HI TL model (red) and trained HI AECNN model (blue)
for a slope 35 HL profile. Refer to Subsection IV-D for an explanation of the
suboptimal low frequency performance.

0.25 0.5 1 2 4 8

1

2

3

4

5

CF (kHz)

Q
E
R
B

40dB HI TL - flat 35

70dB HI TL - flat 35

40dB HI AECNN - flat 35

70dB HI AECNN - flat 35

Fig. 8. QERB values for trained HI AECNN - flat 35. QERB values
computed for the energy underneath the power spectrum of CF impulse
responses to a 100 µs click of different intensities (40 and 70 dB). Simulations
are shown for the HI TL model (red) and trained HI AECNN model (blue)
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C. Fixed layers
The question was asked whether the incorporation of HI

profiles in the AECNN was situated only in some hidden
layers. This is based on DNN used in image recognition,
where certain layers are responsible for the detection of
specific structures. This could reduce the total training time
even more since only a certain number of parameters will be
updated during training.

To verify this, the performance of the 6 layers - 50 utter-
ances - tanh model for a flat 35 HL profile was compared to
4 other models. In the training phase of each of those models
only a part of the hidden layers was made trainable. The results
showed that the model of which only the last layer’s weights
were made trainable, had the same resembling performance
as the reference model where all 6 layers were trained.
The outcome of this fixation of layers was a reduction of
10,420,096 trainable parameters and a time gain of 12 seconds
per epoch, returning only a 7 minute training phase. The same
result was obtained for a slope 35 HL profile, proving that the
accountability for HI in this AECNN architecture can indeed
be situated in the last hidden layer.

VI. CONCLUSION

In this paper, a deep neural network (DNN) architecture
was presented to approximate a state-of-the-art, biophysically
realistic model of the human cochlea, based on a cascaded
nonlinear transmission-line (TL) model. This to remove the
ever-existing compromise between biophysically correctness
and computational complexity. The reference TL model, on
which the DNN architecture was based, possessed also the
ability to include hearing-impaired (HI) profiles, based on
outer hair cell cochlear gain loss, in its modelling stages.
Hence the second objective of this paper consisted of correctly
including the auditory processing of a HI cochlea in the DNN
as well. This was done by applying transfer learning, where
the first NH DNN was functioning as a starting point.

Results showed that, with the correct hyperparameter
choices, the desired nonlinear features of the cochlea:
longitudinal coupling, frequency-selective tuning and level-
dependent compression, could all be found in the performance
of the real-time operating DNN. Whereas the process of
transfer learning (after the freezing of the filter weights of the
hidden layers that showed to interfere with cochlear gain loss)
permitted to achieve a HI version of the starting DNN within
7 minutes and trained only on 50 additional HI utterances.

This approach proved its value and the DNN framework can
be considered for the replacement of any transmission-line
model that incorporates nonlinearities (e.g., brain networks,
electronics applications), but also has the ability to be applied
into low-power implementations (e.g., ASR, next generation
of (smart) hearing-aids, robotics).

VII. FUTURE WORK

Future work could include: (i) Adding context to the
speech fragments in the training phase, to account for the

discontinuities in the AECNN output (as mentioned in Section
IV-D). (ii) Extending the DNN beyond the cochlear stage,
including other hearing stages (e.g., auditory nerve, cochlear
nuclei and inferior colliculus) in a machine hearing, real-
time framework. This would allow addressing other types of
hearing-impairment in auditory modeling (e.g., synaptopathy).
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Chapter 1

Introduction

The ear is a most complex and beautiful organ. It’s the most perfect acoustic, or hearing

instrument, with which we are acquainted, and the ingenuity and skill of man would be in

vain exercised to imitate it. (Frost, 1838)

181 years ago, this statement of John Frost made in his book The Class Book of Nature: Com-

prising Lessons on the Universe, the Three Kingdoms of Nature, and the Form and Structure

of the Human Body, will probably not have received a lot of backlash. However today, in the

year 2019, man are not only bound by their own skills. So to state that it would be in vain

to try to imitate it, would be underestimating the power of one specific tool that is at the

disposal of man today. Machines.

It was David Marr in 1979, who showed in his ground-breaking paper A computational theory

of human stereo vision that human vision could be imitated by means of numbers and ma-

chines, transforming colors, forms, details and motion into numbers and matrices (Marr and

Poggio, 1979). 40 years later, the applications of machine vision are immense. The question

should be asked if it’s too bold to say that, if vision can be represented, this could also be

made possible for human hearing? To transform loudness, pitch and timbre into an expression

that can be processed and simulated by a machine?

Since hearing can be seen as the most deep and elegant combination of linear and nonlinear

aspects, it is generally accepted one of the most complex pathways in the human body. A

1



Chapter 1. Introduction 2

level of complexity that translates itself in the difficult task of approaching the hearing organ

by numerical model representations. This complexity can be largely attributed to the inner

ear’s cochlea where frequency selectivity across characteristic frequencies (CF), longitudinal

coupling and level-dependent compression are giving rise to a highly nonlinear behaviour.

When looking at models of the human auditory periphery -and more specific cochlear models-

a clear distinction can be made between perceptual, functional models (e.g., gammatone,

MFCC) and biophysical models (e.g., transmission-line). Perceptual models reproduce the

overall input-output relation of the auditory system while disregarding the underlying bio-

physical subprocesses (Saremi et al., 2016). Biophysical models, on the other hand, are more

focussed on implementing the correct biological processes that can be found in the cochlea.

Although literature (see chapter 2, Section 2.3) shows that those biophysical models perform

better in grasping the full range of above mentioned hearing characteristics, nowadays mainly

the perceptual models are deployed in various machine hearing applications. The linear per-

ceptual models (gammatone) have proven their worth by being less computational heavy than

the nonlinear and complex biophysical models. It is clear that this ever-present compromise

of computational speed and biophysical correctness is far from ideal.

It is the research gap in this trade-off this master’s thesis hopes to bridge: Would it be pos-

sible to have the best of both worlds? Keep the lack of computational complexity of the

’basic’ linear models, but make the final result as biophysically correct as the best performing

nonlinear models.

Again referring to machine vision, this field has over the years largely benefited from fast

emerging deep learning methods. Methods that make it possible to approach signal process-

ing problems from a new perspective. Deep neural networks (DNN) already have proven

their worth in image classification (Cireşan et al., 2012) and object detection (Szegedy et al.,

2013), so machine hearing should not stay behind. DNN are currently used as a tool in

speech enhancement and noise suppression but not yet as a tool to approximate a nonlinear
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deterministic system.

The approach of using nonlinear, fast DNN architectures as a tool in replacing the nonlinear,

biophysically correct, but slow cochlear models has never been tried before. However, if

successful, a real-time cochlear model has applications in automatic speech recognition (ASR),

selective noise cancelling or as a front-end in next generation hearing-aids and robotics. Given

its broad application area, this project may help to transform hearing applications to be more

biophysically realistic.

1.1 Goal of this Master’s Thesis

This study aims to apply (recent) machine learning (ML) techniques, more precisely deep

neural networks (DNN), in the field of auditory modeling. Since the hearing pathway can be

viewed as a cascade of various stages, each with its own specificities, this project is focussed

on the replacement of human cochlear mechanics, one of the first stages in the auditory path-

way. The choice for a compartmentalization of the hearing cascade -an approach that can also

be found in current auditory models- will allow the model to grasp the specific biophysical

features that are present in each step of the process.

Finding a DNN-representation that can account for the highly nonlinear cochlea should be a

first step in the quest for a computationally fast (real-time), biophysically correct, auditory

model. Even more, since several hearing-impaired profiles (mainly based on outer hair cell

loss) have been proven to intervene in the working of the cochlea, one should aim for a DNN

architecture that is both capable of capturing the normal-hearing profiles while having the

capability of being made hearing-impaired to process those profiles as well. To achieve this,

two research goals are presented:

• A DNN replacement of a human cochlear model, for normal-hearing (NH)

people: A state-of-the-art auditory model that reaches the desired level of biophysical

correctness, while including the cochlear nonlinearities and the frequency selectivity, will

be selected first. Next, the optimal DNN architecture which replaces the NH human

cochlear model will be developed. The NN will be trained using a combination of human
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speech fragments and reference model outputs. The suggested NN architecture should

be able to reproduce the features that the reference model captures when presented

with the same input speech stimuli or stimuli which are commonly adopted in cochlear

mechanical studies.

• A DNN replacement of a human cochlear model, for hearing-impaired (HI)

people: Since one of the criteria in selecting the reference model will be to allow for the

inclusion of hearing-impairment in its computational stages, other DNN architectures,

which account for the variety of hearing-impaired profiles, should be modeled. The

second proposed HI DNN architecture will develop from the NH DNN using transfer

learning techniques.

1.2 Thesis Outline

In this first chapter, the auditory modeling field and the thesis subject of this master’s dis-

sertation were introduced. The remaining chapters are organized as follows:

• Chapter 2 provides some more general context to the topic. Starting with a biological

view on our hearing system, it is introduced how the structure and function of the

ear can be modeled in practice. Next, a summary will be provided of computational

cochlear models. The choice to select a reference model for this project is justified and

reference model simulations -both for NH as HI people- will be shown.

• In chapter 3, the focus will be on artificial intelligence (AI). Several machine learn-

ing frameworks are defined and we show how they can be implemented in this thesis.

Transfer learning in the scope of this project will also be touched upon.

• Chapter 4 provides the methodology in search for the optimal DNN structure for NH

and HI profiles: starting from preprocessing the data, extracting features and selecting

the general ML hyperparameters towards the crucial, variable model choices for the

entire architecture.

• Chapter 5 lists the results of the different trained models that will be based on those

parameter choices. Using different performance metrics, the best performing model is
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selected and will serve as a starting point for the second phase of this project. The

results of the transfer learning procedure are also described here.

• A conclusion of this project, as well as looking at future work, will end this master’s

dissertation in chapter 6.



Chapter 2

From Human to Machine Hearing

2.1 From Sound to Meaning

Hearing can be seen as the process by which the ear transforms sound vibrations of the envi-

ronment into auditory spikes that are directed towards the brain, where they are interpreted

as sounds. However, in order for a sound to be transmitted to the central nervous system, the

sound pressure undergoes different transformations that take place inside the human hearing

pathway (the components of that pathway are depicted on Figure 2.1):

Figure 2.1: The hearing pathway (Daniel Rothmann, 2018)

6
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Sound energy is first gathered by the visible pinna. This thin plate of elastic cartilage funnels

the sound waves into the ear canal, where it, via air vibration, will reach the tympanum

(or tympanic membrane). The portion of the sound that is absorbed by the membrane will

vibrate the umbo, the central portion of the membrane, resulting in inwards and outwards

bending. Since the umbo is linked to the handle of the malleus, the first ossicle, the sound

wave undergoes a transformation from air vibration into mechanical vibration. This vibration

is further passed onto the second (incus) and third (stapes) ossicle. The middle ear can be

seen as an impedance matching device since the ossicles convert the lower-pressure tympanum

sound vibrations into higher-pressure vibrations at the membrane on the other side of the

tympanic cavity: the oval window.

Figure 2.2: The cochlea (Daniel Rothmann, 2018)

Sound is concentrated onto the small oval window which is located at the base of the cochlea

as can be seen on Figure 2.2. The same figure depicts also another window: the round window.

This window is not attached to one of the ossicles, so it is able to ’freely’ vibrate. This is a

necessary feature hence in that way the, essentially incompressible, cochlear fluid is allowed

to move. It is inside this inner ear structure that sounds makes its final transition: from the

mechanical vibration in the middle ear to electrochemical transmission in the cochlear nerve.

To complete the auditory pathway, the cochlear nerve fibers will lead towards the auditory

cortex of the brain, where meaning is extracted.
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2.2 The Cochlea

Figure 2.2 already showed the typical coiled structure that resembles a snail shell that is

the cochlea. Once this small, yet complex, structure is cross-sectioned, the presence of three

canals is revealed: the scala vestibuli, which is directly driven by the middle ear ossicles, the

scala media and the scala tympani (Moller, 1994). All three channels contain a fluid (Pickles,

2013), with the scala vestibuli and the scala tympani containing perilymph, a fluid similar to

the cerebrospinal fluid. The scala media contains endolymph, which resembles intracellular

fluid. It is the movement of these fluids, upon vibrations of the oval window, that will cause

basilar membrane movements.

The Basilar Membrane

The basilar membrane (BM) separates the scala tympani from the scala media. Once sound

enters the fluid-filled cochlea, it causes deflection of the BM due to pressure differences be-

tween the scalae. Those pressure differences will be the origin of the formation of travelling

waves. It was Von Békésy in the 1940s who carried out pioneering work revealing those waves

in the cochlea (Von Békésy and Wever, 1960). He noticed that once a travelling wave, gener-

ated by a pure tone excitation, is propagating along the BM, the wave amplitude gradually

increases until it reaches a peak at a certain location. Resonance occurs on this location after

which a quick decay of the vibration happens. It is the frequency of the input tone that

determines on which location along the BM this resonance occurs, making this whole process

frequency specific. The BM is thus operating as a frequency analyser in the hearing pathway

and responds to frequencies ranging from 20 kHz at the base of the cochlea to 20 Hz at the

apex. This behaviour became quickly one of the most critical evaluation criteria for cochlear

models (Ni et al., 2014).

At first, it was believed that frequency selectivity followed a linear pattern, depending on

stimulus level, along the BM. This was not doubted until Rhode, in 1971, pointed out that

the response of the BM is less frequency selective for higher level stimuli (Rhode, 1971). Over

the years and with the availability of more sophisticated measurement systems, the theory

of an active and nonlinear cochlea became more and more plausible. The active character of
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the structure was first raised by Gold (Gold, 1948) and was later confirmed by Kemp (Kemp,

1978) and is related to the outer hear cells in the organ of Corti.

The Organ of Corti

The translation of the movements of the basilar membrane into electrical impulses occurs in

the organ of Corti, seen as the receptor organ of the ear (Moller, 1994). The organ is located

on top of the basilar membrane and roughly contains 16,000 receptor cells, also known as hair

cells:

• Inner hair cells (IHC): One of which is present each 10 µm-long cross section of the

organ of Corti (Elliott and Shera, 2012). This will convert motion into chemical signals

that excite adjacent nerve fibers. Those will account for generating neural impulses

which are sent to the brain via the auditory pathway.

• Outer hair cells (OHC): Those exists, as is showed on Figure 2.3, in rows of three

within the cochlear cross-section. The OHC play a more active role in cochlear dynam-

ics. These types of hair cells will be important in this project since they are partially

responsible for the nonlinear and compressive growth of BM vibrations with level. Also,

OHC are closely related to hearing-impairment as their damage can result in cochlear

gain loss, as will be discussed later.

Figure 2.3: The Organ of Corti (Kujawa and Liberman, 2009)
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Upon basilar membrane motion, the reticular lamina moves upward or downward, resulting

in shear forces between the reticular lamina and the tectorial membrane that will bend the

hair cells and will cause an ionic reaction that will depolarize the hair cell. It is this depolar-

ization of the IHC that will lead to the releasing of neurotransmitters and the accompanying

propagation of the auditory signal (Moller, 1994) towards the auditory nerve and ascending

auditory pathways.

2.2.1 Nonlinearity

The cochlea can be seen as a highly nonlinear structure, since it accounts for two well-

documented essential nonlinearities(Eguiluz et al., 2000):

• Compression at high sound-level: Whereas the cochlear response at the peak shows

linear growth with level for low-to-moderate sound levels, the response grows compres-

sively for high sound intensities. This is the most significant nonlinearity, and in en-

gineering technology, it is said that the cochlea performs automatic gain control (Ni

et al., 2014).

• Sharper cochlear tuning for softer sounds: Research (Rosen et al., 1998) shows

that for softer sounds (sounds that are perceived less loud), the BM has a sharper filter

shape, resulting in a sharper tuning.

The combination of these aspects of cochlear nonlinearity (i) together with a correct expres-

sion of the frequency analyser-role of the cochlea (ii) and the ability to capture the natural

longitudinal coupling of the BM (iii), can be seen as valid criteria for a biophysically correct

cochlear model. It is the accountability for these three criteria that will be demanded in the

search of a cochlear model that can serve as a reference model in this project.

2.3 Auditory Models

Going from sound towards human perception spans the whole auditory pathway. However, it is

often assumed in auditory models that the cochlear contribution towards auditory processing

is the most important transformation in the pathway (Rhode, 1971). A cochlear model

can be thought of as a tool with which, by using ’numerical experiments’, researchers can
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obtain or predict cochlear output responses to different stimuli. But how to describe and

replicate what the cochlea does? Should models be derived from the underlying physics

(mechanical/biophysical models), or be validated against a range of measurements on real

human auditory systems (perceptual models) (Lyon, 2018)?

2.3.1 Early Work

In general, auditory models have been developed to simulate characteristics of the human

auditory system and to be used as realistic sound processors for machine hearing applications

(Saremi et al., 2016). It was Von Helmholtz in 1875 who performed ground-breaking work on

independent resonator theory and tuned filters (Von Helmholtz and Ellis, 1875). Based on

these results, the critical band was introduced as a perceptual representation of the auditory

filtering process (Fletcher, 1940). This was an inspiration to modelers to create filterbanks

that consisted of several discrete filters to reproduce the available psychoacoustic data (Green,

1958). In this view, the cochlea was seen as a frequency analyser, comparing the working

of the basilar membrane to a bank of highly tuned resonators, as could be found in musical

instruments. This view however, total disregarded the role of the cochlear fluid and was

not including longitudinal coupling inside the cochlea (Allen, 2001). Over the years, due to

further advances in psychoacoustics (Stevens, 2017), the approach shifted and by means of

connecting underlying hydrodynamics and calibrated parameters on human performance data,

the models of today are able to represent a wide range of both linear and nonlinear aspects

of the physiology of hearing with a rather basic and elegant set of circuits or computations

(Lyon et al., 2010).

2.3.2 The Range of Auditory Models

There are two types of auditory models: Perceptual or functional models, that phenomeno-

logically reproduce the overall input-output relation of the auditory system. However, since

they lack one (or multiple) aspects of the criteria mentioned above, they are not explicitly

modeling all of the underlying biophysical subprocesses (Saremi et al., 2016). Still, these

models are the go-to models in applications today due to their low computational cost. The

second class consists of biophysical models, which are focussed on implementing the correct bi-
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ological processes at the cochlea and hence disregard computational simplicity for biophysical

correctness.

Perceptual Models

To include frequency selectivity, perceptual models are based on linear or nonlinear filters

that will be put in parallel or in a cascade to account for the tonotopic regions in the BM.

Gammatone filterbank A gammatone filterbank consists of a set of parallel filters that

approximate the shape, sharpness and bandwidth of human auditory filters. This set of

bandpass filters has a decreasing center frequency and an increasing sharpness as sound travels

from the cochlear base (close to the middle ear) to the apex (Baby and Verhulst, 2018a).

Figure 2.4 depicts the visualisation of such a filterbank. Gammatone filters (De Boer, 1975;

Aertsen et al., 1980) were developed to yield an efficient realizable filter for applications. A

shortcoming of this model is the fact that it lacks accuracy, which can be blamed on the

absence of a structure that incorporates the nonlinear effects of the cochlea and thus does not

emulate level-dependent characteristics of auditory filters.

Figure 2.4: Gammatone Filterbank (Daniel Rothmann, 2018)

Mel-scale filterbank The mel-scale was developed based on results from human pitch-

perception experiments from the 1940s. The sole purpose was to describe the human audi-

tory system on a linear scale. A filterbank based on this mel-scale, as showed on Figure 2.5,

can be used to derive the MFCC which are time-frequency energy bins applied in current

ASR applications (Davis and Mermelstein, 1980). This spectrogram-like presentation of the
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cochlea is however not biophysically correct.

Figure 2.5: Filterbank based on a mel-scale (Haytham Fayek, 2016)

In the description of the gammatone filterbank, it was mentioned that there is an absence of

nonlinear characteristics in these models. This belief grew when experimental evidence for

the cochlear nonlinear character emerged (Kemp, 1978; Rhode and Robles, 1974), thus shift-

ing the cochlear modeling towards nonlinear adaptations of the already available filterbank

models.

As could be expected, those nonlinear extensions of basic filter models were more complicated

and it was Lopez-Poveda, in 2005, who observed that users were forced to make a compromise

between the complexity of a model and its ability to account for a wide range of physiological

phenomena (Lopez-Poveda et al., 2005). This is evidently a suboptimal state where the model

is forced to either lack a fast computation, that allows implementation in applications, or to

lack important nonlinear characteristics of the human hearing pathway.

Biophysical Models

This trade-off is something that can also be found in biophysical models, since these models

pay the price of a high computational load for their more accurate prediction of the cochlear

nonlinearities and cascaded architecture.

Transmission-line The transmission-line (TL) model is founded on the Wegel and Lane

model (Wegel and Lane, 1924). A transmission-line model discretizes the space along the

basilar membrane length and describes this system in terms of coupled mass-spring-damper
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elements (Zweig, 1991). Those elements are put in a basic structure and it is a cascaded version

of this structure (Figure 2.6) that forms the TL architecture. The model approximates the

cochlear processing as a cascade of serial impedances and shunt admittances, respectively

modeling the fluid coupling and mechanical filter properties in the cochlea (Verhulst et al.,

2012). The numerical solution of these models are computed by means of differential equations

(Altoe et al., 2014).
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models is possible. An acoustical representation of the transmission-line model is
shown in Fig. 4.1. The volume velocity Un at node n was given by A ẏ, and pn

described the force per unit area F/A. To obtain equations for every section of the
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Figure 4.1: Schematic of the acoustical representation of the transmission-line model. Un and pn describe
the volume-velocity and pressure for sections n of the model. M , R and K represent acoustical impedances
of a mass, damper and spring respectively.

model, Newton’s second law was applied. For an acoustical system, Newtons’ second
law is given by:

p = MU̇ + RU + KY , (4.1)

where M , R and K represent the acoustical impedance of a mass, damper and spring
respectively. For a mechanical system, this becomes:

p = mÿ + rẏ + ky, (4.2)

where y represents displacement, and where m, r and k represent mechanical elements
(i.e. acoustical elements times unit area).

4.2.1 Solving the traveling wave equation

A description of the traveling wave along the length of the cochlea was found by solv-
ing the transmission-line schematic in Fig. 4.1 for every section n. The transmission-

Figure 2.6: Basic element of the transmission-line model (Verhulst et al., 2010)

2.3.3 Model Selection

As put in the research goals, this study aims to replace a cochlear model with a deep neural

network (DNN). But which model to chose? If the assumption is made that the nonlinear

character of the DNN will be able to grasp every aspect of nonlinearity present in the ref-

erence model, the chosen model should be most resembling to the working of the human

cochlea without taking computational effort into account. Saremi made a comparative study

investigating seven types of auditory filter models (Saremi et al., 2016) and investigated the

influence of model architecture on cochlear filtering by comparing their outputs on a fixed

set of stimuli. Figure 2.7 displays the conclusion table of this investigation which shows that

the TL model of Verhulst has the largest operation range (0.1 kHz - 16 kHz) and is a good

predictor of tuning at low intensities. Additionally, as coupling was part of the initial quality

criteria, the TL model architecture is preferred since only TL models take physical coupling

between system elements into account, whereas the other class of models have independent

channels and coupling is fully determined by the common input (Duifhuis, 2004).

The only current drawback of the Verhulst TL model is the default number of cochlear chan-

nels for the model. Although a larger number of channels can be seen as a more accurate



Chapter 2. From Human to Machine Hearing 15

Figure 2.7: Results of the Saremi investigation (Saremi et al., 2016)

description of the BM, the Verhulst model has a high relative computation time per channel

as compared to, for example, the CARFAC model, which is almost 5 times faster. Taking into

account the large difference in total channel numbers, this will render the CARFAC model

substantially faster and hence explaining why current implementations are more drawn to

this type of model instead of the computational heavy, but more biophysical TL model.

However, this project aims to reduce this required computational time by offering a model

solution which incorporates the various features of the reference model, and for that, the TL

model, more specifically the Verhulst model (Verhulst et al., 2018) will be selected as the

reference model for this investigation.

2.4 The Adopted TL Model

The adopted TL model (Verhulst et al., 2018) depicted in Figure 2.8 accounts for the whole hu-

man auditory periphery, ranging from the middle ear towards the brainstem. The transmission-

line architecture and elements are explained in detail in (Verhulst et al., 2015) and (Verhulst

et al., 2018). The focus of this thesis will be on the TL cochlear model part of the architecture.

2.4.1 Overview of Cochlear Characteristics

Tonotopy The TL model divides the BM into 1000 sections, where the CF of each section

was determined by the Greenwood map (Greenwood, 1961).
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Figure 2.8: The architecture of the reference TL model (Verhulst et al., 2018)

Frequency tuning and longitudinal coupling Whereas most human auditory models

use a functional parallel filterbank to capture cochlear frequency-tuning (QERB), this model

uses a TL architecture for the prediction of BM vibrations (Verhulst et al., 2015). In this

way, they account for phenomena emerging from the coupled architecture of the BM and

surrounding fluids in cochlear travelling waves (Verhulst et al., 2018). These phenomena

include: two-tone suppression (Ruggero et al., 1992), asymmetrical filter shapes (Von Békésy,

1970) and phase changes in BM responses (Ruggero et al., 1997). TL front-ends benefit from

their natural cascaded architecture, resulting in the desired coupling phenomena without

introducing a second filter stage (Verhulst et al., 2018).
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Compression An instantaneous nonlinearity was included in the model to account for the

compressive behaviour observed in measured BM impulse responses (Recio and Rhode, 2000).

This can be connected to the placement of the poles of the BM admittance in the frequency

domain, since the pole location, relative to the imaginary axis of the complex plane, will

determine the stability of the model (Verhulst et al., 2012). In this model, the concept of a

pole movement depending on the BM motion is implemented, accounting for the compressive

nonlinearity.

2.4.2 Hearing-Impairment

Recent studies are trying to understand how cochlear nonlinearities are affecting sound per-

ception and how they are linked to hearing-impairment. People with damage to the OHC

have issues with those nonlinear aspects of hearing: poorer audiometric thresholds, loudness

recruitment and reduced frequency selectivity. This type of hearing loss is associated with

stereocilia damage, the actual loss of OHC bodies or a metabolic reduction of the gain prop-

erties of OHC, which are all known to reduce the cochlear gain.

Crucial in the scope of this project is the possibility to render the reference TL model hearing-

impaired. One of the model parameters which simulates cochlear gain is the above mentioned

pole of the BM admittance, which can be adjusted in a CF-dependent manner to simulate

wider cochlear filters associated with OHC damage (Verhulst et al., 2018). The different de-

grees of cochlear gain loss that can be simulated are depicted in Figure 2.9.

Two types of profiles are displayed: the sloping profiles that induce a sloping gain loss starting

at a CF of 1 kHz and are common among the ageing population, and the flat hearing-impaired

profiles (e.g., flat 35 dB gain loss), that has a constant gain loss over the entire frequency

spectrum. The reference model implementation applies a table which relates cochlear gain

reductions as in Figure 2.9 to values of the pole of the considered BM admittance at each CF,

such that any desired gain loss, within the audiometric frequency range, can be translated

into an associated pole location and can be used for HI simulations.
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Figure 2.9: Possible HI profiles that can be simulated with the Verhulst model (Verhulst et al., 2018)

This chapter gave a general view of the human hearing system and showed how different

auditory models are incorporating cochlear mechanics and nonlinear features. The choice for

the Verhulst et al. (2018) model, as a reference model for this project, was explained and

justified. The next chapter will focus on some general machine learning frameworks and how

these are implemented in the quest of making a nonlinear NN representation of the cochlear

TL model for people with NH or HI profiles.
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Neural Networks

Artificial neural networks or neural networks (NN) can be seen as a set of algorithms which

are based on how the human brain recognizes patterns. NN can interpret various sensory

data (e.g., images, sounds, time series), as long as this data can be transformed into a nu-

merical representation. This data is then provided as an input to a first layer where it flows

into a network based on machine perception. The inspiration of the formation of those NN

is primarily drawn from cognitive science which attempts to combine perspectives of biol-

ogy, neuroscience, psychology and philosophy to gain a greater understanding of the human

cognitive faculties (Daniel Rothmann, 2017).

3.1 Deep Neural Networks

A returning issue of conventional NN is the fact that they are limited in their ability to process

natural data in their raw form. Constructing a feature extractor that is able to transform this

raw data into a suitable representation, from which the subsystem can recognize patterns,

requires careful engineering and considerable domain expertise (LeCun et al., 2015). Once

it became clear that NN could serve as a feature extractor themselves, and could be used

for more complex functions, when the number of hidden layers was expanded -since different

layers may perform different kinds of transformations (Hinton et al., 2006)-, deep neural net-

works (DNN) were formed (Heaton, 2017).

19
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The key aspect of deep learning is that these hidden layers of features, are not designed by

humans: they are learned from data using a general-purpose learning procedure, a procedure

that allows to represent data with multiple levels of abstraction via the multiple available

processing layers (LeCun et al., 2015). These intricate structures in large datasets are dis-

covered using a backpropagation algorithm. This algorithm indicates how a machine should

adapt its internal parameters in each layer of the network. It brings a concept of depth into

the NN and hence makes it possible to form a hierarchical representation of a certain prob-

lem (Cevora, 2019). A hierarchical structure which is known to be a prominent feature of

information processing in the human brain (Riesenhuber and Poggio, 1999).

3.1.1 Applications in Hearing Field

Deep learning methods are making major advances in solving problems that have resisted the

best attempts of the AI community for many years (LeCun et al., 2015). Over time, DNN

were -successfully- implemented in machine vision and considering the benefits of getting in-

spired by human processes in vision, we stand to gain from a similar approach for machine

hearing with neural networks (Daniel Rothmann, 2018).

Some examples of current applications in the hearing field:

• Recent advances in deep neural network-based learning architectures are shown to out-

perform most of the conventional speech enhancement approaches (Xu et al., 2015;

Lu et al., 2013; Sun et al., 2017). Thanks to their nonlinear representations (multiple

hidden layers) these architectures are enabled to model the complex degradations in the

captured speech signal.

• Conditional generative adversial networks (cGAN) (Baby and Verhulst, 2018b), based

on the SEGAN model (Pascual et al., 2017), have showed to provide an alternative

framework to yield promising noise suppression performance (Michelsanti and Tan,

2017; Donahue et al., 2018).

• Recurrent neural networks, which employ LSTM cells, are used, leveraging upon its

memory structure, to capture temporal contexts within a larger training data set

(Baby and Verhulst, 2018a).
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• Using a DNN, MIT researchers created a model able to replicate human performance

on auditory tasks such as identifying a musical genre (Kell et al., 2018).

• Algorithms are formed with an aim of speech separation of multiple speakers (Yu

et al., 2017).

The rise of these projects can be accounted to several factors like an ever-increasing compu-

tational power, an increase in the amount of big data available for training these algorithms

and constantly emerging training methods. But the applications are not limited to those

mentioned above.

3.2 Model Architecture

The DNN architecture proposed in this master’s thesis can be seen as a combination of two

machine learning frameworks: convolutional neural networks (CNN) and autoencoders (AE).

3.2.1 Convolutional Neural Networks

Convolutional neural networks, initially developed by Yann LeCun in 1989 (LeCun et al.,

1989), are based upon a structure known as the neocognitron, developed by Fukushima

(Fukushima, 1988) as an attempt to build a functional artificial visual system. The name

CNN indicates that the network employs a mathematical operation called convolution (Good-

fellow et al., 2016), a specialized kind of linear operation that essentially means moving a filter

across the data to identify features in the input (Cevora, 2019). CNN can also be placed un-

der the definition of artificial neural networks since they are formed by neurons that take in

weighted sums of inputs and output a certain activity level, a nonlinear function of the input

value.

The typical architecture of a CNN consists of a series of different stages, of which the majority

are formed by two types of layers: convolutional and pooling layers. Units in a convolutional

layer are organized in so called feature maps. Feature maps that are connected with local

patches in the previous layers via a set of weights called a filterbank. This organisation is

also shown in Figure 3.1. In combination with the filterbank operation, a weighted sum is

taken and then passed through a nonlinearity (e.g., PReLU). This filtering operation is called
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a discrete convolution, hence the name. The role of this layer is to detect local conjunctions

of features in the previous layer.

Figure 3.1: Example of a convolutional operation: the patches on the left are the kernels, partitions of

the filterbank, the coloured layers on the right are the respectively accompanying feature maps

(Arden Dertat, 2017b)

Pooling layers on the other hand, have the goal to merge semantically similar features. In a

max pooling operation, the maximum activity of a certain local patch is selected and placed in

another, smaller feature map. This will compress the previous layer and create an invariance

to small shifts and distortions.

Typically to form a complete CNN architecture, two or three stages of convolutional, nonlin-

earity and pooling layers are stacked, followed by some more convolutional and fully-connected

layers, which are layers that can be seen as standard feedforward networks, without spatial

layout or restricted connectivity. The weights of the various filterbanks are the trainable

parameters, which can be updated by means of backpropagation of gradients.

The Choice for CNN

Convolutional neural networks were chosen in this project over other NN approaches since the

convolutional (filter) architecture is most closely related to the task we want it to perform:

cochlear filtering. Furthermore there are four key ideas behind the usage of CNN that take

advantage of the properties of natural signals (LeCun et al., 2015): Local connections, pooling,

the use of several network layers and shared parameters. Parameter sharing also has other

advantages, since it does not affect the runtime of forward propagation through the network

but does reduce the storage requirements of the model (Goodfellow et al., 2016).



Chapter 3. Neural Networks 23

3.2.2 Autoencoders

An autoencoder (Bourlard and Kamp, 1988; Hinton and Zemel, 1994) (Figure 3.2) is the com-

bination of an encoder function, which converts the input data into a different representation,

and a decoder function, which turns the new representation back into the original format

(Goodfellow et al., 2016), meaning that the targeted output of the autoencoder is the input

itself. If an input can be reconstructed at the output without having a great loss term (the

difference between the desired and the received output), the network has learnt to encode it

in such a way that the internal representation contains enough meaningful information. The

use cases of this framework are data denoising and dimensionality reduction.

Figure 3.2: Autoencoder architecture (Arden Dertat, 2017a)

3.3 AECNN

The two previous frameworks can be combined to form an autoencoder convolutional neural

network (AECNN), the type of DNN that will be used in this project as a starting framework.

Figure 3.3 displays this architecture.

On the left, the audio input data (sample length 2048) is displayed. This data is first pro-

cessed by an encoder architecture, comprised of a few CNN layers. Each CNN layer consists

of a set of filterbanks followed by a nonlinear operation on the obtained filter outputs. The

filter weights used in this CNN model are the trainable parameters and are updated in the

training phase. As can be seen, the temporal dimension of the audio is reduced by a factor of

two in every layer, resulting in a condensed representation of the input after the encoding part
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of the architecture (denoted in yellow on the figure). The halving of the temporal dimension

can be assigned to the usage of strided convolutions in the CNN layers, these are resulting in

a filter operation every two samples.
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Figure 3.3: The AECNN architecture used in this project (note that normalization and activation layers are

omitted)

In general, after N CNN layers in the encoder, the audio signal is compressed into a repre-

sentation of size L/2N x kN. With L representing the starting sample length and kN being

the number of kernels in the Nth CNN layer.

This encoded representation is then mapped to the output using a decoder system, which uses

transposed-convolutional layers, where the temporal dimension is now doubled every layer.

The decoder also consists of N deconvolution layers, yielding back the starting temporal di-

mension of L samples. The number of filters used in the final CNN layer of the decoder is

set to be equal to the number of cochlear sections (NCF) that are provided in the cochlear

reference model. Thus returning an output of the proposed AECNN model of size L x NCF.
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Since the encoder uses strided convolutions, it might lose some important information such

as temporal alignment and phase information. To account for this, the proposed architecture

uses U-shaped skip connections to bypass this information from the encoder to the decoder

layers (He et al., 2016). In the specific scope of this research, the use of the skip connections

can be seen as pivotal since the phase information, that is transferred via these connections,

coupled to an audio sample is crucial for speech intelligibility in noisy listening conditions.

These connections also facilitate several direct paths between the input and the output, which

in turn helps the architecture to combine different levels of nonlinearities which is essential in

approximating the nonlinear coupling and the level-dependent tuning of the human cochlea.

3.4 Transfer Learning

Transfer learning (Pan and Yang, 2009) is a machine learning technique where a model,

trained on one task, is reused as a starting point to train a model on a second -related- task.

Due to the fact that both tasks are related, transfer learning assumes that the learned features

of the first task, are general and hence transferable to the second model.

In this project, this technique is used when an already developed and trained DNN model

serves as a starting point to construct another DNN. More specifically, the structure, weights

and parameters of the first obtained AECNN for NH people will be used to form a AECNN ca-

pable of predicting the HI cochlear response for the different hearing-impaired profiles. Since

people with hearing-impairment will still posses hearing characteristics that resemble the ones

of the normal-hearing profiles, the responsible features for capturing these characteristics can

be transferred.

The use of transfer learning will save time on both the feature extraction, since only a limited

number of training utterances compared to the starting model will need to be collected and

processed, and on the training time itself.
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Methodology

4.1 Data

4.1.1 Dataset

The speech material that will be used in the training and testing phase stems from the TIMIT

training dataset:

”The TIMIT corpus of read speech is designed to provide speech data for acoustic-phonetic

studies and for the development and evaluation of automatic speech recognition systems.

TIMIT contains broadband recordings of 630 speakers of eight major dialects of American En-

glish, each reading ten phonetically rich sentences. The TIMIT corpus includes time-aligned

orthographic, phonetic and word transcriptions as well as a 16-bit, 16kHz speech waveform

file for each utterance.” (Garofolo, 1993)

The choice of the TIMIT corpus over other datasets (e.g., Wall Street Journal; Paul and Baker,

1992) was made considering the presence of various naturally spoken speech combinations,

something that is absent in quality filtered databases, that limit the whole database to a

partition with only the 64,000 most frequently occurring words (Sakti et al., 2009).

26
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4.1.2 Data Processing

Figure 4.1 displays the pathway that will be used to obtain the desired NH AECNN capable

of replacing the TL model.

Collect Audio Data

from TIMIT Dataset

Resampling

Verhulst et al. Model

Slice Features Slice Features

AECNN
Change Model

Parameters

Training

Phase

NH AECNN

16 kHz

100 kHz

20 kHz

20 kHz

Figure 4.1: The data and training pathway used in this project to form a NH AECNN

Initial Steps

Data collection The audio collected from the TIMIT dataset (2310 sentences) is adjusted

such that the root mean square energy of the signal has a sound pressure level of 70 dB. This
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sound level is best resembling standard conversational speech levels and includes both louder

and more silent instantaneous amplitudes. Those amplitude variations need to be present

in the training phase for the model to learn to capture the nonlinearities associated with

cochlear processing.

Resampling The TIMIT dataset has a sampling frequency of 16 kHz, whereas the TL

model demands an input sampling frequency of 100 kHz, hence an upsampling is performed

on the TIMIT data. Since the TL model will, on the other hand, output a signal with a

sampling frequency of 20 kHz, the same TIMIT data needs to be upsampled to 20 kHz as

well, this to have the same sampling frequency in the input and output data for the AECNN.

The reference TL Verhulst et al. model The upsampled data is given as an input to

the Verhulst model. The model will predict the basilar membrane displacements across CF.

Although the model is able to return 1000 CS, the choice is made to only output 201 sections.

This to reduce training time in further stages. The CF of these 201 sections are based on the

Greenwood map Greenwood (1961) and span the frequencies between 113 Hz and 12,010 Hz.

Appendix A gives the entire list of CS with their accompanying CF.

Slice Features Since the proposed AECNN architecture is set up to only process input

data with a sample length of 2048, both the TIMIT data, as well as the received output of

the TL model is sliced in chunks of 2048 samples and stored.

4.2 AECNN for NH

The sliced TIMIT data is given as an input to the AECNN whereas the sliced features of

the TL model function as reference data in the training phase. Before entering this training

phase, the exact AECNN architecture should be constructed. A distinction should be made

between fixed AECNN parameters, that will be kept constant in this investigation (Table

4.1), and the variable parameters, also referred to as hyperparameters which generally affect

the time and memory cost of running the algorithm (Goodfellow et al., 2016) and can thus be

seen as crucial design parameters. The addressed hyperparameters in this investigation are

the learning rate, layer depth, filter length and NL activation function of the NN architecture.
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Table 4.1: Fixed parameters AECNN framework

Parameter Value Summary

Window length 2048 Length of the input audio sample. Based on the na-

ture of envelope fluctuations in speech signals and

context between words.

Input features dimension 1 1D signal input.

Stride 2 A step size of 2 for the filter operation. Downsizing

and resizing the temporal component by (roughly)

a factor of 2.

Padding Same Add zero padding to fit the filters on the input

shapes.

Kernels/Filters per layer 128 Design choice.

Output features dimension 201 Number of cochlear sections (CS) in the TL output

data and thus resembling AECNN output features.

Each CS corresponds with a CF between 100 Hz

and 12 kHz (see Appendix A).

4.2.1 Learning Rate

The learning rate is perhaps the most important hyperparameter since it controls the effective

capacity of the model in a more complicated way than other hyperparameters (Goodfellow

et al., 2016). Plotting the training error for a model in function of the learning parameter will

give a U-shaped curve, meaning that both too small, and too high learning rates will yield

suboptimal solutions.

In this research, the investigated learning rates are: 0.001 - 0.0004 - 0.0001

4.2.2 Layer Depth

The layer depth is coupled to the number of hidden layers that make up the DNN. Increasing

this number will increase the representational capacity of the model but will evidently also

increase the time and memory cost of every operation of the model. This trade-off should be
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monitored and the design choice should be made accordingly.

In this research, the investigated layer depths are: 4 layers - 6 layers - 8 layers

4.2.3 Filter Length

A fixed parameter of the framework is the number of filters per layer but the width/length of

these filters can be adapted. Again, a kind off trade-off is taking place where increasing the

filter length will increase the number of parameters in the model. This increase in tuneable

parameters will increase the runtime and computational cost but also the overall performance

of the model.

In this research, the investigated filter lengths are: 31 - 63 - 127

4.2.4 Nonlinear Activation Functions

Most NN approaches to model biophysical systems use a rectified linear unit (ReLU) as ac-

tivation function. However to correctly capture the cochlear nonlinearities, the shape of the

activation function is crucial in this design. In essence, the function should cross the x-axis

to capture zero-crossings, and in standard activation functions (e.g., sigmoid, ReLUs) this

is not the case and hence the model is unable to capture level-dependent compression and

the level-dependency of cochlear tuning. The two activation functions used here do have this

zero-crossing, as shown in Figures 4.2 and 4.3.

In this research, the investigated nonlinearities are: PReLU - tanh

4.2.5 Training Phase

Once the AECNN architecture is chosen, the training phase, of which the fixed parameters

are depicted in Table 4.2, will start.

In short, the models are trained such that the mean absolute error (L1 loss) between the

predicted and reference TL cochlear outputs, to the same stimulus, is minimized.
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Figure 4.2: PReLU activation function (He et al., 2015)

Figure 4.3: Tanh activation function (Kishan Maladkar, 2018)

In the very first run of the training phase, the weights of the filters in the tuneable layers

are randomized. After the completion of the first batch, where 32 input-output combinations

were showed to the model, the weights are updated via stochastic gradient descent based

on backpropagation (Ganin and Lempitsky, 2014) to minimize the L1 loss term. The same

procedure is repeated until the entire training set is presented to the model: this marks one

epoch. The epoch number is incremented and the training phase is resumed for the indicated

number of epochs. After completing the last epoch, the best performing AECNN architecture

(based on the lowest L1 loss) is stored together with its weights and can be used afterwards

for evaluation or as a starting point to develop the HI version of the AECNN (see further).
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Table 4.2: Fixed parameters training phase

Parameter Value Summary

Optimizer Adam (Kingma and

Ba, 2014)

An adaptive learning rate optimization algorithm,

fairly robust to the choice of hyperparameters.

Number of epochs 20 Number of times that the learning algorithm will

work through the entire dataset. Design choice to

keep the total training time reasonable.

Batch size 32 Number of training utterances that the model has

to work through before the tuneable parameters are

updated.

Shuffle Batch The shuffling of the training data before each epoch

is done in batch-sized chunks.

Loss function L1 loss the mean absolute error between the desired and

predicted output is used as loss term.

The entire architecture and training framework is developed using a Keras (Chollet et al.,

2018) machine learning library with a TensorFlow (Abadi et al., 2016) back-end. Appendix

B depicts an example Keras model summary output for an 8 layer AECNN model.

4.3 AECNN for HI

The different types of cochlear gain loss were already mentioned in Section 2.4.2. This project

will focus on four of the most severe HL profiles that can be implemented in the reference

model: slope 25/35 and flat 25/35.

The pathway depicted on Figure 4.4 is similar to the NH pathway explained above, one crucial

difference however is the rendering of the HI version of the reference TL Model model based

on the selected HL profile.

The AECNN is a selected NH model from the first part of this project. The architecture

is exactly the same and the weights of the model are put as starting values. One possible
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Figure 4.4: The data and training pathway used in this project to form a HI AECNN

variation in the DNN architecture is the choice of tuneable parameters by freezing the weights

of particular hidden layers and hence not updating these during the transfer learning phase.

This fixation will not only decrease the number of adjustable parameters but also the compu-

tational time needed to perform the training phase. The challenge, however, lies in finding a

compromise between enough tuneable parameters to grasp the HI profile specificities and an

acceptable computational time, keeping further implementations in mind. After 20 epochs,
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where again the L1 loss of the model performance is minimized, the best model is exported

and saved.

4.3.1 Transfer Learning Utterances

The biggest benefit of transfer learning is the drop of training utterances needed to correctly

train the DNN architecture. Whereas the NH training phase used 2310 training utterances,

a much lower number suffices here since hearing aspects, that will not be altered by cochlear

gain loss, will already be present in the trained NH AECNN.

In this research, the investigated number of utterances are: 50 - 100
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Results

5.1 Performance Measurements

The previous chapters explained the AECNN model architectures, their parameters and how

they are being implemented in this research. This chapter will evaluate and compare the

performance of the trained NH and HI models. The evaluation and selection metrics for the

’best performing model’ will be described first.

5.1.1 General Attributes

Before the start of the training phase, and directly after the completion of the training cycle,

some generic attributes will be available for each model:

• Number of (trainable) parameters

• Loss term

• Time per epoch

The number of trainable parameters plays a role in the general performance, since a greater

number will permit the DNN to capture more specific characteristics that are present in the

audio input. Linked to this resembling ability, the loss term also experience variations, since

this indicates the mean absolute error (L1 loss) during training. A lower loss term indicates

a better performance on the training set. Upfront it seems desirable to keep the time per

epoch (the time for one training iteration on the entire dataset) as low as possible since an

35
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increase in time will require a higher computational power and more storage room for the

entire model. Since every depicted model was trained for 20 epochs, the time per epoch is

5% of the total training time for a model.

5.1.2 Performance on Basic Auditory Stimuli

An audio (or speech) fragment can be seen as a combination of basic components such as

click impulses and pure tones varying in frequency. Since the DNN is not trained (the TIMIT

corpus only contains speech samples) on those types of basic stimuli, commonly used in

cochlear mechanics studies, they are a good performance measure to evaluate how the trained

models are performing.

Click Stimulus

The models will be presented with a click impulse lasting for 100 µs, of which the shape -only

a narrow pressure spike- can be seen on the left part of Figure 5.1. The sound pressure of

this stimulus can be calculated by means of Equation 5.1, where p0, the reference pressure

for the decibel (dB) scale, is equal to 2e−5 Pa. L denotes the sound pressure level (SPL) in

dB. Since the sound level of the data used for training is set to 70 dBSPL, the same value is

used in this equation. To have the same peak-to-peak amplitude of a pure tone sinusoid with

amplitude 1, the value of the click stimulus (which is located between 0 and 1) is calibrated

into a peak-equivalent SPL, explaining the factor 2 at the start of the equation.

Stimclick = 2 ∗
√

2 ∗ p0 ∗ 10
L
20 (5.1)

The right part of Figure 5.1 depicts the cochlear dispersion of the TL model for this particular

click stimulus, this will be the desired output of the trained NH AECNN. These type of plots

will be used throughout this chapter: the output plot of the TL model (and in further

sections the AECNN models) will have the same temporal dimension but will depict the BM

movements for each of the 201 cochlear sections (CS). The 201 CF that are linked to these

CS are mentioned in Appendix A.
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Figure 5.1: Click stimulus input and TL output. (Left) Input pressure [Pa] in the time domain [ms] for

a click stimulus of 100 µs. (Right) Output response of the TL model: BM displacements for the

selected 201 CS (see Appendix A for the corresponding CF).

Pure Tone Stimuli

Pure tone stimuli of both 1 kHz and 4 kHz will be presented to the models and their stimulus

pressure is formed via Equation 5.2. The additional term in comparison with the click stimulus

equation is the sinusoid, which is formed based on the frequency of the input tone and depends

on the length of the vector t (a time vector of length 2048 (input sample length)).

Stimtone = p0 ∗
√

2 ∗ 10
L
20 ∗ sin(2 ∗ π ∗ ftone ∗ t) (5.2)
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Figure 5.2: 1 kHz tone stimulus input and TL output. (Left) Input pressure [Pa] in the time do-

main [ms] for a pure tone stimulus of 1 kHz. (Right) Output response of the TL model: BM

displacements for the selected 201 CS (see Appendix A for the corresponding CF).
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The tones, together with their respective cochlear dispersion are depicted in Figures 5.2 and

5.3. As can be derived from these input pressure forms, the onset (and offset, but not depicted)

of the pure tone is multiplied with a Hanning window of 10 ms.
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Figure 5.3: 4 kHz tone stimulus input and TL output. (Left) Input pressure [Pa] in the time do-

main [ms] for a pure tone stimulus of 4 kHz. (Right) Output response of the TL model: BM

displacements for the selected 201 CS (see Appendix A for the corresponding CF).

MSE on Input Stimuli

Besides the visual inspection of how the various AECNN outputs are resembling the ones of

the TL, the MSE will be calculated of the predicted 411,648 values (201 cochlear sections x

2048 samples). This relative measure will allow to compare the models in a numerical manner,

based on their predictive performance on the above stated stimuli.

RMS of Output - Excitation Patterns

This performance measurement will consist of calculating the RMS of each (201 in total) filter

channel’s outputs in response to the basic input stimuli. These RMS values are subsequently

plotted according to their corresponding CF on a frequency axis, giving rise to a so called

excitation pattern. Doing this for multiple sound levels (ranging from 10 dBSPL to 90 dBSPL

in this project) will allow to visualize the level-dependency in between excitation patterns.

This level-dependency should follow a nonlinear behaviour (due to cochlear compression)

across the levels. Based on a visual inspection, this performance measure will be taken into

account.
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5.1.3 MSE Performance on Test Set

Since the trained DNN should also be able to correctly predict cochlear outputs for speech

fragments that were not part of the training dataset, the models are not only tested on the ba-

sic input stimuli mentioned above. Hence a test set, consisting of 64 unseen speech fragments,

was selected. A segment of 2048 samples was chosen from each of the 64 fragments and was fed

to both the reference TL model and the trained neural network architecture. Here again, the

MSE of all 411,648 samples are calculated and used in the addressing the overall performance.

Figure 5.4 shows the audio input of one of those segments and the corresponding TL output.
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Figure 5.4: Test set example with corresponding TL output. (Top) Input pressure [Pa] in the time

domain [ms] for a speech fragment part of the test set. (Bottom) Output response of the TL

model: BM displacements for the selected 201 CS (see Appendix A for the corresponding CF).

5.1.4 QERB

The final performance measure is the resulting equivalent rectangular bandwidth or the QERB.

This can be used as a quantification of the sharpness of cochlear tuning (Shera et al., 2010)

as a function of level, one of the attributes of the cochlea that was demanded to be included

in the trained DNN. At the same time, this QERB value as a function of frequency follows a

typical curve for humans (Shera et al., 2002). This value is described as:
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QERB =
CF

ERB
(5.3)

Where CF is again the frequency coupled to a certain cochlear section and ERB the, CF-

dependent, equivalent rectangular bandwidth: the bandwidth of a rectangular filter with the

same peak response that passes the same total power of a power spectrum that is driven by

the same stimulus. This power spectrum is calculated from the fast Fourier transform of the

stimulus’ impulse response at a specific CF. For our evaluation, we use a 100 µs click stimulus

as earlier adopted in (Verhulst et al., 2015; Raufer and Verhulst, 2016). Derived QERB-values

for different CF will be plotted and compared to both the TL model and a human tuning

estimate.

Taking all those different performance measurements in consideration for each trained model,

the best performing model for every variable hyperparameter will be selected.
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5.2 AECNN for NH

5.2.1 Learning Rate

The overview Table 5.1 displaying the models that were trained with a varying learning rate

shows that the number of parameters stays the same and the executing time per epoch is

more or less equal. The loss term is slightly lower for the two models with the lowest learning

rate. Based on the performance on the input stimuli and the test set, there is not really one

model that stands out.

Table 5.1: Overview trained NH AECNN models - Variable learning rate. Number of parameters,

loss term, time per epoch and MSE of the basic input stimuli and test set predictions for the

depicted AECNN models on the left.

Click 1kHz 4kHz Testset

Model (NL/Depth/lr/FL) Param. LT Time/Epoch

x10-4 x10-4 x10-4 x10-4

PReLU/4 lay./0.001/63 5,641,856 0.0404 1h46m12s 23.74 71.08 23.69 57.10

PReLU/4 lay./0.0004/63 5,641,856 0.0375 1h48m36s 10.63 61.18 63.79 46.40

PReLU/4 lay./0.0001/63 5,641,856 0.0376 1h46m40s 9.99 166.85 16.49 49.66

The excitation patterns in Figure 5.5 reveal that none of these models were able to capture

the nonlinear level-dependency that is clearly present in the TL model patterns. The excita-

tion patterns of the DNN can be interpreted as a shifted variant of the 70 dBSPL pattern,

this could be accounted to the fact that, training the architecture only on 70 dBSPL input

fragments, will only give a correct pattern for stimuli of that same level.

The choice was made to proceed with a learning rate of 0.0001 since the flattening of the

frequency peak was most resembling to the desired output.
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Figure 5.5: Comparison of excitation patterns - Variable learning rate. Cochlear excitation patterns

calculated as the RMS value of the BM displacement (yBM) per cochlear section (corresponding

CFs are listed in Appendix A) for a stimulation with a 1 kHz pure tone (top row), 4 kHz pure

tone (middle row) and click stimulus (bottom row) with intensity levels ranging between 10 and

90 dBSPL. The depicted models are the reference TL model (left) and AECNN architectures

varying in learning rate.
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5.2.2 Layer Depth

In theory, changing the layer depth will provide a better performance since the increase of

layers, hence tuneable parameters, will give the NN more possibilities to store relevant fea-

tures that can be found in the input audio signals.

Looking at Table 5.2, a large increase in parameters can indeed be seen for a model that in-

creased its depth to 6 layers. This will induce a small increase in time per epoch (3 minutes)

but a reduction in loss term. The MSE values are not significantly different.

Table 5.2: Overview trained NH AECNN models - Variable layer depth. Number of parameters,

loss term, time per epoch and MSE of the basic input stimuli and test set predictions for the

depicted AECNN models on the left.

Click 1kHz 4kHz Testset

Model (NL/Depth/lr/FL) Param. LT Time/Epoch

x10-4 x10-4 x10-4 x10-4

PReLU/4 lay./0.0001/63 5,641,856 0.0376 1h46m40s 9.99 166.85 16.49 49.66

PReLU/6 lay./0.0001/63 8,836,736 0.0307 1h49m41s 4.41 160.75 15.29 53.95

Figure 5.6 shows two trained models that are fairly similar: the AECNN even after increasing

the layer depth, is not able to capture level-dependency. This leaves layer depth as a design

choice, set to 6 layers for the next sections based on a lower loss term and better MSE

performance.
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Figure 5.6: Comparison of excitation patterns - Variable layer depth. Cochlear excitation patterns

calculated as the RMS value of the BM displacement (yBM) per cochlear section (corresponding

CFs are listed in Appendix A) for a stimulation with a 1 kHz pure tone (top row), 4 kHz pure

tone (middle row) and click stimulus (bottom row) with intensity levels ranging between 10 and

90 dBSPL. The depicted models are the reference TL model (left) and AECNN architectures

varying in layer depth.
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5.2.3 Filter Length

The filter length also accounts for the number of trainable parameters, hence the above effect

can also be observed here: a larger number of parameters will decrease the loss term but

also increase the execution time per epoch (Table 5.3). Comparing the MSE performance,

the model with filter length 127 is the best performing yet. Figure 5.7 depicts these trained

models, where the capturing of level-dependent nonlinearities, although an improvement in

performance measurement values, is still absent.

Table 5.3: Overview trained NH AECNN models - Variable filter length. Number of parameters,

loss term, time per epoch and MSE of the basic input stimuli and test set predictions for the

depicted AECNN models on the left.

Click 1kHz 4kHz Testset

Model (NL/Depth/lr/FL) Param. LT Time/Epoch

x10-4 x10-4 x10-4 x10-4

PReLU/6 lay./0.0001/63 8,836,736 0.0307 1h49m41s 4.41 160.75 15.29 53.95

PReLU/6 lay./0.0001/127 17,380,992 0.0298 1h58m20s 4.45 93.09 13.32 45.43

PReLU/6 lay./0.0001/31 4,564,608 0.0360 1h44m20s 7.07 176.81 30.84 48.29

5.2.4 Nonlinear Activation Functions

The hyperparameter tuning for the PReLU activation function gave an acceptable perfor-

mance on the 70 dBSPL input stimuli, but wasn’t able to capture the nonlinear level-

dependency, that is present in the TL reference output. Hence the effect of choosing an-

other (nonlinear) activation function, tanh, was investigated. Table 5.4 indicates that with

a moderate increase in time per epoch, the loss term halves and the MSE performance is

significantly improved for each type of input signal.

Figure 5.8 shows that the tanh activation function is able to capture the nonlinear level-

dependency also present in the TL output, for all three types of input stimuli. This in-
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Figure 5.7: Comparison of excitation patterns - Variable filter length. Cochlear excitation patterns

calculated as the RMS value of the BM displacement (yBM) per cochlear section (corresponding

CFs are listed in Appendix A) for a stimulation with a 1 kHz pure tone (top row), 4 kHz pure

tone (middle row) and click stimulus (bottom row) with intensity levels ranging between 10 and

90 dBSPL. The depicted models are the reference TL model (left) and AECNN architectures

varying in filter length.
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Table 5.4: Overview trained NH AECNN models - Variable nonlinear activation function. Num-

ber of parameters, loss term, time per epoch and MSE of the basic input stimuli and test set

predictions for the depicted AECNN models on the left.

Click 1kHz 4kHz Testset

Model (NL/Depth/lr/FL) Param. LT Time/Epoch

x10-4 x10-4 x10-4 x10-4

PReLU/6 lay./0.0001/127 17,380,992 0.0298 1h58m20s 4.45 93.09 13.32 45.43

tanh/6 lay./0.0001/127 16,955,008 0.0148 1h59m05s 1.21 4.92 6.05 20.06

dicates that an AECNN, with a tanh nonlinear activation function, is able to learn how

level-dependent compression is accounted for in the cochlea, and this trained only on input

audio data of one particular sound level (70 dBSPL).

5.2.5 Layer Depth - Revisited

Recalling that layer depth was a design choice, the layer depth of the DNN is readdressed for

a tanh activation function. Table 5.5 depicts this variation, from which can be concluded that

the performance of the model with 6 layers is fairly similar to the one with 8 layers, having

only a small increase in loss term, but a decrease of 7,000,000 trainable parameters. Figure

5.9 doesn’t display a model which stands out, leaving this hyperparameter a design choice.
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Figure 5.8: Comparison of excitation patterns - Variable nonlinear activation function. Cochlear

excitation patterns calculated as the RMS value of the BM displacement (yBM) per cochlear

section (corresponding CFs are listed in Appendix A) for a stimulation with a 1 kHz pure tone

(top row), 4 kHz pure tone (middle row) and click stimulus (bottom row) with intensity levels

ranging between 10 and 90 dBSPL. The depicted models are the reference TL model (left) and

AECNN architectures varying in nonlinear activation function.
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Table 5.5: Overview trained NH AECNN models - Variable layer depth. Number of parameters,

loss term, time per epoch and MSE of the basic input stimuli and test set predictions for the

depicted AECNN models on the left.

Click 1kHz 4kHz Testset

Model (NL/Depth/lr/FL) Param. LT Time/Epoch

x10-4 x10-4 x10-4 x10-4

tanh/6 lay./0.0001/127 16,955,008 0.0148 1h59m05s 1.21 4.92 6.05 20.06

tanh/4 lay./0.0001/127 10,712,704 0.0185 1h54m42s 1.63 3.95 8.63 24.04

tanh/8 lay./0.0001/127 23,197,312 0.0140 2h01m40s 1.13 4.29 8.64 15.19

In the scope of this thesis, since the AECNN implementation in possible real-time applications

is mainly a matter of computational complexity, the choice is more drawn towards the less

complex 6 layer model.

5.2.6 Summary NH

An overview of all trained normal hearing AECNN models, with their performance, is given

in Appendix C.



Chapter 5. Results 50

−80

−60

−40

−20

0

20

R
M
S
o
f
y
b
m

(d
B
)
-
to
n
e
1
k
H
z

TL model AECNN - tanh - 6 layers AECNN - tanh - 4 layers AECNN - tanh - 8 layers

−80

−60

−40

−20

0

20

R
M
S
o
f
y
b
m

(d
B
)
-
to
n
e
4
k
H
z

10dB

20dB

30dB

40dB

50dB

60dB

70dB

80dB

90dB

0.25 0.5 1 2 4 8
−100

−80

−60

−40

−20

0

CF (kHz)

R
M
S
o
f
y
b
m

(d
B
)
-
cl
ic
k

0.25 0.5 1 2 4 8

CF (kHz)

0.25 0.5 1 2 4 8

CF (kHz)

0.25 0.5 1 2 4 8

CF (kHz)

1

Figure 5.9: Comparison of excitation patterns - Variable layer depth. Cochlear excitation patterns

calculated as the RMS value of the BM displacement (yBM) per cochlear section (corresponding

CFs are listed in Appendix A) for a stimulation with a 1 kHz pure tone (top row), 4 kHz pure

tone (middle row) and click stimulus (bottom row) with intensity levels ranging between 10 and

90 dBSPL. The depicted models are the reference TL model (left) and AECNN architectures

varying in layer depth.
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5.2.7 QERB

Looking at the QERB plots for the best performing PReLU and tanh-based models, depicted

in respectively Figure 5.10 and Figure 5.11, the same interpretation can be made: whereas the

PReLU-based architecture is approximating the TL QERB reference-data for a 70 dB intensity

click well, it categorizes, due to the lack of level-dependency, the 40 dB click as a 70 dB click

as well. The tanh-based architecture, on the other hand, shows a correct distinction between

the different intensities and is doing an excellent job in resembling the TL QERB values, which

are on their part very well resembling to literature values of human QERB values (Shera et al.,

2010).
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Figure 5.10: QERB values for trained PReLU AECNN. QERB values computed for the energy under-

neath the power spectrum of CF impulse responses to a 100 µs click of different intensities (40

and 70 dB). Simulations are shown for the TL model (red), trained PReLU AECNN model

(blue) and a literature human QERB estimate (Shera et al., 2010).
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Figure 5.11: QERB values for trained tanh AECNN. QERB values computed for the energy underneath

the power spectrum of CF impulse responses to a 100 µs click of different intensities (40 and

70 dB). Simulations are shown for the TL model (red), trained tanh AECNN model (blue) and

a literature human QERB estimate (Shera et al., 2010).
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5.2.8 Performance Best Model on Basic Auditory Stimuli

To finalize the NH part of the research question, the cochlear dispersion for the basic auditory

input stimuli (click, pure tone 1 kHz and pure tone 4 kHz) and for the example of the test

set input, are displayed in Figures 5.12 and 5.13, for the best performing NH AECNN model

(tanh - 6 layers - 0.0001 - 127).

5.2.9 Side Note: Context

Both Figure 5.12 (top right: difference in performance for a click stimulus) and Figure 5.13

(bottom: difference in performance on test set example) depict a suboptimal behaviour for

(roughly) the first 20 ms of the AECNN output response. A possible explanation can be

found in the applied processing pathway of Chapter 4 (Section 4.1.2), where slicing of both

the TIMIT dataset and the TL reference model output to segments of 2048 samples was done.

However, to receive the reference TL model output, the full length of a training example was

presented at the input, thus including the context (the samples that are proceeding and suc-

ceeding) of each sample. This context however is lost for the first samples when slicing the

input data. It followed that the AECNN is trained on examples (the reference output) that

contain information linked to the proceeding context of the cropped audio sample, that the

AECNN is not able to see. The result of this omitting of context should only be visible in the

region where this context has an influence, and following the visual inspection of the plots,

this region can be set at 20 ms. Coupling back to the QERB plots depicted on Figures 5.10

and 5.11, it is possible that this slightly poorer resemblance for the lower frequency values

can also be explained by this.

This incorporation of context for the data used in the AECNN training phase can be seen as

an extension of this project and is not further discussed here.
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Figure 5.12: Performance best AECNN model on basic auditory input stimuli. (Left column)

Input pressure [Pa] in the time domain [ms] for the three different stimuli (click, pure tone

1 kHz and pure tone 4 kHz). (Middle columns) Output cochlear dispersion of the TL and

trained NH AECNN model: BM displacements for the selected 201 CS (see Appendix A for the

corresponding CF), for their respective input signal. (Right column) Difference between the

two previous depicted outputs.
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Figure 5.13: Performance best AECNN model on test set input. (Top) Input pressure [Pa] in the

time domain [ms] for a speech fragment part of the test set. (Middle) Output response of the

TL and trained AECNN model: BM displacements for the selected 201 CS (see Appendix A

for the corresponding CF). (Bottom) Difference between the two previous depicted models.
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5.3 AECNN for HI

The second goal of this dissertation consists of adapting, via transfer learning, the best per-

forming NH AECNN towards a network that can be used to replace the HI version of the

reference TL model. The starting models for this task will be both the 6 and 8 layer variant

of the tanh-based NH architecture.
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Figure 5.14: Performance NH and HI TL models on test set input. (Top) Input pressure [Pa] in the

time domain [ms] for a speech fragment part of the test set. (Bottom) Output responses for the

NH TL model, the HI TL model with flat 35 profile and the HI TL model with slope 35 profile:

BM displacements for the selected 201 CS (see Appendix A for the corresponding CF).
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As mentioned in previous the chapters, the focus will be on the most severe HL profiles that

can be implemented in the reference TL model: the slope 25/35 and the flat 25/35 profiles.

The resulting cochlear output for a TL model that is made hearing-impaired for the flat 35

and slope 35 profile is shown in Figure 5.14.

5.3.1 Slope HL Profiles

Slope 35

The variable hyperparameter in this transfer learning approach, as mentioned in Chapter 4,

is the number of training utterances used. The same type of overview table that was used in

the previous sections is set up here to discuss this variational parameter. An attribute that

immediately stands out, when comparing Table 5.6 with the previous tables, is a really small

time per epoch (order of minutes vs order of hours). This can be accounted to the fact that

the starting NH architecture is already trained to include certain specificities of hearing that

can be found in both NH and HI profiles, hence those features don’t need to be learnt any

more by the HI variant of the AECNN thus reducing the time per epoch.

Table 5.6: Overview trained HI AECNN models - slope 35. Number of parameters, loss term, time

per epoch and MSE of the basic input stimuli and test set predictions for the depicted AECNN

models on the left.

Click 1kHz 4kHz Testset

Model (NL/Depth/Utt.) Param. LT Time/Epoch

x10-4 x10-4 x10-4 x10-4

tanh/6 lay./50 16,955,008 0.0072 32s 0.35 2.66 0.28 12.28

tanh/6 lay./100 16,955,008 0.0071 1m03s 0.33 2.57 0.20 11.90

tanh/8 lay./50 23,197,312 0.0057 36s 0.40 3.63 0.53 8.12

tanh/8 lay./100 23,197,312 0.0058 1m10s 0.33 2.19 0.53 7.97
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Similar to the NH situation, the table indicates that the overall performance of the 6 and 8

layer model is fairly similar, which also can be concluded from Figure 5.15. All the trained

models are able to capture the nonlinear level-dependency present in the HI TL excitation

patterns. The noisy response for the lower frequencies in the pure tone outputs can be disre-

garded since these are dB values located 40-50 dB below the peak value.
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Figure 5.15: Comparison of excitation patterns - slope 35 - Variable training utterances and

layer depth. Cochlear excitation patterns calculated as the RMS value of the BM displacement

(yBM) per cochlear section (corresponding CFs are listed in Appendix A) for a stimulation with

a 1 kHz pure tone (top row), 4 kHz pure tone (middle row) and click stimulus (bottom row) with

intensity levels ranging between 10 and 90 dBSPL. The depicted models are the reference TL

model that is made HI with a slope 35 cochlear gain loss profile (left) and trained HI AECNN

architectures varying in layer depth and number of used training utterances.
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Looking at the corresponding QERB plot for the slope 35 profile, Figure 5.16, it immediately

shows that the overall tuning curve for a hearing-impaired person is significantly different

compared to the NH variant that was introduced above. The depicted QERB values for the

trained HI model (the 6 layer/50 utt. variant was chosen for its low training time and high

performance), show good resemblance with the NH TL data. Since this resemblance can

already be obtained with only 50 utterances and a total transfer learning time of around

12 minutes, it proves that transfer learning gives a viable option in the development of HI

variants of NH AECNN models.
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Figure 5.16: QERB values for trained HI AECNN - slope 35. QERB values computed for the energy

underneath the power spectrum of CF impulse responses to a 100 µs click of different intensities

(40 and 70 dB). Simulations are shown for the HI TL model (red) and trained HI AECNN model

(blue) for a slope 35 HL profile. Refer to Subsection 5.2.9 for an explanation for the suboptimal

low frequency performance.

To round up the performance measurements on the slope 35 profile, the performance of the

HI AECNN on the test set example is depicted in Figure 5.20.
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Figure 5.17: Performance HI AECNN model on test set input - slope 35 HL profile. (Top) Input

pressure [Pa] in the time domain [ms] for a speech fragment part of the test set. (Middle)

Output response of the HI TL model and the trained HI AECNN model: BM displacements for

the selected 201 CS (see Appendix A for the corresponding CF), both with a slope 35 cochlear

gain loss profile. (Bottom) Difference between the two previous depicted models. Refer to

Subsection 5.2.9 for an explanation for the suboptimal performance of the first 20 ms.
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Slope 25

The same procedure was done for the (less severe) slope 25 HL profile, of which the overview

table is given in Table 5.7. The accompanying excitation patterns and QERB plots are given

in Appendix D.

Table 5.7: Overview trained HI AECNN models - slope 25. Number of parameters, loss term, time

per epoch and MSE of the basic input stimuli and test set predictions for the depicted AECNN

models on the left.

Click 1kHz 4kHz Testset

Model (NL/Depth/Utt.) Param. LT Time/Epoch

x10-3 x10-2 x10-1 x10-3

tanh/6 lay./100 16,955,008 0.0084 1m05s 1.91 6.50 1.76 1.40

tanh/8 lay./100 23,197,312 0.0071 1m10s 1.91 6.47 1.76 0.95

Based on Table 5.7 it can be concluded that an AECNN variant with the HL profile of slope

25 can also be rendered. Extracting this conclusion leads to the following statement: it is

possible to go towards a NN representation of any individualized hearing profile with a sloping

cochlear gain loss.

5.3.2 Flat HL Profiles

Flat 35

Table 5.8 and Figures 5.18, 5.19 and 5.20 depict the same procedure that was followed for

the slope 35 variant, but now for the flat 35 profile. Although a different type of HL profile,

the overall HI AECNN performance can also be classified as sufficient.
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Table 5.8: Overview trained HI AECNN models - flat 35. Number of parameters, loss term, time

per epoch and MSE of the basic input stimuli and test set predictions for the depicted AECNN

models on the left.

Click 1kHz 4kHz Testset

Model (NL/Depth/Utt.) Param. LT Time/Epoch

x10-4 x10-4 x10-4 x10-4

tanh/6 lay./50 16,955,008 0.0014 31s 0.09 0.06 0.09 3.56

tanh/6 lay./100 16,955,008 0.0013 1m04s 0.10 0.01 0.02 3.34

tanh/8 lay./50 23,197,312 0.0011 35s 0.10 0.05 0.11 1.98

tanh/8 lay./100 23,197,312 0.0010 1m11s 0.08 0.02 0.03 1.74

Flat 25

After the inspection of overview Table 5.9 (and based on the plots depicted in Appendix D),

the statement made in the previous section can be adapted to: It is possible to go towards

a NN representation of any individualized hearing profile characterized by cochlear gain loss

due to OHC deficits, be it a sloping profile or a flat, constant gain reduction.

Table 5.9: Overview trained HI AECNN models - flat 25. Number of parameters, loss term, time

per epoch and MSE of the basic input stimuli and test set predictions for the depicted AECNN

models on the left.

Click 1kHz 4kHz Testset

Model (NL/Depth/Utt.) Param. LT Time/Epoch

x10-3 x10-2 x10-1 x10-3

tanh/6 lay./100 16,955,008 0.0022 1m04s 0.83 3.71 1.56 0.47

tanh/8 lay./100 23,197,312 0.0019 1m11s 0.82 3.34 1.53 0.30



Chapter 5. Results 62

−80

−60

−40

−20

0

20

R
M

S
o
f

y
b
m

(d
B

)
-

to
n

e
1

k
H

z

HI TL model - flat 35 HI AECNN - 6 layers - 50 utt. HI AECNN - 6 layers - 100 utt. HI AECNN - 8 layers - 100 utt.

−80

−60

−40

−20

0

20

R
M

S
o
f

y
b
m

(d
B

)
-

to
n

e
4

k
H

z

10dB

20dB

30dB

40dB

50dB

60dB

70dB

80dB

90dB

0.25 0.5 1 2 4 8
−100

−80

−60

−40

−20

0

CF (kHz)

R
M

S
o
f

y
b
m

(d
B

)
-

cl
ic

k

0.25 0.5 1 2 4 8

CF (kHz)

0.25 0.5 1 2 4 8

CF (kHz)

0.25 0.5 1 2 4 8

CF (kHz)

1

Figure 5.18: Comparison of excitation patterns - flat 35 - Variable training utterances and layer

depth. Cochlear excitation patterns calculated as the RMS value of the BM displacement

(yBM) per cochlear section (corresponding CFs are listed in Appendix A) for a stimulation with

a 1 kHz pure tone (top row), 4 kHz pure tone (middle row) and click stimulus (bottom row)

with intensity levels ranging between 10 and 90 dBSPL. The depicted models are the reference

TL model that is made HI with a flat 35 cochlear gain loss profile (left) and trained HI AECNN

architectures varying in layer depth and number of used training utterances.
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Figure 5.19: QERB values for trained HI AECNN - flat 35. QERB values computed for the energy

underneath the power spectrum of CF impulse responses to a 100 µs click of different intensities

(40 and 70 dB). Simulations are shown for the HI TL model (red) and trained HI AECNN model

(blue) for a flat 35 HL profile. Refer to Subsection 5.2.9 for an explanation for the suboptimal

low frequency performance.

5.3.3 Fixed Layers

This last investigation is influenced by machine vision since it is shown that, once a DNN for

image recognition is trained, certain hidden layers are responsible for the detection of specific

structures in the images (Liang and Hu, 2015). Suppose this would be true for machine hear-

ing: that certain layers of a trained AECNN are linked to specific hearing characteristics and

others to incorporate hearing-impaired profiles in the DNN. This would mean that the total

training time can be reduced even more, since only a certain number of parameters should

be updated in the process of transfer learning to include hearing-impairment.

To verify this, the performance of the 6 layer/50 utt. model for a flat 35 HL profile, trained

in Subsection 5.3.2, is compared to 4 other models. In each of these models only a part of

the hidden layers is made trainable. The result is given in Table 5.10, from which it can be

concluded that the model, of which only the weights of the last layer were made trainable,

is resembling quite good to the reference model. The outcome of this fixation of layers is a

reduction of 10,420,096 trainable parameters and a time gain of 12 seconds per epoch, both

reducing computational cost.

To confirm the assumption that it is indeed the last convolutional layer of the AECNN ar-

chitecture that is crucial in addressing hearing-impairment, the QERB values of the model,
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Figure 5.20: Performance HI AECNN model on test set input - flat 35 HL profile. (Top) Input

pressure [Pa] in the time domain [ms] for a speech fragment part of the test set. (Middle)

Output response of the HI TL model and the trained HI AECNN model: BM displacements for

the selected 201 CS (see Appendix A for the corresponding CF), both with a flat 35 cochlear

gain loss profile. (Bottom) Difference between the two previous depicted models. Refer to

Subsection 5.2.9 for an explanation for the suboptimal performance of the first 20 ms
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Table 5.10: Overview trained HI AECNN models - trainable layers - flat 35. Number of parameters,

loss term, time per epoch and MSE of the basic input stimuli and test set predictions for the

depicted AECNN models on the left.

Click 1kHz 4kHz Testset

Model Param. LT Time/Epoch

x10-4 x10-4 x10-4 x10-4

tanh/6 lay./50 16,955,008 0.0014 31s 0.09 0.06 0.09 3.56

Only first trainable 16,256 0.0185 22s 0.60 13.52 41.78 25.93

Only last trainable 6,534,912 0.0021 19s 0.08 0.17 0.02 3.84

First 3 trainable 4,177,792 0.0049 23s 0.22 0.95 2.17 5.74

Last 3 trainable 12,777,216 0.0018 27s 0.09 0.02 0.04 3.49

that was trained via transfer learning while only the weights of the last layer were adapted,

are depicted in Figure 5.21. This shows that there is strong belief that the hearing-impaired

character of this CNN is indeed located in the final layer, resulting in an acceptable reduction

of the number of trainable parameters and accompanying computational complexity, in the

case of a flat 35 HL profile.

Table 5.11 and Figure 5.22 are used in validating if the accountability of the slope 35 hear-

ing loss profile can also be found in the last layer. The results indicates that a strong case

can be made that all HI profiles are accounted for in the last layer of this AECNN architecture.
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Figure 5.21: QERB values for trained HI AECNN - flat 35 - fixed layers. QERB values computed for

the energy underneath the power spectrum of CF impulse responses to a 100 µs click of different

intensities (40 and 70 dB). Simulations are shown for the HI TL model (red) and trained HI

AECNN model (blue) for a flat 35 HL profile. The AECNN model was trained with fixed

weights in all but the last layer. Refer to Subsection 5.2.9 for an explanation for the suboptimal

low frequency performance.

Table 5.11: Overview trained HI AECNN models - trainable layers - slope 35. Number of param-

eters, loss term, time per epoch and MSE of the basic input stimuli and test set predictions for

the depicted AECNN models on the left.

Click 1kHz 4kHz Testset

Model Param. LT Time/Epoch

x10-4 x10-4 x10-4 x10-4

tanh/6 lay./50 16,955,008 0.0072 32s 0.35 2.66 0.28 12.28

Only last trainable 6,534,912 0.0083 19s 0.39 2.89 1.06 12.95
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Figure 5.22: QERB values for trained HI AECNN - slope 35 - fixed layers. QERB values computed

for the energy underneath the power spectrum of CF impulse responses to a 100 µs click of

different intensities (40 and 70 dB). Simulations are shown for the HI TL model (red) and

trained HI AECNN model (blue) for a slope 35 HL profile. The AECNN model was trained

with fixed weights in all but the last layer. Refer to Subsection 5.2.9 for an explanation for the

suboptimal low frequency performance.
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Conclusion

In this project, a deep neural network (DNN) was modeled to approximate a state-of-the-art,

biophysically realistic model of the human cochlea, based on a cascaded nonlinear transmission-

line (TL) model. The TL nonlinearity, which accounts for several hearing aspects (e.g., longi-

tudinal coupling, level-dependent tuning, frequency selectivity), introduces a high computa-

tional cost, hence limits the implementation of these correct models in applications compared

to the widely used perceptual models (e.g., gammatone, MFCC), which are on their part

omitting key features associated with hearing, in order to become faster. Removing this

ever-existing compromise between biophysically correctness and computational complexity

was the first goal of this master’s thesis. A DNN approach, which forms a hybrid of convo-

lutional neural networks and computational auditory modeling, yields a real-time solution of

the cochlear processing stage by means of replacing one, slow, nonlinear model, with another,

fast, nonlinear DNN architecture.

The reference TL model, on which the DNN architecture was based, possesses also the ability

to include hearing-impaired (HI) profiles based on outer hair cell cochlear gain loss in the

modelling stages. The second part of this project focussed on the incorporation of this HI

behaviour, obtained via adaptation of the DNN found in the first part of this project.

The combination of these two tasks in a single DNN architecture, capable of both accounting

for NH as HI profiles in a real-time matter, is something that has never been done before.

68
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The stages in this project consisted of a modeling phase, where a DNN architecture was

formed based on the selection of various hyperparameters, followed by a training phase where

the weight adaptation was done by exposing the network to input-output combinations of

audio (speech) fragments linked to their resembling TL model output. After a certain num-

bers of training cycles, the best performing model was stored and could be evaluated for its

performance on basic auditory stimuli inputs and unseen test data.

Results showed that, with the correct parameter choices, the desired nonlinear features of the

cochlea: longitudinal coupling, frequency selective tuning and level-dependent compression,

could all be found in the real-time operating DNN. Which was then used as a starting point

for a transfer learning procedure, that allowed to, starting from the NH DNN, go towards a HI

DNN by training on input-output combinations that resembled specific hearing loss profiles.

The process of transfer learning allowed to successfully train a HI version of the DNN with

only 50 additional training utterances and with a learning phase that only lasted for 7 minutes.

This project succeeded in its two research goals and proved that this approach can be con-

sidered for any transmission-line model that incorporates nonlinearities (e.g., brain networks,

electronics applications), but also, by using a DNN approach, has the ability to be applied

into low-power implementations (e.g., ASR, hearing-aids, robotics).

Looking at future work in the scope of this thesis, the role of the context of a speech fragment,

introduced in Section 5.2.9, is something definitely worth investigating in follow-up projects.

Also the extension of the DNN beyond the cochlea can be addressed: to include other hear-

ing stages (e.g., auditory nerve, cochlear nuclei and inferior colliculus) in a machine hearing,

real-time framework. This could prove to be useful in the task of accounting for other types

of hearing-impairment in auditory models (e.g., synaptopathy). Afterwards, a hearing loss

database could be formed, consisting of the collection of individualized hearing profiles, all

based on deep neural nets.
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Pascual, S., Bonafonte, A., and Serrà, J. (2017). Segan: Speech enhancement generative

adversarial network. arXiv preprint arXiv:1703.09452.

Paul, D. B. and Baker, J. M. (1992). The design for the wall street journal-based csr corpus. In

Proceedings of the workshop on Speech and Natural Language, pages 357–362. Association

for Computational Linguistics.



Bibliography 75

Pickles, J. (2013). An introduction to the physiology of hearing. Brill.

Raufer, S. and Verhulst, S. (2016). Otoacoustic emission estimates of human basilar membrane

impulse response duration and cochlear filter tuning. Hearing research, 342:150–160.

Recio, A. and Rhode, W. S. (2000). Basilar membrane responses to broadband stimuli. The

Journal of the Acoustical Society of America, 108(5):2281–2298.

Rhode, W. S. (1971). Observations of the vibration of the basilar membrane in squirrel
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Appendix A

Characteristic Frequencies
CS CF (Hz) CS CF (Hz) CS CF (Hz) CS CF (Hz)

1 113 51 527 101 1,616 151 4,479

2 118 52 540 102 1,650 152 4,569

3 123 53 553 103 1,685 153 4,661

4 128 54 567 104 1,721 154 4,755

5 134 55 581 105 1,757 155 4,850

6 139 56 595 106 1,794 156 4,948

7 144 57 609 107 1,832 157 5,047

8 150 58 624 108 1,870 158 5,149

9 156 59 639 109 1,910 159 5,252

10 162 60 654 110 1,950 160 5,357

11 167 61 670 111 1,990 161 5,465

12 173 62 685 112 2,032 162 5,574

13 180 63 702 113 2,074 163 5,686

14 186 64 718 114 2,118 164 5,799

15 192 65 735 115 2,162 165 5,915

16 199 66 752 116 2,207 166 6,034

17 205 67 769 117 2,253 167 6,154

18 212 68 787 118 2,299 168 6,277

19 219 69 805 119 2,347 169 6,403

20 226 70 824 120 2,396 170 6,530

21 233 71 842 121 2,445 171 6,661

22 240 72 862 122 2,496 172 6,794
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CS CF (Hz) CS CF (Hz) CS CF (Hz) CS CF (Hz)

23 248 73 881 123 2,547 173 6,929

24 255 74 901 124 2,600 174 7,067

25 263 75 922 125 2,653 175 7,208

26 271 76 942 126 2,708 176 7,351

27 279 77 963 127 2,763 177 7,498

28 287 78 985 128 2,820 178 7,647

29 296 79 1,007 129 2,878 179 7,799

30 304 80 1,029 130 2,937 180 7,954

31 313 81 1,052 131 2,997 181 8,112

32 322 82 1,076 132 3,058 182 8,273

33 331 83 1,099 133 3,121 183 8,437

34 340 84 1,124 134 3,184 184 8,605

35 349 85 1,148 135 3,249 185 8,776

36 359 86 1,173 136 3,316 186 8,950

37 369 87 1,199 137 3,383 187 9,128

38 379 88 1,225 138 3,452 188 9,309

39 389 89 1,252 139 3,522 189 9,493

40 399 90 1,279 140 3,594 190 9,681

41 410 91 1,307 141 3,666 191 9,873

42 420 92 1,335 142 3,741 192 10,069

43 431 93 1,364 143 3,817 193 10,268

44 443 94 1,393 144 3,894 194 10,471

45 454 95 1,423 145 3,973 195 10,679

46 466 96 1,454 146 4,053 196 10,890

47 477 97 1,485 147 4,135 197 11,105

48 489 98 1,517 148 4,218 198 11,325

49 502 99 1,549 149 4,304 199 11,549

50 514 100 1,582 150 4,390 200 11,777

201 12,010

Table A.1: Corresponding characteristic frequency (CF) to each cochlear section (CS)
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AECNN Model Summary

Figure B.1: The Keras model summary for an 8 layer AECNN model
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Appendix C

Trained AECNN Models - NH

Table C.1: Overview trained NH AECNN models. Amount of parameters, loss term, time per epoch

and MSE of the basic input stimuli and test set predictions for the depicted AECNN models on

the left.

Click 1kHz 4kHz Testset

Model (NL/Depth/lr/FL) Param. LT Time/Epoch

x10-4 x10-4 x10-4 x10-4

PReLU/4 lay./0.001/63 5,641,856 0.0404 1h46m12s 23.74 71.08 23.69 57.10

PReLU/4 lay./0.0004/63 5,641,856 0.0375 1h48m36s 10.63 61.18 63.79 46.40

PReLU/4 lay./0.0001/63 5,641,856 0.0376 1h46m40s 9.99 166.85 16.49 49.66

PReLU/6 lay./0.0001/63 8,836,736 0.0307 1h49m41s 4.41 160.75 15.29 53.95

PReLU/6 lay./0.0001/31 4,564,608 0.0360 1h44m20s 7.07 176.81 30.84 48.29

PReLU/6 lay./0.0001/127 17,380,992 0.0298 1h58m20s 4.45 93.09 13.32 45.43

tanh/6 lay./0.0001/127 16,955,008 0.0148 1h59m05s 1.21 4.92 6.05 20.06

tanh/4 lay./0.0001/127 10,712,704 0.0185 1h54m42s 1.63 3.95 8.63 24.04

tanh/8 lay./0.0001/127 23,197,312 0.0140 2h01m40s 1.13 4.29 8.64 15.19
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Appendix D

Performance HI AECNN on Slope

25 - Flat 25
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Figure D.1: QERB values for trained HI AECNN - slope 25 / flat 25. QERB values for the energy

underneath the power spectrum of CF impulse responses to a 100 µs click of different intensities

(40 and 70 dB). Simulations are shown for the HI TL model (red) and trained HI AECNN model

(blue) for respectively a slope 25 HL profile (Top) and a flat 25 HL profile (Bottom). Refer to

Subsection 5.2.9 for an explanation for the suboptimal low frequency performance.
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Figure D.2: Comparison of excitation patterns - slope 25 - Variable depth. Cochlear excitation

patterns calculated as the RMS value of the BM displacement (yBM) per cochlear section (cor-

responding CFs are listed in Appendix A) for a stimulation with a 1 kHz pure tone (top row),

4 kHz pure tone (middle row) and click stimulus (bottom row) with intensity levels ranging

between 10 and 90 dBSPL. The depicted models are the reference TL model that is made HI

with a slope 25 cochlear gain loss profile (left) and trained HI AECNN architectures varying in

depth.
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Figure D.3: Comparison of excitation patterns - flat 25 - Variable depth. Cochlear excitation

patterns calculated as the RMS value of the BM displacement (yBM) per cochlear section (cor-

responding CFs are listed in Appendix A) for a stimulation with a 1 kHz pure tone (top row),

4 kHz pure tone (middle row) and click stimulus (bottom row) with intensity levels ranging

between 10 and 90 dBSPL. The depicted models are the reference TL model that is made HI

with a flat 25 cochlear gain loss profile (left) and trained HI AECNN architectures varying in

depth.
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