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Abstract

Renal cell carcinoma is the most common form of kidney cancer and accounts for 2-3% of
all cancers worldwide with the highest incidence in Western Europe. For small renal tu-
mours, the treatment of choice is partial nephrectomy, a surgical procedure that involves
resection of the tumour. This treatment allows part of the kidney to remain functional
without compromising the oncological outcomes [31]. The surgeon blocks the arterial
blood flow towards the tumour in order to avoid excessive bleeding and impaired visi-
bility during tumour resection. Selective clamping of the arteries supplying the tumour
minimizes healthy tissue ischemia, but therefore a good knowledge of the patient-specific
vascularization and the perfusion of the surrounding parenchyma is crucial [28]. Cur-
rently, the surgeon depends to a great extent on his/her experience and 3D insight in the
2D sliced CT data to decide on the clipping locations which complicates pre-operative
planning. Visualization of indocyanine green allows to inspect tumour ischemia after
clamping, though this technique only provides surface information and can only be used
intra-operatively, hence it does not allow for pre-operative planning.

The aim of this thesis is the development of a planning tool for partial nephrectomy
surgery that helps the surgeon to decide on the ideal clipping locations. Therefore, a
model is developed that uses 3D reconstructions of the renal parenchyma and arterial
tree to create a 3D map of the perfusion zones per arterial segment. The perfusion map
thus allows to select the arterial segments that supply the tumour and clamping of these
vessels may allow bloodless resection of the tumour.

Keywords: partial nephrectomy, kidney cancer, 3D reconstructions, surgical planning
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Abstract—Partial nephrectomy is the treatment of choice for early stage
renal cell carcinoma and involves tumour resection from the kidney. Selec-
tive clamping of the tumour perfusing arteries during the procedure min-
imizes healthy tissue ischemia and blood loss but necessitates a profound
knowledge of patient-specific vascularization and an estimation of the cor-
responding perfusion regions. In this work, we present a framework to
predict these perfusion regions based on 3D models derived from CT scans
and validate it against available commercial software packages.
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I. INTRODUCTION

RENAL cell carcinoma is the most common type of kidney
cancer, accounting for 2-3 % of all cancers worldwide with

the highest incidence in western countries. Partial nephrectomy
is the treatment of choice for small renal tumours allowing part
of the kidney to remain functional without increasing the risk
of cancer recurrence [1]. During the procedure, the blood sup-
ply towards the tumour is blocked to avoid excessive bleeding
during resection. To minimize healthy tissue ischemia, the sur-
geon selectively clamps the arteries supplying the tumour re-
gion. Hence, a good understanding of the patient-specific vas-
culature and the perfusion of the surrounding parenchyma is cru-
cial [2].

Nowadays, the surgeon mainly relies on his/her own experi-
ence and 3D insight in the 2D sliced CT images to decide on
the ideal clipping locations. To help the surgeon in this de-
cision, intra-operative visualization of vascularization through
the use of indocyanine green injection is often used nowadays.
This allows to see whether the tumour is completely ischemic
after clamping [3]. However, the view is limited to the renal
surface only and the method cannot be applied pre-operatively.
Furthermore, 3D models have large potential for surgical plan-
ning, since they are thought to improve the 3D insight in the
patient-specific anatomy. However, the accuracy is limited by
the quality of the scans and these models do not provide direct
perfusion information [4]. Up to present, we found only one
commercial company providing a specialised service for sur-
gical planning based on arterial perfusion, though its models
are not clinically validated and very expensive. Thus, there is
clearly a need for new, affordable planning tools that facilitate
pre- and intra-operative planning.

Here, we present a model that determines the arterial perfu-
sion zones based on the anatomical information derived from
standard pre-operative CT scans. Our model suggests the the-

oretical perfusion areas per vessel and thus allows for adequate
planning through 3D visualization of these perfusion zones. As
such, it can provide the clamping locations for bloodless tumour
resection with minimal healthy tissue ischemia.

II. MATERIALS AND METHODS

The model creates a map of the perfusion regions in the kid-
ney, by assigning each point of the parenchyma to a specific
branch of the arterial tree. For every point, the branch is se-
lected that has the highest probability to supply that point. This
probability is approximated by the distance between the branch
and that specific point. In short, the model determines the clos-
est branch for each point of the kidney based on the anatomy of
the arterial tree. A similar method was already applied on the
portal tree of the liver by Selle et al. in 2002 [5]. The com-
parison of their model outcomes with the real perfusion zones
showed an overlap of about 80%, suggesting that this approach
makes sense anatomically. The anatomical data is obtained from
segmented CT data of the affected kidney and the arterial tree.
Figure 1 shows the 3 main steps in construction of the model.

Fig. 1. The built-up of the model into 3 steps starting with segmentation of
the anatomical data in the Mimics software package [6]. This information is
used to determine the perfusion zones using two different methods, namely
the direct distance and region growing method by implementation in Python.
The resulting perfusion zones are visualised using Mimics®.

A. Anatomical data

The input for the model contains anatomical data of the ar-
terial tree, the renal parenchyma and the tumour. This anatom-
ical information is obtained from CT images by segmentation
in Mimics, a software package for advanced image processing
developed by Materialise (Leuven) [6]. The original CT images
are obtained from patients suffering from kidney cancer before



they underwent partial nephrectomy. The segmentation allows
to construct a 3D model and use the volumes of the different
structures as the input of the model. For analysis of the vascular
structure, the arterial tree is first transformed into a centreline
model using Mimics®. The resulting graph structure exists of
automatically numbered branches that are built up from closely
spaced (control) points connected to each other. The skeleton
is exported by the coordinates of these control points together
with their corresponding branch numbers. The segmented 3D
volumes of the kidney, tumour and arteries are exported as 2D
image slices in BMP format.

B. Perfusion model in python

Once the anatomical data is stored in an adequate format, the
patient-specific settings are adjusted step by step as listed be-
low. Based on these settings and the anatomical data, the model
determines the perfusion zones of the renal parenchyma and tu-
mour.

– The file directories of the text file containing the skeleton
and the BMP files of the kidney, tumour and arteries are
inserted.

– The user defines the dimensions of the BMP slices and the
Mimics® image volume so that the model can adjust the
centreline coordinates in the Mimics® coordinate system
to the coordinate system defined by the BMP slices called
the ’voxel’ coordinate system.

– The slice thickness and the z-coordinate of the start slice
are inserted.

– Arterial segments starting outside the parenchyma and sub-
sequently entering it, as well as segments with a dead end
are selected. These segments are the most relevant ones in
surgical planning as they are the most likely to be clamped
by the surgeon.

– The user defines the Mimics® image volume and the dis-
crete image volume based on the slice dimensions. These
values are necessary for coordinate transformation.

The underlying algorithm is also built up in three parts. First,
the model loads and processes the anatomical data based on the
input settings to retrieve the required information summarized
in table I.

TABLE I
OVERVIEW OF THE DATA THAT IS LOADED IN THE MODEL.

Structure Information
Kidney parenchyma coordinates of all parenchyma points
Tumour coordinates of all tumour points
Arteries coordinates of all arteries points
Skeleton coordinates selected control points

branch numbers control points

For each point of the parenchyma and tumour, the model se-
lects the closest branch. Therefore, two different approaches are
applied: the direct distance approach and the region growing
approach.

B.1 Direct distance method

The direct distance approach calculates for each voxel i of
the tissue (both parenchyma and tumour) the squared distance
d2(i, j) to all control points of the skeleton. Based on these dis-
tances, the control point l corresponding with minimum distance
is selected as depicted in equation 1.

d2(i, l) = min
{
d2(i, 1), d2(i, 2), ..., d2(i, n)

}
(1)

Each control point is linked to the number of the branch where
it is located on. Hence, the branch number b of control point l is
assigned to voxel i, by setting the function Stissue for this voxel
i equal to b as depicted in equation 2.

Stissue(i) = b(l) (2)

This process is applied until all voxels of the tumour and kid-
ney are assigned to the adequate branch.

B.2 Region growing method

For the region growing (RG) method, the skeleton branches
grow with the same speed in all directions within the image vol-
ume until they meet another growing branch. The method starts
with the introduction of a region growing list that contains the
branch numbers and the coordinates of the control points of the
arterial tree. Next, the first element of the list is selected and the
surrounding points are determined as depicted in figure 2

Fig. 2. The starting point (blue) with coordinates (X,Y,Z) grown in all 6 direc-
tions (orange) with same step size.

These newly defined points are added to the RG list when they
are part of the image volume and are not labelled. Then, the next
element of the list is selected and again the surrounding points
are defined in the same way as described above. The algorithm
runs until all points of the image volume contain a label and that
results in a map of the perfusion zones over the complete image
volume. By only selecting the voxels that are part of the kidney
or tumour based on the anatomical data of these structures, the
perfusion zones in the parenchyma and tumour are obtained.



C. Visualization

The model delivers information about the perfusion zones in
3D volumes and is able to visualize them in 2D format as de-
picted in figure 3. Though, interpretation of the results requires
3D visualization and therefore, the Mimics® software is again
used. The model returns grey value images containing the arte-
rial tree, the tumour and the kidney in BMP format. These grey
value images are loaded in Mimics® that is able to transform
them back again in a 3D structure.

Fig. 3. The 2D visualization of an image slices of the kidney divided into per-
fusion zones. The numbers depict the numbers of the branches that supply
their corresponding perfusion regions.

III. RESULTS

The outcomes of the model are retrieved from segmented
CT data of patients before they underwent partial nephrectomy,
using the direct distance and region growing method. Figure
4 shows the results of the direct distance and region growing
method applied to the same patient. Though both methods are
implemented to determine the closest branch, the resulting per-
fusion zones are slightly different. Despite these differences, a
closer look on the tumour shows that both methods predict the
same branches supplying the tumour and hence identical clip-
ping locations are suggested.

Fig. 4. The 3D map of the perfusion zones due application of (left) the direct
distance method and (right) the region growing method.

To our knowledge, the only commercial service providing
surgical planning is the one from Visible Patient. Although not
clinically validated, these models seem to successfully predict
tumour supplying arteries. Figure 5 compares our results to
those provided by the online service of Visible Patient, show-
ing that the volumes are not completely the same. Multiple fac-

tors influence these differences, but the most important factor is
probably that the segmentations are not identical.

Fig. 5. The outcomes of Visible Patient (left) are compared with those of the
perfusion model (right). The numbers designate the numbers of the arterial
segments supplying the kidney tissue.

As an example, figure 6 takes a closer look at the results for
the tumour perfusion zones. According to Visible Patient, the tu-
mour is supplied by 4 different branches, namely 22, 28, 17 and
16. At the same time, our perfusion model predicts the same
branches and an additional branch 5. Thus, these results sug-
gest that both methods will result in complete tumour ischemia
when actually clamping, though our perfusion model will cause
more healthy tissue ischemia. As stated above, the image also
indicates that the reconstruction of the arterial tree of Visible Pa-
tient is more detailed than the one used for our model which will
most probably explain the different results.

Fig. 6. Detail of the tumour perfusion for the clipping model of Visible Patient
(left) and the perfusion model (right). The numbers designate the branches
of the arterial segments supplying the tumour.

IV. IMPLEMENTATION IN MEVISLAB

The current tool uses different types of software to create a 3D
map of the perfusion zones starting from segmented CT images.
The implementation of the tool into clinical practice requires
the integration of different steps in one interface to allow the
use of the tool without technical knowledge whilst decreasing
the amount of manual work. A good candidate for such an in-
terface is MeVisLab, which possesses functionalities to import
data, write code and visualise the outcomes [7]. Unfortunately,
the functionalities of the free version of the MeVisLab software



are limited related to scripting, not allowing implementation of
large Python files as created to run the model. Thus, towards
the future, there should be looked for alternative solutions for
the implementation of the model in MeVisLab and whether it is
necessary to purchase a licence.

V. CONCLUSION

A model is developed that is able to create a 3D map of the
kidney and tumour divided into perfusion zones and thus, en-
ables to predict the arteries supplying the tumour. The compar-
ison with the clipping models of Visible Patient proves that the
results correctly predict the tumour perfusing arteries, though
also suggests some false positives. That shows that the results
are promising, but optimizations of the model and its input data
are necessary to obtain better results in the future.
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Chapter 1

Introduction

The kidneys are essential organs of the human body responsible for several vital functions
such as the removal of waste products and excessive fluids. Loss of kidney function causes
waste material to accumulate in the body, disturbs electrolyte balance, and hence can
severely impact the quality of life. Dialysis and transplantation are currently the most
effective treatments for renal failure, but are costly and impair patient life quality [27].
Several conditions may result in renal failure, among them kidney cancer.

Kidney cancer is not a single type of cancer, but is a term used to designate different types
of cancer occurring in the kidneys [29]. The most common form is renal cell carcinoma
(RCC), cancer originating from the lining of the proximal renal tubules, responsible for
primary urine transport. According to the EAU guidelines on RCC [31], RCC accounts
for 2-3 % of all cancers globally with the highest incidence in Western Europe. Surgical
removal is the treatment of choice for kidney cancer as long as the cancer has not yet
spread to other parts of the body. In radical nephrectomy, the entire kidney is removed
including the surrounding fascia, adrenal gland, and upper ureter. An alternative is par-
tial nephrectomy or nephron saving surgery, where only the diseased part of the kidney
is removed allowing the remaining part to still be functional [30].

Partial nephrectomy is recommended whenever technically feasible and is considered as
the treatment of choice for early-stage RCC. Compared to radical nephrectomy, kidney
function is better preserved and the risk of developing metabolic or cardiovascular disor-
ders is reduced [31, 25]. Currently, robotically assisted partial nephrectomy becomes more
widely applied for renal tumours, thanks to the progressions in technology and medicine
[42].

During partial nephrectomy, cancer recurrence is avoided by ensuring the integrity of the
tumour capsule and removal of the tissue around the edge of the tumour. The supplying
vessels of the kidney are usually blocked to avoid excessive blood loss and increase the
visibility for the surgeon.
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This, however, also increases the ischemia time, the time during which there is insufficient
blood supply to the renal tissue. This, in turn, increases the risk of losing kidney function
after surgery [28]. To avoid unnecessary healthy tissue ischemia, the surgeon should be
able to selectively block the arteries supplying the tumour and leave those that supply the
healthy tissue untouched [39]. Currently, the surgeon depends to a great extent on his/her
experience and 3D insight in the 2D sliced CT data to decide on the clipping locations
what complicates preoperative planning. Visualization of tissue ischemia with indocya-
nine green injections has proven to be useful to facilitate decision making, though the
technique only gives information about the surface and does not allow for pre-operative
planning. Thus, there is clearly a need for better preoperative planning.

The goal of this thesis is the development of a tool that enables pre-surgical planning
of partial nephrectomy. Therefore, a model is developed that uses 3D reconstructions of
kidneys and the arterial tree to make patient-specific 3D models of the kidney perfusion.
The planning tool may enable the surgeon to pre-operatively distinguish tumour perfus-
ing arteries from those supplying healthy tissue and that could minimize healthy tissue
ischemia and thus minimal loss of kidney function.

This master’s dissertation presents the model in six different chapters. Chapter 2 intro-
duces the clinical background concerning the renal anatomy, physiology, renal cancer and
partial nephrectomy. Thereafter, a closer look is taken to the current progress in vascular
modelling and surgical planning to serve as inspiration for the planning tool. Then, a
closer look is taken at the planning tool itself. Chapter 3 starts with explaining the func-
tioning of the complete model and the associated workflow. Then, chapter 4 discusses
the results of this tool, that are validated in the same chapter. One last technical part in
chapter 5 shows the possibilities for implementation of the planning tool. There is finally
concluded with some final thoughts and a look toward the possibilities in the future.



Chapter 2

Background

Before taking a closer look at the model, this chapter provides both clinical and technical
background relevant for the construction and interpretation of the model. There is started
with a concise overview on the renal anatomy and function, followed by the introduction
of renal cancer and its treatments. The more technical part discusses the current progress
in vascular modelling and the ongoing developments in surgical planning.

2.1 Renal anatomy
Under normal circumstances, people have two kidneys, one at each side of the vertebral
column, lying behind the peritoneal space in the abdomen and they are characterized by
their typical bean-like shape. Each kidney is surrounded by three layers of connective
tissue, collectively called the renal capsule, that provides protection, stability and serves
as an attachment site for the surrounding tissue. The renal capsule is surrounded by the
renal fascia that encapsulates the kidneys and the adrenal glands [4].

On a microscopic scale, the kidney is primarily composed of its functional units, the
nephrons. The general structure of one nephron is depicted in figure 2.1. There are ap-
proximately 1 million nephrons in the human kidney and each of these nephrons exists
of a renal corpuscle and linked to it the convoluted tubules [22]. The initial filtration
from the blood into urine is performed at the level of the renal corpuscle containing the
glomerulus, which is a dense network of capillaries, and the surrounding Bowman’s cap-
sule. Water, ions and small molecules are forced through the filtration barrier between
capillaries and the Bowman’s capsule. The filtration is enabled by the selective per-
meability of the glomerular endothelium to fluids and small molecules and the elevated
hydrostatic pressure in the capillaries due to vasoconstriction, which is the narrowing
of blood vessels. The initial filtrate flows from Bowman’s capsule to the renal tubule
along which it changes its composition by reabsorption and secretion. Most of the reab-
sorption of solutes happens in the first convoluted part of the tubule, the proximal tubule.
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Next, the urine flows into the loop of Henle, that is mainly responsible for the urine con-
centration by reabsorbing water and salt from the urine. Then, the urine is transported
through the distal tubule into the collecting duct, where only minor changes are applied
to the urine composition [37].

Figure 2.1: The nephron is the functional unit of the kidney. Retrieved from [8].

On a macroscopic scale, as shown in figure 2.2, the kidney exists of an inner and outer
zone. The outer zone is the renal cortex that contains the glomeruli. The inner zone of
the kidney or medulla is made up of conically shaped areas, the so-called renal pyramids.
Here, the loops of Henle, the vasa recta and the collecting ducts are found. These col-
lecting ducts are responsible for urine transportation towards the renal calyces where the
urine collects and is passed toward the ureter for excretion. The vasa recta are straight
capillaries lying parallel to the loop of Henle, and they enable reabsorption and secretion
between the renal tubule and the blood [7].

The ureter transports urine toward the bladder from where it is excreted out of the
body. The kidneys are perfused by the renal arteries, which are direct branches of the
descending aorta. According to Herzlinger and Hurtado [22], about 20% of the cardiac
output is transported toward the kidneys along the renal arteries, though the kidneys
account only for 0.08 % of the body weight. This large incoming blood volume allows the
kidneys to effectively manage the balance of ions, fluids and waste products and therefore
exceeds the amount blood supply required for their metabolic needs.
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Figure 2.2: The anatomy of the kidney. Retrieved from [37].

2.2 Renal function

The functional anatomy of the kidney, as described before, is strongly linked with its main
functions of removing waste products and excessive fluids from the body. By regulating
the body’s fluid, electrolyte, and acid-base balance, the kidneys play an important role in
the maintenance of the body constitution. Other important functions are the production
of hormones such as erythropoietin that influences the production of red blood cells and
vitamin D that regulates the amount of calcium in the body. On top of each kidney, the
adrenal gland can be found, responsible for the production of several hormones such as
cortisol, adrenaline, and aldosterone [4].

The loss of kidney function results in severe consequences and even death. Without
clinical intervention, sustaining life becomes impossible when filtration from glomerulus,
absorption or reabsorption from renal tubules get affected. Death resulting from renal
diseases is ranked as the 9th most abundant cause of death in the USA [19].

2.3 Renal cancer

In the previous paragraphs, the anatomy and function of healthy kidneys were studied
showing their important role in the human body. Unfortunately, several renal conditions
exist that can endanger the health of a person. Renal cancer or kidney cancer is one
of them. As already mentioned in the introduction, the most common group of kidney
cancers is renal cell carcinoma (RCC), originating from the epithelial cells of the renal
tubules. They account for 85% of all primary renal neoplasms or tumours originating from
the kidney [34]. RCC accounts for about 5% in men and 3% in women of all oncological
diagnoses and is the 6th most diagnosed cancer in men and 10th in women [12].



6 Chapter 2. Background

The highest incidence rates are found in developed countries in northern Europe and
America and RCC is twice as prevalent in men as in women. Only 4 % of all cases
of RCC are familial and clear cell RCC, the most common form of RCC, usually arises
from an inherited mutation in the von Hippel-Lindau tumour suppressor gene [11]. The
majority of cases is sporadic and for these, the most important risk factors are cigarette
smoking, obesity and hypertension [24].

Figure 2.3: Schematic drawing of a kidney affected by renal cancer. Retrieved from [5].

Figure 2.3 presents a schematic drawing of kidney cancer. In early stages of the cancer,
RCC gives rise to diverse symptoms such as hematuria (blood in the urine), flank pain
and flank mass. However, more than 40% of the patients with RCC are strictly asymp-
tomatic, which makes early detection difficult. About 50% of RCC are incidental imaging
findings and in one-third of the individuals, the cancer is only detected when the tumour
is already locally advanced or metastasized, decreasing the patient’s chances of survival
[11]. Fortunately, during recent years, better screening and registration resulted globally
in a significant rise in incidence and decrease in mortality rate [32, 31].

Apart from cancer-related complications, kidney cancer, and especially RCC, is strongly
associated with both chronic and acute kidney disease [39]. Kidney disease involves de-
creased kidney functioning and can imply severe consequences for the patients. Not only
cancer itself but also specific cancer treatments, especially systemic treatments such as
chemotherapy, may induce kidney disease by damaging the functional units of the kidney
because these treatments are often nephrotoxic.
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2.3.1 Staging of renal tumour

RCC may arise from a variety of specialized cell types located along the length of the
nephron. The most common type of RCC is clear cell renal RCC or also called conven-
tional RCC, arising from the epithelium of the proximal tubule. Important in the choice
of the therapy is the size of the tumour and the extent of invasion. Therefore, the TNM
staging system is used. Here, T describes the size of primary tumour and its invasion of
nearby tissues, N describes the nearby lymph nodes that are involved and M describes
the spread of the tumour to other parts of the body or metastasis. 2.1 gives an overview
of stages of tumours with their corresponding code according to the TNM staging system
[11]. There are four main stages determining tumour size. For stage one (T1), the tumour
is confined to the kidney and is smaller or equal to 7 cm. For these early-stage tumours
partial nephrectomy is the treatment of choice. The 2nd stage tumours (T2) are also
confined to the kidney but are larger than 7 cm maximally 10 cm in size. In the 3rd
stage (T3), the tumour has invaded the veins or has extended the renal capsule, but stays
within the renal fascia. Finally, stage 4 (T4) tumours have spread beyond the renal fascia
[17]. Figure 2.4 shows a condensed renal tumour classification based on the TNM staging
system into 4 main stages based on the size of the tumour, the lymph node metastases
and the degree of metastasis.

Primary tumours (T) Description
TX Primary tumour cannot be assessed
To No evidence of primary tumour
T1 ≤ 7 cm and limited to kidney
T2 > 7 cm but ≤ 10 cm and limited to kidney
T3 Tumour extends into major veins and beyond the renal

capsule
T4 Tumour invades renal gland and beyond the renal fascia

Regional lymph node (N) Description
NX Regional lymph nodes cannot be assessed
No No regional lymph node metastasis
N1 Metastasis in regional lymph node (s)

Distant metastasis (M) Description
Mo No distant metastasis
M1 Distant metastasis

Table 2.1: TNM staging system with data retrieved from [17]
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Figure 2.4: The 4 main stages of renal tumour. Retrieved from [47].

2.3.2 Treatments for renal cancer

The treatment of choice for kidney cancer is largely dependent on the stage of the tu-
mour. For early-stage RCC or localized renal cell cancer, the tumour can be treated by
ablation or surgical resection [31]. Surgical resection involves either complete removal of
the kidney (radical nephrectomy) or removal of the diseased part of the kidney (partial
nephrectomy). Ablation is particularly interesting for patients that are not suitable for
anaesthesia and when minimal loss of renal function is desired. One of the used ablation
techniques is thermal ablation. Here, heat induces necrosis of the tumour tissue by apply-
ing high-frequency alternating current, which in turn results in protein denaturation of
the tumour tissue and cauterization of the tumour supplying vessels. [44]. However, the
EAU guidelines for RCC [31] state that the cancer-specific mortality for patients treated
with surgery is significantly lower than for patients treated with non-surgical treatments
such as ablation. Therefore, surgery is the recommended therapy to treat and cure local-
ized renal cell cancer.

In later stages, especially when metastasis toward other parts of the body occurs, treat-
ments are often applied to prolong survival and serve as a palliative treatment [18]. These
therapies are either local or systemic. Local therapies can target the primary tumour with
surgical resection or embolization (the blockage of blood supply to the tumour) or they
can treat metastases with therapies such as radiotherapy and immunotherapy. Systemic
therapies include targeted therapies, immunotherapy, and chemotherapy. One typical
targeted therapy blocks the vascular endothelial growth factor (VEGF), that stimulates
angiogenesis or formation of new capillaries and is typically upregulated in many tumours
to increase tumour perfusion [16]. For chemotherapy, the efficacy is usually limited since
renal cell carcinoma is a chemotherapy-resistant tumour [20]. According to the guidelines
for RCC, chemotherapy should not be offered as first-line therapy in metastatic RCC [31].
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2.4 Partial nephrectomy
Partial nephrectomy (PN) or nephron saving surgery (NSS) involves the removal of the
diseased part of the kidney, while maintaining the healthy tissue, and is recommended
whenever technically feasible. Figure 2.5 shows an example of the surgical procedure.
Historically, radical nephrectomy was the most commonly applied treatment, even for
small T1 tumours [20]. With technical and clinical advances, partial nephrectomy has
become the recommended treatment for small tumours (T1-type).

Figure 2.5: Partial nephrectomy surgery. Retrieved from [35].

Partial nephrectomy is a challenging surgery compared to radical nephrectomy since as
much as possible functional tissue needs to be preserved without compromising the on-
cological outcomes. During the procedure, the surgeon typically blocks the arteries sup-
plying the tumour to avoid excessive blood loss and allow a better view on the surgical
site, enabling precise resection of the tumour. However, these arteries usually also supply
healthy tissue leading to local ischemia of this healthy tissue what can result in loss of
function of these tissues [39]. Hence, the ischemia time should be limited to 20 minutes to
minimize the deterioration of renal function after surgery [6]. Consequently, the tumour
resection should be executed sufficiently fast with adequate removal of the tumour to
avoid tumour recurrence.

Despite the complexity, partial nephrectomy offers several advantages over radical nephrec-
tomy. By removal of the complete kidney, the patient can either rely on the remaining
kidney or will need dialysis to compensate for the loss of function. Therefore, PN is es-
pecially advised in patients with a high risk for postoperative renal insufficiency. That
is the case when there are renal tumours in both kidneys, or when the only functioning
kidney is affected by the tumour or when one kidney is affected by the tumour while the
other kidney has already decreased functioning. Moreover, radical nephrectomy involves
an increased risk of introducing chronic renal failure, which is a gradual loss of kidney
function, and even complete kidney failure. These conditions are associated with an el-
evated risk of cardiovascular diseases and even death. Several studies have shown that
partial nephrectomy does not compromise the oncological outcomes compared to radical



10 Chapter 2. Background

surgery, though it is not yet proven that the overall survival is higher in PN [31].

Historically, both partial and radical nephrectomy were executed as open surgeries. How-
ever, minimally invasive surgery has become widely used, though the procedure is techni-
cally challenging compared to open surgery. This complexity may be overcome by the use
of robotic systems, which increase the surgeon’s dexterity within the abdominal cavity
[45]. Open, laparoscopic and robot-assisted surgery are applied for both partial and rad-
ical nephrectomy. The minimally invasive approaches, laparoscopic or robot-assisted, are
usually preferred, unless the peri-operative, functional or oncological outcomes may be-
come less favourable. Whenever any surgical technique of partial nephrectomy is feasible
without compromising outcomes, radical nephrectomy should not be performed [31].

2.5 Study of the renal vasculature

Partial nephrectomy is a complex procedure and its success relies upon a good under-
standing of the renal vasculature as stated by [10]. Sufficient information on the relation
between vasculature and parenchymal volume enables selective clamping of the tumour
perfusing arteries and hence, might help the surgeon to reduce the ischemia time.

2.5.1 Anatomy of renal vasculature

As mentioned earlier, the kidneys receive a large percentage of the cardiac output in order
to maintain body fluid constitution. A change in renal blood flow changes the glomerular
filtration rate and that in turn influences the volume and composition of body fluids.
Therefore, the kidneys have the capacity to regulate their own blood flow, this process
is called autoregulation, and can be achieved by inducing mechanisms such as vasocon-
striction and vasodilation [13]. The kidneys are supplied by the renal arteries directly
branching from the abdominal aorta. Like the ureter, the blood vessels enter or leave the
kidney at the renal hilus. The renal artery typically divides into an anterior and posterior
branch before entering the renal hilum. The anterior branch receives about 75% of the
blood volume and divides in four segmental arteries (upper, middle, lower and apical).
The posterior branch forms the posterior segmental artery. The segmental arteries divide
further into lobar, interlobar, arcuate, interlobular and finally into afferent arteries sup-
plying the glomerular capillaries where the glomerular filtration happens [26].

Historically, the kidney vasculature was thought to be organized according to the Graves’
description. This theory states that the kidney parenchyma is subdivided into 5 segments,
each of them supplied by a different segmental artery. Figure 2.6 shows the typical division
of the kidney parenchyma into 5 segments. However, there is estimated that in only 42
% of the population the parenchyma is subdivided according to the Graves’ description.
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Thus, a tumour located in one specific segment can be vascularized by arteries destined
for different segments [10]. This complicates surgery because more than one segmental
artery should be clamped to block the blood supply to that tumour. That may result in
more ischemia of healthy tissue, compromising surgical outcomes.

Figure 2.6: Illustration of the Grave’s theory dividing the kidney into 5 segments. Re-
trieved from [14]

Moreover, the normal pattern where the kidneys are supplied by a single renal artery,
which splits into branches around the hilum, accounts only for 62.5 % for right kidney
and 72.5 % for left kidney of the cases. There are different possible variations such as
the two depicted in figure 2.7. One shows an extrahilar artery, which is a branch that
bifurcates from the renal artery before the renal hilum and goes into the kidney outside
the renal hilum. The other is a superior artery, which is a small artery that directly comes
from the aorta to supply the kidney separately from the main renal artery [15]. All these
factors make surgical planning more difficult and make the development of a model of the
renal vasculature a challenging task.

Figure 2.7: Two examples of anatomical variations of the renal vasculature: (left) ex-
trahilar artery and (right) superior polar artery. Retrieved from [15]
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2.5.2 Modelling of the vasculature
The previous paragraph was aimed at obtaining a better understanding of the vascular
anatomy. Another way of analyzing tumour perfusion is by building a model of the ar-
terial network based on imaging data. In this section, the construction of these vascular
models is studied in order to obtain a better understanding of vascular modelling.

Figure 2.8: Venous tree of the kidney with the color designating the vessel ordering.
Retrieved from [36].

One example of modelling of the kidney vasculature was executed by Nordsletten et al.
[36]. They analysed the renal vasculature of the rat based on microcomputed tomography
(µCT) and built a model of this vasculature using automated segmentation. The study
was conducted to analyse the effects of hypertension and diabetes on the vasculature,
though the general principles can be used for other applications. The procedure was
executed as following. First, the vasculature of the organ tissue was delineated using a
radio-opaque silicone polymer and thereafter the vessel walls were visualized using µCT
iso-surface rendering, a technique where millions of point are dispersed over the arterial
and venous walls. Based on this rendering the vascular tree was skeletonized while cal-
culating the vessel diameters, lengths and connectivity. These steps result in a stream
of points at the center-line of all vessels. In the last step, the original vasculature was
reconstructed by connecting points and all points were associated with a vessel segment
resulting in a line network of the renal vasculature. To characterize the topology, the
principle of blood vessel generations is introduced, where each branch is labelled with a
certain order according to the hierarchy. That results in an ordering as shown in figure
2.9. The principle of these generations is explained later in this paragraph.
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Ordering methods

Typically, the branching topology is characterized by the introduction of the principle of
blood vessel generations, that was already applied in the study by Nordsletten et al. in
2006 [36] to describe the topology of the kidney vasculature. Figure 2.9 shows three pos-
sible ordering methods to assign blood vessel generations. The top-down method travels
downstream starting from the trunk of the vasculature by allocating generation 1 to the
trunk and assigning generation 2 to its daughter branches. The general principle is that,
when the parent branch is labelled n, then the daughter branches are assigned generation
n+1. The Strahler ordering is a bottom-up method, assigning the lowest order to the ter-
minal branches. Each vessel is followed upward until the next bifurcation where the parent
is given a higher order, under the condition that both daughter branches coming together
have the same generation. When two daughter branches have a different order, the parent
branch is allocated with the generation of the daughter branch with the higher order [38].
The ’diameter defined Strahler ordering’ takes into account the diameters when assigning
the generations, allowing for more adequate allocation of generations. Geert Peeters [38]
developed a diameter defined top-down ordering method.

Figure 2.9: Overview of different ordering methods, (A) top-down ordering method, (B)
the Strahler ordering and (C) the diameter-defined Strahler ordering. Re-
trieved from [38].

Modelling the arterial tree of the liver

A substantial part of research in this area is conducted for the liver and its vasculature.
Several models for liver vasculature are developed with applications such as liver cirrho-
sis [38] and tumour resection [46]. The techniques used for the liver may serve as an
inspiration and provide concepts to be applied for the kidney vasculature modelling.
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Geert Peeters [38] studied the relationship between hepatic vasculature remodelling and
the progression of cirrhosis, a disease characterized by chronic loss of liver function due to
replacement of the healthy hepatic architecture by scar tissue and regenerative modules.
Therefore, they developed and implemented a methodological framework, that allows to
model and analyse the vasculature and blood flow of the rat liver during the progression
of cirrhosis. Morphological data of the hepatic vasculature was obtained using two exper-
imental approaches, namely immunohistochemistry and vascular corrosion casting. The
latter one produces a 3D replica of the vascular system by injecting polymeric resin, that
subsequently polymerizes. The replica is then scanned using high-resolution µCT. That
allows processing of the retrieved dataset resulting in a segmented dataset and a virtual
3D model of the vasculature. The microvasculature was studied using immunohistochem-
istry followed by confocal laser scanning. The obtained data were semi-automatically
segmented using the in house developed software tool DELIVER. The obtained 3D re-
construction of the hepatic circulation of the rat liver is shown in figure 2.10.

Figure 2.10: 3D Reconstruction of the hepatic circulation with hepatic venous (blue),
portal venous (yellow) and hepatic arterial system (red). Retrieved from
[38].

Following the segmentation of the µCT scans and the confocal laser scanning, both
datasets were analysed using the DELIVER tool. The segmented vasculature was con-
verted into a graph structure as depicted in figure 2.11. First, the segmented blood vessels
were skeletonized by the use of a 3D thinning algorithm, that calculates the centre line of
the vasculature by removing the surface voxels until only the centre lines remain. Dur-
ing this process, it is important that the algorithm maintains the segment length. Next,
the voxels situated at intersections or dead ends were identified. That in turn allowed
to build a graph structure, where each branch consists of different nodes in between the
previously determined intersection and/or death-end voxels. For each branch, the mean
radius was computed allowing to apply a diameter-defined top-down ordering, resulting in
an ordering method that combines the top-down ordering and diameter-defined (Strahler)
ordering.
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This approach for defining graphs structures from segmented CT data is also interesting
for other applications and a similar approach is used for the planning tool explained in
chapter 3.

Figure 2.11: Thinning algorithm for skeletonization. Retrieved from [38].

The methodological framework allowed them to make a detailed reconstruction of the
hepatic circulation and analyse quantitatively the vasculature of the rat liver depicted in
figure 2.12.

Figure 2.12: Top-down ordering applied to the portal tree. Retrieved from [38].

The study by Selle et al. [46] analyzed the liver vasculature in the context of surgical
planning, and therefore developed a vascular model and proposed a model-based approach
to determine the vascular territories, i.e. the vascular perfusion zones of the portal vein.
A vascular model is particularly interesting for planning of surgeries such as living-related
liver transplant surgery (LRLT) and oncologic resection. In LRLT, a healthy person
donates a part of his or her liver. This is possible thanks to the liver’s regeneration
capacity when a part is removed, but for successful partial removal, a good knowledge of
morphology and branching pattern of the liver vasculature is key.
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In a similar way as in the study of Geert Peeters [38], CT data was first segmented and
transformed into a graph structure. The graph structure was created from the segmented
vessels by first using a 3D thinning technique, followed by identification of the voxels
at branching nodes and endpoints. The obtained graph structure exists of nodes corre-
sponding with branching points and end points and in between them segments connecting
these points. The resulting graph structure was used to determine the vascular territories
supplied by the main branches of the liver as will be explained more in detail in section
2.6.

2.6 Methods for determining perfusion areas
Following the structural analysis of the vascular network, one can study the organ perfu-
sion. In this paragraph, different approaches are described to divide organs into vascular
segments according to the arterial perfusion.

2.6.1 Anatomical approaches
Kidney perfusion was historically thought to be organized according to the Graves’ de-
scription. According to Borojeni et al. [10], however, tumours can be supplied by several
arteries originating from segments different from its own segment. This is possibly a result
of angiogenesis promoted by the tumour. Moreover, they found out that with increasing
tumour size, the probability increases that the tumour is supplied by different segmental
arteries. In conclusion, simply dividing the tumour into vascular segments according to
the Graves’ description is not recommended to determine the vascular territories.

During procedures such as partial nephrectomy, a frequently used technique is near-
infrared fluorescence (NIRF) imaging by intraoperative administration of indocyanine
green (ICG). This is a safe and non-nephrotoxic technique with low adverse effects allow-
ing to visualize local tissue ischemia after selective clamping. An example is shown in
figure 2.13. Here, the ICG is administered during selective clamping of arteries. When
part of the tumor colors in green, it is still perfused which implies that selective clamping
only resulted in partial ischemia of the tumour. Hence, for bloodless tumour resection,
the surgeon needs to clamp the main supplying artery of the kidney resulting in global
ischemia of the kidney [9].
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Figure 2.13: View of renal tumour after selective clamping of the arterial segment with
(a) normal view and (b) the infrared light is set on. ICG shows incomplete
clamping of the tumour, as it still colors green. Retrieved from [33].

It is clear that NIRF imaging with ICG administration is particularly useful to facilitate
decision making. However, this technique has several limitations. Firstly, the clamping
time must be minimized to avoid tissue dysfunction afterwards. Hence, the surgeon
should make fast decisions based on the ICG measurements whether to start cutting or
to cause total kidney ischemia. Further, only the surface of the tumour and kidney is
visualized, though the non-visible parts of the tumour, located deeper under the surface,
may be supplied by other vessels. In such cases, bleeding during tumour resection is
possible. Currently, the initial clamping of the surgeon is based on the sliced CT data
and the limited view through the robotic console. Therefore, the decision of the surgeon
is often dependent on his/her intuition and experience. It is clear that ICG measurements
have proven to be useful. Nevertheless, some major drawbacks are present which can be
overcome by a presurgical planning tool which suggests the ideal clipping locations and
is the objective of this master’s thesis.

2.6.2 Model-based approaches

The foundation for the planning tool is a map of the perfusion areas of the kidney based
on the anatomy of the kidney and the arterial tree. In this paragraph, an overview is given
of the different approaches that have been applied previously to define these perfusion
zones. These approaches are applied on organs different from the kidney but can serve as
inspiration for determining the kidney perfusion areas.
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Skeletal muscle oxygenation

A paper by Zeller-Plumhoff et al. [49] reviews the current progress in image-based mod-
elling of skeletal muscle oxygenation. The studied models investigate the influence of the
microvascular structure on the tissue oxygenation by coupling vascular network models to
muscle function. The blood vessel network model is obtained starting from imaging data
of muscle tissue and blood vessels. Next, these images, i.e. µCT, are manually or (semi-)
automatically segmented, and that allows to analyse the 3D structure of the blood vessel
and apply a mesh to the tissue for finite element modelling to model muscle oxygenation.

Figure 2.14: blood vessels and muscle tissue are segmented from images i.e. µCT images.
Retrieved from [49]

Thereafter, the vascular network can be linked to muscle function. In the most simplified
model, the oxygen transport from the capillaries to the muscle tissue can be described
by radial diffusion along the axis of the blood vessels, resulting in cylindrical diffusion
domains. More realistic is the concept of domains of influence, such as the Voronoi poly-
gons. Each capillary defines a polygon that consists of all discrete tissue points that are
closest to that capillary and more distant from the other capillaries. The assumption is
then made that all tissue points within each polygon are supplied by the capillary in this
polygon. Figure 2.15 shows an image of 2D Voronoi polygons compared with numeri-
cally computed streamlines that define trapping regions. The capillary within this region
supplies it with oxygen. They found out that in 2D the Voronoi polygons, forming tes-
sellations, are relatively good representations of capillary oxygen supply regions, but that
more research should be done whether this method is sufficient to describe oxygenation
volumes in 3D. Typically, the 3D models are obtained by combining the 2D results from
different points along the vessel axis.
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Figure 2.15: Voronoi polygons to define perfusing regions of capillaries. Retrieved from
[49].

Perfusion zones of the portal tree in the liver

Selle et al. [46] proposed a model-based approach to determine the perfusion areas or
vascular territories in the liver. Therefore, they first constructed a graph structure of the
vascular network as a starting point to determine these vascular territories (section 2.5.2).

Following the structural analysis of the portal tree, they estimated the liver’s vascular
territories supplied by the main branches of the portal tree of the liver. First, they
described the problem in an abstract manner by introducing a function g. This function
assigns each liver voxel v to the appropriate liver segment Si. Each segment represents a
subvolume of the liver L that is supplied by branch Bi of the portal tree B. Practically,
each voxel v of the liver L will be assigned to a segment number i as depicted in equation
2.1.

g : v ∈ L→ {1, ..., n} (2.1)

In the absence of detailed information of the branching that would directly deliver in-
formation about the vascular territories as depicted in figure 2.16, they used modelling
approaches to determine g. These approaches are based on the anatomical information of
the portal tree and the liver. Therefore, they made use of two different methods to approx-
imate the liver segments. One method is the nearest neighbour segment approximation
(NNSA), the other approach is called the Laplacian segment approximation (LASA).



20 Chapter 2. Background

Figure 2.16: The ideal situation (left), where the vascular territories can be directly deter-
mined from the detailed branching structure versus reality where modelling
is required (right). Retrieved from [46]

The NNSA approach assigns each voxel to the closest branch Bi to that voxel. First, for
every voxel, they determined the shortest Euclidean distance di to every branch Bi as
depicted in equation 2.2. That results in a map of these distances di(v) for each branch
as depicted in Figure 2.17.

di(v) = min
v′∈Bi

‖ v − v′ ‖ (2.2)

Figure 2.17: The shortest euclidean distances for every voxel to branch Bi: the brighter
the voxel, the closer the voxel is to the branch. Retrieved from [46].

Next, the function gNNSA assigns every voxel v to the closest branch k based on the
calculation of dk(v), the minimum of the distances to all branches, calculated as dk(v) =
min {d1(v),..., dn(v)}.

gNNSA(v) = k (2.3)



Chapter 2. Background 21

The segment Si represents the liver voxels that are assigned to index branch i as depicted
in equation 2.9. That results in a map of the liver segments as shown in figure 2.18

Si = {v ∈ L | gNNSA(v) = i} (2.4)

Figure 2.18: The segments are defined based on the minimal distances. Retrieved from
[46].

The LASA approach is more complex and aims to determine for each segment i a harmonic
function φi, that is a solution of the Laplace equation (equation 2.5). The Laplace equation
can be solved by imposing specific boundary conditions, making this equation particularly
useful for this application.

∆φi(v) = 52φi(v) = 0 (2.5)

For segment i, the probability that a certain voxel v is perfused by branch Bi is the highest
when the voxel is located on that specific branch. Therefore, the harmonic function φi

should be maximal at branch Bi, resulting in the first boundary condition depicted in
2.6. At the other side, the probability should be equal to zero when the voxel is located
on a branch j different from i or when a voxel is not part of the kidney. Therefore, the
harmonic function φi should be zero at branch Bj with j 6= i and outside the liver, as
depicted in equation 2.7

φi(v) = 1 v ∈ Bi (2.6)
φi(v) = 0 v ∈ Bj with j 6= i or v /∈ L (2.7)

The Laplace equation can now be solved based on these boundary conditions what result
in a map for segment i shown in figure 2.19.
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Figure 2.19: The result of solving the Laplace equation for branch Bi. Retrieved from
[46].

The harmonic function φi increases as a voxel is closer to the corresponding branch Bi.
Hence, as shown in equation 2.8, the function gLASA assigns every voxel v to branch k
where φi is maximal, so that applies φk(v) = max {φ1(v),..., φn(v)}. Finally, each voxel in
the liver L is assigned to its corresponding branch based on the function gLASA, resulting
in figure 2.20.

gLASA(v) = k (2.8)
Si = {v ∈ L | gNNSA(v) = i} (2.9)

Figure 2.20: The resulting map of the liver divided into segments using the LASA ap-
proach. Retrieved from [46].

They also optimized the Laplacian segment approximation by slightly changing the bound-
ary conditions. They introduced an additional boundary condition depicted in equation
2.10 that the harmonic function φi should be zero at the height of the hepatic vein V .
This makes anatomically sense since the hepatic vein drains the blood from the liver.
Further, they considered the local radius of the branches r(v) for the boundary conditions
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as depicted in equation 2.11. In that way, they took into account that larger branches
perfuse a larger area by transporting more blood and that reduces the influence of smaller
branches.

φi(v) = r(v) v ∈ Bi (2.10)
φi(v) = 0 v ∈ Bj with j 6= i or v /∈ L or v ∈ V (2.11)

They validated the approximation methods by vascular corrosion casts of the human livers
from cadavers. The vascular corrosion casting allowed very precise approximation of the
true anatomical segments. They applied the three described approaches for three levels
of pruning as depicted in figure 2.21 and compared these results with the outcomes of
vascular corrosion casting based on the volume overlap as shown in table 2.2.

Figure 2.21: The results of vascular corrosion casting for different pruning levels from left
to right: low, medium and high pruning. Retrieved from [46].

Pruning levels High Medium Low
NNSA 79 % 89.9 % 93.4 %
LASA 77.7 % 88.6 % 91.7 %

Optimized LASA 81.7 % 90.8 % 92.7 %

Table 2.2: Percentages of the volume overlap between outcomes of the described LASA
and NNSA methods and the results of vascular corrosion casts, results retrieved
from [46]

A higher percentage of volume overlap corresponded with a more realistic outcome of a
method. They showed to have good results with volume overlap around 80-90 % depend-
ing the level of pruning. The NNSA approach performed better when the tree was more
detailed. At the other side, when starting from a highly pruned portal tree, the optimized
LASA method had slightly better results with up to 2.7 % more overlap compared to
NNSA. However, the LASA method required more computational power and therefore
the NNSA method seems to be the more suitable approach in practice.
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They also evaluated their methods in a clinical setting. For the liver resection surgery,
they concluded that automatic segmentation of the liver, tumours and vasculature allows
for better planning and improved preparation. They also suggested that the knowledge
of the vascular anatomy enables better evaluation of potential donors for living-related
liver transplant surgery.

2.7 Current surgical planning tools
Together with surgery becoming less invasive and more precise, the need for more precise
surgical planning is evident. Useful tools for surgical planning are 3D models. They
help the surgeon to gain insight into the patient-specific anatomy. An overview of these
methods is given in a paper by Porpiglia et al. [40]. The models can be constructed from
MRI and high-resolution CT images. Thereafter, the models can either be printed using
3D printing or maintained as virtual images that overlap on the endoscopic view, result-
ing in augmented reality (AR) surgical view. These 3D models have already been used
for prostate cancer surgery and kidney surgery. However, the major limitation of these
models is the accuracy when image acquisition or segmentation is not optimal. Further,
automated intra-operative superposition is not yet used in daily practice as the model
needs to adapt and align with constantly changing intra-operative views and physiologic
movements of the organ.

A more elaborated tool, hyper-accuracy three-dimensional (HA3D) reconstruction, was
used by researchers of the University of Turin to test its efficacy to clamp selectively dur-
ing robot-assisted partial nephrectomy (RAPN) [41]. They used specific scan protocols
and CT contrast injection, to obtain high-resolution CT scans. An overview of these set-
tings can be found in table 2.3. These images were further processed to obtain a virtual
3D model of the kidney. By reliable reproduction of the arteries, they could follow the
segmental arteries until they contacted the tumour surface, allowing the identification
of the arterial branch/branches supplying the tumour. Further, as shown in figure 2.22,
they superimposed the virtual model on the real anatomy, that overlapped with great
accuracy, showing a very reliable model. The tool allowed them to make a preoperative
simulation of selective ischemia. Moreover, the clamping following the simulation resulted
in successful ischemia of the tumour tissue and little ischemia of healthy tissue. There-
after, the successful selective clamping of the tumour supplying arteries was proved by
the use of fluorescence imaging. They aim to integrate the reconstructed images into the
robotic console.
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Figure 2.22: The dissection of the renal branches is guided by the 3D reconstruction:
the upper image shows the normal anatomy and the images below shows
the super-accuracy 3D reconstruction superimposed on the true anatomy.
Retrieved from [41].

Settings
Images detector configuration 64 x 0.625

rotation time 0.75 s
section thickness 0.7 mm
intersection gap 0.3 mm
helical pitch 0.609
scan field of view 50 cm
x-ray tube voltage 120 kV
x-ray tube current 300 mA

Contrast delay arterial phase 7 s
delay nephrographic phase- 70 s
delay delayed phase 600 s
injection at rate 4 ml/s

Table 2.3: Overview of image acquisition and contrast agent (non-ionic with 350 mg I/ml
or 370 mg I/ml) settings used in [41] to obtain high-resolution CT images.
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A commercial company, Visible Patient, developed specialised software to produce patient-
specific 3D models extracted from CT or MRI images. They obtained a CE mark for their
software, meaning that it meets safety, health and environmental requirements allowing
them to sell it within the European economic area. They offer an online service for 3D
patient modelling, where physicians can send their data returning back 3D models. This
service is certified ISO 13485, which is an internationally agreed standard defining quality
requirements for the medical devices industry [23]. Moreover, they developed software for
surgical planning to assist physicians in choosing the optimal strategy for surgery [48].
Two examples of their outcomes are depicted in figure 2.23, showing the segmented kidney
and a model of the perfusion zones of the liver.

Figure 2.23: 3D models produced by Visible Patient: (left) 3D model of kidney with
tumour and its vasculature, and (right) liver divided into perfusion zones
supplied by the branches of the portal vein. Retrieved from [48].

They apply similar techniques used in the liver and lungs on the kidney too, making it a
suitable planning tool for partial nephrectomy. However, since Visible Patient is commer-
cial company, they charge a significant amount of money for each 3D model they produce.
This cost makes using this service on the CT data of each patient not economically feasi-
ble. Moreover, the results that they return, can only be visualized using their specialised
software, and that doesn’t allow to use the obtained data for other purposes or for more
elaborated tools. These limitations explain the need for an in-house developed software
for planning of partial nephrectomy.
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2.8 Implementation for clinical practice
The ongoing progress in surgical planning is promising but is remains challenging to make
these research solutions ready for clinical use. This is certainly something that should
be taken into account for the development of an in-house model. One solution is imple-
mentation of the model in an existing platform that already offers the functionalities for
clinical use.

The R&D department of Siemens Healthineers has developed a platform syngo.via Fron-
tier for advanced post-processing prototypes. As a client of syngo.via, people one can
use these prototypes for research and clinical applications within the syngo.via environ-
ment. Moreover, with the syngo.via Frontier Development Kit, it is possible to develop
and upload prototypes on the syngo.via Frontier server. This can be achieved by reusing
existing code or integrating own algorithms in the environment. The development of these
prototypes can be done among others in MeVis MDL, python and C++. Important to be
noted, syngo.via Frontier is currently destined for research use only and not for clinical
use [21].

An interesting option for implementation in this Frontier environment is MeVisLab, which
is a modular framework for medical image processing and visualization development. This
framework is the result of a collaboration of MeVis Medical Solutions AG, a German com-
pany that provides software products for image-based medicine and the German research
institute for Digital Medicine, Fraunhofer Mevis. MeVisLab can be used to build clinical
application prototypes by the construction of modular networks combined with scripting.
These networks are constructed from existing image processing modules, built based on
underlying image processing algorithms, and new modules, that can be built using among
others Python scripting or C++ programming. A major advantage is that this frame-
work allows to load first image data, process and analyze these images and finally visualize
them. Moreover, several image formats such as tiff, dicom and bmp are supported. All
these factors together with the implementation into syngo.via Frontier environment make
MeVisLab a suitable choice for construction and implementation of new prototypes [2].





Chapter 3

Materials and Methods

In today’s clinical practice, the available techniques have several limitations, proving that
there is clearly a need for better pre-surgical planning. This chapter presents a model that
aims to support pre-surgical planning of partial nephrectomy by informing the surgeon
on arterial perfusion based on anatomical information of the parenchyma and the arterial
tree.

Figure 3.1 shows a high-level overview of the complete workflow. In the next sections, each
step in this workflow is described in detail. Section 3.1 discusses the source of anatomical
data and the first step in the workflow. This step is realised in Mimics and includes the
generation of a skeleton from the arterial tree and exportation of the anatomical data
in slice format. These data are the input of the model. In section 3.2, the functioning
of the perfusion model is discussed in detail starting from the manual adjustments of
some patient-specific settings. At last, 3.3 shortly introduces the 3D visualization of the
outcomes in Mimics and discusses possibilities to validate these results.
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Figure 3.1: Overview of the complete workflow existing of three main steps: the preparation and import of anatomical data in Mimics,
the new perfusion model and the 3D visualization.
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3.1 Anatomical data
The input of the model exists of anatomical information about the arterial tree, the
tumour and the kidney tissue, that comes from segmented CT images of these structures.
The segmentation of kidney, tumour and the vascular tree allows to build a 3D model of
these structures as depicted in figure 3.2.

Figure 3.2: 3D model of the kidney parenchyma (green), the tumour (purple) and arteries
(red) obtained in Mimics Research after segmentation.

3.1.1 Segmentation
The segmentation is performed using Mimics Research, which is specialised image pro-
cessing software developed by Materialise [1]. Starting from contrast-enhanced CT images
of the abdomen, two master students of medicine, Maryse Lejoly and Stefanie Vander-
schelden, have segmented several kidneys and their vasculature. Their master thesis
involves the clinical side of the planning tool for partial nephrectomy and they are re-
sponsible for the segmentation of the CT data, serving as input for the model. The
contrast-enhanced CT images are obtained during clinical examination of patients with
kidney cancer before they underwent partial nephrectomy. Figure 3.3 shows two CT slices
of a patient with a tumour in the right kidney. One is a contrast-enhanced CT image
and the other shows the segmentation into the kidney, the arterial tree and the tumour.
The axial 2D slices with segmentations of the kidney, the tumour and the arterial tree
are exported from Mimics as image files in bitmap (BMP) format, a format that can be
imported in the model.
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Figure 3.3: CT slice of a patient with a tumour in the right kidney. (left) contrast en-
hanced CT slice and (right) CT slice showing segmentation masks of kidney
parenchyma (green), tumour (purple) and arteries (red).

The quality of the results of the final perfusion model is highly dependent on the quality
of the segmentation. For instance, when a major vessel is missed or a non-existing ves-
sel is added, wrong conclusions can be drawn and this can lead to inadequate clamping.
Though, segmentation of raw CT data is a challenging and time-consuming task. The
resolution of CT images is often limited and image acquisition with contrast agents is
not always accurate. Therefore, it requires sufficient anatomical knowledge and exercise
to speed up the process and overcome difficulties in distinguishing different structures.
Instead of performing manual segmentation, a master student thesis in Biomedical En-
gineering, Jordi Martens, is working on automatic segmentation in the context of this
project. That would allow to speed up the segmentation step and enables automation of
the complete workflow starting from clinical data to the actual perfusion model, which is
the final objective of the planning tool.

3.1.2 Skeletonization
The 3D model of the arterial tree delivers the necessary information about the anatomy
of the arterial tree for the input of the model. In the next step, the 3D model of the
arterial tree is skeletonized as depicted in figure 3.4 to allow qualitative assessment.

Several people have been active in the development and optimisation of algorithms to
calculate the skeleton from segmented data, as briefly discussed in section 2.5.2. They
used a thinning algorithm to obtain the skeleton of vascular structures. However, in
the context of this thesis, an alternative approach is used that makes use of Mimics.
The Mimics software allows to calculate centrelines based on the 3D reconstructions as
depicted in figure 3.4. The generated centrelines are first inspected and manually adjusted
when needed by removing wrongly skeletonized branches or adding segments. Then, they
are grouped according to their generation. Thereafter, their coordinates are exported to
a text file to serve as an input for the model.
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Figure 3.4: Centrelines calculated in Mimics from the 3D model of the arterial tree

The exported data contains for each branch the corresponding branch number and the
coordinates of the control points on the branch. These control points are automatically
generated and their number depends on the tortuosity and length of the branch. In figure
3.5, the obtained centrelines are depicted with their corresponding branch numbers.

Figure 3.5: Centrelines with corresponding branch numbers. The colours of the numbers
designate the corresponding generations following a top-down ordering.

The major advantage of this approach to calculate centrelines is that the centrelines are
obtained directly from the segmented 3D model in Mimics and thus requires no additional
algorithm. Though, this approach is only partly automatic resulting in additional manual
steps.
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3.2 Perfusion model

The image volume is composed of discrete blocks or voxels. The base of these blocks
is typically squared with a side of 1 mm and the height is equal to the slice thickness.
Based on the segmentations, voxels are assigned to the kidney or tumour. For each of
these voxels of the kidney, the model determines the number of the branch that has the
highest probability of supplying that voxel. It is important that the allocation of a branch
number to each voxel is anatomically relevant and at the same time is feasible without re-
quirements of excessive computational power. A logic approach that comes up in mind is
a method that determines the nearest branch to each voxel. As discussed in section 2.6.2,
a similar approach of shortest distances was applied and validated by [46] and showed to
have good results proving it to be anatomically relevant without excessive computational
demands. Though the method was only applied for the liver, a similar approach for the
kidneys should give realistic results too and therefore looks suitable as a base for the model.

Figure 3.6: The model starts with (1) loading the data of the skeleton, the tumour and
the kidney. Next (2), the data is used by the model to determine the perfusion
areas of the arterial tree. At last (3), these results are exported as 2D slices
and converted into 3D images.

The model itself is written in Python code and is built up following three steps as depicted
in figure 3.6. First, the data of the skeleton, kidney and tumour is loaded. From this
information, the model determines the perfusion zones by determining the closest branch
to each voxel. Therefore, two different approaches are used, which will be explained later
on. Once each voxel is assigned to a specific branch, the obtained perfusion zones are
exported to 2D sliced images that are imported in Mimics to allow 3D visualization.
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3.2.1 Load input data
The first part of the model exists of importing the data as depicted in table 3.1.

Import data file type obtained info
Skeleton .txt x, y, z coordinates control points

Branch number
Tumour .bmp 2D slices x, y, z coordinates of voxels

Parenchyma .bmp 2D slices x, y, z coordinates of voxels

Table 3.1: Overview of the import data that is loaded in the model.

Skeleton

The skeleton is loaded in the model as a text file that lists the control points for each
branch of the skeletonized arterial tree as depicted in figure 3.7. From this file, the infor-
mation about the positions of these control points and the corresponding branch numbers
are retrieved. The positions of these control points are described in a coordinate system of
Mimics, that varies with each dataset. To allow calculations, a coordinate transformation
is applied to describe all the control points in the same coordinate system as the tissue.

Figure 3.7: Example of the data in the text file where the branch number (green box) and
the x, y and z coordinates of each control point (red box) can be obtained.
The other specifications in the file, such as the minimal radius are now not
used, though may be interesting for future applications.
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The coordinate transformation converts the Xmc, Ymc and Zmc coordinates of each control
point (designated with red box) to new coordinates Xv, Yv and Zv, that are calculated
as depicted in equations 3.1, 3.2 and 3.3. Here, Xmin, Ymin are the x and y coordinates
corresponding with respectively the left and top side of an image slice in Mimics. Zmin

is the coordinate of the bottom slice of the image. ∆Xmc and ∆Ymc give the width and
height of the image slices in Mimics and ∆Xv, ∆Yv represent the dimensions of the BMP
slices. The ∆Zmc and ∆Zv have typically the same value and can be calculated as the
number of slices multiplied with the slice gap. Figure 3.8 visualises the meaning of these
coordinate values for the two coordinate systems. Importantly, these values vary between
different patient cases and hence the coordinate transformation should be adapted to each
patient.

Xv = Xmc −Xmin ·∆Xv

∆Xmc

[mm] (3.1)

Yv = Ymc − Ymin ·∆Yv

∆Ymc

[mm] (3.2)

Zv = Zmc − Zmin ·∆Zv

∆Zmc

[mm] (3.3)

Figure 3.8: The Xmc, Ymc and Zmc coordinates in Mimics coordinate system (left) are
transformed into new coordinates Xv,Yv and Zv in ’voxel’ coordinate system
(right), according to the transformation depicted by equations 3.1, 3.2 and
3.3
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Finally, four lists are obtained containing the x, y and z coordinates and the branch
numbers of the complete arterial tree. Though in reality, only branches that go into the
kidney will supply the tissue. Moreover, the surgeon can only clamp a specific branch of
the arterial tree, when this branch is located outside the kidney. Therefore, branches are
only marked if they fulfil all requirements as listed below.

• Requirement 1: the branch should start outside the tissue (tumour or kidney) .

• Requirement 2: a part of the branch should go inside the tissue or the branch should
have a dead-end.

In short, only branches that start outside the kidney or tumour and go inside the tissue
or have a dead-end are selected to determine the perfusion zones. These branches of-
ten ramify further in the kidney. These daughter segments obtain the branch number of
their corresponding selected parent branch and hence their control points are also used
in the calculations later on. For instance when branch 4 is marked and further ram-
ifies into 5 and 6, then the control points of 5 and 6 are assigned to branch 4. This
principle of selecting branches is depicted in figure 3.9 Finally, all branches that fulfil the
requirements and their ramifications are kept, while the others are removed from the lists.
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Figure 3.9: The tumour and the tissue are supplied by different branches of the arterial
tree. The arterial tree is skeletonized and the branch numbers are added. The
bold numbers depict the branches that fulfil the two requirements as set in this
section and therefore are selected as the branches determining the perfusion
zones. The underscored numbers mark the segments that are situated inside
the kidney and are ramifications of the selected (bold) branches.

Kidney and tumour tissue

The perfusion zones need to be calculated inside the kidney and tumour. Therefore, the
2D axial slices of the kidney and tumour are loaded as depicted in figure 3.10 and their
coordinates are listed in separate lists for the tumour and the tissue. The x, y and z co-
ordinates are defined according to the dimensions of the image matrix. To give a simple
example, a typical slice is 0.7 mm separated the neighbouring slices and has dimensions
of 512 mm x 512 mm. So, a voxel situated at the 3rd slice in the second column, has
x = 1mm and z = 1.4mm. The coordinate system defined in this way is used for further
calculations and therefore the skeleton coordinates are also converted to this coordinate
system.
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Figure 3.10: Examples of axial 2D slices of the kidney (left) and tumour (right).

Only part of the image volume contains information about the tissue and the tumour.
Many top and bottom slices are empty and therefore these slices are not included in the
input data. Hence before the data is loaded in the model, the z-coordinate of the new
start slice is determined to assign correct z-coordinates. The main reason for removing
these slices is the reduction of computational time. This action does not influence the
final results and therefore is only advised to decrease the running time of the model.
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3.2.2 Apply the model
Once the information about the skeleton and the kidney with the tumour is loaded and
listed, the algorithm can be applied. As mentioned before, two different approaches are
used to determine the perfusion zones. The first approach simply determines for each voxel
of the kidney and tumour the point of the skeleton that is the closest to that voxel and is
later on mentioned as the direct distance method. The other method uses the principle
of region growing and grows the different branches of the skeleton simultaneously within
the volume of the kidney and tumour.

Direct Distance Method

The direct distance method determines the closest branch to each voxel of the kidney
and tumour by calculating distances between voxels and control points. The positions of
the control points with their corresponding labels and the voxel coordinates are listed as
discussed in section 3.2.1. For each of the voxels, the distances to all control points of the
arterial tree are calculated. Equation 3.5 shows the calculation of the squared distances
between a voxel of the kidney i and a control point of the skeleton j.

d2(i, j) =
[
Xkidney(i)−Xv(j)

]2
+
[
Ykidney(i)− Yv(j)

]2
(3.4)

+
[
Zkidney(i)− Zv(j)

]2
(3.5)

Next, for each voxel i the control point l is determined that corresponds with the minimum
distance d from the voxel to the control point as depicted in equation 3.6.

d2(i, l) = min
{
d2(i, 1),d2(i, 2), ...,d2(i, n)

}
(3.6)

(3.7)

Finally, the number b of the branch where the control point l is located on, is assigned
to voxel i. This is practically done by setting function Skidney for this voxel i equal to the
number b as depicted in equation 3.8.

Skidney(i) = b(l) (3.8)

The same method as discussed for the kidney is applied to the list of voxels of the tu-
mour. And that results in a function Stumour that gives for each voxel i the number b of
the branch containing the control point that is at a minimum distance from this voxel.
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Figure 3.11: Simple example of the principle of the direct distance approach explained
above.

Based on the coordinates of the voxels, the obtained labels are positioned within the 3D
image volume and this results in a 3D map of the perfusion zones of each branch. Figure
3.12 shows two resulting slices of the direct distance method. As depicted in equation
3.9, the x and y dimensions of the volume remain equal to the original image dimensions
in the ’voxel’ coordinate system, namely ∆Xv and ∆Yv respectively, and the z range is
equal to the number of slices or #slices.

image shape = (∆Yv,∆Xv,#slices) (3.9)

The major drawback of the direct distance method is that the calculations take some time,
which is a result of a large number of equations to be solved, namely number of voxels
multiplied with the number of control points. Usually, the computational time exceeds
15 minutes.
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Figure 3.12: Two slices obtained from the direct distance method.

Region Growing Method

The second method aims to define the same perfusion zones as the direct distance method,
but by using the approach of ’growing’ the arterial branches. In principle, each skele-
tonized branch grows with the same speed in all 6 directions (back and forth in x,y and
z direction). Each branch keeps growing until it reaches the end of the tissue or until
it meets another branch. Then the region stops growing. The practical implementation
in Python is more complex than the direct distance approach, though the computational
time is slightly shorter due to a lower number of calculations.

In order to explain the method in a simple way, the region growing method is applied to a
simple example of a 2D slice. Hence, region growing will only occur in 4 directions where
the actual model will include all 6 directions, though the general principle is similar as in
3D region growing. The example slice exists of 5 rows and 5 columns and three starting
points are marked with three different labels as depicted in figure 3.13(a). Each point
b(x, y), that is defined by its position in x and y and labelled with the assigned branch
number b, is added to the region growing list (RG list). Hence, the RG list initially only
includes these points as depicted in equation 3.10.

RG =
{

1(0, 0) 2(3, 2) 3(1, 4)
}

(3.10)

Next, the first element of the list 1(0,0) is selected with coordinates X1 = 0 and Y1 = 0.

For this element the 4 surrounding elements are determined as depicted in equation 3.11.
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(X1 − 1, Y1) Point 1: left
(X1 + 1, Y1) Point 2: right
(X1, Y1 − 1) Point 3: up
(X1, Y1 + 1) Point 4: down

(3.11)

Each of these points is only added to the end of the RG list if (1) the point is part of
the image volume and (2) no label is assigned to this point. For element 1(0,0), point 3
and point 2 meet these conditions. Hence, label 1 is assigned to these points and they are
added to the region growing list as depicted in equation 3.12. The resulting image after
this first step is shown in figure 3.13(b).

RG =
{

1(0, 0) 2(3, 2) 3(1, 4) 1(1, 0) 1(0, 1)
}

(3.12)

Figure 3.13: The initial situation (a): three points are labelled with 1(blue),2 (yellow)
and 3(brown) and (b) the result after one step of region growing.

Next, the second element of the RG list is selected and again the surrounding points are
determined and added when they meet the conditions. In that way, for each point in the
array, the surrounding voxels are determined. If they meet the conditions, they are added
to the region of the original point, resulting in gradually growing of the different regions.
Figure 3.14 shows how the region growing algorithm gradually results in three regions
with three different labels.
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Figure 3.14: (a) The initial situation with three differently labelled points. (b) the sit-
uation after one step of region growing of each region. (c) shows further
progression in region growing and (d) shows the final result of three differ-
ent regions labelled with 1, 2 and 3 or blue, yellow and brown.

The region growing method has been applied in a similar way on the arterial tree, with
the control points of the arterial tree serving as starting points. The matrix where the
arteries grow into the regions, is defined within a 3D image matrix with dimensions as
described below.

• The x and y range are equal to the ∆Xv and ∆Yv respectively as defined in section
3.2.1, which are the width and heights of the image slices in the ’voxel’ coordinate
system.

• The Z range is equal to the number of slices multiplied with the slice gap.
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Hence, the 3D image volume exists of squared voxels, allowing growing with equal speed
in all directions. Similar as in the example, all control points are added to the RG list as
symbolically depicted in equation 3.13. These control points have a label corresponding
to the branch they are located on.

RG =
{
... bj(Xi, Yi, Zi) bj(Xi+1, Yi+1, Zi+1) ... bj+1(Xi+2, Yi+2, Zi+2) ...

}
(3.13)

For each point b(X,Y,Z) of the RG list, the neighbouring points are determined as depicted
in equation 3.14. These points are marked in the 3D matrix and added to the list if they
have no label yet and are located inside the image volume.



(X − 1, Y, Z) Point 1: left
(X + 1, Y, Z) Point 2: right
(X, Y − 1, Z) Point 3: posterior
(X, Y + 1, Z) Point 4: anterior
(X, Y, Z − 1) Point 5: bottom
(X, Y, Z + 1) Point 6: top

(3.14)

The result of the 3D region growing is depicted in figure 3.15, showing that the regions
have grown over the whole image. From these images, the parts of the kidney and tumour
cannot yet be distinguished from the rest of the image. Therefore, the image volume of
the kidney and tumour are defined. Hence, two 3D image volumes are created with the
same dimensions as the region growing matrix. The new image volume exists of cubic
voxels with edge 1 mm. However, the original slices with the information of the tissue
volumes exist of voxels with cuboid shape due to a slice gap different from 1mm. Hence,
empty voxels between slices need to be filled when creating these new image volumes.
Therefore, all the voxels that have a filled voxel on top are also filled to compensate for
slices that were not present in the original image volume.

In the region growing image volume, only the zones that are part of the kidney tissue
volume or the tumour volume are stored, resulting in a map of the perfusion zones for the
kidney and the tumour. Figure 3.16 depicts two resulting slices containing the tumour
(right) and the kidney (left). The major advantage of this approach is that also slices
located outside the kidney or tumour can be taken into account. This is important since
these branches may have bifurcations inside the kidney that are not visualized in the
segmented model of the arterial tree.
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Figure 3.15: Two image slices as results of the region growing.

Figure 3.16: Image slice of the kidney (left) and the tumour (right) divided into perfusion
zones as a result of the region growing method.

3.2.3 Output 2D slices
The direct distance and region growing method result both in 3D image volumes of the
kidney and tumour divided into perfusion zones. In the final 3D model, the arterial
tree and the perfusion maps of kidney and tumour are visualised together. Therefore,
superposition of the three image volumes is applied. For the superposition of the region
growing images, the volume of the arterial tree is first re-sampled from rectangle to cubic
voxels to have the same built-up as the tumour and kidney volumes. The re-sampling of
the volumes was required to have the same speed of region growing in all directions. To be
able to distinguish the tumour volume from the kidney volume, the labels of the kidney
volume are changed from their original labels btumour to their new labels btumour,new as
depicted in equation 3.15. BL presents the list containing the different branch numbers.

btumour,new = btumour +max(BL) (3.15)



Chapter 3. Materials and Methods 47

The major advantage of this approach is that the original labels can easily be derived
later on, while the tumour and kidney volumes still can be separated.

The final image after superposition is a volume containing information about the arterial
tree and the perfusion zones of the kidney and tumour. This image volume is again
decomposed into slices with a thickness of one voxel in the z-direction. It is important to
note that the direct distance method will deliver slices with the same slice thickness as the
original slices, while the slices obtained from the region growing method are re-sampled
to slices with a thickness of 1 mm. These slices are exported as grey value images in BMP
format.

3.3 Visualization and validation
The 2D slices are converted into a 3D model of the perfusion zones using the Mimics soft-
ware. In chapter 4, the results of the model applied to four patients are discussed in detail.

These 3D models are first inspected visually to detect major mistakes by looking whether
the position of the perfusion zones is realistic compared to the location of the supplying
arteries. Next, a first validation of our outcomes is done based on the results of Visible
Patient, which is possible because the raw CT data of two patients were sent for analysis
to its online service and used for our model as well after segmentation by the medicine
students. Visible Patient provided 3D reconstructions of the kidneys and their arterial
tree as well as a clipping model showing the perfusion zones per arterial segment. Their
results were used for surgical planning to decide on the clipping locations. Though these
models are not yet clinically validated, their predictions proved to be realistic during
surgery and thus can be used for validation of our model.





Chapter 4

Results and discussion

The perfusion model is applied to four patient cases. Each of them was diagnosed with
kidney cancer. As part of the standard care protocol prior to the partial nephrectomy
surgery, contrast-enhanced CT scans of the abdomen were taken. Figure 4.1 shows the
3D models of the affected kidney for each of these patients obtained after segmentation
of the raw CT images.

(a) Patient 1 (b) Patient 2 (c) Patient 3 (d) Patient 4

Figure 4.1: Anterior view on 3D models of the renal parenchyma (green), tumour (purple)
and arteries(red) as result of segmentation

The underlying algorithm of the model uses either the direct distance or region growing
approach as discussed in the materials and methods chapter 3. In the next sections,
the results of these methods for each patient are shown and discussed. Further, a first
validation of the results is done based on the results of the online service Visible Patient
for two patient cases.

49
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4.1 Input of the patient cases
Before addressing the results, the input data and skeletonization is shortly discussed for
each patient. The quality of the input data deserves prior attention since it strongly
influences the quality of the outcomes of the model. Inspection of the CT images of the
different patient cases shows that the image specifications such as slice thickness differ
between the patients as a result of different parameters during image acquisition. The
acquisition of CT images is executed according to predefined protocols to control the dose
and image quality. The slice thickness correlates with these protocols since an increased
slice thickness requires a lower radiation dose [43]. Table 4.1 gives the specifications of
the original image volume. As discussed in section 3.2.1, only part of the image volume
is loaded to limit computational effort. Therefore, the table also defines the number of
slices that is actually loaded, and the z-coordinate of the start slice, which is the first slice
that is loaded.

Patient shape image volume number of slices Slice gap start slice Loaded slices
[m3] [mm]

1 512x512x460 231 2 252 53
2 512x512x467.6 669 0.7 231 281
3 512x512x374.5 536 0.7 210 161
4 512x512x506.4 424 1.2 276 142

Table 4.1: Overview of image specifications for each dataset containing the complete
shape of the image volume, the original and loaded number of slices, the slice
thickness or slice gap and the z-coordinate of the first slice that is loaded.

The arterial tree of each 3D model is skeletonized as depicted in figure 4.2. The arterial
model of the first patient has the most detailed tree with extensive branching up to the
7th generation and well-segmented branches. That allows to generate a relatively detailed
skeleton. The arterial models of the other patients are less detailed showing less extensive
branching and more incomplete branches in the tree. Often, these incomplete branches or
branches with very small cross-sections are not skeletonized automatically, and hence need
to be added manually to the skeleton. The detail in the arterial model directly affects the
quality of the perfusion model, since a more precise model approximates better the real
arterial tree. Hence, models of the arterial tree with low precision miss valuable infor-
mation to determine the perfusion by missing for instance branches that go to the tumour.
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(a) Patient 1 (b) Patient 2

(c) Patient 3 (d) Patient 4

Figure 4.2: The 3D model of the arterial tree and the calculated centrelines for each
patient case in anterior view for patient 1 and 4 and posterior view for patient
2 and 3. The complexity of the reconstruction of the tree of patient 3 has
more detail than the trees of the other patients.

With the generation of the skeleton, branches are numbered automatically. As discussed
in section 3.2.1, branches that start outside the kidney and tumour and subsequently
enter it (or have a dead end) are selected to determine the perfusion zones as depicted for
all patients in figure 4.3. The bifurcations from these branches are grouped under their
corresponding selected branches and are also considered in the calculations.
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(a) Patient 1 (b) Patient 2

(c) Patient 3 (d) Patient 4

Figure 4.3: The tumour and the tissue are supplied by different branches of the arterial
tree. The bold numbers depict the numbers of the branches that fulfil the
requirements as set in section 3.2.1 and therefore, are selected as the branches
determining the perfusion zones.
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4.2 Results of direct distance method
The results in this section are obtained using the direct distance method as described in
section 3.2.2. The results are represented as 3D perfusion maps of the healthy parenchyma
and the tumour. Figure 4.4 depicts the division into these zones for the first two patients
and figure 4.5 shows the maps for patient 3 and 4. Each region represents a zone that is
supplied by a specific segment of the arterial tree. These branches are selected from the
arterial tree as discussed in the previous section and their positions and corresponding
branch numbers are depicted in figure 4.3 for every patient. At the right side of the figures
below, the number of these branch segments are given for each region.

(a) (b)

(c) (d)

Figure 4.4: Anterior and posterior view on the perfusion maps with the arterial tree of
patient 1 (a-b) and 2 (c-d). Each color represents a perfusion zone supplying
the corresponding arterial branch.
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(a) (b)

(c) (d)

Figure 4.5: Anterior and posterior view on the perfusion maps with the arterial tree of
patient 3 (a-b) and 4 (c-d). Each color represents a perfusion zone supplying
the corresponding arterial branch.
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The planning tool aims to distinguish the arteries that go to the tumour from those that
only supply healthy tissue. Therefore, a closer look is taken at the tumour. In figure 4.6(a)
the tumour of patient 1 is depicted. The model predicts that the tumour is supplied by five
different branches since their perfusion zones include the tumour. This suggests that the
surgeon should clamp these vessels to avoid bleeding during surgery. Though, figure 4.6(b)
shows that these branches also supply a significant part of the healthy parenchyma. Thus,
selective clamping of these vessels will cause local ischemia in half the kidney, though the
other parts of the healthy parenchyma will be spared, which seems like a better option
than complete kidney ischemia or excessive bleeding without clamping. This, of course,
only holds if the predictions by the model are correct.

(a) (b)

Figure 4.6: (a) The detail of the tumour of patient 1 shows 5 perfusion zones in the
tumour, supplied by branches 7, 16, 17, 22 and 28. (b) The perfusion map
of these branches in the complete kidney shows that they perfuse about half
the kidney including a substantial part of the healthy parenchyma.
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Figure 4.7(a) zooms in on the tumour of patient 2. Here, the model predicts that there will
be 3 perfusion zones supplied by arterial segments 7, 12 and 13. Figure 4.7(b) shows that
the perfusion regions of the branches outside the tumour are limited. Thus, clamping these
vessels should allow bloodless resection with limited healthy tissue ischemia. However,
the complexity of this arterial tree is low compared to what is expected from the real
anatomy and that may influence the quality of the predictions by the model. It is clear
that validation of the outcomes is necessary to see how well the results approximate reality.

(a) (b)

Figure 4.7: (a) The detail of the tumour of patient 2 shows 3 perfusion regions in the
tumour, supplied by the branches 7, 12 and 13 according to the results of the
model. (b) The perfusion zones supply zones of the tumour and also part of
the healthy parenchyma.

Another case to take a closer look at is the 4th patient. The 3D reconstruction of the
kidney with tumour and arterial tree as depicted in figure 4.2(d) suggests that there is
a branch 9 that obviously seems to supply the tumour. Though, this branch is later on
removed from the model because during clinical feedback there was suggested that this
branch is actually not an artery, but part of the adrenal gland. In figure 4.8 the difference
in results is depicted between adding branch 9 or not. Figure 4.9 depicts a detail of the
tumour and shows that adding branch 9 results in an additional perfusion zone in the
tumour, and a reduction of the region perfused by branch 11.
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(a) With branch 9 (b) Without branch 9

Figure 4.8: 3D perfusion maps of the kidney of patient 4 with branch 9 added and without
this branch.

(a) With branch 9 (b) Without branch 9

Figure 4.9: (a) The detail of the tumour of the patient 4 when segment 9 is added to the
model shows that there are 3 branches perfusing the tumour namely 2,9 and
11. (a) The detail of the patient 4 when there is no segment 9 shows that
there are only 2 branches supplying the tumour, namely 2 and 11.
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The results until now are obtained by using all information of the arterial tree. Now, it
is interesting to see what happens to the results when not all information is imported in
the model. That can be achieved by pruning the original arterial model to a certain level.
For patient 1, the arterial tree is pruned until only the first three generations remain.
In figure 4.10 the perfusion maps supplied by branches of the 3rd generation are shown
based on this pruned tree and based on the original tree. It is clinically relevant to take
a look at the perfusion zones of this lower generation, as during surgery, usually arteries
of the 3rd or 4th generation are clipped, but almost never higher generations.

(a) (b)

(c) (d)

Figure 4.10: Perfusion zones of the branches of the 3rd generation. (a-c) The perfusion
zones are determined based on the information of the pruned tree. (b-d)
The results are obtained based on the complete tree
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The perfusion zones based on the pruned tree are very different from those of the original
tree, implying that the quality of the tree has an important influence on the quality of
the results. Further, the zones are much larger, which means that clamping of these 3rd
generation arteries will cause more healthy tissue ischemia and thus these branches are less
suitable candidates. Figure 4.11 shows a close-up of the tumour divided into perfusion
zones based on the complete and pruned tree. As discussed before, the complete tree
predicts 5 branches supplying the tumour, namely 7, 16, 17, 22 and 28. The pruned
tree, however, predicts two branches: segment 5, that supplies segments 7, 17 and 28, and
segment 22. Hence, the perfusion model based on the pruned tree neglects the perfusion of
the tumour via branch 16 and consequently, complete tumour ischemia cannot be realised
when clamping based on these results. This shows that the complexity of the arterial tree
reconstruction should be as high as possible to allow accurate predictions and correctly
suggests locations for clamping to allow resection in a bloodless field.

(a) (b)

Figure 4.11: The detail of the tumour with (a) 5 perfusion zones when the complete
arterial tree is used and (b) 2 perfusion zones when the tree pruned until
only the 3 first generation remain.
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4.3 Results of region growing method
In figure 4.12 the results of the region growing approach are shown next to those of the
direct distance approach for patient 1. Though both methods have the same underlying
principle, namely constructing a perfusion map giving for each voxel its closest branch,
the volumes of the regions are not completely the same. For instance, when applying
region growing, the region of branch 22 has expanded causing a reduction of the region of
branch 28. The reason for these differences can be found in the way the region growing
algorithm is implemented. The algorithm grows regions starting from control points and
hence segments existing of more control points may be favored over those existing of only
few control points.

(a) (b)

(c) (d)

Figure 4.12: Anterior and posterior view on the perfusion maps of patient 1 obtained with
region growing (a-b) and with the direct distance method (c-d). Each color
represents a perfusion zone supplied by the corresponding arterial branch.

A closer look is taken to the tumour in figure 4.13. This is to see what branches supply
the tumour according to the region growing method and how well these results match the
results from the direct distances approach. Both approaches suggest the same branches
that supply the tumour, though their regions are slightly different.
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(a) Region growing (b) Direct distance

Figure 4.13: The detail of the tumour of patient 1 with perfusion zones determined ac-
cording to (a) the region growing approach and (b) the direct distance ap-
proach.

The region growing method is also applied to the kidney of patient 2. Figure 4.15 compares
again the resulting 3D perfusion maps for both methods. Here, again some differences
in volumes are observed between the models, though these differences seem smaller than
those for patient 1. When taking a closer look at the tumour in figure 4.14, both methods
predict branch 7, 12 and 13 as the arterial segments supplying the tumour.

(a) Region growing (b) Direct distance

Figure 4.14: The detail of the tumour of patient 2 with perfusion zones determined ac-
cording to (a) the region growing approach and (b) the direct distance ap-
proach.
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(a) (b)

(c) (d)

Figure 4.15: Anterior and posterior view on the perfusion maps of patient 2 obtained with
region growing (a-b) and with the direct distance method (c-d). Each color
represents a perfusion zone supplied by the corresponding arterial branch.

The perfusion volumes of the region growing and direct distance method are not com-
pletely the same. Though both methods have the same goal, the way they determine
the nearest branch explains their differences in results. It is clear that the direct dis-
tance approach is the most accurate way to determine the nearest branch as it directly
determines the minimum distance. The region growing method is more an approximating
method. Though, this does not say anything about how well the direct distance approach
approximates reality, because therefore validation is required. Despite the differences in
perfusion volumes, the predictions about the tumour perfusing arteries were the same for
both methods. Thus, the region growing method certainly seems like a suitable alterna-
tive for the direct distance method, especially because the computational time for running
the model is shorter. However, this approach requires optimization for toward the future.
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4.4 Validation of results
The results of the previous sections are first inspected visually to see whether these re-
sults could be valid. This visual inspection allowed to optimize the algorithm of the two
methods to ensure that each voxel is assigned correctly to the branch that is closest to
it. However, this inspection doesn’t say anything about the quality of the results with
respect to reality. One way to validate these models is validation with vascular corrosion
casts as the study by Selle et al. [46] did. However, in the context of this thesis, a first
validation of the results is done based on the outcomes of Visible Patient for 2 of our
patients, as discussed in section 2.7.

For patient 1, figure 4.16 shows the resulting clipping model of Visible Patient next to
the outcomes of the model based on the direct distance approach. The results of the
model approximate the results of Visible Patient relatively well, though there are some
differences in the volumes. As discussed in the previous sections, our model predicts that
the tumour is supplied by five different branches, namely 7, 16, 17, 22 and 28. Though,
Visible Patient predicts that only four of these branches perfuse the tumour and excludes
branch 7 as depicted in figure 4.17. It is important to note that this segment 7 perfuses
a large part of the healthy tissue, and hence the decision not to clamp can significantly
reduce the region of local tissue ischemia during surgery. Visible Patient builds its clipping
model starting from a more complex arterial tree as depicted in figure 4.18. This allows
them to predict more precisely and may explain the differences in results.
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(a) (b)

(c) (d)

Figure 4.16: The results of Visible Patient (a-c) on the left side are compared to the
results of our model (b, d) on the right side. The black numbers show the
labels of the branches and the white and coloured numbers correspond to
the perfusion zones.
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(a) (b)

Figure 4.17: Detail of the perfusion zones supplying the tumour. (a) Visible Patient
predicts that 4 branches supply the tumour, namely 16, 17, 22 and 28. (b)
Our model suggests that there are 5 perfusion zones supplied by branches
7, 16, 17, 22 and 28.

(a) (b)

Figure 4.18: Arterial tree obtained by Visible Patient (b) has a higher complexity than
the one used in our model (a)
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The results of patient 2 can also be compared to outcomes of Visible Patient as depicted
in figure 4.20. Again the locations of the regions are quite similar, but the volumes differ
here more than in patient 1. In figure 4.19, the tumour is studied in detail, and there can
be observed that Visible Patient predicts that only two branches supply the tumour while
our model predicts three of them. When taking a closer look to the tumour vasculariza-
tion in figure 4.21, the branches are much more complex in the clipping model of Visible
Patient and therefore more information about the perfusion can be delivered.

(a) (b)

Figure 4.19: Detail of the perfusion zones supplying the tumour for patient 2. (a) Visible
Patient predicts that 2 branches supply the tumour, namely 13 and 7. (b)
Our model suggests that the 2 perfusion zones are supplied by branches 7,12
and 13.
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(a) (b)

(c) (d)

Figure 4.20: The results for patient 2 of Visible Patient (a-c) on the left side are compared
to the results of our model (b, d) on the right side. The black numbers show
the labels of the branches and the white and coloured numbers correspond
to the perfusion zones.
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(a) (b)

Figure 4.21: Arterial tree of patient 2 with tumour and tumour supplying arteries as-
signed. The arterial segments by (a) Visible Patient have a higher complex-
ity than (b) those used in our model.

In conclusion, the results of Visible Patient and our model show similar results, implying
that the algorithm based on the closest distance gives realistic results. However, thanks
to their more detailed model of the arterial network, Visible Patient can predict the perfu-
sion zones more precisely. For both patient cases, our model suggests that more branches
should be clamped than what is actually needed to cause ischemia according to the out-
comes of Visible Patient.



Chapter 5

Implementation

The planning tool is able to predict the arterial segments supplying the tumour based
on a closest distance approximation. Currently, the outcomes are retrieved thanks to a
combination of the perfusion model in Python and the image processing functionalities
in Mimics. The workflow requires some manual work in Mimics for image processing
and visualization and also for the perfusion model to adjust the patient-specific settings.
Therefore, the user requires some anatomical and technical knowledge on the model to
correctly execute these actions. Ideally, the manual part is automated and all steps are
integrated into one interface that is easy to use and requires minimal manual work so that
it can be used by the surgeon in clinical practice. As discussed in section 2.8, MeVisLab
makes a good candidate, since it has several functionalities to import data, write code
and visualizes images in 2D and 3D. Further, a tool developed in MeVisLab can also be
integrated into syngo.via Frontier, the platform for medical applications of image process-
ing developed by Siemens Healthineers and that may facilitate implementation in clinical
practice.

This chapter explores the possibilities of MeVisLab to evaluate if the implementation of the
complete planning tool is feasible in this environment. Therefore, a closer look is taken at
the three main functionalities required for the implementation of this tool, namely import
of imaging data, execution of the perfusion algorithm and 3D visualization.

5.1 Import imaging data
Let’s assume that there is again started from the 3D reconstructions of the kidneys based
on segmentations of CT data in Mimics. The image volumes can be exported from Mimics
as 2D images of different formats. One frequently used format for medical images is Digital
Imaging and Communications in Medicin (DICOM), which refers here to a specific digital
format for medical images [3]. This file format is also supported in MeVisLab and thus, a
network can be constructed to load several 2D slices in DICOM format and visualise the
resulting image volume. MeVisLab has a specialised module, DicomImport that allows
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to construct a 3D image volume in TIFF and DICOM format. By adding a module
ImageLoad, one is able to load an image volume in TIFF or DICOM format in the
network. That last module, in turn, can be connected to View2D or View3D for 2D and
3D visualization respectively. This simple flow is shown in figure 5.1.

Figure 5.1: The network required to load multiple DICOM slices and visualize the result-
ing image volume in 2D

The aim is reconstruction of the 3D structures of the kidney, tumour and arteries. There-
fore, an additional step is required, since the segmentations are always exported together
with the original CT image as background in DICOM format. This background can be
removed by subtracting the original image from the segmented image, which is realised
using the Arithmetic module. Figure 5.2 shows the schematic and MeVisLab network to
the image volume of the kidney and visualise it.

(a) (b)

Figure 5.2: The network required to load and visualise the kidney volume starting from
2D DICOM slices exported from Mimics.



Chapter 5. Implementation 71

Alternatively, images in BMP format can be loaded in MeVisLab. The advantage of BMP
compared to DICOM is that it is possible to export images containing only the segmented
structures. Moreover, 3D visualisation of the resulting 2D image files is possible, since
these outcomes are also in BMP format. There is no specific module present to load
multiple BMP, and thus, an alternative approach is used as depicted in figure 5.3. Here,
the image volume is loaded by connecting two modules, namely imageLoadMulti and
imageComposer. The first module is able to run through a list of image files located in a
given directory and the other is able to compose an image volume by stacking 2D image
slices reaching this module. Thus, each time imageLoadMulti loads an image, it is sent to
the imageComposer that adds it to the previous images until the complete image volume
is reconstructed.

(a) (b)

Figure 5.3: The network required to load and visualise the kidney volume starting from
2D BMP slices exported from Mimics.

The above methods make use of network approaches to load data. The data can also
directly be loaded into the model by a specialised module constructed to run the model
as discussed in the next section(5.2). For this application, it would be useful to be able to
change variables outside the code by the use of text boxes. This is about variables that
change with every patient. An overview of these variables is given in table 5.1.
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Parameters file type
Skeleton file name for skeleton textfile
Kidney tissue location of .bmp 2D image slices of the kidney tissue
Tumour tissue location of .bmp 2D image slices of the tumour
Arteries location of .bmp 2D image slices of the arteries
Slice gap number in mm
Start z coordinate of first slice
Coordinate Transformation Xmin, Ymin, Zmin

∆X, ∆Y, ∆Z

∆Xsk, ∆Ysk, ∆Zsk

Points in kidney list of points in kidney
Grouping points in kidney list of groups

Table 5.1: Overview of what should be manually inserted in the model.
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5.2 Implementation of the algorithm
Here, a closer look is taken at the implementation of the perfusion algorithm in MeVisLab
by construction of a macro module. With the project wizard, the module can be created
via the window shown in figure 5.4. First, a user package needs to be created to be able
to select this package when creating this module. Thereby, a Python file is added to the
macro module to be able to implement the code. Further, it is possible to create fields to
allow the user to insert specific file directories or variables. The create button allows to
create a module with the related Python and script file.

(a) (b) (c)

Figure 5.4: Window to create a macro module. (a) The name of the module, the project
and the package is selected. (b) A Python file can be added to the module
to allow scripting. (c) Fields can be created to import for instance specific
variables or directories.

The functionalities of the module are implemented in the script. One possibility is the
creation of a button that allows to run the program. This can be done by changing the
code in the script and the Python file that can be found as depicted in figure 5.5. The
script file can easily be used to create a button or a checkbox, for instance, to choose
different options in the model. However, running the Python script itself seems not to
work resulting in an error that Python files of more than 2kB cannot be added/modified
without a MeVisLab SDK licence, which is also mentioned on the website of MeVisLab
[2]. Based on these outcomes, there should be searched for other solutions within the free
version of MeVisLab. Otherwise, the purchase of a licensed version may be required.
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(a) (b)

Figure 5.5: (a)Module to run the perfusion model with corresponding code (b) to define
functionalities

5.2.1 Visualization
At last the 3D visualization in MeVisLab is discussed. Several formats can be loaded by
specialised modules and thereafter visualized by the 2D or 3D visualization modules as
discussed in section 5.1. There are two possible approaches to obtain a visualization of the
tumour, kidney and arteries together. The first approach uses the same BMP image slices
containing in the tumour, parenchyma and arterial tree as those imported in Mimics. The
corresponding network is shown in figure 5.6.

(a) (b)

Figure 5.6: Network (a) schematic and (b) in MeVisLab to obtain 3D visualization of ar-
terial tree and the perfusion zones of the kidney and tumour. There is started
from the 2D BMP slices of the image volume that combines the tumour, kid-
ney and arteries.
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The other option uses the separate image slices of the tumour, kidney and arteries and
combines these with an Arithmetic module. Figure 5.7 shows the corresponding network
schematically and figure 5.8 depicts the constructed network in MeVisLab.

Figure 5.7: Schematic representation of the network to obtain 3D visualization of the
arterial tree and the perfusion zones of the kidney and tumour when starting
from the BMP files of the separate structures. Each load BMP slices mod-
ule represents the combination of the ImageComposer and ImageMultiLoad
module.
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Figure 5.8: Network in MeVisLab to obtain 3D visualization of the arterial tree and the
perfusion zones of the kidney and tumour. There is started from the 2D BMP
slices of the tumour, kidney and arteries separately.
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Figure 5.9(a) shows the 3D map of the perfusion zones for patient 3 when loading the
arterial tree, tumour and kidney together and Figure 5.9(b) shows the same map when
loading the three structures separately. Unfortunately, the images are unclear and it is
difficult to distinguish the different perfusion zones. The quality of these outcomes is
much lower than the Mimics quality, though there are ways to improve like conversion
into a color image or increasing the contrast.

(a) (b)

Figure 5.9: (a)Visualization of perfusion zones starting from combined images. (b) Vi-
sualization of the perfusion zones starting from separate images of the struc-
tures.

5.3 Conclusion
In conclusion, MeVisLab has a wide range of functionalities showing that this platform is
very promising for implementation of the planning tool. Though during practical testing
of the platform, some complications concerning the licence and visualization are encoun-
tered that should be solved to move towards proper functioning of the model and actual
visualization.





Chapter 6

Conclusion and future prospectives

The aim of this thesis was the development of a planning tool for partial nephrectomy
that helps the surgeon to decide on the ideal clipping locations by informing him about
the renal perfusion. Therefore, a model is developed that creates a 3D map of the arterial
perfusion zones by assigning each point of the parenchyma and tumour to the closest
arterial branch. This map allows to distinguish the branches supplying the tumour from
those that only supply healthy tissue and thus select these tumour supplying arteries for
clipping.

The results of two patients are compared with the clipping models realised by Visible
patient to validate the performance of the model. For both patients, the perfusion model
correctly predicted all the branches perfusing the tumour according to Visible Patient, but
also suggested an additional branch. That suggests that clamping based on the outcomes
of the perfusion model allows complete tumour ischemia, but also causes the region of
healthy tissue ischemia to become larger than strictly needed.

The comparison with the clipping model of Visible Patient shows that the model gives
anatomically relevant results, though there is still room for optimization. Firstly, the
optimization of the model should include the improvement of the quality of the outcomes.
Here, the critical factor is the quality of the input data, and in particular the quality of
the 3D reconstruction of the arterial tree. It is obvious that the reconstructed arterial
tree should be as precise as possible to better approximate the real arterial tree. Unfortu-
nately, the examined patients have a highly pruned tree, which implies a rather difficult
reconstruction of the real perfusion zones. Hence, towards the future, it is important
to search for ways to improve the segmentation. Moreover, because the segmentation
by Visible Patient is more detailed, it will be interesting to investigate the performance
of our algorithm against the commercial package of Visible Patient when applying it to
identical segmentations.
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Further, the comparison between the region growing and direct distance method showed
that perfusion volumes between these approaches are slightly different. Though the aim of
both methods is the same, it is clear that the direct distance approach is directly derived
from the definition and thus is the most accurate way to determine the closest branch.
However, its major drawback is the computational time. Therefore, ways to optimize the
region growing approach should be explored, so that the results approximate better the
direct distance outcomes. Moreover, the region growing approach has interesting pos-
sibilities for more advanced perfusion modelling as the growing speed can be adjusted.
Up to present, the model assumes that perfusion of the parenchyma occurs isotropically,
which means that blood diffuses with the same speed in all directions independent of the
tissue it goes through. However, in reality, as discussed in section 2.1, the parenchyma
is not homogeneous and exists of the different structures with different orientations. It
seems obvious that the diffusion of blood will adjust its direction and speed based on the
orientation and density of structures. Besides that, the cross-section of the arteries may
also influence the size of the perfusion regions. Towards the future, it will be interesting
to study diffusion speed and direction in the tumour or near the urinary tract system
or when starting from a larger artery and implement these anatomical differences in the
region growing algorithm.

On the other side, the planning tool is destined for use in clinical practice and therefore,
requires realistic results and a user-friendly interface for the surgeon. The current model
has promising results but contains a lot of manual work that requires specific technical
knowledge. Therefore, reducing the manual work is definitely key. Up to present, the
skeleton is automatically generated using Mimics. Apart from the adjustments that are
done to improve the skeleton, the settings for the coordinate transformation need to be
defined too, as the Mimics coordinates system is different from the dimensions of the
slices. Possible solutions include the creation of a thinning algorithm as proposed by [46]
and [38]. Aside from automation of the different steps, implementation of the complete
tool in one interface to have a completely automated process is the final aim of the model
and can be realised by the use of MeVisLab. This platform allows to integrate different
steps of the workflow as modules in one interface. Moreover, a module for automatic
segmentation can also be added to the model, so that the complete workflow, starting
from contrast-enhanced CT data until the visualization runs fully automatically. Unfor-
tunately, the implementation of the perfusion model is not yet realised due to limitations
of the non-licensed version of MeVisLab on the integration of python files.

Beside all these optimization steps, the results of the model need to be validated. There-
fore, information about the surgical outcomes and the indocyanine green measurements
can serve as validation. Further, vascular corrosion casts and animal studies can validate
the final model.
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In conclusion, the model has promising outcomes and is able to predict the tumour sup-
plying branches. Based on the comparison with the results of Visible Patient, the suggests
correctly which branches to clamp to have complete tumour ischemia. Though currently,
falls positives occur resulting in unnecessary healthy tissue ischemia. This model is ap-
plied on the kidney, but also offers possibilities to apply on other organs such as the liver,
lungs and brain.
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Appendix

A Overview Python Files
Here the overview of the Python files is given. For the actual code, or more information,
please contact supervisors or IBiTech-bioMMeda research group.

A.1 Patient-specific settings
These python files contain the patient specific settings and should be executed prior to
running one of the models. It is important to note that the files are named according to
their corresponding 3D reconstructions, which are different from those in this document.

• Patient 1: Patient3.py

• Patient 2: Patient5.py

• Patient 3: Patient6.py

• Patient 4: Patient8.py

The table below gives an overview of the settings in Python with their corresponding
description.
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Setting in Python Description
Define_patient Map for storing data
skeleton Skeleton file location
Tissues Parenchyma file location
Tumours Tumour file location
Arteries_D Arterial tree file location
start z-coordinate start slice
increment Slice thickness
Xminc Xmc

Yminc Ymc

Zminc Zmc

Xrangec ∆Xmc

Yrangec ∆Ymc

Zrangec ∆Zmc

Xrangev ∆Xv

Yrangev ∆Xv

Zrangev ∆Xv

Points_in_kidney Numbers branches in kidney
List_of_groups List to assign branches in kidney in groups according to

their parent branch

Table 6.1: Overview of the settings in Python with their corresponding description.

A.2 Algorithm of Perfusion model
These python files contain the Python code for the two perfusion models based on the
direct distance and region growing method respectively. They don’t require manual ad-
justments for use unless the user wants to change visualization in Python or output
different BMP slices.

• Direct distance method: Direct_distance_algorithm.py

• Region growing method: Region_growing_algorithm.py

The table below gives an overview of the settings in Python with their corresponding
description.
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