

DURCWAVE: experimental modelling for coastal safety in low-lying coastal zones

Dr. Corrado Altomare

Maritime Engineering Laboratory, Universitat Politècnica de Catalunya – BarcelonaTech Spain

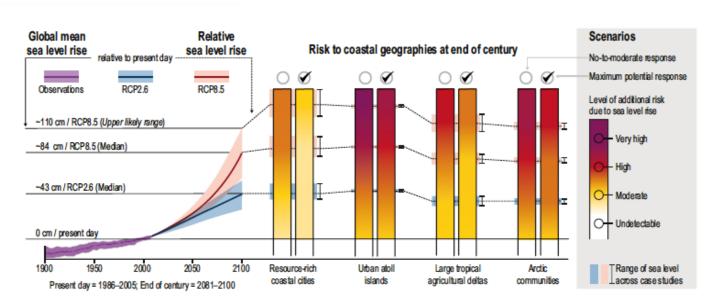
E-mail: corrado.altomare@upc.edu

amending the Design criteria of URban defences in LECZs through Composite-modelling of WAVE overtopping under climate change scenarios

Marie Skłodowska-Curie actions (MSCA) Individual Fellowship (IF):

- support the mobility of researchers within and beyond Europe
- promote bottom-up research and training-through-research

H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
Grant Agreement No. 792370



DURCWAVE

amending the Design criteria of URban defences in LECZs through Composite-modelling of WAVE overtopping under climate change scenarios

IPCC (2019)

Climate action: cross-cutting priority under Horizon 2020

Activity: strengthening coastal defences against storm surges & sea-level rise

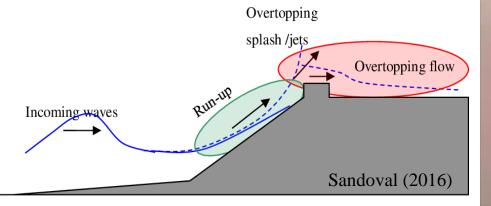
MOTIVATION

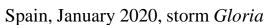
How much the risk for people living in LECZs will increase? How to tackle it?

Need to improve/increase

- ➤ knowledge on wave overtopping and post-overtopping processes
- the design criteria of coastal defences

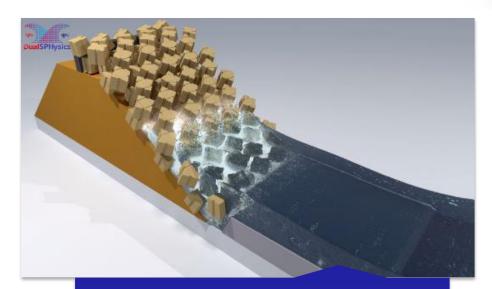
Cyclone Xaver (2013)





GOALS

Skecth of run-up and overtopping



METHODS

COMPOSITE-MODELLING: physical modelling (PM) + numerical modelling (NM)

Small and large scale model tests

Meshless DualSPHysics model

METHODS

- ✓ Cheap
- **✓** Versatile
- ✓ No scale effects
- ✓ All metrics provided
- **✓ Validation**
- **✓** Physics

Project information

DURCWAVE

Grant agreement ID: 792370

Status

Ongoing project

Start date

End date 4 April 2021

Funded under:

1 March 2019

H2020-EU.1.3.2.

Overall budget: € 170 121,60

EU contribution € 170 121,60

Coordinated by:

UNIVERSITAT POLITECNICA DE CATALUNYA

Spain

Overview of the present research carried out at **UPC**

5 Work Packages:

Physical modelling

Numerical model development

Integration PM and NM data

Dissemination and public engagement

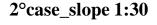
Project Management

GOALS OF PM

- \succ to characterize individual overtopping flows (V, u, λ , q)
- > to verify coastal safety limits and overtopping
- > to provide data for NM validation

CASE STUDY: PREMIÀ de MAR (Maresme coastline)

EXPERIMENTAL SETUP


Small scale flume "CIEMito" at LIM/UPC

Measurement setup:

- 8 resistive sensors (WG) along the flume;
- 2 acustic sensors (AWG) on the promenade;
- 2 load cells;
- 2 high speed cameras.

Promenade (0m, 6m and 12m)

TEST MATRIX (420 tests)

Prototype scale:

	_					
			т			
Slope	T_R [y]	H_{m0} [m]	T_p [s]	SEED	Depth [m]	Prom. [m]
1:15	1	3.60	11.96	1;5	14.5-15-15.5	6-12
1:15	2	4.01	12.28	1;5	14.5-15-15.5	6-12
1:15	5	4.59	12.67	1;5	14.5-15-15.5	6-12
1:15	>10	5.55	9.9	1;5	14.5-15-15.5	6-12
1:15	>10	4.59	10.6-11.3	1;5	14.5-15-15.5	6-12
1:15	>10	4.50	9.9-10.6-11.3-12	1;5	14.5-15-15.5	6-12
$_{ m Slope}$	T_R [y]	H_{m0} [m]	T_p [s]	SEED	Depth [m]	Prom. [m]
1:30	1	3.60	11.96	1;5	15.25-15.5	6-12
1:30	2	4.01	12.28	1;5	15.25-15.5	6-12
1:30	5	4.59	12.67	1;5	15-15.25-15.5	6-12
		1				

15.25-15.5

15-15.25-15.5

15.25-15.5

6-12

6-12

6-12

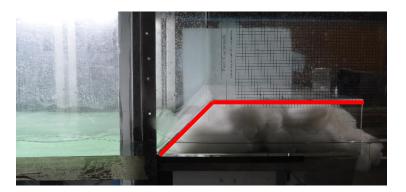
1:5

1:5

1:5

> 10

> 10


> 10

5.55

4.59

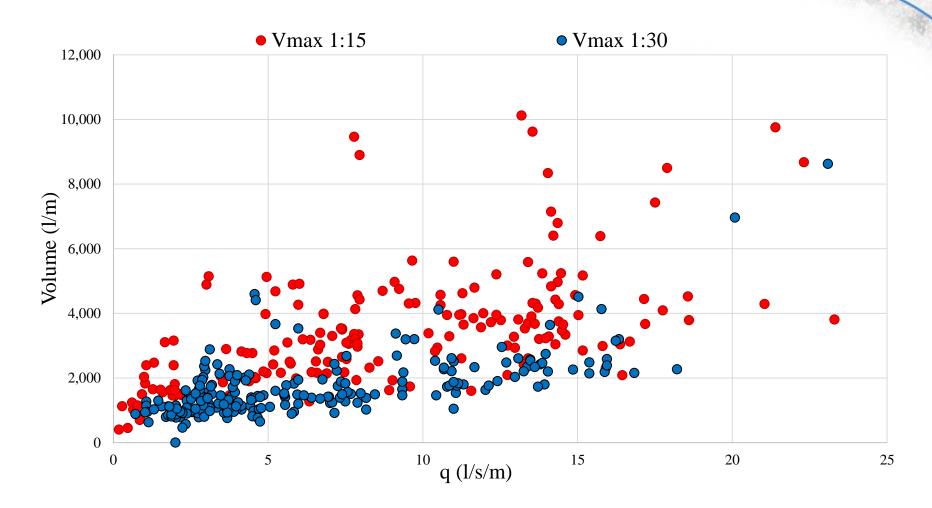
4.50

Dike slope= 1:1

1:30

1:30

1:30

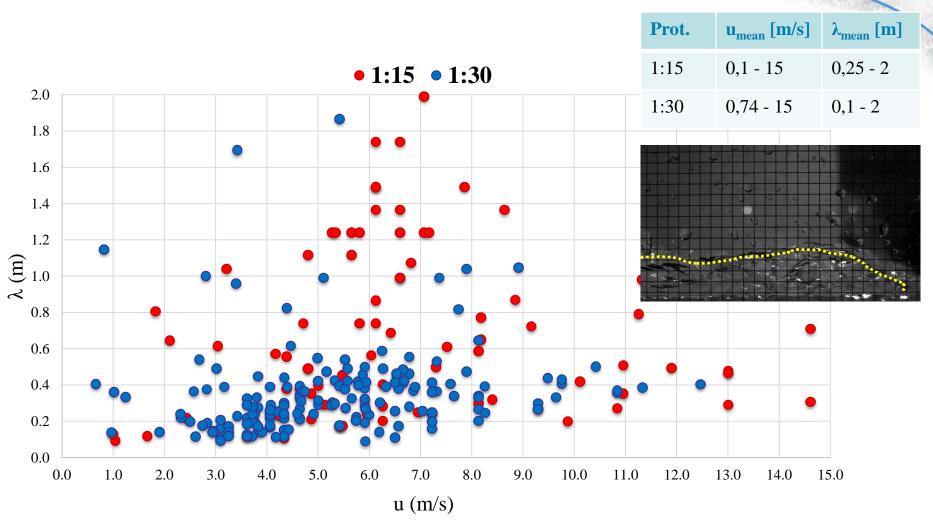

9.9

9.9-10.6-11.3

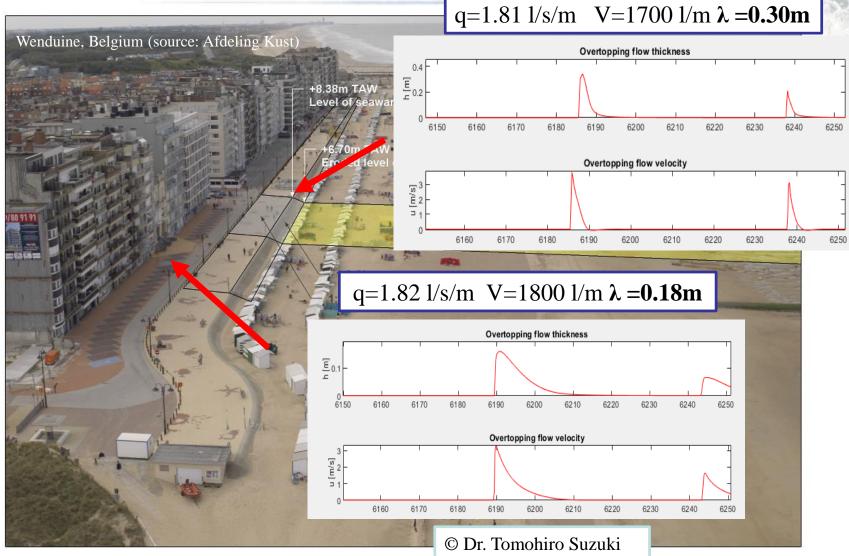
9.9-10.6-11.3-12

RESULTS

• 1:15 • 1:30 15.0 Prot. u_{mean} [m/s] q_{mean} [l/s/m] 12.5 0,1 - 15 1:15 0,2-52,71:30 0,74 - 15 0,17 - 23 10.0 u (m/s) 7.5 5.0 2.5 0.0 q (1/s/m)0 10

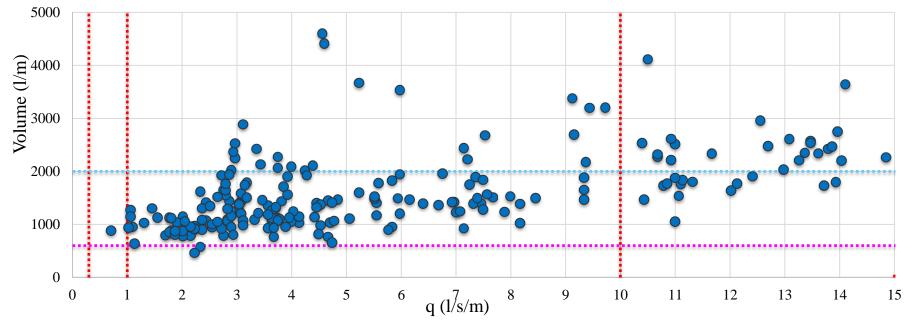


RESULTS



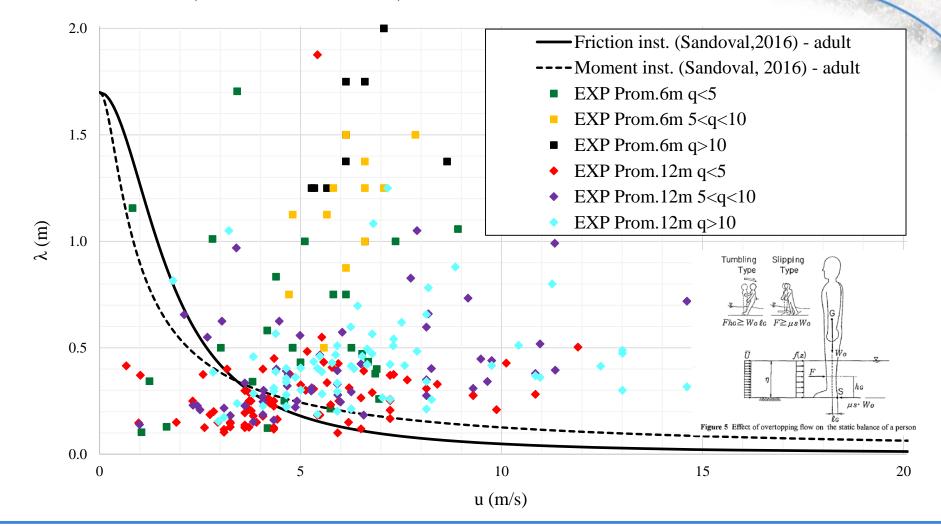
OVERTOPPING DESIGN CRITERIA (EurOtop, 2018)

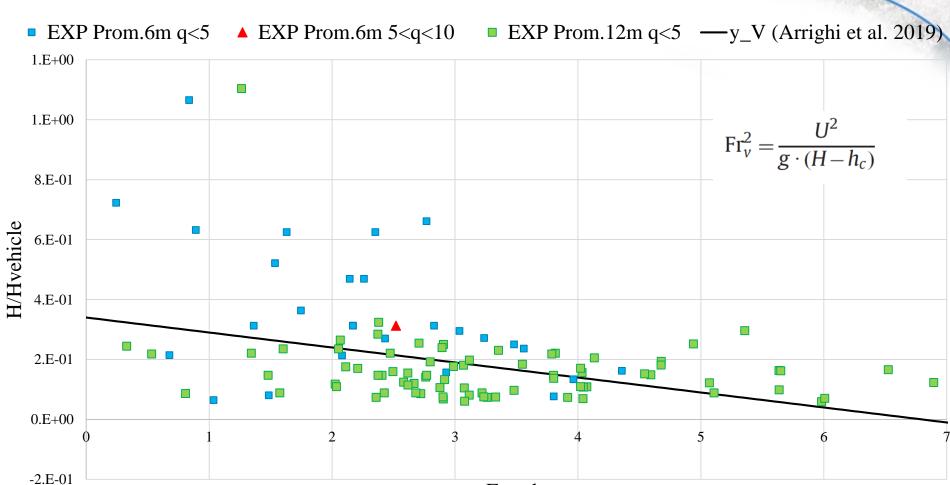
Hazard type and re	eason	Mean discharge q (l/s per m)	Max volume V _{max} (I per m)	
People at structures with po overtopping, mostly vertical		No access for any predicted overtopping	No access for any predicted overtopping	
People at seawall / dike cre of the sea.	st. Clear view			
$H_{m0} = 3 \text{ m}$		0.3	600	
	$H_{m0} = 2 \text{ m}$	1	600	
	$H_{m0} = 1 \text{ m}$	10-20	600	
	$H_{m0} < 0.5 \text{ m}$	No limit	No limit	
Cars on seawall / dike crest	, or railway			
ciose benina crest	$H_{m0} = 3 \text{ m}$	<5 10-20	2000	
	$H_{m0} = 2 \text{ m}$ $H_{m0} = 1 \text{ m}$	<75	2000	
Highways and roads, fast traffic		Close before debris in spray becomes dangerous	Close before debris in spray becomes dangerous	



OVERTOPPING DESIGN CRITERIA (EurOtop, 2018)

Hazard type and reason	Mean discharge Max volume q (l/s per m) V _{max} (l per m)			
People at structures with possible violent overtopping, mostly vertical structures	No access for any predicted overtopping	No access for any predicted overtopping	······People-q	····· People-Vmax
People at seawall / dike crest. Clear view of the sea.				
$H_{m0} = 3 \text{ m}$ $H_{m0} = 2 \text{ m}$ $H_{m0} = 1 \text{ m}$	0.3 1 10-20	600 600 600	······ Cars-Vmax	• Vmax 1:30




STABILITY (Sandoval, 2016)

STABILITY (Arrighi et al., 2019)

Froude

TAKE HOME MESSAGES

Experimental modelling is fundamental to deepen our understanding of the governing physics

Overtopping metrics, other than discharge and volume, are necessary for coastal safety assessment

THANKS FOR YOUR ATTENTION!

