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Abstract

This thesis handles the development of a framework on how to perform a dynamic stability analysis for a
hydrofoiling boat using CFD and applies this framework to an existing design called the “Goodall Design
Foiling Viper”. It discusses the dynamic stability analysis of airplanes as the principles of hydrofoil boats
and airplanes are similar. From this theory, an adjusted model is proposed specifically for the case at
hand. A stability analysis has two distinct parts: calculation of the equilibrium state and calculation
of the stability derivatives for the stability matrix. A fluid-structure interaction algorithm was created
to calculate the equilibrium state of a hydrofoil boat. To limit simulation time, approximations were
proposed for the calculation of the stability derivatives. The application of the framework to the Viper
resulted in a stability matrix with 5 eigenmodes: 1 real mode and 2 complex conjugated pairs. The real
mode was dominated by coupled motion of the forward velocity and the horizontal position of the bat.
Both complex pairs resulted in some kind of wobbling motion: an oscillatory motion of pitch and heave.
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Abstract—This paper handles the study on the stability of a hydrofoiling
sailing boat called the “Goodall Design Foiling Viper”. The goal of Goodall
Design is to make hydrofoiling accessible to a wider public, whereas it was
previously reserved for professional sailors at the highest level of the sport.
To allow for safe operation, stability is an essential characteristic of the
boat. The goal of this work is to find a strategy on how to perform a dy-
namic stability analysis using computational fluid dynamics (CFD). This
paper starts by establishing a theoretical framework to perform the dy-
namic stability analysis. This stability analysis is then performed around
an equilibrium state which depends on operating parameters such as speed,
centre of gravity, ... . This work also focuses on an FSI strategy to determine
these equilibrium states. The last part discusses the stability characteristics
of the Viper.

Keywords— foiling, dynamic stability analysis, sailing, computational
fluid dynamics, fluid-structure interaction

I. INTRODUCTION

THIS paper handles the development of a framework for
performing a dynamic stability analysis for a hydrofoiling

boat and applies this framework to the “Goodall Design Foil-
ing Viper” (hereafter called Viper). Hydrofoiling is the practice
where a normally buoyant vessel is fitted with lifting surfaces
below the water surface which generate a vertical force. This
lift will then partly or completely replace the buoyant force of
the hull. If this force becomes sufficiently large, it will lift the
hull out of the water as if the boat would be flying. As the hull is
lifted from the water, there is an ensuing reduction of the drag as
now only the hull’s appendages are submerged. This is a clear
advantage as it allows for greater speeds for the same propul-
sive power. Hydrofoils are one of the major developments of
the last decades within the sport of sailing. They were initially
introduced at the highest level of the sport, but today there is
an urge to make this development accessible to a wider public.
The increase in speed and the different way of sailing has how-
ever led to new and greater risks, various accidents have already
occurred [1]. In the pursuit of making foiling more widely avail-
able, safety is one of the primary concerns. One way of provid-
ing sufficient safety is to examine and improve the stability of
hydrofoil boats as this will lead to more predictable behaviour
and easier handling. This is the main motivation for this work.

The Viper is a 16 feet (5 meter) long multihull originally
designed by Greg Goodall in 2007 as a non-foiling high-
performance multihull [2]. Because of its light and versatile
design it was perfectly suited to be converted to a foiling boat.
A picture of the Viper while foiling can be found in Fig. 1. The
original, non-foiling Viper has -just like regular multihulls- two
straight rudders for steering towards the back of the boat and two
straight daggerboards as anti-drift mechanism towards the mid-
dle of the boat. To enable foiling, a smaller, horizontal symmet-

Fig. 1. The Goodall Design Foiling Viper hovering above the water.

ric foil is added to the bottom of both rudders to form a T-shaped
rudder. Additionally the straight daggerboards are replaced by
a Z-shaped daggerboard. A picture of this setup can be found
in Fig. 2. The vertical stem of the rudder will from here on be
called the rudder, the horizontal symmetric foil at its bottom
the elevator and the daggerboard the Z-board. The principle of
the setup of the Viper (and other foilers) is very similar to that
of a regular airplane. The two Z-boards provide the necessary
lift near the centre of gravity, the two elevators are placed fur-
ther downstream to enable stable flight, and the two rudders are
there both for active steering and directional stability.

Fig. 2. Details of the Vipers foils.

II. STABILITY DYNAMICS

The dynamic stability analysis is used to compare the stability
of different geometries or conditions. This analysis also allows
to predict the dominant motions the boat will experience. As
the literature on hydrofoil boat dynamic stability is rather lim-
ited and the principle of a hydrofoil boat is similar to that of an
airplane, the stability analysis is based on the theory developed
for airplanes. This theory is described in many works, such as
Drela’s work on “Flight Vehicle Aerodynamics”. A lot of inspi-
ration came from this book. One of the only sources on dynamic



stability analysis specifically for hydrofoil boats is the work by
Masuyama [4]. In this section a theory is developed based on
these two sources, which is suited specifically for the case under
consideration.

A. General approach

There are 12 equations governing the motion of the boat: 6
kinematic equations and 6 dynamic equations. These 12 equa-
tions are used to solve 12 motion variables. The state-vector
S(t) is a combination of these 12 motion variables and contains
consecutively the position, rotation, velocity and angular veloc-
ity of the boat.

S(t) = {x y z φ θ ψ u v w p q r}T

The boat is assumed to experience a small disturbance from an
original equilibrium state. Due to this disturbance, every term in
the 12 equations is substituted for its equilibrium term (denoted
with subscript 0) plus a deviation from this equilibrium value
(denoted as a ∆ term). This is demonstrated in Eq. 1 for the
vertical position z. This allows to linearize the equations.

z(t) = z0 + ∆z(t) (1)

Forces and moments are functions of the flow-field around the
boat. In order to make the equations of motion tractable they are
assumed to be a function of the 12 motion variables. The forces
and moments can then be approximated using a first-order Tay-
lor expansion. This is demonstrated in Eq. 2 for the longitudinal
horizontal force ∆X:

∆X =
∑
i

∂X

∂ai
∆ai (2)

with a = x, y, z, φ, θ, ψ, u, v, w, p, q, r

The individual derivatives in this expression are called the sta-
bility derivatives, some can be omitted depending on the situa-
tion. Using the state-vector S(t), a matrix notation for the eq.
of motion can be found. This is shown in Eq. 3 where A is
the stability matrix and contains the stability derivatives. In the
context of an airplane this matrix would be composed of three
decoupled subsets: a longitudinal, a lateral and a navigational
subset [3].

d

dt
S(t) = A · S(t), A ∈ IR12×12 (3)

Due to the presence of the water surface and the sail, the sta-
bility matrix of a hydrofoil boat has a different form. The draft
z, has an effect on all three subsets, whereas all the derivatives
to z would be zero in the case of an airplane. This can easily
be understood: An airplane could fly e.g. 10 m higher or lower,
but this would not affect any force or moment. If the Viper from
Fig. 1 would be lowered a certain distance, a larger part of the
Z-boards would be submerged and this would consequently in-
fluence all force and moment terms.
Since there usually is a misalignment between the propulsive
force of the sail and the longitudinal direction of the boat, the

boat will experience a certain heel φ0 and sideslip v0. The de-
coupling characteristic between the different subsets of the sta-
bility matrix would cease to be valid, as a perturbation of any
form would simultaneously affect longitudinal and lateral mo-
tions. However, as the boat is meant to be sailed without any
heel (this is the most efficient, i.e. fastest, way of sailing), the
heel is assumed to be zero. In addition, the sideslip is very small
compared to the forward velocity u0 and will also be neglected.

B. Simplifications

To reduce the complexity of the problem, certain simplifica-
tions can be made based on the stability analysis. The intended
results should somewhat justify the used resources. A two-phase
simulation where the whole boat is included, would lead to more
accurate results, but also to an unreasonably large mesh and cal-
culation time. Therefore, it was chosen to only model the rud-
der, the elevator and the Z-board below the water surface and to
assume that all forces and moments above the water surface are
constant. In reality this would however not be true. The biggest
contribution above the water originates from the sail, e.g. the
sail leads to a large variation in experienced force and moment
when rolling, p 6= 0. The sail consequently has a large contribu-
tion to the force and moment derivatives to the roll motion.
This immediately leads to another simplification: only longitu-
dinal motions are considered: motions along the x- and z-axis
and a rotation around the y-axis. This is due to the fact that the
lateral motions are heavily affected by the sail which is mod-
elled as a constant force and moment. The rotations around the
z-axis are more of interest for a directional stability analysis.
The assumption that all forces and moments above the water
surface are constant is in the case of longitudinal motion justi-
fied. The effect on the sail of changing the draft or the trim angle
will be next to none.

C. Longitudinal stability model

As this model considers only one rotation, the use of the iner-
tial earth-bound frame is more convenient than the usual stabil-
ity frame, to write the governing equations of motion. A view
of the mentioned axis systems can be found in Fig. 3. The
axis system in uppercase (XeY eZe) is the earth-bound right-
handed axis system. The other frame is called the stability frame
(xb

′
, yb

′
, zb

′
), it is displayed in orange. Its origin is coincident

with the centre of gravity and the speed in equilibrium condi-
tions lies in the xy-plane. The Z-axis is chosen downwards, as
this is conventional in maritime engineering.

Fig. 3. An overview of the used axis systems.



As only longitudinal motions are considered, the 6 dynamic
relations of the general approach mentioned in Sec. II-A are re-
duced to only 3 relations: force balances along the X and Z
direction and a moment balance around the y-axis. The moment
of inertia Iyy and moment M are defined around the centre of
gravity. These 3 dynamic relations are completed with 2 kine-
matic relations as is shown in Eq. 4.



Fx = mu̇

Z = mẇ

M = Iyy θ̈

w = ż

q = q̇

⇔



du

dt
=
Fx(u, z, θ)

m
dw

dt
=
Z(u, z, θ)

m
dq

dt
=
M(u, z, θ)

Iyy
dz

dt
= w

dθ

dt
= q

(4)

The above equations are linearized using small-disturbance
theory, and the forces and moment are substituted for their Tay-
lor approximations as in Eq.2. Eq. 5 is then obtained with the
stability matrix A defined in Eq. 6.

d

dt


∆u
∆z
∆θ
∆w
∆q

 = [A] ·


∆u
∆z
∆θ
∆w
∆q

 (5)

[A] =


1
m
∂X
∂u

1
m
∂X
∂z

1
m
∂X
∂θ

1
m
∂X
∂w

∗ 1
m
∂X
∂q

∗∗

0 0 0 1 0
0 0 0 0 1

1
m
∂Z
∂u

1
m
∂Z
∂z

1
m
∂Z
∂θ

1
m
∂Z
∂w

∗ 1
m
∂Z
∂q

∗∗

1
Iyy

∂M
∂u

1
Iyy

∂M
∂z

1
Iyy

∂M
∂θ

1
Iyy

∂M
∂w

∗ 1
Iyy

∂M
∂q

∗∗


(6)

D. Derivatives

The stability derivatives to w and to q are very expensive
to calculate using CFD as they require transient simulations.
Nevertheless, their influence on the eigenmodes of the stability
matrix cannot be understated. Neglecting them would lead to
meaningless results. This hypothesis was supported by the nu-
merical stability derivatives as provided by Masuyama [4] and
later also confirmed by the stability analysis of the Viper. The
terms denoted by (*) and (**) will rather be approximated using
the other 9 derivatives which have been calculated in the stabil-
ity matrix A from Eq. 6 using only steady-state simulations.

Fig. 4. Effect of the vertical velocity, w.

The terms denoted with (*) in Eq. 6 are the force and mo-
ment derivatives to the speed in the vertical direction (heave).
These terms will be approximated using the derivatives to the
trim angle θ: ∂X

∂θ , ∂Z∂θ and ∂M
∂θ . As can be seen from Fig. 4 a

perturbation ∆w of the vertical velocity causes a change in an-
gle of attack α from the viewpoint of the foils. Since a hydrofoil
boat sailing in equilibrium conditions will always have a hori-
zontal speed, a change in trim angle ∆θ is seen by the foils as a
change in angle of attack ∆α. The difference between changing
α and changing θ lies in the fact that the submerged area differs
in the case the trim angle is changed. This effect is rather small
and can be neglected, i.e. ∂...

∂θ ∼
∂...
∂α . Assuming small distur-

bances around an equilibrium point, ∂Z∂w can be approximated as
is shown in Eq. 7. The procedure for ∂X∂w

∂M
∂w is analogous.

∂Z

∂w
=
∂Z

∂θ

∂θ

∂w
≈ 1

u0

∂Z

∂θ
(7)

Fig. 5. Effect of the pitch, q.

The terms denoted with (**)in Eq. 6 are the derivatives of
the force and moment to pitch. An angular velocity q around
the centre of gravity causes an additional velocity component
on both foils. This velocity component can be decomposed in
a horizontal and vertical part, respectively ∆u and ∆w, as is
demonstrated in Fig. 5. This component depends on the indi-
vidual positioning of each foil. The positioning is characterized
in the figure by the distance to the centre of gravity re and the
angle in the stability frame to the horizontal plane, γe. Using the
expression from Eq. 7 an approximation of ∂M∂q is developed in
Eq. 8. The procedure for X and Z is analogous.

∂M

∂q
=
∂M

∂u

∂u

∂q
+
∂M

∂w

∂w

∂q

=
∂M

∂u
re sin(γe) +

∂M

∂w
re cos(γe)

≈ ∂M

∂u
re sin(γe) +

1

u0

∂M

∂θ
re cos(γe)

(8)

Notice that this procedure has to be completed for every com-
ponent separately as their individual positioning varies. After-
wards their individual derivatives are summed to obtain the total
derivative necessary in the stability matrix.

These approximations for the derivatives are quite valuable
as it allows to construct the stability matrix A with only a few
steady-state simulations.



III. CFD METHODOLOGY

A. Mesh

The complete mesh will be constructed using overset. Over-
setting allows us to create three much ‘simpler’, separate com-
ponent meshes together with a rectangular hexahedral back-
ground mesh in which they overlap. The solver will, after ini-
tialization, remove overlap between the different meshes by de-
activating redundant cells. The background mesh can be much
coarser than the component meshes as nearly no gradients will
be present here. Nevertheless, special care should be taken to
make sure that component meshes and background mesh have
similar sizing in regions of overlap as this will give rise to better
results for the overset initialization.

Assuming a symmetric boat experiencing only longitudinal
motions, the used geometry should only contain one half boat.
This results in 1 rudder, 1 elevator and 1 Z-board as our geome-
try. Simulating only half of the geometry has a large beneficial
influence on calculation time. The CAD-files of the Viper were
provided by Goodall Design. Using these CAD-files, the three
components (rudder, elevator and Z-board) are meshed sepa-
rately using the ICEM software package from ANSYS. An ex-
ample of a component mesh is shown in Fig. 6 for the elevator.

Fig. 6. The elevator mesh.

A fourth mesh contains a much larger surrounding back-
ground in which the three other meshes are combined using
the overset functionality from FLUENT. The three component
meshes are all hexahedral C-grid meshes which are sufficiently
long downstream to resolve the wake. The C-grid has a radius
of only 1 chord length. The first cell of the boundary layer of
all three foils is located at 0.1 mm to have a y+ value approx-
imately between 30 and 300. An overview of the components
together with the background mesh is shown in Fig. 7. It can
be seen how the background mesh is refined towards the com-
ponents. It was chosen to model the free surface as a rigid lid
rather than using a multi-phase flow method as this is outside
the scope of this work. The black surface in Fig. 7 represents
the free surface modelled as a free-slip wall. The blue surfaces
are pressure outlets which are tilted slightly inwards towards the
outlet to prevent reversed flow on these surfaces. The green sur-
face, which lies at the centre line of the boat, is modelled as a
symmetry plane. This background mesh is completed with a ve-
locity inlet and pressure outlet at the ends which are omitted in
the figure.

Fig. 7. The components in the background mesh.

B. Flow solver

As the speed range in which foiling is to be expected lies
above 5 m/s and the foils have chord lengths of 0.2 m,
Reynolds numbers always lie well above 106. Turbulence is
modeled using the k − ω SST model. At the velocity inlet the
turbulence intensity is set to 1% and the viscosity ratio µt

µ is set
to 1, similar to what was found accurate by Lopes [5]. To in-
clude the effects of hydrostatic pressure gravity g is enabled and
a hydrostatic pressure profile is imposed at the pressure outlets.
The different components can be rotated and translated sepa-
rately to create different setups. The standard geometry has a
rudder rake of −1◦ and a foil rake of 4◦. The rake is the relative
angle of a foil to the boat.

C. Equilibrium state

As only forces and moments resulting from the foils below the
water surface are calculated, other forces and moments should
be estimated in order to find a realistic equilibrium state of the
boat. For the force balance the weight of boat (140 kg) together
with the weight of the crew (140 kg) should be included. As
only half of the boat is modelled, only half of the weight is in-
cluded, resulting in a downwards force of 1.37 · 103 N . The
moment generated by the sail also has to approximated. The
drag generated by the foils follows from the CFD calculations,
e.g. the drag generated at forward speed of 10 m/s is equal to
215 N . The sail should deliver a force which is equal in mag-
nitude but opposite in direction to this drag. Data provided by
Goodall Design shows that the point of application of the sail
lies 3.25 m above the centre of gravity. From this the force and
its point of application the moment can be calculated.

An algorithm to determine the equilibrium state for an arbi-
trary geometry and conditions was developed. A geometry can
vary by changing the rudder rake, foil rake, the CoG, ... A setup
can change by varying the speed of the boat. The goal of the
algorithm is to find a relative trim angle ∆θ and relative draft
∆z at which both the total moment and total force on the boat
are zero. This trim angle and draft are defined in reference to
an arbitrary initial orientation. The algorithm is based on the



Newton-Rhapson root-finding method for 2 variables in which
the new position is iteratively calculated based on the force and
moment. [

∆zk
∆θk

]
= J−1

[
−Fk
−Mk

]
, J =

[
∂Z
∂z

∂Z
∂θ

∂M
∂z

∂M
∂θ

]
(9)

In every step the 4 components of the Jacobian J are calcu-
lated. However if both draft and trim angle are updated simul-
taneously, there is no way of calculating the derivatives, as their
individual contributions cannot be distinguished. That is why a
segregated approach is proposed. Every iteration consists of two
sub-iterations: one sub-iteration for the draft update ∆z and one
for the trim angle update ∆θ. Based on the Jacobian Jk an up-
date for the draft and trim are calculated, ∆zk, ∆θk. In iteration
k+ 1

2 the position of the boat is updated with ∆zk. The flow for
this new orientation is solved and from the resulting new force
and moment, Zk+ 1

2
and Mk+ 1

2
, the derivatives to z are updated.

In iteration k + 1 the position of the boat is updated with ∆θk.
The flow for this new orientation is solved and from the resulting
new force and moment, Zk+1 andMk+1, the derivatives to θ are
updated as well. Using the Jacobian Jk+1 new updates are cal-
culated and the algorithm is re-iterated. This gets demonstrated
in Eq. 10.

1
[
∆zk
∆θk

]
= J−1

k

[
(−Z)k
(−M)k

]
2 simulate (zk + ∆zk, θk)⇒ (Zk+ 1

2
,Mk+ 1

2
)

→ ∂Z

∂z
=
Zk+ 1

2
− Zk

∆zk
;
∂M

∂z
=
Mk+ 1

2
−Mk

∆zk

3 simulate (zk + ∆zk, θk + ∆θk)⇒ (Zk+1,Mk+1)

→ ∂M

∂θ
=
Mk+1 −Mk+ 1

2

∆θk
;
∂Z

∂θ
=
Zk+1 − Zk+ 1

2

∆θk

4
[
∆zk+1

∆θk+1

]
= J−1

k+1

[
(−Z)k+1

(−M)k+1

]
...

(10)
The algorithm was implemented in FLUENT making use of

journal files together with UDFs (User-defined functions).

D. Derivatives

Once the equilibrium state for a geometry and setup is found,
the stability matrix needs to be constructed. The calculations
for the derivatives, necessary for constructing the stability ma-
trix, are straightforward. They are calculated with a one-sided
finite difference around the equilibrium state. Together with the
forces and moment from the equilibrium state (which are ap-
proximately zero), three additional sets of the forces and mo-
ment are calculated for disturbances in respectively draft, trim
adn surge. This is demonstrated in Eq. 11:

∂A

∂a
=
A∆a −A0

∆a
, A = X,Z,M, a = θ, z, u (11)

with A0, the force or moment from the equilibrium state and
A∆a the force or moment from the perturbed state.

IV. RESULTS

The following section presents the results for the standard ge-
ometry, with an elevator rake of−1◦ and a Zboard rake of 4◦, at
a speed of 10 m/s.

A. Equilibrium state

The equilibrium state was calculated from an arbitrary start-
ing state. This starting state has a zero trim angle and a
draft where the rudder is submerged 100 mm and the Z-board
400 mm. The position of the resulting equilibrium state rela-
tive to this starting state is defined by ∆z = 159 mm,∆θ =
−2.38◦. This means that the boat moves deeper into the water
and is tilted slightly nose-down. The rudder is now submerged
260 mm and the Z-board560 mm.

Fig. 8. A surface plot of the of the force and moment of the Viper as a function
of the relative draft z and the relative trim angle θ.

In Fig. 8 a surface plot is shown of the force Z and moment
M as a function of the relative draft and trim. Notice that as
the Z-axis is directed downwards, a lift-force is negative and a
boat which lies deeper in the water has a more positive draft. It
can be observed how the moment M depends primarily on the
trim but that the force Z depends on both the trim and the draft.
The two black iso-curves represent the states where the force Z
or the moment M is zero. The location where the two curves
intersect, is the location of the equilibrium state.

B. Stability matrix

Using finite differencing, the individual derivatives of the
three components are calculated for the draft z, trim θ and surge
u. These derivatives are then used to construct the stability ma-
trix A for the standard geometry sailing at a speed of 10 m/s:

[A] =


−0.27 −2.21 −4.99 −0.50 0.00

0 0 0 1 0
0 0 0 0 1

−2.24 −57.20 −156.21 −15.62 −6.51
0.01 −6.42 −78.59 −7.86 −14.75


Using MATLAB, the eigenvalues and eigenvectors of this ma-

trix can be determined. The eigenvalues determine the general
behaviour of each mode, and the eigenvectors will determine the
amplitude and phase of each variable. The eigenvalues are visu-
alised in Fig. 9 and the eigenvectors are visualised in Fig. 10,11
and 12. From the eigenvalues and eigenvectors, the eigenmodes
can be constructed:

∆xi = vie
λit with i = 1, ..., 5 (12)



From the eigenvalues some interesting conclusions can be
drawn. The first thing which can be noted is that they all have
a negative real part, meaning that the boat is dynamically sta-
ble. Furthermore there is one real eigenvalue and two complex
conjugated pairs.

Fig. 9. The root locus diagram for the standard geometry sailing at a speed of
10m/s.

Taking a look at the real eigenvector v5 in Fig. 10, some char-
acteristics of the behaviour of the eigenmode ∆x5 can be recog-
nized. An increase in speed ∆u is associated with a decrease in
draft ∆z (meaning that the boat gets lifted from the water). This
corresponds to the behaviour that is expected. A draft variation
∆z occurs naturally together with a heave variation ∆w. As this
is a real mode, this draft variation damps out without any over-
shoot. A half-life t 1

2
is the time needed for the value to decrease

by 1
2 times its original value (exponential decay). From the half-

lifes it can be seen that it will take 3.89 s for this mode to damp
out. This means the boat will react quite slowly.

Fig. 10. A visualisation of the real eigenvector v5.

The combination of the eigenmodes ∆x1 and ∆x2 will be a
heavily damped, sinusoidal motion dominated by a variation in
heave ∆w and pitch ∆q. This resembles some kind of wob-
bling. After the boat moves downwards, it starts to tilt nose-
up. This results in more lift, meaning that the boat eventually
starts moving up again. Hence the oscillatory motion. The
heave and pitch motion are almost in phase with each other. This
mode has a half-life t 1

2 ;1 = t 1
2 ;2 = 4.81 · 10−2 s and a period

T1 = T2 = 0.904 s.
The combination of eigenmodes ∆x3 and ∆x4 will be a

weakly damped, sinusoidal motion, again dominated by a vari-
ation in heave ∆w and pitch ∆q. The half-life is t 1

2 ;3 = t 1
2 ;4 =

8.54 · 10−1 s and the period T3 = T4 = 1.75 s. As the half-life

Fig. 11. A visualisation of the complex eigenvector v1.

Fig. 12. A visualisation of the complex eigenvector v3.

and period are larger in this case, the variation in trim angle ∆θ
and draft ∆z resulting from the variation in heave and pitch will
be more outspoken. This is demonstrated by the larger vector
components for trim and draft in Fig. 12.

V. CONCLUSIONS

A framework for quantifying the longitudinal stability of a
hydrofoil boat has been developed. This framework was applied
to the Viper, from which could be concluded that this design is
dynamically stable. This is also supported by full scale tests.
Dynamic stability analysis of a hydrofoil boat using CFD is a
rather new application and looks promising, but of course it
needs improvement to reap all the benefits. For future work it
can be of interest to perform the stability analysis for more ge-
ometries than one to be able to compare the stability and check if
the same modes reoccur. Having a more accurate model for the
sail forces will allow to include lateral motions as well, to have
a more complete stability analysis. Experimental data from tow-
ing tanks or full-scale tests is also key for future development of
this technique.
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1
Introduction

1.1 Background

Sailing is one of the oldest ways of transport used by humankind. Earliest clues of sea-going
vessels under sail were as early as 5000 BC [7]. Before the industrial revolution sailing vessels
were the only way of travelling across oceans and seas and were therefore one of the main drivers
in trade, exploration and industry. Due to the inventions of alternatives to provide propulsion,
sailing lost a lot of its relevance. Ships were no longer restricted by the presence or the direction of
wind. Today, under influence of climate change there is an urgency to find sustainable solutions
in the transport sector which could very well lead to a renaissance of sailing in industry. As
the relevance of sailing in industry faded, sailboat racing has been one of the main drivers in
development within sailing. Mainly the America’s Cup has played a big part in the “recent”
development. The America’s cup is the oldest trophy in sports which is still contested today[8],
the cup dates back to 1851. Under the influence of the America’s Cup, sailing yachts have seen
big technological advances in various domains (sails, materials, appendages, hulls, ...). It can be
compared to the contribution of Formula 1 racing to the car industry. One of the most recent
developments is the introduction of hydrofoils, which allow a sailing yacht to hover/fly above
the water by generating an upwards force. The hydrofoils lift the complete hull of the yacht out
of the water which greatly reduces the resistance and therefore allows for greater sailing speeds.
The working principles of hydrofoils and sailing yachts in general will be explained later on.

1
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1.2 Goodall Design Viper and motivation

The introduction of hydrofoils at the highest level of the sport demonstrated their advantages
and how exciting they can be to a wider audience. This was the trigger for Goodall Design,
an Australian company building and designing multihulls (catamarans), to try and make this
technology available to everyone by converting their already existing platform the Viper to a
foiling version. The Goodall Design Viper (from now on simply “Viper”) is a multihull class
which was devised in Australia by Greg Goodall in 2007 [9]. The Viper is a relatively light and
nimble boat of 5 meters long (16 feet) and therefore lends itself perfectly to be upgraded to a
foiling version. Because of its light construction the Viper always has been a versatile platform
that can be sailed by lighter youth teams, mixed teams and even solo sailors. In Fig. 1.1 multiple
vipers can be seen while racing.

Figure 1.1: Multiple GD Vipers seen racing. ©Jasper van Staveren

1.3 Goal

Both in the America’s Cup and in the Olympics development of hydrofoils is focused on de-
creasing drag and increasing lift to allow for greater speeds. The intrinsic tendency to maintain
the equilibrium position is of secondary importance, as there are often control systems present
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with feedback loops to provide the necessary stability. A sailing yacht which is foiling with its
hull lifted out of the water experiences a great reduction in stability as the stability is no longer
provided by the buoyant forces of the hull but rather by the lifting forces of the hydrofoils. The
Viper is however a smaller and much simpler yacht without any control systems and thus should
be inherently stable. Stability has become very important to Goodall Design as they want to
make this technology accessible to everyone, even the less experienced amateur. The goal of this
thesis is to find a way to quantify stability of a foiling catamaran.

1.4 Structure

The first 4 chapters of this thesis cover the theoretical backbone and literature review. Chapter
2 is put in place to have some background in both sailing as hydrofoiling. Chapter 3 handles
the literature on stability dynamics. It comprises a section on airplane stability dynamics as the
similarities between airplanes and hydrofoiling boats are rather striking. In chapter 4 the used
model will be discussed in more detail. The methodology will be handled as a whole in chapter
5. Chapter 6 will tackle the results of the simulations and will lead up to conclusions in chapter
7.
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2
Hydrofoils & Sailing

This chapter provides the reader with the necessary knowledge both about sailing and hydrofoil-
ing, as this is deemed necessary to understand this work. The physics provided here are based
on C. A. Marchaj’s Aero-hydrodynamics of sailing [10].

2.1 Sailing

2.1.1 Background

Pressure differences throughout the atmosphere result in flows of air which we experience as
wind. These pressure differences can have various reasons like temperature or humidity and
exist at a macro and micro scale: from dominating east-west depressions in the southern ocean
to a slight breeze trough a house with its windows opened. This is why wind is present most of
the time and nearly everywhere on Earth. Wind possesses large amounts of energy, sometimes
even with destructive consequences like with hurricanes or big storms. Sailing is the practice
where this wind energy is used to propel a means of transport, most often a yacht.

2.1.2 Principle

The forces on a sailing yacht can be distinguished by means of their origin. The interaction with
the air gives rise to aerodynamic forces, the interaction with the water gives rise to hydrodynamic
forces. The interplay between these two components will determine if the boat will go forward,
sideways or even backwards and will also determine how fast the yacht will be going. A third

5
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force component is caused by the weight of the boat itself and the weight of the crew. As the
weight of the boat (140 kg) is usually comparable to that of the two crew members (approx. 2
times 70 kg), the position of the crew consequently has a big influence on the position of the
centre of gravity.

Aerodynamic forces The aerodynamic forces are generated by one or more sails. An example
of the Viper can be seen in Fig. 2.1. Three sails can be distinguished from left to right: one
big sail to the back of the boat called the main sail, a small sail called the jib and a bigger red
sail called the gennaker. The last one is only used on particular courses and put away when not
beneficial. When having an overhead view of these sails it can be clearly noted that they have an
airfoil-like profile. Their shape can be manipulated by controlling the sheets1. When these sails
are properly trimmed to the wind present and experience a relative motion with the wind, they
will generate a force called the total aerodynamic force (see Fig. 2.2). This total aerodynamic
force can be decomposed in a driving force along the direction sailed and an aerodynamic side
force perpendicular to the direction sailed.

Figure 2.1: An overview of the sails used on the viper. From left to right: main sail, jib and
gennaker.

1a “sheet” is sailing terminology to term a rope used to control sails
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Figure 2.2: The force balance in the XY-plane [1].

Hydrodynamic forces If the boat would generate no other forces, it would just follow the
direction total aerodynamic force. However, the hull and appendages will generate a counter-
force, called the total hydrodynamic force. This prevents the boat from drifting and consequently
forces the boat go straight. The appendages used on a catamaran like the Viper are two rudders
at the back of the hulls, and two daggerboards towards the centre of the hulls. In Fig. 2.3 both
the rudder and the daggerboard are visible2. What happens below the water surface is very
similar to what happens above it. If the boat experiences a certain sideways velocity combined
with a forward velocity, the rudder and daggerboard will have a certain “angle of attack”3. This
angle of attack is equal to the leeway angle in Fig. 2.2 and represents what angle the velocity
makes to centre line of the boat. The rudders and daggerboards have airfoil-like shapes and will
as a result generate a lift opposite to the drift velocity. This is called the total hydrodynamic
side-force. Of course will the hull and appendages provide an important resistance as well.
The boat will consequently always have a certain sway velocity as this needed to generate a
hydrodynamic side force.

2It are tweaked versions of this rudder and daggerboard which will later on form the hydrofoils.
3An angle of attack represents the angle between a reference line on a foil and the incoming velocity vector.
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Figure 2.3: An overview of the hydrodynamic appendages. From left to right: rudder and
daggerboard.

In Fig. 2.2 an overview is shown of both the aerodynamic and hydrodynamic forces in the
XY-plane. The XY-plane lies perpendicular to the water-surface with its origin in coincident
with the CoG. This force balance forms the basis for governing a yacht’s speed. The equilibrium
between the resistance and driving force determines the forward speed and the equilibrium
between the aero- and hydrodynamic side-forces determine the sway velocity. The sway velocity
is the velocity of the boat perpendicular to its centre line and parallel with the water-surface.

Other forces As the point of application of the aerodynamic force is located at a certain
height above the water-surface and the hydrodynamic force applies below the water-surface, an
overturning moment is generated. This is shown in Fig. 2.4. This moment has to be countered
by a righting moment to make sure the yacht does not capsize. This righting moment can be
generate by various means, e.g. a bulb keel with a yacht, the crew hanging over board with a
trapeze line (see Fig. 2.3), ... When the inherent stability and the weight of the crew are not
sufficient to prevented capsizing other measures should be taken, e.g. easing the sails.
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Figure 2.4: The force balance in the YZ-plane [1].

2.2 Hydrofoils

2.2.1 Background

When the aforementioned daggerboards and rudders include a horizontal surface rather than
having solely a vertical surface, they are able to provide a vertical force component which can lift
the hull from the water. The fascination for the idea of supporting small boats with underwater
wings came at the turn of the 19th century with Forlanini and Bell having achieved a successful
hydrofoil flight [11]. Other influences came from war-related development during the World
Wars. The first real success of hydrofoils in sailing came in 1972 with the design of the catama-
ran called “ICARUS” by the J Grogono team [10]. This catamaran was however only able to
get up onto the foils in a very narrow range of “perfect” conditions (flat water, 15 knots of wind).

The development of low-weight, high-strength materials gave the development of hydrofoils a
big boost as the systems could be build equally strong but lighter. One of the most successful
classes incorporating hydrofoils has been the “International Moth” class. The Moth is a one-
person monohull with a very light construction. The setup consists of a T-shaped rudder acting
as a stabiliser and a T-shaped daggerboard acting as a main foil. It differs from the Viper as it
has a feedback system for providing stability. In Fig. 2.5 the feedback system can be recognized
as the “wand” in front of the boat on the left. This wand registers the distance of the hull above
the water-surface and controls a flap on the back of the main foil and adjusts this flap according.
This way it can also react to incoming waves as the wand is placed upstream.
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Figure 2.5: The international moth with feedback system for stability [2].

The introduction of hydrofoiling to a wider audience can be attributed to the America’s Cup
in 2013 [8]. Back then the AC was sailed on big foiling catamarans, with T-shaped rudders and
L-shaped daggerboards. They used a “3-point foiling system”, which means that the windward4

main foil is lifted from the water when sailing in a straight line. This is done to avoid creating
lift which increases the overturning moment mentioned before. They were sailed with one of
the crew members on board constantly adjusting the “rake”5 of both the main foils and the
stabilizers to achieve stable flight.

Figure 2.6: The AC72 of Oracle Team USA in action before the America’s Cup of 2013 on San
Francisco Bay [3].

The 3-point foiling system set-up was also tried on smaller catamarans like the ”Flying Phan-
4Windward is the side from which the wind blows, it is the opposite of leeward.
5The rake is the angle of the hydrofoils



2.2. HYDROFOILS 11

tom” which is an 18 foot catamaran. However, the fact that during manoeuvres the main foils
had to be lowered and lifted from the water was rather intensive for the two-person crew to
manage. As a remedy the ”4-point foiling system” was conceived. In this system both foils were
smaller and the windward foil no longer had to be lifter from the water. The first classes to use
this 4-point system was the one-person A-class catamaran and the two-person Narca 17 MKII.
The Nacra will be the catamaran sailed at the Olympic Games of Tokyo 2020.

2.2.2 Principle & controls

The 4-point foiling system is also used for the Viper Foiling, as it lends itself very well to an
easy foiling experience as the foils don’t have to be lowered and raised with every manoeuvre.
The foiling system makes use of two T-shaped rudders and two Z-shaped daggerboards as can
be seen in Fig. 2.7. The stability in the vertical direction is provided by the diagonal orientation
of the Z-foil. This can be explained as follows: if the lift generated by the foils is higher than
the weight of crew and boat combined, the boat will rise out of the water. This decreases the
lift-generating surface until the lift balances out downward oriented forces. The opposite hap-
pens when the lift is lower.

Figure 2.7: The foil setup used for the Viper Foiling.

An important control parameter is the angle at which both the main foil and the stabilizer are
set up as these will determine the ease of take-off and the stability and speed during flight. A
more positive rake on the main foil is used in lower speed regions were more lift is needed to
raise the hull from the water. At higher speeds less rake is needed on the main foils to achieve
this. Adjusting the rake of the main foil can be done while sailing, so it happens that the rake
is lowered after the boat has taken off as it will now have a higher speed. Lowering the rake
will also allow for higher speeds as drag usually decreases with lower angles of attack. The rake
of the stabilizers can only be adjusted ashore, as this requires a wrench. Another important
parameter to control flight characteristics is the position of the centre of gravity, which can be
adjusted by movement of the crew across the boat. Often the crew will move backwards when
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the boat is still in floating-mode to increase the angle of attack which as a result will increase
the lift to aid in take-off. Floating mode will be used to describe the condition when the hull
is not lifted from the water and buoyancy of the hull still accounts for a significant part of the
upward forces.



3
Stability Dynamics

This chapter forms the theoretical basis for quantifying the stability of a hydrofoil boat. When
looking at the set up of the Foiling Viper and other hydrofoiling boats, lots of similarities can
be found with airplanes. Both setups make use of a big lifting-surface, that is located near the
CoG , which is mainly responsible for providing the necessary lift and a second, smaller lifting-
surface located further downstream responsible for stability. These similarities and the lack of
relevant literature, that deals specifically with hydrofoil boat stability, lead to choosing to adapt
the existing stability model developed for airplanes. The first part of this chapter is based on
the 9th chapter from the book “Flight Vehicle Aerodynamics” by Drela [12], which deals with
flight dynamics. In this book Drela discusses the “airplane dynamic stability theory”. The main
difference between the dynamics for a hydrofoil boat and an airplane lies in the presence of the
free water surface, above which the lift-generating surfaces do not generate any significant lift.
Further in this chapter an article on the stability analysis of a hydrofoiling boat by Y. Masuyama
[6] is discussed.
Both works, of Drela and Masuyama, are rooted in the same classical dynamic stability model
which makes use of the equations of motion for a rigid body. These equations get linearized
using small-disturbance theory. The book by Drela shows very clearly how the stability matrix is
developed and helps to understand its different nuances. The article by Masuyama distinguishes
itself by the various assumptions for the particular case of a hydrofoiling boat. His work also
provides data to support these assumptions. Trough out this work differences between the
approaches for airplanes and hydrofoil boats will be emphasized. Based on these works, an
adapted model is derived for the specific case in this thesis.

13
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3.1 Definitions and terminology

Hydrofoiling boats are a branch of maritime engineering which has a lot in common with aero-
nautics. This fact leads often to confusion in the used terminology. This section is put in place
to have unambiguous terminology to avoid any confusion in the remainder of this thesis. The
definitions and terminology of this section will be used unless stated otherwise.

3.1.1 Frames of reference

Mainly use maritime terminology will be used, as the subject of this thesis is a boat. The most
important axis system will be an inertial, right-handed, earth-bound axis system with the Z-axis
directed downwards, the X-axis parallel with the water-surface along the sailing direction of the
boat and the Y -axis directed to starboard, perpendicular to the X and Z-axis. The second
frame that is used, is a right-handed boat-fixed frame with the origin coinciding with the centre
of gravity of the boat, the z-axis directed parallel to the LE of the Z-board and the x-axis along
the symmetry line of the boat. Both frames can be found in Fig. 3.1: the earth-bound frame
noted as Xe, Y e, Ze and the body-fixed frame noted as xb, yb, zb.

Figure 3.1: The earth-bound frame together with two options for the boat-fixed frame.

A third frame that will be used is the so-called stability frame. This frame is also a boat-fixed
frame for which the origin is also coincident with the CoG. In equilibrium conditions the velocity
vector will always lie in the xy-plane. This frame can be recognized as the orange axis-system in
Fig. 3.1 noted with xb′ , yb′ , zb′ . In contrast to airplanes, for hydrofoil boats this stability frame
always lies perpendicular to the water-surface as a hydrofoil boat in equilibrium conditions will
remain at a fixed height above the water.
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3.1.2 Components

The Viper is catamaran, this means that the boat features two parallel hulls. The two hulls
are connected by the trampoline which is used as main operating area for the crew. As is usual
in maritime terminology the right hull will be called the starboard hull and the left hull will
be called the port hull. Each hull has two appendages: the main foil, which will from here on
be called the Z-board, and the rudder. The rudder will be subdivided in the rudder (vertical
part) and the elevator (horizontal part). The Viper has three sails: the main sail, the jib and
the gennaker. The mast is the vertical structural component holding these sails in place. An
overview of these most important parts if given in Fig. 3.2.

Figure 3.2: The earth-bound frame together with the boat-fixed frame.

3.1.3 Motions

In table 3.1 an overview of the terminology used for the various orientations, positions and
motions can be found. The angles φ, θ and ψ are called the Euler angles and represent the
orientation of the stability axes with respect to the Earth-bound frame. This Euler angles can
be used to construct a transformation matrix, in which the order of the various rotation is of
great importance. The emergence or immergence from the water is called the draft. As the
Z-axis is directed downwards, a more positive draft means that boat lies deeper in the water.
For accelerations the table can be extended by adding acceleration to the corresponding velocity.
E.g. the angular acceleration around the Y -axis is called the roll acceleration. Fig. 3.3 gives a
visual representation of these terms.
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Table 3.1: An overview of the used terminology for the various motions.

angle position angular velocity velocity

X φ (heel) x (-) p (pitch) u (surge)
Y θ (trim) y (-) q (roll) v (sway)
Z ψ (heading) z (draft ) r (yaw) w (heave)

Figure 3.3: The various velocities visualized [4].

3.2 Airplane dynamic stability theory

Both because of the similarities between airplanes and hydrofoil boats and due to the fact that
-in contrast with hydrofoil boats- the dynamic stability model of airplanes is well-documented,
it is a logical starting point to develop a model for a hydrofoil boat. The following section is
based on the book “Flight Vehicle Aerodynamics” by Drela [12]. This book clearly demonstrates
how the stability matrix is developed and this procedure will be paraphrased here.

3.2.1 Definitions

The position of the earth-fixed frame can be chosen arbitrary. Here, the XY -plane of this frame
is chosen parallel to the water surface as is displayed in Fig. 3.1. The motion and the position
of the boat is defined with ReO, U b

′ and Ωb
′ . These are respectively the position vector of the

CoG in the earth-bound frame and the velocity vector and rotation vector in the stability frame.
These vectors together with the Euler angles allow us to construct a state vector X(t) which
defines both the instantaneous position and orientation and the motions of the boat. The state
vector X(t) contains position, orientation, velocity and angular velocity where the first two are
defined in the earth-fixed frame and the last two in the stability frame. This gives us:

X(t) = {xe ye ze φ θ ψ u v w p q r}T (3.1)
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This state vector is a sequence of the position vector ReO (xe, ye, ze), Euler angles (φ, θ, ψ), veloc-
ity vector U b′ (u, v, w) and angular velocity vector Ωb′ (p, q, r). These 12 components determine
the state of the boat completely. To solve these 12 components, 12 equations should be found.
This is done trough 6 kinematic relations and 6 dynamic relations. The kinematic relations
relate the earth-fixed frame to the body fixed frame both for the position rate and the orienta-
tion rate. The 6 dynamic relations are based on the linear and angular momentum equations
(Newton’s Second Law) and contain the forces and moments working on the boat.

The Euler angles allow us to construct a transformation matrix T
e

b′ from the stability to the
earth-bound system. A similar matrix can be found for translation between the boat-fixed frame
and earth bound frame. The transformation of the boat’s velocity in the stability frame to the
earth-fixed frame is done as followed:

U e = T
e

b′U
b′ (3.2)

The transformation matrix T
e

b′ is formed from the product of three simple rotations in the
standard sequence −φ, −θ, −ψ respectively around eb′x , eb

′∗
y and eb′∗∗z [13]. The axes, as by the

time the second rotation is performed the axes of stability frame will already be changed. The
notations Cx and Sx in Eq. 3.3 denote the cosine and sine of x.

T
e

b =

Cψ −Sψ 0

Sψ Cψ 0

0 0 1


 Cθ 0 Sθ

0 1 0

−Sθ 0 Cθ


1 0 0

0 Cφ −Sφ
0 Sφ Cφ

 (3.3)

The inverse transformation, from the earth-fixed frame to the stability frame, is composed of
the rotation sequence ψ, θ, φ which results in the inverse matrix T

b

e.

3.2.2 Kinematic relations

Position rate

The position rate of the reference point RO is equal to the body’s velocity U e in earth axes.
This is described in Eq. 3.4.

d

dt
ReO = U e = T

e

bU
b (3.4)

As the velocity is usually given in the body axes and the position in the earth axes, Eq. 3.4 is
extended with the transformation matrix T

e

b. This is written in full in Eq. 3.5.

d

dt


xe

ye

ze

 =

CθCψ SφSθCψ − CφSψ CφSθCψ + SφSψ

CθSψ SφSθSψ + CφCψ CφSθSψ + SφCψ

−Sθ SφCθ CφCθ



u

v

w

 (3.5)

By elaborating Eq. 3.5 the first 3 kinematic relations can easily be found.
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Orientation rate

The rotation rate
−→
Ω e is composed of the three rotation rates respectively around xe, ye and ze.

−→
Ω e can be related to the Euler angle rates via the following expression:

Ωex
Ωey
Ωez

 =
[
K
e

b

]
φ̇

θ̇

ψ̇

 (3.6)

where the matrix K
e

b is the transformation matrix between the rotation rates and the Euler
angle rates and has the from from Eq. 3.7. The exact derivation of this matrix is not included
here as this would lead too far.

Ke
b =

CψCθ −Sψ 0

SψCθ Cψ 0

−Sθ 0 1

 (3.7)

When Eq. 3.6 gets premultiplied with the transformation matrix T
b

e we arrive at the rotation
rates around the body-fixed axes

−→
Ω b.

Ωbx
Ωby
Ωbz

 =
[
T
b

e

]
Ωex
Ωey
Ωez

 =
[
T
b

e

] [
K
e

b

]
φ̇

θ̇

ψ̇

 (3.8)

Inverting the expression gives us the rates of change of the Euler angles:

d

dt


φ

θ

ψ

 =

1 SφTθ CφTθ

0 Cφ −Sφ
0 Sφ/Cθ Cφ/Cθ



Ωbx
Ωby
Ωbz

 (3.9)

3.2.3 Dynamic relations

The linear momentum equation is usually expressed in the earth’s inertial frame with the total
force acting on the boat being a combination of the hydrodynamic force F e and the gravitational
force mge. This can be transformed to an equation where all components are expressed in the
stability frame with the help of the transformation matrix T

b′

e . For the complete procedure we
refer to Drela [12]. The result is given below:

F b
′
+mgb

′
= m(U̇ b

′
+Ωb

′ × U b
′
) (3.10)

with: F b′ =


X

Y

Z
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The method to attain the angular momentum equation in the stability frame is very similar and
is given by Eq. 3.11.

M b′ = I
b′

ω̇b
′
+Ωb

′ × (I
b′

Ωb
′
) (3.11)

with: M b′ =


L

M

N


I
b′

the inertia tensor of the boat. The total forces and moments along or around the different
axes of the stability frame are noted as X, Y and Z for the forces and L, M and N for the
moments. The reason to express the equations above in the stability frame is mainly due to the
fact that this results in less complicated formulas as the inertia tensor I

b
stays constant in this

reference frame as the stability frame rotates together with the boat.

3.2.4 Equations of motion

Combining the kinematic relations with the dynamic relations now leads to 12 ODEs . There are
2 kinematic relations for both the position rate (Eq. 3.4) and orientation rate (Eq. 3.6) (for all
3 dimensions) which lead to the first 6 relations. The 2 dynamic relations (Eq. 3.10) (Eq. 3.11)
(for all 3 dimensions) lead to the next 6 relations. This results in the system developed in
Eq. 3.12-3.15.

ẋe = CθCψu+ (SφSθCψ − CφSψ)v + (CφSθCψ + SφSψ)w

ẏe = CθSψu+ (SφSθSψ + CφCψ)v + (CφSθSψ + SφCψ)w

że = −Sθu+ SφCθv + CφCθw

(3.12)

φ̇ = p+ qSφTθ + rCφTθ

θ̇ = qCφ − rSφ

ψ̇ = qSφ/Cθ + rCφ/Cθ

(3.13)

X −mgSθ = m(u̇+ qw − rv)

Y +mgSφCθ = m(v̇ + ru− pw)

Z +mgCφCθ = m(ẇ + pv − qu)

(3.14)

L = Ixxṗ− Ixy q̇ − Ixz ṙ + (Izz − Iyy)qr − Iyz(q
2 − r2)− Ixzpq + Ixypr

M = Iyy q̇ − Ixyṗ− Iyz ṙ + (Ixx − Izz)rp− Ixz(r
2 − p2)− Ixyqr + Iyzqp

N = Izz ṙ − Ixz ṗ− Iyz q̇ + (Iyy − Ixx)pq − Ixy(p
2 − q2)− Iyzqr + Ixzqp

(3.15)

Multiplying Eq. 3.14 with 1/m and Eq. 3.15 with the inverse of the inertia tensor I
b′−1 allows

to write these formulas in an explicit form for u̇, v̇, ẇ, ṗ, q̇ and ṙ. Eq. 3.12-3.15 can now be
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written in a general form with the help of the state vector X(t) from Eq. 3.1 as is demonstrated
in Eq. 3.16. The force F b′ and moment M b′ are unknown and will be linearized making use of
small-disturbance theory.

˙X(t) = f(X(t)) (3.16)

3.2.5 Linearization

Assume an equilibrium state X0. If the boat now experiences a small, arbitrary deviation from
this state every term would get perturbed. This can be expressed by substituting every term
by its equilibrium value (noted with subscript 0) plus a deviation from this equilibrium value
(noted with ∆). This is demonstrated in Eq. 3.18 for first relation of Eq. 3.14.

X −mg sin(θ) = m(u̇+ qw − rv) (3.17)

⇔ X0+∆X −mg sin(θ0 +∆θ) =

m(u̇0 +∆u̇+ (q0 +∆q)(w0 +∆w)− (r0 +∆r)(v0 +∆v)
(3.18)

After substituting these perturbations in all 12 ODEs of Eq. 3.12-3.15, some simplifications
can be made depending on the type of aircraft/boat under consideration (e.g. symmetric flight,
symmetric boat, equilibrium values being zero, ...). The simplifications from Drela will not be
discussed here in detail as they are not relevant for the case of a hydrofoil boat. They are
summarized as:

w0 = v0 = p0 = q0 = r0 = u̇0 = v̇0 = ẇ0 = ṗ0 = q̇0 = ṙ0 = Ixy = Iyz = 0 (3.19)

The total forces and moments depend on the entire flow regime around the boat. To make the
expression above tractable, they are assumed to be a function of the state(-vector) of the boat
and its derivatives. E.g. for the force along the Z-axis this becomes:

Z → Z(X(t), Ẋ(t)) = Z(u, u̇, ü, ..., q, q̇, q̈, ...)

Forces and moment can now be approximated using a first-order Taylor expansion around the
equilibrium state. Depending on the case under consideration, certain terms are or are not taken
into account. This will be discussed later. The Taylor expansion is demonstrated in Eq. 3.20 for
the longitudinal vertical force Z with ai a general representation for a state-vector component.

∆Z =
∑
i

δZ

δai
∆ai =

δZ

δu
∆u+

δZ

δw
∆w +

δZ

δq
∆q +

δZ

δθ
∆θ + ... (3.20)



3.2. AIRPLANE DYNAMIC STABILITY THEORY 21

3.2.6 Stability matrix

With the help of the state-vector, the system of Eq. 3.12-3.15 can be written in a more convenient
matrix notation.

d

dt



∆u

∆w

∆q

∆θ

∆v

∆p

∆r

∆φ

∆xe

∆ye

∆ze

∆ψ



=



. . . . ∗ ∗ ∗ ∗ ∗

. . . . ∗ ∗ ∗ ∗ ∗

. . . . ∗ ∗ ∗ ∗ ∗

. . . . ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ . . . . ∗
∗ ∗ ∗ ∗ . . . . ∗
∗ ∗ ∗ ∗ . . . . ∗
∗ ∗ ∗ ∗ . . . . ∗
. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .





∆u

∆w

∆q

∆θ

∆v

∆p

∆r

∆φ

∆xe

∆ye

∆ze

∆ψ



(3.21)

The resulting matrix is called the stability matrix, A. The elements denoted with “·” are the
non zero-elements in this matrix when the simplifications applicable for airplanes are imple-
mented1. The eigenmodes and eigenvalues of this matrix allow to find the natural response of
this system, which is a superposition of the eigenmodes. The eigenvectors will determine if a
certain mode is stable or not.

The stability matrix is characterized by three distinct subsets: the first four rows form the
longitudinal subset, the next four rows forming the lateral subset and the last four rows forming
the navigation subset. A useful property for airplanes is that the three kinds of motions (longi-
tudinal, lateral and navigational) can be treated separately as the block-matrices are decoupled,
due to the zero-blocks. However, for hydrofoil boats, this decoupling characteristic is no longer
valid as non-zero terms appear in the blocks that were previously zero. This has various reasons:
(1) the aerodynamic forces of the sail will simultaneously affect longitudinal and lateral motions.
E.g. if the boatspeed increases (longitudinal motion) the sail will produce less lift (lateral force)
and consequently will experience less heel. (2) The forces and moments will have a dependency
on the draft z, where as this is clearly not the case for airplanes. The terms denoted with ∗ in
the stability matrix above are then also non-zero terms.

1As was mentioned before, the simplifications for an airplane are not discussed in detail as they are not relevant
for the case of a hydrofoil boat. They are here assumed tacitly to obtain the regular stability matrix form.
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3.3 Model by Masuyama

Already in 1987, well before the big development rush we are seeing today in the field of hy-
drofoils, Y. Masuyama pioneered a dynamic stability theory specifically for hydrofoil boats [6].
His theory is based on the same model as the “airplane dynamic stability theory” of previous
section, it distinguishes itself by the made assumptions. In this section his paper on this sta-
bility analysis is discussed. The work of Masuyama is very similar to that of Drela but is more
compact as it does not take into account every possible motion as Drela does.

3.3.1 Equations of motion

The model of Masuyama is based on the same 6 dynamic equations of Eq. 3.14-3.15 in the non-
inertial body-fixed stability frame. This frame is non-inertial as it not only translate but also
rotates in reference to the earth-bound frame. Again, a small deviation from an equilibrium state
will be assumed and the equations will be linearized as in sec. 3.2.5. Every term gets substituted
for its equilibrium value plus a deviation from this equilibrium state. As was mentioned in
sec. 3.2.6 a perturbation of any form will simultaneously affect longitudinal and lateral motions,
which is why the 6 equations will need to be solved simultaneously. Many terms will disappear
as some components of the equilibrium state vector X0 will be zero. The equilibrium values
for vertical velocity component w0 and for the trim angle θ0 will be zero because of the use of
stability axes2. For these stability axes the velocity vector, in equilibrium conditions, will always
lie in the XY -plane. Consequently this vector will always be horizontal as a hydrofoil boat in
equilibrium conditions has a constant draft. Due to the symmetry of the boat, the moment of
inertia Ixy and Iyz will also be zero. Rotational rates will also be zero as no turning is assumed.
To summarize:

w0 = θ0 = p0 = q0 = r0 = u̇0 = v̇0 = ẇ0 = ṗ0 = q̇0 = ṙ0 = Ixy = Iyz = 0 (3.22)

The experienced angle deviations in trim and heel will be relatively small and their cosines
and sines can thus be approximated linearly (cos(x) ≈ 1; sin(x) ≈ x). The resulting sines and
cosines are further elaborated with the trigonometric relations for angle sums. Furthermore, the
second order effects are also negligibly small. This gets demonstrated for the linear momentum
equation in the Y -direction in Eq. 3.23.

Y +mgSφCθ = m(v̇ + ru− pw)

⇒ Y0 +∆Y +mg sin(φ0 +∆φ)cos(∆θ) ' m(∆v̇ + (∆r)(u0 +∆u)− (∆p)(∆w))

⇒ Y0 +∆Y +mg (sin(φ0) · 1 + cos(φ0) ·∆φ) · 1 ' m(∆v̇ +∆r · u0)

⇒ ∆Y +mg cos(φ0) ·∆φ ' m(∆v̇ +∆r · u0)

(3.23)

2Their deviation terms ∆w and ∆θ are not zero. This is due to the fact that just like a regular body-fixed
frame, the stability axes rotate together with the boat.



3.3. MODEL BY MASUYAMA 23

The complete system then reduces to Eq. 3.24.

∆X −mg∆θ ' m(∆u̇−∆r · v0)
∆Y +mg∆φ ' m(∆v̇ +∆r · u0)
∆Z −mgφ0∆φ ' m(∆ẇ +∆p · v0 −∆q · u0)
∆L ' Ixx∆ṗ− Ixz∆ṙ

∆M ' Iyy∆q̇

∆N ' Izz∆ṙ − Izx∆ṗ

(3.24)

The motions around the Z-axis are not assumed by Masuyama. He mentions that this motion
does not affect the dynamic stability analysis. However, as he mentioned himself, decoupling
of the various motions is not guaranteed, meaning ψ, r and ṙ will surely have an influence on
the dynamical behaviour of the boat. This assumption is not supported properly in his paper.
Nevertheless, in this section his reasoning will be followed. As motions around the Z-axis are
omitted, the 6th relation in Eq. 3.24 will disappear together with all the ṙ, r and ψ components.
This would lead to only 5 equations, and the system contains, after linearization of the forces
and moments, 6 unknowns: u, v, w, φ, θ, z. An extra equation comes from the kinematic
relation linking the draft z with the heave motion w.

∆X −mg∆θ = m(∆u̇)

∆Y +mg∆φ = m(∆v̇)

∆Z +mgφ0∆φ = m(∆ẇ +∆p · v0 −∆q · u0)
∆L = Ixx∆ṗ

∆M = Iyy∆q̇

∆ż = ∆w − u0∆θ + v0∆φ

(3.25)

Two more kinematic equations are implied tacitly by Masuyama: θ̇ ≈ q and φ̇ ≈ p. These
relations are however only accurate if the angle of heel in equilibrium φ0 is of the same order
of the perturbations (φ0 ∼ ∆θ). For the case that will be considered in this thesis, the angle
of heel is assumed to be zero as the boat is most efficient when sailed “flat”. If a substantial
angle of heel needs to be included, the system should be completed with all three relations from
Eq. 3.13. Masuyama states that for his equilibrium, the boat has a heel angle which was smaller
than 5◦ [5]3 meaning that the above assumption is justified.

3.3.2 Linearization

The forces and moments are again linearized by assuming them as a function of the various kine-
matic parameters and expanding them using a first-order Taylor expansion. This is demonstrated

3This was translated from his Japanese paper.
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for the force in the X-direction in Eq. 3.26. The same can be done for ∆Y, ∆Z, ∆L and ∆M .

∆X =
∑
i

δX

δai
∆ai = Xu∆u+Xv̇∆v̇ +Xw∆w +Xẇ∆ẇ+

Xφ∆φ+Xp∆φ̇+Xṗ∆φ̈+Xθ∆θ +Xq∆θ̇ +Xq̇∆θ̈ +Xz∆z

(3.26)

With Xa =
δX
δa and similar for the other terms.

The first equation of Eq. 3.25 then becomes the following linear equation:

m∆u̇+mg∆θ −Xu∆u+Xv̇∆v̇ +Xww +Xẇ∆ẇ+

Xφ∆φ+Xp∆φ̇+Xṗ∆φ̈+Xθ∆θ +Xq∆θ̇ +Xq̇∆θ̈ +Xz∆z = 0
(3.27)

This can be done for all six expressions in Eq. 3.25. Since this leads to a system of six linear
ODEs their solutions can be written as:

∆u = u1e
λt , ∆v = v1e

λt , ∆w = w1e
λt ,

∆φ = φ1e
λt , ∆θ = θ1e

λt , ∆z = z1e
λt .

(3.28)

Which, after substituting this solution in formula (4.22), leads to the following expression (which
again is similar for all 6 equations of the system):

(mλ−Xu)u1 − (Xv̇λ+Xv)v1 − (Xẇλ+Xw)w1

−(Xṗλ
2 +Xpλ+Xφ)φ1 − (Xq̇λ

2 +Xqλ+Xθ −mg)θ1 −Xzz1 = 0
(3.29)

3.3.3 Stability Matrix

If the above procedure is performed for all six equations in the system of Eq. 3.25, the ODE-
system can be rewritten in a matrix notation. Setting the determinant of the resulting matrix
to zero leads to the eigenvalues of this system.


mλ − Xu −Xv̇λ − Xv −Xẇλ − Xw −Xṗλ
2 − Xpλ − Xφ −Xq̇λ

2 − Xqλ − Xθ + mg −Xz

−Yu (m − Yv̇)λ − Yv −Yẇλ − Yw −Yṗλ
2 − Ypλ − (mg + Yφ) −Yq̇λ

2 − Yqλ − Yθ −Yz

−Zu −Zv̇λ − Zv (m − Zẇ)λ − Zw −Zṗλ
2 + (mv0 − Zp)λ − Zφ) −Zq̇λ

2 − (mu0 + Zq)λ − Zθ −Yz

−Lu −Lv̇λ − Lv −Lẇλ − Lw (Ixx − Lṗ)λ
2 − Lpλ − Lφ) −Lq̇λ

2 − Lqλ − Lθ −Lz

−Mu −Mv̇λ − Mv −Mẇλ − Mw −Mṗλ
2 − Mpλ − Mφ) (Iyy − Mq̇)λ

2 − Mqλ − Mθ −Mz

0 0 −1 −v0 u0 λ





u1

v1

w1

φ1

θ1

z


= 0

(3.30)
The resulting square matrix is again a stability matrix A. By solving the characteristic equation
the eigenvalues can be determined and consequently would lead to the eigenvectors.

|A− λI| = 0

= f8λ
8 + f7λ

7 + f6λ
6 + f5λ

5 + f4λ
4 + f3λ

3 + f2λ
2 + f1λ+ f0

(3.31)

The reason there are 8 and not 6 eigenvalues is due to the two tacitly implied equations
mentioned earlier for the Euler angle rates. There are in fact 8 ODEs, if you include φ̇ ≈ p and
θ̇ ≈ q.
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Figure 3.4: The setup used in Masuyama’s paper [5].

3.3.4 Stability derivatives

To solve the characteristic equation of the previous section, numeric values are needed for the
different derivatives. The derivatives can be determined separately for the different components
of the boat. These components are the two Z-boards, the two elevators, the two rudders and
the sails as a whole. Masuyama [6] provides a method on how to calculate the derivatives for
all these components assuming the drag and lift coefficients are known. His method is valid the
case of a simple dihedral foil setup for which the geometry of the foils can be expressed easily
in function of a limited amount of parameters. This setup is shown in Fig. 3.4, the starboard
foil is submerged for 0.3 m and the port foil for 0.79 m. For the case of the Viper this would
to too many simplifications as the geometry is much more complicated. Also, both the CL and
CD curves need to be known for all the parameters in the state-vector to follow Masuyama’s
procedure. His procedure will not be discussed here in detail as the derivatives in this work will
be calculated using CFD .

Masuyama’s work provides numerical values for all these derivatives. The setup of the Viper
and the boat studied in the work of Masuyama differ a lot, but the values provided can still be
of use to get a better understanding of the different behaviours as the principles are still in tact.
All the numerical values are collected in appendix 7.2. The last column with the dimensionless
values was added to get a better idea of the relative importance of the different derivatives.

A first aspect which can be observed is that the derivatives with respect to (angular) accelera-
tions (v̇, ẇ, ṗ and q̇) are negligibly small.

If the dimensionless derivatives are sorted for their absolute value other effects can be seen
as well. The 14 largest derivatives are collected in Table 3.2, of a total of 60 derivatives. It
was demonstrated before that the decoupling of longitudinal motions from the lateral motions
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is not possible for a hydrofoil boat. Still, it can be seen in Table 3.2, that the derivatives of a
symmetric force or moment to a symmetric motion or rotation will have a larger absolute value
than its derivatives to a asymmetric motion or rotation and vice versa. For some derivatives
this is not the case. (E.g. Lzi.) This can be accounted to the asymmetric setup of the boat
(see sec. 3.3.4). If the boat would be setup symmetrically, equal but opposite terms are ex-
pected for the individual derivatives of the two foils. These terms are set in bold in table 3.2.
For these large derivatives it can be seen that the decoupling is exclusively due to the difference
between port and starboard foil: as the port foil is submerged more it will have larger derivatives.

The coupling effect of the sail is more of an influence on the smaller derivatives which are not
included in the sorted table but can be seen in appendix 7.2. It can be noted how the sail has
a larger influence in the case of lateral motions (p and v). The lateral motions will be coupled
more strongly to longitudinal motions than the other way around.

It can be concluded that the coupling effects will be a lot smaller if a symmetric setup is as-
sumed where both foils are equally submerged. If simultaneously, only longitudinal motions are
assumed the coupling effect will become negligible. The assumption of a symmetric setup is
justified by the fact that the boat is most efficient when it is sailed flat without any heel. If only
the longitudinal forces and moments and their longitudinal derivatives are taken into account,
the influence of the sail becomes small. This will be the argument to consider only longitudinal
motions with longitudinal forces and moments for a symmetric setup.

Table 3.2: The derivatives sorted for the absolute value of the dimensionless total derivative [6].

j st (i=1) port (i=2) elevator (i=3) rudder (i=4) sail (i=5) total dimensionless absolute value

Mji w 31 181 -1198 0 0 -986 -3.590 3.59
Lji φ -518 -2022 0 0 0 -2540 -2.905 2.91
Zji w -37.9 -212.7 -515.9 0 0 -766.5 -2.791 2.79
Mji q -19 -100 -2800 -4 -34 -2957 -2.153 2.15
Yji φ -505 -1172 0 0 0 -1677 -1.918 1.92
Zji z -288 -605 -29 0 0 -922 -1.678 1.68
Lji z -250 890 0 0 0 640 1.165 1.16
Yji v -26.7 -149.7 0 -56.7 -41.9 -275 -1.001 1.00
Yji z -241 508 0 258 0 525 0.956 0.956
Zji φ -601 1397 0 0 0 796 0.910 0.910
Mji z 139 401 -67 0 0 473 0.861 0.861
Zji q 16 97 -1199 0 0 -1086 -0.791 0.791
Zji θ 233 490 -67 0 0 656 0.750 0.750
Mji φ 300 -936 0 0 0 -636 -0.727 0.727
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3.3.5 Stability

Figure 3.5: An overview of the used symbols in the paper by Masuyama.

The paper by Masuyama also contains three root locus diagrams for the model described above.
These three diagrams are displayed in fig. 3.6 There are three possible wind-speeds UST and
three possible setups of the sail, ε. They are all for a wind angle γT of 90◦. These symbols
can be seen in Fig. 3.5. The angle defining the sail setup ε is the angle the bottom of the sail
makes with the centre-line of the boat. The smaller this angle is, the faster the boat will be
going as it allows for an apparent wind4 which comes more from the front. Some interesting
conclusions come from his analysis. For decreasing ε , so increasing boatspeed, the boat becomes
unstable. For every geometry and setup there is a maximal critical speed above which the boat
becomes unstable. Above this critical speed, there still exist equilibrium state. Nevertheless,
these equilibrium state will be dynamically unstable: a small perturbation would cause the boat
to diverge from its equilibrium state. Without a stability analysis there can consequently be an
over-estimation of the maximum attainable boat speed. This is visualised in fig. 3.7 with the
help of a polar plot. In this kind of polar plot the angle represents the angle of the boat relative
to the wind and the distance to the origin represents the speed. The over-estimation of the
boatspeed is displayed by the gray area. This area represents the area where equilibria exist,
but which are dynamically unstable. This clearly shows the importance of stability analysis to
predict the behaviour of a boat.

4A boat experiences a true wind, which is the wind that would be felt when standing still, and a headwind,
which is generated by its own speed. Combining the vectors of the true wind and headwind results in an apparent
wind. If the speed increases, the headwind increases, and consequently the apparent wind will shift to the front.
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(a) UST = 10 m/s (b) UST = 14 m/s

(c) UST = 18 m/s

Figure 3.6: Root locus diagram for three different wind-speeds UST with varying sail setup ε [6].

Figure 3.7: A polar plot of the maximum attainable velocity [6].



4
Longitudinal Stability Model

Certain simplifications can, and need to be made. These are based on the previous chapter. The
intended results should somewhat justify the used resources. A two-phase simulation, where the
whole boat and the free surface is included, would lead to more accurate results but would also
lead to an unreasonably large mesh and simulation time. That is why it was chosen to only model
the rudder, the elevator and the Z-board below the water surface and to assume all forces and
moments above the water surface to be constant. In physical reality this would however not be
true. The biggest contribution above the water originates from the sail. This immediately leads
to another simplification: only longitudinal motions, rotations, forces and moments are taken
into account. It can be seen from the data presented by Masuyama that lateral motions are more
affected by the sail. Combining this with the fact that the sail is modelled as a constant force
and moment, the results for the lateral motions won’t have any value. Furthermore, rotations
around the z-axis are more of interest for a directional stability analysis and will also be left
out of the model. The approximation that all forces and moments above the water surface are
constant is in the case of longitudinal motion justified: changing the draft or the trim angle
barely influences the aerodynamic force . A surge disturbance ∆u will be small compared to the
equilibrium value u0, and consequently also will have a limited effect on the aerodynamic force
and moment.

29
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Figure 4.1: The earth-bound frame together with the boat-fixed frame.

4.1 Linearization

Based on the mentioned assumptions only 3 dynamic relations are included in the model: two
force balances along the X- and Z-axis and one moment balance around the Y -axis. As this
system only assumes one rotation where the models of Masuyama and Drela assumed two or
three, the body-fixed frame is no longer the most convenient. The inertial earth-bound frame,
displayed in Fig. 4.1 as the frame denoted with the uppercase XeY eZe, will lead to simpler
equations. The moment of inertia Iyy and the moment M are defined around the centre of
mass. Similar to the approaches in Ch. 3, the system will be assumed to be in equilibrium
when it experiences a small, arbitrary perturbation. Every term then gets disturbed and can be
replaced by its equilibrium value (noted with subscript 0) plus a deviation from this equilibrium
value (noted with ∆). This procedure is written out in Eq. 4.1. The equilibrium values of
the accelerations are of course zero. Furthermore are the equilibrium values of the forces and
moments also zero, as this is the main premise to have an equilibrium. The 3 dynamic equations
of this system are completed by two kinematic relations: one which couples the draft to the
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vertical speed and one which couples the trim angle to the pitch velocity.

X = mu̇

Z +mg = mẇ

M = Iyy q̇

ż = −Sθu+ SφCθv + CφCθw

θ̇ = qCφ − rSφ

⇔



∆u̇ =
∆X(u, z, θ)

m

∆ẇ =
∆Z(u, z, θ)

m

∆q̇ =
∆M(u, z, θ)

Iyy

∆ż = ∆w

∆θ̇ = ∆q

(4.1)

The resulting system differs much from e.g. the system by Masuyama in Eq. 3.25. The absence
of gravity terms is due the choice for the inertial earth-bound frame where the gravity will always
lie along the Z-axis even if the boat has a different trim angle. This was not the case for the
boat-fixed frame. Also because of the use of this earth-bound frame the mixed terms (linear
and angular velocity) are missing.

The only thing left to complete the procedure is linearizing the force and moment disturbance.
Just like in the previous chapter the forces and moment are approximated by a Taylor expansion.
This is made possible by assuming them to be a function of the kinematic parameters. Initially
only the derivatives to the surge u, the draft z and the trim angle θ are considered. The
derivatives to the vertical velocity w and the pitch q are much harder to calculate using CFD
as they require transient simulations. This initial linearization is displayed in Eq. 4.2.

∆X =
3∑
i=1

∂X

∂ai
∆ai =

∂X

∂u
∆u+

∂X

∂z
∆z +

∂X

∂θ
∆θ + 0 + 0 (4.2)

This linearized system can be written in a matrix notation with a state-vector X(t) and a
stability matrix A, this is demonstrated in Eq. 4.3 and Eq. 4.4.

d

dt


∆u

∆z

∆θ

∆ż

∆θ̇

 = [A] ·


∆u

∆z

∆θ

∆ż

∆θ̇

 (4.3)
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[A] =



1
m
∂X
∂u

1
m
∂X
∂z

1
m
∂X
∂θ 0 0

0 0 0 1 0

0 0 0 0 1
1
m
∂Z
∂u

1
m
∂Z
∂z

1
m
∂Z
∂θ 0∗ 0∗∗

1
Iyy

∂M
∂u

1
Iyy

∂M
∂z

1
Iyy

∂M
∂θ 0∗ 0∗∗

 (4.4)

4.2 Stability Derivatives

In sec. 3.3.4 it is demonstrated, based on the data by Masuyama, how decoupling of longitudinal
and lateral motions can be justified if a symmetric boat is assumed with a zero heel angle. It is
also justified to assume the aerodynamic forces and moments originating from the sail as con-
stant in the case of longitudinal motion. If table 3.2 is now repeated but without the coupling
and lateral terms, table 4.1 is found. This table contains the 10 largest dimensionless derivatives
in absolute value. The first thing which can be seen in this table, is that the contribution of the
sail is indeed exceptionally small for longitudinal motions as it has no contribution in all but
one derivative. This justifies the constant aerodynamic forces and moments. The derivatives
highlight in bold are, for now, assumed to be zero in the stability matrix A of Eq. 4.4. This
shows that this stability matrix is far from accurate and these derivatives should be calculated
or at least approximated.
It can be seen from table 4.1 that the elevator has large derivatives to the pitch velocity q. This
can be explained as follows: a pitch velocity around the CoG is seen as a linear velocity v = q×r
with q this pitch velocity and r the distance to the CoG . As the elevator is located far from the
CoG v will be large, so that the elevator has large derivatives to the pitch velocity. A similar
reasoning can be followed to explain why the elevator has a big contribution to the moment
derivatives, Mji.

Table 4.1: The derivatives as provided by Masuyama sorted for the absolute value of the dimen-
sionless total derivative without coupling terms and lateral terms[6].

j st. (i=1) port (i=2) elevator (i=3) rudder (i=4) sail (i=5) total dimensionless absolute value

Mji w 31 181 -1198 0 0 -986 -3.590 3.59
Zji w -37.9 -212.7 -515.9 0 0 -766.5 -2.791 2.79
Mji q -19 -100 -2800 -4 -34 -2957 -2.153 2.15
Zji z -288 -605 -29 0 0 -922 -1.678 1.68
Mji z 139 401 -67 0 0 473 0.861 0.861
Zji q 16 97 -1199 0 0 -1086 -0.791 0.791
Zji θ 233 490 -67 0 0 656 0.750 0.750
Mji θ -113 -325 -155 0 0 -593 -0.678 0.678
Lji θ 203 -721 0 0 0 -518 -0.592 0.592
Xji z -52 -60 0 -35.2 0 -147.2 -0.268 0.268

Calculating the missing derivatives directly requires time-consuming transient simulations. For
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the derivative to the pitch velocity the boat should be simulated to have a small pitch velocity,
q 6= 0. The forces should be read at the moment the boat passes its equilibrium value. This
transient simulation should however be long enough to make sure the flow has settled in a regime
state. The derivative to heave can be calculated in a similar fashion. An approach for estimating
these derivatives is proposed. By using the 9 derivatives which were already calculated in the
stability matrix of Eq. 4.4, the other 6 derivatives can be approximated.

4.3 Approximations

Figure 4.2: Effect of the vertical velocity, w.

The terms denoted with (*) in Eq. 4.4 are the force and moment derivatives to the speed in
the vertical direction (heave), ∂X

∂w ,
∂Z
∂w and ∂M

∂w . These terms will be approximated using the
derivatives to the trim angle θ: ∂X

∂θ ,
∂Z
∂θ and ∂M

∂θ . As can be seen from Fig. 4.2 a perturbation
∆w of the vertical velocity causes a change in angle of attack (AoA) α from the viewpoint of the
foils. Since a hydrofoil boat sailing in equilibrium conditions will always have a horizontal speed,
a change in AoA α is similar to a change in trim angle θ. A change in trim angle ∆θ is seen by
the foils as a change in AoA ∆α. The difference between changing the AoA and changing the
trim angle lies in the fact that the submerged area will be different. Changing the AoA means
that the same foil is used, but with different angle for the velocity vector. Changing the trim of
the boat would not only lead to a change in AoA, but would also lead to a different foil geometry
as the submerged areas will be different. These effects are situated at the free surface. It will
be the area of the rudder which is most affected by this, but as the rudder will have barely
no influence on the longitudinal stability these effects will be small and can be neglected, i.e.
∂...
∂θ ∼ ∂...

∂α . Assuming small disturbances around an equilibrium point, ∂Z∂w can be approximated
as is shown in Eq. 4.5. The procedure for ∂X

∂w
∂M
∂w is analogous.

∂Z

∂w
=
∂Z

∂θ

∂θ

∂w
=
∂Z

∂θ

∂α

∂w
≈ 1

u0

∂Z

∂θ
(4.5)

with dα
dw ≈ 1

u0
, ∆α ∼ ∆θ
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Figure 4.3: Effect of the angular velocity, q.

The terms denoted with (**) in Eq. 4.4 are the derivatives of the forces and moment to the pitch
velocity, ∂X∂q ,

∂Z
∂q and ∂M

∂q . A change in pitch velocity around the CoG is experienced as a change
in linear velocity ∆v on every component. This velocity component v can be decomposed in a
horizontal and vertical component, ∆u and ∆w, as is demonstrated in Fig. 4.3 for the elevator.
Due to hydrodynamic lag this velocity v will however not be constant, but it will vary gradually
over time as the flow needs time to settle to this new situation. This effect will be neglected
and the change in velocity ∆v as a result of a change in pitch, will be considered as a constant.
Expressions for the derivatives to the two linear velocity components already exist, so that
they can be used for an approximation for the pitch derivative. The linear velocities of every
component separately, depend on the distance rb′ to the CoG and on the angle of orientation γb′

around the y-axis. This means that every derivative has to be calculated separately, for every
component. Using the approximation from Eq. 4.5 an approximation of ∂M∂q is developed. This
then takes the form of Eq. 4.6. The approach for ∂Z

∂q is similar. The individual derivatives are
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afterwards summed to obtain the total derivative.

∂Mi

∂q
=
∂Mi

∂u

∂u

∂q
+
∂Mi

∂w

∂w

∂q

=
∂Mi

∂u
rb

′
i sin(γb

′
i ) +

∂Mi

∂w
rb

′
i cos(γb

′
i )

≈ ∂Mi

∂u
rb

′
i sin(γb

′
i ) +

1

u0

∂Mi

∂θ
rb

′
i cos(γb

′
i )

With i = el,ru,zb.

(4.6)

∂M

∂q
=

∑
i

∂Mi

∂q
(4.7)

4.4 Stability Matrix

These approximations for the derivatives allow to construct the stability matrix A with only a
limited amount of steady-state simulations. This will benefit simulation time a lot while still
maintaining adequate accuracy. The stability matrix then becomes:

[A] =



1
m
∂X
∂u

1
m
∂X
∂z

1
m
∂X
∂θ

1
m
∂X
∂w

1
m
∂X
∂q

0 0 0 1 0

0 0 0 0 1
1
m
∂Z
∂u

1
m
∂Z
∂z

1
m
∂Z
∂θ

1
m
∂Z
∂w

1
m
∂Z
∂q

1
Iyy

∂M
∂u

1
Iyy

∂M
∂z

1
Iyy

∂M
∂θ

1
Iyy

∂M
∂w

1
Iyy

∂M
∂q

 (4.8)



36 CHAPTER 4. LONGITUDINAL STABILITY MODEL



5
Methodology

This chapter gives more insight in the actual stability analysis of the Viper and the practicalities
encountered. To obtain the necessary data for this analysis, the flow around the foils is simulated
using CFD. The CFD simulations were calculated using the solver Fluent from ANSYS [14]. In
order to get accurate results, good quality block-structured meshes are needed. These meshes
were constructed using the ANSYSICEM software package.

5.1 Geometry

The geometry of the Viper was defined by the design of Goodall. As the flow will only be
simulated below the water surface, just the elevator, Z-board and rudder will be simulated
without the hull or sail. Relative positioning of the different foils is consequently important to
get realistic results. This relative positioning was not always easy: neither foil is fixed on the hull
as the rake of both foils can be adjusted according to sailing conditions. The relative positioning
was done using the drawing in Fig. 5.1. Some overall dimensions are provided in Table 5.1. As
the CoG can vary from setup to setup, the origin of the boat fixed frame is not constant. That
is why a geometry-fixed reference frame is constructed. The origin of the geometry-fixed frame
lies at the centre of the LE of the elevator when the rudder is in its neutral position, this is also
shown in Fig. 5.1. The rudder is in its neutral position when the LE of its top section is parallel
to the aft of the boat. This geometry-fixed frame will also be used to define the state of the
boat.
The mass of the boat is known, but the position of the CoG is not. The position of the CoG

37
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Table 5.1: The overall dimension of the foiling Viper.

Length 5 m

Beam 2.5 m

Mast height 8.5 m

Mainsail area 15 m2

Jib area 3.7 m2

Gennaker area 17.5 m2

Mass 140 kg

Figure 5.1: The Geometry of the boat.

is an important parameter in the stability analysis. The CoG is estimated by weighing all
the heavy components of the boat (hull, beams, rudder+elevator, Z-board, mast) separately.
As their relative position is known, the CoG was then easy to calculate using Eq. 5.1. This
approximation (only considering the heavy components to calculate the CoG) was validated
by checking where the CoG lied for a real boat. The results from the two approaches agreed
remarkably well, with x = 2.06 m and z = −1.54 m as the coordinates for this CoG. The CoG
is also displayed in Fig. 5.1. It lies above the platform as the mast (which is not displayed in
the figure) is relatively long.

xcg =

∑
i xi ∗mi∑
imi

(5.1)

Another parameter necessary for the stability analysis is the moment of inertia around the y-axis.
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This was estimated by approximating all parts by rectangles with a uniform weight distribution.
Again, only the heavy components are assumed (just as with the estimation of the CoG, as it
lead to good results there). The moment of inertia was then calculated using the parallel-axis
theorem as we know the weight and relative positioning of the different parts. This resulted in
Iyy = 3.20 · 102 kgm2.

Iyy,CoG =
∑
i

(Icg,i +mir
2
i ) (5.2)

With Icg,i = the moment of inertia of the rectangle around its CoG.; mi = its mass and
ri = its relative position with respect to the CoG of the boat.

The calculation above does not take the crew into account. Each crew member has a weight
of 70 kg and will be assumed to be a point mass. The CoG then shifts to x = 1.98 m and
y = −0.594 mm. The moment of inertia changes only slightly to Iyy = 3.23 · 102 kgm2 as the
crew members are positioned near the CoG.

5.2 Mesh

As the model assumes a symmetric boat only experiencing longitudinal motions, the flow at
both sides of the boat will be symmetric. For this reason the mesh should only contain half
the geometry. This results in 1 rudder, 1 elevator and 1 Z-board as our geometry. Simulating
only half of the geometry will have a beneficial effect on calculation time. The CAD-files were
provided by Goodall Design. Using these CAD-files the three parts (rudder, elevator and Z-
board) are meshed separately using the ICEM software package from ANSYS. A fourth mesh
contains a much larger surrounding background in which the three other meshes are combined
using the overset functionality from FLUENT. ICEM is a very powerful tool to create block-
structured meshes. This required lots of manual work so the meshing consequently took up a
lot of time. In hindsight more use should have been made of the replay scripts to be able to
make small adjustments to the mesh.

5.2.1 Overset

As was mentioned earlier the overset functionality of FLUENT will be used. Oversetting al-
lows us to create three much ‘simpler’, separate meshes for the components together with a
rectangular hexahedral background mesh in which they overlap. It has the advantage that the
components meshes can be created independently. The solver will then, after initialization, re-
move overlap between the different meshes by deactivating redundant cells, these are then called
dead cells. This happens based on cell size: the smallest cells will have the highest grid priority
to maximize resolution. Apart from dead cells there are solver, receptor and orphan cells. A
solution will tried to be obtained for the smallest local cell (i.e. solve cell). The larger mesh,
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which then will not be solved at that location, will however still need values for those local cells.
That are the so called receptor cells which are not solved themselves but get their values from
the closest solve cell.
The background mesh can be much coarser than the part meshes, as in most locations the flow
will remain undisturbed. Only in proximity to the foils and their meshes more refinement is
needed. Special care should be taken to make sure that component meshes and background
mesh have similar sizings in regions of overlap as this will give rise to better results for the over-
set initialization and consequent solutions. This is done by having a “bias” of the cell sizings
towards the position of the component meshes. An example of this refinement can be seen in
Fig. 5.2.

Figure 5.2: The components in the background mesh, with refinement towards the position of
the components.

During initialization issues were encountered with orphan cells. Orphan cells are to be expected
in regions were two walls are in proximity of one another and insufficient cells (less than 4)[15]
are present in between the walls. In the case at hand there were three such regions: the region
where the Z-board intersects the “rigid lid”, the region where the rudder intersects the lid and
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the region where the rudder and elevator are joined. Due to limited time no extra attention
was spent to resolve this issue as it was noted that the effects on the forces were minor. The
mentioned rigid-lid is the equivalent of the water surface, more on that later.
The different components can be rotated and translated independently, their relative positions
define the geometry. The standard geometry has a rudder rake of −1 and a foil rake of 4. A rake
is the relative angle of a component to the boat. Once this geometry is defined the three foils
can also be translated and rotated as a whole, this to define a different state.

5.2.2 Components and background

The three components all have airfoil-like cross sections. The exact shapes and dimensions are
not mentioned here to protect the work of Goodall Design. The three component meshes are all
hexahedral C-grid meshes which extend sufficiently far downstream to resolve the wakes. Usual
best practice is to make these C-grids sufficiently large (multiple chord lengths) to get accurate
results. However, in this case the C-grids are not standalone grids, but rather component meshes
in a background mesh for overset, so these meshes can be smaller. The C-grids have a radius
of only 0.5 to 1 chord length. The first cell of the boundary layer of all three foils is located at
0.1 mm to have a y+ value approximately between 30 and 300 on most of their surface. The
y+ value for more then 95% of the complete boundary layer lies in this range. There is however
still room for improvement. The turbulence model will in this case make use of wall-functions
to model the boundary layer. Originally y+ values smaller than 5 were envisaged, to be able
to calculate the BL without wall-functions. However, issues with inverted volume orientations
were encountered over the whole surface of all foils. This issue likely had something to do with
the .IGS files, used for importing the geometry. The outside boundary of all three C-grids will
be of the overset-interface type. The components themselves are of course no-slip walls.
Rudder
The rudder has a length of 1350 mm and a chord length of 200 mm with symmetrical cross
sections and a tapered bottom section. This is displayed in Fig. 5.3. As overset is used, it is
opted to mesh the rudder and elevator separately as this leads to much simpler meshes. If they
would not be meshed separately, the resulting T-structure would be very challenging to mesh
using a block-structured grid. The rudder itself is the easiest component to mesh as this part
can be meshed end to end without the tips needing to be meshed. The top end will always be
above the water surface and the bottom end will form the connection with the elevator. A cross
section of the mesh is given in Fig. 5.5. The complete rudder mesh contains 1.63 · 106 cells.
The elevator has a span of 420mm and max chord length of 125mm. The mesh now also has to
be extended past the ends to simulate the vortices at the tips of the elevator. The mesh around
this tip proved to be a rather complex task. In the original geometry the LE curved backwards
at the tip, becoming tangent to the end surface. The tip was simplified to make meshing easier.
This simplification is displayed in Fig. 5.4. For the final mesh the end surface of the elevator was
meshed unstructured. This unstructured face mesh was then extruded to the overset interface.
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Figure 5.3: The rudder geometry.

This can be seen in Fig. 5.6 as the green grid extending from the elevator. The unstructured
mesh was needed as the elevator ended in a sharp TE . A detail of the unstructured mesh can
be seen in Fig. 5.7. The complete elevator mesh has 1.94 · 106 cells.

Figure 5.4: Left: Before simplification; Right: after simplification.

Elevator

Z-board
The Z-board’s geometry is displayed in Fig. 5.8. The mesh should not be extended past the
top end of the Z-board as this will always lie above the water surface in realistic operating
conditions. At the bottom end the mesh is again extended past the tip with an unstructured
mesh, similar to the elevator. The complete Z-board mesh has 1.44 · 106 cells.
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Figure 5.5: A cross section of the mesh of the rudder.

Background
It was chosen to model the free surface as a rigid “lid” rather than using a multi-phase flow
method. This was chosen, as the influence of wave-making resistance is limited in this case,
because there is no bulky hull piercing the water surface but rather two small, streamlined foils.
This multi-phase approach would lead to much higher calculation times without a big increase in
accuracy. Fig. 5.2 shows the background mesh together with the component meshes. The black
surface represents the free surface modelled as a free-slip wall. The blue surfaces are pressure
outlets which are tilted slightly inwards towards the outlet to prevent reversed flow on these
surfaces. The green surface, which lies at the centre line of the boat, is modelled as a symmetry
plane. This background mesh is completed with a velocity inlet and pressure outlet at the ends
which are omitted in the figure. The complete background has 2.18 · 106 cells.

5.3 Solver

Fluent is a very powerful and versatile tool for simulating flow-problems. To control the soft-
ware, there are two possibilities: using the GUI (graphical user-interface) or otherwise using
the TUI (text user-interface) . The GUI is a good way to experiment with the program and
was used to get to know all its necessary functionalities. Later on, to be able to run various
simulations consecutively, journal files were loaded into the TUI. These journal files contained
FLUENT commands and could be coded using the coding language Scheme. These journal
files also allowed to code more complex simulations, e.g. simulations requiring loops. A further
functionality of FLUENT are the User-Defined Functions or UDFs. These UDFs are a very
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Figure 5.6: The complete elevator mesh with the unstructured block highlighted.

Figure 5.7: A detail of the unstructured block.

powerful tool within FLUENT to extend FLUENT’s standard capabilities. E.g. it allows to
translate and rotate the mesh, define pressure profiles on outlets, extract forces and moments
from parts, ... These UDFs are coded using C.
The speed range in which foiling is to be expected lies above 5 m/s and the foils have chord
lengths of 0.2 m, meaning Reynolds numbers will always lie well above 106, even for low-speed
conditions. Turbulence will be modeled using the k − ω SST model. At the velocity inlet the
turbulent intensity is set to 1% and the viscosity ratio µt

µ is set to 1, these are typical values for
external flow problems [16]. To include the effects of hydrostatic pressure gravity g is enabled
and a hydrostatic pressure profile is imposed at the pressure outlets.
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Figure 5.8: The overall dimensions of the Z-board.

5.4 Equilibrium state

As the stability matrices defined in chapter 4 are only valid around an equilibrium state, a
very important step in analyzing stability is calculating this equilibrium state. To this end an
algorithm was developed and implement using both journal files and UDFs.

5.4.1 External forces and moments

As only forces and moments resulting from the foils below the water surface will be calculated,
external forces and moments which are not calculated should be estimated in order to find a
realistic equilibrium point. For the force balance the weight of boat (140 kg) together with
the weight of the crew (140 kg) should be included, adding up to 280 kg. As only half of
the boat is modelled only half of this weight should be included. For the moment balance the
moment generated by the sailMsail around the centre of gravity has to estimated. Note that the
moment generated by the weight of the crew should not be included as the weight of the crew
was already included in the calculation for the position of the CoG and the moment of inertia.
The moment generated by the sail can be estimated fairly accurate. The drag generated by the
foils follows from the CFD calculations, e.g. the drag generated for half a boat at 10 m/s is
equal to 2.15 ·102 N . The sail should deliver a force which is equal in magnitude but opposite in
direction to this drag. From data from Goodall Design it is known that the point of application
of the sail lies approximately 3.25 m above the centre of gravity. These values are then used to
get an estimation of the moment Msail of the sail.
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5.4.2 Algorithm

The geometry can vary by changing the rudder rake, foil rake, position of the CoG... The
relative draft ∆z and relative trim angle ∆θ of the boat as a whole defines a state. The goal
of the algorithm is to find a state (∆z, ∆θ) for which the total force and the total moment
of the geometry are zero. This relative draft and trim are defined in reference to a arbitrary
chosen initial state. The algorithm discussed here is based on the Newton-Rhapson method for
2 variables. This root-finding method is expressed generally in eq. 5.3. In every step the force
and moment is calculated using CFD. These values are then used to estimate where the force
and moments will be zero (F = M = 0) using Newton-Rhapson. The boat is then moved to
this new state and this is continued until the force and moment are zero (or below a certain
convergence threshold). [

z

θ

]
n+1

=

[
z

θ

]
n

− [J ]−1

[
F

M

]
n

(5.3)

The estimation of the state where the force and moment will become zero is based on the
derivatives of the force and moment to the draft and trim. In every step derivatives of both
the force and the moment to both the draft and the trim angle are calculated, i.e. δF

δθ ,
δF
δz ,

δM
δθ

and δM
δz . For every state the flow is simulated and the forces and moments of the three foils

are calculated. Together with the external forces and momenta, they form the total force F
and total moment M on the boat. From this total force and moment the derivatives can be
calculated in between different iterations using finite differencing. These derivatives are placed
in a matrix J called the Jacobian.

However if both draft and trim angle are updated simultaneously there is no way of calcu-
lating the derivatives, as the individual contributions of both the draft and trim cannot be
distinguished. That is why a segregated approach is proposed. Every iteration consists of two
sub-iterations: one iteration for the draft update ∆z and one for the trim angle update ∆θ.
This gets demonstrated in Eq. 5.4.
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i = k

[
∆z

∆θ

]
=

[
( δZδz )k−1 ( δZδθ )k

( δMδz )k−1 ( δMδθ )k

]−1 [
(−Z)k
(−M)k

]
• i = k + 1 perform ∆z

→ calculate (Z)k+1, (M)k+1

→ calculate (
δZ

δz
)k+1, (

δM

δz
)k+1

• i = k + 2 perform ∆θ

→ calculate (Z)k+2, (M)k+2

→ calculate (
δZ

δθ
)k+2, (

δM

δθ
)k+2

i = k + 2

[
∆z

∆θ

]
=

[
( δZδz )k+1 ( δZδθ )k+2

( δMδz )k+1 ( δMδθ )k+2

]−1 [
(−Z)k+2

(−M)k+2

]
• i = k + 3 perform ∆z

→ calculate (Z)k+3, (M)k+3

→ calculate (
δZ

δz
)k+3, (

δM

δz
)k+3

• i = k + 4 perform ∆θ

→ calculate (Z)k+4, (M)k+4

→ calculate (
δZ

δz
)k+4, (

δM

δz
)k+4

(5.4)

In iteration k the draft ∆z and trim ∆θ updates are calculated. To be able to distinguish
their individual contributions to the force and moment they get executed separately in iteration
k+1 and k+2. in iteration k+1, the draft gets updated using the draft update ∆z calculated
in iteration k. The flow for this new state gets solved and from the resulting new force and
moment, (Z)k+1 and (M)k+1, the derivatives to the draft are updated using finite differencing.
This same procedure is repeated for the trim angle ∆θ in iteration k + 2. After the state of
iteration k+2 is simulated, the Jacobian together with the force and moment are updated based
on the derivatives calculated in iteration k + 1 and k + 2. This method allows to calculate the
derivatives and update the state simultaneously. To initialize this algorithm, the jacobian needs
to be constructed. To this end the force and moment of the initial state is calculated together
with the force and moment of two additional states. These two additional state are each char-
acterized by either an update for the draft or trim.

5.4.3 Implementation

The algorithm above is implemented in FLUENT using journal files and UDFs. To be able to
make easy adjustments different journal files are created to do various tasks.
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One journal file is responsible for developing the geometry. In this journal the component meshes
and background mesh are loaded into FLUENT and their relative positioning is set up. This
mesh now defines a geometry in an arbitrary state. All this then gets saved to a case-file. This
way various geometries can be created and saved with relative ease. The geometry in this state
will be used for the zeroth iteration in the algorithm.
A UDF file is created which contains various functions needed for the algorithm above. There
are 5 kinds of functions used:

1. A function for extracting the forces and momenta for the 3 foils and, using the external
forces, calculating the total forces and momenta.

2. Functions for calculating the derivatives from the total forces and momenta.

3. Functions for calculating the motions based on the Jacobian.

4. A function to perform the mesh movement.

5. A function to define the hydrostatic pressure profiles at the pressure outlets.

A main journal file lets Fluent load the case-file containing the defined geometry and the UDF-
library. This main journal file is also responsible of defining the right settings in FLUENT,
e.g. initialization settings, convergence thresholds, turbulence models, ... . This file also creates
the overset mesh and dynamic mesh. A dynamic mesh allows to move the various component
meshes in the background mesh. A loop inside this main journal is the actual implementation
of the algorithm. After the complete setup is prepared and the case is initialized, a first simula-
tion is done to get the initial values of the total force Z and moment M . Then separately two
initializing motions for the trim angle θ and draft z are carried out. The flow is then simulated
again for these two new states and the resulting total force and moment are extracted using
the UDFs. From this force and moment and the force and moment of the zeroth iteration a
first Jacobian matrix can be created for that particular point. This Jacobian then results in the
first motions which also will be carried out to calculate new derivatives. This process is then
repeated until the total force and moment are below a certain threshold value.

The implementation of the algorithm was initially developed for a 2-dimensional case. This 2D
case contained an asymmetric profile and smaller symmetric profile downstream (as is usual for
a stable setup). For this case only an equilibrium for the moment had to be found as the lift of
this 2D case did not depend on the draft. This 2D case was very helpful to get the principles of
the algorithm right and proved the algorithm converged to valid equilibrium. Afterwards this
code was extended to support a 3D case.
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5.5 Issues

Soon it was noted how much longer the 3D case took to converge. To limit calculation time the
convergence thresholds for turbulent kinetic energy k and dissipation rate ω in FLUENT were
given rather high values (10−3). This was deemed necessary to be able to validate the algorithm
in a limited amount of time. However after a while it became clear that the algorithm in 3D did
not converge to a result.

5.5.1 Validation

To make sure the handled standard geometry from sec. 5.2.1 is in fact a stable geometry, values
for the the total moment and total force were calculated over finite range of relative drafts z
and trim angles θ without making use of a dynamic mesh and defining every state directly using
a journal file. These simulations were run with lower convergence thresholds (10−5). Starting
from an starting state, the geometry was simulated for 5 different relative drafts z and for 5
different relative trim angles θ. This results in 25 points. The starting state is defined making
use of the geometry-fixed axes from sec. 5.1. The starting state has a zero trim angle and a
100 mm draft. This means that the rudder is submerged for 100 mm as the origin lies at the
bottom of the rudder. The results are plotted in Fig. 5.9. In this figure 2 surfaces are displayed:
the red surface for the total moment and the blue surface for the total force. These surfaces
are completed with iso-curves to get an idea of the level. The iso-curves at 0 N or 0 Nm are
displayed in black.

The first thing which becomes clear from this figure is that there is in fact an equilibrium point
as the two black iso-curves intersect. In this point, (z = 0.1589, θ = −2.381◦), both force and
moment are zero (or at least somewhere near this point) and an equilibrium state exists. Further
it can be noted how the moment is mainly dependant on the trim angle and only in a lesser
extent to the draft and how the force is dependant on both the trim angle and the draft. This
becomes more clear in Fig. 5.10 and Fig. 5.11.

Static stability of an equilibrium state means that when the boat experiences a deviation away
from this equilibrium, the force and moment will vary in such a way that the boat is forced back
to this equilibrium. It can be seen from Fig. 5.10 that if the draft increases (boat moves deeper
into the water), the force becomes negative meaning that more lift is generated and the hull
moves back up again. Remember that the Z-axis is directed downwards. From Fig. 5.11 it can
be seen that if the trim angle increases (nose up), a nose-down (negative) moment is generated.
The equilibrium state is consequently statically stable.

Convergence criteria
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Figure 5.9: A surface plot of the of the force and moment of the Viper as a function of the
relative draft z and the relative trim angle θ.

The fact that an equilibrium state exists, but that the algorithm does not converge to this state
means that the reason for not converging has to be found elsewhere. By simulating the flow
for points around this equilibrium state, some anomalies were discovered. There was noticed
how simulating two identical states can lead to two very different values for both the force and
the moment. The reason for this discrepancy lies in the fact that the solution of the previous
simulation influences the solution of the current simulation. For steady-state simulation this
cannot be the case. This implies that the higher convergence thresholds are partly responsible
for preventing the algorithm from converging. This is demonstrated in Table 5.2. Two simula-
tions of an identical state were performed but with a different convergence threshold. Both these
simulations were initialized in the same way to have no influence of a previous simulation. A
slight difference of the threshold value leads to an 8% change for both the force and the moment
relative to the ranges for the force and moment from Fig. 5.9. This means that the simulations
are nowhere near being converged.
This prevents the algorithm from working: a small change in either the draft or the trim angle,
can lead to very unpredictable behaviour for the force and moment. E.g. the values in Table 5.2
would lead to infinite values for the derivatives. This leads to a very inconsistent Jacobian
matrix. Normally this Jacobian is expected to have nearly constant values near an equilibrium
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Figure 5.10: Force and moment as a function
of the draft ∆z for the equilibrium trim θ0.

Figure 5.11: Force and moment as a function
of the trim angle ∆θ for the equilibrium draft
z0.

Table 5.2: Forces and moments calculated using two different convergence thresholds.

Convergence thres. for k [J/kg] Force [N] Moment [Nm]

0.001 159 -115
0.002 479 100

point as the force and moment surfaces are expected to be smooth. This means that the al-
gorithm will initially show good behaviour for as long as the derivatives are calculated using
sufficiently large steps for the draft and trim. However, the more the algorithm approaches the
equilibrium state, the smaller the steps will be. This will lead to more inconsistent behaviour
for the Jacobian and will cause the algorithm to diverge. Unfortunately there was not enough
time to run the algorithm with lower convergence thresholds.

As the surfaces in Fig. 5.9 are calculated with lower convergence thresholds, and by using
sufficiently large steps, the resulting surfaces are a good representation of the reality. This
means that they can be used to approximate an equilibrium state for the standard geometry.

5.6 Derivatives

Once the equilibrium state for a geometry and setup is found, the stability matrix needs to
be constructed. The calculations for the derivatives, necessary for constructing the stability
matrix, are rather straightforward. As was demonstrated in the previous chapter only 3 kinds of
derivatives need to be calculated to construct the longitudinal stability matrix. The force X, the
force Z and the moment M each have to be derived to the trim θ, to the forward velocity/surge
u and the draft z. They are calculated using finite differencing around the equilibrium state.
Together with the forces and moment from the equilibrium state (which are supposed to be
approximately zero), three additional sets of the forces and moment are calculated. This is done
by three additional states: one for the draft, one for the trim and on for the surge. This is
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Table 5.3: The relative position and orientation of the components in the stability axes.

. rudder (i=ru) elevator (i=el) Z-board (i=zb) units
rb

′
i 2.46E+00 2.55E+00 1.49E+00 [m]
γb

′
i 34.7 37.0 103.0 [◦]

demonstrated in Eq. 5.5:

δA
δθ = A1−A0

θ1−θ0 ; δA
δz = A2−A0

z2−z0 ; δA
δu = A3−A0

u3−u0 . (5.5)

with: A = X,Z or M
0 → equilibrium state
1 → state with trim update ∆θ

2 → state with draft update ∆z

3 → state with surge update ∆u

To calculate the derivatives to heave and pitch, the approximations from previous the chapter
are used. The approximation for the pitch has to be calculated for every component separately
as this derivative depends on the individual positioning of the component. This means that the
forces and moment have to be calculated individually for every component.The position and
orientation of the different components of the standard geometry, in the equilibrium state, are
shown in Table 5.3. These values are necessary for the approximations.
The equations used for the approximation are repeated here:

δA

δw
=
δA

δθ

δθ

δw
=
δA

δθ

δα

δw
≈ 1

u0
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(5.6)
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With i = el,ru,zb.

A = X,Z,M

(5.7)

δA

δq
=

∑
i

δAi
δq

(5.8)

This then results in 6 additional derivatives. The derivative of the force X to the pitch is so
small, it becomes negligible.
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Results

As time was limited, only one equilibrium state was calculated. This means that only one set
of stability derivatives is available to discuss. These derivatives will be used to construct a
stability matrix and to determine the eigenmodes. The way these derivatives are calculated is
already discussed in the previous chapters. The eigenmodes can be used the asses the stability
performance of the Viper in this particular state. The equilibrium state under consideration
is that of the standard geometry sailing at a speed of 10 m/s. The standard geometry has a
rudder rake of −1◦ and Z-board rake of 4◦.

6.1 Equilibrium state

Using the geometry-fixed frame, the equilibrium state has a draft of z = 0.259 m, and a trim of
θ = −2.38◦. As was mentioned in the previous chapter this position is approximated from the
surface plot of the force Z and moment M . This surface plot is repeated here in Fig. 6.1. The
equilibrium state can be found where the two zero, black iso-curves intersect. In Fig. 6.2 the
geometry can be found in its equilibrium state relative to the free surface.

6.2 Derivatives

As there was not enough time to run the equilibrium algorithm with lower convergence thresh-
olds, the derivatives were calculated around the equilibrium state resulting from the surface plots.
The derivatives are calculated with the forces and moments from the individual components re-

53



54 CHAPTER 6. RESULTS

Figure 6.1: A surface plot of the of the force Z and moment M of the Viper as a function of the
relative draft z and the relative trim angle θ, referenced to the starting state.

sulting from the simulations using finite differencing. The individual component derivatives are
given in Table 6.1. The resulting general derivatives are tabulated in table 6.2 and 6.3.

Table 6.1: The derivatives of the individual components around the equilibrium state from the
standard geometry at a speed of 10 m/s.

elevator rudder Z-board units
δZ
δθ -8.88E+01 1.04E+00 -2.94E+02 [N/rad]
δZ
δz -3.56E+01 1.51E+01 -7.99E+03 [N/m]
δZ
δu 2.41E+01 4.05E-01 -3.38E+02 [N · s/m]
δM
δθ -2.08E+02 3.87E-01 -1.44E+01 [N/rad]
δM
δz -1.19E+02 -3.45E+01 -8.86E+02 [N/m]
δM
δu 5.15E+01 -7.91E-01 -4.88E+01 [N · s/m]
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Figure 6.2: A visualisation of the equilibrium state relative to the free surface.

Table 6.2: The derivatives around the equilibrium state from the standard geometry at a speed
of 10 m/s.

derivative value units
δX
δθ -6.98E+02 [N/rad]
δX
δz -3.09E+02 [N/m]
δX
δu 3.76E+01 [N ·s / m]
δZ
δθ -2.19E+04 [N/rad]
δZ
δz -8.01E+03 [N/m]
δZ
δu -3.13E+02 [N ·s / m]
δM
δθ -1.27E+04 [N/rad]
δM
δz -1.04E+03 [N/m]
δM
δu 1.92E+00 [N ·s / m]

Table 6.3: The derivatives for heave and pitch around the equilibrium state from the standard
geometry at a speed of 10 m/s, calculated using the approximations from chapter 4.

derivative value units
δX
δw -6.98E+01 [N · s/m]
δX
δq - [N · s/rad]
δZ
δw -2.19E+03 [N · s/m]
δZ
δq -5.09E+02 [N · s/rad]
δM
δw -1.27E+03 [Nm · s/m]
δM
δq -2.70E+01 [Nm · s/rad]
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6.3 Longitudinal Stability

The goal of all previous chapters was to construct the longitudinal stability matrix. This matrix
is used to asses the dynamic stability of the boat around a certain equilibrium state. This allows
to compare different geometries and conditions. Based on these comparisons the stability can
be improved. The longitudinal stability matrix is repeated below:

[A] =
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 (6.1)

The stability matrix for the standard geometry evaluated for the equilibrium state results in
the matrix below. This is done using the data from sec. 6.2.

[A] =


−0.27 −2.21 −4.99 −0.50 0.00

0 0 0 1.00 0

0 0 0 0 1.00

−2.24 −57.20 −156.21 −15.62 −6.51

0.01 −6.42 −78.59 −7.86 −14.75

 (6.2)

6.3.1 Eigenmodes

Using MATLAB the eigenvalues and eigenvectors are easily determined. The eigenvalues will
determine the general behaviour of each mode, and the eigenvectors will determine the amplitude
and phase of each variable. The matrix above results in one real eigenvalue, and two complex
conjugated pairs. These eigenvalues are listed below and are visualised in the root locus diagram
in Fig. 6.3. There is one real eigenvalue and two complex conjugated pairs of eigenvalues.

λ1,2 = −14.42± 6.95i

λ3,4 = −0.812± 3.60i

λ5 = −0.178

All the eigenvalues have a negative real part: this leads to the conclusion that the Viper
is dynamically stable for the chosen geometry and speed. An eigenmode is defined by the
multiplication of the eigenvector with the exponential of the respective eigenvalue:

∆xi = vie
λit with i = 1, ..., 5 (6.3)

From this definition it can be seen that the mode will dampen out exponentially in time if the
real part of the eigenvalue is negative. If the eigenvalue becomes more negative, the mode will
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Figure 6.3: Root locus diagram for the Viper in the equilibrium of the standard geometry.

be dampened even more quickly. This can be expressed making use of the half-life t 1
2
. This is

the time elapsed until the original amplitude has decayed to half its original value.

t 1
2
,i =

ln(0.5)

Re(λi
(6.4)

This is an interesting measure to compare the five eigenvalues. The half-lives are t 1
2
;1 = t 1

2
;2 =

4.81 · 10−2 s; t 1
2
;3 = t 1

2
;4 = 8.54 · 10−1 s and t 1

2
,5 = 3.89 s. In the case that the eigenvalue is

complex, the eigenmode will have an oscillating component as eix = cos(x) + i · sin(x). This
oscillation is sinusoidal and will have a period determined by

Ti =
2π

Im(λi)
(6.5)

For the complex eigenvalues this results respectively in T1 = T2 = 0.904 s and T3 = T4 = 1.75 s.
The eigenmode will simultaneously be influenced by the eigenvector. If the eigenvalue is complex
the eigenvector will be so too. The eigenvectors are given below:

v1 = v2



0.0039− 0.0199i

−0.0371 + 0.0154i

−0.0429− 0.0207i

0.4274− 0.4805i

0.7630 + 0.0000i


; v3 = v4 =



0.0397 + 0.0074i

−0.0535− 0.2372i

−0.0564 + 0.0771i

0.8976 + 0.0000i

−0.2320− 0.2658i


; v5 =



0.9986

−0.0510

0.0035

0.0091

−0.0006


Taking a look at the real eigenvector v5 in Fig. 6.4, some characteristics of the behaviour of the
eigenmode ∆x5 can be recognized. An increase in speed ∆u is associated with a decrease in draft
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∆z (meaning that the boat gets lifted from the water). This corresponds to what behaviour was
expected as an increase in speed will generate more lift on the foils. As the equilibrium trim θ0 is
−2.381◦ and as the elevator has a negative rake, the additional lift generated by the elevator will
be directed downwards resulting in positive moment. This is translated in a slight increase in
trim angle ∆θ, meaning that the boat will be tilted more nose-up. The draft variation ∆z occurs
naturally together with a heave variation ∆w. As this is a real mode, a draft and trim variation
resulting from a speed variation will happen without any overshoot. From the half-lives it can
be seen that it will take 3.89 s until the boat is halfway to its new equilibrium.

Figure 6.4: A visualisation of the real eigenvector v5.

The combination of the eigenmodes ∆x1 and ∆x2 will be a heavily damped, sinusoidal motion
dominated by a variation in heave ∆w and pitch ∆q. This will resemble some kind wobbling.
After the boat moves downwards, it will start to tilt more nose up. This will result in more
lift, meaning that the boat will eventually start moving up again. Hence the oscillatory motion.
The heave and pitch motion are almost in phase with each other. This mode has a half-life of
t 1
2
;1 = t 1

2
;2 = 4.81 · 10−2 s and a period of T1 = T2 = 0.904 s.

The combination of the eigenmodes ∆x3 and ∆x4 will be a weakly damped, sinusoidal motion
again dominated by a variation in heave ∆w and pitch ∆q. The half-life is t 1

2
;3 = t 1

2
;4 =

8.54 · 10−1 s and the period T3 = T4 = 1.75 s. As the half-life and period are larger in this case,
the variation in trim angle ∆θ and draft ∆z resulting from the variation in heave and pitch will
be more outspoken. This is demonstrated by the larger vector components for trim and draft
in Fig. 6.6. The heave and pitch variation are now nearly in anti-phase with one another.
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Figure 6.5: A visualisation of the complex eigenvector v1.

6.3.2 Influence of the Z-board

It is of interest how the different components (primarily the Z-board and elevator) would affect
the stability of the boat. In Fig. 6.7 the eigenvalues are shown for three different geometries. For
the standard geometry from the previous section, and for the geometries where the individual
derivatives of the Z-board are multiplied with 0.5 and 1.5. This corresponds with respectively a
certain decrease and increase in surface of the Z-board. It is seen how increasing the derivatives
would lead to even more stable modes and also to a shorter period of oscillation. Mainly the
complex modes are affected. Notice however that the corresponding increase or decrease in
surface, will not always lead to a feasible geometry as static equilibrium is not guaranteed. E.g.
it is possible that the foils become to small to generate sufficient force to lift the hull. Needless
to say, this variation will also lead to a new equilibrium state.

6.3.3 Influence of the elevator

In Fig. 6.8 the eigenvalues are shown as a function of the individual derivatives of the elevator.
As was expected, increasing the elevator derivatives leads to a more stable mode. The effect of
the elevator is more pronounced as with the Z-board for a comparable variation. The period of
eigenmodes ∆x1 and ∆x2 will also become larger with approximately a factor 3. It is known that
the the boat will be unstable if there would be no elevator. This is visualised in Fig.6.9. It can
also be noticed how the modes have changed completely: there are now three real eigenvalues
and only one complex conjugated pair. This change in modes appear when the derivatives of the
elevator are multiplied with 0.103, it is at this moment that eigenmode ∆x5 becomes critically
damped. This is shown in Fig. 6.10.
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Figure 6.6: A visualisation of the complex eigenvector v3.

Figure 6.7: A root locus diagram of the eigenvalues as a function of the individual derivatives
of the Z-board.
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Figure 6.8: A root locus diagram of the eigenvalues as a function of the individual derivatives
of the elevator.

Figure 6.9: A root locus diagram of the eigenvalues for two cases: the standard geometry and a
geometry where all the elevator derivatives are zero.
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Figure 6.10: A root locus diagram of the eigenvalues for two cases: the standard geometry and
a geometry where the boat is critically damped for mode 5.



7
Conclusion

The goal of this thesis was to find a way to quantify the stability of a hydrofoiling boat using
CFD. Both Drela’s and Masuyama’s interpretations on stability dynamics are discussed to have
adequate theoretical support on this matter. This thesis can be used as a framework for per-
forming a longitudinal dynamical stability analysis of a hydrofoil boat. In this regard this thesis
has managed to fulfil its goal. The idea was also to examine the stability of the Viper more
in depth. However, there was only time to look into one state and geometry. There are two
distinct parts in the framework: one is the calculation of the equilibrium state and the other is
the calculation of the derivatives to examine the stability of this state. This framework contains
an approach on how to calculate the equilibrium state of a certain geometry sailing at a certain
speed. The algorithm proposed by this approach allows this process to be automated. For the
derivatives, approximations were discussed with the purpose of limiting calculation time.

7.1 Results

The longitudinal stability of the Viper’s standard geometry was investigated at sailing speed of
10 m/s. 5 longitudinal eigenmodes were found: two complex conjugated pairs of eigenvalues and
one real eigenvalue. It could be concluded that the boat was both statically and dynamically
stable. The real eigenmode was characterized by a coupled motion between the forward velocity
and the draft and trim. This mode was weakly damped. The two complex pairs of eigenmodes
gave rise to a motion dominated by heave and pitch. One pair was heavily damped and one
was weakly damped. The influence of the derivatives of the individual components was also
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examined.

7.2 Future Work

The application of CFD on the dynamic stability analysis of a hydrofoil boat looks promising as
hydrofoiling is still a quite new development. However, to make this approach more efficient and
more easily applicable, additional research is needed. Both parts comprising the framework, the
calculation of the equilibrium state and the construction of the stability matrix, need additional
refinement.

A first observation is the lack of experimental data for validation of the calculated equilibrium
points and the derivatives. This data could originate from full scale tests or even towing-tank
tests with hydrofoils. This will help both aspects of the framework. For example, a really simple
geometry for which the equilibrium states are calculated at different speeds. Together with these
equilibrium states, the derivatives of the various forces and moments to the various kinematic
parameters could be calculated. Such a case could then be used to validate the entire framework.

But also the approaches themselves can be tested and refined. As there was insufficient time,
the FSI algorithm was not run with lower convergence thresholds. Consequently it was only used
for a 2D case. Running the algorithm for different speeds and different geometries could have
proven to help validate this algorithm. Comparing the eigenmodes for the standard geometry
at different sailing speeds or comparing them for different geometries at the same speed would
also have been mutually beneficent for GD in their development of the foiling Viper and for
the further refinement of the algorithm and stability model. Next to the influences of a speed
variation, other variations would also lead to interesting results: the influence of the variation
of the position of the CoG (crew movement), the influence of the variation of the different rakes
of elevator and Z-board, the influence of a different elevator design, ...

A big step forward would be to have a more performant model for the forces and moments
generated by the sail. This would not only increase the accuracy of the existing longitudinal
model but would also allow to include lateral stability to have a more complete model. In the
case at hand the boat has a fixed longitudinal velocity, but if the sail is modelled, this fixed speed
could be substituted for a driving force component. This way a variable speed is obtained. The
model could then be extended to also make speed predictions as the algorithm for calculating
the equilibrium state could be able to balance out the driving force and drag. This would allow
to examine the trade-offs between speed and stability. E.g. a certain change in geometry allows
for a higher speed in the equilibrium state but is simultaneously detrimental for the stability
behaviour.
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It can be concluded that this framework can have multiple applications and that are still many
areas where it can be improved or extended. The application of CFD for the dynamic stability
analysis of a hydrofoil boat proves to have many possibilities.
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Stability Derivatives

Table 1: Numeric values for the stability derivatives for the case of a 90◦ wind angle and a
10 m/s boatspeed as provided by Masuyama[6].

j st (i=1) port (i=2) rear (i=3) rudder (i=4) sail (i=5) total dimensionless

Xji

u -1.59 -4.89 -4.23 -1.2 -9.48 -21.39 -0.078
v 0.2 -4.09 0 0.74 29.08 25.93 0.094
w 0.23 4.88 -0.57 0 0 4.54 0.017
p 0.16 -4.96 0 -1.31 55.26 49.15 0.036
q -3.21 -12.48 -9.25 -2.11 18.02 -9.03 -0.007
φ -103.4 131.4 0 0 0 28 0.032
θ 42.1 48.6 0 -81.7 0 9 0.010
z -52 -60 0 -35.2 0 -147.2 -0.268
v̇ 0 0 0 0 0 0 0.000
ẇ 0 0 0 0 0 0 0.000
ṗ 0 0 0 0 0 0 0.000
q̇ 0 0 0 0 0 0 0.000
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j st (i=1) port (i=2) rear (i=3) rudder (i=4) sail (i=5) total dimensionless

Lji

u -5.5 44 0 -11.2 10.9 38.2 0.139
v -22.1 -181.6 0 99.9 -79.9 -183.7 -0.669
w -26.4 216.5 0 0 0 190.1 0.692
p -18.3 -220.3 0 -176.3 -151.4 -566.3 -0.412
q 10.9 -98.5 0 -19.8 -20.7 -128.1 -0.093
φ -518 -2022 0 0 0 -2540 -2.905
θ 203 -721 0 0 0 -518 -0.592
z -250 890 0 0 0 640 1.165
v̇ -0.39 -1.51 0 1.55 0 -0.35 -0.001
ẇ -0.46 1.8 0 0 0 1.34 0.005
ṗ -0.32 -1.83 0 -2.74 0 -4.89 -0.003
q̇ 0.37 -1.46 0 0 0 -1.09 -0.001

Mji

u 3.4 26.5 -11.2 -2.1 18 34.6 0.126
v 26.1 -151.7 0 1.3 -55.3 -179.6 -0.654
w 31 181 -1198 0 0 -986 -3.590
p 22 -184 0 -2 -105 -269 -0.196
q -19 -100 -2800 -4 -34 -2957 -2.153
φ 300 -936 0 0 0 -636 -0.727
θ -113 -325 -155 0 0 -593 -0.678
z 139 401 -67 0 0 473 0.861
v̇ 0.45 -1.2 0 0 0 -0.75 -0.003
ẇ 0.54 1.43 -9.64 0 0 -7.67 -0.027
ṗ 0.37 -1.46 0 0 0 -1.09 -0.001
q̇ -0.44 -1.16 -22.36 0 0 -23.96 -0.017

Zji

u -7.9 -43.2 -1.4 0 0 -52.5 -0.191
v -31.8 178.4 0 0 0 146.6 0.534
w -37.9 -212.7 -515.9 0 0 -766.5 -2.791
p -26.4 216.5 0 0 0 190.1 0.138
q 16 97 -1199 0 0 -1086 -0.791
φ -601 1397 0 0 0 796 0.910
θ 233 490 -67 0 0 656 0.750
z -288 -605 -29 0 0 -922 -1.678
v̇ -0.56 1.49 0 0 0 0.93 0.003
ẇ -0.66 -1.77 -4.16 0 0 -6.59 -0.024
ṗ -0.46 1.8 0 0 0 1.34 0.001
q̇ 0.54 1.43 -9.64 0 0 -7.67 -0.005

Yji

u -6.6 36.3 0 6.4 5.7 41.8 0.152
v -26.7 -149.7 0 -56.7 -41.9 -275 -1.001
w -31.8 178.4 0 0 0 146.6 0.534
p -22.1 -181.6 0 99.9 -79.7 -183.5 -0.134
q 13.1 -81.2 0 11.2 -10.9 -67.8 -0.049
φ -505 -1172 0 0 0 -1677 -1.918
θ 196 -412 0 599 0 383 0.438
z -241 508 0 258 0 525 0.956
v̇ -0.46 -1.25 0 -0.88 0 -2.59 -0.009
ẇ -0.56 1.49 0 0 0 0.93 0.003
ṗ -0.39 -1.51 0 1.55 0 -0.35 0.000
q̇ 0.45 -1.2 0 0 0 -0.75 -0.001
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