Experimental modelling of 3D wave overtopping

- CREST and Oblique wave test in FHR
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Fig. 2.11. Example of directional spreading function.



Project 1
CREST wave basin test in FHR ) waves 4D Waves
Try to understand the influence of long crested and short crested waves
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g is smaller when

1) more directional spreading
2) more shallow
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g is smaller when

1) more directional spreading
2) more shallow

Reason 1: wave height and peiod at the toe decreased
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g is smaller when

1) more directional spreading
2) more shallow

Reason 2: q from the toe is decreased
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ABESTRACT

The work highlights the importance of directional spreading effects on wave overtopping esimation in shallow
and mild zloping forechores. Wasee short-crestadness leads, in general, to a reduction of mean overtopping diz-
charges on coastal structures. o the present wark, the case of a sea dike with gentle foreshore in very amd
extremely shallow water conditions is analyzed. Physical model tests have been carmied out in order to investigate
the effect of directional spreading on overntopping and incident wave characteristics. In the present experimental
campaign, the effect of wave spreading has only been investigated for perpendicular wave attack. Besultz chow
that directional spreading is prowed to cause a reduction of awerage discharge of sea dikes with gentle and
shallowy forechore. Expressions for the reducton factor for directional spreading are derived, fitted on the tested
darabase. The use of thiz reduction factor leads to more accurate prediction and aveids overtopping owver-
estimation, however reducton-factor formulatons are overtopping-formula depending.




If q is reduced due to Reason 1 and 2=F is also reduced
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Project 2
Obligue waves test in FHR
Try to understand the influence of 3D geometry (q for very oblique wave)
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Overtopping estimation will be more and more realistic..

Applicability

3D basin FHR
(3D effects)

2D flume FHR
(Second order wave)

2D flume FHR
(First order wave)

3D basin COB*
(scale effect, wave+current, wind)

CREST
artificial dike*

*artist impressions provided by UGent - Dept. of Civil Engineering
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