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“The core of mans’ spirit comes from new experiences. 
I don’t want to know what time it is. 

I don’t want to know what day it is or where I am. 
None of that matters.  

I now walk into the wild.” 
 

Christopher McCandless (Alexander Supertramp), May 1992
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ABSTRACT 
The mechanism of action (MOA) of vagus nerve stimulation (VNS) is yet to be elucidated. To 
that end, the effect of VNS on the brain of epilepsy patients is studied and possible biomarkers 
for VNS efficacy are identified. Both when VNS is On and Off, the brain of responders (>50% 
seizure frequency reduction) is compared to the brain of non-responders (<50% seizure 
frequency reduction) at three levels: the sensor level, the source level and the brain connectivity 
level. At the sensor level, several differences are found in P300 amplitude between responders 
(R) and non-responders (NR). Increase in P300 amplitude for R only is present in literature and 
confirmed in this research with the extension of significant decrease in P300 amplitude for NR. 
Some of these results can be used as biomarkers for VNS efficacy with higher accuracy than 
features reported in literature to date, pointing to one of the following hypotheses: (1) P300 
features recorded in non-midline electrodes are better P300 biomarkers for VNS efficacy, and 
(2) VNS-dependent brain signals other than P300 can be used as biomarkers for VNS efficacy 
with higher accuracy. At source level and brain connectivity level, the activity of the limbic 
system, insula, frontal orbital lobe and temporal structures is found to be highly dependent on 
VNS and patient group. The importance of the insular and limbic area in the brain network is 
found to be altered between R and NR due to VNS. Therefore, the results of this research point 
to a key role for the limbic and temporal area in the MOA of VNS. 

KEYWORDS 
Epilepsy, VNS, P300, ESI, effective connectivity, graph theory 
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 Abstract The mechanism of action (MOA) of vagus 
nerve stimulation (VNS) is yet to be elucidated. To that 
end, the effects of VNS on the brain of epilepsy patients 
are studied and possible biomarkers for VNS efficacy 
are identified. Both when VNS is On and Off, the brain 
of responders (>50% seizure frequency reduction) is 
compared to the brain of non-responders (<50% seizure 
frequency reduction) at three levels: the sensor level, the 
source level and the brain connectivity level. In the 
sensor level, several differences are found in P300 
amplitude between responders (R) and non-responders 
(NR). Increase in P300 amplitude for R only is present 
in literature and confirmed in this research with the 
extension of significant decrease in P300 amplitude for 
NR. Some of these results can be used as biomarker for 
VNS efficacy with higher accuracy than features 
reported in literature to date, pointing to one of the 
following hypotheses: (1) P300 features recorded in non-
midline electrodes are better P300 biomarkers for VNS 
efficacy, and (2) VNS-dependent brain signals other 
than P300 can be used as biomarkers for VNS efficacy 
with higher accuracy. At source level and brain 
connectivity level, the activity of the limbic system, 
insula, frontal orbital lobe and temporal structures is 
found to be highly dependent on VNS and patient 
group. The importance of the insular and limbic area in 
the brain network is found to be altered between R and 
NR due to VNS. Therefore, the results of this research 
point to a key role for the limbic and temporal area in 
the MOA of VNS. 
Keywords Epilepsy, VNS, P300, ESI, effective 

connectivity, graph theory 

I. INTRODUCTION 
Epilepsy is a neurological disorder characterized by 

unprovoked, recurrent seizures and affects 50 million 
people worldwide [1]. Anti-epileptic drugs can 
adequately help about 70% of the patients. For the 
other 30%, the refractory epilepsy patients, resective 
surgery or neuromodulation are considered [2]. Here, 
focus is on VNS and its effects on the brain of 
epilepsy patients. Although several studies and 
clinical practice confirm the efficacy and safety of 
VNS as epilepsy treatment, little is known on the 
cause of the anti-epileptic effect; the MOA of VNS is 
yet to be elucidated. Currently, about 1/3 of the 
patients that undergo a VNS implantation are 
‘responders’ (R), indicating seizure frequency 
reduction of over 50%. Thus, 2/3 of the patients, the 
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‘non-responders’ (NR), obtain a seizure frequency of 
less than 50% [2]. Biomarkers to assess the VNS 
efficacy pre-operatively would be highly valuable and 
could reduce the number of superfluous and risky 
VNS implantations. To that end, the MOA is studied 
by identifying differences between the brain of R and 
NR with respect to VNS. Possible biomarkers for the 
VNS efficacy are analyzed and discussed. 

Over the last 20 years, research indicates an 
important role for the locus coeruleus – 
norepinephrine (LC-NE) system in the anti-epileptic 
effect of VNS [3], [4]. The activity of this system is 
assessed indirectly via the P300 amplitude of the 
auditory Event-Related Potential (ERP) [5]. 
Interesting features of the P300 wave are discussed 
regarding their potential to estimate VNS efficacy 
and thus to separate R from NR based on the value of 
a certain feature. These analyses are further referred 
to as the sensor level. Based on the recorded EEG, 
active regions in the brain can be estimated, which is 
further referred to as the source level. Effective brain 
connectivity deals with the interconnections between 
active brain regions. By representing the brain 
network as a graph, specific measures can identify 
key regions in the overall brain network. This last 
part is further referred to as the brain connectivity 
level.  

II. METHODS 
ERP and auditory oddball task - In this research, 

the P300 component of the ERP is used, which is 
registered by recording an EEG during an auditory 
oddball experiment. During such an experiment, 
patients press a button upon hearing a target tone 
(low frequency) and should not press the button upon 
hearing a standard tone (high frequency). 

Patients - Data of twenty epilepsy patients was 
recorded for both VNS On and Off by De Taeye et al. 
[6] by means of a scalp video-electroencephalogram 
in the Reference Center for Refractory Epilepsy, 
Ghent University, Ghent, Belgium. Patients were 
classified based on the reduction in mean monthly 
seizure frequency as being either R (>50% reduction) 
or NR (≤50% reduction). This resulted in 10 R and 10 
NR. All of the included patients had been implanted 
chronically with a VNS device (Cyberonics, Houston, 
TX, USA). No significant differences in stimulation 
parameters were present between R and NR. More 
details on the patients and stimulation parameters can 
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be found in the original research by De Taeye et al. 
[6]. 

Electrophysiological recordings - A Micromed 
System Plus (Micromed, Mogliano, Italy) in 
combination with Ag/AgCl electrodes was used to 
record the electroencephalogram (EEG) at 60 
standard locations according to the extended 
International 10-20 System using an electrode cap 
(WaveGuard EEG cap system, Eemagine, Berlin, 
Germany). The online reference electrode and the 
ground electrode were placed at electrode locations 
CPz and AFz respectively. Ocular, cardiac and VNS 
artifacts were measured by respectively a vertical 
electrooculogram (EOG), an electrocardiogram 
(ECG) and two additional electrodes in the neck. The 
EEG, EOG, ECG and VNS signals were digitized 
online using a sampling frequency of 1024 Hz, 
antialiasing filter of 250 Hz, gain of 50 dB and a 
resolution of 16 bits. 

Pre-processing – The data was filtered by a 50 Hz 
notch filter and a band-pass filter (0.1-30 Hz) with 
slope of 12 dB/Oct and then downsampled to 256 Hz. 
Artifacts were corrected by EOG, ECG and VNS 
signal measurements. The data was re-referenced to 
the average of the recorded EEG channels. 

Epoching and averaging - The EEG was split into 
epochs from 200 ms pre-stimulus to 1000 ms post-
stimulus, which were baseline corrected on the 200 
ms pre-stimulus interval. To increase the signal-to-
noise ratio, epochs were averaged, resulting in two 
average epochs for each patient and each condition: a 
non-task-related standard-stimulus epoch and a task-
related target-stimulus epoch. To isolate the P300 
component, a target-standard difference waveform is 
calculated. Sensor and source level analyses use this 
difference waveform. 

P300 features - The peak latency in the P300 wave 
was determined in the 300-900 ms post-stimulus 
interval at the parietal midline electrode Pz. At this 
latency, the amplitude of the P300 wave in all EEG 
channels was extracted. These features are used to 
perform statistical analyses at the sensor level. Data 
in this research is analyzed by a mixed-model 
ANOVA with one between-subjects factor (group or 
R vs. NR) and one within-subjects factor (condition 
or VNS On vs. Off). Post-hoc two-tailed independent 
samples t-tests for the factor group and post-hoc two-
tailed paired samples t-tests for the factor condition 
are used. Cross-validation allows estimating how 
accurate an unknown patient can be classified as 
being either R or NR based on a certain feature. 
Combining the results of 10-fold cross-validation in a 
binomial distribution allows calculating mean and 
standard deviation for the cross-validation accuracy. 
Both single-channel and two-channel features are 
used. 

Electrical source imaging (ESI) – ESI was 
performed from the EEG channel amplitudes in the 
target-standard difference waveform in an 80 ms 
interval around the P300 peak using statistical 

parametric software (SPM, Wellcome Trust Centre 
for Neuroimaging, London, Great Britain). The head 
models, used for ESI, were patient-specific for 14 
patients (5-layered segmentation based on individual 
MRI images: scalp, skull, CSF, gray matter, white 
matter). For 6 patients a template head model (SPM’s 
4-layered T1 template) was used because their MRI 
images were too poor. A multiple sparse volumetric 
priors algorithm based on region growing in gray 
matter was used, which was developed by Strobbe et 
al. in the Medical Imaging and Signal Processing 
(MEDISIP) research group, Ghent University, Ghent, 
Belgium [7]. Gridpoints in the distributed source 
model are 3 mm apart. Source priors were grown in 
the gray matter and are volumetric bell-shaped. 
FWHM depends on the maximum distance r to a seed 
point and smoothing σ. The maximum distance r was 
chosen to be 7 mm and the smoothing σ was 0.7. The 
number of patches used as prior was 512. To compare 
activity between R vs. NR and VNS On vs. Off, all 
activity was projected (warped) onto the template 
head model using SPM. A flexible factorial design 
for the brain activity was performed using a 2nd-level 
analysis in SPM. 

Brain connectivity - The Automated Anatomical 
Labeling (AAL) template was used to define 27 
regions of interest (ROI) in the brain. These were 
chosen as the second-to-last level of regional split in 
the AAL template [8]. ESI was performed at each 
sample of a 9 s interval in the pre-processed EEG 
channels. This interval was chosen to include both 
standard and trigger stimuli. All activity was warped 
to the template model. Dipole activity is linked to the 
appropriate brain region using the AAL toolbox for 
Matlab (Groupe d’Imagerie Neurofonctionnelle, 
Bordeaux, France). Performing a Single Value 
Decomposition (SVD) analysis for the dipole time 
series in each ROI with preservation of the first 
component extracted a single activity time series for 
each brain region or ROI. Effective connectivity 
measures iADTF, iAPDC, ffADTF and ffAPDC were 
used to calculate connection strengths between the 
ROIs. A model order of 10, a Kalman smoother with 
value 100 and an update coefficient of 0.001 were 
used. More information on these effective 
connectivity measures and their implementation is 
given in [9]. The effective connectivity analysis was 
performed in 5 frequency bands: δ, θ, α, β and γ or 0-
4 Hz, 4-8 Hz, 8-16 Hz, 16-32 Hz and 32-64 Hz. 
Time-averages and standard deviations of the time-
dependent connection strengths were calculated. 
Mixed model ANOVA and post-hoc t-tests were 
performed. Bonferroni (family wise error rate of 
0.05) and Benjamini-Hochberg (false discovery rate 
of 0.1 and significance level of 0.05) multiple 
comparison corrections were applied to the post-hoc 
t-test results. The whole-brain network was analyzed 
by calculating the betweenness centrality of the 27 
ROIs defined in the previous section, which are used 
as nodes in a graph. Betweenness centrality indicates 
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the importance of a node in the network. iADTF, 
iAPDC, ffADTF and ffAPDC mean connection 
strengths were used as edge weights. Betweenness 
centrality is calculated for each node, for each 
effective connectivity measure and in each frequency 
band. Mixed-model ANOVA and post-hoc t-tests 
identified differences between groups and conditions. 

III. RESULTS 
Sensor level - No significant main effect of group, 

condition or interaction effect was found for the P300 
latency. No significant main effect of condition was 
found for the P300 amplitude in any of the EEG 
channels, but 23 EEG channels show a significant 
main effect of group (left panel of Figure 1). 

 
Figure 1: Red dots indicate the EEG channels that exhibit a 
significant main effect of group (left) and a significant 
interaction effect (right) for the P300 amplitude. 

Six EEG channels (right panel of Figure 1) show a 
significant interaction effect, namely CP2 (p=0.004), 
C2 (p=0.017), C4 (p=0.006), Pz (p=0.034), C6 
(p=0.016) and CP4 (p=0.012). For these channels the 
P300 amplitude is larger for NR than for R and when 
VNS is switched On, the P300 amplitude increases 
for R while it decreases for NR. 

Post-hoc t-tests reveal that for VNS Off 15 EEG 
channels and for VNS On 20 EEG channels show a 
significant difference between R vs. NR. From the 
significant interactions, channels C4 (p=0.0079) and 
C6 (p=0.023) display a significant difference between 
VNS Off and On for NR. Channels CP2 (p=0.009) 
and Pz (p=0.014) display a significant difference 
between VNS Off and On for R. The relative change 
in P300 amplitude is (On-Off/On) exhibits a 
significant difference (p=0.014) between R and NR. 

Cross-validation showed that for single-channel 
features when VNS is Off, CP4 and CP2 perform best 
in classifying an unknown subject as being either R 
or NR. The obtained accuracy is 72.22% or 13 out of 
18 patients (two patients were not used due to errors 
in the data). For VNS On, channels Oz and F2 obtain 
an accuracy of 83.33%. The accuracy when using the 
relative P300 amplitude change in the Pz channel is 
61.11%. Using two features simultaneously can result 
in accuracies up to 88.89%. The sum or product of 
the P300 amplitudes in two EEG channels, results in 
accuracies up to 94.44%, e.g. for the sum or product 
of the P300 amplitudes of channel CP2 (Off) and 
channel PO5 (On).  

Source level - Using ESI, the brain activity of all 
patients was estimated. Several brain areas are 
significantly more active for R than for NR 
independent of VNS On or Off. These areas are the 
right hippocampus (p=0.059, 3.7 cm3), the left 
hippocampus and amygdala (p=0.054, 1.1 cm3) and 
the anterior cingulate cortex (p=0.094, 1.6 cm3). The 
indicated volumes represent the size of the significant 
zones. For the left hippocampus and amygdala 
(p=0.007, 12.3 cm3), the right and middle cingulate 
cortex (p=0.022, 8 cm3) and the right hippocampus 
and amygdala (p=0.078, 1.6 cm3) the activity is larger 
for NR than for R independent of VNS On or Off. 
Activity is larger when VNS is Off than when VNS is 
On in the right hippocampus and amygdala (p=0.076, 
1.4 cm3), the right precuneus (p=0.046, 5.2 cm3) and 
the left hippocampus and amygdala (p=0.056, 1.1 
cm3) independent of R or NR. Activity is larger when 
VNS is On than when VNS is Off in the right 
superior frontal gyrus (p=0.053, 1.2 cm3), the left 
hippocampus (p=0.058, 3.3 cm3) and the right 
calcarine gyrus (p=0.041, 4.3 cm3). The difference in 
activity between R and NR in the right insula 
(p=0.091, 0.2 cm3), the left superior parietal lobe 
(p=0.067, 4.5 cm3) and the left frontal orbital lobe 
(p=0.035, 18 cm3) depends significantly on whether 
VNS was switched On or Off. 

 

 
Figure 2: The activity of the indicated brain regions is 
significantly altered due to VNS between R and NR and 
between VNS Off and On. These regions include the 
hippocampus, amygdala and insula and are highlighted 
bilaterally. 

From these results, it is clear that the activity in the 
hippocampus, amygdala and insula is highly 
dependent on whether the patient is R or NR and 
whether VNS was On or Off. These brain regions are 
shown in Figure 2. 

Brain connectivity - No significant differences in 
connection strength between the 27 ROIs are found 
after Bonferroni correction (family wise error rate of 
0.05). Benjamini-Hochberg multiple comparison 
correction (false discovery rate of 0.1 and 
significance level of 0.05) delivers significant results 
for both mean and standard deviation. For the mean 
connection strength, significant differences are found 
for R in the connection from the occipital lobe to the 
frontal lobe dependent on VNS. For VNS On, 312 
significant features in 50 different connections are 
found between R and NR for several frequency bands 
and measures. These are situated over the entire brain 
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but mainly in the right temporal lobe, left occipital 
lobe and the right frontal lobe. For the standard 
deviation, the autospectra of the right limbic lobe and 
the right temporal lobe are significantly different in 
NR between VNS switched On and Off. For VNS 
On, 295 features show significant differences in 47 
different connections for several frequency bands and 
measures between R and NR. These are mainly 
situated in the central gyri, the right temporal lobe 
and the left insula. 

Using betweenness centrality, mixed-model 
ANOVAs and post-hoc t-tests, the right insula is 
found to increase in importance in the whole-brain 
network for R when VNS is switched On. This effect 
is observed in the τ−frequency band. In the 
γ−frequency band, the importance of the right limbic 
lobe is significantly larger for R than for NR when 
VNS is On. These regions are shown in Figure 3. 

 

 
Figure 3: Significantly altered brain regions in the whole-
brain network due to VNS. The right insula (left) increases 
in importance for R when VNS is switched On. The right 
limbic lobe (right) is more important in R than in NR for 
VNS On. 

IV. DISCUSSION  
Sensor level - No differences in P300 latency were 

found between R vs. NR and VNS Off vs. On. This is 
in agreement with other research [6], [10]. In many 
EEG channels, the P300 amplitude was found to be 
larger for NR than for R, which is consistent with the 
reported values by De Taeye et al. [6] and Neuhaus et 
al. for VNS Off [11]. This result was significant in 23 
EEG channels and these are situated both frontally 
(possibly linked to the P3a wave) and parietally 
(possible linked to P3b) as shown in the left panel of 
Figure 1. The non-significant result for the Pz 
channel is consistent with De Taeye et al. [6]. The Fz 
channel indicates a larger P300 amplitude for NR 
than for R in this research, which is inconsistent with 
Neuhaus et al.[11]. However, in that research, the 
P300 amplitude in the Fz channel was detected at the 
moment of peak in the Fz, while in this research it 
was detected at the moment of peak in the Pz 
channel, making the comparison difficult. To the 
knowledge of the author, no results are present in 
previous research in which the P300 amplitude was 
analyzed between R and NR in non-midline 
electrodes. The result that significant differences 
between R vs. NR are found in other EEG channels 
than Pz, Cz and Fz is therefore novel. 

At the moment of P300 wave, many brain regions 
are thought to be processing information from the 
stimulus. Therefore, one should be watchful that 
significant results recorded in other than 
centroparietal regions could also be due to activity of 
other brain areas. Especially the six EEG channels 
showing significant interaction between group and 
condition are situated towards right parietal and 
temporal regions (right panel of Figure 1). A possible 
explanation could be the VNS-dependent limbic 
system activity [12], [13]. But, the origin of the P3b 
wave is thought to be situated more temporoparietally 
as well, meaning that the results could also be due to 
the P3b wave [14]. Further research should clarify 
these results. The P300 amplitude was found to 
increase significantly in channels Pz and CP2 for R 
only. This result is consistent with De Taeye et al.[6] 
and Neuhaus et al. [11]. Channels C4 and C6 show a 
significant decrease in P300 amplitude for NR only. 
The result that VNS induces not only P300 amplitude 
changes for R but also specific changes for NR is 
interesting and could lead to more effective 
separation of R from NR. The relative P300 
amplitude increase was significant for channel Pz, a 
result consistent with De Taeye et al. [6]. The results 
of P300 increase for R and P300 decrease for NR 
support the hypothesis that VNS activates the LC-NE 
system and that this activation is critically linked to 
the anti-epileptic effect of VNS. This proposes the 
amount of NE release in the brain as biomarker for 
VNS efficacy, as supported in literature [3], [4], [15]. 

The larger P300 amplitude for NR than for R is 
specifically found in the P300 wave, showing a key 
role for the LC-NE system in the difference between 
these two groups. The inhibitory signaling as a result 
of the activation of the LC-NE system is suggested to 
be a key anti-epileptic actor since it is thought to 
arrest and cancel the spatial spread of seizures, which 
is nicely linked to the better VNS outcome for R, 
since an increase in P300 amplitude is observed upon 
VNS being switched On in R only [3]. 

The strength of this research is the use of cross-
validation to indicate the potential of P300 features to 
classify unknown patients as R or NR. This is not the 
case for logistic regression analyses or ROC curves, 
which are used in other research [6]. For VNS Off, 
channels CP4 and CP2 perform best and obtain an 
estimated accuracy of 72%. For VNS On, channels 
Oz an F2 obtain accuracies of 83%, which is 
relatively high. De Taeye et al. used the relative P300 
amplitude increase in the Pz channel as a biomarker 
for VNS efficacy [6]. However, using cross-
validation in this research, it was found that this 
feature only obtains 61% classification accuracy. This 
is an important result and could lead to shifting the 
focus of future research in identifying clinically 
applicable predictive biomarkers for VNS efficacy. It 
is important to be cautious about these results, 
because it is not clear whether they originate from the 
P300 wave or from other VNS-dependent brain 
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signals. Future research should provide a clearer 
insight. Two-channel features are either two features 
used simultaneously or combined in a new single 
feature. Two features simultaneously results in 
accuracies of 89% for several features. Using the sum 
of the P300 amplitudes in two EEG channels obtains 
accuracies as high as for the simultaneous use of two 
features (89%) and summing the P300 amplitudes of 
channels CP2 for VNS Off and PO5 for VNS On 
even leads to an estimated accuracy of 94%. To the 
knowledge of the author, these results for cross-
validation are not present in other research. 

The novel results for cross-validation indicate 
intriguing possibilities to find biomarkers for clinical 
efficacy of VNS treatment. However, these results 
also point to the main drawback of this research. One 
of the main objectives of the research was to identify 
predictive biomarkers to be used before VNS surgery. 
Therefore, predictive biomarkers should be identified 
in pre-operative recordings. All data in this research 
was recorded in patients that underwent VNS surgery 
and received at least 18 months of VNS therapy. It is 
attempted to overcome this problem by recording 
ERPs of patients when VNS was switched Off. 
However, the anti-epileptic effects of VNS are 
present during Off-time as well [16]. Results shown 
in this research are thus poor indicators of differences 
between R and NR pre-operatively and thus have 
little predictive value in clinical practice. The results 
at sensor level remain valuable since they indicate 
that P300 features, previously thought to be good 
biomarkers for VNS efficacy, are out-performed by 
other features. These results can point to one or both 
of the following hypotheses: (1) P300 features 
recorded in non-midline electrodes are better P300 
biomarkers for VNS efficacy, and (2) VNS-
dependent brain signals other than P300 can be used 
as biomarkers for VNS efficacy with higher accuracy. 

Source level - Several brain regions are found to be 
significantly influenced by VNS. The main result 
consistent with other research is the diminished 
activity of the limbic system (hippocampus and 
amygdala) [12], [13], [17]. Also the influence of VNS 
on the activity of the insular region and frontal orbital 
lobe is interesting and can be linked to the reported 
VNS-dependent changes in activity in other research 
[18], [19]. 

Brain connectivity - For R, differences are found in 
the mean connection strength from occipital to frontal 
lobe when VNS is On vs. Off. For VNS On, many 
mean connection strengths show a significant 
difference between R and NR. These connections 
mainly involve the right temporal lobe, the left 
occipital lobe and the right frontal lobe. They indicate 
that VNS could have an effect on the whole brain. 

Analyzing the standard deviation of the time-
dependent connection strengths, for NR, the 
autospectra for the right limbic lobe and right 
temporal lobe are significantly different for VNS On 
vs. Off. This again indicates an effect of VNS on the 

activity and connectivity with and within the right 
temporal lobe and limbic lobe, as was also discussed 
for source and sensor level. For VNS On, the 
standard deviation is significantly different between 
R and NR in connections situated in the central gyri, 
the right temporal lobe and the left insula. The 
strength of this research is to analyze connectivity 
between activity time series of brain regions and not 
between EEG electrode potentials, as is often done in 
research [20]. This approach is interesting because it 
can provide insight in the involved brain areas and 
allows easier clinical and physiological interpretation. 
The presence of the temporal area with inclusion of 
the limbic system and insula is undeniable in this 
research and presented by others as well [21], [22]. 

Using betweenness centrality in the graph 
representation of the brain network, the right insula 
was found to be of higher importance in the brain 
network of R when VNS was switched On than when 
VNS was Off. This result was present only in the θ-
band. The θ-band is found to be crucially involved in 
epileptic brain alterations [23]. When VNS is 
switched On, the right limbic lobe was found to be of 
higher importance in the γ-band in R than in NR. For 
both the right insula and limbic lobe, the relative 
importance increases when VNS is switched On for R 
while it decreases for NR. 

In research on the brain network for epilepsy 
patients, many inconsistencies are present, but a main 
conclusion is that a shift towards a less efficient 
organization increases the epilepsy burden [24]. 
Fraschini et al. [20] found this result when comparing 
R and NR for VNS Off and On. They computed a 
minimum spanning tree to characterize VNS-induced 
alterations in the network topology. In the research 
presented here, the right insula and limbic lobe 
increase in importance in R when VNS is switched 
On while it decreases for NR. Also, these nodes are 
relatively more important in R than in NR. It is 
possible that these nodes perform a hub-like function 
and therefore can relay information more efficient to 
more nodes to create a more integrated network, 
consistent with Fraschini et al. [20]. They also 
showed an increased minimum spanning tree 
hierarchy in R only, which indicates a decreased 
overloading of central nodes, inconsistent with results 
in this research. Fraschini et al., however, used EEG 
electrodes as nodes whereas in this research brain 
areas were used. Thus, comparison between this 
research and Fraschini et al. is not trivial. 
Importantly, again the insular and limbic area in the 
brain seem to be critically involved in the differences 
between R vs. NR and VNS On vs. Off. This result is 
consistent with the conclusions in the source level 
analysis and the effective connectivity results. 

Limitations - The limited amount of patients and 
the absence of pre-operative recordings reduce the 
clinical applicability of the results. P300 amplitudes 
were extracted in all EEG channels at the moment of 
peak in the Pz channel and not in each channel 
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separately. Differences between P3a and P3b should 
be incorporated. Warping the head models to the 
template head models was performed accurately, but 
the anatomically defined ROIs on the template head 
model do not perfectly delineate the same brain 
regions in the individual head models. Using 27 large 
ROIs limits the anatomical accuracy of the results. 
Due to computational issues in the ESI, EEG signals 
of 9s were used, which is short compared to the 
recordings of +10 min and could possibly generalize 
the results incorrectly. It is possible that differences 
in the anti-epileptic drugs regimes altered the brain 
functioning in patients. 

V. CONCLUSION 
The effects of VNS on the brain of epilepsy 

patients were explored at three levels: sensor level, 
source level and brain connectivity level. Possible 
biomarkers for pre-operative assessment of the VNS 
efficacy are analyzed and discussed. 

The increase in P300 amplitude for R only is 
reported in literature and confirmed in this research 
with the extension of finding a significant decrease in 
P300 amplitude for NR as well. Results indicate that 
treating the P3a and P3b components of the P300 
wave separately could be valuable. Cross-validation 
revealed that several features in the ERP have a large 
potential to estimate VNS efficacy of an unknown 
patient with higher accuracy than the P300 amplitude 
recorded from the midline electrodes, which is 
proposed in literature. Results point to one or both of 
the following hypotheses: (1) P300 features recorded 
in non-midline electrodes are better P300 biomarkers 
for VNS efficacy, and (2) VNS-dependent brain 
signals other than P300 can be used as biomarkers for 
VNS efficacy with higher accuracy. However 
interesting, the reported results have little predictive 
value due to the absence of pre-operative ERP 
recordings. 

Several brain regions are significantly influenced 
by VNS treatment, including the limbic system, 
insula, frontal orbital lobe and several temporal 
structures. These results are consistent with the VNS 
mediated activity in limbic and temporal lobe 
structures presented in literature. Analyzing the brain 
connectivity and whole-brain network identified 
shifts in the brain functioning between R and NR due 
to VNS. The importance of the insular and limbic 
area in brain functioning seems to be altered between 
R and NR. Future research should elaborate on 
unraveling the role of these structures in the anti-
epileptic effect of VNS. Consistent with literature, 
analyzing the epileptic brain by connectivity and 
graph theory measures proves to be useful to find 
insights in the mechanism of action of VNS. 
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Chapter 1  

Introduction 

Epilepsy is a neurological disorder characterized by unprovoked, recurrent seizures. Worldwide, 
fifty million people are diagnosed with epilepsy making it the second most common neurological 
problem following cerebrovascular disorders [1]. The estimated number of new cases per year in 
Europe is around 300,000 [2]. In current clinical practice, around 70% of the patients can be 
adequately helped by anti-epileptic drugs. For the other 30%, the so-called refractory epilepsy 
patients, resective surgery and neuromodulation are considered [3]. Resective surgery aims to 
surgically remove the epileptogenic focus in the brains. However, the eligibility of a patient for 
surgery depends on many factors and it is a drastic decision that poses several risks. 
Neuromodulation can provide a solution for ineligible patients. It encompasses technology that 
alternates or modulates nerve activity by delivering electrical stimulation, which is typically done 
by using (micro)electrodes as interface with the excitable tissues. Deep Brain Stimulation 
(DBS) and Vagus Nerve Stimulation (VNS) are the two main neuromodulatory techniques for 
epilepsy. In this research, focus will be on VNS and its effects on the brain of epilepsy patients. 
These effects are assessed at three levels: sensor level, source level and brain connectivity level. 

Although several studies and clinical practice confirm the efficacy and safety of VNS as epilepsy 
treatment, little is known on the cause of the anti-epileptic effect; the Mechanism of Action 
(MOA) of VNS is yet to be elucidated [4], [5]. Currently, about a third of the patients that 
undergo a VNS implantation are termed ‘responders’, indicating seizure frequency reduction of 
over 50%. Therefore, 2/3 of the patients, the non-responders, obtain a seizure frequency 
reduction of less than 50% [6]. It is clear that biomarkers to assess the VNS efficacy pre-
operatively would be valuable and could reduce the number of superfluous and risky VNS 
implantations. To that end, the MOA of VNS is studied by identifying differences between the 
brain of responders and non-responders with respect to the electrical stimulation. Possible 
biomarkers for the VNS efficacy are analyzed and discussed. 

Over the last 20 years, experiments indicate an important role for the locus coeruleus – 
norepinephrine (LC-NE) system in the anti-epileptic effect of VNS [7]. Direct assessment of the 
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LC-NE activity is non-trivial. Therefore, the activity is assessed indirectly via a parameter that 
can be measured easily and is modulated by this LC-NE activity [8]. The parameter used in this 
research is the P300 amplitude of the Event-Related Potential (ERP). An ERP is a voltage 
deflection in an electroencephalogram (EEG) after a certain sensory (e.g. visual or auditory) 
stimulus is given to a patient. The P300 wave is a well-known component of the ERP and the 
amplitude of this wave is modulated by the LC-NE activity [9]. The P300 wave can be 
registered by recording an EEG during an auditory oddball experiment. During such an 
experiment, patients press a button upon hearing a target tone (low frequency) and should not 
press the button upon hearing a standard tone (high frequency). This experiment was 
performed for 10 responders and 10 non-responders for both VNS switched Off and VNS 
switched On in the Reference Center for Refractory Epilepsy, Ghent University, Ghent, Belgium 
[8]. By doing so, the P300 amplitude can indicate differences between responders and non-
responders due to the VNS stimulation in terms of LC-NE activity, which is termed the sensor 
level analysis. The sensor level is discussed in Chapter 4. 

Based on the recorded EEG, active regions in the brain can be estimated. To do so, Electrical 
Source Imaging (ESI) is performed, which results in the estimation of the brain activity. 
Differences in the brain activity are investigated between responders vs. non-responders and 
VNS On vs. Off. This is the source level analysis and is discussed in Chapter 5. 

Brain connectivity deals with the functional interconnections between brain regions. This 
connectivity can be focused on anatomical links (structural connectivity), statistical 
dependencies of activity (functional connectivity) or causal interactions (effective connectivity). 
In this research, functional and effective connectivity are investigated in terms of responders, 
non-responders, VNS Off and VNS On. This is done by defining Regions of Interest (ROI) in 
the brain and by using ESI to extract the activity time series of each ROI. These time series are 
analyzed using several connectivity measures. Graph theory measures can identify key regions in 
the overall brain network. Therefore, the brain network is represented as a graph. By using 
betweenness centrality as measure, the importance of several brain regions in the overall brain 
network is calculated [10]. Shifts in this brain network and changes in the functional and 
effective connections are analyzed in the brain connectivity analysis between responders and 
non-responders with respect to VNS stimulation. This brain connectivity level is shown in 
Chapter 6. 

The results at the sensor level, source level and brain connectivity level are discussed in Chapter 
7, where similarities and discrepancies with previous research are explored. Lastly, in Chapter 8 
a final conclusion of this master thesis is given.   
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Chapter 2  

Literature review 

2.1 Introduction 

This literature review recapitulates and summarizes the required biological, pathological, 
methodological and mathematical concepts to be able to fully comprehend the framework of the 
performed research. First, the anatomy, physiology, electrophysiological properties and 
functioning of the brain are explained. Next, the possible neuroimaging techniques are defined 
with emphasis on electroencephalography (EEG) and electrical source imaging (ESI). Then, 
epilepsy is described in different aspects and current treatment possibilities are highlighted. 
Subsequently, vagus nerve stimulation is explored in greater detail, followed by a description of 
brain connectivity as well as different mathematical considerations for connectivity calculations. 
Lastly, graph theory is introduced and network measures are given.  

2.2 The brain 

2.2.1 Brain anatomy and functioning 

The brain is a vital organ in the body. It is considered the most complex of all human organs 
and in combination with the spinal chord it makes up the central nervous system (CNS). The 
brain (and in part the spinal chord) analyses and integrates sensory and motor information in 
order to supervise, control and coordinate human activity. The CNS is one of the main 
components of the nervous system, next to the peripheral nervous system (PNS) (Figure 2.1) 
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Figure 2.1: The main components of the nervous system and their functional relationships [11]. 

 

2.2.1.1 The neuron as fundamental building block 

Neurons or neuronal cells are the basic functional units of any nervous system. The brain 
contains approximately 86 billion neurons and around the same amount non-neuronal cells (glial 
or supporting cells) [12]. Several varieties of neurons come and work together in so-called neural 
circuits, which are the primary components for integration and analysis of information. Neural 
systems are defined to comprise neurons and circuits in a number of discrete anatomical 
locations in the brain. These systems (but also neural circuits and neurons) can be classified 
into three categories based on their function. On the one hand there are sensory systems that 
acquire information about the organism and its environment. Motor systems on the other hand 
control and coordinate several kinds of action. Thirdly, associational systems link the sensory 
components to the motor components and bridge the information flow between information 
input and behavioral output. These associational systems also provide the framework for higher-
order capabilities of the brain such as emotions, logical reasoning, attention, etc. 

Although the basic cellular organization of neurons resembles that of other cells, their 
morphology is highly specialized for intercellular communication. Characteristic for neurons is 
their extensive branching (Figure 2.2). Dendrites arise from the neuronal cell body (or soma) 
and are the primary target to receive communication from other neurons. The dendrites 
themselves have many branches, which are called the dendritic processes. A second typical 
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branching of the neuronal cell is the axon, which is a unique extension from the neuronal cell 
body. The axons transfer the information integrated in the cell body towards other cells. They 
can vary immensely in length from up to a few mm to over 1 m. The connection between the 
axon and the soma is called the axon initial segment (AIS) or axon hillock. To increase 
information transfer, axons are electrically insulated by a myelin sheath, which is a phospholipid 
layer wrapped around the axon. At distinct locations along the axons, the myelination is 
interrupted at the so-called nodes of Ranvier.  

Another characteristic aspect of the neuronal cells is the morphology of their connections 
with other neuronal cells. The connection between neuronal cells is called a synapse. Typically, 
an axon carrying information has a presynaptic terminal. The other end of the communication 
line is the dendrite of the neuronal cell to receive the information. Dendrites possess 
postsynaptic specializations to acquire information coming from the axon of the previous cell. 
Between the presynaptic terminal and the postsynaptic specialization there is a small zone of 
extracellular space (typically 50 nm wide), which is called the synaptic cleft (Figure 2.2) [11]. 

 

 
Figure 2.2: Anatomy of a neuron and the synapse as an interneuron connection. Adapted from [13]. 

 

Axon hillock 

Node of Ranvier 
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2.2.1.2 Neuronal signaling 

Internally, neurons transmit information through electrical signals. Specific ionic concentration 
differences between the inside and the outside of the cell govern the resting electrical properties 
and the so-called resting membrane potential of a neuron. The neuronal cell membrane 
possesses channels for sodium (Na+) and potassium (K+) ions. Due to the specific voltage 
dependent permeability of these ion channels and ion pumps, there exists a concentration 
difference between the inside and the outside of the nerve cell ([Na+]in = 12 mM, [Na+]out = 145 
mM, [K+]in = 150 mM, [K+]out = 4 mM). The Goldman-Hodgkin-Katz equation provides the 
resulting resting membrane potential of the neuron of around -70 mV, meaning the inside is less 
positive [14], [15]. 

In the transmission from dendrite to soma, the conduction occurs passively. In axons, the 
distance that the signal needs to travel is much longer. Due to the poor electrical conductance 
in axons, the signal would fade away relatively fast compared to the length of the axon. 
Therefore, a specialized mechanism ensures the propagation of the signal along the length of 
the axon. This mechanism is called the action potential (AP), which is the fundamental building 
block for axonal signal conduction. Upon depolarization of the membrane, the membrane 
potential can reach a certain threshold. When this threshold is reached, the cell ‘fires’. The Na+-
channels open very quickly upon depolarization allowing a massive influx of Na+-ions into the 
cell, generating a fast upward burst of the membrane potential (up to approximately +60 mV, 
depending on the type of nerve cell). After some time (a few ms), the slower K+-channels open, 
allowing outward flow of K+-ions and at the same time the Na+-channels close again. These 
changes allow the repolarization of the membrane potential to a level around the original resting 
membrane potential. The actual conduction of the signal occurs due to the propagation of the 
AP. The Na+-ions that entered the cell spread in the axon and are able to depolarize the next 
part of the axon. Due to the depolarization of the next axonal part above threshold level, this 
part fires an AP as well. The AP generated here can then again depolarize the next part and so 
on. Due to this consecutive AP firing, the signal can be conducted through the entire neuronal 
cell without loss of signal, which would be the case for passive conduction. Myelin sheaths 
insulate the neuron electrically to improve the AP propagation. The mechanisms of AP 
generation (top) and propagation (bottom) can be seen in Figure 2.3 [11], [15]. 
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Figure 2.3: Generation (top) and propagation (bottom) of the action potential [11], [15]. 

In the synapse, the connection between neurons, the information transfer occurs chemically. 
The conversion between intraneuronal electrical signals and extraneuronal chemical signals is 
performed in the presynaptic terminal of the axon and the postsynaptic specialization of the 
dendrite. Once the AP reaches the end of the axon, it enters the presynaptic terminal and 
causes the opening of calcium (Ca2+) channels. These channels allow the influx of Ca2+-ions into 
the presynaptic terminal. There, these ions allow small spherical reservoirs (vesicles) to release 
their content, namely the chemical signaling molecules or neurotransmitters. The vesicles are 
refilled and replaced continuously in the presynaptic terminal. The Ca2+-ions allow the vesicles 
to fuse with the cell membrane thereby releasing their content, the neurotransmitter molecules. 
A large variety of neurotransmitters has been discovered of which the most well known are 
glutamate (Glut), γ-aminobutyric acid (GABA), dopamine and acetylcholine. At the 
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postsynaptic specialization specific ligand-gated ion channels are present. These ion channels 
possess receptors that are highly specific for certain neurotransmitters. The most common 
receptors are the glutamatergic and GABAergic receptors. Upon binding of the correct ligand 
on these receptors, the ion channel opens and ions can flow in. Similarly as during AP 
generation, these ion fluxes result in membrane potential changes. In case of glutamatergic 
receptors and synapses, Na+ rushes inwards causing depolarization of the cell membrane. Thus, 
glutamatergic synapses are excitatory since they depolarize the postsynaptic membrane 
potential in the direction of the AP threshold. The potential that is generated in the 
postsynaptic specialization is called the excitatory postsynaptic potential (EPSP). In case of 
opening of GABAergic channels, Cl--ions flow into the postsynaptic specialization. Since these 
ions are negatively charged they cause a hyperpolarization of the cell membrane leading the 
membrane potential away from AP threshold. Therefore, these GABAergic synapses are 
inhibitory and cause inhibitory postsynaptic potentials (IPSP). 

Inhibitory and excitatory synapses are the two main types of synapses present in the human 
brain. The dendrites of each cell receive input from many other cells, which creates multiple 
EPSPs and/or IPSPs in a single neuron. All these PSPs enter the soma where they are 
integrated. If the depolarization is large enough to reach the AP threshold, an AP will be fired 
at the axon hillock where the AP threshold is lowest. Upon firing of an AP, the neuronal signal 
is conducted through the axon. This completes the sequence in which neuronal signals are 
transmitted in the nervous system [16]–[19]. 

2.2.1.3 Brain anatomy 

Macroscopically, the brain can be divided into gray and white matter. The neuronal cell bodies 
are situated in the gray matter while the axons make up the white matter. The lighter 
appearance of white matter results from the presence of the lipid content of myelin sheaths. 
Surrounding the brain are the scalp, skull and three meninges. The scalp is the skin on top of 
the skull. The meninges are membranes covering the brain. The skull is a bony structure 
creating a cavity for the brain and protecting it from trauma. The dura mater is the outermost 
membrane just below the skull; the arachnoid and the pia mater are closer to the brain with the 
pia mater attached to the brain surface. Furthermore, the cerebrospinal fluid (CSF) is very 
important for proper and long-lasting functioning of the brain. On top of that it serves as buffer 
to protect the brain from trauma. It flows between the pia mater and arachnoid matter and 
inside the ventricles. These ventricles are cavities inside the brain and they contribute to the 
circulation of the CSF, which delivers nutrients to and removes waste from the brain. This 
global organization can be seen in Figure 2.4 [13]. 

The brain is usually considered to have six basic parts with distinct functions: the medulla, 
the pons, the cerebellum, the midbrain, the diencephalon and the cerebral hemispheres. The 
cerebral hemispheres are connected by the corpus callosum and together they are called the 
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cerebrum. The medulla, pons and midbrain are referred to as the brainstem. The diencephalon 
together with the cerebral hemispheres is defined as the forebrain. The brainstem serves as a 
gateway between the forebrain and spinal chord: it relays sensory information from the spinal 
chord to the forebrain and sends motor commands from the forebrain to the spinal chord. It is 
also a key structure in the regulation of primary vital functions. The cerebellum is situated at 
the dorsal side of the brain and is essential in coordination and planning of movements (Figure 
2.5) [11].  
 

 
Figure 2.4: Global organization and surroundings of the brain. Adapted from [20]. 

 

 
Figure 2.5: The six basic parts of the brain [11]. 
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The brain tissue is folded to maximize its surface area. Due to these folds, characteristical 
crests are present, which are called gyri. Grooves that divide gyri from one another are called 
sulci. These gyri and sulci vary slightly from individual to individual but provide an overall 
division of the brain into four lobes: occipital, temporal, parietal and frontal lobe (Figure 2.6). 
The outer layer of the cerebrum is often called the cerebral cortex [11].  
 

 
Figure 2.6: Structural anatomy of the brain with frontal, parietal, occipital and temporal lobe [11]. 

 

2.2.1.4 Brain functions 

The brain cannot only be divided anatomically; also functionally the brain consists of distinct 
regions. The frontal lobe is important for thinking, organizing, speech production and executive 
function as well as performing movements via the primary motor cortex. The parietal lobe is 
involved in perception and spelling while the main function of the occipital lobe is vision. The 
temporal lobe is used for memory and listening. 

Another very interesting division in terms of brain function is by means of the Brodmann 
areas. These areas have been identified on the cerebral cortex and perform specific functions. 
Different regions are distinguished by their specific cytoarchitecture and organization of cells 
[13]. 
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Figure 2.7: The Brodmann areas in the brain. Adapted from [20]. 

2.2.2 Neuroimaging and electroencephalography 

2.2.2.1 Overview 

In order to study the brain, one needs to be able to look (in)to the brain and the nervous 
system. Different modalities have been developed and they are termed ‘neuroimaging’ 
techniques (Figure 2.8). A brief overview is given of the most important modalities before 
electroencephalography will be explained in greater detail. 

Neuroimaging techniques are often classified as being either structural or functional. Structural 
modalities target to visualize the anatomical structure of the brain while functional techniques 
are used to investigate function and activity. Examples of structural techniques are Computed 
Tomography (CT) and Magnetic Resonance Imaging (MRI) and important functional modalities 
are functional MRI (fMRI), Positron Emission Tomography (PET), Single Photon Emission 
Computed Tomography (SPECT), Near-Infrared Spectroscopy (NIRS), 
Magnetoencephalography (MEG), and Electroencephalography (EEG). Within these functional 
techniques, EEG and MEG measure the electrical activity of the neurons directly while other 
techniques such as PET and fMRI perform indirect measurements based on the increased blood 
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flow or metabolic activity in active neurons. Functional techniques can be used to diagnose 
metabolic or cognitive disorders [13], [21], [22].  

 

 
Figure 2.8: Overview of different structural and functional neuroimaging techniques [13]. 

Each of the techniques mentioned above has specific advantages and drawbacks. Next to 
general aspects such as size, cost, availability, complexity, etc., neuroimaging techniques are 
often discussed in terms of spatial and temporal resolution (Figure 2.9). Spatial resolution 
expresses the smallest spatial difference between two points that can still be resolved while time 
resolution indicates the necessary time interval between instances to be detected individually. In 
order to overcome the specific drawbacks of each technique, different methods are often 
combined in so-called multimodal neuroimaging [23]. 

 
 

 
Figure 2.9: Spatial and temporal resolution of different neuroimaging techniques [23]. 
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2.2.2.2 Electroencephalography 

Electroencephalography or EEG is the oldest functional brain imaging technique. It dates back 
to Berger’s discovery in 1929 that brain electrical activity could be recorded from electrodes 
placed on the scalp. It is still widely used due to very good temporal resolution (below 100 ms), 
which even allows acquiring real-time measurements [24]. 

Generators of the EEG 

Currents generated by a single neuron are very small. In order to be able to pick up the 
electrical fields generated by the currents on the scalp, superposition of many neural currents is 
needed. APs are larger in amplitude then EPSPs (100 mV vs. 1 mV) but EPSPs last longer (10 
ms vs. 0.1 ms). Thus, APs are much less likely to sum up. Therefore, EPSPs are thought to 
give rise to the underlying currents that generate the measured electrical fields on the scalp. 
Currents generated by single neurons are in the order of 10 fA while sources of around 10 nA 
are needed to be detected, meanings millions of neural currents need to fire simultaneously. On 
top of that, the dendrites need to be spatially aligned in order to contribute to a large overall 
current. In terms of brain volume, a volume of 5 mm x 5 mm x 5 mm is assumed to be able to 
generate a sufficiently large amount of current to be detected [25], [26]. 

To generate an EPSP, neurotransmitters at the apical (furthest away from the soma) 
dendritic postsynaptic specialization cause a large amount of positive ions to enter the nerve 
cell. This results in a lack of extracellular positive ions at the apical dendrites. Intracellularly, the 
ions flow towards the basal (close to the soma) dendrites and cell body, which is called the 
primary current. By depolarizing the cell body, positive ions become available extracellularly. 
These ions can fill the lack of positive ions apically and thereby generate an extracellular 
current, the secondary current. A simplified electrical model of an active neuron consists of two 
current monopoles: a current sink at the apical dendrites removing positive ions from the 
extracellular space and a current source at the cell body injecting positive ions in the 
extracellular space. Therefore, the electrical activity of a neuron is often represented as a 
current dipole (see 2.2.3.1) [26], [27]. 

Pyramidal neurons, which are characterized by a typical pyramidal-shaped soma, fulfill the 
requirements to be the generators of the EEG signals. These pyramidal cells lie perpendicular to 
the cortical surface and are thought to be the main generators of the EEG signal (Figure 2.10) 
[28], [29]. In order to reach the scalp electrodes, the pyramidal currents need to pass the 3 
meninges, the CSF, the skull and the scalp. The signal is thereby attenuated and distorted 
resulting in EEG recordings in the order of 100 μV [13].  
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Figure 2.10: Pyramidal neurons in the cerebral cortex [30]. 

Recording EEG 

Recording an EEG comprises measuring potential differences with scalp electrodes and plotting 
them in function of time. A typical measurement setup consists of electrodes with conductive 
media to reduce the scalp-electrode impedance, amplifiers with filters, A/D conversion and a 
recording device. Since the EEG is measured as potential differences between electrodes, the 
minimal configuration (for a so-called mono-channel EEG) consists of three electrodes: a 
measuring electrode, a reference electrode and a ground electrode to provide a ground for the 
measurement and to reduce interference. Different amounts of electrodes can be used. 
Internationally, the 10-20-electrode system is often used. However, to improve the spatial 
sampling, high-density arrays (HD EEG) are used that can consist of up to 256 measuring 
electrodes. The electrodes can be glued directly to the skin or incorporated in an elastic cap to 
ensure fast attachment and fixed configuration. Depending on the amount of electrodes, a 
standardized electrode placement is used, which can vary for different applications. In Figure 
2.11 the 10-20-electrode configuration is shown. 

 
Figure 2.11: The 10-20 electrode configuration [31]. 

Anatomical landmarks on the human head are used to position the electrodes correctly. 
Depending on the number of electrodes, the spatial sampling is different, although there is a 
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trend to use a higher number of electrodes for better sampling. In order to identify the 
electrodes easily, the electrodes have specific labels consisting of a character (one or two) and a 
number. Frontal, temporal, parietal, occipital, and central electrodes are indicated with the 
labels ‘F’, ‘T’, ‘P’, ‘O’ and ‘C’ respectively while electrodes on the forehead and at the earlobe 
are labeled ‘Fp’ (frontal polar) and ‘A’ (auricular). Electrodes over the midline have a ‘z’ as 
second character. Odd numbered electrodes are situated on the left hemisphere; even numbers 
are used on the right hemisphere. 

The amplifiers used for EEG measurements have to satisfy very specific requirements. They 
should provide specific amplification of the physiological signal, reduce noise and interference 
from the electrical grid and guarantee protection to patient and equipment through voltage and 
current surges. The A/D converter transforms the signals from analog to digital to be stored 
easily [24], [32]. 

2.2.3 Electrical source imaging 

Computing power has allowed researchers to use EEG to find active regions inside the brain by 
locating the underlying sources that generate the measured EEG. This method is referred to as 
electrical source imaging (ESI). Using this technique requires solving the so-called forward 
model and inverse problem. The forward model models the propagation of the sources to the 
electrodes. The inverse problem starts from the measured electrode potentials and estimates 
the underlying generating sources. The discussion of ESI, the forward model and the inverse 
problem is based on [13], [24], [26], [33]–[35]. 

2.2.3.1 Current dipole 

As stated above, the neuronal pyramidal cell can be represented by a current dipole [36]. 
Characterizing a given dipole is done by defining its location rdip and dipole moment d. The 

dipole moment d is characterized by a unit vector ed directed from sink to source and a 

magnitude d = ||d||. Often, the dipole is decomposed into three orthogonal dipoles oriented 

along the three Cartesian axes. Each dipole is then defined by the orthogonal projections of the 
original dipole onto one of the axes. Therefore, the dipole moment is indicated as follows: 

 
 !! = !!!!! + !!!!! + !!!!! (1) 

Conversion to spherical coordinates allows full characterization of a current dipole by 6 
parameters: 3 parameters for the location (rx, ry, rz), 2 orientation parameters (Φ, ϕ) and 
intensity d (Figure 2.12). 
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Figure 2.12: Representation of a current dipole as EEG generator [33]. 

2.2.3.2 Forward model 

The forward model consists of calculating the scalp potentials given the activity of all dipoles in 
a certain electrical source distribution (the source model). To project the sources to the scalp 
electrodes, the source model and a model of the head are needed. The head model includes the 
volume conduction and the electrode positions. The forward model is illustrated in Figure 2.13. 

 
Figure 2.13: The forward problem in electrical source imaging (ESI). The EEG scalp potentials are calculated 

from a source distribution with respective dipole activity and a head model. Adapted from [37]. 

Head model 

The head model contains the geometrical and electromagnetical properties of the head as well 
as the location of the electrodes. More specifically, the model incorporates the electrical 
conductivities (isotropic or anisotropic) of the brain and its different tissues. Different types of 
head models are available with increasing complexity and accuracy. Simple head models or 
spherical head models consist of one or more concentric shells depending on the amount of 
different types of brain tissues included in the model. Conductivities are homogeneous and 
isotropic in each compartment. These head models are easy to use and the scalp potentials can 
be calculated analytically, but they are a severe simplification of the real human head. In order 
to approximate reality better, realistic head models are built based on anatomical data from 
MRI or CT images, which allows to use patient-specific head models. The images are 
segmented, meaning that the boundaries for the different tissues are defined. Usually 3 or 4 
compartments are identified: the brain, skull and scalp with the addition of CSF in 4-layered 

Forward 
model 
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head models. Each compartment is given a specific conductivity. By using other modalities such 
as Diffusion Weighted MRI it is possible to incorporate anisotropic conductivities in the head 
model. 

Source model 

The source model contains the properties of the sources thought to underlie the EEG. As 
indicated above, the pyramidal neurons can be modeled as current dipoles defined by six 
parameters. Different source models can be used with varying complexity. The dipole is used as 
the basic building block for different source models. In case of a single dipole model, the brain 
activity is represented by a single dipole. If different areas of the brain are active, a multiple 
dipole model can be used. The number of variables to be determined depends on the number of 
dipoles chosen and is equal to six times the number of dipoles since for each dipole six 
parameters need to be estimated. These single or multiple dipole models are often termed 
Equivalent Current Dipole (ECD) approaches. A relatively small number (<10) of focal sources 
are usually assumed.  

In distributed source models the brain is segmented into volume or surface elements. In case 
the full brain is used, the brain volume is divided into small (often cubic) volume elements, 
which are called voxels. In other applications, only the brain surface or cortex is investigated and 
a mesh with specific faces and vertices divides it into elementary zones. To each of the 
elementary voxels or surfaces a single dipole with fixed location is assigned. Therefore, all 
possible source locations (usually around 10,000) are considered at the same time. In this 
distributed source model the only unknown per dipole is the intensity. However, due to the large 
number of voxels, distributed source models have a large amount of unknowns. ECD models 
tend to have less variables than measured data points making the forward problem easy to solve 
but it is important to properly choose the amount of dipoles. In distributed source models, the 
amount of dipoles is fixed but the amount of unknowns is much higher than the measured data 
points, making the problem ill-posed (highly underdetermined), so it needs regularization. A 
large drawback of multiple dipole models compared to distributed source models is that it is 
required to know the amount of active brain regions in advance since for the multiple dipole 
models one dipole is assigned to each investigated region while for distributed source models 
this is no issue. 

Solving the forward problem 

The measured potential at a given electrode with position r due to a dipole with location rdip 

and intensities dx, dy and dz can be expressed as follows: 
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This equation can be elaborated and rewritten to include all electrode potentials: 
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(3) 

 
 ! = ! !!"# .! (4) 

Where V is a M x 1 matrix consisting of the electrode potentials (EEG measurements) with M 

the number of electrodes and L(rd) is a M x 3 matrix, the so-called lead field matrix, which 

depends on the dipole position, electrode positions and the properties of the head model. 
As stated before, when using a spherical head model, the forward problem can be solved 

analytically. For realistic head models numerical methods are required. Three main methods are 
used to solve the forward problem with realistic head models: the boundary element method 
(BEM) [38], the finite element method (FEM) [39] and the finite difference method (FDM) 
[40].  

2.2.3.3 Inverse problem 

The inverse problem in ESI is the estimation of the neural current sources from the measured 
scalp potentials. It is an ill-posed problem when using distributed source models, meaning that 
an infinite number of source configurations can be found to explain the measured EEG. The 
inverse problem is represented in Figure 2.14. 

 

Figure 2.14: The inverse problem in electrical source imaging (ESI). The neural current sources are estimated 
given the measured EEG potentials. Adapted from [37]. 

!
!
!
!
!
!
!
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To overcome the issue of the ill-posedness and to impose a unique solution to the inverse 
problem, a source model is chosen and regularization is performed. This regularization consists 
of adding requirements such as a cost function or restrictions on certain characteristics to 
impose a single solution. In solving the inverse problem, two general approaches exist: a 
parametric approach and an imaging approach. The parametric approach uses the dipole source 
models whereas the imaging approach utilizes the distributed source model. Solving the inverse 
problem means that the parameters of the chosen source model are estimated. In the 
parametric approach the number of unknown parameters is much smaller than the measured 
data points, while in the imaging approach the number of unknowns is much larger. 

Solving the inverse problem 

Instantaneous single dipole 

Solving the inverse problem by using the parametric approach consists of an iterative approach. 
Initial distributions, orientations and intensities of the dipoles are chosen and by using the 
forward model the electrode potentials are calculated. The difference between the actual 
measured EEG potentials and the calculated electrode potentials is then incorporated in a cost 
function. Depending on the outcome of the cost function, dipole parameters are re-estimated to 
calculate new electrode potentials. This iterative loop is repeated until the cost function is 
below a certain threshold. The cost function that is often used is the relative residual energy 
(RRE, equation 5) with ||.|| the L2-norm, Vmeasured the recorded EEG data, Vcalculated the 

electrode potentials calculated using the forward model and d and r the dipole parameters. 

 
 

 !!" = ||!!!"#$%&"' − !!!"#!$#"%&' !||
||!!!"#$%&"' !||

= ! ||!!!"#$%&"' − !! ! !!||||!!!"#$%&"' !||
 

 
(5) 

 
Six dipole parameters need to be estimated by minimizing the RRE. However, this can be 

reduced by deriving the optimal dipole moment at position r with L(r)† the Moore-Penrose 

pseudo-inverse of matrix L. This optimal dipole moment is obtained as the solution of the over-
determined system of linear equations x = L.d [41]. 

 
 !!"# ! = !! ! !

!!
.! (6) 

 
The parameters in this overdetermined problem can be estimated in least-squares sense or by 

a non-linear algorithm such as MUSIC or the Nelder-Maede simplex method [42]. 
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Time-varying single dipole 

To estimate the parameters of a time-varying single dipole, Singular Value Decomposition 
(SVD) of the electrode potentials V can be used: 

 
 ! = !"!! (7) 

where U defines the topographies, S contains the singular values and D represents the time 

series corresponding to the topographies. We can simplify the problem by only retaining the 
topography corresponding to the highest singular value. Thereby, the RRE can be written as 
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(8) 

 

Multiple dipole model 

The measured EEG signals can be rewritten as: 
 

 ! = !!! ! (9) 

With A an M x p matrix and S a p x N matrix with p a number of sources. Each column of A 

represents the fixed topography of source p and each row of S represents the time varying 

amplitude of source p. Optimal time series are given by Sopt = A†V which leads to a 

minimization problem with respect to A: 

 
 !!" = ! ||!! − !!

!||!
||!!!||!

= ! ||!! − !!
!!!||!

||!!!||!
 (10) 

 

With ||.||F the Frobenius-norm. Direct optimization methods suffer from some drawbacks. 
Optimization techniques such as MUSIC or RAP-MUSIC deliver good results. 
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Imaging methods 

In the imaging approach, a distributed source model is used. This results in a highly 
underdetermined system since the number of assumed dipoles is much higher than the number 
of EEG channels. Unique solutions are achieved by optimizing a goodness-of-fit term together 
with a regularization term. The classical and most popular distributed approach is the Weighted 
Minimum Norm (WMN) solution or Tikhonov regularization method [43]. In this approach the 
reconstructed source distribution is constrained by minimization of a linear mixture of some 
weighted norm ||HJ|| of the source amplitudes J and the residuals of the fit. The regularized 

problem can be expressed as: 
 

 !! = !!"#$%&! ! !!" − !!!! +!!! !!"! |!) (11) 

With J’ the estimated activity and parameter µ expressing the balance between fitting the 

model by the term ||LJ-Vm|| and minimizing the a priori constraint ||HJ||. The solution is given 

by: 
 

 !! = ! (!!!)!!!![!(!!!)!!!! + !!!]!!!! (12) 

With Cε the covariance matrix of the noise which is assumed to be Gaussian. It is clear that µ is 
the crucial parameter in this solution since it defines the balance between fitting of the model 
and the constraint on the solution. Typically, µ is estimated by an L-curve approach [44]. 

2.2.4 Applications 

EEG is widely spread in clinics and research since it is a cheap, safe and easy technique. In 
current clinical practice several diseases can be diagnosed using EEG such as epilepsy, sleep 
disorders, coma and brain death. Often, it is used as a first step towards the final diagnose. Due 
to its superb temporal resolution, it is unlikely that EEG will lose its place in everyday clinical 
practice. 

In research, the EEG signal is often recorded to include evoked potentials (EP) or event-
related potentials (ERP). EPs are potentials recorded as a result of a certain stimulus presented 
to the subject. Usually, the amplitude of EPs is lower than the normal EEG signal. ERPs are 
potentials measured after specific sensory, cognitive or motor events. As is the case with EPs, 
the amplitude of ERPs is smaller than the normal EEG. Therefore, the ERP is often averaged 
across several trials in order to reduce noise. Typical characteristics of EPs and ERPs are 
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latency and amplitude, which are often used as measures to compare outcomes. ERPs will be 
used in the research in this master thesis and are explained further in Chapter 3. 

2.3 Epilepsy 

2.3.1 Definition 

Epilepsy is the second most common neurological problem in the world following 
cerebrovascular disorders. Worldwide, there are approximately 50 million epilepsy patients [1]. 
Traditionally, it has been referred to as a disorder or a family of disorders, rather than a disease, 
to emphasize that it is comprised of many different diseases and conditions. In most of the 
definitions, epilepsy is described as a brain disorder characterized by an abnormally increased 
predisposition to seizures, which are recurrent and unpredictable interruptions of normal brain 
function. In order to ensure clear communication on the subject of epilepsy, the International 
League Against Epilepsy (ILAE) together with the International Bureau for Epilepsy (IBE) 
published definitions on epilepsy and epileptic seizures [45]–[51]: 

 

“An epileptic seizure is a transient occurrence of signs and/or symptoms due to abnormal 
excessive or synchronous neuronal activity in the brain.” 

 

“Epilepsy is a disorder of the brain characterized by an enduring predisposition to generate 
epileptic seizures, and by the neurobiological, cognitive, psychological, and social consequences 

of this condition. The definition of epilepsy requires the occurrence of at least one epileptic 
seizure.” 

 

From the previous definitions it is clear that epileptic seizures are the main determinants of 
epilepsy. Operationally, the signs or symptoms mentioned include sudden and transitory 
abnormal phenomena such as alterations of consciousness, or involuntary motor, sensory, 
autonomic, or psychic events perceived by the patient or an observer. 

The ILAE-definitions are commonly used as the standard definitions of epilepsy and epileptic 
seizures. However, in medical practice these definitions are rather vague and require elaboration 
in terms of diagnostic application. The ILAE proposed that epilepsy should be considered to be 
a disease of the brain in the following cases: (1) at least two unprovoked seizures occurring 
>24h apart, or (2) one unprovoked seizure and a probability of further seizures similar to the 
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general recurrence risk (at least 60%) after two unprovoked seizures, occurring over the next 10 
years, or (3) diagnosis of an epilepsy syndrome [47]. 

2.3.2 Classification, epidemiology and pathophysiology 

The ILAE proposes three main categories of seizures: (1) generalized seizures, (2) focal 
seizures, and (3) unknown seizures. Generalized seizures are occurring in and rapidly engaging 
bilaterally distributed networks. Focal epileptic seizures can be seen as originating within 
networks limited to one hemisphere. The site of the focus and the speed and extent of spread 
determine the clinical manifestation of the seizure [45], [46], [51]. Classification can also be 
made based on etiologic considerations. The ILAE suggests separation into the categories 
genetic, structural/metabolic and unknown cause [45], [52]. 

According to the World Health Organization (WHO) around 0.5-1% of the population or 50 
million people suffer from epilepsy worldwide. In Europe the amount of people suffering from 
epilepsy was estimated to be 4.4 million in 2004. The estimated number of new cases per year 
in Europe is around 300,000 with the highest incidence rate for elderly people. In Figure 2.15, 
one can see the average rate per 100,000 of epilepsy cases at different ages [2], [53]. 
 

 
Figure 2.15: Number of epilepsy patients in terms of age on a global scale [54]. 

Epileptic seizures are defined as excessive or abnormal nervous activity. During these seizures, 
sudden bursts of uncontrolled electrical activity occur in a group or multiple groups of neurons. 
The etiology of epilepsy in a specific patient is often difficult to determine in part due to the 
fact that many factors can cause epilepsy: genetic predisposition, head trauma, tumors, 
dementia, oxygen deprivation, infectious diseases, developmental disorders, etc. These causes 
are termed the initial precipitating insult (IPI). Epileptogenesis is the process in which epilepsy 
evolves into the occurrence of spontaneous seizures [13], [55]. Depending on the type of 
epilepsy and the patient, the symptoms during an epileptic seizure can vary immensely. 
Symptoms are often classified as ictal (during seizure) or interictal (between seizures). 
Extensive lists of symptoms for different types of epilepsy can be found in several reference 
books, such as [56]. 
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2.3.3 Epilepsy and EEG 

EEG is often used to detect and classify epileptiform activity since it helps to answer three 
important questions concerning epilepsy: (1) does the patient have epilepsy, (2) where is the 
epileptogenic zone and (3) is the provided therapy effective. The International Federation of 
Clinical Neurophysiology defines EEG seizure patterns as repetitive discharges with relatively 
abrupt onset and termination and characteristic patterns of evolution lasting at least several 
seconds. Usually, this is observed as rhythmic displays of increasing amplitude and decreasing 
frequency. Also interictal epileptiform discharges (IED) can be detected. These IEDs are 
classified by their shape as sharp waves, spikes, spike-wave complexes, etc. Based on the type 
of epileptiform activity in the EEG and in combination with abnormalities seen on MRI, the 
source of neural activity can sometimes be identified but ESI can provide better results. EEG 
can also detect side effects of several anti-epileptic drugs such as dizziness, sedation, irritability, 
nausea or cognitive slowing [57]–[59]. 

 
Figure 2.16: Example of ictal and interictal epileptiform activity. Ictal rhythmic activity (left) and an interictal 

spike-wave complex (right) are shown. Adapted from [58]. 

2.3.4 Treatment 

Treating epilepsy is focused on reducing the seizure frequency. Anti-epileptic drugs (AEDs) are 
usually the first option to help the patient. If the AED is not effective, a second or even third 
drug can be prescribed. However, chances of finding an effective AED after three attempts 
decrease dramatically [60]. Around 70% of the patients can be helped by AEDs. The other 
patients are diagnosed with ‘refractory epilepsy’. For these patients, other options such as 
resective surgery or neuromodulation can be helpful. Resective surgery consists of the surgical 
removal of the ictal onset zone in the brain. Neuromodulation or neurostimulation therapy is the 
technology that alternates or modulates nerve activity by delivering electrical stimulation. A 
typical treatment algorithm is presented in Figure 2.17. 
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Figure 2.17: Treatment plan for newly diagnosed epilepsy patients. Green lines indicate possible positive 

outcomes, red lines indicate other options that can be considered [59]. 

2.3.5 Refractory epilepsy 

The ILAE defines refractory epilepsy or drug resistant epilepsy as follows [61]: 
 

“Drug resistant epilepsy may be defined as failure of adequate trials of two tolerated and 
appropriately chosen and used AE schedules (whether as monotherapies or in combination) to 

achieve sustained seizure freedom.” 
 

Treatment of refractory epilepsy can be resective surgery, neuromodulation or a ketogenic 
diet. Resective surgery consists of the surgical removal of the ictal onset zone in the brain. 
Neuromodulation techniques include deep brain stimulation (DBS) or vagus nerve stimulation 
(VNS) and will explained further.  

2.3.5.1 Presurgical evaluation and resective surgery 

Resective surgery requires careful preparation and evaluation. Several tests and evaluations need 
to be completed in order to continue with surgery. Three main questions need to be answered: 
(1) is the patient willing and motivated to undergo resective surgery, (2) is there a single 
epileptogenic focus and where is it situated and (3) is the focus resectable without serious 
functional deficit. A multidisciplinary team of neurologists, psychologists, neurosurgeons and 
engineers determines whether surgery is appropriate for the given patient. Seizure freedom is 
obtained in up to 60-90% of the patients depending on the localization of the focus [1], [6]. 

Determining if there is a single epileptogenic focus and where it is situated can be achieved in 
several ways. Clinical, paraclinical and imaging methods exist and are used. Depending on the 
level of consensus of several investigations, resective surgery can be advised. Structural 
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Magnetic Resonance Imaging is preferred as imaging method. This modality is used to identify 
anomalies in the brain such as atrophy or lesions. Identification of such anomalies is insufficient 
to determine (single focus) epilepsy so that other modalities need to accompany structural MRI. 
Clinically, scalp video-EEG-monitoring (SVEM) is used. Hereby, the patient is present in the 
hospital for several days during which scalp EEG is recorded continuously together with video 
monitoring. Interictal spikes and seizure semiology are used to determine the epileptogenic 
focus. In 15 to 25% of the refractory epilepsy patients, SVEM is not conclusive enough. For 
these patients an intracranial electroencephalogram (IEEG) or electrocorticogram (ECoG) is 
recorded. In these methods, electrodes placed on the cortex (ECoG) and depth electrodes in the 
brain’s parenchyma (IEEG) measure the electrical activity. Some issues accompany ECoG: the 
skull needs to be opened, patients are scared, and infections are a real danger. On top of that 
ECoG is more labor intensive and that’s why EEG is preferred. Although SVEM and structural 
MRI are commonly used in the presurgical evaluation, other techniques are used to come to a 
final conclusion, such as ESI, EEG/fMRI, MEG, PET and SPECT [59], [62], [63]. 

2.3.5.2 Neuromodulation 

Neuromodulation or neurostimulation therapy is the technology that alternates or modulates 
nerve activity by delivering electrical stimulation or pharmaceutical agents. The electrical 
stimulation is delivered by using (micro)electrodes as interface with the excitable tissue. It is 
evaluated as an option if resective surgery is not advisable. Neuromodulation has some 
advantages over surgery: (1) it is usually reversible, (2) it is adjustable in a wide range of 
parameters, (3) multiple foci can be reached by a single target and (4) foci that cannot be 
removed safely can still be stimulated. However, the outcome of neurostimulation is highly 
variable depending on the patient’s specific case. Better understanding of the mechanisms of 
action (MOA) of both epilepsy and neurostimulation could improve the outcome prediction. 
Future challenges will lie in sorting out the appropriate candidates for each procedure, in finding 
the optimal anatomic targets for each epileptic syndrome and in assessing long-term effects [3]. 

The first indication of neurostimulation dates back to the first century AD when epilepsy was 
treated by electricity from the torpedo fish. A century later, stimulation of limbs was used. 
Already in 1803, the first device was used to electrically stimulate the body. Jean Aldini 
operated a device that was designed by Alessandro Volta to electrically stimulate the body of a 
hanged criminal. In the 1950s, researchers Penfield and Jasper specifically found that cortical 
stimulation could interrupt seizure activity. Simultaneously, Robert Heath used electrodes deep 
in the brain to induce seizures. In 1954, the first use of chronic therapeutic brain stimulation 
was observed when Pool implanted an electrode in the caudate nucleus of a woman to treat 
depression and Parkinson’s disease. Starting from 1973, several trials were conducted to treat 
epilepsy patients with chronic neurostimulation to reduce seizure frequency. To date, many 
(double-blind crossover) studies are conducted to find interesting targets for electrical 
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stimulation. Targets that are tested include the cerebellum, thalamic nucleus and hippocampus 
each with its own specific reasons why it could reduce seizure frequency. Results of these 
studies are rather inconclusive and often depend highly on stimulation parameters [1]. 

Next to these cerebral structures, also peripheral nerves and in particular the vagus nerve, 
became widely used to treat epilepsy. In 1938, Baily provided the first evidence that the 
inhibition of the nucleus of the tractus solitaries reduced susceptibility to limbic motor seizures 
in animals. Zabara reported the first use of vagus nerve stimulation (VNS), which consists of 
electrically stimulating the vagus nerve using a kind of brain pacemaker. In 1989, the first VNS 
system was implanted. VNS was the first electrical stimulation treatment method for epilepsy 
approved by the US Food and Drug Administration in 1997. To date, VNS proved to be 
effective, but the MOA remains to be elucidated. VNS will be discussed in more detail in part 
2.4 of this literature review. 

Deep Brain Stimulation (DBS) involves the electrical stimulation of specific parts of the 
brain by the implantation of electrodes (deep) in the brain. DBS is more invasive than VNS 
since the surgeon needs to drill in the skull to open it, and the MOA still needs to be 
determined as well. Characterization of the full MOA and long-term side effects can lead to 
optimal targets and stimulation parameters. In 2010, European regulatory bodies approved DBS 
of the anterior thalamic nucleus, but the FDA refused to do so to date [64]. 

Currently, many other modalities are under investigation as well. Stimulation of the 
trigeminal nerve (TNS) proves to be an important alternative for VNS and DBS [65]. Repetitive 
Transcranial Magnetic Stimulation (TMS) is a noninvasive stimulation method whereby a 
magnetic field generator or coil is placed near the head of the patient and is also considered for 
its anti-epileptic effects. By electromagnetic induction, the magnetic field produces small 
electrical currents in the brain regions lying just below the coil [66]. Transcranial Direct Current 
Stimulation (tDCS) delivers currents to the brain via electrodes on the scalp and is considered 
as well for neurostimulation therapy. In 2013, the responsive neurostimulator (RNS) was 
approved by the FDA. In RNS seizure detection and stimuli delivery occurs in real-time (Figure 
2.18). In the future, new techniques will be investigated such as focal delivery of AEDs, 
neuronal grafting and tissue transplant, gene therapy and focal cortical cooling [67]. 

 VNS, TNS, TMS, tDCS, and DBS are at different levels of availability and clinical 
applicability. VNS is an availably therapy for refractory epilepsy with proven efficacy and safety. 
For therapeutic TNS, only proof of concept has been shown to date. TMS protocols for 
epilepsy have been developed in centers with a large experience in diagnostics but at this time it 
is not a routinely available treatment, nor is tDCS. Importantly, some neuromodulation 
techniques such as VNS and DBS can be used to treat other patients as well. VNS can be used 
to treat depression and DBS is used clinically to treat Parkinson’s disease [3]. 

 
 



Chapter 2 | Literature review 

 28 

 
Figure 2.18: Responsive neurostimulation device implanted beneath the skull [68]. 

2.4 Vagus Nerve Stimulation 

2.4.1 Introduction 

As discussed above, Vagus Nerve Stimulation or VNS is the stimulation of the vagus nerve with 
electrical pulses. The pulses are delivered to the electrodes by a pulse generator implanted near 
the chest. Vagus nerve stimulation can be used to treat epilepsy and depression and is being 
studied for other conditions as well, such as multiple sclerosis or Alzheimer’s disease. Due to the 
vast and widespread connections of the vagus nerve, stimulating it is thought to influence a 
large part of the brain including some key regulatory systems such as the locus coeruleus-
norepinephrine system. However, research is still inconclusive and the MOA is yet to be 
elucidated. 

2.4.2 History 

Peripheral stimulation for seizure treatment dates back to several hundreds of years ago. 
Physicians in the 16th and 17th century described the use of ligatures around limbs in which a 
seizure commenced to arrest its progress. This hypothesis was described by the Greek author 
Pelops but was reviewed by Odier and Brown-Séquard in the 19th century. They showed that 
ligatures could also arrest seizures caused by organic brain diseases [69]. At the end of the 19th 
century, Glowers explained the spread of the discharge during epileptic seizures by increase in 
resistance of the nerves [70]. In 1989, Rajna and Lona demonstrated the concept of nerve 
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stimulation for epilepsy and in the same year the first vagus nerve stimulator was implanted in 
humans [5], [71], [72]. 

2.4.3 Anatomy of the vagus nerve 

The vagus nerve (VN) is the 10th cranial nerve and is attached to the brainstem in the neck, 
which is shown in Figure 2.19. It is a mixed nerve, meaning it consists both of afferent and 
efferent fibers. Afferent fibers bring information to the brain and form about 80% of the fiber 
content of the VN [5]. Efferent fibers target several parts of the body. In case of the VN, the 
efferents innervate the heart, aorta, lungs and the gastrointestinal tract. These body parts are 
also the origins of the afferent fibers in the VN [1]. 

 
Figure 2.19: Ventral view of the brainstem and the cranial nerves. Nerves that are exclusively sensory are 

indicated in yellow, whereas motor nerves are blue. The vagus nerve or 10th cranial nerve (X) is green 
indicating it is a mixed nerve [11]. 

The vagus nerve is a mixed nerve projecting to various brain structures via the nucleus of the 
tractus solitaries (NTS). Of all the widespread connections, an important connection exists to 
the locus coeruleus (LC), which contains many noradrenergic neurons. The complex anatomical 
distribution resulted in the name of the vagus nerve since vagus is the Latin word for ‘wanderer’ 
[1], [3], [4], [71]. 
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2.4.4 Device and surgery 

Currently, VNS devices are produced by Cyberonics, Inc. (Houston, TX, USA) and are 
implanted as chronic, intermittent stimulators. The pulse generator is similar to a cardiac 
pacemaker. Two helical bipolar electrodes are wound around the left VN. The left vagus nerve 
is used to limit the risk of bradycardia or arrhytmias given the connections to the heart of the 
right vagus nerve. Patients are admitted to the neurosurgical department 1 or 2 days before 
surgery. Implantation procedures last around 1 hour and are usually performed under general 
anesthesia. The pulse generator is implanted below the left clavicle. 

 

 
Figure 2.20: Implantation of the VNS electrodes. Adapted from [4]. 

Stimulation is initiated 2 to 4 weeks after surgery. A portable computer with specialized 
software initializes the stimulation parameters. This programming device is held directly against 
the patient’s chest to set the parameters such as output current, frequency, pulse-with, and 
on/off periods. The output current is gradually ramped during 6-12 clinical visits over several 
weeks to reach individual patient threshold or a maximum of 3 mA. Maximal efficiency is usually 
obtained after 18 months. Other parameters are standard: frequency of 30 Hz, pulse width of 
250-500 microseconds, and on/off periods of 30/300 to 600 seconds. Some other epilepsy 
centers prefer 7s on and 0-2s off [67], [68]. 

 End of battery life (EOBL) and end of effective stimulation (EOES) are important points in 
time for VNS patients. EOES and EOBL are usually characterized by loss of seizure control 
(gradually or acutely), decreased or irregular perception of stimulation by the patient and loss of 
other VNS-induced effects. Postponing generator or battery replacement may result into 
permanent loss of seizure control. Battery life of the generator depends on the generator model, 
the programmed stimulation parameters and the lead impedance values of the stimulation 
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electrodes (<1-8kilo ohm). The newest models (Model 105, available since 2011) have life-
expectancies of over 10 years [74]. 

 

 
Figure 2.21: Recent pulse generators of Cyberonics, Inc. for vagus nerve stimulation [75]. 

2.4.5 Efficacy and side effects 

VNS was approved by the FDA for use in epilepsy in 1997 [76]. In general, about 1/3 of the 
patients has a seizure reduction of >50%. These patients are indicated as responders. Another 
third of the patients has a seizure reduction between 30-50% and the remaining third of the 
patients experiences little or no effect [3]. The latter groups are termed non-responders. To 
date, more than 100,000 people have received a VNS implantation [8], [77]. VNS is widely 
adopted and is now estimated to account for 50% of surgical procedures for epilepsy in the US 
and UK [78]. Efficacy seems to increase over time up to 18 months after implantation after 
which a plateau is reached [79]. 

Some side effects have been reported upon VNS implantation. Postoperative infections occur 
in 3-6% of the patients and are treated with oral antibiotics. Usually, side effects occur during 
the ‘on’ phase of the stimulation. Cough, hoarseness, voice alteration, lower facial weakness and 
paresthesias are observed but these effects diminish over time and can be accounted for by the 
electrical stimulation. No clear cognitive effects, as is the case with AEDs, are reported. There 
are no central nervous system side effects such as tiredness, psychomotor slowing, irritation, 
and nervousness. All this makes the side effect profile of VNS positive and the treatment option 
offers patients with refractory epilepsy prospects of good efficacy with only minor and often 
resolvable side effects. It is clear that VNS is considered a safe and relatively effective treatment 
with only mild side effects [4], [6], [80]. However, some recent studies also question the VNS 
efficacy [81]–[83]. 

2.4.6 Mechanism of action 

Although vagus nerve stimulation proved to be effective, the mechanism of action (MOA) is not 
yet fully unraveled [84], [85]. A first part of the MOA that was uncovered was the influence of 
the afferent and efferent fibers. It is generally accepted that the afferent fibers are crucial for 
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the epilepsy suppressing effect whereas efferent fibers are thought to generate side effects and 
are not included in the positive effects. 

Another part of the MOA of VNS that is assessed is whether VNS is anti-seizure (abort 
seizures), anti-epileptic (suppressing seizures, preventative effect) and/or anti-epileptogenic 
(reverse the development of the process, protective effect). Electrophysiological, functional and 
anatomical brain imaging and neuropsychological and behavioral studies have been conducted to 
investigate these properties. Due to its effective use in clinics, VNS clearly has an anti-seizure 
effect. Interestingly, it was found that VNS also influences seizures in off-time [86], suggesting 
an anti-epileptic effect. Pulsed stimulation also reduced seizure frequency in the off-periods and 
stimulation effects outlasted the stimulation period. The fact that seizures reoccur after battery 
life ended indicate VNS is not anti-epileptogenic. 

Assessing the key brain structures involved is much more difficult. Unilateral stimulation 
influences both hemispheres and crucial brainstem and intracranial structures have been 
identified such as the locus coeruleus (LC), the nucleus of the solitary tract, the thalamus and 
the limbic structures. Neurotransmitters involved are GABA, serotonin and adrenaline. GABA 
receptor cell death was shown to be reduced due to VNS as well as conservation of the GABA 
receptor neuron density [87]. The thalamus is also involved as shown by increased blood flow in 
PET. Other researchers found that the areas of significant activation in response to VNS were 
the bilateral orbitofrontal and parieto-occipital cortex, the left temporal cortex, and the left 
amygdala. CSF studies showed an increase in several amino acids and neurotransmitters such as 
ethanolamine. This could be an indication of increased turnover of membrane components [88]. 

 

 
Figure 2.22: The locus coeruleus and norepinephrine system in the human brain. Adapted from [11]. 

Over the last 20 years, experiments indicate a crucial function for the LC and the 
norepinephrine system in the seizure suppressing characteristics of VNS (Figure 2.22) [7], [8]. 
VNS has been shown to result in a long-lasting increase in release of noradrenaline (NE) in the 
basolateral amygdala, the origin of which could be the locus coeruleus [89]. Researchers 
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inhibited the development of kindling of the amygdala by direct electrical stimulation [90], [91]. 
When NE was depleted by a 6-hydroxydopamine infusion into the LC of rats, the seizure-
suppressive effect of VNS was abolished [89]. Some studies also found increased norepinephrine 
in the prefrontal cortex, the hippocampus and the amygdala [92]–[96]. A recent study found 
increased levels of NE, but not of serotonin, dopamine or GABA receptors [96]. Loss of LC 
activity reduces the efficacy of VNS while LC activation produces anti-epileptic effects. Due to 
the NE, LC-NE activity is crucial in limiting both spatial spreading and duration of different 
epileptic syndromes [7]. Therefore, there is growing consensus that the LC-NE activity is at 
least one of the key structures in the seizure suppressing effect of VNS [91]. 

2.4.7 Current research 

VNS is still researched today. On the one hand, efforts focus on revealing the MOA of VNS, 
whereas other research focuses on the application of VNS in other (neurological) domains. VNS 
has been tested with regard to treatment-resistant depression (TRD) and pain, as well as 
memory and cognitive impairment [73]. In 2013, VNS was approved as an depression treatment 
by the FDA [76]. Recently, the crosstalk between the vagus nerve and the immune system has 
been described [5].  

Research on elucidating the MOA of VNS is currently focusing on assessing the activity of 
the LC-NE system, which cannot be done through direct measurements at present. Indirectly, 
the activity levels are inferred from parameters modulated by the amount of noradrenergic 
signaling. In previous research this proved to be successful [8]. In this work, the P300 
component of an event-related potential (ERP) is investigated during an auditory oddball 
experiment which is a parameter modulated by the activity levels of the LC-NE system [8]. 
More details will be provided in Chapter 3. 

2.5 Brain connectivity 

2.5.1 Introduction 

Neuroscience research has been focusing on identifying key structures in the brain and which 
functions they exert. Current and future directions emphasize more on the integration of 
different brain structures and how they act and interact to perform the main functions of the 
human brain. Billions of neurons form patterns that flexibly integrate and are not limited to 
direct structural connections [97]. To understand the mechanisms that control complex brain 
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functioning such as emotions, perception, memory or decision-making, analysis of the brain and 
its structures needs to focus on integrating previous research and elucidating the overall 
circuitry in the brain. Connectomics, connectivity, causal modeling and analyses of distributed 
patterns of brain responses can indicate large distance co-activation and projections in order to 
make the next step in understanding how the brain is able to control and manage its highly 
complex functionality. These mathematical considerations and concepts are thought to be the 
main tools for future neuroscience research and will decipher the large-scale interregional 
symbioses and local intraregional circuitry in the human brain both functionally and structurally. 

Defining and studying connections in the brain requires delineation of terminology and 
nomenclature. Ever since the formulation of phrenology by Gall in the 19th century, efforts have 
been made to link certain brain functions to anatomical delineated brain areas, referred to as 
functional segregation. Discoveries of brain areas with specific functions are usually made by 
finding activation of the area during a specific task or the inability of performing this task upon 
trauma in the specific area by using (functional) imaging modalities. On the other hand, 
research can be focused on functional integration or connectionism, which is explored by 
connectivity measures and tackles the issue of how different brain regions are connected and 
communicate with each other. 

Brain connectivity is often divided into three types: structural, functional and effective 
connectivity. Structural or anatomical connectivity deals with the physical neural connections, 
often investigated using Diffusion Tensor Imaging (DTI). Assessing non-structural connectivity 
seems to be more daunting. One approach is to use functional connectivity, which is defined as 
the temporal correlations between spatially remote neurophysiological events [98]. It can be a 
theoretic information measure, which is essentially descriptive in nature. Often, this reduces to 
testing the null hypothesis that activities in two regions share no mutual information. Functional 
connectivity is therefore model-free. Integration is often better represented by effective 
connectivity, defined as the influence one neural system exerts over another, either synaptically 
or at population level [99]. This consists of the intuitive notion of coupling or directed causal 
influence. Therefore, effective connectivity is sometimes termed ‘directed functional 
connectivity’. Effective connectivity depends explicitly on a model of the influence that one 
neural system exerts over another. Effective connectivity analysis can be interpreted as the 
comparison between models with and without certain connections to explain the cause of the 
observed data. To summarize the difference between functional and effective connectivity, the 
need for a model is a crucial point because it emphasizes the shift from a description of what 
the brain does (functional) to a theory of how it does it (effective) [100]–[102]. 

Brain signals used in connectivity measures can be recorded by EEG or fMRI time series. As 
discussed in section 2.2.2, these modalities have their own advantages and drawbacks. EEG is 
commonly used for its superior temporal resolution (a few ms) whereas fMRI excels in spatial 
resolution performance (a few mm). 
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2.5.2 Structural connectivity 

Physical connections between brain regions can be studied using structural or anatomical 
connectivity. Diffusion Weighted Imaging (DWI) can be used to identify and visualize these fiber 
pathways [103]. This modality uses the diffusion of water molecules in vivo to image these 
tracts. As opposed to the free diffusion of water in a container, diffusion of water is easier in 
the direction of a tract than in the orthogonal direction. Using this technique in different 
directions results in Diffusion Tensor Imaging (DTI). Finally, by using tractography, the 
gathered directional information can be converted into white matter fiber pathways [104]. 
Structural connectivity can be used to detect altered fiber tracts related to disease. It can also 
help to identify key tracts to avoid during resective surgery [13]. 

 

 
Figure 2.23: Example of the visualization of fiber pathways in the brain using tractography [105]. 

2.5.3 Functional connectivity 

Functional connectivity deals with the temporal correlations between spatially remote events. 
Typically, two brain signals x(n) and y(n) are considered. Most functional connectivity measures 
are undirected, meaning the measures are symmetric: the connection from signal x to y is the 
same as from y to x. Essentially, there are three types of functional connectivity measures: 
linear, nonlinear and information-based. The following description is mainly based on [13], [106], 
[107]. 
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2.5.3.1 Linear measures 

Three linear measures are described here: correlation coefficient, coherence and partial 
coherence. Respectively, they incorporate two signals in the time domain, two signals in the 
frequency domain and multiple signals in the frequency domain. 

Correlation 

The correlation coefficient (ρxy) is a simple and easy to use measure. It is calculated by the 
following equation: 

 
 !!" = !

! ! − !!! ! − !!!
!!!!

 

= ! 1! !
(! ! − !!!)(! ! − !!!)

!!!!

!

!!!
 

 

 
 

(13) 

With N the number of samples, E[x] the expected value of x, σx and σy the standard 
deviations and μx and μy the mean values of the respective signals. Resulting values of the 
correlation coefficient lie between -1 and +1 meaning respectively full negative correlation and 
full positive correlation. A result equal to 0 indicates no correlation. 

Cross-correlation and Coherence 

The cross-correlation coefficient indicates the correlation between two signals with regard to a 
certain time lag τ: 
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In order to express the coherence, the cross-spectral density function is calculated by taking 
the Fourier transform of equation 5.2. Therefore, the coherence expresses the interdependency 
of two signals in the frequency domain: 
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Due to the normalization by the individual autospectral density functions, the resulting 
coherence values lie between 0 and 1. At each frequency, a value close to 1 indicates high 
dependence between the signals whereas a value of 0 indicates complete independence. 



Chapter 2 | Literature review 

 37 

Spectral density function and Partial Coherence 

Comparison between K signals xi(n) is possible by using partial coherence. In order to calculate 
this measure, the spectral density function is derived by the cross-spectral density functions of 
all pairwise combinations: 
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The partial coherence indicates the coherence remaining between two time series after the 
influence of all the other time series is removed from each of the first two [108]: 
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Where Mij(f) is the minor of the spectral density function S(f), which is the determinant of 

S(f) without the ith row and jth column. 

2.5.3.2 Nonlinear measures 

Due to several nonlinear neural processes, nonlinear functional connectivity measures were 
introduced. They provide complementary information under strict assumptions [106]. Usually, 
nonlinear measures investigate phase synchronization between signals, e.g. in the Phase Locking 
Value [109]. 

2.5.3.3 Information-based measures 

Information theory resulted in some information-based measures that can include both linear 
and nonlinear statistical dependencies. An important concept is the entropy which measures the 
uncertainty or impurity of a certain variable [110]–[112], e.g. the Shannon entropy of a set of 
probabilities of signal x: 
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With pi indicating the probability that signal x has value xi, calculated from an M-bin 
histogram. The entropy can be used to define information-based measures such as the 
information gain or mutual information (MI) [111], [112]: 
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With pij the joint probability of x and y, derived from the joint histogram. Correct estimation 
depends highly on the amount of samples and the size of the histogram bins [113]. MI is zero 
for complete independent processes and equal to the entropy for identical signals. MI is often 
used in brain machine interfaces to perform feature selection or to prune in decision trees [111], 
[112]. 

2.5.4 Effective connectivity 

An important drawback of functional connectivity is the lack of causation. Effective 
connectivity, often termed directed functional connectivity, can overcome this drawback and 
can describe the direction of the information flow in various ways: model based techniques such 
as structural equation modeling [114] and dynamic causal modeling [115] or derived from the 
data as with Granger causality measures [116]–[118]. 

Granger causality was derived by Clive Granger and was originally used in econometrics. A 
time series is said to Granger cause a second one if inclusion of the past values of the first into 
the modeling of the second significantly reduces the variance of the modeling error. This means 
that the past values of a signal x1 should contain information that help to predict x2 better than 
by past values of x2 alone. This dependence can be investigated separately for both directions, 
making it a directed functional or effective connectivity measure [119]. 

The focus in this work will be data-driven effective connectivity techniques. Autoregressive 
modeling will be introduced. Similarly as was the case for functional connectivity, three 
categories exist: linear, nonlinear and information-based measures. Only linear measures, as they 
are used in this work, are considered here with their respective extension to include time-
variances. For the others, the reader is referenced to [13]. This section is based on [13], [107], 
[120]–[123]. 

2.5.4.1 Autoregressive modeling 

In order to assess the Granger causality, autoregressive (AR) models are often used. In these 
models, the signals are represented as a linear combination of their own past plus noise. Granger 
causality then reduces to comparing the univariate AR model fit to the bivariate model fit. A 
univariate AR model can be described by the following equation with p the model order, a(m) 
the model coefficients and e(n) the error. The model order defines the number of past time 
points that are included to estimate the current sample. 
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For two signals, an analogous but bivariate AR model can be constructed: 
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Or in matrix formulation: 
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Although, equation 23 is represented for two signals, it can be extended to K signals, in which 
case a multivariate autoregressive (MVAR) model is obtained: 
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A critical parameter is the model order p. It can be estimated using a criterion like the Akaike 
Information Criterion [124] or Schwarz’s Bayesian criterion [125]. Coefficients are then 
estimated by the least squares method or method of moments [126]. Relations between the 
signals in the frequency domain are obtained by the Fourier transformation of equation 24: 
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With fs the sampling frequency and A(0) the negative of the K x K identity matrix. The 

equation can be rewritten as: 
 

 ! ! = !!! ! !! ! = !! ! !!(!) 
 

(27) 

H(f) is defined as the transfer matrix of the MVAR model. It is a K x K matrix in which Hij(f) 

estimates the information flow from signal xj to xi at frequency f. 

The different parameters in the above representation of the AR models can be used to 
describe several effective connectivity measures: G-causality, Directed Coherence (DC), 
Directed Transfer Function (DTF) and Partial Directed Coherence (PDC). These measures 
include respectively two signals in the time domain, two signals or multiple signals in the 
frequency domain, and DTF and PDC both include multiple signals in the frequency domain. 

2.5.4.2 G-causality index 

As stated before, the bivariate Granger causality compares the univariate AR models (Vx|x) with 
the bivariate model (Vx|xy): 
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If past values of y do not improve the prediction of x, then G approaches 0 since Vx|xy 

approaches Vx|x. The better the prediction by including past values of y, the larger G will be. As 
indicated before, Gxy can be calculated similarly, indicating that the G-causality index is a direct 
functional or effective connectivity measure. 

2.5.4.3 Directed Coherence 

Analogous to Coherence and Partial Coherence, the Directed Coherence can be calculated, but 
with the inclusion of directionality [127], [128]. 
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Since this measure is bivariate, each pair of signals has to be considered separately [129].  
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2.5.4.4 Directed Transfer Function 

The DTF was defined in 1991 and is calculated as follows: 
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With normalization condition: 
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Which signifies that the total incoming information flow into each channel is equal to 1 at 
each frequency. DTF consists of information with respect to the cascade of information flow. 

2.5.4.5 Partial Directed Coherence 

In 2001 Partial Directed Coherence was introduced as multivariate directional connectivity 
measure only showing direct relations between the signals [122]: 
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With normalization condition: 
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Which indicates the total outgoing flow from each channel is equal to 1 at each frequency. 

PDC can identify the direct flows of information much better than DTF. 

2.5.4.6 Integrated and Full-Frequency Adaptive DTF and PDC 

In current research, new concepts are developed to be able to apply connectivity measures to 
brain signals. Therefore, time-dependent versions of DTF and PDC were introduced: the 
Adaptive Directed Transfer Function (ADTF) and the Adaptive Partial Directed Coherence 
(APDC) [123], [130].  

Time-variant autoregressive modeling 

Instead of MVAR models, time-variant autoregressive (TVAR) models are introduced: 
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With K the number of signals, p the model order, x(t) = [x1(t) … xK(t)]T the K x 1 signal 

matrix, e(t) the K x 1 matrix containing the uncorrelated noise and Am(t) the K x K coefficient 

matrix for delay m at time point t. Estimation of the TVAR coefficients is an ill-posed problem 
and can be done by Kalman filtering [13], [131], [132]. 

Similarly as done for the non-time-dependent MVAR models, equation 32 can be Fourier 
transformed: 
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Eventually, one can note the following system equation: 
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Matrix H(f,t) is called the time-variant transfer matrix of the system. Each element Hij(f,t) 

expresses the amount of information flow from signal xj to xi at frequency f at time point t. 

 

Adaptive DTF and PDC 

Several measures can be defined based on the variables from the TVAR model. The Adaptive 
Directed Transfer Function (ADTF) is defined as follows [131], [132]: 
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Similarly, the APDC can be defined [123]: 
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Both APDC and ADTF are normalized similar to PDC and DTF meaning that for ADTF 
incoming information flow into each channel is equal to 1 at each frequency at each time point 
and analogously for the outgoing flow in APDC. 
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The integrated ADTF and APDC 

The integrated ADTF or iADTF is the integration over a specific frequency band of the ADTF. 
It has been used to localize the epileptic focus in patients [123], [130], [133]–[135]: 
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Normalization assures that the sum of incoming information flow into a channel at each time 
point is equal to 1. The values of iADTF lie within [0,1]. Analogously, iAPDC can be defined as 
well: 
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Normalization here assures that the sum of outgoing information flow into a channel at each 
time point is equal to 1. 

The full-frequency ADTF and APDC 

In the previous section on iADTF, the normalization at each frequency disregarded the 
frequency content at other frequencies of the interval. A new measure is introduced where 
normalization incorporates the frequency information of all frequencies in the defined frequency 
interval [136]: 
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Normalization is done in such a way that the sum of incoming information flow into a 
channel at each time point is equal to 1. Similarly, ffAPDC can also be defined: 
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With normalization assuring the sum of outgoing information flow into a channel at each 
time point equals 1. 

2.6 Graph theory 

Graph theory is the study of graphs, which are mathematical structures formed by vertices (or 
nodes) and edges connecting the vertices. Simple graphs are therefore defined by a set of 
vertices and a set of connections between these vertices [137]. An example is given Figure 2.24. 

 
Figure 2.24: Example of a simple graph defined by vertices v and edges e [138]. 

Some extensions of the simple graph exist. Here, directed and weighted graphs are defined since 
these are useful in the performed research. A directed graph is a simple graph where the edges 
have a direction associated with them. An example is shown in Figure 2.25. 

 
Figure 2.25: Example of a directed graph [138]. 

A weighted graph is a graph where edges are labeled with a certain weight (Figure 2.26). 
Typically, these weights are real numbers. Depending on the application, the significance of the 
labels is defined. For example, the shortest path between two vertices defines the path between 
two vertices such that the sum of the weights of the edges used is minimized. Weighted graphs 
can be directed or undirected. 
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Figure 2.26: Example of a weighted directed graph [138]. 

Several measures, parameters and characteristics can be used to describe and analyze graphs. In 
this research, betweenness centrality is used as measure. Centrality measures indicate the 
importance of components within a graph. Betweenness centrality is a type of centrality 
measure that calculates the number of times a certain node is passed in the shortest paths from 
all nodes to all other nodes. Vertices that have a high probability to occur on a randomly chosen 
shortest path have a high betweenness value; the higher the betweenness value, the larger the 
importance of a node in a graph. Betweenness centrality can be defined for both undirected and 
directed graphs, but since directed graphs are used in this research, only the definition for the 
latter is defined here: 
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In this equation Cb(vj) is the betweenness centrality value of node j, n is the amount of nodes 
in the graph, gik is the amount of shortest paths connecting node i to k and gik(vj) the amount 
of shortest paths from i to k that contain the node j [10]. 
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Chapter 3  

Methods 

3.1 Introduction 

In this master thesis, the effect of VNS on the brain of epilepsy patients is researched. The 
main focus is on identifying differences in brain activity and functioning between epilepsy 
patients in whom reduced seizure frequency due to VNS is observed (responders) and patients 
that experience little or no benefit (non-responders). Brain activity is measured with EEG and is 
investigated at three levels: sensor level, source level and brain connectivity level. For each of 
these levels, specific data is generated or calculated for two different conditions: VNS switched 
Off and VNS switched on. This allows elucidation of differences in brain activity and functioning 
between responders and non-responders due to the VNS treatment. Ultimately, significant 
differences could be helpful to unravel the mechanism of action (MOA) of VNS or to assess the 
efficacy of VNS treatment pre-operatively to avoid superfluous and risky implantation surgeries. 

As discussed in section 2.4.6 of the literature review, current research indicates an important 
role for the locus coeruleus-norepinephrine (LC-NE) system in the therapeutic effect of VNS. 
Assessing the activity of the LC-NE system can be done indirectly by parameters modulated by 
the amount of noradrenergic signaling present in the brain. One of these parameters is the P3 
or P300 component of the event-related potential (ERP) and it can be extracted from an EEG 
recorded during an auditory oddball experiment [9], [139]–[146]. 

Measuring and analyzing the P300 component of the ERP for both groups (responders and 
non-responders) and conditions (VNS Off and On) allows identifying differences in the influence 
of VNS on the LC-NE activity between responders and non-responders. This level of analysis is 
limited to the data directly recorded from the EEG and is further referred to as the sensor level 
analysis. 
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Estimating active brain regions during the auditory oddball experiment can be achieved by 
electrical source imaging (ESI). The obtained activity patterns are analyzed to identify 
differences with respect to group and condition, which is further referred to as the source level 
analysis.  

The brain activity that is assessed in the source level analysis can also be used to go one step 
further in a brain connectivity analysis. Here, the interplay and functional connections between 
the active brain regions is investigated. Functional and effective connectivity measures indicate 
respectively the strength of functional interconnections between specific brain regions and the 
influence one neural system exerts over another. On top of that, the overall brain network can 
be analyzed using graph theory measures. In this research, betweenness centrality is used to 
identify important brain areas within the overall brain network. Differences in brain connectivity 
and network are studied to identify differences between responders vs. non-responders and VNS 
On vs. Off and this is further referred to as the brain connectivity analysis. 

 

3.2 ERP and auditory oddball task 

Event-related potentials or ERPs are defined as the potentials measured due to a brain response 
after a reference event. Typically, ERPs are extracted from an electroencephalogram (EEG). In 
practice this means that certain voltage deflections can be observed in the EEG after a given 
sensory stimulus is presented to the subject. ERPs consist of several components (Figure 3.2). 
Each component of the ERP has its specific characteristics and can be divided in smaller 
subcomponents. The P300 or P3 component is often used in research. P300 signifies that this 
wave is positive (P) and occurs around 300 ms after stimulus in young adults. P3 is often used 
as an alternative name and indicates that it is the third major positive peak in the ERP. The 
P300 or P3 wave contains a frontal P3a component and a parietal P3b component. The P300 
wave can be evoked by a so-called oddball task where patients perform a task upon sensing a 
target stimulus but not when a standard stimulus is presented [147]. The meaning of the P300 
wave is still under investigation, but much research has been done on factors influencing the 
amplitude and latency of this component. For example, the amplitude of the P300 wave is 
known to depend on the probability of the task-related target stimulus relative to the non-
target-related standard stimulus. The amount of norepinephrine signaling in the brain also 
modulates the amplitude of the P300 wave and will be the underlying rationale for the data in 
this research [9], [148]. 
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Figure 3.1: The auditory oddball paradigm. Patients press a predefined button only upon hearing a target 

tone (T) but not upon a standard tone (S). An ERP is generated after each stimulus. 

 
The auditory oddball paradigm is a typical experimental paradigm to evoke a P300 wave in 

the recorded EEG. It consists of patients pressing a button in response to target tones (low 
frequency) and not to non-target or standard tones (high frequency) as presented in Figure 3.1 
[147]. The P300 wave is larger after a task-related target stimulus (Figure 3.3). Due to the 
small single-trial response, the trials are often averaged (Figure 3.2).  

Data used in this research was recorded by means of EEG during an auditory oddball 
experiment containing a series of 504 standard (or non-target) and 56 target tones presented 
randomly to the subject with 1s interstimulus intervals. This was done twice for all patients: 
once when VNS was switched On and once when VNS was switched Off, which allows to 
interpret the changes in P300 amplitude (and thus LC-NE activity) due to VNS [8]. To avoid 
learning/training as a cofounding factor, some patients started with VNS On trials, while others 
began with VNS Off trials. 

3.3 Patients 

Data of twenty epilepsy patients was recorded by De Taeye et al. by means of a scalp video-
electroencephalogram in the Reference Center for Refractory Epilepsy, Ghent University, Ghent, 
Belgium [8]. Patients fulfilled three requirements: (1) at least 18 months of VNS treatment for 
refractory epilepsy, (2) older than 18 years, and (3) full-scale IQ score ≥ 70 on the Wechsler 
Adult Intelligence Scale, Third Edition. The first requirement stems from the fact that VNS 
efficacy tends to increase up to 18 months after implantation, as discussed in section 2.4.4 of 
the literature review. Patients were classified based on the reduction in mean monthly seizure 
frequency as being either a responder (>50% reduction) or a non-responder (≤50% reduction). 
This resulted in 10 responders and 10 non-responders. 
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All of the included patients had been implanted chronically with a VNS device (Cyberonics, 
Houston, TX, USA) and time since start of the VNS treatment varied between 1.5 and 16.2 
years. Stimulation parameters were individual and gradually adjusted according to a standard 
ramping-up scheme as discussed in section 2.4.4 of the literature review. No significant 
differences in stimulation parameters were present between the groups of responders vs. non-
responders. More details on the patients and stimulation parameters can be found in the original 
research by De Taeye et al. [8]. 

3.4 Electrophysiological recordings 

A Micromed System Plus (Micromed, Mogliano, Italy) in combination with Ag/AgCl electrodes 
was used to record the EEG. The electrodes were placed at 60 standard locations according to 
the extended International 10-20 System using an electrode cap (WaveGuard EEG cap system, 
Eemagine, Berlin, Germany). The online reference electrode and the ground electrode were 
placed at electrode locations CPz and AFz respectively. Two facial electrodes on inferior and 
superior areas of the left orbit recorded a vertical electrooculogram (EOG). An 
electrocardiogram (ECG) was recorded using 2 ECG electrodes above the heart. In order to 
monitor the VNS artifacts, two additional electrodes were placed in the neck cranial and caudal 
with respect to the vagus nerve electrode. The EEG, EOG, ECG and VNS signals were digitized 
online using a sampling frequency of 1024 Hz, antialiasing filter of 250 Hz, gain of 50 dB and a 
resolution of 16 bits. 

3.5 Processing 

3.5.1 Pre-processing 

Extracting the ERP and P300 component from the measured EEG signals requires further 
processing of the data. This was done by a commonly used sequence of data transformations 
and was performed separately for each patient and condition [149]. First, the data was filtered 
by a 50 Hz notch filter to reduce interference from the electricity grid and by a band-pass filter 
between 0.1 and 30 Hz with slope of 12 dB/Oct to reduce other unwanted influences such as 
muscle artifacts. Next, the data was downsampled to 256 Hz. Artifacts coming from eye 
movements, eye blinks, heartbeat and VNS signals were removed using the EOG, ECG and VNS 
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signal measurements. Performing Independent Component Analysis (ICA) and subsequent 
removal of the components generating the artifacts of the eyes, heartbeat and VNS removed 
them from the EEG data. Then, the data was re-referenced to the average of the recorded EEG 
channels. All pre-processing was performed in BrainVision Analyzer 2.0 (Brain Products GmbH, 
Gilching, Germany). 

3.5.2 Epoching 

After the initial pre-processing steps were performed, the EEG was cut into small segments 
(epochs) with a single epoch starting 200 ms pre-stimulus and ending 1000 ms post-stimulus. 
An example of the principle of epoching can be seen in Figure 3.2. The data used in this 
research was recorded during a series of 504 standard (or non-target) and 56 target tones. This 
means that 560 epochs were created and labeled by the appropriate marker (target or 
standard). The epochs were baseline corrected on the 200 ms pre-stimulus interval. All epoching 
was performed in BrainVision Analyzer 2.0 (Brain Products GmbH, Gilching, Germany). 

 

 
Figure 3.2: Event-related potentials (ERPs) are generated after a certain sensory stimulus. Recording is done 
by EEG. The EEG is split into segments or epochs with respect to the presented stimuli (left). Averaging all 

trials reveals different components in the ERP (right). Adapted from [148]. 

3.5.3 Averaging 

Epochs after a single stimulus are often noisy and an ERP can be hard to detect (as in the 
example on the left in Figure 3.2). Therefore, epochs belonging to the same type of stimulus 
are averaged together. This results in two average epochs for each patient and each condition: 
one for the non-task-related standard stimulus and one for the task-related target stimulus. Due 
to averaging, the signal-to-noise ratio is increased and the P300 component of the ERP is 
visible. An example can be seen in Figure 3.3 for one patient and one condition in the Pz 
channel. It is clear that the P300 wave is mainly visible after task-related target stimuli and not 
after non-task-related standard stimuli.  
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To isolate the P300 component from other ERP waves, a target-standard difference waveform 
is calculated since other ERP components are thought to show no or much less differences 
between the standard and target epoch in auditory oddball experiments. The difference 
waveform is calculated by subtracting the average epoch for the standard stimulus from the 
average epoch for target stimulus for each patient, each condition and each EEG channel 
separately. The difference waveforms form the basis for subsequent sensor and source space 
analyses and represent the difference in P300 wave after target stimuli compared to standard 
stimuli. All averaging was performed in BrainVision Analyzer 2.0 (Brain Products GmbH, 
Gilching, Germany). 

   
Figure 3.3: Average epoch after task-related target stimulus and non-task-related standard stimulus for the 

auditory oddball experiment. Time is given relative to the moment of stimulus. The P300 wave is larger after 
a task-related target stimulus. 

3.5.4 P300 features 

 
Figure 3.4: Schematic representation of the features extracted at the sensor level from the target-standard 
difference waveform. For each patient and each condition the P300 latency is determined in the Pz channel. 
The amplitude of the P300 wave in each channel at the peak moment in the Pz channel is extracted. The 
latency in the Pz channel and the P300 amplitude in all EEG channels are the features for the statistical 

analyses at sensor level.   

Several characteristics or features of the P300 wave in the target-standard difference waveform 
can be identified and analyzed (Figure 3.4). The moment of the peak in the P300 wave or peak 
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latency was determined automatically using Analyzer in the 300-900 ms post-stimulus interval 
at the parietal midline electrode Pz since the P300 wave is known to be mainly present 
parietocentrally [8]. At this latency the amplitude of the P300 wave in all EEG channels was 
extracted. Extraction of the P300 amplitude in all EEG channels was performed for all patients 
and all conditions using Matlab R2012a (Mathworks, Natick, MA, USA). These features are 
used to perform statistical analyses at the sensor level. 

3.5.5 Electrical source imaging 

To analyze the data at source level, the activity in the brain is estimated for each patient and 
each condition. Therefore, electrical source imaging (ESI) was performed from the EEG channel 
amplitudes in the respective target-standard difference waveform in an 80 ms interval around 
the P300 peak using Matlab and statistical parametric software (SPM, Wellcome Trust Centre 
for Neuroimaging, London, Great Britain). A detailed description of the ESI principle is given in 
section 2.2.3 of the literature review. The used head models for ESI were patient-specific for 14 
patients (5-layered segmentation based on individual MRI images: scalp, skull, CSF, gray 
matter, white matter). For 6 patients a template head model (SPM’s 4-layered T1 template) 
was used since their MRI images were too poor. A multiple sparse volumetric priors algorithm 
based on region growing in gray matter was used, which was developed by Strobbe et al. in the 
Medical Imaging and Signal Processing (MEDISIP) research group, Ghent University, Ghent, 
Belgium [150]. The distributed source model in this approach consists of gridpoints in the gray 
matter (not in the cerebellum) with a spacing of 3 mm. Therefore, a cubic voxel containing one 
dipole has a volume of 27 mm3. Source priors were grown in the gray matter and are volumetric 
bell-shaped. Full-width at half maximum (FWHM) depends on the maximum distance r to a 
seed point and smoothing σ. The maximum distance r was chosen to be 7 mm and the 
smoothing σ was 0.7. These values proved to be successful in previous research [151]. The 
number of patches used as prior was 512. 

To compare the resulting dipole activity patterns or brain activity between patients and 
conditions, all activity was projected (warped) onto the template head model by aligning the 
individual head models with the template head model. Warping was achieved by using SPM. 
First, the individual head models were reoriented so that their origin was situated on the 
anterior commissura. Next, the individual head models were coregistered with the template head 
model as reference image. Normalized Mutual Information was used as objective function for 
the coregistration. Default SPM settings for separation, tolerance, histogram smoothing and 
interpolation parameters were used. After the coregistration, the images were normalized with 
default SPM settings and the template head model as template image. Lastly, the images were 
smoothed with FWHM of 8 in each coordinate. 
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3.5.6 Brain connectivity 

The analysis of the brain activity can also be extended to investigate how the active brain 
regions interact with each other. In research, the importance of including connectivity and 
whole-brain network analyses in understanding epilepsy is prominently present [152]–[155]. This 
third level of analysis combines source imaging with connectivity measures. This consists of 
determining differences in the connectivity between different brain regions with respect to group 
and condition. To do so, first ESI was performed at each sample of a 9s interval of the original 
pre-processed EEG channels. This interval was chosen to include both standard and trigger 
stimuli. To calculate connectivity between brain regions, so-called Regions of Interest (ROI) are 
identified. The Automated Anatomical Labeling (AAL) template was used to define 116 
standard regions of interest (ROI) in the brain volume (Appendix Table A) [156]. The images at 
each interval are warped to the template model as explained in the previous section. Each dipole 
from the source model is then linked to the appropriate brain region using the AAL toolbox for 
Matlab (Groupe d’Imagerie Neurofonctionnelle, Bordeaux, France). Performing a Single Value 
Decomposition (SVD) analysis for the dipole time series in each ROI with preservation of the 
first component, extracted a single activity time series for each brain region or ROI. 

Correlation, a functional connectivity measure, is calculated between the two time series in all 
combinations between two different brain regions for all patients and all conditions. Statistical 
analysis was performed to identify differences in correlation between brain regions with respect 
to group and condition. More information on the correlation is given in section 2.5.3 of the 
literature review. 

Next to correlation, also the effective connectivity measures iADTF, iAPDC, ffADTF and 
ffAPDC were used. These measures were applied similarly as in [13] and are discussed in section 
2.5.4.6 of the literature review. To reduce the computation time, the 116 ROIs from the AAL 
template were reduced to 27 larger ROIs (Appendix Table A). These were chosen as the 
second-to-last level of regional split in the AAL template as presented in [156] and they were 
determined by combining the activity time series from the corresponding 116-regional ROIs by 
SVD. A model order of 10, a Kalman smoother with value 100 and an update coefficient of 
0.001 were used.  

A last analysis on the brain connectivity level was performed by analyzing the betweenness 
centrality of all brain regions. This measure requires representing the brain network as a graph. 
In this research, the 27 ROIs as used for the effective connectivity were used as nodes of the 
graph and the strengths of the connections as calculated by the effective connectivity measures 
were used as the edge labels or connection weights for the connections between the nodes. To 
reduce computation time, the warping was done inversely, meaning that the ROIs of the 
template head model were warped onto the individual head models. The betweenness centrality 



Chapter 3 | Methods 

 54 

value of each node indicates the importance of this region in the global brain network. More 
information on graph theory and betweenness centrality is given in section 2.6 of the literature 
review. 

3.5.7 Statistical analysis 

Mixed-model ANOVA, post-hoc t-tests and multiple comparison corrections 

In the following analyses, several ways of analyzing data in a statistical manner are used. In this 
research, each data point belongs to one of the following 4 categories: responders with VNS 
On, responders with VNS Off, non-responders with VNS On and non-responders with VNS Off. 
Therefore, all data can be sorted based on two factors: the factor ‘group’ (responder or non-
responder) and the factor ‘condition’ (VNS On or Off). The factor ‘group’ is a so-called 
between-subjects factor because the subjects (patients) present in the responder category are 
not the same patients as in the non-responder category. On the other hand, the factor 
‘condition’ is a within-subjects factor because the patients present in the VNS On category are 
the same as the patients present in the VNS Off category because for all patients an EEG was 
recorded twice (once when VNS was switched On and once when VNS was switched Off).  

Therefore, all data in this research can be analyzed in three ways, based on the factor of 
interest. This analysis is performed by using a so-called mixed-model analysis of variance 
(ANOVA), which allows identifying differences in terms of two or more different types of 
factors. A first comparison can be made between the two conditions independent of the group. 
This means that the data is analyzed to identify differences between the situation where VNS 
was switched On in comparison with VNS Off without taking into account if the patients where 
responders or non-responders. This comparison is termed ‘main effect of condition’. Similarly, 
data can be analyzed to identify differences between responders and non-responders independent 
of VNS being switched On or Off, which is called the ‘main effect of group’. Lastly, mixed-
model ANOVA also analyzes the so-called interaction effect. This interaction effect indicates if 
the difference in one factor depends significantly on the level of the other factor and vice versa. 
This means that the interaction effect indicates whether the differences between responders and 
non-responders depend significantly on whether VNS was switched On or Off.  

The main effect of group, the main effect of condition and the interaction effect are the 
three analyses that are incorporated in a mixed-model ANOVA. A significance level of 0.05 is 
used in all ANOVA analyses, meaning that a result is labeled as ‘significant’ if the probability 
that the data in both categories is actually sampled from the same population distribution is less 
than 5%. 

After a mixed-model ANOVA is performed, the results can be analyzed in greater detail by so-
called post-hoc t-tests. Of the four categories introduced in the previous paragraph, t-tests can 
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compare two with each other. This means that four t-tests are performed. A first t-test 
compares the categories VNS On and Off (condition) for responders, meaning that differences 
between the situation when VNS was switched On and when VNS was switched Off are 
compared for responders only. Similarly, a second t-test compares the VNS categories 
(condition) for non-responders. Thirdly, the data can be compared between responders and non-
responders (group) for VNS On only and fourthly this comparison between groups can also be 
done for VNS Off. The t-tests where the effect of condition is investigated for one level of the 
group factor are performed by a paired samples t-test because the patients are the same in the 
two compared categories. On the other hand, investigating the effect of group for one level of 
condition is done by an independent samples t-test because the patients are not the same in 
both categories. All t-tests performed in this research are two-tailed meaning that the analyses 
investigate whether the data differs significantly between categories. One-tailed analyses can be 
used to detect significant increases and decreases, but it is required to know in advance which 
of the two groups will have higher values, which is not the case in this research. In this research, 
all t-tests are performed with a significance level of 5%. 

Just by chance, due to the significance level of 5%, when many comparisons are made between 
the same patients, several comparisons (5% of all comparisons) will deliver significant results. 
These significant results by chance are termed Type I errors. Several techniques are developed 
to overcome this ‘multiple comparison problem’. No golden standard exists for this problem. In 
this research, the Bonferroni and the Benjamini-Hochberg correction are applied. The 
Bonferroni correction reduces the significance level for a single comparison to make sure that 
the probability that one or more of all the comparisons made result in a Type I error, is limited 
to 5%. This is done by dividing the significance level of 5% by the amount of comparisons made 
and using this new value as significance level for each single comparison [157]. Therefore, the 
Bonferroni correction has very low power (probability of detecting the difference if there is a 
true difference) for a large amount of comparisons. Another option to limit the false discovery 
rate by chance is to use the Benjamini-Hochberg approach. By choosing a certain parameter 
(the false discovery rate) only a certain portion of the results is kept as a true significant result 
[158]. 

Sensor level 

The statistical analysis for the P300 amplitude and latency features was performed using SPSS 
21 (SPSS, Chicago, IL, USA). A mixed-model ANOVA and post-hoc t-tests as explained above 
are used for all features. Data of patient 7 was not used due to poor P300 presence.  

Logistic regression analysis was performed using SPSS to test whether features could be 
identified that are good indicators to differentiate responders from non-responders. In logistic 
regression, a probability model is built based on a certain logistic function. Logistic regression is 
chosen since it can be used to separate categorical outcome variables, while other regression 
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techniques require continuous outcome variables [159]. Thus, in logistic regression, the 
probability of a certain level of the categorical variable is regressed with a certain feature. In this 
research, the created model indicates the probability that a certain value of a feature belongs to 
a (non-) responder. Therefore, the model can be used to separate responders from non-
responders. In this research, logistic regression is performed by using the binary logistic 
regression functionality of SPSS. Logistic regression is calculated for those features that proved 
to vary significantly between responders and non-responders in the post-hoc two-tailed t-tests 
for the P300 amplitude. For features that proved to exhibit a significant effect of condition, the 
relative amplitude increase from VNS Off to On was used as feature for the logistic regression 
analysis. Odds ratios (OR) were calculated with 95% confidence intervals (CI). The odds ratio 
indicates the change in probability for a certain value to belong to a (non-) responder by a 1% 
increase of the value. 

Receiving operating characteristic (ROC) curve analysis is performed in SPSS for those 
features that could be used to obtain a significant logistic regression model. A ROC curve 
indicates the sensitivity and specificity of a binary classifier for different cut-off values. The 
sensitivity is defined here as the proportion of values associated with responders that are 
actually classified as belonging to responders. The specificity is defined as the proportion of 
values associated with non-responders that are actually classified as belonging to non-
responders. Also the positive and negative predictive value can be calculated. The positive 
predictive value is the proportion of values classified as belonging to responders, which actually 
belong to responders. The negative predictive value calculates the same for non-responders. 
These are important measures to indicate the accuracy with which a certain feature can be used 
to classify patients as being either responder or non-responder. 

Cross-validation allows estimating how accurate an unknown patient can be classified as 
being either a responder or non-responder based on a certain feature. In cross-validation, the 
patients are divided in two groups: a validation set and a training set. First, a classification 
model is built based on the values present in the training set. Then, the patients in the 
validation set are classified, using the model that was built with the training set, as being either 
a responder or non-responder. The amount of patients of the validation set that are classified 
correctly indicate the estimation of the accuracy with which an unknown patient can be 
classified as being either a responder or non-responder using the given feature. In this research, 
a 10-fold cross-validation was calculated, meaning that the patients are divided in 10 subsets (9 
sets of 2 patients and 1 set of 1 randomly chosen patient). Next, cross-validation was 
performed 9 times. In each of the 9 iterations, a different two-patient subset is used as 
validation set and the other 9 subsets are used as training set. Therefore, in each iteration two 
patients are classified, meaning that for each iteration the accuracy can be either 0%, 50% or 
100%. After the 9 iterations, 18 patients are classified once; the randomly chosen one-patient 
subset is not classified. The results of these 18 classifications can be modeled by a binomial 
distribution since for each patients, the result can be either good or wrong. Combining the 
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results of the 10-fold cross-validation in a binomial distribution allows calculating mean and 
standard deviation for the cross-validation accuracy using a certain feature. The mean and 
standard deviation represent the estimation of the accuracy with which an unknown patient can 
be classified as being either a responder or non-responder. Cross-validation is performed in 
Matlab by using a generalized linear model with linear model specification for binomial 
distributions and with a logit link function. Both single-channel features and two-channel 
features are used. In the two-channel features, the P300 amplitude of two EEG channels is 
either used simultaneously or combined into a new single feature. No more than two features 
are used simultaneously due to the small amount of data points. Combining more than two 
features into a new single feature is not done here due to lack of time. 
 
Source level 

A flexible factorial design for the brain activity was performed using a 2nd-level analysis in SPM. 
Contrast weights were defined as given in [160] for flexible factorial designs. P values were not 
FWE corrected. Data of patient 3 was not used due to irregularities in the head model. 
Visualization of the active dipoles was done using the SPM Anatomy toolbox 
(Forschungszentrum Jülich GmbH, Jülich, Germany). 

 
Functional connectivity 

Using the AAL template, 116 ROIs were defined on the template head model (Appendix Table 
A) [156]. By using the warping technique and SVD as described above, for each of these ROIs 
one activity time series was calculated. The correlation value was calculated using Matlab 
between the two time series for all combinations of two ROIs. Since correlation is an undirected 
measure, this resulted in 6670 correlation values between two different ROIs for each patient 
and condition. These values were analyzed by a mixed-model ANOVA and post-hoc two-tailed 
t-tests similar as for the sensor level. To account for the multiple comparisons, the results of 
the post-hoc two-tailed t-tests were analyzed twice for two different correction techniques: (1) 
Bonferroni correction (family wise error rate of 0.05) and (2) False Discovery Rate was 
controlled by using Benjamini-Hochberg approach (false discovery rate of 0.1 and significance 
level of 0.05). 

 
Effective connectivity 

To reduce the computation time, the 116 ROIs were reduced to 27 ROIs as indicated in section 
3.5.6. The effective connectivity analysis was performed in 5 different frequency bands. These 
frequency bands are indicated by δ, θ, α, β and γ, indicating the following frequency bands: 0-4 
Hz, 4-8 Hz, 8-16 Hz, 16-32 Hz and 32-64 Hz respectively. Four effective connectivity measures 
(iADTF, ffADTF, iAPDC, ffAPDC) were calculated between the activity time series for all 
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combinations of two ROIs for all patients, all conditions and all frequency bands. This was done 
in Matlab by using an implementation by Pieter van Mierlo [13]. The differences between the 
four measures are explained in section 2.5.4 of the literature review. APDC measures perform 
well in identifying direct information flows whereas ADTF measures perform better in identifying 
the cascade of information flow. The prefixes ‘i’ and ‘ff’ define the type of the used averaging 
method over given frequency bands. Since the result of these four effective connectivity 
measures is a time-dependent connection strength, time-averages and standard deviations were 
calculated to be able to analyze differences between groups and conditions. Time-average or 
mean indicates the overall strength of the connection while standard deviation reflects the time-
dependent fluctuations in this strength. This means that in total 29160 different features (4 
measures, 5 frequency bands, mean and standard deviation for each measure and 729 different 
combinations between two of the 27 ROIs) are performed to identify differences between 
responders vs. non-responders and VNS Off vs. On. Mixed model ANOVA and post-hoc two-
tailed paired and independent samples t-tests were performed for both time-average and 
standard deviation of all features. Bonferroni (family wise error rate of 0.05) and Benjamini-
Hochberg (false discovery rate of 0.1 and significance level of 0.05) multiple comparison 
corrections were applied to the post-hoc t-test results. 

Brain network 

A final analysis is done on the global brain network. Therefore, the brain was represented as a 
graph. The 27 ROIs defined in the previous section are used as nodes and the weights of the 
edges between them were defined by the mean effective connectivity values as calculated using 
iADTF, iAPDC, ffADTF and ffAPDC. Thus, the brain was represented as a directed graph. 
The calculation of the betweenness centrality is done for each node, for each effective 
connectivity measure as connection weights and in each frequency band. Therefore, difference 
between responders vs. non-responders and VNS Off vs. On are assessed in 540 analyses (27 
nodes, 4 different connection weights and 5 frequency bands). Mixed-model ANOVA and post-
hoc two-tailed independent and paired samples t-tests were used to identify differences between 
groups and conditions. To calculate the betweenness centrality, the MatlabBGL library was 
used [161]. 
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Chapter 4  

Sensor level 

The locus coeruleus-norepinephrine (LC-NE) system is thought to be one of the key brain 
structures involved in the anti-epileptic effect of VNS. The amplitude of the P300 wave in an 
event-related potential (ERP) is modulated by the activity of this LC-NE system. By analyzing 
P300 features (latency and amplitude) between responders and non-responders (group) for both 
VNS On and Off (condition), statistical significant differences can be identified both with 
respect to group and condition. 

Analyzing the extracted features is done at sensor level by performing statistical analyses 
directly on the P300 features. For each patient and each condition, latency is determined in the 
Pz channel and the P300 amplitude is extracted in all EEG channels as presented in Figure 3.4. 
Each measured feature value belongs to one of the following four categories: responders with 
VNS On, responders with VNS Off, non-responders with VNS On and non-responders with VNS 
Off. Therefore, data can be analyzed with respect to two factors: (1) the factor ‘group’ with 
two levels, namely responder and non-responder, and (2) the factor ‘condition’ with two levels, 
namely VNS Off and On.  

Mixed-model ANOVA allows analyzing the data in three different ways depending on the 
factor of interest. The first comparison, the so-called main effect of group, compares 
responders with non-responders independent of VNS being switched On or Off. This means that 
the main effect of group compares groups irrespective of condition. The main effect of 
condition on the other hand compares conditions irrespective of group. Lastly, the mixed-model 
ANOVA also analyzes the so-called interaction effect, which determines if differences in a 
certain factor depend on the level of the factor. Thus, the interaction effect indicates if 
differences between responders and non-responders depend significantly on whether VNS was 
switched Off or On and vice versa. After the mixed-model ANOVA, the obtained results can be 
investigated in greater detail by post-hoc t-tests. These tests allow identifying differences for 
one level of a certain factor in terms of one level of the other factor, e.g. differences between 
responders and non-responders for VNS Off only.  

Logistic Regression Analysis allows assessing whether the values of a given feature can be 
used to distinguish responders from non-responders. It is performed on those features that 
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showed significant differences between responders and non-responders for the post-hoc t-tests. 
Receiving Operator Characteristic (ROC) curve estimation delivers the sensitivity and specificity 
of the distinction between responders and non-responders for a given cut-off value of a certain 
feature. The sensitivity is defined here as the proportion of values associated with responders 
that are actually classified as belonging to responders. The specificity is defined as the 
proportion of values associated with non-responders that are actually classified as belonging to 
non-responders. ROC is performed for those features that could be used to build a statistical 
significant logistic regression model.  

Lastly, cross-validation is applied since this technique allows making an estimation of the 
accuracy with which an unknown patient can be identified as being either a responder or non-
responder. In cross-validation, a classification model is built based on the values of a certain 
feature for patients that were previously classified as responders or non-responders. Unknown 
patients can then be classified with this model as being either responder or non-responder by 
measuring the given feature for these patients. This is in contrast to the logistic regression and 
ROC curve since these build and characterize the classification models on known patients only. 
Cross-validation is performed for those features that could be used to build a statistical 
significant logistic regression model. In this research, 10-fold cross-validation is used to estimate 
the accuracy with which an unknown patient could be classified as being a responder or non-
responder based on the value of a certain feature. Both single-channel and two-channel features 
are used. More information on the methods, data and analyses is given in Chapter 3. 

4.1 Latency 

A mixed-model ANOVA was performed for the latency values relative to stimulus onset. The 
measured values can be seen in Appendix Table B and the results are given in Appendix Table 
C. None of the three analyses incorporated in a mixed-model ANOVA showed significant 
results: (1) there is no significant difference in P300 latency between responders and non-
responders irrespective of VNS, (2) nor is there a significant difference between VNS Off and 
On irrespective of the patient group, and (3) the difference between responders and non-
responders does not depend significantly on whether VNS was switched Off or On and vice 
versa. 



Chapter 4 | Sensor level 

 61 

4.2 P300 amplitude 

4.2.1 Influence of group and condition 

The P300 amplitude in each of the 60 EEG channels is measured at the latency detected in the 
Pz channel. Significant influences on the P300 amplitude of being a responder or non-
responders (group) and of VNS being switched On or Off (condition) are analyzed by a mixed-
model ANOVA. The results are given in Appendix Table D. 

No EEG channels display a significant main effect of condition. Therefore, there is no significant 
difference noticed between VNS On and Off irrespective of the patients being responders or 
non-responders for any of the EEG channels. 

For the main effect of group, however, 23 EEG channels show a significant result meaning 
that for these channels, there is a significant difference between the P300 amplitude in 
responders and non-responders irrespective of VNS being switched On or Off. In these channels 
the P300 amplitude for non-responders is larger than for responders. The left panel of Figure 
4.1 indicates the significant channels. 

 
Figure 4.1: Red dots indicate the EEG channels that exhibit a significant main effect of group (left) and a 

significant interaction effect (right) for the P300 amplitude. 

When using a mixed-model ANOVA, the result of interest is usually the interaction effect. A 
significant interaction effect indicates that the difference in P300 amplitude between responders 
and non-responders depends significantly on whether VNS was switched On or Off and vice 
versa. Here, 6 EEG channels show a significant interaction effect, namely CP2 (p=0.004), C2 
(p=0.017), C4 (p=0.006), Pz (p=0.034), C6 (p=0.016) and CP4 (p=0.012). These channels 
are represented in the right panel of Figure 4.1. The interaction effects are visualized in Figure 
4.2. 
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Figure 4.2: Six EEG channels show a significant interaction effect between group and condition for the P300 

amplitude. 

As can be seen in Figure 4.2, for each of the channels displaying a significant interaction effect 
the P300 amplitude is larger for non-responders than for responders both when VNS is On and 
Off. Also, when VNS is switched on, the P300 amplitude increases for responders while it 
decreases for non-responders. 

To analyze the results further, post-hoc two-tailed t-tests are performed. In contrast to the 
analyses above, these tests analyze one level of a certain factor (e.g. responders) with respect 
to one level of the other factor only (e.g. VNS Off). The results can be seen in Appendix Table 
E. These tests reveal that for VNS Off there are 15 EEG channels that show a significant 
difference between responders and non-responders. For VNS On, this is the case for 20 EEG 
channels. For the channels that showed a significant interaction effect it can be seen that 
channels C4 (p=0.0079) and C6 (p=0.023) display a significant difference between VNS Off 
and On for non-responders. Channels CP2 (p=0.009) and Pz (p=0.014) display a significant 
difference between VNS Off and On for responders (Figure 4.3). 

 

 
Figure 4.3: Results of the post-hoc two-tailed t-tests for the EEG channels that showed a significant 

interaction effect. Pz and CP2 show a significant difference between VNS Off and VNS On for responders 
while channels C4 and C6 show a significant difference between the two conditions for non-responders. * and 

** indicate significant results at a significance level of 0.05 and 0.01 respectively. 
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To investigate the EEG channels further that showed a significant interaction effect, the 
relative change in P300 amplitude is (On-Off/On) is analyzed as well. The results are given in 
Appendix Table F. Only the Pz channel exhibits a significant difference (p=0.014) between 
responders and non-responders in terms of relative P300 amplitude change. 

4.2.2 Logistic Regression Analysis 

Logistic regression analysis was performed on different features (P300 amplitude in different 
EEG channels) to test whether these features were good indicators to differentiate responders 
from non-responders. Logistic regression is chosen since it can be used to regress categorical 
outcome variables to continuous input variables, while other regression techniques require 
continuous outcome variables. The analysis is performed on the EEG channels that showed a 
significant difference between responders and non-responders for VNS Off (15 channels) or On 
(20 channels) in the previous section. The relative P300 amplitude changes in the 6 channels 
that showed a significant interaction effect (C4, Pz, CP2, C2, C6, CP4) are also used in logistic 
regression. The results for VNS Off are given in Appendix Table G, for VNS On in Appendix 
Table H and for the relative amplitude change in Appendix Table I. More information on 
Logistic Regression Analysis is given in section 3.5.7 of the previous chapter. 

For VNS Off, six EEG channels deliver a logistic regression analysis with statistical significance 
to distinguish responders from non-responders: F3 (p=0.043, OR=1.44), Pz (p=0.035, 
OR=0.57), P4 (p=0.042, OR=0.60), CP2 (p=0.031, OR=0.61), CP4 (p=0.03, OR=0.63) and 
P2 (p=0.042, OR=0.55). The OR indicates the change in probability of being a responder for a 
1% increase in P300 amplitude. For example, for a 1% increase in P300 amplitude in channel 
F3, the probability of being a responder increases by 44%. 

For VNS On, 12 EEG channels deliver a logistic regression analysis with statistical significance 
to distinguish responders from non-responders: F3 (p=0.049, OR=1.65), Fz (p=0.049, 
OR=1.72), Oz (p=0.027, OR=0.62), O2 (p=0.027, OR=0.60), PO7 (p=0.046, OR=0.66), Poz 
(p=0.027, OR=0.62), AF3 (p=0.019, OR=1.99), AF4 (p=0.038, OR=1.81), F1 (p=0.040, 
OR=1.60), PO3 (p=0.037, OR=0.64), PO4 (p=0.042, OR=0.65) and PO6 (p=0.045, 
OR=0.64). 

For the relative P300 amplitude change, only the Pz channel (p=0.038, OR=1.05) delivers a 
statistical significant logistic regression model to separate responders from non-responders. 
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4.2.3 Receiving Operator Characteristic curve 

A ROC curve indicates the sensitivity and specificity of a binary classifier for different cut-off 
values. The sensitivity is defined here as the proportion of values associated with responders 
that are actually classified as belonging to responders. The specificity is defined as the 
proportion of values associated with non-responders that are actually classified as belonging to 
non-responders. Also the positive and negative predictive value can be calculated. The positive 
predictive value is the proportion of values classified as belonging to responders, which actually 
belong to responders. The negative predictive value calculates the same but for non-responders. 
The ROC was calculated for statistical significant logistic regression models from the previous 
section. More information on the ROC analysis is given in section 3.5.7 of the previous chapter.  

 

 
Sensitivity 

(%) 
Specificity 

(%) 

Positive 
predictive 
value (%) 

Negative 
predictive 
value (%) 

F3 80 67 73 75 

Pz 70 100 100 75 
P4 80 67 73 75 

CP2 90 78 82 88 
P2 70 100 100 75 

PO3 80 78 80 78 
PO4 80 78 80 78 

PO6 80 89 89 80 
Table 4.1: ROC results for the analysis of the EEG channels for which a significant logistic regression model 

could be build to differentiate responders from non-responders for VNS Off. 

From Table 4.1 it can be seen that several features perform good in separating responders from 
non-responders for VNS Off. In particular channel PO6 performs well. 

 

 
Sensitivity 

(%) 
Specificity 

(%) 

Positive 
predictive 
value (%) 

Negative 
predictive 
value (%) 

F3 90 78 82 88 

Fz 80 89 89 80 
Oz 80 78 80 78 

O2 80 78 80 78 
PO7 70 100 100 75 

Poz 80 78 80 78 
AF3 80 89 89 80 

AF4 70 89 88 73 
F1 80 78 80 78 

Table 4.2: ROC results for the analysis of the EEG channels for which a significant logistic regression model 
could be build to differentiate responders from non-responders for VNS on. 
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Similarly as for VNS Off, also here for VNS On (Table 4.2) there are several features that 
result good in separation of responders from non-responders.  

Also the relative amplitude change in the Pz channel (Table 4.3) results in good separation. 
 

 
Sensitivity 

(%) 
Specificity 

(%) 

Positive 
predictive 
value (%) 

Negative 
predictive 
value (%) 

Pz 70 89 88 73 
Table 4.3: ROC results for the analysis of the Pz channel for the relative P300 amplitude increase from VNS 

Off to VNS on. 

4.2.4 Cross-validation 

Cross-validation allows estimating how accurate an unknown patient can be classified as being 
either a responder or non-responder based on a certain feature. In this research, a 10-fold cross-
validation was calculated, meaning that the patients are divided in 10 subsets (9 sets of 2 
patients and 1 set of 1 randomly chosen patient). Next, cross-validation was performed 9 times. 
In each of the 9 iterations, a different two-patient subset is used as validation set and the other 
9 subsets are used as training set. A classification model is built based on the training set 
allowing to classify the patients in the validation set as being either responder or non-responder. 
Therefore, in each iteration two patients are classified, meaning that for each iteration the 
accuracy can be 0%, 50% or 100%. After the 9 iterations, 18 patients are classified once; the 
randomly chosen one-patient subset is not classified. The results of these 18 classifications can 
be modeled by a binomial distribution since for each patients, the result can be either good or 
wrong. Combining the results of all iterations in the 10-fold cross-validation in a single binomial 
distribution allows calculating mean and standard deviation for the cross-validation accuracy. 
The mean and standard deviation represent the estimation of the accuracy with which an 
unknown patient could be classified as being either a responder or non-responder. This was done 
for two types of features: single-channel features and two-channel features. In the two-channel 
features, the P300 amplitude of two EEG channels is either used simultaneously or combined 
into a new single feature. No more than two features are combined due to the small amount of 
data points. More information on the cross-validation is given in section 3.5.7 of the previous 
chapter. 
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Single channel features 
 

 VNS Off 

 μ ± σ (%) 
FP2 66.67 ± 22.22 
F3 66.67 ± 22.22 

C4 55.56 ± 24.69 
Pz 66.67 ± 22.22 

CP2 72.22 ± 20.06 

AF7 61.11 ± 23.77 

AF3 55.56 ± 24.69 

AF4 61.11 ± 23.77 

F6 55.56 ± 24.69 

C2 66.67 ± 22.22 

CP4 72.22 ± 20.06 

P2 61.11 ± 23.77 

PO4 61.11 ± 23.77 
Table 4.4: Resulting accuracies of the 10-fold cross-validation to separate responders from non-responders for 

several features for VNS Off. The results indicate the proportion of the 18 patients that were classified 
correctly during 10-fold cross-validation. 

 
In Table 4.4, the most interesting results for 10-fold cross-validation to classify patients as 
being either a responder or non-responder for VNS Off are shown. EEG channels CP4 and CP2 
perform best in classifying an unknown subject as being either a responder or non-responder. 
The obtained accuracy is 72.22%, meaning that 13 out of 18 patients were classified correctly 
during cross-validation. 
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 VNS On 

 μ ± σ (%) 
FP1 50 ± 25 

Fpz 72.22 ± 20.06 

F3 72.22 ± 20.06 

Fz 77.78 ± 17.28 

Oz 83.33 ± 13.89 

O2 77.78 ± 17.28 

PO7 72.22 ± 20.06 

Poz 77.78 ± 17.28 

AF3 77.78 ± 17.28 

AF4 72.22 ± 20.06 

F1 61.11 ± 23.77 

F2 83.33 ± 13.89 

P6 72.22 ± 20.06 

PO5 66.67 ± 22.22 

PO3 72.22 ± 20.06 

PO4 72.22 ± 20.06 

PO6 72.22 ± 20.06 
Table 4.5: Resulting accuracies of the 10-fold cross-validation to separate responders from non-responders for 

several features for VNS On. The results indicate the proportion of the 18 patients that were classified 
correctly during 10-fold cross-validation. 

In comparison with the results for VNS Off, several features presented in Table 4.5 for VNS On 
perform better in classifying an unknown patient as being a responder or non-responder. 
Channels Oz and F2 obtain an accuracy of 83.33%, which is relatively high and means that 15 
out of 18 patients were classified correctly. 

 
 Relative P300 amplitude change 
 μ ± σ (%) 

Pz  61.11 ± 23.77 

Table 4.6: Resulting accuracy of the 10-fold cross-validation to separate responders from non-responders by 
the relative P300 amplitude change in the Pz channel. The result indicates the proportion of the 18 patients 

that were classified correctly during 10-fold cross-validation. 

The relative P300 amplitude change in the Pz channel performs rather poor (61.11% = 11 out 
of 18 patients). 
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Two-channel features 

Not only single channel features can be used in the classification of a new patient; combination 
of multiple features is also possible. In the following tables, only the best performing features 
are shown. 

 
Two features 

 
μ ± σ (%) 

FPz (On) , Poz (On) 88.89 ± 9.88 

FPz (On) , PO3 (On) 88.89 ± 9.88 

FPz (On) , PO4 (On) 88.89 ± 9.88 

PO7 (On) , AF3 (On) 88.89 ± 9.88 

CP2 (Off) , PO6 (On) 88.89 ± 9.88 

Poz (On) , F6 (Off) 88.89 ± 9.88 

C2 (Off) ,  Po4 (Off) 88.89 ± 9.88 
Table 4.7: Resulting accuracies of the 10-fold cross-validation to separate responders from non-responders by 
using the P300 amplitude in two channels simultaneously as features. The results indicate the proportion of 

the 18 patients that were classified correctly during 10-fold cross-validation. 

It is clear from Table 4.7 that using two features results in substantially higher accuracies (up 
to 88.89%=16/18 correct) compared to single-channel features. 

 
 Sum of two features 
 μ ± σ (%) 
FP1 (On) + F3 (On) 88.89 ± 9.88 
Fpz (On) + F3 (On) 88.89 ± 9.88 

Oz (On) + C2 (Off) 88.89 ± 9.88 

PO7 (On) + CP2 (Off) 88.89 ± 9.88 

PO7 (On) + C2 (Off) 88.89 ± 9.88 

CP2 (Off) + PO4 (Off) 88.89 ± 9.88 

CP2 (Off) + PO5 (On) 94.44 ± 5.25 

Table 4.8: Resulting accuracies of the 10-fold cross-validation to separate responders from non-responders by 
using the sum of the P300 amplitudes in two channels. The results indicate the proportion of the 18 patients 

that were classified correctly during 10-fold cross-validation. 

Using the sum of two channels as new feature results in even higher accuracies (Table 4.8). 
The sum of the P300 amplitude in channel CP2 for VNS Off and in channel PO5 for VNS On 
obtains a cross-validation accuracy of 94.44% meaning that 17 out of 18 patients were 
classified correctly. 

 Product of two features 
 μ ± σ (%) 
F3 (On) x F6 (Off) 94.44 ± 5.25 

CP2 (Off) x PO5 (On) 94.44 ± 5.25 
Table 4.9: Resulting accuracies of the 10-fold cross-validation to separate responders from non-responders by 

using the product of the P300 amplitudes in two channels. The results indicate the proportion of the 18 
patients that were classified correctly during 10-fold cross-validation. 
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Another feature that can be created is the product of the P300 amplitudes in two channels 
(Table 4.9). Accuracies here can be very high as well (up to 94.44%). 

4.3 Conclusion 

No significant differences are found for the P300 latency between groups (responders vs. non-
responders) and conditions (VNS On vs. Off). A mixed-model ANOVA and post-hoc t-tests 
were performed for the P300 amplitude in all EEG channels. No significant differences are found 
for these P300 amplitudes between VNS On and Off independent of the patients being 
responders or non-responders. The P300 amplitude is in almost all EEG channels larger for non-
responders than for responders. In 15 channels for VNS Off and 20 channels for VNS On this 
difference is significant. In six EEG channels, the P300 amplitude difference between groups 
depends significantly on the condition. In all these channels, P300 amplitude increases when 
VNS is switched On in responders while it decreases for non-responders. Channels Pz and CP2 
show a significant increase in P300 amplitude for responders while channels C4 and C6 indicate 
a significant decrease for non-responders. However, the relative amplitude change (On-Off/Off) 
is significantly different between groups in channel Pz only. 

Several EEG channels that showed significant differences in P300 amplitude between 
responders and non-responders can be used to build logistic regression models to separate 
responders from non-responders based on these amplitudes or features. For VNS Off, 6 
channels result in a statistical significant logistic regression model, while this is the case for 12 
channels for VNS On. When using the relative amplitude change (On-Off/Off), only the Pz 
channel delivers a statistical significant logistic regression model. ROC curve analyses revealed 
that several of these features separate groups with good sensitivity, specificity, positive 
predictive values and negative predictive values. 

Cross-validation identifies several EEG channels that can be used to classify an unknown 
patient as being responder or non-responder with high accuracy. For single-channel features, 
83.33% is the highest accuracy observed by using the F2 or Oz channel. By creating new 
features such as the sum or product of the P300 amplitudes of two EEG channels, a very good 
classification with accuracies of up to 94.44% can be obtained. For example, this is the case for 
the sum or product of CP2 (Off) with PO5 (On). 
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Chapter 5  

Source level 

A second level of analysis is the source level in which the active brain regions are assessed and 
compared between groups (responders vs. non-responders) and conditions (VNS On vs. Off). 
All brain activity was determined by ESI (see section 2.2.3 of the literature review for more 
details on ESI) and warped (or projected) to the template head model to be able to compare 
between groups and conditions. A more detailed description of the implementation of ESI, the 
warping process and the statistical analysis method is given in Chapter 3. 

 

 
Figure 5.1: Visualization of the brain regions that are significantly more active for responders than for non-

responders irrespective of VNS On or Off. The activity is determined in an 80 ms interval around the moment 
of P300 peak. For each figure, p indicates the significance and the size of the significant area is given. 

Figure 5.1 indicates the brain regions that are significantly more active for responders than for 
non-responders independent of VNS being switched On or Off. The significant areas are the 
right hippocampus (p=0.059, 3.7 cm3), the left hippocampus and amygdala (p=0.054, 1.1 cm3) 
and the anterior cingulate cortex (p=0.094, 1.6 cm3). It is important to notice that no regions 
are significantly more active for responders than for non-responders when using a 0.05 level of 
significance.  
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Figure 5.2: Visualization of the brain regions that are significantly more active for non-responders than for 

responders irrespective of VNS On or Off. The activity is determined in an 80 ms interval around the moment 
of P300 peak. For each figure, p indicates the significance and the size of the significant area is given. 

Figure 5.2 indicates the brain regions that are significantly more active for non-responders than 
for responders independent of VNS being switched On or Off. The significant areas are the left 
hippocampus and amygdala (p=0.007, 12.3 cm3), the right and middle cingulate cortex 
(p=0.022, 8 cm3) and the right hippocampus and amygdala (p=0.078, 1.6 cm3). In contrast to 
the results presented in the previous paragraph, there are regions significantly more active for 
non-responders than for responders at a significance level op 5%. In other words, the activity is 
significantly lower in the regions presented in this figure for responders. 
 

 
Figure 5.3: Visualization of the brain regions that are significantly more active for VNS Off than for VNS On 
irrespective of the patient group. The activity is determined in an 80 ms interval around the moment of P300 

peak. For each figure, p indicates the significance and the size of the significant area is given. 

Figure 5.3 indicates the brain regions that are significantly more active for VNS Off than for 
VNS On independent of the patients being responders or non-responders. The significant areas 
are the right hippocampus and amygdala (p=0.076, 1.4 cm3), the right precuneus (p=0.046, 5.2 
cm3) and the left hippocampus and amygdala (p=0.056, 1.1 cm3). These regions decrease in 
activity upon switching VNS On. 
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Figure 5.4: Visualization of the brain regions that are significantly more active for VNS On than for VNS Off 
irrespective of the patient group. The activity is determined in an 80 ms interval around the moment of P300 

peak. For each figure, p indicates the significance and the size of the significant area is given. 

Figure 5.4 indicates the brain regions that are significantly more active for VNS On than for 
VNS Off independent of the patients being responders or non-responders. The significant areas 
are the right superior frontal gyrus (p=0.053, 1.2 cm3), the left hippocampus (p=0.058, 3.3 
cm3) and the right calcarine gyrus (p=0.041, 4.3 cm3). The regions indicated here increase in 
activity upon switching VNS On. 

 

 

Figure 5.5: Visualization of the brain regions where the difference in activity between responders and non-
responders depends significantly on whether VNS was switched On or Off and vice versa. The activity is 

determined in an 80 ms interval around the moment of P300 peak. For each figure, p indicates the 
significance and the size of the significant area is given. 

Figure 5.5 indicates the brain regions where the difference in activity between responders and 
non-responders depends significantly on whether VNS was switched On or Off and vice versa. 
The significant areas are the right insula (p=0.091, 0.2 cm3), the left superior parietal lobe 
(p=0.067, 4.5 cm3) and the left frontal orbital lobe (p=0.035, 18 cm3). 

It is clear that several differences exist between responders vs. non-responders (group) and VNS 
On vs. Off (condition). Note that at a significance level of 0.05, main effects of group are 
limited to regions significantly more active for non-responders (and thus less active for 
responders). Interestingly, the activity of several brain regions in the temporal lobe seems to be 
highly dependent on whether the patient was a responder or a non-responder and whether the 
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VNS was switched On or Off. These brain regions include the hippocampus, the amygdala and 
the insula. 
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Chapter 6  

Brain connectivity 

In the previous chapter, differences in brain activity between responders vs. non-responders and 
between VNS On vs. Off were identified. In this chapter, the analysis of the brain activity is 
extended to how the active brain regions interact with each other. Also, the global brain 
network is modeled and specific measures are used to discover differences in the functioning of 
the brain network between responders vs. non-responders and VNS On vs. Off.  

Using both functional and effective connectivity measures, the connections between different 
active brain regions is assessed. Based on the AAL brain template [156], 116 Regions of Interest 
(ROIs) are identified (Appendix Table A). For each of these ROIs, a time-dependent activity 
signal is determined. Next, correlation (a functional connectivity measure) is determined 
between the activity time series of two different ROIs. This is done for all combinations of two 
different ROIs. These analyses are done by mixed-model ANOVAs, post-hoc t-tests and 
Bonferroni (family wise error rate of 0.05) and Benjamini-Hochberg (false discovery rate of 0.1 
and significance level of 0.05) multiple comparison corrections. More information on the ROIs, 
correlation and multiple comparison corrections is given in Chapter 3. 

Next, effective connectivity between active brain regions is assessed. This is done by using 4 
different effective connectivity measures: iADTF, iAPDC, ffADTF and ffAPDC. These four 
measures are explained in detail in section 2.5.4 of the literature review. APDC measures 
perform well in identifying direct information flows whereas ADTF performs better in identifying 
the cascade of information flow. The prefixes ‘i’ and ‘ff’ define the type of the used averaging 
over given frequency bands. The effective connectivity measures are able to analyze the 
influence one brain region exerts over another by the use of directed connections. These 
measures are applied to assess the effective connections between 27 ROIs. These 27 ROIs are 
identified as the second-to-last spatial division of the AAL brain template (Appendix Table A) 
[156]. The effective connectivity analyses are performed in different frequency bands since brain 
signals often have characteristic frequency ranges. These frequency bands are indicated by 
δ, θ, α, β and γ defining different frequency bands: 0-4 Hz, 4-8 Hz, 8-16 Hz, 16-32 Hz and 32-64 
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Hz respectively. Each effective connectivity measure results in a time-dependent strength of the 
given connection. To be able to analyze differences between responders vs. non-responders and 
VNS Off vs. On in statistical analyses, time-average and standard deviation of the time-
dependent strengths of the connections are calculated. Time-average or mean indicates the 
overall strength of the connection while standard deviation reflects the time-dependent 
fluctuations in this strength. This means that in total 29160 different analyses (4 measures, 5 
frequency bands, mean and standard deviation for each measure and 729 different combinations 
between two ROIs) are performed to identify differences between responders vs. non-responders 
and VNS Off vs. On. These analyses are done by mixed-model ANOVAs, post-hoc t-tests and 
Bonferroni (family wise error rate of 0.05) and Benjamini-Hochberg (false discovery rate of 0.1 
and significance level of 0.05) multiple comparison corrections. More information on the 
implementation of the effective connectivity measures is given in Chapter 3. 

The global brain network is analyzed by representing the brain network as a graph. The 27 
ROIs are used as 27 nodes. The weights of the connections between these nodes are defined as 
the mean strengths of the connections between the appropriate regions as calculated with the 
effective connectivity measures (see previous paragraph). Then, betweenness centrality is 
calculated for each node in the overall brain network. This measure indicates the relative 
importance of a node in the overall network. The calculation of the betweenness centrality is 
done for each node, for each effective connectivity measure and in each frequency band. 
Therefore, differences between responders vs. non-responders and VNS Off vs. On are assessed 
in 540 analyses (27 nodes, 4 different connection weights and 5 frequency bands). These 
analyses are done by mixed-model ANOVAs and post-hoc t-tests. 

More details on the applied methods are given in Chapter 3. 

6.1 Functional connectivity 

Correlation is calculated between all possible combinations of the 116 ROIs as defined by the 
AAL template (Appendix Table A). The mixed-model ANOVA revealed that 86 of the 
combinations show a significant interaction effect between group and condition. This means 
that the difference in strength of 86 functional connections between two different brain regions 
for responders vs. non-responders depends significantly on VNS being switched On or Off and 
vice versa. Post-hoc two-tailed t-tests showed that for the 86 significant combinations, there 
are 26 connections that show a significant difference between VNS switched Off vs. On for 
responders and 29 for non-responders. For VNS Off there are 20 combinations with a 
significant difference between responders and non-responders. Also for VNS On there are 20 
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combinations showing a significant difference between responders and non-responders. However, 
due to the relatively high number of comparisons, multiple comparison corrections had to be 
applied. By using Bonferroni correction (see section 3.5.7 of Chapter 3), only two combinations 
of two regions showed a significant result between VNS Off and On for non-responders only. 
These results are shown in Table 6.1 and Figure 6.1. 

 
p ROI 1 ROI 2 

0.0003 Left inferior parietal gyrus Cerebellum Crus 1 
0.0005 Right middle occipital gyrus Left superior temporal gyrus 

Table 6.1: Significant results between conditions after Bonferroni multiple comparison correction for the post-
hoc two-tailed t-tests for correlation between ROIs of non-responders. ROIs are determined by the 116 ROI 

system of the AAL brain template (Appendix Table A). p values indicate the uncorrected significances. 

 
Figure 6.1: Visualization of the significant results from Table 6.1: left inferior parietal gyrus and cerebellum 

crus 1 (left) and right middle occipital gyrus and left superior temporal gyrus (right). 

An alternative multiple comparison correction is done by controlling the false discovery rate by 
Benjamini-Hochberg correction (see section 3.5.7 of Chapter 3). Significant results are found 
for differences between VNS Off vs. On for non-responders and between responders vs. non-
responders for VNS Off. The results are shown in Table 6.2, Table 6.3, Figure 6.2 and Figure 
6.3. 
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p ROI 1 ROI 2 

0.0003 Left inferior parietal gyrus Cerebellum Crus 1 
0.0005 Right middle occipital gyrus Left superior temporal gyrus 
0.0013 Left insula Right hippocampus 
0.0018 Right calcarine fissure Left fusiform gyrus 
0.0066 Right precentral gyrus Left postcentral gyrus 
0.0067 Right insula Let inferior parietal gyrus 
0.0085 Right cuneus Left superior parietal gyrus 
0.0089 Left hippocampus Right postcentral gyrus 

Table 6.2: Significant differences between conditions after Benjamini-Hochberg correction for the post-hoc 
two-tailed t-tests for correlation between ROIs for non-responders. ROIs are determined by the 116 ROI 
system of the AAL brain template (Appendix Table A). p values indicate the uncorrected significances. 

 

 
Figure 6.2: Visualization of the significant results of Table 6.2 (the first two results in Figure 6.1): left insula 
and right hippocampus (top left), right calcarine fissure and left fusiform gyrus (top middle), right precentral 
gyrus and left postcentral gyrus (top right), right insula and left inferior parietal gyrus (bottom left), right 
cuneus and left superior parietal gyrus (bottom middle) and left hippocampus and right postcentral gyrus 

(bottom right). 

 
p ROI 1 ROI 2 

0.0017 Right olfactory cortex Left insula 
0.0029 Right supplementary motor area Right median cingulate gyrus 
0.0029 Right insula Left inferior parietal gyrus 

Table 6.3: Significant differences between groups after Benjamini-Hochberg correction for the post-hoc two-
tailed t-tests for correlation between ROIs for VNS Off. ROIs are determined by the 116 ROI system of the 

AAL brain template (Appendix Table A). p values indicate the uncorrected significances. 
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Figure 6.3: Visualization of the significant results of Table 6.3: right olfactory cortex and left insula (left), 
right supplementary motor area and right media cingulate gyrus (middle) and right insula and left inferior 

parietal gyrus (right). 

Several combinations of two brain regions show significant differences between either responders 
vs. non-responders (group) or VNS Off vs. On (condition). These brain regions are localized in 
several parts of the brain. However, especially the hippocampus and the insula are bilaterally 
present in several significant results. In 55 of the 86 combinations that show a significant 
interaction effect, the correlation increases for non-responders while it decreases for responders. 

6.2 Effective connectivity 

Integration of different brain regions is often better represented by effective connectivity, 
defined as the influence one neural system exerts over another. Therefore, effective connectivity 
is sometimes termed ‘directed functional connectivity’. Effective connectivity depends explicitly 
on a model of the influence. In this research, four different effective connectivity measures are 
used: iAPDC, iADTF, ffAPDC and ffADTF. These measures are explained in greater detail in 
section 2.5.4 of the literature review. The analysis of the connectivity is performed in different 
frequency bands using 27 ROIs. These ROIs are determined as the second-to-last split in the 
AAL brain template (Appendix Table A).  

The result of using these connectivity measures is a time-varying connection strength between 
two given brain areas. In order to be able to perform statistical analyses on these results, the 
time-varying signals of the different measures are reduced to single values by averaging the time 
signal and by calculating the standard deviation. The mean indicates the overall strength of the 
connections while standard deviation can indicate the fluctuations in the connection strength 
over time. In total, 29160 different features (4 effective connectivity measures, 5 frequency 
bands, mean and standard deviation for each measure and 729 different combinations between 
two ROIs) are analyzed to identify differences between responders vs. non-responders and VNS 
On vs. Off. 
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Mixed-model ANOVAs revealed that 793 features for the mean and 795 features for standard 
deviation exhibit a significant interaction effect, meaning that the difference in these features 
between responders and non-responders depends significantly on whether VNS is switched On or 
Off. For these features, post-hoc two-tailed t-tests were performed to analyze them in greater 
detail. Bonferroni and Benjamini-Hochberg corrections were applied to the results to correct for 
the multiple comparisons. 

For both mean and standard deviation, no significant features are found after Bonferroni 
correction. However, after using Benjamini-Hochberg corrections, many significant results are 
found, which are described below. First the results are given for the mean connection strength 
and further on the results for standard deviation are shown. 

 
Mean connection strength 

No significant results are found for differences in mean connection strength between (1) VNS 
Off and On for non-responders and (2) responders and non-responders for VNS Off. For 
responders, however, two features show significant differences between VNS On and Off; this is 
shown in Table 6.4. When VNS is switched On, for both significant results displayed in Table 
6.4 the connection increases in strength. The significant connection is visualized in Figure 6.4. 

 

p Feature 
Frequency 

band 
ROI 1 (from) ROI 2 (to) 

0.000149 ffAPDC β 
Lateral surface of left 

occipital lobe 
Orbital surface of 
right frontal lobe 

0.000154 iAPDC β 
Lateral surface of left 

occipital lobe 
Orbital surface of 
right frontal lobe 

Table 6.4: Significant differences in time-average of iAPDC, ffAPDC, iADTF and ffADTF between VNS On 
and Off for responders. The p values are uncorrected. β indicates the frequency band 16-32 Hz. 

 

Figure 6.4: Visualization of the significant results from Table 6.4: the lateral surface of the left occipital lobe 
and the orbital surface of the right frontal lobe. 

For VNS switched on, 50 different connections show significant differences between responders 
and non-responders. All together, these 50 different connections result in 312 features that 
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exhibit a significant difference between groups. Therefore, all of these 50 different connections 
show significant differences between responders and non-responders for several measures and/or 
frequency bands. Significant connections are spread out over the entire brain with the highest 
amount of significant connections in the lateral surface of the right temporal lobe, lateral 
surface of the left occipital lobe and the lateral surface of the right frontal lobe. Of the 312 
significant features, 67 results are situated in the δ-band, 58 in the θ-band, 65 in the α-band, 
56 in the β-band and 66 in the γ-band. Most of the significant results are found by iADTF and 
ffADTF. 
 

Standard deviation of the connection strength 
No significant results are found after Benjamini-Hochberg correction for differences between 

(1) VNS On and Off for responders and (2) responders vs. non-responders for VNS Off. For 
non-responders, nine features show significant differences between VNS On and Off; this is 
shown in Table 6.5. When VNS is switched On, for all significant connections displayed in Table 
6.5 the connection increases in strength for non-responders. For responders, however, this is 
only the case for the connections involving the limbic lobe, although not significantly. The 
connections are visualized in Figure 6.5.  

 

p Feature 
Frequency 

band 
ROI 1 (from) ROI 2 (to) 

0.00008 iADTF β Right limbic lobe Right limbic lobe 
0.00009 iAPDC γ Right cerebellum Lateral surface of left parietal lobe 
0.00027 ffAPDC γ Right cerebellum Lateral surface of left parietal lobe 
0.00037 iAPDC β Right cerebellum Lateral surface of left parietal lobe 
0.00040 ffADTF β Right limbic lobe Right limbic lobe 
0.00053 ffAPDC β Right cerebellum Lateral surface of left parietal lobe 

0.00053 iADTF β 
Lateral surface of 
right temporal lobe 

Lateral surface of right  
temporal lobe 

0.00064 ffAPDC α Right cerebellum Lateral surface of left parietal lobe 
0.00069 iADTF γ Right limbic lobe Right limbic lobe 
Table 6.5: Significant differences in standard deviation over time of iAPDC, ffAPDC, iADTF and ffADTF 
between VNS On and Off for non-responders. The p values are uncorrected. α ,  β  and γ indicate different 

frequency bands: 8-16 Hz, 16-32 Hz and 32-64 Hz respectively. 
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Figure 6.5: Visualization of the significant results of Table 6.5: right limbic lobe (left), right cerebellum and 

lateral surface of left parietal lobe (middle) and lateral surface of right temporal lobe (right). 

Remarkably, 4 of the significant features consist of a connection from a certain region to itself, 
meaning that for these connections (right limbic lobe and the lateral surface of the right 
temporal lobe) the standard deviation of the autospectra are significantly different for non-
responders between VNS Off and On. 

 
For VNS On, 295 features show a significant difference between groups. These 295 significant 
features incorporate 47 different connections. The significant connections are spread over the 
entire brain with the highest amount of significant results in the central region, in the lateral 
surface of the right temporal lobe and the left insula. Of all 295 features, 59 are situated in the 
δ-band, 46 in the θ-band, 64 in the α-band, 55 in the β-band and 71 in the γ-band. Most of the 
significant results are found by iADTF and ffADTF. 

6.3 Brain network 

In the previous section, 27 ROIs were defined and by using 4 effective connectivity measures, 
the strengths of the directed connections between these ROIs were calculated. By using the 
ROIs as nodes or vertices and by labeling the edges between them with the mean connection 
strengths as calculated in the previous section, the brain network can be modeled. Betweenness 
centrality is a measure that allows indicating the importance of each node within the overall 
network. Differences in the relative node importance with respect to group and condition are 
investigated. The analysis is performed for the 27 ROIs in terms of the four effective 
connectivity measures of the previous section and the different frequency bands. The calculated 
mean betweenness centrality values are given in Appendix Table J. 

Performing a mixed-model ANOVA resulted in 19 significant interaction results consisting of 8 
different nodes. The results are given in Appendix Table K. Post-hoc two-tailed t-tests were 
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performed on these significant interaction results to identify differences in greater detail. The 
significant outcomes of these analyses are given in Table 6.6. 
 

Node p value Measure Frequency band Effect 

Right insula 0.0465 iADTF θ Ron>Roff 
Right insula 0.0476 ffADTF θ Ron>Roff 

Right limbic lobe 0.020 iAPDC γ NRon<Ron 
Right limbic lobe 0.0208 ffAPDC γ NRon<Ron 

Table 6.6: Significant results of the post-hoc two-tailed t-tests for the betweenness centrality of 27 ROIs 
using different effective connectivity measures in different frequency bands. The last column specifies for 

which category the relative node importance is highest, thus the last column indicates which significant result 
is identified. θ  and γ indicate different frequency bands: 4-8 Hz and 32-64 Hz respectively. 

 
Figure 6.6: Visualization of the significant results of Table 6.6: right insula (left) and right limbic lobe (right). 

For responders, the importance of the right insula in the global brain network is significantly 
dependent on VNS being switched On or Off. For VNS On, the importance of the right limbic 
lobe in the brain network is significantly dependent on whether the patient is a responder or a 
non-responder. The significant brain regions are visualized in Figure 6.6. 

6.4 Conclusion 

Performing brain connectivity and network analyses identified some key influences of group 
(responder vs. non-responder) and condition (VNS On vs. Off) on the brain connectivity and 
brain network. 

By using the correlation, a functional connectivity measure, between different brain regions, 
several significantly altered functional connections are found. For non-responders, there is a 
significant influence of VNS on the correlation for 9 connections. In 3 of these connections, the 
(bilateral) hippocampus and/or insula play a key role. Parietal and central gyri are the main 
components of the other connections. For VNS Off, 3 functional connections showed significant 
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differences between responders and non-responders. In these significant connections, the insula 
plays an important role bilaterally. 

Effective connectivity measures allow analyzing the influence that one neural system exerts over 
another. Directed connections together with a TVAR model were used to define four effective 
connectivity measures: iADTF, ffADTF, iAPDC, ffAPDC. Similarly as for the correlation, these 
measures were used to identify differences in terms of groups and condition in the connections 
between brain regions. For each measure, two features were made: the average and the 
standard deviation of the time-varying calculated connectivity strengths. The average allows 
comparing the overall strength of the connections, while the standard deviation reflects the 
time-dependent changes in the strength of the connections. These features were analyzed in 5 
different frequency bands.  

For the mean connection strength, significant differences are found for responders in the 
connection from the occipital lobe to the frontal lobe dependent on VNS On or Off. For VNS 
On, no less than 312 significant features are found between responders and non-responders. 
These consist of 50 different connections in several frequency bands and for several measures. 
These connections are situated over the entire brain but mainly in the lateral surface of the 
right temporal lobe, lateral surface of the left occipital lobe and the lateral surface of the right 
frontal lobe.  

For the standard deviation, significant differences are found for non-responders in the 
connections between several regions. Remarkably, 4 of the significant features consist of a 
connection from a certain region to itself. This is the case for both the right limbic lobe and the 
lateral surface of the right temporal lobe and this means that the standard deviation of the 
autospectra for these regions is significantly different in non-responders between VNS switched 
On or Off. For VNS On, 295 features show significant differences between responders and non-
responders in the standard deviation of the time-varying connection strengths. These results 
incorporate 47 different connections in several frequency bands and for several measures and are 
mainly situated in the central gyri, the lateral surface of the right temporal lobe and the left 
insula. 

Using betweenness centrality, a measure from graph theory, the importance of each brain region 
in the overall brain network can be compared between groups and conditions. This allows 
identifying changes in the overall brain network with respect to responders vs. non-responders or 
VNS On vs. Off. The right insula increases in importance in the brain network for responders 
when VNS is switched On. This effect is observed in the τ−frequency band. In the γ−frequency 
band, the importance of the right limbic lobe is significantly larger for responders than for non-
responders when VNS is On. 
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Chapter 7  

Discussion 

In the previous chapters, interesting results are found that indicate differences in brain 
functioning and activity due to vagus nerve stimulation. In this chapter, interpretation of these 
results is given. The results are examined and possible underlying causes or explanations are 
given. Results are assessed in terms of their ability to be used in clinical practice to identify 
unknown patients pre-operatively as being either responder or non-responder. Methods used to 
come to the presented results, are revised. The findings in this research are compared with 
other research and approaches for future work are suggested.  

7.1 Sensor level 

The sensor level analysis investigated the activity of the locus coeruleus-norepinephrine (LC-NE) 
system indirectly by means of the P300 wave in ERPs. The P300 amplitude is found to be 
modulated by the LC-NE activity and the LC-NE system is thought to be one of the key 
structures involved in the anti-epileptic effect of VNS, as supported by different studies [7]–[9], 
[89], [92]–[94], [96], [145]. Differences in P300 features (latency and amplitude) between 
responders vs. non-responders (group) and VNS Off vs. On (condition) were analyzed. The 
P300 features were extracted from EEG measurements of 20 patients during auditory oddball 
experiments. Two average P300 waves were calculated for each patient and condition, 
associated with the task-related target stimulus and non-task-related standard stimulus 
respectively. A standard sequence of data transformations was used to calculate these 
waveforms, which is also used in other research [8], [149]. It is important to stress the influence 
of several artifacts on the P300 wave. Especially ocular artifacts can have a large effect on the 
P300 wave [147], [162]. It is reasonable to assume that ocular artifacts are largely removed due 
to: (1) the fact that patients were asked to fix their eyes on a certain point during recordings, 
(2) vertical eye movements were recorded and removed from the EEG data, and (3) epoch 
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averaging was applied. A similar approach was used for cardiac and VNS related artifacts. Since 
the P300 wave is larger after task-related target stimuli, it was isolated by subtracting the 
average waveform for standard stimuli from the waveform for target stimuli, as is done in other 
research [8]. The target-standard difference waveform is used to extract the P300 features. 

No differences in P300 latency were found between responders vs. non-responders and VNS Off 
vs. On. This is in agreement with other research [8], [163]. However, Neuhaus et al. reported a 
significant prolonged latency in non-responders [164], but the latency was detected in the Fz 
channel in contrast to the Pz channel in this research. Therefore, it is probable that Neuhaus et 
al. detected the latency of the P3a wave, since this component is mainly detected frontally, 
which corresponds to the location of electrode Fz. In this research, the P3b will have a larger 
influence on the P300 latency, since this P3b wave is detected more parietally, which 
corresponds to the location of the Pz channel. More information on the P3a and P3b waves 
was given in section 3.2. In the research by Brazdil et al., a difference between the latency at 
electrode Fz and Pz is shown, but no significance was reported [165]. 

The P300 amplitude was found not to be significantly altered between VNS Off and On, 
independent of the patients being responders or non-responders, which is in agreement with 
previous research [8], [163]–[165]. However, these studies only focused on the P300 amplitude 
in central electrodes, whereas in this research the same result was found for all 60 EEG 
channels.  

In many EEG channels, the P300 amplitude was found to be larger for non-responders than 
for responders, which is consistent with the reported values in De Taeye et al. [8] and Neuhaus 
et al. for VNS Off [164]. This result was significant in 23 EEG channels and these are situated 
both frontally (possibly due to the P3a wave) and parietally (possible due to P3b) as shown in 
the left panel of Figure 4.1. The non-significant result for the Pz channel is consistent with the 
research of De Taeye et al. [8]. The Fz channel does indicate a significantly larger P300 
amplitude for non-responders than for responders in this research, which is inconsistent with 
Neuhaus et al. [164]. However, in the research of Neuhaus et al., the P300 amplitude in the Fz 
channel was detected at the moment of peak in the Fz, while in this research it was detected at 
the moment of peak in the Pz channel, making the comparison difficult. To the knowledge of 
the author, no similar results were found in previous research where the P300 amplitude was 
analyzed between responders and non-responders in other channels than Pz, Cz and Fz. The 
result that significant differences between responders vs. non-responders are found in other EEG 
channels than Pz, Cz and Fz is therefore novel and is discussed further on to explore the 
potential of these channels to be used to separate responders from non-responders. 

Analyzing the significant results in greater detail showed that 15 EEG channels exhibit a 
significant difference between responders and non-responders for VNS Off. For VNS On, 20 
EEG channels show significant differences between responders vs. non-responders. For the 
midline electrodes (Fz, Cz, Pz) only the Pz channel shows a significant difference between 
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responders and non-responders for VNS Off while only the Fz channel shows this significant 
difference for VNS On. By Neuhaus et al. only a statistical trend in the difference between 
responders and non-responders for VNS On was given [164]. Possibly, this could point to 
differences mainly present in the P3a wave for VNS On and P3b for VNS Off. However, this 
result is to the knowledge of the author not discussed in previous research and is not 
investigated in other research. It therefore remains a hypothetical explanation and further 
research is necessary to clarify these results. 

Next to the described main effects of group and condition, in six EEG channels (CP2, C2, C4, 
Pz, C6 and CP4) the difference in P300 amplitude between responders vs. non-responders is 
dependent on whether VNS was switched On or Off. For responders, the P300 amplitude 
increases when VNS is switched On, while it decreases for non-responders. The result for the Pz 
channel is consistent with the research of De Taeye et al. [8]. It is also consistent with the 
values reported by Neuhaus et al., however, the differences were not tested or reported [164]. 
Here again, the fact that the significant interaction between group and condition is present in 
other than the central electrodes is, to the knowledge of the author, not present in previous 
research and will be assessed in terms of ability to classify patients as responders and non-
responders. It is important to point out that at the moment of the P300 wave, many brain 
regions are thought to be processing information from the stimulus. Also, the P300 is maximally 
recorded from the midline centroparietal regions [147]. Therefore, one should be watchful that 
the significant results recorded in other than centroparietal regions could also be due to activity 
of other brain areas. Especially the six EEG channels showing significant interactions between 
group and condition are situated more towards right parietal and temporal regions (right panel 
of Figure 4.1). A possible explanation for these results could be the VNS-dependent limbic 
system activity [166]–[169]. On the other hand, the origin of the P3b wave is thought to be 
situated somewhat more temporoparietally as well, meaning that the results could still be due to 
the P300 wave [139]. Further research should clarify these results. 

The P300 amplitude was found to increase significantly in channels Pz and CP2 for 
responders only. This result for responders is consistent with the research by De Taeye et al. [8] 
and Neuhaus et al. [164], however in these studies only midline electrodes were used. The result 
for the CP2 electrode is novel. Interestingly, channels C4 and C6 show a significant decrease in 
P300 amplitude for non-responders only. P300 amplitudes reported in De Taeye et al. [8] and 
Neuhaus et al. [164] indicate a decrease for non-responders only as well, however no statistical 
significance was tested or reported. The result that VNS induces not only P300 amplitude 
changes for responders but also specific changes for non-responders is interesting and could lead 
to more efficient separation of responders from non-responders.  

The relative amplitude increase (On-Off/On) was analyzed as well between responders and 
non-responders. This relative increase was significant for channel Pz only, a result consistent 
with research of De Taeye et al. [8].  
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The results of P300 increase for responders and P300 decrease for non-responders support the 
hypothesis that electrical stimulation of the vagus nerve activates the LC-NE system and that 
this activation is critically linked to the anti-epileptic effect of VNS. This hypothesis points to 
the use of the amount of NE release in the brain as biomarker for the therapeutic efficacy of 
VNS and is supported by evidence in literature [7], [89], [92]–[94], [96], [170]–[172].  

Activation of the LC-NE system in response to an important stimulus resets ongoing functional 
networks to be able to respond rapidly to the given stimulus. Therefore, activating the LC-NE 
system induces an inhibitory brain signal [142]. The results that the P300 amplitudes for non-
responders are larger than for responders in many EEG channels could be linked to this LC-NE 
inhibition [8], [139]. Responders show an increase in P300 wave when VNS is switched On, 
meaning that in these patients there is an increased inhibitory signal from the active LC-NE 
system. This is not the case in non-responders since they do not show increased P300 wave 
amplitude upon VNS being switched On. Therefore, it is possible that responders show lower 
voltages due to the effective LC-NE inhibition during the VNS treatment period. This inhibition 
would then be less effective for non-responders, resulting in the higher voltages measured in the 
EEG for non-responders. However, a power analysis was performed on the original EEG 
spectrum, but no differences were found between responders and non-responders in that 
respect. Therefore, the amplitude difference between responders and non-responders is 
specifically found in the P300 wave, showing a specific key role for the LC-NE inhibitory system 
in the difference between these two groups. The inhibitory function of the LC-NE system is 
proposed to be a key anti-epileptic actor as a consequence of VNS since the inhibition is 
thought to arrest and cancel the spatial spread of seizures, which is nicely linked to the better 
VNS outcome for responders, since only in these patients an increase in P300 amplitude is 
observed upon VNS being switched On [7]. 

Clinically, the results presented above would be interesting if they could be used to accurately 
predict whether a patient would benefit from VNS therapy or not. Therefore, logistic regression 
analysis, ROC curve estimation and 10-fold cross-validation are used to indicate the capability 
of several features to be used as biomarkers for VNS efficacy (thus to separate responders from 
non-responders). Logistic regression analysis and ROC curve indicate that several features (i.e. 
P300 amplitudes in several EEG channels) can be used to distinguish responders from non-
responders. For the relative change in P300 amplitude in the Pz channel, results are the same 
as found by De Taeye et al. [8]. In this research, however, several other features are found that 
can separate responders from non-responders with higher sensitivity and specificity. This result 
is interesting since it indicates that although the P300 wave is maximally presented at midline 
positions, P300 amplitudes in other EEG channels can perform better in separating responders 
from non-responders. This could indicate that measuring the P300 wave as a biomarker for 
VNS efficacy should be done in non-midline electrodes. However, as indicated above, it is 
possible that the results in non-midline electrodes are due to other VNS dependent brain 
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activities, such as the limbic system activity [166]–[169]. Therefore, it is also possible that these 
results point to biomarker presence in the VNS dependent auditory ERP that provides more 
accurate separation between responders and non-responders than the P300 wave. 

In contrast to other research, cross-validation was used in this research next to logistic 
regression and ROC curve analyses to indicate the capability of P300 features to separate 
responders from non-responders. Interestingly, in cross-validation the accuracy of classifying 
unknown patients as being either responder or non-responders is estimated, which is not the 
case for logistic regression and ROC curves. In cross-validation, a classification model is built 
based on the values of a certain feature for patients that were previously classified as responders 
or non-responders. Unknown patients can then be classified with this model as being either 
responder or non-responder by the measured value of the given feature for these patients. This 
is in contrast to logistic regression analysis and ROC since these methods build and characterize 
the classification models on known patients only. Therefore, cross-validation is very useful with 
respect to the accurate pre-operative prediction of whether a patient would benefit from VNS 
therapy or not in clinical practice. 

In this research, both single-channel and two-channel features were tested. In the two-
channel features, the P300 amplitudes of two EEG channels are either used simultaneously or 
combined into a new single feature. No more than two features are combined due to the small 
amount of data points. As a rule of thumb, 15 data points are required per simultaneously used 
feature. Combining more than two features into a new single feature is not done here due to 
lack of time. For VNS Off, channels CP4 and CP2 perform best when used to classify an 
unknown subject as being either a responder or non-responder. The estimated accuracy is 72%, 
which is not superb. For VNS On, however, channels Oz an F2 obtain accuracies of 83%, which 
is relatively high. In previous research by De Taeye et al., the relative amplitude increase of the 
P300 amplitude in the Pz channel was proposed as a biomarker to assess the VNS efficacy [8]. 
However, using cross-validation, in this research it was found that this feature only obtains 61% 
classification accuracy. This is an important result and could possibly result in shifting the focus 
of future research to identify clinically applicable biomarkers for VNS efficacy. Again, it is 
important to be cautious about the results presented here, because it is not clear whether they 
originate from the P300 wave or from other VNS dependent brain signals. Future research 
should provide a clearer insight. 

Two-channel features are split up in using two features simultaneously or combining two 
features into a new single feature. Using two features simultaneously results in accuracies of 
89% for several features. Remarkably, using the sum of the P300 amplitudes in two EEG 
channels can obtain accuracies as high as for the simultaneous use of two features (89%) and 
summing the P300 amplitudes of channels CP2 for VNS Off and PO5 for VNS On even leads 
to an estimated accuracy of 94%. Multiplying the P300 amplitudes in (1) channels F3 for VNS 
On and F6 for VNS Off, and (2) channels CP2 for VNS Off and PO5 for VNS On can also be 
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used to obtain an accuracy of 94%. To the knowledge of the author, the results presented here 
for cross-validation are not yet reported or investigated in previous research.  

The novel results for logistic regression, ROC curve and cross-validation analyses indicate 
intriguing possibilities to find biomarkers to assess the clinical efficacy of VNS treatment. 
However, these results also point to the main drawback of this research. As is indicated before, 
one of the main objectives of this research was to identify predictive biomarkers, which could be 
used to accurately predict whether a patient would benefit from VNS therapy or not before 
surgery. Therefore, these predictive biomarkers should be identified in ERPs of patients that 
have not yet received VNS surgery. All data in this research was recorded in patients that 
underwent VNS surgery and received at least 18 months of VNS therapy. It is attempted to 
overcome this problem by recording ERPs of patients when VNS was switched Off. However, in 
research it was shown that the anti-epileptic effect of VNS is present during Off-time as well 
[88]. Results shown in this research are thus possibly poor indicators of differences between 
responders and non-responders pre-operatively. Therefore, the biomarkers presented in this 
research are interesting but have little predictive value in clinical practice. 

The results at sensor level remain valuable since they point out that P300 features that were 
previously thought to be good biomarkers for VNS efficacy are out-performed by novel features 
presented in this research. These results can point to one or both of the following hypotheses: 
(1) P300 features recorded from other than midline electrodes can be used to obtain the best 
results in assessing VNS efficacy and (2) other VNS dependent brain signals than the P300 
wave can be used to assess VNS efficacy with a much larger accuracy. 

7.2 Source level 

In the source level analysis, the activity of specific brain regions was compared between 
responders vs. non-responders and between VNS On vs. Off. These results were obtained by 
using Electrical Source Imaging (ESI) and are analyzed by statistical parametric software 
(SPM) using a flexible factorial design. For patients with good quality MRI images, individual 
head models were used, which were warped to the template head model. For the others, the 
template head model was used. 

When VNS is switched On, activity decreases in hippocampus and amygdala bilaterally as 
well as in the right precuneus, irrespective of the patients being responders or non-responders. 
Activity increases when VNS is switched On in the right superior frontal gyrus, the left 
hippocampus and right calcarine gyrus. The part of the hippocampus that is decreased in 
activity is however larger than the part that is increased in activity upon VNS switched On. 
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Differences between responders and non-responders irrespective of VNS being switched On 
vs. Off are situated in the hippocampus and amygdala bilaterally as well as in the anterior, 
middle and right cingulate cortex. Importantly, when using the commonly chosen 0.05 
significance level, the only significant differences between responders and non-responders are 
brain regions that show larger activity for non-responders than for responders. These brain 
regions include the left hippocampus and amygdala and the right and middle cingulate cortex. 
This result can be linked to the discussion presented above on the larger P300 amplitudes for 
non-responders and the connection to the inhibitory function of the LC-NE system. It is 
conceivable that this more effective inhibition due to the VNS induced activation of the LC-NE 
system is the reason for the significantly lower activity in responders. 

Interestingly, in this research also an interaction effect was investigated between group 
(responders vs. non-responders) and condition (VNS On vs. Off). The brain regions displaying 
significant results here are the right insula, left superior parietal lobe and left frontal orbital lobe. 
In these regions, the change in activity between VNS On and Off depends significantly on 
whether the patient is responder or non-responder and therefore these results can indicate 
crucial regions that can point to key structures for VNS efficacy. 

In research on the same topic, many inconsistencies are present and little research exists where 
differences between responders and non-responders are incorporated. On top of that, most 
research is done for depression and not for epilepsy. Therefore, it is conceivable that results 
presented in literature are poorly applicable to epilepsy patients due to the possible differences 
between an epileptic and a depressed brain. Conway et al. [173] found that the activity in the 
orbitofrontal cortex, cingulate cortex and frontal cortex is increased due to VNS, while it is 
decreased for the temporal cortex and several parietal areas. Bohning et al. [174] found 
influences of VNS on the orbitofrontal, parieto-occipital and temporal cortices as well as on the 
hypothalamus and amygdala. Zobel et al. [175] found increased activity in the middle frontal 
gyrus and decreased activity in amygdala, hippocampus, cingulate cortex, thalamus and brain 
stem. Kraus et al. [176] indicated decreased activity in the limbic lobe and increased activity in 
the insula, precentral gyrus and thalamus. The diminished activity of the limbic lobe was also 
found by Henry et al. [168], [177],  Devous et al. [178], Barnes et al. [179], Vonck et al. [167] 
and Van Laere et al. [180]. Also, recent research by Willeke Staljanssens in the MEDISIP group 
at Ghent University, Belgium obtained similar results for the active brain regions. 

In this research, several brain regions are found to be significantly influenced by VNS, which are 
also reported in previous research. The main result consistent with previous research is the 
diminished activity of the limbic system (hippocampus and amygdala). Also the differences 
between responders vs. non-responders and VNS Off vs. On in activity of the insular region and 
frontal orbital lobe are interesting and can be linked to the reported VNS dependent changes in 
activity in these regions in other research. 
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7.3 Brain connectivity 

In recent literature on epilepsy, brain connectivity and whole-brain network measures are 
presented as important tools to analyze the altered epileptic brain [152]–[155]. Therefore, in 
this research, ESI was combined with functional connectivity, effective connectivity and graph 
theory analyses to indicate differences in the brain connectivity and network between responders 
vs. non-responders and VNS On vs. Off. In this research, ROIs were defined using the AAL 
template [156].  

Functional connectivity between 116 ROIs was determined using the correlation measure. 
The only differences between VNS On and Off were found in non-responders and are in the 
connections between the hippocampus and insula bilaterally. Also the parietal and central gyri 
are present in these significantly different connections. For VNS Off, correlations of several 
brain regions with the insula are statistically different between responders and non-responders. 
These results again indicate an important role for the limbic lobe, as is also presented in other 
research [167], [168], [177]. 

Effective connectivity was analyzed using iADTF, iAPDC, ffADTF and ffAPDC based on a 
TVAR model. To reduce the computation time, the 116 ROIs were reduced to 27 ROIs based 
on the second-to-last regional split in the AAL template. The connections between the 27 ROIs 
were analyzed for all four measures and in five frequency bands. These frequency bands are 
indicated by δ, θ, α, β and γ, indicating different frequency bands: 0-4 Hz, 4-8 Hz, 8-16 Hz, 16-
32 Hz and 32-64 Hz respectively. Analyzing connectivity in the brain of epilepsy patients by 
ADTF is also done by Wilke et al. [135] where connectivity between EEG electrodes was used 
in the presurgical assessment. The analysis in different frequency bands is done in many 
researches [135], [181]–[183]. Both mean and standard deviation of the time-dependent 
connectivity calculations are analyzed. This technique was also used by Pittau et al. [184], 
where the average BOLD time course was compared between different ROIs. For responders, 
differences are found in the mean connection from occipital to frontal lobe when VNS is On vs. 
Off. For VNS On, many mean connection strengths show significant differences between 
responders and non-responders. These connections mainly involve the lateral surface of the right 
temporal lobe, the lateral surface of the left occipital lobe and the lateral surface of the right 
frontal lobe.  

When analyzing the standard deviation of the time series for the different measures, for non-
responders, the autospectra for the right limbic lobe and right temporal lobe are significantly 
different for VNS On vs. Off. This again indicates a substantial effect of VNS on the activity 
and connectivity with and within the right temporal lobe and limbic lobe, as was also discussed 
in the discussion of the source level analysis. For VNS On, similarly as for the mean connection 
strength, the standard deviation is significantly different between responders and non-responders 
in many connections. These connections are situated in the central gyri, the lateral surface of 
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the right temporal lobe and the left insula. As discussed above, many studies assess the 
connectivity between the time series of the electrode potentials. The strength of this research is 
to analyze connectivity between activity time series of brain regions and not between EEG 
electrode potentials. This approach is interesting because it can provide insight in the involved 
brain areas and allows easier clinical and physiological interpretation. This was also done by 
Pittau et al. [184] and they mainly found decreased connectivity between the hippocampus and 
the amygdala and the default mode network. These researchers specifically chose small ROIs in 
the hippocampus and amygdala, which allowed having precise results in this area of the brain. 
Due to the larger 27 ROIs used in this work, it is difficult to interpret the results of this report 
in terms of the default mode network. The altered connectivity with the default mode network 
was also presented by Fang et al. [185], who analyzed differences in connectivity due to VNS. 
Next to that, in the results presented in this report, the presence of the limbic lobe, temporal 
lobe and insula is convincing and these brain areas are also presented in the research by Fang et 
al. [185] and Pittau et al. [184]. 

The results for effective connectivity indicate a clear difference in connectivity between 
responders and non-responders especially for VNS On. This is consistent with research 
indicating an important role for connectivity analysis in understanding the epileptic brain and the 
anti-epileptic effect of VNS. Similar brain regions seem to be involved in the altered connections 
as discussed in the previous section on source level analysis. Although few research exists in 
which the connectivity is analyzed between activity time series of brain regions and not between 
electrodes potentials, the presence of the temporal area with inclusion of the limbic system and 
insula, is undeniable and is presented by other research as well [184], [185]. However, in 
literature, the connections of temporal lobe structures with the default mode network is often 
indicated as being significantly altered, but this is difficult to compare with the research in this 
report due to the choice of ROIs. 

Using a graph theory approach, a final analysis was performed to identify differences in the brain 
between responders vs. non-responders and VNS On vs. Off. The 27 ROIs as defined in the 
effective connectivity analysis, are now used as 27 nodes or vertices and the mean effective 
connectivity values are used as weights or labels of the edges connecting the 27 ROIs. 
Betweenness centrality was calculated for each node to be compared between groups and 
conditions. This measure indicates the relative importance of a node in the network and was 
used in previous researches as well [135], [186]–[189]. The right insula was found to be of 
higher importance in the brain network of responders when VNS was switched On than when 
VNS was Off. This result was present only in the θ-band. The θ-band is found to be crucially 
involved in epileptic brain alterations [135], [181], [182]. When VNS is switched On, the right 
limbic lobe was found to be of higher importance in the γ-band in responders than in non-
responders. For both the right insula and limbic lobe, the relative importance increases when 
VNS is switched On for responders while it decreases for non-responders. 
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In research on the brain network for epilepsy patients, many inconsistencies are present, but 
a main conclusion is that a shift towards a less efficient organization increases the epilepsy 
burden [189]–[194]. Therefore, research indicates that inducing a more efficient organization 
could reduce that epilepsy burden. Fraschini et al. [181] indeed found this result when 
comparing responders and non-responders for VNS Off and On. In this research, a minimum 
spanning tree was computed to characterize VNS-induced alterations in the network topology. 
They found that there is a more integrated network based on several minimum spanning tree 
measures. For the results of this report, the right insula and limbic lobe increase in importance 
in responders when VNS is switched On while it decreases for non-responders. Also, these nodes 
are relatively more important in responders than non-responders. It is possible that these nodes 
perform a hub-like function and therefore can relay information more efficient to more nodes. 
This would be consistent with the increased integrated network presented by Fraschini et al. 
[181]. However, they also showed an increased minimum spanning tree hierarchy in responders 
only, which indicates a decreased overloading of central nodes. It is important to stress that 
Fraschini et al. used EEG electrodes as nodes whereas in this research brain areas were used as 
nodes. Therefore, comparison between this research and Fraschini et al. is not trivial. 

Importantly, again the insular and limbic area in the brain again seem to be critically involved in 
analyzing differences between responders vs. non-responders and VNS On vs. Off. This result is 
consistent with the conclusions in the source level analysis and the effective connectivity results. 
However, to the knowledge of the author, the approach to use brain areas as nodes in contrast 
to EEG electrodes for graph theory analyses of epileptic brains has little or no precedents.  

7.4 Limitations 

The limited amount of patients and the absence of pre-operative recordings reduce the clinical 
applicability of the results. Therefore, the biomarkers presented in this research are interesting 
but have little predictive value in clinical practice. P300 amplitudes were extracted in all EEG 
channels at the moment of peak in the Pz channel. A more detailed extraction of the P300 
amplitudes would be achieved by detecting the P300 peak in each channel separately. The P300 
can be split up into P3a and P3b. As was shown in this research, both components seem to 
generate specific results. Therefore, treating and investigating them separately seems 
appropriate. Also, using more patients will allow using more features simultaneously in the 
cross-validation for classification of patients as responders or non-responders.  

In the source level analysis, due to the lack of time, no post-hoc t-tests were performed, 
which could identify differences between responders vs. non-responders and VNS On vs. Off in 
greater detail. Also, although warping the head models to the template head models was 
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performed accurately, the anatomically defined ROIs on the template head model do not 
perfectly delineate the same brain regions in the individual head models. There is a clear 
advantage when using individual head models, but the ROIs should therefore also be defined 
individually.  

For the brain connectivity analysis, the 116-regional ROI system was reduced to 27 ROIs. 
Therefore, differences between some small ROIs are removed, limiting the anatomical accuracy 
of the results. Due to computational issues in the ESI, EEG signals of 9 s were used. This is 
short compared to the recordings of over 10 min and could possibly generalize the results 
inaccurately. Multiple comparison corrections are performed for all significance values of the 
post-hoc t-tests simultaneously. However, results in different frequency bands could be seen 
separate from each other and in that case they should be corrected separately.  

Due to the lack of time, only betweenness centrality for each node was used as measure in 
the brain network analysis. This technique fails to indicate overall network characteristics.  

In this research, no influences of the AEDs or administration regime were included. It is 
possible that AEDs altered brain functioning in patients and this effect should be investigated in 
other research. 

7.5 Future research 

Results in this research indicate possible methods to indicate features in the auditory oddball 
ERPs of patients to identify them as being either responder or non-responder. Future work 
should compare pre- and post-operative recordings with each other to come to predictive 
biomarkers. This research is currently being performed at the Reference Center for Refractory 
Epilepsy, Ghent University, Ghent, Belgium. The P300 wave should be investigated separately 
for P3a and P3b and all P300 features should be extracted from each EEG channel separately. 
Cross-validation should be used to estimate the clinical classification efficacy pre-operatively. 

The use of individual head models is a good approach, but this should also be reflected in the 
definition of individual ROIs. The activity of the limbic and temporal brain areas was 
omnipresent in this research in the differences between responders and non-responders. Future 
work should focus on further elucidating the effect VNS has on these brain regions and what 
the contribution of them is to the anti-epileptic effect of VNS.  

To the author’s opinion, graph theory analyses could be of great help to unravel the mechanism 
of action of VNS. Importantly, the ROIs should be well chosen. A possible approach could be to 
start with large ROIs and to increase ROI resolution in those areas that show significant results. 
To overcome some computational issues, a simpler ESI technique could be used. Future 
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research should focus on using several graph theory measures to identify influences of VNS 
treatment on the brain. Brain areas should be used as nodes instead of using EEG electrodes as 
nodes, since this will generate results with high clinical interpretability, as is done in this 
research. Graph theory measures should be used that allow easy interpretation and that give 
interesting information on the mechanism of action of VNS. 
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Chapter 8  

Conclusion 

In this research, the effect of vagus nerve stimulation on the brain of epilepsy patients was 
assessed. The effects were explored at three levels: sensor level, source level and brain 
connectivity level. Possible biomarkers for pre-operative assessment of the VNS efficacy are 
analyzed and discussed. 

An increase in P300 amplitude for responders only is reported in literature on several occasions 
and is confirmed in this research with the extension of finding a significant decrease in P300 
amplitude for non-responders as well. Results in this research indicate that treating the P3a and 
P3b P300 components separately could be valuable. Importantly, cross-validation revealed that 
several features in the ERP can be used to obtain better accuracies in estimating the VNS 
efficacy of an unknown patient than the P300 amplitude recorded from the midline electrodes, 
which is proposed in literature. The results in this research point to one or both of the following 
hypotheses: (1) P300 features recorded from other than midline electrodes can be used to 
obtain better accuracies in assessing VNS efficacy and (2) other VNS dependent brain signals 
than the P300 wave can be used to assess VNS efficacy with a much larger accuracy. However, 
the reported biomarkers are no predictive biomarkers due to the absence of ERP recordings pre-
operatively. 

Several brain regions are found that are influenced by VNS treatment, including the limbic 
system, insula, frontal orbital lobe and several temporal structures. Therefore, these results are 
consistent with the VNS mediated activity in limbic and temporal lobe structures, as reported in 
literature. Analyzing the brain connectivity and whole-brain network identified shifts in the brain 
functioning between responders and non-responders due to VNS. The importance of the insular 
and limbic area in brain functioning seems to be altered between responders and non-
responders. Future research should elaborate on unraveling the role of these structures in the 
anti-epileptic effect of VNS. Consistent with literature, connectivity and graph theory measures 
prove to be helpful tools to study the epileptic brain and provide useful insights in the 
mechanism of action of VNS. 
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Appendix 

116 ROIs 27 ROIs 
Precentral gyrus 

Central region Postcentral gyrus 
Rolandic operculum 

Superior frontal gyrus, dorsolateral 

Lateral surface of frontal lobe 
Middle frontal gyrus 

Inferior frontal gyrus, opercular part 
Inferior frontal gyrus, triangular part 

Superior frontal gyrus, medial 
Medial surface of frontal lobe Supplementary motor area 

Paracentral lobule 
Superior frontal gyrus, orbital part 

Orbital surface of frontal lobe 

Superior frontal gyrus, medial orbital part 
Middle frontal gyrus, orbital part 
Inferior frontal gyrus, orbital part 

Gyrus rectus 
Olfactory cortex 

Superior temporal gyrus 

Lateral surface of temporal lobe Heschl gyrus 
Middle temporal gyrus 
Inferior temporal gyrus 
Superior parietal gyrus 

Lateral surface of parietal lobe 
Inferior parietal, but supramarginal and angular gyri 

Angular gyrus 
Supramarginal gyrus 

Precuneus Medial surface of parietal lobe 
Superior occipital gyrus 

Lateral surface of occipital lobe Middle occipital gyrus 
Inferior occipital gyrus 

Cuneus 

Medial and inferior surfaces of occipital lobe 
Calcarine fissure and surrounding cortex 

Lingual gyrus 
Fusiform gyrus 

Temporal pole: superior temporal gyrus 

Limbic lobe 

Temporal pole: middle temporal gyrus 
Anterior cingulate and paracingulate gyri 
Median cingulate and paracingulate gyri 

Posterior cingulate gyrus 
Hippocampus 

Parahippocampal gyrus 
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Insula Insula 
Amygdala 

Sub cortical gray nuclei 
Caudate nucleus 

Lenticular nucleus, putamen 
Lenticular nucleus, pallidum 

Thalamus 
Cerebellum Crus1 

Cerebellum 

Cerebellum Crus2 
Cerebellum 3 

Cerebellum 4-5 
Cerebellum 6 
Cerebellum 7 
Cerebellum 8 
Cerebellum 9 
Cerebellum 10 

Vermis 1-2 

Vermis 

Vermis 3 
Vermis 4-5 
Vermis 6 
Vermis 7 
Vermis 8 
Vermis 9 
Vermis 10 

Appendix Table A: Detailed description of the two ROIs systems used in this research. All regions are present 
bilaterally except the vermis. These systems were defined in [156]. 
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Patient Group Latency Off (s) Latency On (s) 

P1 R 0.586 0.656 

P2 R 0.527 0.840 

P3 NR 0.453 0.598 

P4 NR 0.516 0.453 

P5 NR 0.426 0.480 

P8 NR 0.656 0.668 

P9 R 0.469 0.441 

P10 R 0.313 0.313 

P11 NR 0.477 0.457 

P12 R 0.477 0.469 

P13 R 0.477 0.879 

P14 R 0.691 0.754 

P15 NR 0.406 0.422 

P16 R 0.434 0.453 

P17 NR 0.620 0.625 

P18 NR 0.668 0.770 

P19 R 0.711 0.594 

P20 NR 0.590 0.570 

P21 R 0.543 0.531 
Appendix Table B: Observed values for the latency of the P300 peak in the target-standard difference 

waveform. The latency is automatically detected in the Pz channel for each patient and each condition. For 
each patient it is indicated whether it is a responder (R) or non-responders (NR). Latency is measured 

relative to stimulus onset. 

 
 
 
 
 
 

R NR  Statistical analysis 

Off On Off On Group 
df = 1,17 

Condition 
df = 1,17 

Group x condition 
df = 1,17 

μ ± σ (s) μ ± σ (s) F=0.038 F=2.089 F=0.451 
0.523±0.119 0.593±0.186 0.535±0.101 0.560±0.117 p=0.847 p=0.167 p=0.511 

Appendix Table C: Results of the mixed-model ANOVA statistical analysis for the P300 latency. 
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! R NR Statistical analysis 

Off On Off On 
Group Condition 

Group x 
condition 

df=1,17 df=1,17 df=1,17 
μ ± σ (μV) F p F p F p 

Fp1$ -3.82 ± 4.00 -2.99 ± 4.21 -9.04 ± 8.72 -7.41 ± 5.09 4.65 0.05 0.78 0.39 0.08 0.78 
Fpz$ -0.72 ± 11.36 -1.39 ± 5.27 -9.45 ± 7.23 -8.48 ± 4.89 7.21 0.02 0.01 0.94 0.17 0.68 
Fp2$ -3.46 ± 3.05 -2.51 ± 5.08 -9.21 ± 6.70 -7.83 ± 6.56 9.98 0.01 0.42 0.53 0.01 0.91 
F7$ -2.62 ± 3.50 -4.18 ± 4.20 -7.23 ± 4.17 -6.01 ± 4.06 3.92 0.06 0.04 0.84 2.74 0.12 
F3$ -3.08 ± 2.37 -2.73 ± 2.36 -7.84 ± 4.79 -6.86 ± 4.00 11.13 0.00 0.56 0.46 0.13 0.73 
Fz$ -4.25 ± 2.72 -2.77 ± 2.57 -6.77 ± 5.33 -6.59 ± 3.44 5.94 0.03 0.63 0.44 0.39 0.54 
F4$ -3.07 ± 1.90 -2.49 ± 2.50 -5.25 ± 4.21 -4.77 ± 1.42 5.26 0.04 0.48 0.50 0.01 0.94 
F8$ -2.79 ± 2.36 -4.09 ± 3.40 -5.35 ± 2.40 -4.86 ± 3.29 1.95 0.18 0.47 0.50 2.22 0.16 
T7$ -0.84 ± 3.64 -2.24 ± 3.59 -4.42 ± 4.84 -3.78 ± 5.52 2.06 0.17 0.15 0.70 1.10 0.31 
C3$ -1.00 ± 3.84 -0.49 ± 3.69 -1.39 ± 2.79 -1.81 ± 3.54 0.31 0.58 0.01 0.93 0.86 0.37 
Cz$ -1.34 ± 4.28 0.23 ± 2.87 1.93 ± 4.79 1.15 ± 4.74 1.37 0.26 0.29 0.60 2.63 0.12 
C4$ -0.03 ± 3.26 0.71 ± 2.92 3.18 ± 3.19 1.77 ± 2.91 2.44 0.14 0.93 0.35 9.76 0.01 
T8$ -1.21 ± 4.23 -3.03 ± 3.83 -0.80 ± 4.68 -2.02 ± 4.90 0.15 0.70 3.18 0.09 0.12 0.73 
P7$ 2.01 ± 3.80 1.11 ± 4.27 2.25 ± 4.37 2.37 ± 4.41 0.19 0.67 0.18 0.68 0.31 0.59 
P3$ 4.01 ± 2.30 4.47 ± 4.25 5.74 ± 3.31 4.78 ± 1.39 0.66 0.43 0.17 0.69 1.38 0.26 
Pz$ 4.75 ± 2.49 6.25 ± 3.83 8.86 ± 3.43 8.09 ± 3.60 4.12 0.06 0.55 0.47 5.33 0.03 
P4$ 4.28 ± 1.98 5.04 ± 2.90 7.74 ± 3.35 7.38 ± 2.44 7.76 0.01 0.09 0.77 0.69 0.42 
P8$ 1.35 ± 4.23 0.52 ± 3.98 4.41 ± 5.15 4.46 ± 3.85 4.04 0.06 0.17 0.69 0.22 0.65 
O1$ 3.10 ± 3.99 1.52 ± 3.72 5.36 ± 5.35 5.93 ± 3.21 3.67 0.07 0.44 0.52 2.02 0.17 
Oz$ 3.08 ± 3.87 1.99 ± 3.12 5.52 ± 5.23 6.20 ± 2.88 4.49 0.05 0.06 0.81 1.11 0.31 
O2$ 2.91 ± 3.96 2.11 ± 2.91 5.48 ± 5.08 6.22 ± 3.01 4.69 0.05 0.00 0.97 0.83 0.37 
FC5$ -2.31 ± 1.41 -3.36 ± 3.13 -5.88 ± 3.53 -5.54 ± 4.68 4.13 0.06 0.35 0.56 1.35 0.26 
FC1$ -3.66 ± 3.41 -2.32 ± 2.20 -4.12 ± 5.49 -4.27 ± 3.39 0.66 0.43 0.45 0.51 0.71 0.41 
FC2$ -2.89 ± 3.47 -1.23 ± 2.85 -1.91 ± 4.74 -2.31 ± 3.74 0.00 0.98 0.76 0.40 2.04 0.17 
FC6$ -2.39 ± 2.58 -2.45 ± 2.86 -2.74 ± 2.48 -3.08 ± 2.43 0.20 0.66 0.18 0.67 0.09 0.77 
PO7$ 2.86 ± 3.16 1.39 ± 4.51 4.88 ± 4.23 5.63 ± 2.42 4.46 0.05 0.19 0.67 1.79 0.20 
PO8$ 2.50 ± 4.90 0.60 ± 7.92 5.57 ± 4.86 5.71 ± 3.24 3.06 0.10 0.72 0.41 0.97 0.34 
CP1$ 2.09 ± 3.36 2.83 ± 3.53 4.75 ± 2.43 4.75 ± 4.66 2.22 0.15 0.38 0.55 0.40 0.54 
CP2$ 2.54 ± 2.88 4.09 ± 3.02 6.89 ± 3.73 5.78 ± 4.30 3.77 0.07 0.30 0.59 10.96 0.00 
CP6$ 1.55 ± 2.56 1.60 ± 2.69 4.24 ± 3.18 3.08 ± 2.47 3.37 0.08 1.06 0.32 1.29 0.27 
Poz$ 5.19 ± 3.66 4.93 ± 2.80 8.74 ± 4.69 8.71 ± 2.75 6.73 0.02 0.03 0.86 0.02 0.89 
AF7$ -2.53 ± 4.23 -3.37 ± 3.80 -7.91 ± 6.14 -6.95 ± 3.45 7.97 0.01 0.00 0.97 0.46 0.51 
AF3$ -3.98 ± 2.74 -2.92 ± 2.20 -7.96 ± 4.31 -6.90 ± 2.55 13.77 0.00 1.44 0.25 0.00 1.00 
AF4$ -3.51 ± 2.37 -2.68 ± 2.85 -7.37 ± 4.72 -6.55 ± 2.68 10.87 0.00 0.79 0.39 0.00 0.99 
AF8$ -2.66 ± 3.85 -4.32 ± 5.07 -6.82 ± 3.67 -5.45 ± 5.40 3.39 0.08 0.01 0.93 0.99 0.33 
F5$ -4.00 ± 4.21 -4.03 ± 4.53 -8.45 ± 4.56 -6.45 ± 3.33 3.66 0.07 1.95 0.18 2.03 0.17 
F1$ -3.90 ± 2.66 -2.85 ± 2.30 -6.92 ± 4.48 -6.60 ± 3.44 8.95 0.01 0.47 0.50 0.13 0.72 
F2$ -3.80 ± 2.31 -1.99 ± 3.29 -5.92 ± 4.84 -5.44 ± 2.70 4.97 0.04 1.51 0.24 0.52 0.48 
F6$ -2.18 ± 3.49 -2.41 ± 2.87 -6.82 ± 5.17 -5.22 ± 10.41 5.99 0.03 0.09 0.77 0.15 0.70 
FC3$ -2.66 ± 2.79 -2.05 ± 2.72 -5.03 ± 3.99 -4.54 ± 4.12 2.89 0.11 0.69 0.42 0.01 0.93 
FCz$ -4.06 ± 3.95 -2.50 ± 2.92 -3.85 ± 6.47 -4.47 ± 4.40 0.23 0.64 0.21 0.65 1.17 0.30 
FC4$ -2.15 ± 2.74 -1.18 ± 2.81 -1.39 ± 2.92 -2.15 ± 2.80 0.01 0.94 0.06 0.81 4.20 0.06 
C5$ 0.28 ± 4.48 -0.60 ± 4.13 -2.55 ± 3.33 -3.11 ± 4.36 2.15 0.16 2.11 0.17 0.10 0.76 
C1$ -1.27 ± 4.01 -0.17 ± 3.03 0.51 ± 3.40 -0.12 ± 3.49 0.38 0.55 0.15 0.70 2.03 0.17 
C2$ -0.13 ± 3.43 1.45 ± 2.72 3.60 ± 4.09 2.52 ± 4.41 2.20 0.16 0.24 0.63 6.93 0.02 
C6$ -0.60 ± 3.69 -0.14 ± 3.84 1.20 ± 2.78 -0.11 ± 2.56 0.38 0.55 1.64 0.22 7.15 0.02 
CP3$ 2.06 ± 3.37 2.35 ± 3.93 3.07 ± 2.73 1.91 ± 2.49 0.04 0.85 1.03 0.33 2.86 0.11 
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CP5$ 1.50 ± 2.69 0.82 ± 2.72 0.72 ± 3.49 -0.12 ± 3.91 0.39 0.54 2.04 0.17 0.02 0.89 
CP4$ 2.48 ± 2.50 3.45 ± 3.31 6.27 ± 3.22 4.97 ± 2.99 4.01 0.06 0.17 0.68 7.88 0.01 
P5$ 3.15 ± 2.35 2.58 ± 2.57 4.21 ± 3.78 3.65 ± 2.57 0.84 0.37 0.92 0.35 0.00 0.99 
P1$ 4.47 ± 2.40 5.19 ± 4.32 7.16 ± 2.81 6.35 ± 2.03 2.27 0.15 0.01 0.94 1.85 0.19 
P2$ 4.33 ± 2.00 5.80 ± 3.38 8.41 ± 3.73 7.77 ± 3.48 4.82 0.04 0.68 0.42 4.29 0.05 
P6$ 2.79 ± 2.70 2.86 ± 2.59 6.33 ± 3.60 5.92 ± 2.37 9.84 0.01 0.05 0.83 0.09 0.77 
PO5$ 2.61 ± 4.46 1.06 ± 5.54 5.69 ± 4.56 6.06 ± 2.39 4.63 0.05 0.56 0.47 1.48 0.24 
PO3$ 4.77 ± 3.21 3.75 ± 3.08 6.97 ± 4.28 7.01 ± 2.18 4.32 0.05 0.47 0.50 0.54 0.47 
PO4$ 3.41 ± 4.62 2.60 ± 7.47 8.10 ± 3.97 8.20 ± 2.61 5.87 0.03 0.14 0.71 0.22 0.64 
PO6$ 2.78 ± 4.90 1.33 ± 7.67 7.08 ± 3.98 7.38 ± 2.55 5.63 0.03 0.34 0.57 0.78 0.39 
FT7$ -1.62 ± 2.82 -3.40 ± 3.28 -5.60 ± 4.71 -4.82 ± 4.58 2.73 0.12 0.46 0.51 3.08 0.10 
FT8$ -1.44 ± 3.20 -3.04 ± 4.17 -2.85 ± 3.67 -3.64 ± 3.67 0.40 0.54 4.47 0.05 0.51 0.49 
TP7$ 0.38 ± 3.64 -0.67 ± 3.55 -1.15 ± 4.10 -0.60 ± 5.03 0.20 0.66 0.07 0.79 0.78 0.39 

Appendix Table D: Results and descriptive statistics of mixed-model ANOVA for the P300 amplitude in all 60 
EEG channels. Group indicates responders vs. non-responders while condition indicates VNS On vs. VNS Off. 

Group x condition represents the interaction effect between the factors group and condition. Significant 
results are marked in gray. 

 

  Group Condition 
Off (df=17) On (df=17) R (df=9) NR (df=8) 
t p t p t p t p 

Fp1 1.728 0.102 1.95 0.068     
Fpz 2.011 0.06 2.738 0.014     
Fp2 2.452 0.025 1.988 0.063     
F3 2.794 0.0125 2.777 0.013     
Fz 1.316 0.206 2.763 0.013     
F4 1.478 0.158 2.41 0.028     
C4 -2.166 0.045 -0.796 0.437 -1.366 0.205 3.519 0.0079 
Pz -3.015 0.008 -1.08 0.295 -3.042 0.014 0.875 0.407 

P4 -2.744 0.014 -1.889 0.076     
Oz -1.164 0.261 -3.035 0.007     
O2 -1.236 0.233 -3.019 0.008     

PO7 -1.19 0.25 -2.504 0.023     
CP2 -2.864 0.011 -1.002 0.33 -3.329 0.009 1.681 0.131 
Poz -1.853 0.081 -2.966 0.009     
AF7 2.245 0.038 2.141 0.047     
AF3 2.433 0.026 3.654 0.002     
AF4 2.284 0.036 3.049 0.007     
F1 1.809 0.088 2.821 0.012     
F2 1.239 0.232 2.486 0.024     
F6 2.315 0.033 0.821 0.423     
C2 -2.16 0.045 -0.645 0.528 -1.837 0.099 2.303 0.05 
C6 -1.186 0.252 -0.015 0.988 -0.986 0.35 2.808 0.023 

CP4 -2.883 0.01 -1.044 0.311 -1.957 0.082 1.996 0.081 
P2 -3.012 0.008 -1.255 0.226     
P6 -2.436 0.026 -2.678 0.016     



 

 104 

PO5 -1.484 0.156 -2.499 0.023     
PO3 -1.282 0.217 -2.633 0.017     
PO4 -2.361 0.03 -2.128 0.048     
PO6 -2.086 0.052 -2.25 0.038     

Appendix Table E: Results of post-hoc two-tailed two tailed t-tests for EEG channels that exhibit significant 
main effect of group and/or significant interaction effect for the P300 amplitude. To investigate the influence 
of the group, independent samples t-tests are used for both VNS Off and On. To investigate the influence of 

the condition paired samples t-tests are used. 

 
 

 Relative amplitude change 
t (df=17) p 

C4 -0.05 0.961 
Pz 2.742 0.014 

CP2 0.743 0.486 
C6 1.056 0.306 
C2 1.141 0.27 

CP4 1.033 0.316 
Appendix Table F: Results for post-hoc two-tailed independent samples t-tests for the relative (on-off/off) 

amplitude change of the P300 amplitude. 

 
 

 
VNS Off 

 
OR CI (lower-upper) p 

Fp2 1.289 0.989 1.68 0.06 
F3 1.444 1.012 2.06 0.043 
C4 0.72 0.507 1.021 0.065 
Pz 0.574 0.343 0.963 0.035 
P4 0.595 0.361 0.981 0.042 

CP2 0.614 0.394 0.957 0.031 
AF7 1.251 0.98 1.598 0.072 
AF3 1.388 0.999 1.928 0.051 
AF4 1.407 0.978 2.024 0.066 
F6 1.392 0.978 1.981 0.066 
C2 0.742 0.538 1.024 0.069 

CP4 0.629 0.414 0.957 0.03 
P2 0.55 0.309 0.979 0.042 
P6 0.681 0.459 1.01 0.056 

PO4 0.728 0.522 1.015 0.061 
Appendix Table G: Results of the logistic regression analysis for VNS Off. The analysis is performed on the 
EEG channels that showed a significant difference between responders and non-responders for VNS Off by 
post-hoc two-tailed independent samples t-test. OR indicates the odds ratio and CI the confidence interval. 
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VNS On 

 
OR CI (lower-upper) p 

Fp1 1.274 0.963 1.684 0.09 
Fpz 1.582 0.986 2.536 0.057 
F3 1.654 1.003 2.729 0.049 
Fz 1.715 1.002 2.934 0.049 
F4 2.357 0.955 5.82 0.063 
P4 0.706 0.469 1.062 0.095 
Oz 0.622 0.409 0.947 0.027 
O2 0.598 0.379 0.944 0.027 

PO7 0.655 0.432 0.992 0.046 
Poz 0.617 0.403 0.946 0.027 
AF7 1.36 0.967 1.912 0.077 
AF3 1.988 1.122 3.52 0.019 
AF4 1.814 1.034 3.18 0.038 
F1 1.599 1.022 2.5 0.04 
F2 2.24 0.926 5.418 0.074 
P6 0.546 0.296 1.007 0.053 

PO5 0.625 0.381 1.025 0.063 
PO3 0.639 0.419 0.973 0.037 
PO4 0.654 0.435 0.984 0.042 
PO6 0.644 0.419 0.99 0.045 

Appendix Table H: Results of the logistic regression analysis for VNS on. The analysis is performed on the 
EEG channels that showed a significant difference between responders and non-responders for VNS On by 
post-hoc two-tailed independent samples t-test. OR indicates the odds ratio and CI the confidence interval. 

 
 
 
 

 
Relative amplitude change 

 
OR CI (lower-upper) p 

C4 1 0.996 1.004 0.958 
Pz 1.052 1.003 1.103 0.038 

CP2 1.003 0.996 1.009 0.453 
C2 1.001 0.998 1.005 0.402 
C6 1 1 1 0.59 

CP4 1.006 0.994 1.019 0.308 
Appendix Table I: Results of the logistic regression analysis for the relative P300 amplitude change. The 

analysis is performed on the EEG channels that showed a significant difference between VNS On and Off for 
either responders or non-responders for by post-hoc two-tailed related samples t-test. OR indicates the odds 

ratio and CI the confidence interval. 
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ROI NR (Off) NR (On) R (Off) R (On) 
1 4.53 22.28 5.19 8.86 
2 14.80 17.89 18.89 16.31 

3 1.60 7.92 31.50 14.92 
4 5.63 9.01 7.43 18.69 
5 16.41 8.70 11.67 5.82 

6 30.57 9.88 28.45 18.11 
7 13.16 4.39 9.62 9.73 

8 8.61 7.09 7.37 16.76 
9 3.60 0.51 5.30 2.59 

10 5.25 12.64 16.99 12.83 
11 0.82 1.39 3.94 1.81 
12 3.89 5.08 14.06 13.73 

13 11.30 2.11 13.25 7.52 
14 13.16 9.10 22.58 25.02 

15 1.76 7.99 4.19 1.80 
16 2.99 6.37 17.72 8.23 
17 6.40 13.14 16.01 14.19 

18 16.20 22.07 22.09 26.56 
19 26.01 20.39 8.03 10.96 

20 28.63 9.51 16.37 35.83 
21 18.23 27.58 8.89 5.68 

22 18.02 4.32 20.11 38.70 
23 4.20 9.43 7.54 9.46 
24 16.54 19.62 14.15 27.36 

25 3.83 3.24 15.68 12.51 
26 9.93 20.09 17.52 11.80 

27 13.76 8.86 11.25 13.63 
Appendix Table J: Mean betweenness centrality measures for groups, conditions and ROIs. 

  



 

 107 

 
Node p value Measure Frequency band Ron-Roff NRon-NRoff 

Frontal surface of 
left frontal lobe 

0.0265 iADTF γ <0 >0 

Medial surface of 
right frontal lobe 

0.0328 iADTF α >0 <0 
0.0137 ffADTF γ <0 >0 

Lateral surface of 
right temporal lobe 

0.0426 ffADTF β <0 >0 

Lateral surface of 
left parietal lobe 

0.0233 ffADTF γ <0 >0 

Lateral surface of 
left occipital lobe 

0.0392 ffADTF γ <0 >0 

Left limbic lobe 0.0212 iADTF γ >0 <0 

Right limbic lobe 

0.0393 iAPDC δ >0 <0 
0.0271 iAPDC θ >0 <0 
0.0170 iAPDC α >0 <0 
0.0140 iAPDC γ >0 <0 
0.0390 ffAPDC δ >0 <0 
0.0275 ffAPDC θ >0 <0 
0.0167 ffAPDC α >0 <0 
0.0163 ffAPDC γ >0 <0 

Right insula 

0.0253 iADTF θ >0 <0 
0.0417 iADTF α >0 <0 
0.0266 ffADTF θ >0 <0 
0.0492 ffADTF α >0 <0 

Appendix Table K: Significant results for interaction effect of betweenness centrality for different nodes, 
measures and frequency bands. δ ,  θ ,  α ,  β  and γ indicate different frequency bands: 0-4 Hz, 4-8 Hz, 8-16 

Hz, 16-32 Hz and 32-64 Hz respectively. 
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