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Abstract

While research uncovers new insights in the pathology of depression and de-
fines new brain regions associated with the disease, the diagnosis of depression
still remains a challenging task. Because of limited availability of psychologists
and psychiatrists there is a large diagnosis delay. This leaves some patients in
need of help, which can lead to the deterioration of the patient’s mental health.
In this master’s dissertation, both structural MRI and resting state functional
MRI data from healthy controls and patients with depression are used to obtain
features in order to train a classifier capable of diagnosing depression. Three
different feature types - MRI volumetry, fMRI intensity and fMRI functional
connectivity - are used as input for the classifier. Good results, over 90% accu-
racy, were obtained using fMRI functional connectivity features and the com-
bination of fMRI intensity and fMRI functional connectivity features resulted
in accuracies of 94%, indicating that resting state functional MRI data can be
used to reliably diagnose depression.
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Abstract—While research uncovers new insights in the pathol-
ogy of depression and defines new brain regions associated
with the disease, the diagnosis of depression still remains a
challenging task. Because of limited availability of psychologists
and psychiatrists there is a large diagnosis delay. This leaves
some patients in need of help, which can lead to the deterioration
of the patient’s mental health. A computer-aided diagnosis tool
using both structural MRI and resting state functional MRI data
is developed. Features from healthy controls and patients with
depression are used to obtain features in order to train a classifier
capable of diagnosing depression. Three different feature types -
MRI volumetry, fMRI intensity and fMRI functional connectivity
- are used as input for the classifier. Good results, over 90%
accuracy, were obtained using fMRI functional connectivity
features and the combination of fMRI intensity and fMRI
functional connectivity features resulted in accuracies of 94%,
indicating that resting state functional MRI data can be used to
reliably diagnose depression.

Index Terms—Depression, Computer-aided diagnosis, MRI,
Resting state fMRI, Machine learning

I. INTRODUCTION

Depression is a common mental disorder resulting
in a persistent saddened mood and anhedonia, possibly
accompanied with other symptoms. Over 300 million people
suffer from depression worldwide, making it one of the
most common mental illnesses [1]. Depression is not a
single disease, but a general name describing a multitude of
symptoms. Many different causes have been defined.

The main method of diagnosing depression is a diagnostic
interview in which a professional psychologist or psychiatrist
examines the patient to understand the symptoms the patient
experiences and asses the severity of the disease. This
diagnosis method is based on symptoms, which do not
always reflect the origin of the disease or any comorbidities
that are present. Many countries also do not have enough
mental health professionals, resulting in long waiting times
for patients and inadequate care. Additional diagnosis tools
capable of diagnosing depression reliably and fast while
also capable of diagnosing depression subtypes such as
medication- and treatment-resistant depression are needed.

Neuroimaging has proven to be useful in the diagnosis
of neurological disorders such as epilepsy and multiple
sclerosis, but is not yet used consistently in the diagnosis
of mental disorders [2], [3]. Diagnosis tools for depression
and other mental illnesses based on neuroimaging techniques
that achieve high accuracies have been developed, but the

features used for classification do not reflect aspects of brain
anatomy and function that could be affected by depression,
making the clinical validation of such diagnosis tools difficult.

In this paper, a computer-aided diagnosis tool based on
anatomical MRI and resting state functional MRI (fMRI)
scans from a data set of 106 people (60 healthy controls,
46 depression patients) capable of diagnosing depression has
been developed. Section II describes the preprocessing steps,
section III describes the different feature types and subtypes
and defines the feature selection process.The features that
have been selected can easily be linked to different aspects of
brain anatomy and function, increasing the clinical value of
the diagnosis tool. Section IV describes the clinical relevance
of the found features, section V the classification training
pipeline. Section VI describes the results and discussion,
section VIII delineates the final conclusion that has been
reached.

II. FEATURE PREPROCESSING

All fMRI data is preprocessed using the CONN toolbox,
which uses functions from the statistical parametric mapping
software toolbox [4], [5]. A preprocessing pipeline is selected
and adjusted to the needs of the data set.

All fMRI files are converted to the nifti file format, the
first and last five scans are removed for signal equilibrium
and signal dropout. Motion correction, slice timing correction
and coregistration are applied. Afterwards the time series are
high pass filtered to remove scanner drift; this is done using
the MATLAB toolbox from Anthony Barone [6]. Finally the
data is normalized to the MNI space and is smoothed using
a gaussian kernel with 6mm width.

III. FEATURE SELECTION

Three different feature types are investigated: intensity
features, connectivity features and structural features. Each
feature type reflects a different aspect of the brain and could
possibly show alterations in brain anatomy and function due
to depression. Each feature type contains multiple feature
subtypes.

The feature selection process consists of three parts: a
feature calculation process, assessing group differences and a
feature selection process. In the feature calculation process
all possible features of each type and subtype are calculated
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for each person in the data set separately. In the assessment
of group differences the feature values are averaged for each
group (healthy controls and depression group) separately and
the average depression group feature values are subtracted
from the average healthy controls feature values. In the
feature selection process, the twenty features with the highest
difference between the average group feature values of both
groups are selected as final features. The final features are
tested using a two-pair t test to investigate their statistical
significance. Finally the features are normalized using the
z-score.

A. Structural features

Two different subtypes of structural features are defined:
cortical thickness and brain parcel volume. These features,
that are obtained using the FreeSurfer software [9], reflect
possible anatomical changes that are present in people with
depression. Contrary to the intensity and connectivity features,
no feature selection process is used as fewer possible features
are available. All possible features are tested using a two-pair t
test for statistical significance. Only 19 left hemisphere cortical
thickness, 11 right hemisphere cortical thickness and 6 parcel
volume features are statistically significant.

B. Intensity features

Intensity features reflect the average activity of the brain
through time. These features are obtained from fMRI data and
could be compared (to a certain extent) to positron emission
tomography (PET) or single photon emission computed
tomography (SPECT) imaging as they show metabolic
processes such as glucose uptake within the body and brain.
Two different feature subtypes are defined: absolute and
relative intensity features.

1) Absolute intensity features: Absolute intensity features
show the absolute activity in the brain and are calculated by
averaging all time series belonging to a certain brain parcel,
resulting in an average activity of each brain parcel. These
features are prone to differences between patient scans as
they are not normalized. Global elevations or decreases in
intensity between patient scans have a large influence on the
feature values.

2) Relative intensity features: Relative intensity features
show the relative activity in the brain and are calculated
by averaging all time series belonging to a brain parcel to
a single value (similar to absolute intensity features). The
average activity value of each brain parcel is normalized using
formula 1 where Irel,j is the relative intensity value of brain
parcel j, Iabs,j is the absolute intensity value of brain parcel
j and Ibrain,avg is the average intensity value of the whole
brain, calculated by averaging all averaged time series in the
brain. This subtype is more resilient against global variations
of intensity between patient scans.

Irel,j =
Iabs,j − Ibrain,avg

Ibrain,avg
(1)

C. Functional connectivity features

Connectivity features reflect the possible changes in func-
tional connectivity of the brain due to depression. These
features are obtained from the MRI data. Two connectivity
measures are used: correlation and mutual information [7].
These connectivity measures are chosen as they are undirected
and reflect functional connectivity in the time domain. The
influence of global signal regression on classification is also
investigated. As global signal regression is subject to much
discussion the connectivity measures are calculated on both
a global signal regressed data set and a non-regressed data
set [8]. No extensions, such as graph based features, are
explored from this feature type as the interpretability and
clinical relevance of these types of features are low.

IV. CLINICAL RELEVANCE ASSESSMENT

The features are obtained using a data-driven approach,
no knowledge about depression is used as a bias in the
feature selection process. The clinical relevance of the selected
features is therefore not certain and is assessed. The structural
features are first discussed. The intensity features will be
discussed as one group as most features from both subtypes
are the same. Only the connectivity features calculated on the
regressed data set will be discussed as they resulted in much
higher classification accuracies.

A. Structural features

1) Cortical thickness: A total of 30 cortical thickness
features are statistically significant. Nineteen features are
located in the left hemisphere, eleven in the right hemisphere.
In the people in the depression group, all cortical regions
have a decreased thickness, possibly pointing to neuronal
atrophy due to depression. Several cortical regions that
are statistically significant are related to depression: the
left hemisphere rostral middle frontal gyrus, precentral
gyrus, insula, precuneus, pars orbitalis, frontal pole, superior
frontal gyrus, post central gyrus, caudal middle frontal
gyrus, the right hemisphere frontal pole and superior frontal
gyrus [15], [16].

2) Parcel volume: Six parcel volume features are statisti-
cally significant. Both the left and right cerebellum hemisphere
and left and right caudate nucleus are found, which are linked
to depression [17], [18].

B. Intensity features

Most of the features (absolute intensity features: 16 out of
20 features, relative intensity features: 16 out of 20 features)
lie within four brain regions: the left and right superior frontal
gyrus and the left and right rostral middle frontal gyrus.
All regions lie within the prefrontal cortex and are linked
to depression. All but two features show less activity in the
depression group when compared to the healthy controls,
reflecting the hypoactivity commonly found in people with
depression [10].



3

C. Connectivity features

1) Correlation: Some features are possibly linked to
brain parcels afflicted by depression such as the connection
between the right anterior cingulate cortex and the left
orbitofrontal cortex and the connection between the left
and right prefrontal cortex [11]. Connections involving
the precuneus could also be related to depression as the
precuneus is part of the default mode network: disturbances in
this network have been found in patients with depression [12].

2) Mutual information: Four brain regions are present in
almost all mutual information features: the right paracentral
gyrus, the right inferior parietal gyrus, the right superior pari-
etal gyrus and the brain stem. Both increased and decreased
functional connectivity have been found in the paracentral
gyrus of people with depression, but its specific role in the
disease is not yet known [13]. Contrary to literature, which re-
ports reduced functional connectivity in both the right inferior
and superior parietal gyrus, increased functional connectivity
is found in this data set [14]. The brain stem contains several
nuclei that possibly are involved in depression, but the specific
connections found here (connections between the brain stem
and the right inferior parietal gyrus, the right superior parietal
gyrus and the right paracentral gyrus) have not been described
in literature.

V. CLASSIFIER TRAINING PIPELINE

To be able to compare the results of different classifiers, a
classifier training pipeline is defined and is shown in figure 1.
A first selection of 46 people from the healthy controls is made
to avoid class imbalance when training a classifier. Secondly
a train and test set is defined from the selected individuals.
The 80-20 rule is used, resulting in a validation set of 19
people and a training set of 73 people. The model is trained
and afterwards validated. Both the first selection and the train-
test selection is performed using a random permutation. This
ensures that each time the pipeline is used, a different variation
of the available data is used. Important to notice is that two
validation sets are used to validate a trained classifier. The
official validation set, containing nineteen people from both
the healthy controls and the depression group, and an optional
validation set, containing fourteen people, all healthy controls.

VI. RESULTS

Two different categories of classifiers have been trained:
single feature and combined feature classifiers. Single feature
classifiers are trained on a feature set containing a single
feature subtype. Combined feature classifiers are trained on a
feature set containing two or three subtypes belonging to one
feature type. Most results of the combined feature classifiers
are lower than the single feature classifiers, the exception to
this is a classifier trained on de combined feature sets of the
absolute intensity, relative intensity, correlation with regressed
data and mutual information with regressed data features. Each
single feature classifier is trained sixty times in total. Three
different amounts of features (variable amount, 10 features
and 20 features) are used as input for the classifier and each

feature amount is trained twenty times. This leads to a result
distribution of twenty samples for each feature amount. The
final results are shown as the average accuracy, calculated from
the best performing result distribution of the official validation
set and the corresponding result distribution of the optional
validation set. The average standard deviation (SD) of these
validation sets is also shown. It is a measure for the variability
of the result distributions: the higher the standard deviation,
the lower the reliability of the feature set.

A. Single feature classifiers

Nine different single feature classifiers are trained using
the nine different feature subtypes. The results are shown in
table I. Several conclusions can be formed from the results.
Firstly the results show that both the intensity features have
a comparable accuracy and SD, showing that the absolute
intensity features did not suffer from any possible global
variation of intensity between patients. Secondly the results
show that global signal regression has a significant positive
influence on the connectivity features. An increase in accuracy
of ±6% for the correlation features and ±30% for the mutual
information features is obtained when global signal regression
is used. Decreases in SD of both feature types also show the
increased quality of the features. Thirdly the results show that
the structural features are not capable of accurately classifying
depression. A reason for this could be the assumption that
all people in the depression group have suffered the same
form of depression, have taken the same medications and
underwent the same therapies, while this is in reality not
true. Outliers were found in the intensity and connectivity
classifiers. A classifier with an accuracy of 90.9% is obtained
(not shown in table I as this shows the mean accuracy) in both
the correlation and mutual information feature sets (calculated
with the regressed data set).

TABLE I
MEAN RESULTS OF THE SINGLE FEATURE CLASSIFIERS.

Feature type Acc. (%) Sens. Spec. PPV NPV
LH thickness 59,6 ± 15,1 0.58 0.525 0.55 0.556
RH thickness 56,3 ± 14 0.626 0.574 0.595 0.605
Parcel volume 61 ± 20 0.558 0.504 0.535 0.528
Abs. Int. 74,7 ± 10,5 0.762 0.718 0.72 0.75
Rel. Int. 73,3 ± 11,3 0.761 0.714 0.73 0.744
Corr. non regr. 77,5 ± 15,8 0.803 0.756 0.77 0.789
Mut. Inf. non regr. 49,5 ± 19,9 0.485 0.431 0.46 0.456
Corr. regr. 83,1 ± 7,3 0.858 0.807 0.815 0.85
Mut. Inf. regr. 79,2 ± 7,5 0.768 0.817 0.805 0.78

B. Combined feature classifiers

Four different combined feature classifiers are trained: an
intensity feature classifier, a connectivity feature classifier, a
structural feature classifier and a intensity and connectivity
classifier. The intensity classifier is trained using a feature set
that contains both the absolute and relative intensity features.
The connectivity feature classifier is trained using a feature
set that contains both the correlation and mutual information
features calculated from the regressed data set. The structural
feature classifier is trained using all structural features. The
intensity and connectivity classifier is trained using the
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Fig. 1. Visualization of the classification pipeline.

absolute intensity features, the relative intensity features,
the correlation with regressed data features and the mutual
information with regressed data features. These classifiers are
only trained twenty times with all features. The results are
shown in table II. Multiple conclusions can be made from the
results. Firstly the results show that most combined feature
classifiers perform worse than the single feature classifiers.
This is counter-intuitive as more features would normally
result in a better classification. A possible explanation for this
could be that each feature contains some unwanted noise and
that more features result in more unwanted noise, reducing
the classification accuracy. Secondly the results show that the
reduction in classification accuracy, when compared to the
results of their respective subtypes, is much higher for the
connectivity feature classifier than for the other combined
classifiers (the structural classifier even has a small increase
in accuracy). This is again counter-intuitive as the single type
classifiers using the same features have the highest accuracy.

The intensity and connectivity classifier has, contrary to
the other combined feature classifiers, a higher accuracy than
the single feature classifiers. A classifier from this type is
obtained with an accuracy of ±94.7% (not shown in table II
as this shows the mean accuracy). The increase in accuracy
compared to both the single feature and other combined
feature classifiers is explained by the fact that more features
are used (80 features). The classifier is trained with the data
of 73 people (see section V), which is less than the amount
of features used. SVMs are able to correctly train with more
features than samples, but are prone to overfitting. Further
validation is needed for this classifier type.

TABLE II
RESULTS OF THE COMBINED FEATURE CLASSIFIERS.

Feature type Acc. (%) Sens. Spec. PPV NPV
Structural 61,5 ± 12,4 0.613 0.561 0.58 0.594
Intensity 70,3 ± 14 0.738 0.684 0.695 0.728
Connectivity 61,8 ± 13,7 0.688 0.629 0.645 0.672
Int. and Conn. 88.7 ± 6.97 0.879 0.827 0.835 0.872

VII. DISCUSSION

The obtained results (best mean accuracy = ±88%, best
accuracy = ±94.7%) are comparable or higher to those found

in literature [19], [20] [21]. The clinical relevance as well
as the easy interpretation of the used features, which is not
found in literature, makes the classifiers that are obtained
highly relevant. Structural features can not yet be used for
classification, but the addition of information about the severity
and duration of the depressive episodes of the patients could
solve this problem. Both intensity and functional connectivity
features prove to be adequate for classification. While combin-
ing feature subtypes from a single feature type did not lead to
an increase in accuracy, the combination of both intensity and
functional connectivity features resulted in the best performing
classifiers.

VIII. CONCLUSION

A computer-aided diagnosis tool has been developed using
both anatomical and fMRI data to diagnose depression. A data-
driven approach without any prior assumptions or knowledge
about the known effects of depression has been used to select
features for classification. The clinical relevance of the features
has been assessed and all feature types contain features that
can be linked to depression from a clinical point of view. This
shows that, while using a different approach, the same brain
regions that are influenced and change due to depression are
identified. High classification accuracies have been obtained
when the features are used to distinguish depression from
healthy controls. The highest accuracies are obtained when the
intensity and connectivity features are combined. As a general
conclusion, it can be stated that resting state fMRI data can be
used to accurately predict depression and could be used in the
future to aid mental health professionals for fast and reliable
diagnoses thus reducing their workloads while also reducing
waiting times for patients.

REFERENCES

[1] World Health Organization. (2017). Depression and other common mental
disorders: global health estimates (No. WHO/MSD/MER/2017.2). World
Health Organization.

[2] Olson, L. D., & Perry, M. S. (2013). Localization of epileptic foci using
multimodality neuroimaging. International journal of neural systems,
23(01), 1230001.

[3] Polman, C. H., Reingold, S. C., Banwell, B., Clanet, M., Cohen, J. A.,
Filippi, M., ... & Lublin, F. D. (2011). Diagnostic criteria for multiple
sclerosis: 2010 revisions to the McDonald criteria. Annals of neurology,
69(2), 292-302.



5

[4] Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). Conn: a functional
connectivity toolbox for correlated and anticorrelated brain networks.
Brain connectivity, 2(3), 125-141.

[5] Penny, W. D., Friston, K. J., Ashburner, J. T., Kiebel, S. J., & Nichols,
T. E. (Eds.). (2011). Statistical parametric mapping: the analysis of
functional brain images. Elsevier.

[6] ”myfreqfilter”, Anthony Barone, The University of Texas at Austin,
Institute for Geophysics.

[7] Cover, T. M., & Thomas, J. A. (2012). Elements of information theory.
John Wiley & Sons.

[8] Saad, Z. S., Gotts, S. J., Murphy, K., Chen, G., Jo, H. J., Martin, A.,
and Cox, R. W. (2012). Trouble at rest: how correlation patterns and
group differences become distorted after global signal regression. Brain
connectivity, 2(1), 25-32.

[9] Fischl, B. (2012). FreeSurfer. Neuroimage, 62(2), 774-781.
[10] George, M. S., Ketter, T. A., & Post, R. M. (1994). Prefrontal cortex

dysfunction in clinical depression. Depression, 2(2), 59-72.
[11] Ramirez-Mahaluf, J. P., Perramon, J., Otal, B., Villoslada, P., & Compte,

A. (2018). Subgenual anterior cingulate cortex controls sadness-induced
modulations of cognitive and emotional network hubs. Scientific reports,
8(1), 8566.

[12] Utevsky, A. V., Smith, D. V., & Huettel, S. A. (2014). Precuneus is a
functional core of the default-mode network. Journal of Neuroscience,
34(3), 932-940.

[13] Kenny, E. R., O’brien, J. T., Cousins, D. A., Richardson, J., Thomas,
A. J., Firbank, M. J., & Blamire, A. M. (2010). Functional connectivity
in late-life depression using resting-state functional magnetic resonance
imaging. The American Journal of Geriatric Psychiatry, 18(7), 643-651.

[14] Dutta, A., McKie, S., & Deakin, J. W. (2014). Resting state networks in
major depressive disorder. Psychiatry Research: Neuroimaging, 224(3),
139-151.

[15] Niu, M., Wang, Y., Jia, Y., Wang, J., Zhong, S., Lin, J., ... & Huang,
R. (2017). Common and specific abnormalities in cortical thickness in
patients with major depressive and bipolar disorders. EBioMedicine, 16,
162-171.

[16] Mackin, R. S., Tosun, D., Mueller, S. G., Lee, J. Y., Insel, P., Schuff,
N., ... & Weiner, M. W. (2013). Patterns of reduced cortical thickness in
late-life depression and relationship to psychotherapeutic response. The
American Journal of Geriatric Psychiatry, 21(8), 794-802.
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Chapter 1

Introduction

1.1 Problem definition

The World Health Organization (WHO) defines depression as "a common mental disorder, characterized
by persistent sadness and a loss of interest in activities that you normally enjoy, accompanied by an
inability to carry out daily activities, for at least two weeks".1 It is estimated that more than 300 million
people worldwide su�er from some form of depression, making it the most prevalent mental disorder.2

Depression is not a single disease having a single origin, but rather a group of illnesses that result in
similar symptoms, varying both in duration and severity. The origin of depression is widespread, rang-
ing from neurotransmi�er imbalances [5], medication side e�ects [6], substance use and abuse [7],
childhood trauma [8] to mood changes due to chronic illness [9]. Recent studies report the major
influence of gut bacteria [10] and infection [11] as initiators of depression. Rapid changes in social,
cultural and environmental aspects of the society are also blamed for the recent elevation in prevalence
and incidence of depression [12], [13].

Depression is mainly treated with psychotherapy and medication. More severe forms, mainly medication-
resistant depression, can be treated using neurostimulation methods like transcranial magnetic stim-
ulation (TMS), direct current stimulation (DCS) [14] or deep brain stimulation (DBS). DBS and TMS
are relatively new types of treatment and their e�icacy as well as optimizations are still researched.
Patients with very severe forms of depression that cannot (su�iciently) be treated with the previously
mentioned methods, can sometimes be helped with electroconvulsion therapy (ECT) [15].

The two major symptoms of depression (as defined by the Diagnostic and Statistical Manual of Mental
Disorders, fi�h edition (DSM-5)) are a depressive mood and a lack of interest or pleasure in most
activities that are present for at least two weeks [16]. It should be noted that it is not necessary
for both symptoms to be present. Further symptoms such as weight change, irregular sleep pa�erns,
motor abnormalities, increased feelings of guilt or worthlessness, decreased concentration and suicidal
thoughts, ideations or a�empts are defined and could help the di�erential diagnosis and assess the
severity of the illness.

According to the WHO, depression is the leading cause of disability worldwide and a major contributor
to the global burden of disease [1]. An estimated 5.1% of women and 3.6% of men, equaling around 322
million people worldwide, su�er from some form of depression. The prevalence of depressive disorders
throughout the world varies and is shown in figure 1.1, the variation of depressive disorders prevalence

1. h�p://www.who.int/mental_health/management/depression/en/
2. h�ps://www.who.int/news-room/fact-sheets/detail/depression
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with respect to age is shown in figure 1.2.

In Belgium specifically, 700 000 people struggle with mental health issues yearly, a considerable amount
of these people with depression [17], [18]. On average three people commit suicide in Belgium each
day, making it one of the countries with the highest suicide rates in Europe. Belgium has the 11th

highest suicide rate in the world.3 Only one in three people experiencing mental health issues reach
out for professional mental help, showing the broader problems around mental health such as stigma
and lack of access to proper professional help.4

Figure 1.1: Prevalence of depressive disorders in the world [1].

Figure 1.2: Prevalence of depressive disorders with respect to age [1].

3. h�p://worldpopulationreview.com/countries/suicide-rate-by-country/
4. h�ps://www.geestelijkgezondvlaanderen.be/feiten-cijfers
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Diagnosis of depression

The diagnosis of depression is done in a diagnostic interview such as the structural clinical interview
for DSM (SCID) [19]. The duration of an interview varies based on the complexity of the disorder and
the ability of the patient to correctly describe the symptoms and takes on average between one and
two hours.5

Diagnostic interviews are the main diagnosis tool for mental disorders such as depression and have
high accuracy when performed by experienced psychologists and psychiatrists [20]. Self-administered
depression measures such as the Patient Health �estionnaire-9 (PHQ-9) and the Geriatric Depression
Scale-15 (GDS-15) exist and could provide an useful first step for people experiencing mental health is-
sues, but the accuracy of such tests is lower as people do not have the training and experience required
to correctly recognize symptoms and severity and to distinguish between the di�erent disorders that
exist [21].

A diagnostic interview is limited by the fact that it is based on symptoms. The multiple origins as
well as the possible resistances to certain treatment options (medication-resistant and treatment-
resistant depression) do not always translate to variations in symptoms and are thus not recognizable
in a diagnostic interview. Because of this, first treatment of depression is focused on trail periods of
di�erent medications until one is found that alleviates the symptoms adequately. This trail period can
be considerable and can even be futile when a patient has medication-resistant depression.

While the diagnosis of depression can be accurate [22], the waiting time for a diagnostic interview
can be long. The VVP (Vlaamse vereniging voor psychiatrie) recently mentioned the fact that waiting
times for an appointment with a mental health professional can be as much as 18 months [17].6 A
person experiencing serious mental health problems is however o�en in urgent need of psychological
or psychiatric guidance and a long waiting period may worsen the mental health of the person as
well as the possible outcomes. Limited access to psychological and psychiatric care has been linked
multiple times to the rate of suicide.7

The limitations of the diagnostic interview as well as the long waiting times for professional help
give rise to a need for additional diagnostic tools. Neuroimaging techniques are promisins as a new
diagnostic tool as they are routinely used to diagnose neurological diseases such as multiple sclerosis
(MS) 8 and epilepsy 9 and could possibly be used to also diagnose depression. A major di�erence
between the previously mentioned diseases and depression is that depression does not (yet) have a
well defined origin within the brain (contrary to MS where brain lesions can be seen on a magnetic
resonance imaging (MRI) scan) and has no easily measurable neurological symptoms (contrary to
epilepsy where seizures can be recognized in electroencephalography (EEG) as drastic changes in
amplitude and frequency). This makes the use of neuroimaging to diagnose depression more reliant
on complex algorithms than on visual analysis of the physician.

Several imaging techniques, such as EEG and functional MRI (fMRI), have already been used in an
a�empt to identify the di�erent brain structures related to depression and to define biomarkers10 for
depression diagnosis.

5. h�ps://www.verywellmind.com/structured-clinical-interview-2510532
6. h�ps://www.geestelijkgezondvlaanderen.be/feiten-cijfers
7. h�ps://www.rand.org/research/gun-policy/analysis/supplementary/mental-health-access-and-suicide.html
8. h�ps://www.mayoclinic.org/diseases-conditions/multiple-sclerosis/diagnosis-treatment/drc-20350274
9. h�ps://www.webmd.com/epilepsy/guide/electroencephalogram-eeg

10. h�ps://dictionary.cambridge.org/dictionary/english/biomarker: Biomarker: something, for example a gene or substance,
that shows that a particular biological process or condition is present.
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EEG has a high temporal resolution and can be used to examine the possible changes in frequency
and connectivity to develop a depression biomarker but has a low spatial resolution, making the
identification of influences from specific brain regions di�icult, if not impossible [23]. EEG based
biomarkers that can diagnose people with depression with great accuracy have been developed; some
results report accuracies ranging from 85% up to 99% [24], [25], [26], [27]. The absence of a train-
validation split of the data set or cross-validation from some of these papers as well as the small data
sets (30 to 60 people) that are used by all papers limit the value of these biomarkers.

Depression biomarkers based on fMRI data have also been developed. Both resting state and task-
related fMRI data are used to define biomarkers. Resting state biomarkers should reflect the changes
in resting state brain networks and could point to changes in self referential thinking/rumination
(negative self-image) due to depression while task-related fMRI biomarkers reflect reactions to stimuli
or tasks [28], [29]. Acuracies up to 92% have been reported for resting state fMRI based biomark-
ers [30], [31], [32]. Task-related fMRI biomarkers have been reported with accuracies up to 95%[33],[34]
[35],[36].

Although resting state fMRI based depression biomarkers have a high accuracy, they all have two
disadvantages that limit their potential use in practice. The first limitation is that all biomarkers have
been built using a limited data set. This lowers the possibility that the biomarker detects changes that
are due to depression and increases the chances of detecting imbalances in the data set instead. It
should be noted that this is probably not the case, just that the possibility rises. A second limitation
is that almost all biomarkers that have been developed are built using features that are not easily
interpretable and thus provide li�le to no information about the underlying illness.

Both problems will be addressed in this master’s dissertation. A large data set of 46 patients with
depression and 60 healthy controls will be used to build a biomarker for depression. The features that
are explored will be easily interpretable for a physician.

1.2 Objective

The objective of this master’s dissertation is to build a computer-aided diagnosis tool capable of
diagnosing depression based on an MRI scan of the brain, a resting state fMRI scan of the brain
or a combination of both. The data set that is available contains 60 healthy controls and 46 patients
diagnosed with depression. The master’s dissertation is composed of nine chapters and consists of
five main parts: a theoretical introduction, structural feature selection, functional feature selecton,
classifier training and result interpretation.

Theoretical introduction

In the first part the basic principles of MRI and fMRI will be explained as well as some principles of
machine learning, specifically support vector machines.

Structural feature selection

The second part is the selection of the structural features. These features reflect the structural aspects
of the brain such as cortical thickness and volumes of di�erent brain regions. These features are
calculated from a T1 MRI scan using the FreeSurfer program [77].

Functional feature selection

The third part is the functional feature selection process. Two di�erent feature types are explored: in-
tensity features and connectivity features. Intensity features are features that incorporate the general
activity in the brain, connectivity features reflect the functional connectivity variability in the brain.
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A data-driven approach instead of a clinical approach is taken in the feature selection process. No
prior knowledge about the pathology of depression is used to influence the feature selection process.
The final used features are selected only due to their significance in the data set. Clinical relevance of
the features, if any, is assessed a�er the features have been selected.

Classifier training

The fourth part is classifier training. A classifier training pipeline is defined and the feature sets
obtained in the third part are used as input for the training of a classifier. Due to the limited size of
the data set support vector machines are the main machine learning algorithm that is used as classifier.

Firstly training is done using a single feature type as input. This makes it possible to assess the
viability of each feature type as a distinguishing factor in the classification task. The final result
of this classification can give insight in possible underlying mechanisms of depression that may be
previously not considered. General conclusions should be made very cautiously however, as the found
results only reflect people in the used data set, not the general population.

At a later stage the most significant features of all feature types are combined and used to train
the final classifier.

Result interpretation

The final part is the interpretation of the results found in part four. The accuracy of the di�erent
computed classifiers is compared and results are discussed.
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Chapter 2

MRI and fMRI

In this chapter, the neuroimaging techniques that are used to measure the brain activity are explained.
In the first part of the chapter the basic principles of MRI will be clarified while the second part of
the chapter will describe the underlying principles of fMRI. This chapter is mainly based on the books
MRI from picture to proton by DW McRobbie, EA Moore, MJ Graves and MR Prince [3] and Functional
magnetic resonance imaging by SA Hue�el, AW Song and G McCarth [39].

2.1 MRI

Magnetic resonance imaging, also known as MRI, is an anatomical imaging technique widely used in
medicine to visualize the internal structures and organs of humans (and animals). The basic principle
of MRI is nuclear magnetic resonance (NMR), which di�erentiates MRI from other medical imaging
techniques such as X-ray radiography, computed tomography (CT), positron emission tomography
(PET), single photon emission computed tomography (SPECT) and ultrasound.

2.1.1 Physical principles

2.1.1.1 Magnetic moment

Every atomic nucleus is built up from two subatomic particles: neutrons and protons. Both particles
rotate around their own axis, creating a spin angular moment. This spin angular moment, S, is defined
by a spin quantum number. As each particle can spin in only two possible directions, clock- and
counterclockwise, the spin quantum number has only two possible values: +1

2 and −1
2 .

Neutrons are electrically neutral, but protons do have a small positive electric charge. This electric
charge can be modeled as a small current, I. The circuital law of Ampère states that a moving electrical
current generates a magnetic dipole field B. This magnetic field is defined by its magnetic moment µ,
given by formula 2.1.

µ = γ.S (2.1)

Here γ is the gyromagnetic ratio (Hz
T ) and S is the spin angular moment defined by the spin quantum

number. The magnetic moment can only occupy one of two possible states due to the limited possible
values of the spin angular moment.
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2.1.1.2 Total nuclear spin

The total nuclear spin of a nucleus depends on the total amount of protons and neutrons from which
the nucleus is built up. When the nucleus consists of an even number of both neutrons and protons,
the total nuclear spin is zero. When a nucleus consists of an even amount of one subatomic particle
and an uneven amount of the other subatomic particle, the total nuclear spin will have a half integer
value. When a nucleus consists of an odd amount of both subatomic particles the total nuclear spin
will have a full integer value.

When the total nuclear spin of a nucleus is di�erent from zero, the nucleus will have a magnetic
moment. This magnetic moment is defined by formula 2.1, where the gyromagnetic ratio is nucleus
specific.11

2.1.1.3 The larmor frequency

When a nucleus with a magnetic moment di�erent from zero is objected to an external magnetic
field (B), the nucleus will try to align with the magnetic field. Due to the fact that only two states
are possible, the alignment of the nucleus with regard to the external magnetic field is not perfect: a
small angle exists between the magnetic moment vector and the magnetic field vector.

When an angle exists between the magnetic field and the magnetic moment, the magnetic field exerts
a torque on the magnetic moment of the nucleus, this torque (τ ) is defined by formula 2.2.

−→τ = −→µ x
−→
B = γ.

−→
S x
−→
B (2.2)

Where −→τ is the torque vector, −→µ is the magnetic dipole moment,
−→
B the external magnetic field, γ

the gyromagnetic ratio and
−→
S the angular momentum vector. This principle is shown in figure 2.1.12

Because of the torque, the angular momentum vector will start to precess around the external mag-
netic field vector. This precession occurs at a specific frequency, called the larmor frequency, given by
formula 2.3.

ωL =
1

S.sin(φ)
.γ.S.B.sin(φ) = γ.B (rad/sec) (2.3)

In this formula φ is the angle between B and µ (shown in figure 2.1).

Figure 2.1: Visualization of the angle (φ) between the magnetic moment vector (µ) of a nucleus
(shown in red) and an external magnetic field (B) and the corresponding precession.10

11. h�p://nmrwiki.org/wiki/index.php?title=Gyromagnetic_ratio
12. h�p://zerpoii.opentronix.com/?paged=4&tag=featured
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Formula 2.3 shows that the larmor frequency depends on both the strength of the external magnetic
field and the gyromagnetic ratio of the nucleus. The gyromagnetic ratio is unique for every nucleus
type, so every nucleus type has a unique larmor frequency.

2.1.1.4 Relevance for MRI imaging

A single hydrogen atom is built up from a single proton and an electron. As described in section 2.1.1.3,
this proton will have a small magnetic moment and will thus precess when an external magnetic field
is present.

Hydrogen atoms account for roughly 62% of all atoms present in the human body [40]. When the
human body is subjected to an external magnetic field, all hydrogen atoms in the body will start
to precess. The gyromagnetic ratio of hydrogen is 42.58MHz/Tesla.13 Note that not only hydrogen
is subject to precession; other atoms such as carbon and nitrogen will also precess, but at another
frequency [41]. When the precessing hydrogen atoms are excited (see section 2.1.2.2), a signal will
be generated and can be measured. Di�erent tissues in the human body contain di�erent amounts
of hydrogen atoms per volume. As each hydrogen atom generates a signal when excited, and more
hydrogen atoms close together lead to a stronger signal, certain tissues generate stronger signals
than others. Depending on the imaging sequence that is used to obtain the signal (see section 2.1.3),
di�erent signal strengths will translate into di�erent grey values on the final MRI image. An example
of an MRI image of a brain is given in figure 2.2.

Figure 2.2: Example of an MRI image. The di�erent tissues (grey ma�er, white ma�er, skin, air) can
clearly be distinguished.

13. h�p://mriquestions.com/who-was-larmor.html
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2.1.2 The MRI scanner

This section will explain the di�erent parts of an MRI scanner and the influence they have on the
generation of an MRI image. A simplified version of an MRI scanner is shown in figure 2.3.

Figure 2.3: Simplified representation of an MRI scanner [2].

2.1.2.1 The homogeneous magnetic field

When no magnetic field is present, the magnetic moments of the hydrogen atoms in the body are
orientated randomly, resulting in the absence of a net magnetization. The presence of a strong external
magnetic field (B0) results in the alignment of the magnetic moments to the magnetic field. Two
possible alignments are possible: spin up and spin down. If a hydrogen atom has a spin up alignment
the direction of the magnetic moment is parallel to the direction of the magnetic field, a spin down
alignment means anti-parallel alignment. Because more hydrogen atoms are in a spin up state, a net
magnetization (M) whose direction is parallel to B0 is present. This principle is shown in figure 2.4.14

The magnet that is used in an MRI scanner to generate B0 is shown in figure 2.3 and is denoted as
"Magnet". M is a static magnetic field and cannot be measured using a detection coil. Extra steps need
to be taken in order to generate a measurable signal.

Figure 2.4: Random orientation of the hydrogen atoms without an external magnetic field (le�), net
magnetization ML due to a magnetic field B0 (right).

14. h�p://199.116.233.101/index.php/Physics_of_MRI
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2.1.2.2 The rotating magnetic field

The net magnetization M cannot be measured if it stays static. To change the net magnetization a
secondary magnetic field is used. The secondary magnetic field is a rotating field constructed by a
combination of two radio frequency magnetic fields perpendicular to each other with changing field
strength. The change in field strength follows a sine signal and both signals are o�set by 90 degrees.
The magnets generating this magnetic field are shown as "radio frequency coil" in figure 2.3. If the
frequency of the rotating magnetic field is equal to the larmor frequency of a certain nucleus type,
the net magnetization M of only that specific nucleus type will precess around B0.

Due to the precession the net magnetization can be subdivided in two components: a longitudinal
and a transverse component. The longitudinal component of the net magnetization (ML) aligns with
B0 while the transverse component (MT)is perpendicular to B0. This is shown in figure 2.5. The angle
between the magnetization and its longitudinal component, denoted as θ in figure 2.5, is called the
flip angle. The flip angle is dependant on the duration of the radio frequency burst generated by the
rotating magnetic field. A longer radio frequency burst results in a bigger flip angle.

Figure 2.5: Visualization of the two components of the net magnetization M.

The longitudinal part of the net magnetization will remain stationary and can still not be measured,
but the transverse part of the magnetization is measurable as it precesses at the larmor frequency
and tries to align again with B0. This signal is measurable because it induces an electric current. The
part of the scanner that measures this current is called "scanner" in figure 2.3. The realignment of
the transverse magnetization with B0 is called relaxation. During the relaxation ML will recover until
it is completely restored (called longitudinal relaxation) and MT will decay until none is le� (called
transverse relaxation). The relaxation of both magnetizations depends on di�erent mechanisms that
are independent of each other, resulting in di�erent relaxation times that are shown in figure 2.6. The
relaxation time of the longitudinal magnetization is called T1, the relaxation time of the transverse
magnetization is called T2.

Figure 2.6: Visualization of the longitudinal (T1) and transverse (T2) recovery [3].

11



MRI

2.1.2.3 The gradient magnetic field

The homogeneous and rotating magnetic field makes it possible to generate a measurable signal,
but all tissues in the body generate a signal at the same time and no comprehensible images can be
generated. To solve this problem gradient magnetic fields are used; they are generated by gradient
coils (see figure 2.3).

The gradient magnetic field generates a magnetic field that varies slightly in three dimensions. This
magnetic field changes the local magnetic field strength of the homogeneous magnetic field slightly
(see section 2.1.2.1). Each position of the body is now subjected to a slightly di�erent magnetic field
strength. As the larmor frequency depends on the gyromagnetic ratio of the nucleus, but also on the
applied magnetic field strength (see formula 2.3), the hydrogen atoms at each postion of the body now
have a slightly di�erent larmor frequency. As nuclei only start to precess when the rotating magnetic
field (see section 2.1.2.2) rotates at their larmor frequency, each position of the body can be targeted
directly by changing the frequency of the rotating magnetic field. The position of the tissue that
generates a signal can be encoded in the signal it generates. Now images can be created.

It should be noted that this is a simplified and incomplete explanation of the MRI scanner. For further
details the reader is referred to the book MRI from picture to proton [3].

2.1.3 MRI imaging sequences

Each tissue type has di�erent properties (such as amount of hydrogen atoms and the atoms in the lat-
tice surrounding the hydrogen atoms) that influence the relaxation times. This di�erence in relaxation
time results in di�erences in the measured signals. This di�erence is used to generate images. Many
di�erent imaging sequences that are able to visualize di�erent aspects of the body by manipulating
the T1 and T2 relaxations exist. These will not be explained here, but can be found in [3]. Only echo
planar imaging (EPI) will be mentioned shortly as it is the imaging sequence that is used to obtain
fMRI data.

2.1.3.1 Echo planar imaging

Echo planar imaging is an imaging sequence that is able to capture a complete 2D slice using a single
radio frequency pulse generated by the rotating magnetic field. This is done by changing the gradient
magnetic fields (see section 2.1.2.3) while the generated signal from the tissue is measured. This
reduces the scanning time needed to measure the complete brain from tens of minutes to seconds.
The main drawback of this method is the reduced resolution that is obtained. An example of a high
resolution MRI image is shown in figure 2.2, an example of an EPI image is shown in figure 5.4. For
more details the reader is referred to chapter 16, To BOLD go: new frontiers of MRI from picture to
proton [3].
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2.2 Functional MRI

Functional magnetic resonance imaging, also known as fMRI, is a functional imaging technique.
Functional imaging is a form of imaging that does not reveal the anatomy of organs and structures,
but reveals processes active in a person’s body. The most common functional imaging techniques are
functional MRI, positron emission tomography (PET), single photon emission computed tomography
(SPECT), computed tomography perfusion imaging (CTPI) and near-infrared spectroscopy (NIRS).
Functional imaging can provide information about illnesses that do not yet (or will never) alter the
anatomy of a patient substantially enough that they could be detected using anatomical imaging. An
example of this is the increased glucose uptake of small tumors in the body [42].

FMRI shows the activity of di�erent brain regions both spatially and temporally with a normal MRI
scanner (see section 2.1.2) using the EPI imaging sequence (see section 2.1.3.1). The underlying prin-
ciple of fMRI is explained in section 2.2.1, the advantages and limitations of fMRI are discussed in
section 2.2.2.

2.2.1 The BOLD response

FMRI shows the activity of the brain both spatially and temporally. It does this by measuring the
di�erences in blood flow within the brain.

All cells in the body need energy to be able to perform functions. The creation of energy requires
both oxygen and some energy source, mainly glucose. The citric acid cycle (also called Kreb cycle)
will use the oxygen and energy source to produce adenosine triphosphate (ATP), the main energy
source for the body. Neurons in the brain do not contain the necessary energy sources and oxygen
themselves, so if they are active these resources are brought to them via the blood vessels in the brain
through a process called the hemodynamic response. Local brain activity results thus in local variations
of blood flow.

Oxygen is bound to haemoglobin in the blood and haemoglobin can exist in two possible states: oxy-
genated and deoxygenated. Oxygenated haemoglobin (called oxyhemoglobin) has di�erent magnetic
properties than deoxygenated haemoglobin (called deoxyhemoglobin) as oxyhemoglobin is diamag-
netic and deoxyhemoglobin is paramagnetic. Blood traveling towards active neurons will contain a
higher percentage of oxyhemoglobin relative to blood that delivered the oxygen to the active neu-
rons. At the location of the active neurons oxyhemoglobin will become deoxyhemoglobin as oxygen
is delivered to the neurons. This change of oxyhemoglobin/deoxyhemoglobin concentration shi�s
the magnetic properties of the blood from more paramagnetic to more diamagnetic. The magnetic
property shi� of the blood will be higher in locations where neurons are active compared to locations
with inactive/less active neurons as more blood is delivered and more oxygen is given to the active
neurons. This di�erence in magnetic properties is called the blood-oxygen level dependant (BOLD)
response and is measurable using an MRI scanner.

The BOLD response changes through time and follows the hemodynamic response function closely.
Its course through time is shown in figure 2.7.15 Two observations can be made from this figure: the
change in the BOLD signal is small (2%) when a stimulus is applied and takes a long time (25 seconds)
to recover completely. Another observation is that the peak in the BOLD signal does not align in time
with the stimulus but is delayed by around 8 seconds.

15. h�p://mriquestions.com/does-boldbrain-activity.html
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Figure 2.7: Visualization of the BOLD response with respect to time. The x-axis shows time, the y-axis
the change in oxy-/deoxyhemoglobin concentration in the blood in percentage.

2.2.2 Advantages and limitations of fMRI

The main advantage of fMRI when compared to other neuroimaging techniques is its high spatial
resolution of around 1-2mm. The high spatial resolution makes fMRI a unique imaging technique
for identifying functional brain regions. Caution however should be used with the use of fMRI. It is
not sure that the location where the oxygen is delivered in the brain corresponds perfectly with the
location of the active neurons; the variations in the BOLD signal that are measured do not necessarily
match perfectly with the associated brain regions. Another advantage of fMRI is its capability of
recording brain activity of subcortical regions. Other (non-invasive) functional imaging techniques
such as EEG and fNIRS are not capable of recording activity deep within the brain.

The major disadvantage of fMRI is its low temporal resolution when compared to other neuroimaging
techniques (0.5-1Hz). Scanning the whole brain using an MRI scanner can take several minutes when
an anatomical scan is needed16 and the EPI imaging sequence (see section 2.1.3.1) that is used to obtain
fMRI data significantly improves the temporal resolution, at the cost of spatial resolution. Other
imaging techniques like EEG have a much higher temporal resolution (ms range). The low temporal
resolution limits the research opportunities for fMRI. EEG and fMRI can however be recorded simul-
taneously and the data can be combined resulting in both high temporal and spatial resolution [39].

2.2.3 Resting state fMRI and task-related fMRI

Two types of fMRI data are defined: resting state and task-related fMRI data. Restig state fMRI is the
capture of the BOLD signal changes when the person is not engaged in any activity. The person lies
with his eyes closed in the MRI scanner and does not think about anything special. The person is not
allowed to fall asleep. Several brain networks have been defined using resting state fMRI data such
as the default mode network audio/visual networks and sensory/motor networks [39].

Task-related fMRI is the capture of the BOLD signal changes when a person performs certain tasks.
The nature of these tasks is varied ranging from viewing images to counting tasks [35], [43]. This type
of fMRI data is used to investigate the progression of signals through the brain and identify brain
regions related to di�erent tasks a person can perform.

16. h�ps://www.healthline.com/health/head-mri
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Chapter 3

Machine learning

This chapter will explain some principles of machine learning and the machine learning technique
that is used: support vector machines (SVMs). Not all aspects of machine learning will be explained,
only the principles that are of importance in this master’s dissertation. This chapter is based on the
book Introduction to machine learning by Ethem Alpaydin [44].

3.1 Introduction

Machine learning is the scientific study dedicated to the development and optimization of models
and techniques used by computers to perform specific tasks without any specific instructions. This
approach makes it possible to solve complex problems for which no obvious or simple instructions
can be defined. The models instead try to learn underlying pa�erns using available data sets or by
trial and error. Depending on the problem that needs to be solved, di�erent models and approaches
are required. The learning technique that is used in this master’s dissertation is called supervised
learning.

3.1.1 Supervised learning

This type of learning can be used when a mapping from input to output is needed and data that
contains both the input and correct output, called labeled data, is available. The data set for this
master’s dissertation is labeled data. The input data is the MRI and fMRI scans, the output is the class
they belong to: healthy controls or depression group. Many models can be trained with supervised
learning such as linear regression, random forests, artificial neural networks and SVMs.

3.2 Support vector machines

An SVM is a machine learning technique that is a part of a group of machine learning models called
kernel machines. SVMs are used in this master’s dissertation because high classification accuracies
can be obtained with small data sets (tens of samples) while other machine learning techniques, such
as artificial neural networks, need much larger data sets (thousands of samples).

The general principle of SVMs will be explained by describing a simple classification problem. Two
classes are present and two variables describe each data point belonging to one of the two classes.
Class 1 will be denoted by C1, class 2 by C2. Data points belonging to C1 are labeled with -1, data
points belonging to C2 with +1. A possible distribution of data points of both classes is shown in
figure 3.1.
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Figure 3.1: A possible distribution of data points. Data points beloning to C1 are shown by red dots,
C2 is shown by green dots. V1 and V2 denote two variables.

The samples represented in figure 3.1 can be wri�en as X = {xt,rt}. X is a 2*t matrix containing every
data point x coupled with its corresponding class label r, with t the amount of data points. The goal of
a classification problem is to predict the class label r of a data point given the variables x that describe
it. A solution for this problem is to define a hyperplane which separates both classes. As the current
case is defined in two dimensions, the hyperplane will be a line.

The hyperplane can be defined by the function described in formula 3.1. It presents the hyperplane
as a function of the available data points (x), each multiplied by some weight (w) where an o�set is
added (w0).

g(x) = wTx + w0 (3.1)

The hyperplane will be able to separate both classes when it obeys two constrains, shown in formula 3.2
and 3.3.

wTxt + w0 ≥ +1 for rt = +1 (3.2)

wTxt + w0 ≤ −1 for rt = −1 (3.3)

These constrains demand that for every data point belonging to C1 the hyperplane will return a value
≥ 1 while returning a value≤ -1 for every data point belonging to C2. This equation can be simplified
to formula 3.4.

rt(wTxt + w0) ≥ +1 (3.4)

It should be noted that this is a tough constraint to obey. Not only do we want a correct separation
(which would require rt(wTxt + w0) ≥ 0) but also that all points are some distance away from the
hyperplane. The space between the defined hyperplane and the data points that are closest to it is
called the margin. The best classification results will be obtained when the margin on both sides is
maximized. If this is not possible, so� margin SVMs need to be used; these will not be explained but
can be found in [44].

The maximization of the margins is obtained using formula 3.5 and describes the minimization of the
norm of the weight vector w. This minimization results in a description of the optimal hyperplane by
the least amount of data points necessary as only the data points closest to the hyperplane will have a
weight greater than zero. This results in a description of the optimal hyperplane by only a small subset
of the initial present data points. These data points are called the support vectors. The optimization of
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the weight vector is the "learning" part of this machine learning technique. A visual representation of
the optimal hyperplane of the distribution shown in figure 3.1 is shown in figure 3.2. This example was
a 2D classification problem as two variables were given. This principle can be extended to N variables.

min

(
1

2
||w||2

)
subject to rt(wTxt + w0) ≥ +1 (3.5)

Figure 3.2: Visual presentation of the optimal hyperspace separating C1 and C2. The support vectors
are encircled.

It should be noted that this explanation concerns the most simple case possible. More information
about kernel models can be found in Introduction to machine learning [44].
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Chapter 4

Structural features

This chapter describes the feature selection process that is used to obtain the structural features. First
the specifics of the data set that is used are discussed. Secondly the program FreeSurfer [77], used
to calculate the structural features, is described. Finally the clinical relevance of the found features is
assessed.

4.1 Available dataset

The data used in this master’s dissertation is obtained from Prof. Chris Baeken, one of the promotors.

The complete data set consists of two groups: healthy controls and patients with depression. The
healthy control group consists of 60 individuals, the depression patients group consists of 46 indi-
viduals. The data set of the depressed patients consisted originally of fi�y right-handed patients, of
which 35 were female (average age 42 years, standard deviation (SD) = 12 years). All patients were
antidepressant free at the time and were at least stage I treatment resistant, meaning that all of them
had had at least one unsuccessful treatment trial with serotonin reuptake inhibitors or noradrenaline
reuptake inhibitors. Further exclusion criteria were current or past history of epilepsy, neurosurgical
intervention, having a pacemaker, having a metal object in the brain, having undergone electrocon-
vulsion therapy, alcohol dependence or suicide a�empts within 6 months before the start of study.
Patients with co-morbidities such as bipolar disorder and psychosis were also excluded. Depression
was diagnosed using the structured Mini-International Neuropsychiatric Interview. Four patients
were not used; one female patient due to a suicide a�empt (medication overdose), one female patient
due to spontaneous improvement of the condition, one male patient due to an extra neurostimulation
session and one patient (sex unknown) due to the absence of data. The healthy controls are matched
for sex, age and education level. Further details regarding the data set can be found in [45].

The healty control group will be called healthy controls, the patients with depression the depression
group.

Every person in the whole data set (106 people in total) has two di�erent MRI scans: a T1 weighted
gradient echo (GE) scan using the MPRAGE protocol [46] and an fMRI scan using the EPI imaging
sequence.
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4.2 Structural features

Structural features reflect possible anatomical changes due to depression and are obtained from the
anatomical T1 images of the data set. The program that is used to obtain these features is called
FreeSurfer [77].

Two feature subtypes will be explored: cortical thickness and parcel volume. Cortical thickness refers
to the thickness of the gray ma�er (in mm) of certain parcels. Parcel volume refers to the total volume
(in mm3) of certain parcels. FreeSurfer uses a di�erent brain atlas than the Lausanne brain atlas, so
the structural features will not reflect properties of the same regions as the intensity and connectivity
features. Less di�erent regions are defined than in the Lausanne brain atlas: 35 cortical thickness
parcels are defined for each hemisphere and 39 parcel volumes are defined. Due to the low amount of
possible features compared to the other two feature types, no feature selection process will be used.
Instead the significance of each possible feature will be tested by a two-pair t test. Any significant
feature will be used in a feature set. Three feature sets are defined: a le� cortical thickness feature set,
a right cortical feature set and a parcel volume feature set. The clinical relevance of these features is
discussed in section 4.2.2, the results of the feature sets are shown in section 7.3.1 and are discussed
in section ??. First the FreeSurfer program will be clarified.

4.2.1 FreeSurfer

A specific function from FreeSurfer is used, called recon-all. As it consists of a total of 29 steps17, the
steps will be clarified in a simple way and some steps will be put together as they are part of a larger
step.

4.2.1.1 Step 1: Normalization

The first step in the FreeSurfer workflow is normalization. The anatomical MRI scan will be trans-
formed into the MNI305 atlas space using an a�ine transformation. Intensity correction is also applied.
A second intensity correction will be performed a�er step 4 as the exclusion of the skull improves
intensity correction.

4.2.1.2 Step 2: Skull strip

The second step is called skull strip. As its name implies, the skull will be removed from the scan,
leaving only the brain and neck.

4.2.1.3 Step 3: Subcortical segmentation

The third step is defining and segmenting the subcortical regions. This is done in multiple steps where
the neck is stripped and several registrations to templates are made. This step ends with segmented
and labeled subcortical regions.

4.2.1.4 Step 4: Statistics calculation

The fourth step is the calculation of the statistics of the subcortical parcels. The volume of these
subcortical parcels, used as parcel volume features, are calculated in this step.

17. h�ps://surfer.nmr.mgh.harvard.edu/fswiki/recon-all
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4.2.1.5 Step 5: White ma�er segmentation

The fith step is the segmentation of the white ma�er. The constraints used for this segmentation
are the intensity di�erence between gray and white ma�er, the immediate neighboring voxels around
each voxel and the inherent smoothness of the border between white and grey ma�er.

4.2.1.6 Step 6: Brain division

The sixth step is the division of the brain in the le� and right hemisphere, the cerebellum and the
midbrain.

4.2.1.7 Step 7: Tesselation

The seventh step is the tesselation of both hemispheres. The surface of each hemisphere is approxi-
mated using a finite element method where the border, defined in step 5, is approximated using small
triangles. The smallest edges of the triangles have the same length as the side of a voxel. A surface is
defined this way.

4.2.1.8 Step 8: Surface smoothing

The eight step is the smoothing of the surface defined in step 7. As the surface follows the voxels faces
which define the surface the edges will be perpendicular to each other. Smoothing the edges reduces
the angle and makes the surface smoother.

4.2.1.9 Step 9: Inflation

The ninth step is the inflation of the smoothed surface. The surface will be inflated to smoothen the
gyri and sulci and the transformation for each vertex and edge is calculated. When the inflated surface
is obtained, it will be checked for any defects that are present due to errors in previous steps.

4.2.1.10 Step 10: Surface definitions

The cortical thicknesses are defined by aligning the inflated surface with the grey-white ma�er border
present in the original anatomical T1 MRI scan. A second surface that defines the pial surface is
created.

4.2.1.11 Step 11: Spherical inflation

The inflated surface is further inflated until it becomes a sphere. This spherical surface is matched
to a spherical atlas defining the di�erent brain regions. Alignment is performed based on matching
folding pa�erns of the brain and a�erwards using small scale pa�erns.

4.2.1.12 Step 12: Parcel labeling and statistics calculation

The di�erent parcels will be labeled and the statistics of of the parcel will be calculated. The cortical
thicknesses of these parcels, used ase le� and right hemisphere thickness features, are calculated in
this step.
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4.2.2 Interpretation of the found features

A total of three feature sets (le� hemisphere thickness, right hemisphere thickness and parcel volume)
have been defined and will be discussed. The results of the classification process can be found in
section 7.3.1.

Interpretation of the used tables

The number column defines the significance of the feature (here the features with the lowest p-value
when a double-pair t test is performed). The feature with number 1 has the lowest p-value of all
features. The feature with number 10 had the tenth lowest p-value of all features. The parcel column
defines the name of the parcel whose thickness or volume is linked with the feature. The sign column
defines which group (healthy controls or depression group) has the biggest cortical thickness or parcel
volume. A "+" sign denotes that the healthy controls have on average a bigger cortical thickness or
parcel volume, a "-" sign denotes that the depression group has on average a bigger cortical thickness
or parcel volume. It should be noted that this does not occur.

4.2.2.1 Le� hemisphere thickness

Only nineteen features are found to be statistically significant, they are shown in table 4.1. Reduced
cortical thickness of multiple brain regions defined by the features have been reported in literature.
The brain regions from which a reduced cortical thickness is closely linked with depression (as indi-
cated by prof. Baeken) are the rostral middle frontal gyrus (feature 2), the precentral gyrus (feature
6), the insula (feature 7), the precuneus (feature 10), the pars orbitalis (feature 14), the frontal pole
(feature 16), the superior frontal gyrus (feature 17), the post central gyrus (feature 18) and the caudal
middle frontal gyrus (feature 19) [78], [79], [80]. The presence of several brain regions associated with
depression shows the clinical relevance of the le� hemisphere thickness features. The results of the
classifiers trained with the le� hemisphere features are shown in section 7.3.1.1 and are discussed in
section ??.

Table 4.1: Significant le� hemisphere thickness features.

Number Parcel Sign
1 Pars opercularis +
2 Rostral middle frontal gyrus +
3 Superior temporal gyrus +
4 Mean le� hemisphere thickness +
5 Supramarginal gyrus +
6 Precentral gyrus +
7 Insula +
8 Pars triangularis +
9 Inferior temporal gyrus +
10 Precuneus +
11 Inferior parietal gyrus +
12 Middle temporal gyrus +
13 Lateral orbitofrontal cortex +
14 Pars orbitalis +
15 Fusiform +
16 Frontal pole +
17 Superior frontal gyrus +
18 Post central gyrus +
19 Caudal middle frontal gyrus +
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4.2.2.2 Right hemisphere thickness

Only eleven features are found to be statistically significant, they are shown in table 4.2. Only two
of them can consistently be linked with depression (as indicated by prof. Baeken): the frontal pole
(feature 5) and the superior frontal gyrus (feature 10) [79], [80]. From a clinical relevance point of
view, the right hemisphere features are thus less significant than those of the le� hemisphere. This
observation, together with the fact that less statistically significant features have been found in the
right hemisphere could show that a di�erence exists between the le� and right hemisphere. An
imbalance between a hypoactive le� and a hyperactive right hemisphere in people with depression has
been reported multiple times and these observations could also point towards this imbalance [52], [53].

Table 4.2: Significant right hemisphere thickness features.

Number Parcel Sign
1 Supramarginal gyrus +
2 Inferior parietal gyrus +
3 Pars triangularis +
4 Mean right hemisphere thickness +
5 Frontal pole +
6 Inferior temporal gyrus +
7 Superior temporal gyrus +
8 Superior parietal gyrus +
9 Pars opecularis +
10 Superior frontal gyrus +
11 Middle temporal gyrus +

4.2.2.3 Parcel volume

Only six features were found to be statistically significant, they are shown in table 4.3. The first two
features are both hemispheres of the cerebellum, indicating that the biggest change in volume between
the healthy controls and the depression group could be a decrease in volume in the cerebellum for
people with depression. Reduced cerebellar volume and cerebellar atrophy in people with depression is
described in literature and an involvement of the cerebellum in several psychiatric disorders including
depression is suspected and investigated [81], [82], [83]. The third and fourth features are both parts
of the caudate nucleus. The involvement of the caudate nucleus in depression has been proposed as
some diseases involving the caudate nucleus, such as caudate infarcts or Huntington’s disease, give
rise to depressive symptoms. Reduced volume of both caudate nuclei has been reported in people with
depression [84], [85]. Reduced caudate volume has also been reported in other psychiatric disorders
such as obssesive compulsive disorder [86]. Reduced thalamic volume is also linked with depres-
sion [87]. From a clinical relevance point of view, the parcel volume features are highly significant.
The results of the classifiers trained with the parcel volume features are shown in section 7.3.1.3 and
discussed in section ??. The sixth feature is closely linked with the first two features.

Table 4.3: Significant parcel volume features.

Number Parcel Sign
1 Right cerebellum cortex +
2 Le� cerebellum cortex +
3 Right caudate nucleus +
4 Le� caudate nucleus +
5 Right thalamus +
6 Right cerebellum white ma�er +
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Chapter 5

Functional features

This chapter will describe the calculation and clinical validation of the functional features. Two
di�erent functional features are calculated: intensity and connectivity features. Intensity features
reflect the activity of the brain, connectivity features reflect the functional connections within the
brain. Firstly the preprocessing process will be described, secondly the feature selection process is
explained, thirdly the clinical validation of the obtained functional features is discussed.

5.1 Preprocessing process

This section will describe all preprocessing steps taken to prepare the data set for feature selection.
The process is shown in figure 5.1. Several preprocessing steps can introduce errors in the data. To
counter this, visual quality checks are performed. This is done by viewing the produced results of each
preprocessing step of around ten people from each group.

Figure 5.1: The complete preprocessing pipeline.
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5.1.1 Step 0: File conversion

The MRI scanner used to obtain the scans is a Siemens Magnetom TrioTim syngo MR B17 scanner.
The file format of the scanner is the digital imaging and communications in medicine (DICOM) with
file extension .IMA. The zeroth preprocessing step is the conversion from the Siemens DICOM format
to the neuroimaging informatics technology initiative (NIfTI) format. This step is done by the SPM
toolbox ([37]) for further processing as the toolbox uses the ni�i format. This step is performed using
the import.dicom function from the SPM toolbox.18

5.1.2 Step 1: Removal of the first and last scans for signal equilibrium

The first five scans from each patient are dismissed, this because the BOLD signal (see section 2.2.1)
has not yet been stabilized due to an incomplete T1 relaxation (see section 2.1.2.2 and figure 2.6). These
scans are called dummy scans. This principle is shown in figure 5.2.

The last five scans are also dismissed, this because the final scans of some patients show a significant
drop in voxel value throughout the whole scan. The origin of this signal drop is unknown.

Figure 5.2: Visual representation of the T1 relaxation of the tissue and the corresponding BOLD
signal. The vertical lines show the start of a new scan. (based on [4])

5.1.3 Step 2: Motion correction

Even though people are instructed to lie still when a scan is taken, small movements are inevitable as
movements due to breathing and cardiac pulse also influence the location of the patient within the
scanner. To correct these small movements, motion correction is applied.

Motion correction is done using a six parameter rigid body transformation. The first three parameters
describe the rotation within the 3D space, the last three the translation. The appropriate rotation and
translation values, which are unique for each scan, are calculated using a least squares approach [47].
This preprocessing step is performed using the SPM realign function.19 This preprocessing step and
all folowing steps aside from the high pass filtering (see section 5.1.6), are performed using the CONN
toolbox [38].

18. h�ps://en.wikibooks.org/wiki/SPM/Importing_data_from_the_scanner
19. h�ps://en.wikibooks.org/wiki/Neuroimaging_Data_Processing/Realignment
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5.1.4 Step 3: Slice timing correction

The next step in the preprocessing process is slice timing correction. This step is needed because
it is assumed that a single EPI (see section 2.1.3.1) scan of the head is done instantaneously. In
practice however, this is not correct. The EPI sequence used to obtain the fMRI data, scans the head
in a sequence of several 2D slices. The acquisition of the 2D slices is not simultaneous but is done
sequentially. This results in a single 3D scan where the values of each slice are obtained at a slightly
di�erent time.20

The solution to this problem is the interpolation of the measured values to correct for the time dif-
ferences between the acquisitions, called slice timing correction. The time di�erences are defined by
the repitition time (TR) and acquisition time (TA) parameters of the EPI sequence. The TR parameter
defines the time between radio frequency bursts generated by the rotating magnetic field (see sec-
tion 2.1.2.2). The TA parameter defines the time di�erence between the start of the first and last slice
acquisition and can be calculated by formula 5.1.21 The values for TR can be found in appendix A.

TA = TR− (
TR

nSlices
) (5.1)

The last two parameters that are needed are the reference slice and the slice order. The reference
slice is the slice that is firstly scanned and is dependent on the slice order ie. the order in which
the di�erent slices are acquired. The used slice order is an interleaved slice order (see "Series" in
appendix A), meaning that first all even or uneven slices are acquired a�er which the other half are
captured. As the scanner used to obtain the fMRI data is a Siemens Magnetom TrioTim syngo MR B17
(see appendix A), the slice order is dependent on the amount of slices. If the total number of slices is
even, the even slices are captured first; if the total number of slices is uneven, the uneven slices are
captured first.22 The amount of slices is 40 (for this data set, see appendix A) so the even slices will
be captured first. This also defines the reference slice as slice two. This part of the preprocessing part
is done using the temporal.st function from SPM, built into the preprocessing pipeline of the CONN
toolbox [38].

5.1.5 Step 4: Coregistration

The next step in the preprocessing is coregistration. Coregistration is the alignment of the functional
data (fMRI data) to the structural data (or vice versa) so that they share the same coordinate space.
This means that the time series in the fMRI data are now linked spatially with their corresponding
brain region in the structural MRI. Coregistration is a patient-specific preprocessing step where the
functional data of each patient is mapped to their personal T1 MRI scan. Coregistration is performed
using a six parameter rigid body transformation (similar to motion correction, see section 5.1.3) where
three parameters describe the applied translation and the other three the applied rotation. The
coregister fuction from the SPM toolbox is used, which is built into the CONN toolbox [38].

5.1.6 Step 5: High pass filtering

The next step is high pass filtering and is done to eliminate scanner dri�. Scanner dri� is the intro-
duction of a low frequency signal (0 - 0.01Hz) into the time series captured during an MRI scan. The
origin of scanner dri� is a change in resonant frequency (see section 2.1.1.3) of the hydrogen protons

20. h�ps://en.wikibooks.org/wiki/SPM/Slice_Timing
21. h�ps://andysbrainblog.blogspot.com/2012/11/slice-timing-correction-in-spm.html
22. h�ps://www.siemens-healthineers.com/magnetic-resonance-imaging/magnetom-world/clinical-corner/application-

tips/slice-order-fmri.html
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which is induced by changes in field strength of the static magnetic field (see section 2.1.2.1) [39].
Even though scanner dri� is the main source of low frequency noise, other sources also influence the
acquired signal [48].

The filter that is implemented has a bandstop frequency of 1
128Hz and a bandpass frequency of 1

120Hz.
The presence of scanner dri� and the result of the filtering is shown in figure 5.3. The function
myfreqfilter23 is used for the implementation of the high pass filter.

(a) Original time series. (b) Filtered time series.

Figure 5.3: Visualization of the initial presence of scanner dri� (a) and the result a�er high pass
filtering (b).

5.1.7 Step 6: Normalization

Normalization is the second registration step (a�er coregistration) in the preprocessing process. Again
a body transform will be applied to the functional data of each person so that all people in the data set
share a common coordinate space. This is necessary to allow comparisons between patients and find
common characteristics on a group level. The coordinate space to which the data will be registered is
the Montreal Neurological Institiute (MNI) space [49]. This step is performed by wrapping the personal
T1 MRI scan of each patient to a the MNI template scan. Secondly the calculated transformation from
this wrapping is applied to the functional data of each person.

A first step in the normalization process is segmentation, where personal probability maps for air,
skull, cerebrospinal fluid (CSF), white ma�er and gray ma�er are made. These probability maps are
calculated from the T1 MRI scans of each person.

The second step is linear registration. The personal probability maps are aligned to template prob-
ability maps using an a�ine transformation, the template probability maps are located in the MNI
coordinate space. The a�ine transformation has twelve parameters: three rotation parameters, three
translation parameters, three zoom parameters and three shear parameters. The rotation and trans-
lation parameters align the personal probability maps to the template probability maps; the zoom
and shear parameters alter the shape of the personal probability maps so that they are as similar as
possible to the template probability maps.

The third and final step of the normalization process is non-linear registration. This registration is
necessary as not all person-specific variations, such as unique folding of gyri and sulci, can be corrected
using a�ine transformations. The non-linear registration is performed using a linear combination of

23. "myfreqfilter", Anthony Barone, The University of Texas at Austin, Institute for Geophysics.

28



Functional features

discrete cosine basis functions. The result of this step is shown in figure 5.4. This step is performed
using the segment and normalize function from SPM, which is used by the CONN toolbox [38], [37].

(a) Functional data before normalization. (b) Functional data a�er normalization.

Figure 5.4: Visualization of the e�ect of normalization.

5.1.8 Step 7: Spatial smoothing

The final step in the preprocessing process is spatial filtering, also called smoothing. This step is
performed to increase the signal-to-noise ratio. Noise is present in fMRI data, but follows a (mostly)
Gaussian distribution with an average value of zero.24 As the signal due to neuronal activity is on
average non-zero, the functional data will be spatially filtered using a Gaussian kernel. The kernel
width is chosen to be 6 mm, a common choice in literature [30], [31]. The results of the spatial
smoothing are shown in figure 5.5. This step is performed using the smooth function from SPM, which
is used by the CONN toolbox [38], [37].

(a) Functional data before spatial smoothing. (b) Functional data a�er spatial smoothing.

Figure 5.5: Visualization of the e�ect of spatial smoothing.

24. h�p://mindhive.mit.edu/node/112
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5.2 Parcellation

5.2.1 Human brain atlas

Both the intensity features and the connectivity features use a human brain atlas. A human brain
atlas is a representation of the human brain where the brain is subdivided in several brain regions, also
called parcels. The Lausanne brain atlas is used [50]. The Lausanne brain atlas is defined in the MNI
space (see section 5.1.7) and has five di�erent levels of brain region division. The first level divides the
whole brain in 89 parcels, the second level has a division of 129 parcels, the third level has a division of
234 parcels, the fourth level has a division of 463 levels and the fi�h level has a division of 1015 parcels.

Both the intensity and connectivity features will be calculated for each atlas level separately. This
is done to investigate the influence of parcel size on the resulting features.

5.2.2 Human brain atlas resizing

The preparatory step that is taken is the resizing of the Lausanne brain atlas. The Lausanne brain
atlas has been built using structural MRI images and has a higher resolution than the fMRI data from
the data set. All atlas levels will be resized to match the fMRI data using the imresize3 function from
MATLAB.25 The nearest neighbor option for interpolation is used.

5.3 Intensity features

The first category of features that will be explored are intensity features. They reflect the average
activity of the di�erent brain regions during resting state and are obtained from the fMRI data. It
should be noted that these features only give a simplified representation of the brain activity as not
all information in the fMRI data is used.

5.3.1 Absolute intensity and relative intensity

Two intensity feature subtypes will be explored: absolute and relative intensity features. The absolute
intensity features are the features that reflect the average intensity of each brain region. They are
found by averaging all time series to a single value for each time series and then averaging all values
of a single brain region that is defined by the Lausanne brain atlas. It should be noted that this type of
feature is sensitive to di�erences between patient scans. A global elevation or decrease of the recorded
values within the scan of a patient will influence the final feature values of the patient significantly.
Relative intensity features counter this problem.

Relative intensity features also reflect the average activity of brain regions through time. The main
di�erence with absolute intensity features is the fact that the intensity of the di�erent brain regions
is normalized for each patient personally. This is done using formula 5.2. Here Irelative,j is the relative
intensity feature value of brain region j, Iabsolute,j is the absolute intensity feature value of brain region
j and Ibrain,average is the average intensity value of the whole brain. Ibrain, average is calculated by
averaging all values of all time series.

Irelative,j =
Iabsolute,j − Ibrain,average

Ibrain,average
(5.2)

25. h�ps://www.mathworks.com/help/images/ref/imresize3.html
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5.3.2 Feature selection process

The feature selection process is shown in figure 5.6. The process starts with the preprocessed data (see
section 5.1) and can be divided in two parts: a patient specific and a group specific part. The patient
specific part defines the steps that are done on the data of each patient separately, the group specific
part defines the steps that are done on a group level (healthy controls and depression patients). Each
di�erent step will be explained.

Figure 5.6: The intensity feature selection process.

5.3.2.1 Time averaging

The first step of the patient specific part of the feature selection process is time averaging. The time
series of the fMRI data of each patient will be averaged. This reduces the patient data matrix from a
30076x160 or 30076x290 matrix (30076 equals the amount of time series that overlap with the Lausanne
brain atlas, 160 or 290 equals the amount of di�erent time points in an fMRI time series) to a 30076x1
matrix.

5.3.2.2 Parcel averaging

The second step of the patient specific part is parcel averaging. The 3D location of each time series
(now average value) is mapped to the Lausanne brain atlas and linked to the corresponding parcel. The
di�erent time series that belong to the same parcel are averaged, resulting in a single average intensity
value for each parcel. This reduces the patient data matrix from a 30076x1 matrix to a Nx1 matrix (N
equals the amount of parcels of each atlas level, see section 5.2.1). As five atlas levels exist and both
absolute and relative intensity values are calculated, ten di�erent data matrices are calculated for each
patient.
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5.3.2.3 Group averaging

The third step of the feature selection process and first step of the group specific part is group averag-
ing. The value of each parcel is averaged for both groups (healthy controls and depression patients).
This results in 10 Nx1 matrices for each group.

5.3.2.4 Di�erence calculation

The fourth step of the feature selection process is di�erence calculation. The average group values of
the depression patients are subtracted from the average group values of the healthy controls. This
results in ten Nx1 matrices called di�erence matrices.

5.3.2.5 Feature selection

The final step is the feature selection itself. The 20 parcels that have the biggest absolute value in the
di�erence matrices are selected. These parcels have the biggest di�erent intensity values on average
between the healthy controls and depression patients and are therefore best suited to be used as
features to distinguish both groups. The significance of the features was validated statistically using
the two-sample t-test, done by the �est2 function from MATLAB.26

As five atlas levels are used and two feature subtypes are calculated, ten feature sets are obtained.
Each feature set is a 106x21 matrix; 106 equals the total amount of people in the data set and 21
equals the twenty features plus a final value defining the group to which the person belongs. All
feature sets are normalized using the z-score.

26. h�ps://www.mathworks.com/help/stats/�est2.html
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5.3.3 Interpretation of the found features

As five atlas levels are used and two feature subtypes are calculated, ten feature sets are obtained. Two
sets will be discussed in this section: the best performing feature set of each intensity feature subtype.
The results of the classification process using these two feature sets can be found in section 7.3.1, the
discussion of the results in section ??.

5.3.3.1 Interpretation of the used tables

The Number column defines the significance of the feature. Feature 1 defines the parcel that has the
biggest value in the di�erence matrix, feature 20 defines the parcel that has the twentieth biggest
di�erence value in the di�erence matrix (see section 5.3.2.4). The Parcel column defines the name
of the parcels that are related to the features. These are the parcels whose feature values di�er on
average the most between the healthy controls and the depression group. "(L)" denotes that the parcel
is located in the le� hemisphere, "(R)" denotes that the parcel is located in the right hemisphere. The
number at the end of the parcel name is its further subdivision number (brain regions are subdivided in
smaller regions when higher atlas levels are used). The Sign column defines the sign of the di�erence
value. A "+" sign denotes a positive di�erence value, meaning that the intensity value of the parcel
and by extension the general activity of that parcel is higher in the healthy controls compared to the
depression group. A "-" sign defines the contrary.

5.3.3.2 Absolute intensity features

The twenty most significant features are shown in table 5.1. A first noticeable fact is that several
features are subdivisions of a single brain region. Five features (feature 1, 9, 12, 18 and 20) are
a subdivision of the le� superior frontal gyrus (LSFG), three features (feature 3, 6 and 11) are a
subdivision of the right superior frontal gyrus (RSFG), two features (feature 4 and 15) are a subdivision
of the right rostral middle frontal gyrus (RRMFG) and six features (feature 5, 7, 8, 10, 13 and 14) are
a subdivision of the le� rostral middle frontal gyrus (LRMFG). It should be noted that all but one of
these features (feature 7) are denoted by a "+" sign, meaning that all but one of these regions show
hypoactivity in the depression group compared to the healthy controls. This shows that hypoactivity
in the frontal lobe is clearly present in both hemispheres in this data set. This phenomenon has been
reported in literature [51]. A second observation that is made is that the four brain regions that contain
multiple features are two corresponding brain regions lying in both hemispheres, showing again the
strong localization of (significant) hypoactivity to the frontal regions in the depression group when
compared to the healthy controls. The di�erence in feature amount between these regions with respect
to the hemisphere they are located in could point to the frontal asymmetry commonly found in people
with depression [52], [53]. This di�erence in feature amount between the le� and right hemisphere is
also observed with the structural features (see section 4.2.2.2).

All four brain regions (LSFG, RSFG, LRMFG, RRMFG) are located in the prefrontal cortex. Hypoac-
tivity in the prefrontal cortex is common in people with depression and has been described multiple
times [54], [55], [56]. The LSFG specifically is a very significant brain region related to depression as
it is one of the main regions for transcranial magnetic stimulation (TMS). The first (and therefore most
significant) feature that is defined is the third subdivision of the LSFG and is located at the border
between Brodmann area 10 and 46; this location almost exactly matches one of the locations for TMS
for patients with depression [57], [58].

Another observation that can be made is the fact that both frontal poles are features that, contrary to
almost all features, have a negative sign. This means that both frontal poles show increased activity
in the depression group when compared to the healthy controls. This seems counter-intuitive as the
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prefrontal cortex, which contains the frontal poles, is hypoactive in people with depression [54]. No
clear explanation for this is currently known.

It can be concluded that, from a clinical relevance point of view, the absolute intensity features are
highly significant.

Table 5.1: Absolute intensity features (Atlas3).

Number Parcel Sign
1 Superior frontal gyrus 3 (L) +
2 Frontal pole (L) -
3 Superior frontal gyrus 3 (R) +
4 Rostral middle frontal gyrus 1 (R) +
5 Rostral middle frontal gyrus 4 (L) +
6 Superior frontal gyrus 4 (R) +
7 Rostral middle frontal gyrus 6 (L) -
8 Rostral middle frontal gyrus 2 (L) +
9 Superior frontal gyrus 5 (L) +
10 Rostral middle frontal gyrus 3 (L) +
11 Superior frontal gyrus 2 (R) +
12 Superior frontal gyrus 2 (L) +
13 Rostral middle frontal gyrus 1 (L) +
14 Rostral middle frontal gyrus 5 (L) +
15 Rostral middle frontal gyrus 3 (R) +
16 Frontal pole (R) -
17 Caudal middle frontal gyrus (L) +
18 Superior frontal gyrus 4 (L) +
19 Precentral gyrus (R) +
20 Superior frontal gyrus 9 (L) +

5.3.3.3 Relative intensity features

The twenty most significant features are shown in table 5.2. A similar observation as with the absolute
intensity features (see section 5.3.3.2) is made; most features are subdivisions from a few larger brain
regions. The larger brain regions are the same as the brain regions found with the absolute intensity
features. Seven features (feature 1, 2, 4, 6, 9, 11 and 15) are a subdivision from the le� superior frontal
gyrus (LSFG), four features (feature 7, 10, 12 and 20) are a subdivision from the le� rostral middle
frontal gyrus (LRMFG), three features (feature 3, 8 and 13) are a subdivision of the right superior
frontal gyrus (RSFG) and two features (feature 14 and 19) are a subdivision of the right rostral middle
frontal gyrus (RRMFG). The clinical significance of these features (as well as the le� frontal pole,
feature 5) has been discussed in the previous section (section 5.3.3.2) and will not be repeated.

The absolute intensity and relative intensity features are largely located in the same brain regions. This
is expected, but strengthens the validity of the absolute intensity features. While the relative intensity
features reflect the relative activity of a single brain region with respect to the global average activity,
absolute intensity features only reflect absolute activities (see section 5.3.1). The similar features show
that the absolute intensity features do not su�er from the lack of a normalization. It should be noted
that this conclusion is only valid for the used data set. Any extension of this feature type to other data
sets should be validated with a similar absolute versus relative intensity comparison. A di�erence
between the absolute and relative intensity features is the presence of two features (feature 14 and
19), located in the RRMFG, that have a negative sign. No clear explanation for this is currently known.
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Table 5.2: Relative intensity features (Atlas5).

Number Parcel Sign
1 Superior frontal gyrus 23 (L) +
2 Superior frontal gyrus 21 (L) +
3 Superior frontal gyrus 8 (R) +
4 Superior frontal gyrus 12 (L) +
5 Frontal pole (L) -
6 Superior frontal gyrus 4 (L) +
7 Rostral middle frontal gyrus 10 (L) +
8 Superior frontal gyrus 15 (R) +
9 Superior frontal gyrus 9 (L) +
10 Rostral middle frontal gyrus 1 (L) -
11 Superior frontal gyrus 39 (L) +
12 Rostral middle frontal gyrus 25 (L) -
13 Superior frontal gyrus 37 (R) +
14 Rostral middle frontal gyrus 1 (R) -
15 Superior frontal gyrus 19 (L) +
16 Precentral gyrus (R) +
17 Postcentral gyrus 15 (R) +
18 Postcentral gyrus 10 (R) +
19 Rostral middle frontal gyrus 26 (R) -
20 Rostral middle frontal gyrus 5 (L) +
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5.4 Connectivity features

The second type of features that will be explored are connectivity features. These features reflect
di�erences in functional connectivity between the healthy controls and the depression group. Func-
tional connectivity is a general term describing di�erent techniques that evaluate the functional
connection between di�erent brain regions that might be spatially separated [4], [59]. The most
common connectivity measures are correlation, cross-correlation (CR), coherence, granger causality
(GCI), directed transfer function (DTF), partial directed coherence (PDC) and mutual information (MI)
[4].

5.4.1 Functional connectivity measures

The functional connectivity measures di�er from each other and thus reflect di�erent aspects of the
functional connection. The properties most commonly used to distinguish the measures are whether
they are directed or undirected, whether they are bi- or multivariate, whether they operate in the
time- or frequency domain and whether they are linear or non-linear. The properties of the previously
mentioned connectivity measures are shown in table 5.3

Undirected vs directed

An undirected connectivity measure can only test whether a functional connection exists between
brain regions. Directed connectivity measures can, aside from the validation of a possible connection,
also determine in which way the connection exists. This direction in the connection gives extra
information as it appoints a role to the di�erent brain regions: one brain region has influenced the
other brain region. The direction of a functional connection can be used to explore how signals
propagate in the brain.

Bivariate vs multivariate

Bivariate connectivity measures can only analyze the connection of two di�erent brain regions at a
time. More complex relationships between multiple brain regions (e.g. brain networks such as the
default mode network) can be documented using multivariate connectivity measures.

Time domain vs frequency domain

Time domain connectivity measures will analyze if a connection exists between brain regions in the
time domain while frequency domain measures analyze possible connections in the frequency domain.

Linear vs non-linear

Linear connectivity measures will analyze if a linear relationship exists between brain regions while
the non-linear connectivity measures also analyze if non-linear relationships are present.

Table 5.3: Functional connectivity measures [4].

Measure Un-/directed Bi-/multivariate Time/Frequency Non-/Linear
Correlation undirected bivariate time linear
CR directed bivariate time linear
Coherence undirected bivariate frequency linear
GCI directed bivariate time linear
DTF directed multivariate frequency linear
PDC directed multivariate frequency linear
MI undirected bivariate time non-linear
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5.4.1.1 Selection process of connectivity measures

The selection of connectivity measures is, as explained in section 5.4.1, best done using the distinguish-
ing properties. Aside from the properties it is important to keep in mind what the final goal of the
connectivity measures is: the classification of people in two possible groups. Using this consideration,
a conclusion can be drawn which is that the final result of a connectivity measure should be a single
value, or should be easily reducible to a single value, as this is needed for classification.

Frequency based connectivity measures are not investigated. Due to the limited frequency range
([ 1

128 , 0.5] Hz) imposed by the high frequency filter (see section 5.1.6) and the limitation of the EPI
sequence (see section 2.1.3.1), the frequency spectrum of fMRI is of li�le interest for feature selection
when compared to EEG data.

A second reduction is done by eliminating all directed features. This reduction is defended by the fact
that fMRI measures the hemodynamic response, which has variable time delays throughout the brain.
Due to this variability, directed connectivity measures are di�icult to interpret. A second validation
for this reduction is the fact that previous a�empts at depression classification based on resting state
fMRI used undirected methods [30], [31].

Using both reductions, two connectivity measures are selected: correlation and mutual information.
Both will be explained in detail below.

Correlation

Correlation, the Pearson correlation coe�icient more precisely, is a measure of the linear correla-
tion between two signals. It has a possible range of [-1,1] where -1 means there is a total negative
correlation between both signals, 1 means there is a total positive correlation between both signals
and 0 means no correlation exists between the signals [60]. Although correlation might seem a simple
connectivity measure, it is proven that it can perform equally as well as mutual information in correctly
defining linear connections and is commonly used in functional connectivity studies [30], [31], [61].

The calculation of the Pearson correlation coe�icient of two signals, A and B, is shown in formula 5.3.
Here N denotes the amount of di�erent values both signals A and B consist of, Ai, µA and Bi, µB are
the ith sample and mean value of variable A and B respectively. The MATLAB function corrcoef was
used to calculate the Pearson correlation coe�icient.27

ρ(A,B) =
1

N − 1

N∑
i=1

(
Ai − µA
σA

)(
Bi − µB
σB

)
(5.3)

Mutual information

Mutual information is a non-linear connectivity measure which quantifies the mutual dependency
of two signals. It calculates how much information can be obtained of the second variable when
only the first variable is observed [62]. The possible range of values is [0,+∞[, where a higher value
denotes more shared information between both signals. Because this range is unbounded, the only
information one can extract is the di�erence between two values [62]. Formula 5.4 represents the
calculation process. Here pAB(a, b) denotes the joint probability between signal A and B, calculated
using their combined histogram; pA and pB denote the probability of signal A and B respectively,

27. h�ps://www.mathworks.com/help/matlab/ref/corrcoef.html
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these can again be calculated using their histograms. A MATLAB package28 is used to calculate the
mutual information.

MIAB =
∑
a,b

pAB(a, b)log

(
pAB(a, b)

pA(a)pB(b)

)
(5.4)

5.4.2 Feature selection process

The feature selection process is shown in figure 5.7. It is quite similar to the feature selection process
of the intensity-based features (see section 5.3). It starts with the preprocessed data, as described in
section 5.1, and can be divided in two parts: a patient specific part and a group specific part. The
patient specific part of the feature selection process contains the preparation of the data for each
patient while the group specific part contains the steps performed on a group level (depression patients
and healthy controls). Each step will be explained.

Figure 5.7: The connectivity feature selection process.

5.4.2.1 Global signal regression

The principle of global signal regression is the idea that certain processes, such as cardiac pulse and
breathing, influence the BOLD signals (see section 2.2.1) captured by the MRI scanner. These processes
will influence the BOLD signal throughout the whole brain by introducing an extra signal that is
common in every time series captured. The captured signal is the addition of two signals: a global
signal and the local signal caused by local neuronal changes. The addition of a common signal in

28. h�ps://www.mathworks.com/matlabcentral/fileexchange/13289-fast-mutual-information-of-two-images-or-signals
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every time series leads to an artificially increased connectivity between every voxel. This artificial
increase leads to falsely inflated connectivity values. This increase in connectivity throughout the
brain is unwanted as only the neuronal changes within the brain are a true indication of connectivity
between brain regions.

To counter the introduction of a global signal, global signal regression is applied. Global signal re-
gression calculates the global signal by averaging all time series and uses the average signal as a
regressor in a general linear model. The general linear model regresses the global signal out of the
time series, which are now assumed to only contain the information regarding the neuronal changes
within the brain. As only the neuronal changes are present in the time series, connectivity values now
reflect true connectivity between brain regions [63], [64].

Global signal regression is however subject of much discussion within the field of neuroscience. The
principal reasoning behind global signal regression is correct, but an assumption is made. The as-
sumption is the idea that the influences inducing the global signal and the local neuronal changes
are completely unrelated (they are orthogonal to each other), and that by regressing the global signal
out, one does not regress part of the neuronal signal out. Multiple studies have concluded that global
signal regression actually introduces anti-correlated networks and therefore might itself introduce
false correlations [65], [66], [67]. This makes the use of global signal regression a controversial choice.

As no definite conclusion is reached regarding global signal regression, connectivity features will be
calculated with and without global signal regression as a preprocessing step (as indicated by the do�ed
line in figure 5.7). The data set created without the global signal regression step will be called the non-
regressed data set, the data set created with the global signal regression step will be call the regressed
data set. The CONN toolbox is used to perform global signal regression [38].

5.4.2.2 Parcel simplification

A second step that is performed is parcel simplification. This step will reduce all time series from
a parcel into a single time series. This step is necessary for two reasons: dimension reduction and
intrapatient/intergroup voxel variations.

Dimension reduction is needed as every patient has 155648 (64x64x38) unique time series, 30076
time series which are overlapping with the Lausanne brain atlas [50]. If no dimension reduction is
applied, a connectivity measure matrix with size 30076x30076 is obtained, which is computationally
not achievable.

The intrapatient/intergroup variations, meaning voxel variability both within a single patient scan
and between di�erent patient scans, make single voxel time series highly unreliable as a basis for
features.

The technique used to perform the parcel simplification is principal component analysis (PCA). PCA
is a statistical technique in which a group of possible correlated observations (here time series) are
translated into a set of new variables that are not correlated anymore (they are orthogonal to each
other). Each variable in the new set is called a principal component [68]. Only the first principal
component of each parcel will be used to calculate functional connectivity between parcels as it will
compensate for as much variance as possible.

The result from the parcel simplification step is a 1xN matrix for each patient, where N is 83, 129,
234, 463 or 1015 depending on the chosen atlas level (see section 5.2.1). Each cell contains the first
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principal component of the corresponding parcel. Principal component analysis is performed using a
MATLAB toolbox.29

5.4.2.3 Connectivity measure calculation

The next step in the feature selection process is the connectivity measure calculation. The two connec-
tivity measures that are used are correlation and mutual information (see section 5.4.1.1). The result
of the connectivity measure calculation is an NxN matrix for each patient, where N is 83, 129, 234,
463 or 1015 depending on the chosen atlas level (see section 5.2.1). Cell Ci,j contains the calculated
connectivity between parcels i and j. These matrices are symmetric because undirected connectivity
measures are used, meaning that Ci,j is equal to Cj,i. It should be noted that mutual information for
N = 463, 1015 is not calculated as the computation time is too long.

5.4.2.4 Group averaging

The next step is group averaging. An average matrix is calculated for both groups (depression patients
and healthy controls). The result of this step is a group matrix for each group, for each atlas level and
for each connectivity measure.

5.4.2.5 Di�erence calculation

A�er the calculation of the group matrices, the depression group matrices are subtracted from the
healthy controls group matrices in order to obtain the di�erence matrices.

5.4.2.6 Feature selection

The last step is the selection of the features. This is done by finding the 20 biggest values for each
di�erence matrix. These values reflect the connectivity measures that on average di�er the most
between both groups and thus will be used to di�erentiate between both groups. The significance
of the features is validated statistically using the two-sample t test, done by the �est2 function from
MATLAB. The features found for mutual information calculated from the non-regressed data set are
not significant. All possible features from this feature subtype are tested using the t-test, none are
statistically significant. Classifiers trained on this feature set do not perform well (see section 7.3.1).

As five atlas levels for correlation and three atlas levels for mutual information are used and two data
sets are used (regressed and non-regressed), sixteen feature sets are obtained.

29. h�ps://www.mathworks.com/matlabcentral/fileexchange/38300-pca-and-ica-package
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5.4.3 Interpretation of the found features

A total of 16 feature sets, each containing 20 features, have been calculated. Four sets will be discussed
in this section: the best performing feature sets of each connectivity measure for both the regressed
and non-regressed data set. The results are shown in section 7.3.1 and discussed in secton ??.

Interpretation of the used tables

The number column defines the significance of the feature. Feature 1 defines the connection between
two parcels that has the biggest value in the di�erence matrix (see section 5.4.2.5), meaning that this
connection has on average the highest di�erence between the healthy controls and the depression
group, feature 20 the twentieth biggest di�erence. The region1 and region2 columns define the two
parcels that are involved in the connection the feature reflects. "(L)" denotes that the parcel is located
in the le� hemisphere, "(R)" denotes the right hemisphere. The number at the end of the region name
is its further subdivision number (brain regions are subdivided in smaller regions when higher atlas
levels are used). The sign column defines the sign of the di�erence value. A "+" denotes a positive
di�erence value, meaning that the connection between the two parcels is higher with the healthy
controls when compared to the depression group. A "-" sign denotes the contrary.

5.4.3.1 Features calculated with the non-regressed data set

Correlation

The twenty most significant features are shown in table 5.4. Feature 13, 16 and 20 are closely linked to
depression. The connections reflected by feature 13 and 16 both contain the anterior cingulate cortex
(ACC), which is an important factor in several models of depression [69], [70], feature 20 contains the
orbitofrontal cortex, which has been discussed in section 5.3.3.2. As this feature set did not perform
as well as the correlation with regressed data feature set, it will not be discussed further. The results
can be found in section 7.3.1, the discussion of the results in section ??.

Table 5.4: Correlation with non-regressed data set features (Atlas2).

Number Region1 Region2 Sign
1 Inferior temporal gyrus (L) Middle temporal gyrus (L) +
2 Superior frontal gyrus (R) Precentral gyrus (L) +
3 Precentral gyrus (L) Postcentral gyrus (L) +
4 Caudal middle fontal gyrus (R) Rostral middle frontal gyrus (R) +
5 Precentral gyrus (R) Inferior temporal gyrus (R) +
6 Precentral gyrus (R) Paracentral gyrus (L) +
7 Middle temporal gyrus (R) Banks of the superior temporal sulcus (L) -
8 Pars triangularis (L) Pars opecuaris (L) +
9 Pericalcarine (R) Lingual gyrus (L) -
10 Postcentral gyrus (R) Superior temporal gyrus (R) +
11 Lateral orbitofrontal cortex (L) Insula (Le�) +
12 Precentral gyrus (R) Superior temporal gyrus (R) +
13 Lateral orbitofrontal cortex (L) Caudal anterior cingulate cortex (L) +
14 Superior temporal gyrus 1 (R) Superior temporal gyrus 3 (R) -
15 Caudal middle fontal gyrus (R) Precentral gyrus (R) +
16 Rostral anterior cingulate cortex (R) Lateral orbitofrontal cortex (L) +
17 Superior frontal gyrus (R) Pars opercularis (L) +
18 Precentral gyrus 3 (L) Precentral gyrus 1 (L) +
19 Precentral gyrus (R) Supramarginal gyrus (R) +
20 Lateral orbitofrontal cortex 3 (R) Lateral orbitofrontal cortex 1 (R) -
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Mutual information

The twenty most significant features are shown in table 5.5. All features reflect a connection in which
the right or le� superior frontal gyrus is involved. Seven features (feature 2, 7, 8, 11, 13, 16 an 18)
reflect a connection within the le� or right superior frontal cortex itself. The accuracy results of this
feature set are lower than 50% (see section 7.3.1.7), so these features will not be discussed further.

Table 5.5: Mutual information with non-regressed data set features (Atlas3).

Number Region 1 Region 2 Sign
1 Superior frontal gyrus 6 (R) Superior frontal gyrus 8 (L) -
2 Superior frontal gyrus 6 (R) Superior frontal gyrus 7 (R) -
3 Superior frontal gyrus 8 (R) Superior frontal gyrus 8 (L) -
4 Superior frontal gyrus 8 (L) Superior frontal gyrus 7 (R) -
5 Superior temporal gyrus 4 (R) Superior frontal gyrus 8 (L) -
6 Superior frontal gyrus 6 (R) Lateral orbitofrontal cortex (R) -
7 Superior frontal gyrus 6 (R) Superior frontal gyrus 8 (R) -
8 Superior frontal gyrus 8 (L) Superior frontal gyrus 6 (L) -
9 Caudal middle frontal gyrus 3 (L) Superior frontal gyrus 8 (L) -
10 Superior frontal gyrus 6 (R) Caudal middle frontal gyrus 3 (L) -
11 Superior frontal gyrus 7 (L) Superior frontal gyrus 8 (L) -
12 Superior frontal gyrus 6 (R) Superior frontal gyrus 6 (L) -
13 Superior frontal gyrus 6 (R) Superior frontal gyrus 4 (R) -
14 Superior frontal gyrus 8 (L) Lateral occipital sulcus 1 (L) -
15 Superior frontal gyrus 8 (L) Lateral orbitofrontal cortex (R) -
16 Superior frontal gyrus 4 (R) Superior frontal gyrus 8 (L) -
17 Superior frontal gyrus 6 (R) Superior temporal gyrus 4 (R) -
18 Superior frontal gyrus 8 (R) Superior frontal gyrus 7 (R) -
19 Superior frontal gyrus 6 (R) Lateral occipital cortex 1 (L) -
20 Rostral middle frontal gyrus 5 (L) Superior frontal gyrus 8 (L) -

5.4.3.2 Features calculated with the regressed data set

Correlation

The twenty most significant features are shown in table 5.6. Several features are linked to depression,
each significant feature will be discussed.

Feature 2 reflects the connection between the right medial orbitofrontal cortex and the le� anterior
cingulate cortex. Connections between the frontal cortex and the anterior cingulate cortex are dis-
turbed in depression [55], [71]. Feature 5 reflects the connection between the le� and right precuneus.
The precuneus is a part of the default mode network (DMN) and disturbances in the default mode
network have been reported in people with depression [72], disturbances in this specific connection
between the le� and right precuneus in people with depression are however not found in literature.
Feature 9 reflects the connection between the precuneus and the isthmus cingulate cortex, which
could also be related to depression. No literature for this specific connection has been found. Feature
13 and 15 are two connections in the prefrontal cortex, which is involved in depression [54], [56]. The
sign of both connections is negative, which is counter-intuitive as the prefrontal cortex is hypoactive
in depression [55]. A possible explanation for this could be that hypoactivity does not mean a decrease
in correlation between brain regions. No literature for these specific connections has been found.
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Table 5.6: Correlation with regressed data set features (Atlas3).

Number Region 1 Region 2 Sign
1 Rostral middle frontal gyrus (L) Supramarginal gyrus (L) +
2 Medial orbitofrontal cortex (R) Rostral anterior cingulate cortex (L) +
3 Fusiform gyrus (R) Inferior temporal gyrus (R) -
4 Lingual gyrus (R) Pericalcarine gyrus (L) +
5 Precuneus (R) Precuneus (L) +
6 Precentral gyrus (R) Postcentral gyrus (L) +
7 Paracentral gyrus 1 (L) Paracentral gyrus 2 (L) -
8 Precentral gyrus (R) Precentral gyrus (L) -
9 Isthmus cingulate cortex (L) Precuneus (L) +
10 Fusiform gyrus Lateral occipital cortex (L) -
11 Lateral occipital sulcus (L) Fusiform gyrus (L) +
12 Pericalcarine gyrus (R) Pericalcarine gyrus (L) +
13 Superior frontal gyrus 6 (R) Superior frontal gyrus 7 (R) -
14 Superior parietal gyrus (R) Lateral occipital cortex (R) +
15 Superior frontal gyrus (R) Caudal middle frontal gyrus (R) -
16 Precentral gyrus (R) Supramarginal gyrus (R) +
17 Lateral occipital cortex (R) Fusiform gyrus (R) +
18 Superior temporal gyrus (R) Precentral gyrus (L) -
19 Superior parietal gyrus 3 (L) Superior parietal gyrus 4 (L) -
20 Cuneus (R) Cuneus (L) -

Mutual information

The twenty most significant features are shown in 5.7. A first observation is that a few brain regions
return in several features. The four brain regions present in multiple features are the right paracentral
lobule, the right inferior parietal gyrus, the brainstem and the right superior parietal gyrus. The right
paracentral lobule (RPL) is present in 11 features (feature 1, 2, 3, 7, 8, 9, 10, 13, 16, 18 and 19), the right
inferior parietal gyrus (RIPG) is present in 9 features (feature 2, 4, 5, 6, 7, 12, 15, 17 and 20), the right
superior parietal gyrus (RSPG) is present in four features (feature 1, 5, 11 and 14) and the brainstem
is present in three features (feature 3, 4 and 11).

Changes in connectivity in the paracentral lobule in people with depression have been described in
literature [73], [74], [75]. No clear explanation of its involvement in depression is given and di�er-
ent literature also reports both increased and decreased functional connectivity within the region.
Further research needs to be done to investigate this region. The right inferior and superior parietal
lobe have also been linked with depression, however decreased functional connectivity is reported
while increased connectivity is found here [76]. The brainstem contains multiple nuclei that could be
involved in depression and research tries to understand its involvement in the disease. The specific
connections involving the brainstem however are not found in literature.

The assessment of the clinical relevance of connectivity features is more di�icult than the assessment
of the intensity or structural features as two regions are involved, making a possible recurrence of the
specific connection in literature less likely. An a�empt to counter this problem is the dismissal of the
subdivision number when possible (subdivision numbers are still shown when a connection within a
single region is found), but this did not improve the search for literature significantly. As di�erent
connectivity measures are used, a recurrence of a connection in literature is not always proof of its
clinical significance. Some skepticism toward the found literature is also necessary; this skepticism
is needed for every found relevance for every feature type and is not bounded to the connectivity
features.
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Table 5.7: Mutual information with regressed data set features (Atlas3).

Number Region 1 Region 2 Sign
1 Paracentral lobule (R) Superior parietal gyrus (R) -
2 Inferior parietal gyrus (R) Paracentral lobule (R) -
3 Paracentral lobule (R) Brainstem -
4 Brainstem Inferior parietal gyrus (R) -
5 Inferior parietal gyrus 5 (R) Superior parietal gyrus (R) -
6 Inferior parietal gyrus 1 (R) Inferior parietal gyrus 5 (R) -
7 Inferior parietal gyrus 1 (R) Paracentral lobule (R) -
8 Paracentral lobule (R) Parahippocampal gyrus (L) -
9 Paracentral lobule (R) Supramarginal gyrus (R) -
10 Rostral middle frontal gyrus (R) Paracentral lobule (R) -
11 Superior parietal gyrus (R) Brainstem -
12 Inferior parietal gyrus (R) Parahippocampal gyrus (L) -
13 Fusiform gyrus (R) Paracentral lobule (R) -
14 Parahippocampal gyrus (L) Superior parietal gyrus (R) -
15 Inferior parietal gyrus (R) Lateral occipital cortex (L) -
16 Paracentral lobule (R) Superior temporal gyrus (L) -
17 Supramarginal gyrus (R) Inferior parietal gyrus (R) -
18 Rostral middle frontal gyrus (L) Paracentral lobule (R) -
19 Lateral occipital cortex (L) Paracentral lobule (R) -
20 Inferior parietal gyrus (R) Fusiform gyrus (R) -
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Chapter 6

Classifier training

A pipeline is designed to train each classifier, this to be able to compare results between di�erent
feature sets (see chapter ??). The complete classification training pipeline is shown in figure 6.1. Every
step of this pipeline will be explained.

6.1 Classification training pipeline

6.1.1 Starting point

The starting point of the classifier training pipeline is a feature set, the final result from one of the
feature selection processes (see chapter ??). The feature set is a 106x(N+1) matrix, where N equals the
amount of features. The number 106 denotes the amount of people that are present in the whole data
set (60 healthy controls and 46 patients with depression). The last column of the feature set contains
the class of each patient. One denotes the healthy control class, minus one the depression class.

6.1.2 Class balancing

The size of both classes is unequal. This can pose a problem in the training of a classifier because
a bias could be introduced towards the more abundant class. If class A is ten times more abundant
than class B, a machine learning technique that always predicts class A, even without being trained,
will have an accuracy of over 90%; this is called the accuracy paradox. Two main possibilities exist to
counter this problem: class imbalance learning methods and class balancing. Class imbalance learning
methods refer to adaptions of learning methods that can counter the problem of class imbalance [88],
[89].

Class balancing refers to the dismissal of instances from one class so that both classes are represented
equally. This method has a disadvantage when compared to class imbalance learning methods: the
dismissal of instances makes the training set smaller, which might lead to overfi�ing30. Furthermore
is class balancing not possible if the imbalance between both classes is too big.

Class balancing is chosen as a balancing method because the dismissed persons (fourteen healthy
controls) can be used as a second validation set (see section 6.1.4.2). The second validation set can
be used to check if the trained model is not overfit. Each time the classification training pipeline is
used, the fourteen healthy controls that will not be used for the training of the classifier are chosen by
random permutation. This ensures that all healthy controls can be used in the training of the classifier.

30. h�ps://www.investopedia.com/terms/o/overfi�ing.asp. Overfi�ing: a modeling error which occurs when a function is too
closely fit to a limited set of data points.
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6.1.3 Train-validation spli�ing

The 46 healthy controls that are selected are, together with the 46 patients with depression, the data
set (92 people in total) that is used to train and validate the classifier. The first step is to split this data
set in a training set and a validation set. A common choice is the 80-20 split [44]. 80 percent of the
total data set (73 people) are selected by a random permutation to be the training set, 20 percent (19
people) are selected to be the validation set.

6.1.4 Model training and validation

The final step in the classification training pipeline is model training and model validation.

6.1.4.1 Training

The support vector machine (see chapter 3) is trained using the training set.

6.1.4.2 Validation

The final step in the classification training pipeline is validation. The trained model will be validated
using the validation set defined in section 6.1.3. The features of the people in the validation set will
be given to the trained classifier as input. A�erwards the classifier will predict whether the given
input features belong to a person from the healthy control group or from the patients with depression
group. The validation is performed to know if the trained classifier is adequate. A second validation
set is used, it contains the fourteen people dismissed in section 6.1.2.

Figure 6.1: The complete classification training pipeline.

46



Chapter 7

Results

In this chapter the found results of the di�erent trained classifiers will be discussed. The first part of
the chapter will present the results of the best performing classifiers (this is called the global results).
The second part presents the results of each feature subtype classifier seperately. The third part
presents the results of the combined feature classifiers Firstly the used method to retrieve data as
well as the visual representation of the results are explained.

7.1 Data collection and presentation

7.1.1 Data collection

Three di�erent feature selection methods are used: the first method lets the algorithm itself choose
how many features are optimal for classification, the second method again lets the algorithm itself
choose which features are best for classification, but imposes the demand that 10 features need to
be chosen, the third method uses all 20 features of a feature set. Twenty iterations of each feature
selection method are used in the machine learning pipeline (see section 6.1) to obtain an average
accuracy of each method. This reduces the chances of falsely inflated or deflated results for the
feature set. The final trained classifier is validated twice: firstly with the validation set defined by
the train-validation spli�ing step (see section 6.1.3) and secondly with the non-used control group
defined in the class balancing step (see section 6.1.2). The second validation set will be called the
optional validation set from now on.

The classification pipeline (see section 6.1) will be used 60 times for each feature set. Exceptions
to this are the right hemisphere feature set as it only consists of 11 features (this feature set will be
used 40 times: once with the variable amount of features, once with all 11 features) and the parcel
volume feature set as it only consists of 6 features (this feature set will be used 20 times with all 6
features). The combined feature sets, shown in section 7.3.2, are used 20 times with all features. Both
the intensity and connectivity feature sets contain 40 features, the structural feature set contains 36
features (19 le� hemisphere features, 11 right hemisphere features and 6 parcel volume features).

7.1.2 Presentation

Each classification result will be presented by a table showing the accuracy of both the validation set
(19 people, "Val." in the table) as well as the optional validation set (14 people, "Opt." in the table),
the numbers are percentages. The mean accuracy and standard deviation of each result distribution
are shown at the bo�om of the table. The sensitivity, specificity, positive predictive value (PPV) and
negative predictive value (NPV) of the validation set are also shown. These are not calculated for the
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optional data set because it is impossible to have a true positive and false negative value. A graph
presents the obtained results as a violin plot (see section 7.1.2.1).

7.1.2.1 Violin plot

A violin plot is an extension of a box plot. It shows beside the mean, median and outliers also the
probability density function of the distribution it represents. The thickness of a violin plot at point x
represents the probability of x given the represented distribution.31 The violin plots are created using a
MATLAB toolbox.32 It should be noted that a simplified version of the violin plot is used; it only shows
the mean and the probability density function. Each figure will contain at least two violin plots: one
blue and one yellow. Blue violin plots show the results of the validation set (19 people), yellow violin
plots show the results of the optional validation set (14 people) (see chapter 6).

Violin plots are used as they clearly show di�erences between both classification distributions as
well as the compactness/variability of each distribution. The compactness of a distribution is also
represented by the standard deviation in the table. Di�erences in classification distributions between
the validation and optional validation set could be a sign of high variability within the feature set or of
overfi�ing. A slightly lower compactness of the optional validation set is however expected compared
to the validation set, as it contains less people. A low compactness of a result distribution is a sign of
a feature set that is not optimal for classification, as the choice of test set and start conditions of the
training is the defining factor contrary to the quality of the features itself. High accuracy classifiers
in a low compactness result distribution should only be considered as viable for classification if the
accuracy of the iteration is high in both the validation and the optional validation set.

An example of possible feature results is shown in figure 7.1. The two violin plots on the le� show
the result distributions of a high quality feature set. Both have high mean accuracies (denoted by
the black line) and have high compactness as they are small violin plots. No significant di�erence in
mean accuracy between both result distributions again shows the consistent ability of the classifiers
to correctly diagnose depression. The two center violin plots show a bad result as the le� violin plot
has a high mean accuracy and a high compactness while the right violin plot has a low mean accuracy
and a low compactness. The big di�erence between both violin plots show that the classifiers are not
able to consistently predict depression. The two violin plots on the right show again a bad result as
both result distributions have low mean accuracies and low compactness.

Figure 7.1: Example of the di�erent possible results and violin plots.

31. h�ps://datavizcatalogue.com/methods/violin_plot.html
32. h�ps://www.mathworks.com/matlabcentral/fileexchange/45134-violin-plot
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7.2 Global results

The global results represent the best performing classifier of each feature subtype. The results are
shown in figure 7.2. Six feature subtype result distributions are shown: the le� hemisphere thick-
ness, parcel volume, absolute intensity (atlas3), relative intensity (atlas3), mutual information with
regressed data (atlas3) and correlation with regressed data (atlas3) result distribution. The result
distributions that are shown are from the validation set and not the optional validation set (hence the
color of every result distribution). These specific result distributions are chosen as they are the best
single feature subtype result distributions (with respect to the mean accuracy and standard deviation).

Two conclusions from the global results can be drawn. The first is that the mean accuracy of the
structural features (le� hemisphere thickness and parcel volume) is much lower than the mean accu-
racy of both the intensity and connectivity features. This could possibly be explained by the fact that
the assumption is made that all people in the depression group have had a similar form of depression
while in reality this is not true (this is discussed more in depth in section 8.2). A second conclusion
is that while the mean accuracies of the intensity (absolute and relative intensity) and connectivity
(mutual information with regressed data and correlation with regressed data) result distributions are
close together, the connectivity result distributions are slightly higher. The higher compactness of
these result distributions also indicate a be�er feature quality. This could be explained by the fact
that the connectivity features extract more information from the fMRI data (this is discussed more in
depth in section 8.2).

Figure 7.2: Violin plot of the global results.
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7.3 Results

The results are discussed for each feature subtype (absolute intensity, relative intensity, correlation
with non-regressed data, mutual information with non-regressed data, correlation with regressed
data, mutual information with regressed data, le� hemisphere thickness, right hemisphere thickness,
parcel volume) separately. The results are investigated with respect to the atlas level (for intensity and
connectivity feature sets), the amount of features used (for all feature types) and the compactness of
the result distributions (for all feature types). Positive outliers are discussed.

7.3.1 Single feature type classifier

7.3.1.1 The le� hemisphere thickness classifier

Description

The results of the le� hemisphere thickness classifier are shown in table 7.1 and figure 7.3. The mean
accuracy remains constant when more features are used for classification, but never reaches levels that
could be considered adequate for classification as the best mean accuracy is ±59.5%. Compactness is
low for all result distributions. One positive outlier is present: fourth iteration when 10 features are
used (average accuracy = ±72%, sensitivity = 0.78, specificity = 0.7, ppv = 0.7, npv = 0.78). It should be
noted that this is a positive outlier when only the current result distribution is considered.

Figure 7.3: Violin plot of the results of the le� hemisphere thickness classifier.

Table 7.1: Best results of the le� hemisphere thickness classifier.

Iteration Var. features 10 features 19 features
Val.(%) Opt.(%) Val.(%) Opt.(%) Val.(%) Opt.(%)

1 63,16 42,86 42,11 100 63,16 64,29
2 78,95 57,14 52,63 64,29 26,32 0
3 68,42 64,29 63,16 71,43 73,68 42,86

50



Results

4 36,84 28,57 73,68 71,43 21,05 100
5 63,16 71,43 63,16 28,57 26,32 0
6 78,95 57,14 78,95 50 63,16 64,29
7 31,58 57,14 52,63 57,14 78,95 64,29
8 57,89 57,14 52,63 35,71 42,11 71,43
9 57,89 50 47,37 64,29 52,63 85,71
10 78,95 57,14 63,16 64,29 68,42 35,71
11 57,89 42,86 36,84 57,14 52,63 71,43
12 47,37 64,29 57,89 85,71 57,89 71,43
13 42,11 85,71 36,84 85,71 68,42 64,29
14 57,89 64,29 57,89 42,86 57,89 64,29
15 47,37 50 57,89 50 57,89 57,14
16 47,37 92,86 63,16 64,29 68,42 64,29
17 63,16 64,29 36,84 100 68,42 57,14
18 73,68 50 52,63 57,14 68,42 71,43
19 36,84 42,86 57,89 57,14 73,68 57,14
20 57,89 71,43 57,89 71,43 63,16 57,14
Mean accuracy 57,37 58,57 55,26 63,93 57,63 58,21
Standard deviation 14,38 14,95 11,39 18,89 16,6 24
Sensitivity 0.598 - 0.58 - 0.602 -
Specificity 0.549 - 0.525 - 0.551 -
PPV 0.595 - 0.55 - 0.575 -
NPV 0.605 - 0.556 - 0.578 -

7.3.1.2 The right hemisphere thickness classifier

Description

The results of the right hemisphere thickness classifier are shown in table 7.2 and figure 7.4. Only
11 features were statistically significant (see section 4.2.2.2), so the only two di�erent amounts of
features were used for classification. The mean accuracy does not increase significantly with respect
to the amount of features that are used, the best mean accuracy is reached when a variable amount of
features is used (mean accuracy = ±56.5%). Compactness di�ers significantly between the validation
and optional validation set. The reason for this is explained in section ??. One positive outlier is
present: the tenth iteration when a variable amount of features is used (average accuracy = ±82.3%,
sensitivity = 0.8, specificity = 0.78, ppv = 0.8, npv = 0.78). It is di�icult to know whether this outlier is
the product of a good training process or a good starting position.

Table 7.2: Best results of the right hemisphere thickness classifier.

Iteration Var. features 11 features
Val.(%) Opt.(%) Val.(%) Opt.(%)

1 47,37 71,43 36,84 100
2 52,63 57,14 57,89 64,29
3 52,63 35,71 42,11 0
4 52,63 28,57 57,89 42,86
5 52,63 42,86 57,89 50
6 57,89 35,71 57,89 35,71
7 63,16 78,57 73,68 57,14
8 73,68 42,86 57,89 57,14
9 47,37 64,29 63,16 64,29
10 78,95 85,71 47,37 100
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11 73,68 42,86 63,16 64,29
12 68,42 71,43 63,16 35,71
13 57,89 28,57 47,37 50
14 47,37 57,14 52,63 57,14
15 57,89 42,86 57,89 50
16 68,42 42,86 57,89 85,71
17 63,16 35,71 36,84 100
18 42,11 57,14 47,37 21,43
19 78,95 64,29 36,84 57,14
20 63,16 64,29 36,84 78,57
Mean accuracy 60 52,5 52,63 58,57
Standard deviation 10,99 16,91 10,66 25,87
Sensitivity 0.626 - 0.554 -
Specificity 0.574 - 0.498 -
PPV 0.595 - 0.535 -
NPV 0.605 - 0.517 -

Figure 7.4: Violin plot of the results of the right hemisphere thickness classifier.

7.3.1.3 The parcel volume classifier

Description

The results of the parcel volume classifier are shown in table ?? and figure 7.5. Only 6 features were
statistically significant (see section 4.3) so the classifiers will be trained only with all 6 features. The
mean accuracy as well as the compactness di�er significantly between the validation and optional
validation set (mean accuracy = ±61%). One positive outlier is present: the twel�h iteration (average
accuracy = ±71.6%, sensitivity = 0.8, specificity = 0.78, ppv = 0.8, npv = 0.78). It should be noted that
this is a positive outlier when only the current distribution is considered.
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Table 7.3: Best results of the parcel volume classifier

Iteration 6 features
Val.(%) Opt.(%)

1 68,42105 | 35,71429
2 52,63158 50
3 52,63158 50
4 36,84211 42,85714
5 42,10526 100
6 57,89474 50
7 57,89474 92,85714
8 47,36842 42,85714
9 42,10526 100
10 36,84211 100
11 36,84211 100
12 78,94737 64,28571
13 52,63158 42,85714
14 52,63158 64,28571
15 73,68421 57,14286
16 26,31579 100
17 47,36842 85,71429
18 73,68421 57,14286
19 47,36842 100
20 78,94737 42,85714
Mean accuracy 53,15789 68,92857
Standard deviation 15,07139 24,98926
Sensitivity 0.558 -
Specificity 0.504 -
PPV 0.535 -
NPV 0.528 -

Figure 7.5: Violin plot of the results of the parcel volume classifier.
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7.3.1.4 The absolute intensity classifier

Description

The results of the absolute intensity classifier are shown in table 7.4 and figure 7.6. The best average
classification accuracy is obtained when the features were calculated using the third atlas level (234
parcels). An increase in classification accuracy is obtained when all 20 features are used for classifi-
cation compared to the variable amount of features or 10 features. The compactness of the validation
set result distributions is similar (SD = ±10.2) for all three feature amounts and is smaller than the
compactness of the optional validation sets. A significant increase in compactness and mean accuracy
is noticeable for the third optional validation set. Two positive outliers are present: the first iteration
when a variable amount of features is used (average accuracy = ±87%, sensitivity = 0.89, specificity =
0.9, PPV = 0.89, NPV = 0.9) and the eleventh iteration when all 20 features are used (average accuracy
= ±84%, sensitivity = 0.89, specificity = 0.8, PPV = 0.8, NPV = 0.89).

Table 7.4: Best results of the absolute intensity feature classifier (Atlas3).

Iteration Var. features 10 features 20 features
Val.(%) Opt.(%) Val.(%) Opt.(%) Val.(%) Opt.(%)

1 89,47 85,71 73,68 78,57 78,95 78,57
2 63,16 71,43 57,89 64,29 78,95 78,57
3 57,89 57,14 68,42 50 84,21 57,14
4 68,42 42,86 68,42 50 68,42 71,43
5 68,42 78,57 68,42 42,86 42,11 100
6 47,37 71,43 52,63 85,71 73,68 71,43
7 63,16 78,57 68,42 78,57 84,21 78,57
8 63,16 71,43 78,95 64,29 63,16 78,57
9 78,95 35,71 94,74 57,14 84,21 64,29
10 57,89 50 73,68 42,86 73,68 78,57
11 73,68 71,43 57,89 64,29 89,47 78,57
12 68,42 71,43 73,68 78,57 84,21 64,29
13 63,16 50 73,68 78,57 63,16 85,71
14 57,89 64,29 73,68 42,86 68,42 64,29
15 73,68 57,14 47,37 85,71 73,68 78,57
16 47,37 71,43 68,42 85,71 68,42 92,86
17 63,16 42,86 78,95 71,43 73,68 78,57
18 63,16 57,14 68,42 85,71 78,95 78,57
19 47,37 64,29 57,89 71,43 68,42 57,14
20 63,16 14,29 68,42 50 68,42 85,71
Mean accuracy 63,95 60,36 68,68 66,43 73,42 76,07
Standard deviation 10,16 16,82 10,19 15,34 10,32 10,66
Sensitivity 0.67 - 0.712 - 0.762 -
Specificity 0.613 - 0.661 - 0.718 -
PPV 0.635 - 0.685 - 0.72 -
NPV 0.644 - 0.689 - 0.75 -
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Figure 7.6: Violin plot of the results of the absolute intensity classifier.

7.3.1.5 The relative intensity classifier

Desription

The results of the relative intensity classifier are shown in table 7.5 and figure 7.7. The best average
classification accuracy is obtained when the features were calculated using the fi�h atlas level (1015
parcels). An increase in classification accuracy is obtained when all 20 features are used for clas-
sification compared to the variable amount of features or 10 features (mean accuracy = ±73%). The
compactness of the validation set result distributions varies slightly and is lowest when 10 features are
used. No significant increase in compactness is noticed when all 20 features are used. Three positive
outliers are present: the sixth iteration when a variable amount of features is used (mean accuracy =
±81.5%, sensitivity = 0.778, specificity = 0.8, PPV = 0.8, NPV = 0.778), the thirteenth iteration when
all features are used (average accuracy =±84%, sensitivity = 0.9, specificity = 0.889, PPV = 0.889, NPV
= 0.9) and the sixteenth iteration when 10 features are used (average accuracy = ±88%, sensitivity =
0.889, specificity = 0.8, PPV = 0.889, NPV = 0.8).

Table 7.5: Best results of the relative intensity feature classifier (Atlas5).

Iteration Var. features 10 features 20 features
Val.(%) Opt.(%) Val.(%) Opt.(%) Val.(%) Opt.(%)

1 52,63 57,14 63,16 78,57 68,42 64,29
2 57,89 64,29 68,42 100 84,21 71,43
3 57,89 71,43 52,63 50 73,68 42,86
4 57,89 57,14 68,42 42,86 68,42 92,86
5 73,68 64,29 52,63 92,86 73,68 85,71
6 78,95 85,71 73,68 71,43 89,47 71,43
7 63,16 42,86 68,42 64,29 73,68 71,43
8 63,16 71,43 57,89 50 68,42 85,71
9 63,16 35,71 36,84 85,71 78,95 50
10 63,16 64,29 73,68 71,43 57,89 71,43
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11 63,16 57,14 73,68 85,71 52,63 64,29
12 63,16 50 57,89 85,71 89,47 57,14
13 57,89 57,14 78,95 64,29 89,47 78,57
14 47,37 50 52,63 71,43 68,42 78,57
15 52,63 57,14 57,89 28,57 73,68 57,14
16 57,89 35,71 84,21 92,86 73,68 85,71
17 73,68 85,71 68,42 64,29 73,68 85,71
18 63,16 92,86 78,95 71,43 68,42 78,57
19 73,68 35,71 57,89 85,71 68,42 78,57
20 52,63 35,71 63,16 64,29 78,95 85,71
Mean accuracy 61,84 58,57 64,47 71,07 73,68 72,86
Standard deviation 7,96 16,69 11,15 17,85 9,415 13,09
Sensitivity 0.648 - 0.671 - 0.761 -
Specificity 0.59 - 0.619 - 0.714 -
PPV 0.605 - 0.64 - 0.73 -
NPV 0.633 - 0.65 - 0.744 -

Figure 7.7: Violin plot of the results of the relative intensity classifier.

7.3.1.6 The correlation with non-regressed data classifier

Description

The results of the correlation with non-regressed data classifier are shown in table 7.6 and figure 7.8.
The best average classification accuracy is obtained when the features were calculated using the
second atlas level (129 parcels). The mean accuracy increases consistently when more features are
used, the highest mean accuracy is obtained when all 20 features are used (mean accuracy = ±77%).
The compactness of the validation set result distributions are similar (SD = ±10.8), the compactness
of the optional validation set fluctuates. The considerable decrease in compactness of the optional
validation set result distribution when all 20 features are used (SD = 20.53) is due to both very low

56



Results

and very high accuracies (fi�h and nineteenth iteration, seventh and seventeenth iteration), showing
the unreliability of the complete feature set. Two positive outliers are present: the seventh iteration
when all 20 features are used (average accuracy = ±86%, sensitivity = 0.8, specificity = 0.778, PPV =
0.8? NPV = 0.778) and the seventeenth iteration when all 20 features are used (average accuracy =
±90.7%, sensitivity = 0.889, specificity = 0.9, PPV = 0.889, NPV = 0.9).

Figure 7.8: Violin plot of the results of the correlation with non-regressed data classifier.

Table 7.6: Best results of the correlation with non-regressed data classifier (Atlas2).

Iteration Var. features 10 features 20 features
Val.(%) Opt.(%) Val.(%) Opt.(%) Val.(%) Opt.(%)

1 52,63 64,29 57,89 71,43 68,42 85,71
2 68,42 42,86 63,16 50 84,21 92,86
3 31,58 64,29 63,16 42,86 78,95 78,57
4 47,37 64,29 57,89 85,71 78,95 71,43
5 52,63 71,43 57,89 78,57 47,37 0
6 47,37 0 68,42 78,57 78,95 85,71
7 73,68 42,86 47,37 100 78,95 92,86
8 68,42 57,14 63,16 78,57 84,21 71,43
9 68,42 71,43 78,95 71,43 57,89 100
10 52,63 64,29 73,68 85,71 100 78,57
11 57,89 78,57 89,47 64,29 73,68 92,86
12 52,63 35,71 68,42 71,43 84,21 85,71
13 68,42 50 57,89 64,29 73,68 71,43
14 68,42 78,57 57,89 71,43 73,68 64,29
15 57,89 57,14 73,68 64,29 78,95 78,57
16 63,16 71,43 47,37 57,14 84,21 85,71
17 63,16 85,71 89,47 64,29 89,47 92,86
18 73,68 57,14 73,68 64,29 73,68 78,57
19 63,16 57,14 68,42 71,43 89,47 57,14
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20 57,89 50 63,16 50 78,95 78,57
Mean accuracy 59,47 58,21 66,05 69,29 77,89 77,14
Standard deviation 10,27 18,39 11,22 13,19 10,99 20,53
Sensitivity 0.621 - 0.636 - 0.803 -
Specificity 0.569 - 0.685 - 0.756 -
PPV 0.59 - 0.661 - 0.77 -
NPV 0.6 - 0.66 - 0.789 -

7.3.1.7 The mutual information with non-regressed data classifier

Description

The results of the mutual information with non-regressed data classifier are shown in table 7.7 and
figure 7.9. The "best" average classification accuracy is obtained when the features were calculated
using the third atlas level (234 parcels). The mean accuracy stays stable when more features are used,
the highest accuracy is obtained when 10 features are used (mean accuracy = ±49.5%). It should be
noted that, as this is a binary classification problem, a random guess between depression or healthy
control would result in a higher classification accuracy. The compactness of the validation set result
distributions remains consistent (SD = ±10), the compactness of the optional validation set result
distributions is very high, especially when all features are used. Only healthy controls are present in
the optional validation set (see section 6.1.2), the disjunction in classification accuracies (both very
low and very high with no average results) shows the fact that the results are defined by the start
position instead of the feature values. No positive outliers are present.

Figure 7.9: Violin plot of the results of the mutual information with non-regressed data classifier.
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Table 7.7: Best results of the mutual information with non-regressed data classifier (Atlas3).

Iteration Var. features 10 features 20 features
Val.(%) Opt.(%) Val.(%) Opt.(%) Val.(%) Opt.(%)

1 47,37 50 52,63 42,86 52,63 21,43
2 57,89 35,71 52,63 21,43 52,63 14,29
3 57,89 78,57 63,16 21,43 42,11 14,29
4 52,63 64,29 42,11 42,86 42,11 100
5 26,32 42,86 47,37 100 36,84 100
6 31,58 28,57 57,89 14,29 57,89 14,29
7 47,37 50 47,37 100 47,37 14,29
8 47,37 21,43 36,84 28,57 36,84 100
9 57,89 21,43 26,32 71,43 31,58 100
10 63,16 42,86 36,84 100 47,37 0
11 47,37 71,43 36,84 28,57 52,63 7,143
12 52,63 64,29 42,11 42,86 42,11 100
13 42,11 100 63,16 35,71 31,58 100
14 63,16 50 57,89 21,43 42,11 100
15 42,11 64,29 57,89 71,43 52,63 0
16 47,37 7,143 31,58 100 52,63 21,43
17 31,58 85,71 36,84 28,57 42,11 21,43
18 52,63 64,29 42,11 64,29 52,63 14,29
19 57,89 42,86 52,63 64,29 36,84 21,43
20 36,84 21,43 31,58 64,29 52,63 42,86
Mean accuracy 48,16 50,36 45,79 53,21 45,26 45,36
Standard deviation 10,3 23,42 10,8 28,97 7,699 40,99
Sensitivity 0.507 - 0.485 - 0.479 -
Specificity 0.455 - 0.431 - 0.427 -
PPV 0.485 - 0.46 - 0.445 -
NPV 0.448 - 0.456 - 0.461 -

7.3.1.8 The correlation with regressed data classifier

Description

The results of the correlation with regressed data classifier are shown in table 7.8 and figure 7.10.
The best classification accuracy is obtained when the features were calculated using the third atlas
level (234 parcels). Both the mean accuracy and the compactness of both the validation and the
optional validation set result distribution increase consistently when more features are used. The
highest accuracy is reached when all 20 features are used (mean accuracy = ±83%) The compactness
when all 20 features are used is extremely high (SD = 6.359 and 8.268 for the validation and optional
validation set respectively), reflecting the very high quality and consistency of the feature set. Three
positive outliers are present: the seventh iteration when all features are used (average accuracy =
±90.9%, sensitivity = 0.9, specificity = 0.889, PPV = 0.9, NPV = 0.889), the fourteenth iteration when all
features are used (average accuracy = ±90.9%, sensitivity = 0.9, specificity = 0.889, PPV = 0.9, NPV =
0.889) and the twentieth iteration when 10 features are used (average accuracy = ±88.5%, sensitivity
= 0.889, specificity = 0.8, PPV = 0.8, NPV = 0.889). This feature set contains the only iteration where
an accuracy of 100% is reached for the validation set (first iteration).
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Figure 7.10: Violin plot of the results of the correlation with regressed data classifier.

Table 7.8: Best results of the correlation with regressed data classifier (Atlas3).

Iteration Var. features 10 features 20 features
Val.(%) Opt.(%) Val.(%) Opt.(%) Val.(%) Opt.(%)

1 68,42 64,29 63,16 71,43 100 78,57
2 57,89 78,57 63,16 85,71 84,21 78,57
3 57,89 35,71 68,42 71,43 84,21 78,57
4 57,89 35,71 84,21 64,29 89,47 85,71
5 73,68 50 73,68 64,29 78,95 92,86
6 42,11 50 84,21 85,71 78,95 78,57
7 73,68 50 63,16 78,57 89,47 92,86
8 63,16 57,14 84,21 71,43 84,21 92,86
9 63,16 71,43 57,89 64,29 84,21 71,43
10 73,68 35,71 73,68 71,43 73,68 71,43
11 42,11 35,71 89,47 71,43 78,95 78,57
12 63,16 64,29 73,68 78,57 78,95 85,71
13 68,42 35,71 73,68 71,43 84,21 85,71
14 42,11 78,57 57,89 71,43 89,47 92,86
15 52,63 64,29 84,21 71,43 73,68 92,86
16 36,84 57,14 73,68 64,29 84,21 78,57
17 47,37 28,57 78,95 85,71 84,21 64,29
18 68,42 71,43 73,68 64,29 73,68 85,71
19 47,37 78,57 68,42 78,57 78,95 92,86
20 68,42 57,14 84,21 92,86 89,47 78,57
Mean accuracy 58,42 55 73,68 73,93 83,16 82,86
Standard deviation 11,64 15,99 9,267 8,23 6,359 8,268
Sensitivity 0.611 - 0.706 - 0.858 -
Specificity 0.558 - 0.771 - 0.807 -
PPV 0.58 - 0.761 - 0.815 -
NPV 0.589 - 0.715 - 0.85 -
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7.3.1.9 The mutual information with regressed data classifier

Description

The results of the mutual information with regressed data classifier are shown in table 7.9 and fig-
ure 7.11. The best classification accuracy is obtained when the features were calculated using the
third atlas level (234 parcels). The mean accuracy as well as the compactness for both the validation
an optional validation set result distributions remain fairly similar when more features are used. The
highest accuracy is obtained when all features are used (mean accuracy =±79%). Drawing conclusions
from this fact is di�icult. It is possible (this is not definitive) that the variable amount of features
was high (between 10 and 20), resulting in similar results. The small increase in mean accuracy and
compactness when all 20 features are used could be explained by the small increase in used features.
Three positive outliers are present: the second iteration when 10 features are used (average accuracy
=±90.9%), the sixth iteration when a variable amount of features is used (average accuracy =±87.6%,
sensitivity = 0.889, specificity = 0.9, PPV = 0.889, NPV = 0.9) and the ninth iteration when a variable
amount of features is used (average accuracy = ±87.6%, sensitivity = 0.9, specificity = ). The presence
of two outliers in the variable amount of features column strengthens the suspicion that the variable
amount of features that is used was high.

Table 7.9: Best results of the mutual information with regressed data classifier (Atlas3).

Iteration Var. features 10 features 20 features
Val.(%) Opt.(%) Val.(%) Opt.(%) Val.(%) Opt.(%)

1 78,95 64,29 68,42 78,57 89,47 71,43
2 78,95 57,14 89,47 92,86 73,68 85,71
3 63,16 50 73,68 85,71 84,21 64,29
4 52,63 71,43 73,68 71,43 78,95 78,57
5 78,95 92,86 78,95 92,86 84,21 92,86
6 89,47 85,71 78,95 71,43 89,47 64,29
7 68,42 100 78,95 71,43 84,21 78,57
8 73,68 64,29 68,42 78,57 89,47 78,57
9 89,47 85,71 84,21 64,29 68,42 85,71
10 73,68 71,43 84,21 71,43 73,68 78,57
11 78,95 78,57 84,21 85,71 78,95 92,86
12 68,42 50 68,42 78,57 78,95 78,57
13 78,95 85,71 68,42 71,43 78,95 85,71
14 73,68 85,71 63,16 57,14 78,95 64,29
15 73,68 78,57 84,21 71,43 73,68 85,71
16 63,16 78,57 63,16 64,29 73,68 78,57
17 78,95 71,43 63,16 85,71 78,95 71,43
18 84,21 85,71 78,95 64,29 68,42 78,57
19 73,68 92,86 73,68 85,71 84,21 78,57
20 73,68 71,43 78,95 71,43 73,68 92,86
Mean accuracy 74,74 76,07 75,26 75,71 79,21 79,29
Standard deviation 8,584 13,6 7,824 9,689 6,332 8,719
Sensitivity 0.772 - 0.779 - 0.768 -
Specificity 0.724 - 0.727 - 0.817 -
PPV 0.735 - 0.74 - 0.805 -
NPV 0.761 - 0.767 - 0.78 -
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Figure 7.11: Violin plot of the results of the mutual information with regressed data classifier.

7.3.2 Combined-feature classifiers

7.3.2.1 The structural feature classifier

Description

The structural feature classifier is obtained by combining all three structural subtype feature sets. The
results of the structural feature classifier are shown in table 7.10 and figure 7.12. The mean accuracy
di�ers significantly between the validation and optional validation set (mean accuracy = 58.68% for
the validation set, mean accuracy = 64.29% for the optional validation set). The compactness is similar
for both validation sets.

Table 7.10: Best results of the structural feature classifier

Iteration 36 features
Val.(%) Opt.(%)

1 42,11 71,43
2 47,37 42,86
3 57,89 71,43
4 63,16 28,57
5 52,63 57,14
6 52,63 64,29
7 84,21 64,29
8 57,89 71,43
9 68,42 71,43
10 57,89 57,14
11 57,89 78,57
12 63,16 42,86
13 52,63 71,43
14 57,89 50
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15 78,95 71,43
16 63,16 78,57
17 42,11 64,29
18 52,63 85,71
19 57,89 78,57
20 63,16 64,29
Mean accuracy 58,68 64,29
Standard deviation 10,43 14,29
Sensitivity 0.613 -
Specificity 0.561 -
PPV 0.58 -
NPV 0.594 -

Figure 7.12: Violin plot of the results of the structural feature classifier.

7.3.2.2 The intensity feature classifier

Description

The intensity feature classifier is obtained by combining the absolute and relative intensity feature
sets. The results of the intensity feature classifier are shown in table 7.11 and figure 7.13. Both mean
accuracy and the compactness are similar between the validation and optional validation set. The
mean accuracy is ±70%. Two positive outliers are present: the second iteration (average accuracy =
±80%, sensitvity = 0.89, specificity = 0.8, ppv = 0.8, npv = 0.89) and the seventeenth iteration (average
accuracy = ±89.5%, sensitvity = 0.8, specificity = 0.78, ppv = 0.8, npv = 0.78).

63



Results

Table 7.11: Best results of the intensity feature classifier

Iteration 40 features
Val.(%) Opt.(%)

1 84,21053 64,28571
2 84,21053 78,57143
3 68,42105 64,28571
4 78,94737 50
5 63,15789 57,14286
6 78,94737 71,42857
7 68,42105 85,71429
8 63,15789 78,57143
9 73,68421 78,57143
10 89,47368 71,42857
11 84,21053 64,28571
12 63,15789 85,71429
13 73,68421 57,14286
14 63,15789 64,28571
15 63,15789 78,57143
16 73,68421 71,42857
17 78,94737 100
18 57,89474 71,42857
19 31,57895 28,57143
20 78,94737 71,42857
Mean accuracy 71,05263 69,64286
Standard deviation 12,94847 14,99642
Sensitivity 0.738 -
Specificity 0.684 -
PPV 0.695 -
NPV 0.728 -

Figure 7.13: Violin plot of the results of the intensity feature classifier.
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7.3.2.3 The connectivity feature classifier

Description

The connectivity feature classifier is obtained by combining the correlation and mutual information
with regressed data set features. The results of the connectivity feature classifier is shown in table 7.12
and figure 7.14. The results of the validation set (both mean accuracy and SD) are be�er compared
to the results of the optional validation set; the increase in standard deviation is the most significant
(from 8.95 to 18.38). One positive outlier is present: the fourteenth iteration (average accuracy =
±73.5%, sensitivity = 0.7, specificity = 0.67, ppv = 0.7, npv = 0.67).

Figure 7.14: Violin plot of the results of the connectivity feature classifier.

Table 7.12: Best results of the connectivity feature classifier

Iteration 40 features
Val.(%) Opt.(%)

1 68,42 57,14
2 84,21 64,29
3 73,68 64,29
4 52,63 50
5 57,89 35,71
6 68,42 71,43
7 52,63 50
8 73,68 85,71
9 68,42 71,43
10 57,89 35,71
11 52,63 85,71
12 73,68 35,71
13 73,68 42,86
14 68,42 78,57
15 63,16 28,57
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16 73,68 64,29
17 63,16 57,14
18 57,89 85,71
19 73,68 57,14
20 57,89 35,71
Mean accuracy 65,79 57,86
Standard deviation 8,955 18,38
Sensitivity 0.688 -
Specificity 0.629 -
PPV 0.645 -
NPV 0.672 -

7.3.2.4 The intensity and connectivity feature classifier

Description

The intensity and connectivity feature classifier is obtained by combining four feature sets: the ab-
solute intensity (atlas3) feature set, the relative intensity (atlas5) feature set, the correlation with
regressed data (atlas3) feature set and the mutual information with regressed data (atlas3) feature set.
The results of the intensity and connectivity feature classifier is shown in figure 7.13 and figure 7.15.
This classifier has the best performance of all trained classifiers. It has a mean accuracy of±88.7% and
a mean standard deviation of±6.97. The compactness of both result distributions is very high, showing
the high quality of the feature set. Multiple positive outliers are present: the sixth iteration (average
accuracy = ±90.2%, sensitivity = 1, specificity = 0.9, ppv = 0.9, nvp = 1), the first, fourth, seventh,
eighth, thirteenth, sixteenth and seventeenth iteration (average accuracy =±92.1%, sensitivity = 0.89,
specificity = 0.8, ppv = 0.8, npv = 0.89) and the nineteenth iteration (average accuracy = ±94.7%,
sensitivity = 0.9, specificity = 0.89, ppv = 0.9, npv = 0.89).

Figure 7.15: Violin plot of the results of the connectivity feature classifier.
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Table 7.13: Best results of the intensity and connectivity feature classifier.

Iteration 80 features
Val. Opt.

1 84,21053 100
2 78,94737 100
3 78,94737 85,71429
4 84,21053 100
5 84,21053 71,42857
6 94,73684 85,71429
7 84,21053 100
8 84,21053 100
9 89,47368 92,85714
10 89,47368 78,57143
11 89,47368 92,85714
12 89,47368 92,85714
13 84,21053 100
14 89,47368 85,71429
15 89,47368 92,85714
16 84,21053 100
17 84,21053 100
18 78,94737 85,71429
19 89,47368 100
20 73,68421 78,57143
Mean accuracy 85,26316 92,14286
Standard deviation 5,007648 8,945473
Sensitivity 0.879 -
Specificity 0.827 -
PPV 0.835 -
NPV 0.872 -
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Chapter 8

Discussion

This chapter contains the discussion of the results shown and described in chapter 7. The results
of each feature subtype will be discussed with respect to other feature subtypes belonging to the
same feature type (intensity, connectivity and structural). Focus will be given to accuracy di�erences,
di�erences in compactness of result distributions and changes related to the amount of used features.
The results of each feature type will also be discussed with respect to the other feature types, similar
focus as in the previous part is used. The combined feature classifiers are discussed a�erwards. Finally
the influence of the atlas level will be discussed.

8.1 Part 1: Feature type specific

8.1.1 Intensity features

No significant di�erence in accuracy exists between the absolute and relative intensity feature classi-
fiers. The accuracy of both classifiers is positively correlated with the amount of features that is used
and an increase of compactness is noticed when all 20 features are used. From a result-based point
of view, no clear preference exists between both feature subtypes (contrary to the clinical relevance
point of view, see section 5.3.3).

8.1.2 Connectivity features

Two large di�erences are noticeable for the connectivity subtype classifiers: the use of a regressed
versus non-regressed data set and the change in accuracy and compactness between correlation-based
and mutual information-based classifiers with respect to the used data set.

The first noticeable di�erence is a significant increase in accuracy for both the correlation-based and
mutual information-based classifiers when the regressed data set is used. The increase in accuracy
is however much bigger for the mutual information-based classifiers (an increase of ±35% versus
an increase of ±6%). A considerable increase in compactness is also noticeable for each feature
subtype classifier when the regressed data set is used. The added value of global signal regression (see
section 5.4.2.1) is clear. The possibility of the introduction of anti-correlated connectivities (see [65])
leading to false conclusions is partly negated by the fact that the di�erence between two connectivity
values is calculated. An increase or decrease of both values would not change the di�erence value
between them significantly.

The second noticeable di�erence is the fact that the correlation-based classifiers are able to achieve
adequate accuracy results (mean accuracy = ±77.5% when all 20 features are used) when using the
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Part 2: Feature type comparison

non-regressed data set while the mutual information-based classifiers are not able to do this (mean
accuracy = ±48% when all 20 features are used). The reason why the mutual information feature set
is not able to correctly distinguish between the healthy controls and the depression group is counter-
intuitive. Generally speaking, high variability of feature values between di�erent people both in the
healthy control group and the depression group is the main reason for the limited achieved accuracies
(this is most noticeable in the structural feature sets, see section 8.2). A lack of variation however is the
main source of inadequate features when mutual information is used with the non-regressed data set.
The range of the group matrices (obtained in the group averaging step in the feature selection process,
see section 5.4.2.4) is [4.2542,4.6980] for the healthy controls and [4.2914,4.8101] for the depression
group. The di�erence matrix obtained has a range of [-0.2316,0.1158]. This range is too low, which
results in inadequate features. Mutual information has a possible range of [0,+∞[ and the small range
of values in the group matrices could indicate the presence of a strong global signal. The high increase
in accuracy when the regressed data set is used strengthens this suspicion.

8.1.3 Structural features

Not much is to be said about the comparison of the structural feature subtypes from a result-based
point of view. All feature subtypes are inadequate for consistently predicting depression. The reason
for this is given in section 8.2.

8.2 Part 2: Feature type comparison

The best performing classifiers are trained with the connectivity features (only when the regressed
data set is used, see section 8.1.2). An average accuracy of ±83% is obtained with correlation and
±79% is obtained with mutual information; both feature sets have a positive outlier with an accu-
racy of ±90.9%. The second best performing classifiers are trained with the intensity features. An
average accuracy of ±75% is obtained with absolute intensity and an average accuracy of ±73% is
obtained with relative intensity; both feature sets have a positive outlier with an accuracy of ±87%
(absolute intensity) and ±88% (relative intensity). The worst performing classifiers are trained with
the structural features. An average accuracy of±59.5% is obtained with le� hemisphere thickness, an
average accuracy of ±56% is obtained with right hemisphere thickness and an average accuracy of
±61% is obtained with parcel volume. No considerable outliers, when compared to the other feature
type classifiers, are present.

A significant di�erence in accuracy is noticeable between the three di�erent feature types. A small
(±5% to ±10%) decrease in accuracy is noticed between the connectivity and intensity features. A
possible explanation for this phenomenon could be the fact that both features are calculated from the
same data (fMRI data), but that more information is lost during the feature selection process of the
intensity features. Intensity features are calculated by averaging the time series, thus ignoring the
variation of the brain activity through time. Connectivity features do not ignore this information,
possibly leading to be�er feature sets. The higher quality of the connectivity feature sets is also
confirmed by the higher compactness of the result distributions (SD of ±6.3 versus ±9.8 for the
validation set and SD of ±8.5 versus ±12 for the optional validation set).

Structural features perform worse than both intensity and connectivity features. Decreases in accu-
racy of ±20% to ±30% are present when compared to the two other feature types. Similar decreases
in compactness (SD of ±13 versus ±6.3 or ±9.8 for the validation set and SD of ±20% versus ±8.5
or ±12 for the optional validation set) are present. A possible explanation for the large decrease in
both accuracy and compactness is the fact that structural features reflect anatomical changes while
intensity and connectivity reflect functional changes. Changes in cortical thickness or volumes would
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reflect possible atrophy in the brain. Measurable brain atrophy could only be the result of very severe
forms of depression where a patient experienced multiple depressive episodes. A simplification has
been used in this master’s dissertation: di�erences in severity and duration of depression between
patients is ignored. This simplification is needed to reduce the problem to a binary classification
problem. Statistically significant structural features have been found (see secton 4), showing the
presence of anatomical changes. The rate of change (due to possible atrophy) however is not constant
within the depression group as some people within the depression group have had more depressive
episodes/su�er longer from depression than others. If more information about the duration and
amount of depressive episodes is known (as well as other factors that could influence anatomical
changes such as used medications or therapies) structural features could probably be used to be�er
predict both depression and depression severity. This problem could likely be solved using regression
machine learning techniques.

8.3 Part 3: Combined feature classifiers

Combined feature classifiers are investigated as the inclusion of more features could possibly lead to
an increase in accuracy. A first step in the creation of combined feature classifiers is the combination
of the di�erent feature subtypes. Three combined feature classifiers are defined: an intensity feature
classifier, a connectivity feature classifier and a structural feature classifier. The performance of
these classifiers will be compared to the performance of the best subtype classifiers. All combined
feature classifiers are trained once with all combined features. Due to the decrease in classification
performance compared to the subtype feature classifiers, no final combined feature containing all
defined features is trained and tested.

8.3.1 The intensity feature classifier

The performance of the intensity feature classifier is slightly lower than both the absolute and relative
intensity feature classifier (±70% compared to±74.5% and±73% respectively). A possible explanation
is the fact that by introducing more features also more noise is introduced. The increased noise makes
it more di�icult to correctly distinguish healthy controls and depression patients.

8.3.2 The connectivity feature classifier

The performance of the connectivity feature classifier is much lower than the connectivity subtype
classifiers (except from the mutual information on the non-regressed data classifier). This is counter-
intuitive as the connectivity subtype feature sets are the best performing feature sets, both with very
high compactness, and because the intensity feature classifier did not share a similar drop in accuracy
and compactness. No clear explanation for this phenomenon can be given.

8.3.3 The structural feature classifier

Contrary to the other combined classifiers, the mean accuracy and compactness is not lower than
the feature subtype classifiers, but is even increased slightly. The increase however is too small to be
considered significant.

8.3.4 The intensity and connectivity feature classifier

The intensity and conncectivity feature classifier has the best performance of all classifiers. This is
both intuitive and counter-intuitive. The addition of more features to distinguish di�erent classes
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Part 4: Performance with respect to atlas level

normally leads to higher classification accuracies, so the aggregation of all high accuracy feature sets
into a single feature set intuitively leads to higher classification results. This is however also counter-
intuitive as the other combined feature classifiers built from the feature subtypes that are included in
this feature set (the intensity and connectivity feature classifier, see section 8.3.1 and 8.3.2) have lower
accuracies than the feature subtype classifiers.

This classifier performs very well, but caution should be used when forming conclusions. 80 features
are present in this feature set and only 73 people are used for training (see section 6.1.3). SVMs, and
kernel machines in general, are capable of classification when more features than di�erent training
instances are present. The use of more features however results in a higher chance of overfi�ing. To
confirm the ability of this classifier more validation is needed.

8.4 Part 4: Performance with respect to atlas level

A final aspect of the results that is noticed is the fact that four of the six feature subtypes that are
calculated with the Lausanne brain atlas (see section 5.2.1) have the best results when atlas level three
is used (234 parcels). This is shown in figure 8.1 where the mean accuracy of both the validation and
optional validation set (when all 20 features are used) of the absolute and relative intensity as well as
the correlation with regressed data feature set are shown. The average accuracy of each atlas level is
denoted by the thicker brown line. This figure shows that on average the best accuracy is obtained
at atlas level 3 and that the higher atlas levels (atlas level 4 and 5) have a slightly higher accuracy
than the lower atles level (atlas 1 and 2). This shows that a parcellation that distinguishes more brain
parcels is advantageous for feature calculation.

Atlas level one defines parcels that usually contain multiple unique brain regions; features calculated
from these parcels will be the average of several brain regions and therefore will not contain all
information from these brain regions. Atlas level five defines brain regions that are very small. Slight
positioning variations between di�erent scans due to the preprocessing process have considerable
influence on the feature values, reducing the consistent di�erences needed for high quality features.
The parcels defined by atlas level three circumvent both problems. A possible explanation for this
phenomenon, aside from coincidence, is that the parcel size defined in atlas level three is an optimal
middle ground. The viability of this hypothesis is strengthened when the absolute intensity features
and mutual information with regressed data features are discussed (see section 5.3.3.2 and 5.4.3.2).
Both feature sets contain several subdivisions of a single brain region (both use atlas level 3), showing
that the subdivision leads to higher classification accuracies, but does not use the highest subdivision
(atlas level 5) available as the classification accuracies are again reduced.

Figure 8.1: Violin plot of the results of the connectivity feature classifier.
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Chapter 9

Conclusion

In this master’s dissertation a computer-aided diagnosis tool/classifier is built that is capable of diag-
nosing depression based on an fMRI scan. A data set of 106 people, 60 healthy controls and 46 people
diagnosed with depression, was used to obtain features and train classifiers.

Three di�erent feature types for classification were explored: intensity features, reflecting the average
activity in the brain; connectivity features, reflecting the functional connectivity between brain regions
and structural features, reflecting the thickness and volume of the brain. An important principle
that was used in the selection process of the di�erent feature types is the possibility of a simple
interpretation: each feature can easily be linked to the corresponding brain regions and the clinical
relevance of each feature can easily be determined by a physician.

Each feature type in itself consisted of several subtypes, a total of nine feature subtypes were defined
and used to train the classifier. Two intensity feature subtypes were defined: absolute and relative
intensity features. Two di�erent connectivity measures were used to calculate functional connectivity
between di�erent brain regions: correlation and mutual information. An extra preprocessing step,
global signal regression, was used resulting in two di�erent data sets. Both connectivity measures
were calculated on both data sets, resulting in four di�erent connectivity feature subtypes. Three
di�erent structural feature subtypes were used: le� and right cortical thickness and volume. Support
vector machines were trained multiple times for each feature type resulting in a result distribution for
each feature type and subtype. The properties of the result distributions were analyzed to interpret
the viability of each feature subtype as a distinguishing factor for depression.

Every feature type and subtype did have at least some features that can be linked to depression
and thus have some clinical relevance; some feature subtypes (absolute and relative intensity, le�
hemishpere cortical thickness and parcel volume) even have high clinical relevance as most of the
features are closely linked with depression. This shows that, even when no prior assumptions about
the disease have been made, the found features reflect brain anatomy and activity that are also
found when no data-driven approach is used. The presence of clinical relevant features increases
the diagnositc value of the found classifiers.

The best performing feature type is the connectivity feature type. An average accuracy of ±83% is
reached (validation set 83.16%, optional validation set 82,86%) when correlation is used on the global
signal regressed data set, an average accuracy of ±79% is reached (validation set 79.21%, optional
validation set 82,86%) when mutual information is used. The highest performing trained classifier with
correlation that is obtained has an average accuracy of 90.9% (validation set 89.47%, optional validation
set 92.86%), this accuracy is reached twice in twenty training cycles. The highest performing trained
classifier with mutual information that is obtained has an average accuracy of 87.7% (validation set
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84.21%, optional validation set 92.86%). This shows that functional connectivity changes are highly
reliable features that can be used for a possible computer-aided diagnosis tool for depression.

Intensity features also show some capability of correctly predicting depression with absolute intensity
feature classifiers having an average accuracy of ±75% and relative intensity features having an
average accuracy of±73%. The best performing classifier has an average accuracy of 87.3% (validation
set 89.47%, optional validation set 85.71%) for absolute intensity features.

Di�erences in structural features between healthy controls and patients with depression are proven
to be statistically significant, but they are not capable of accurately predicting depression. Accuracies
between 50% and 60% are obtained using structural features, showing the unreliability of this type of
feature for classification.

Combining multiple feature subtypes from a single feature type did not result in an increased accuracy.
The final combination of the four best performing feature sets (absolute intensity, relative intensity,
correlation with regressed data and mutual information with regressed data) however results in the
best performing classifier. This feature set has an average accuracy of±88.7% and the best performing
classifier has an accuracy of ±94.7% (validation set 89.47%, optional validation set 100%). Caution
should be used as the classifiers trained with this feature set could have been overfi�ed due to the
high amount of features.

A final remark that needs to be made is the fact that the size of the data set, while big compared
to similar research [36], is rather small. Further research using other and larger data sets is needed to
assess the applicability of the results and conclusions obtained in this master’s dissertation.

Nevertheless it can be concluded that a computer-aided diagnosis tool based on resting state fMRI
data can be a reliant method of diagnosing depression. Tools like this could help mental health
professionals with the diagnosis of depression and could even be used in advance of a diagnostic
interview, decreasing the workload of mental health professionals and waiting periods for patients.

Future work
The obtained algorithm for feature selection and the resulting classification systems can be expanded
in multiple ways. More feature types, such as frequency and network based features could be in-
vestigated. The algorithm could be used to obtain feature sets and classification systems for other
diseases such as post traumatic stress disorder or schizophrenia. Other data sets could be used to
further validate and refine the algorithm and classifiers. Task-related fMRI data could be used to
build a classifier. Other imaging techniques such as EEG or fNIRS could be used together with fMRI
to increase the accuracy of the obtained classifiers. Bigger data sets could be used so that more
complex classification systems, such as random forests or artificial neural networks could be applied.

From a personal point of view the most important expansion would be the inclusion of the ability to
not only diagnose depression, but also correctly predict specific subtypes of depression. The ability to
diagnose subtypes of depression that are linked to e�icacy of medication types and treatment options
could decrease the trail period for the patient. Considerable research needs to be done to make this
possible, but the potential benefit of alternative diagnosis tools in psychology and psychiatry is not
to be understated.
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