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Preface

Ricett’ ’o pappece vicin ’a noce:
“Ramm o tiemp ca te spertose”
proverbio napoletano

I began my PhD with the hope, or maybe the arrogance, to make a
giant leap in the biomechanical field. Then I started facing reality and,
even though every achievement was a giant improvement of my skills, I
realized it was a baby step in the scientific world.

Beside this introduction, which might sound a bit sad, I do not regret
any day (or night) I spent at my desk yelling at my laptop when the
simulations were not running as expected. The distinct appeal of the
PhD is the chance to learn constantly, daily challenging new problems,
which, once solved, give you that sweet taste of satisfaction. You begin
convincing yourself that you are good at it and the idea that you might
be the best starts growing.

The drawback is that you have always to confront yourself with all
the other researcher who must also convince themselves that they are
the best too. Sometimes it is a sad discovery in multiple conferences,
meetings and publications that you are no “bester” than anyone else,
maybe only at what you spent your time on. So often you have to rush
to be the first one, still keeping the quality and the reliability of your
work.

Starting my research in an advanced group on stenting mechanics
was a rare luck to quickly learn the needed skills to perform this work.
Nevertheless I knew that [ could not betray this heritage and [ had
to improve or at least match the quality of my forefathers, but surely
Matthieu, Peter and Michele did not make this task easy.

Biomechanical engineering of endovascular devices is a very complex
field. One has to develop advanced novel strategies to excel, but it is
often forgotten that a fancy simulation has no value without a reliable
and a clinical appealing message. Too many times bioengineers do not



communicate with the clinical world, even though they claim to be able
to solve its problems which do not know completely or ignore at all.
After learning some talent, medical conferences are often more fruitful
than any bioengineering event. They can really help to understand which
tools to develop to catch the attention of the clinical community (and
normally there is a better catering). Luckily T was addressed very soon
by Matthieu to move my research a bit outside of the standard topics of
the biomechanics of stent devices. But then the problems complicated
even more using clinical data, which are never optimal, and often of
poor quality for the needs of computational modelling. So I started
trusting less and less some claimed automatic tools, and embracing the
idea that some manual, time consuming work is always needed to avoid
all the problems which cannot be addressed automatically, making me
realize that the gap with real practice is still big. Facing new issues often
involves thousands of lines of written code, so if I can give one advice
to new PhD students is to share always with the colleagues because
sometimes part of the solution is already available. One name more in
a publication is well worth many weeks of work spent to reinvent the
wheel.

There is a huge list of people I would like to thank. First of all, none
of this work would have been possible without the financial support of
the Research Foundation-Flanders (FWO) which founded this project. I
will always be grateful to my family for the unconditional support they
gave me in every situation, to my supervisors Patrick, always very fast
in providing his feedback on my manuscripts, which I sent too often
at the last minute, Benedict for the enlightening support in program-
ming which always open (source) my mind, and to my tutor Matthieu,
able to pull new collaborations from his magic research hat and helped
me to find interesting topics for my PhD. I proudly had the chance to
collaborate with: the Centre for X-ray Tomography of Ghent Univer-
sity (UGCT), prof. Frank Vermassen (M.D.) and Isabelle Van Herzeele
(M.D.) of the Department of Thoracic and Vascular Surgery, Ghent Uni-
versity Hospital, Imramsjah M. J. van der Bom, Interventional X-Ray,
Philips Healthcare, Matthew Gounis, Director of the New England Cen-
ter for Stroke Research (NECStR), and Leonid Goubergrits, Biofluids
Mechanics Lab, Charité-University Hospital, Berlin.

All my colleagues at IbiTech helped me to release the stress, normally
very high in my case, with all the nice coffee breaks. Among them, I will
always be grateful to Sander, with whom I had a precious collaboration
during these years, for his tasty fresh made coffees and Francisco, without
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whom I would have probably missed more bio-meetings than I did. I
could never thank Saskia enough, for all the help she gave me with all
administrative issues, even though she was probably hiding every time
she could see me approaching her office to avoid dealing with my unusual
bureaucratic problems.

I would probably not be remembering with such pleasure my doctor-
ate without all my friends from the “community”, my favorite Venezuelan
couple, all my Ttalian friends and all the other people who joint my group
and my life along these years, for all the beautiful moments, the funny
nights and parties we enjoyed together. In particular Mechi earned a
special room on this page for the support she gave me in the harshest
moments of the last two years, especially while finalizing my Phd. Finally
I really need to thank Belgium for its amazing beers which definitively
had an important role in my doctorate.
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Samenvatting

Binnen dit doctoraatsonderzoek worden voornamelijk de mechanische as-
pecten van de endovasculaire behandeling van halsslagadervernauwingen
en cerebrale aneurysmata van naderbij onderzocht, en dit hoofdzakelijk
op basis van eindige-elementensimulaties. Het onderzoek kan worden
opgesplitst in drie grote delen:

o In een eerste deel worden ontwikkelingen en technieken in eindige-
elementenmodellering besproken, waarbij zowel de realisatie van
stent- als slagadermodellen worden besproken, alsook strategieén
voor het virtueel plaatsen van de stents

e Virtueel plaatsen van stents in de halsslagader:

— Een parametrische studie op anatomisch realistische halssla-
gadermodellen is uitgevoerd waarbij het effect van zowel de
anatomie van de pathologische vaatwand als van de plaque-
morfologie op de stent plaatsing wordt onderzocht.

— In vivo pre- en peri-operatieve data van twee patiénten waar-
van de halsslagader werd gestent, werd gebruikt voor het op-
bouwen van een virtuele stenting procedure. Het resultaat van
de numerieke analyse werd gevalideerd. Klinisch relevante ge-
ometrische parameters werden geanalyseerd om de uitkomst
van de (virtuele) procedure te evalueren.

e Virtueel plaatsen van stents voor de behandeling van cerebrale
aneurysmata:

— Drie patiént specifieke aneurysmatische cerebrale slagader-
modellen werden virtueel behandeld met drie verschillende
stents. De ontplooide stent configuraties werden vergeleken,
waarbij werd gefocust op de verschillende werking van im-
plantaten met gesloten of open stentcellen.
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SAMENVATTING

— Tot slot wordt de stenting methodologie verder geopti-
maliseerd voor het virtueel behandelen van patiént specifieke
aneurysmata. Post-operatieve CT scans worden gebruikt om
de eindige-elementenresultaten te valideren.

e De voornaamste resultaten van dit onderzoek worden samengevat.
Er worden enkele conclusies getrokken, waaruit richtlijnen en
aanbevelingen voor verder onderzoek naar dit onderwerp worden
gegeven.

HooFDSTUK [Ii ANATOMISCHE EN KLINISCHE ACHTERGROND

Dit hoofdstuk bevat een korte beschrijving van de cerebrovasculaire
anatomie en histologische en biomechanische informatie over de sla-
gaderwand. Vervolgens worden de belangrijkste beroerte-gerelateerde
pathologieén geidentificeerd, met focus op halsslagaderverkalking. De
mogelijke behandelingen voor intracraniale aneurysmata worden eve-
neens kort beschreven. De bestaande chirurgische en endovasculaire be-
handelingsmogelijkheden worden uiteengezet.

HoorDSTUK 28 COMPUTERSIMULATIES IN DE PREVENTIE VAN
BEROERTES: STAND VAN HET ONDERZOEK

Een cerebrovasculair accident (CVA) of beroerte is een heterogene medi-
sche aandoening, veroorzaakt door een langdurige onderbreking van de
bloedtoevoer naar een deel van de hersenen. Preventie en behandeling
van deze ziekte is van primair belang. Wereldwijd wordt geschat dat het
de tweede meest voorkomende oorzaak van sterfte is. Vanwege het groot
aantal mogelijke oorzaken van de ziekte is er geen algemene strategie
voor preventieve behandelingen en kunnen geen algemene zogenaamde
“evidence-based” aanbevelingen worden gemaakt. De locaties, die aan
de basis liggen van de vorming van de bloedklonter die finaal de herse-
nen bereikt, kunnen beperkt worden tot enkele vasculaire regio’s (en het
hart).

Steeds meer bewijs ondersteunt ook de hypothese dat deze cata-
strofale cerebrovasculaire aandoeningen kunnen gerelateerd worden aan
biomechanische en hemodynamische parameters. Computersimulaties
van de structuur- en vloeistofmechanica van deze vasculaire gebieden
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Hoofdstuk : Vooruitgang in de eindige-elementenmodellering van
stenting procedures

lijken een optimaal instrument voor het kwantificeren van deze voor-
spellende parameters. Verder laat de recente vooruitgang in medi-
sche beeldvorming het toe om realistische in vivo condities (zoals ac-
curate anatomische geometrieén en de initiéle mechanische toestand) te
bekomen voor patiént specifieke analyses.

In dit hoofdstuk wordt de vooruitgang en de “state of the art” van
numerieke simulaties bekeken voor 1) het analyseren van de eerste fasen
de progressie van de ziekte, 2) het analyseren van het resultaat van
de behandeling, 3) het potenticel van simulaties als instrument voor
risico-evaluatie en 4) het gebruik van simulaties bij de planning van de
procedure. Bijzondere aandacht wordt gegeven aan de intra- en extra-
craniale vasculaire ziektes in de vasculaire regio’s die van belang zijn bij
het onderzoek naar CVA.

Bij de behandeling van een vernauwing van de halsslagader (carotide)
en cerebrale aneurysmata wordt soms gekozen voor een endovasculaire
behandeling door implantatie van een stent. Dit gebeurt voornamelijk
bij patiénten met een hoog risico voor chirurgie, vanwege het lagere
trauma bij deze minimaal invasieve techniek. Ook in gevallen waar de
conventionele operatie niet mogelijk is door de locatie van de pathologi-
sche anatomie (bijvoorbeeld als het aneurysma niet bereikbaar is via een
craniotomie, of in het geval van een aneurysma met brede hals) wordt
de endovasculaire techniek gebruikt. Deze procedures hebben weliswaar
een hoge kans op slagen, maar bij het mislukken van de operatie is de
oorzaak nog vaak onduidelijk.

Virtuele stentprocedures in patiént specifieke of anatomisch realisti-
sche vasculaire structuren worden gebruikt om meer informatie te ver-
schaffen over het mechanisch gedrag van deze medische implantaten en
hun interactie met de vaatwand. Numerieke simulatieresultaten kunnen
ook inzicht verschaffen in de oorzaken van belangrijke bijwerkingen en
de potentiéle invloed van relevante geometrische parameters van de stent
en het te behandelen bloedvat.

HoorpsTuKk Bl VOORUITGANG IN DE
EINDIGE-ELEMENTENMODELLERING VAN STENTING PROCEDURES

De complexiteit van een endovasculaire stenting procedure kan nau-
welijks worden gerepliceerd in een computationele setting. Veel as-
pecten moeten worden overwogen en vereenvoudigingen moeten ver-
standig gekozen worden om een evenwicht te vinden tussen de efficiéntie
van de simulaties en betrouwbaarheid van de resultaten. In dit hoofdstuk
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worden de ontwikkelde modelleer strategieén gepresenteerd en wordt een
beschrijving gegeven van de vooruitgang van de numerieke technieken
voor virtuele endovasculaire behandeling.

Stents worden gewoonlijk gemaakt door het lasersnijden van een
buisvormige metalen cilinder. Het ontwerp is gebaseerd op nauwkeurig
beschreven geometrische patronen, waarbij extra mechanische processen
specifieke kenmerken (zoals het radiaal uitzetten van de uiteinden) van
het oorspronkelijke ontwerp wijzigen.

Het is in dit geval moeilijk om een exacte geometrische beschrijving
van het oorspronkelijke ontwerp te vinden. Een bibliotheek van vooraf
gedefinieerde vormen op basis van Bezier splines, verder gediscretiseerd
met polylijnen, werd gemaakt in pyFormex. Het opmaken van eindige-
elementenmodellen van de stents met niet-repetitieve patronen wordt zo
vereenvoudigd. Het voordeel van deze benadering wordt aangetoond met
geometrieén geéxtraheerd uit pCT-scans, analytische of visuele bronnen.
Dit zowel voor geparametriseerde als exacte replica’s van de werkelijke
stents.

Vasculaire modellering vereist ook bijzondere aandacht bij het be-
naderen van complexe vasculaire structuren. Het lumen en de externe
vaatwand kunnen ook, als gevolg van de slagadervernauwing, zeer ver-
schillende vormen vertonen. FEr worden methoden gepresenteerd om
patiént specifieke en anatomisch realistische modellen te bouwen. Deze
tonen de strategieén die gebruikt werden om de verschillende weefsels in
te bouwen in de modellen (bvb. plaque, lipide-kern) en de methode om
controle uit te oefenen op de dichtheid van het computationeel raster,
om zo de efficiéntie van de simulatie te verbeteren.

Het modelleren van een realistische stentontplooiing is ook uitdagend
bij het simuleren van driedimensionale, kronkelige, vasculaire geome-
trieén omdat de gebruikte procedurele technieken de stenting uitkomst
kunnen beinvloeden. Verschillende aanpakken om deze ontplooiing te
imiteren worden gebruikt in dit werk, waarbij de vereenvoudigingen en
beperkingen van elke aanpak worden beschreven.

HoorDsTUK [4: DE INVLOED VAN DE VASCULAIRE ANATOMIE OP HET
STENTEN VAN DE HALSSLAGADER: EEN PARAMETRISCHE STUDIE
VOOR DE EVALUATIE VAN SCHADE IN HET WEEFSEL

De in het vorige hoofdstuk ontwikkelde technieken worden in dit hoofd-
stuk toegepast om het stentgedrag te bestuderen in verschillende patho-
logische aandoeningen van de halsslagader. Klinisch en experimenteel
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Hoofdstuk : Ondersteuning van plaques na stenting van de
halsslagader in de klinische praktijk: een in vivo validatie

bewijs toont aan dat zowel plaque morfologie als biomechanische veran-
deringen ten gevolge van de implantatie de oorzaken kunnen zijn van een
mislukte behandeling. Om verder inzicht te krijgen in de endovasculaire
ingreep, werd de virtuele omgeving gebruikt om de stentprocedure na
te bootsen op modellen van atherosclerotische geometrieén van de hals-
slagadervaten, waarbij een schademodel de schade van de vaatwand ten
gevolge van stentplaatsing kwantificeert.

Vijf mogelijke vaatvernauwingen werden gesimuleerd door het ve-
randeren van zowel de materiaaleigenschappen van het weefsel als de
vasculaire geometrische kenmerken. Hierdoor konden zowel kwetsbare
als stabiele plaques worden onderzocht. Specifiek werden de spanningen
in de vaatwand en de toename van het lumen van de slagader na stenting
onderzocht, aangezien deze volgens eerdere studies mogelijks gerelateerd
zijn met het falen van de endovasculaire procedure.

Onze bevindingen tonen aan dat de vorm van het lumen, de dikte van
de fibrotische laag van de atherosclerotische plaque en de aanwezigheid
van een onderliggende lipide-kern een impact hebben op de uitkomst van
de procedure. De spanningsanalyse op de vernauwde plaats toont aan
dat de plaque samenstelling de spanningsverdeling in de plaque verandert
en zo ook een potentiéle invloed heeft op het ontwikkelen van trombo-
tische complicaties. Uit de kwantificering van het beschadigde volume
blijkt dat de plaque samenstelling ook een impact heeft op de schade van
de gezonde vasculaire regio’s. Tenslotte wordt de betrouwbaarheid van
de verkregen resultaten in een klinisch perspectief geplaatst.

HOOFDSTUK : ONDERSTEUNING VAN PLAQUES NA STENTING VAN
DE HALSSLAGADER IN DE KLINISCHE PRAKTIJK: EEN in viv0
VALIDATIE

In hoofdstuk [] werd de eindige-elementenmethode toegepast in puur
virtuele parametrische modellen. In dit hoofdstuk gaan we een stap
verder om te komen tot een validatie van in vivo patiént specifieke data.

Selectie van de gepaste patiénten en een correct ontwerp van de stent
zijn -letterlijk- levensbelangrijke voorwaarden om een lage incidentie van
beroertes en daaraan gekoppeld overlijden te bekomen bij deze complexe
en riskante procedures. In de studie beschreven in hoofdstuk 5| wordt
een patiént specifieke, pre-operatieve virtuele omgeving geintroduceerd
en geévalueerd, die toelaat parameters te kwantificeren die de onder-
steunende functie van de stent kunnen beschrijven. Dit alles is louter
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gebaseerd op beschikbare beeldvormingstechnieken die rechtstreeks uit
de klinische routine afkomstig zijn.

Twee patiénten die elk een stentprocedure ondergingen werden
virtueel gesimuleerd met twee verschillende groottes van dezelfde stent.
Pre-operatieve data werden gebruikt om de numerieke modellen voor de
virtuele procedure op punt te zetten. Vervolgens werden de numerieke re-
sultaten gevalideerd met post-operatieve angiografie. Onvolledige stent-
appositie, vrije cel-oppervlakte en de grootste ingeschreven bol binnen
de stent cel (in situ) werden geévalueerd als potentiele risicofactoren
voor carotide stentprocedure complicaties. Deze parameters worden nor-
maliter gebruikt om verschillende stents te vergelijken in hun vrije con-
figuratie, maar het is duidelijk dat de in situ vervorming van de stent
deze parameters sterk kan beinvloeden.

Een kwantitatieve validatie van de numerieke resultaten met post-
operatieve beelden, die werden bekomen door opmeten van de lumendi-
ameter, toonden de betrouwbaarheid van de vooropgestelde methodolo-
gie aan. De kwantificatie van de ondersteunende functie van de virtueel
ontplooide stentgeometrie benadrukte de variabiliteit van het gedrag van
de stents en hun afhankelijkheid van het te behandelen letsel.

De voorgestelde methode kan derhalve gebruikt worden in de klini-
sche praktijk als een bijkomend hulpmiddel voor endovasculaire specia-
listen, vooral in complexe anatomische gevallen waar stent ontwerp en
positionering een grote impact hebben op de uitkomst en het succes van
de klinische procedure.

HoorDpSTUK [6f DE INVLOED VAN STENT ONTWERP EN
BLOEDVATGEOMETRIE OP HET MECHANISCH GEDRAG VAN
STENTONTPLOOIING IN INTRA-CRANIALE ANEURYSMATA

In de voorgaande hoofdstukken werden vernauwde halsslagadervaten
bestudeerd. In dit hoofdstuk verschuift het vasculaire interessege-
bied naar aneurysmavorming in de cerebrale arterién. Een eindige-
elementenanalyse werd uitgevoerd om de invloed van stent ontwerp
en bloedvatgeometrie te onderzoeken in de klinische procedure waarbij
intra-craniale aneurysmata opgevuld worden met “coils” na voorbehan-
deling met het plaatsen van een stent.

Drie nitinol stents werden ontworpen: (i) een open cel stent die
sterke gelijkenissen vertoont met de Neuroform stent, (ii) een gesloten cel
stent met generieke stijve cellen en (iii) een gesloten cel stent met meer
flexibele cellen. De stents werden ontplooid in drie patiént specifieke
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Hoofdstuk |7} In vivo validatie van virtuele stentontplooiing bij het
opvullen van aneurysmata met behulp van stents

cerebrale aneurysmatische bloedvaten. De ontplooide configuratie werd
opgemeten aan de hand van drie klinisch relevante parameters: (a) het
percentage van de stentstrut oppervlakte dat de nek van het aneurysma
bedekt werd bepaald, (b) het “rechttrekken” van de behandelde vaten
door de plaatsing van de stent werd gekwantificeerd aan de hand van
de reductie in tortuositeit, en (c) de stent appositie ten opzichte van de
bloedvatwand werd bepaald als het percentage van stentstruts binnen
een bepaalde afstand tot het bloedvat.

De voor- en nadelen van open en gesloten cel stents worden vervolgens
besproken aan de hand van de bekomen resultaten.

HooOFDSTUK [t IN VIVO VALIDATIE VAN VIRTUELE
STENTONTPLOOIING BIJ HET OPVULLEN VAN ANEURYSMATA MET
BEHULP VAN STENTS

In hoofdstuk [6] werd het potentieel van eindige-elementenanalyses aange-
toond om de uitkomst van de behandeling van intra-craniale aneurys-
mata met behulp van stents virtueel te voorspellen. Deze procedure
werd echter niet gevalideerd; een lacune waaraan in dit hoofdstuk tege-
moet wordt gekomen.

In deze studie werd een patiént bestudeerd die behandeld werd
met een Enterprise stent. wpCT scans van de stent, optische micro-
scopie metingen en mechanische testen leverden een accuraat model
op van de stent. De materiaaleigenschappen van het bloedvat wer-
den gefit aan literatuurwaarden voor cerebrale bloedvaten. De eindige-
elementenmodellen van bloedvat en stent modellen werden vereen-
voudigd door shell en beam elementen te gebruiken, wat toeliet de nu-
merieke prestaties merkelijk te verbeteren. De plaatsing van de stent
werd accuraat nagebootst - inclusief het voorttrekken van de stent door
de catheter - en kwalitatief gevalideerd aan de hand van literatuurwaar-
den. Dit laatste is belangrijk gezien het gekend is dat de plaatsingspro-
cedure een grote impact heeft op de stent appositie. Vervolgens werd
de numerieke procedure toegepast op de patiént specifieke bloedvatge-
ometrie en werden de resultaten vergeleken met de post-operatieve CT
scans.

We hebben kunnen aantonen dat de gebruikte virtuele methodologie
de configuratie van het gestente bloedvat zowel kwalitatief als kwanti-
tatief kan voorspellen.
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HoorpsTUK [8: CONCLUSIES EN TOEKOMSTPERSPECTIEVEN

Dit finale hoofdstuk geeft een overzicht van het uitgevoerde onderzoek
en de behaalde onderzoeksdoelen binnen dit doctoraat met een samen-
vatting van de belangrijkste resultaten en conclusies. Verder worden
suggesties aangehaald voor toekomstig onderzoek om met name de tech-
nische hulpmiddelen die binnen dit project ontwikkeld werden verder te
verfijnen. Tot slot worden een aantal aanbevelingen meegegeven voor
verder onderzoek naar intra- en extra-craniale stenting.
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Summary

This doctoral research had as its goal to study the bio-mechanical aspects
in the minimally invasive (stent-based) treatment of carotid stenosis and
cerebral aneurysms. The investigations performed to achieve this goal
are:

e Advances in finite element modeling in the domain of this thesis are
described, including the creation of both high quality and advanced
stent and vessel models and virtual stent placement strategies.

e Carotid artery stenting

— A parametric study on anatomically realistic carotid models
is performed to analyze the effect of plaque morphology and
pathological vessel anatomy on the stenting procedure.

— In vivo pre- and peri-operative data of two patients under-
going carotid artery stenting were used to emulate the actual
procedure. After validation of the numerical results, clinically
relevant geometrical parameters are analyzed to evaluate the
procedural outcome.

e Cerebral aneurysm stenting

— Three patient specific aneurysmatic cerebral vessels were vir-
tually treated with three stent designs. The deployed config-
urations were compared highlighting different effects of closed
and open cell devices.

— Finally, the stenting methodology is adapted for virtual pa-
tient specific aneurysm treatment. Post operative CT scans
are used to validate the finite element results.

e The main results of this research are summarized, conclusions are
drawn and guidelines and advice on future research on the topic
are provided.
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SUMMARY

CHAPTER [I ANATOMICAL AND CLINICAL BACKGROUND

In this chapter a short description of the cerebrovascular anatomy is pro-
vided together with some histological and biomechanical information of
the arterial wall. Main stroke-related pathologies are then identified in
carotid atherosclerosis and intra-cranial aneurysms whose pathogenesis
is shortly described. The current surgical and endovascular treatment
options are outlined, investigating current guidelines for treatment se-
lection.

CHAPTER 2l COMPUTER SIMULATIONS IN STROKE PREVENTION:
STATE OF THE ART

Stroke is a so-called cerebrovascular disease of a heterogeneous origin
caused by a sustained interruption of the blood supply to part of the
brain. Prevention and treatment of this disease is of primary impor-
tance as it has been estimated to be the second leading cause of death
worldwide and a huge source of morbidity. Due to the large number of
possible causes there is no general strategy for preventive treatment and
evidence based recommendations are given. However, major causes of
stroke can be confined to few vascular districts.

More and more evidence is supporting the hypothesis that biome-
chanical and hemodynamic parameters play a role in these catastrophic
cerebrovascular events. In this context, structural and fluidodynamic
computer simulations offer an ideal tool to quantify these parameters
and potential predictors. At the same time, the advances in medical
imaging allow to provide realistic ¢n vivo information for patient specific
computational analysis.

This chapter reviews the progress and the state of the art of numer-
ical simulations in the domain of cerebrovascular biomechanics and how
these are used to analyze the early stages and the progression of the
disease. In addition, the potential of these computer models as a tool
for risk assessment for treatment outcome and procedure planning is re-
viewed. A particular focus is given to intra- and extra-cranial (carotid
arteries) vascular diseases which are the districts of interest of this inves-
tigation. Endovascular treatment of carotid artery stenosis and cerebral
aneurysm by stent implantation is the preferred option of treatment for
patients at high risk for surgery due to its minimal invasiveness or in
cases where surgery cannot be performed due to the diseased location or
the pathological anatomy (e.g. when the aneurysm cannot be reached
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Chapter |§|: Advances in modeling strategies

by craniotomy or in the case of wide-necked aneurysms). Though the
procedure has shown a high rate of success, causes of failure are still
unclear.

Virtual stenting procedures in patient specific or anatomically re-
alistic vessel models can provide more information on the mechanical
behavior of the devices and their interaction with the vascular wall. Nu-
merical simulations can also give insights into the causes leading to major
adverse events and how these events relate with clinically relevant geo-
metrical parameters of the deployed device and its interaction with the
arterial wall.

CHAPTER [B} ADVANCES IN MODELING STRATEGIES

The complexity of the endovascular stenting procedure can be hardly
entirely replicated in a computational setting. Many aspects need to
be considered and simplifications need to be wisely chosen in order to
balance computationally efficient simulations and reliability of the re-
sults. In this chapter the developed modeling strategies are presented
and a description of the advances of the numerical toolkit for virtual
endovascular treatment is provided.

Stents are normally created by laser cutting a tubular metallic cylin-
der. Even though the design is based on precisely described geometrical
patterns, often additional mechanical processes meant to improve spe-
cific features of the device (such as tapering or flaring of the ends) modify
the original mesh. It is then difficult to retrieve an exact geometrical de-
scription of the original design. A library of predefined shapes based
on bezier splines and further discretized with polylines has been created
in pyFormex to simplify the creation of the finite element stent models
when dealing with these non-repetitive patterns. The advantage of this
approach is shown with geometries retrieved from pCT scanning, analyt-
ical or image based sources both for parametrized and complete replicas
of actual device samples.

Vascular modeling also requires particular attention for a good ap-
proximation of complex vascular structures. Moreover, due to the stenotic
condition, the lumen and external vessel wall exhibit very different shapes
making the task harder. The methodologies to build patient specific and
anatomically realistic fully hexahedral vessel meshes are presented, show-
ing the strategies adopted to include different tissues and control mesh
densities to improve simulation efficiency.
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Furthermore, modeling realistic stent delivery is also challenging when
dealing with tridimensional tortuous vascular geometries because the
procedural techniques can influence the stenting outcome. Different ap-
proaches used to mimic the deployment procedure are here described
pointing out simplifications and limitations.

CHAPTER [4: THE INFLUENCE OF VASCULAR ANATOMY ON CAROTID
ARTERY STENTING: A PARAMETRIC STUDY FOR DAMAGE ASSESSMENT

The tools described in the previous chapter, are applied in this chapter to
study stent behavior in parametric models replicating different patholog-
ical conditions of the carotid artery. Clinical and experimental evidence
demonstrates that both plaque morphology and biomechanical changes
due to the device implantation can be possible causes of an unsuccessful
treatment.

In order to gain further insights into the endovascular intervention,
the virtual simulation environment was used to emulate the stenting
procedure on generalized atherosclerotic carotid geometries which also
included a damage model to quantify and mimic the injury of the vessel.
Five possible lesion scenarios were simulated by changing both material
properties and vascular geometrical features to cover both presumed vul-
nerable and stable plaques. The results were analyzed with respect to
lumen gain and wall stresses which are potentially related to the failure
of the procedure according to previous studies.

Our findings show that lumen shape, fibrous cap thickness and the
presence of an underlying lipid pool have an impact on the success of
the procedural outcome. The stress analysis at the stenotic location
shows that plaque composition changes stress distribution in the plaque,
potentially influencing plaque rupture and thus leakage of plaque debris
into the circulation. The quantification of the damaged volumes shows
that plaque composition also has an impact on the injury of the healthy
vascular tissue. Finally the reliability of the achieved results was put
into clinical perspective.

CHAPTER : PLAQUE SCAFFOLDING AFTER CAROTID ARTERY
STENTING IN CLINICAL ROUTINE: AN IN VIVO VALIDATION

In chapter 4] the finite element deployment procedure was applied in
virtual parametric models. In this chapter, the study advances for vali-
dation of in vivo patient specific data.
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Chapter @: The influence of stent design and vessel geometry on the
mechanics of intra-cranial aneurysm stent deployment

Appropriate patient selection and stent design are paramount to
achieve a low stroke and death rate in these complex high-risk pro-
cedures. This study introduces and evaluates a novel virtual patient-
specific pre-operative environment to emulate the endovascular proce-
dure and to quantify scaffolding parameters based on routinely per-
formed imaging techniques.

Two patients who underwent CAS with two different sizes of the same
stent device were studied. Pre-operative data were used to build the nu-
merical models for the virtual procedure. Then numerical results were
validated with post-operative angiography. Incomplete stent apposition,
free cell area and largest fitting sphere in the stent cell were evaluated
in situ as potential risk factors for CAS complications. These param-
eters are normally used for comparison of different devices in the free
expanded configuration, but clearly the deformed stent shape influences
these measurements.

A quantitative validation of the numerical outcome with post oper-
ative images performed by measuring the lumen diameter demonstrated
the reliability of the proposed methodology. The quantitative measure-
ments of the scaffolding parameters on the virtually deployed stent ge-
ometry highlights the variability of device behavior in relation with the
target lesion.

The proposed method may be an additional tool for endovascular
specialists especially in complex anatomical cases where stent design
and positioning may have a higher impact on procedural success and
outcomes.

CHAPTER [Bf THE INFLUENCE OF STENT DESIGN AND VESSEL
GEOMETRY ON THE MECHANICS OF INTRA-CRANIAL ANEURYSM
STENT DEPLOYMENT

In the previous chapters stenotic carotids were studied. In this chapter
the vascular district of interest is moved to the aneurysmatic cerebral
arteries. The finite element analysis is here used to investigate the in-
fluence of stent design and vessel geometry for stent assisted coiling of
intra-cranial aneurysmes.

Three nitinol stent design models were created: (i) an open cell stent
resembling the Neuroform, (i) a generic stiff and (iii) a generic more
flexible closed cell design. The stents were deployed in three different
patient-specific cerebral aneurysmatic vessels. Assessment of the de-
ployed configuration was performed by calculating 3 clinically relevant
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parameters: the percentage of strut area covering the aneurysm neck, the
straightening induced on the cerebrovasculature by the stent placement
(quantified by the reduction in tortuosity), and stent apposition to the
wall (quantified as the percentage of struts within a threshold distance
to the vessel) were investigated.

Advantages and drawbacks of closed and open cell stent devices are
discussed according to achieved results.

CHAPTER [t IN VIVO CASE STUDY OF STENT SUPPORTED COILING

In chapter [0] the potential of finite element analysis as a predictive tool
to assess stent supported coiling was shown. However, the simulation
procedure was lacking a validation which will be provided in this chapter
by a case study.

One patient treated with an Enterprise stent is used in this study.
pCT scanning of the device, optical microscopy measurements and me-
chanical testing provided an accurate model of the stent, while the vessel
material properties were averaged based on literature values for the cere-
bral arteries. The finite element vessel and stent models were simplified
by using shell and beam elements to improve numerical performance.
Stent placement was accurately mimicked by emulating the pulling of
the catheter and qualitatively validated using literature references. It
is known, in fact, that the delivery procedure has a high impact on the
stent apposition.

In addition, the numerical procedure was applied to the patient spe-
cific vessel geometry and results were compared to the post-operative
CT scans.

The numerical methodology showed its capability of predicting the
stented vessel configuration both qualitatively and quantitatively by
comparing vessel tortuosity.

CHAPTER [8: FINAL REMARKS

This final chapter gives an overview of the research performed and the
goals achieved in this doctoral thesis, summarizing results and conclu-
sions. Suggestions and perspectives to improve the tools developed in
this project and guidelines for further research on intra and extra-cranial
stenting are presented.
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CHAPTER

Anatomical and clinical
background

To explain stroke disease and its management, an overview of the vascu-
lar district of interest and the available clinical strategies are fundamen-
tal. This chapter summarizes the necessary anatomical, histological and
clinical concepts to understand procedures to treat cerebral and carotid
arteries stroke-related diseases.

1.1 OVERVIEW OF THE MAIN HUMAN VASCULATURE RELATED TO
STROKE

The two common carotids (CCAs) are the principal arteries supplying
blood to the head and neck (Figure . The right CCA originates at
the bifurcation of the innominate artery while the left CCA raises from
the aortic arch. The cervical portions of the CCAs are similar. They
both ascend in the neck where they divide into two branches: the exter-
nal carotid artery (ECA), supplying the exterior of the head, the face,
and the neck and the internal carotid artery (ICA), supplying the an-
terior part of the brain and the orbital cavities. The cerebral portion
of the ICA leaves the following branches: the anterior and the mid-
dle cerebral artery which forms the anterior cerebral circulation and the



1. ANATOMICAL AND CLINICAL BACKGROUND

FIGURE 1.1: Overview of the arterial circulation of the brain (including carotid
arteries) (left) and the circle of Willis (right). Reproduced from www.studyblue.com/
and www.vascularultrasound.net.

posterior communicating artery which connects the anterior and the pos-
terior cerebral circulation. The posterior cerebral circulation consists of
the branches generated from the vertebral arteries (originated from the
subclavian arteries) which merge in the skull into the basilar artery. The
latter branches into posterior cerebral artery, anterior inferior cerebellar
artery, pontine branches and superior cerebellar artery. Both cerebral
circulations form the Circle of Willis (Figure, which provides backup
circulation to the brain due to the interconnection among them [1].

1.2 HISTOLOGY AND TYPICAL MECHANICAL BEHAVIOR OF
ARTERIAL WALLS

Adequate constitutive descriptions of arterial walls require knowledge of
the arterial histology to understand the mechanical characteristics and
the components providing the main contributions to the deformation
process. In this section this relationship is explained. The reader is
invited to refer to the work of Holzapfel et al. [2] here resumed. Arterial
types are roughly distinguished between elastic (central arteries such as
aorta or carotid arteries) and muscular (peripheral arteries such as the
cerebral arteries). They are composed of three distinct layers:
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1.3. Pathological conditions

i the intima: the inner layer composed of one layer of endothelial cells
resting on a thin basal membrane. Healthy intima is very thin and
does not have a real influence on the mechanical behavior of the
vessel. Though pathological changes (such as in atherosclerotic ar-
teries) can lead to thickening and stiffening of the intima and can
give significant contribution to the arterial behavior.

ii the media: is the middle layer consisting of smooth muscle cells,
elastin and collagen fibrils. They are composed of concentrically
fiber-reinforced medial layers separated by an elastic laminae, whose
thickness decreases at the periphery. These interconnected struc-
tures are oriented in a continuous fibrous helix almost in the circum-
ferential direction. This architecture provides strength, resilience
and resistance in both the longitudinal and circumferential direc-
tions making the media the most relevant layer from the mechanical
perspective.

iii the adventitia: is the external layer constituted by fibroblasts and
fibrocytes (cells synthesizing collagen and elastin) and a fibrous tissue
of thick bundles of collagen fibrils arranged in helical structures. Its
thickness is strongly dependent on the function and location of the
vessel (e.g. in cerebral arteries it is almost absent). The adventitia
gives a reinforcement to the vessel wall, exhibiting a stiffer behavior
with the pressure increase to prevent over-stretching and rupture.

From a modeling point of view, arteries can be described as a fiber-
reinforced material with the contribution of two different components: a
non-collagenous matrix which can be assimilated to an isotropic material
and the contribution of two families of symmetric collagen fibers helically
oriented along the longitudinal axis (possibly with different orientation
in each layer when the artery is not considered as a unique layer) which
account for the anisotropic response of the artery.

1.3 PATHOLOGICAL CONDITIONS

The studies performed in this thesis are focused mainly on two patholog-
ical conditions which may lead to stroke: carotid arteries atherosclerosis
and intra-cranial cerebral aneurysms. Atherosclerosis is a complex ar-
terial lesion whose causes are still unclear. Age, gender, family history,
race or ethnicity, genetic factors, hyperlipidemia, hypertension, smoking,
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diabetes, obesity, diet high in saturated fat, lack of exercise are all risk
factors for the development of the disease.

Atherosclerosis leads to thickening and hardening of the arteries due
to the formation of a plaque. A plaque is the accumulation of fatty
substances, cholesterol, cellular waste products, calcium and fibrin (a
clotting material) in the inner lining of an artery.

Without detailing the molecular and biochemical processes involved
in the different stages of the disease, which lie outside the purpose of
this work and for which the reader is invited to refer to more complete
publications (see e.g. [3]), here the classification proposed by Stary et
al. [4-6] is given. This classification relates the progression of the lesion
with histological data. Eight types of lesions are defined:

e type I: adaptative thickening of the intima layer which represents
an adaptation to local mechanical forces;

e type II: appearence of macrophage foam cells and lipid-laden smooth
muscle cells and formation of lesions designated as fatty streaks;

e type IIT (pre-atheroma): formation of small pool of extracellular
lipid;

e type IV (atheroma): extension of the lipid volume to form a lipid
core;

e type V (fibro-atheroma): fibrous thickening of the intima to form
a fibrous cap (stable plaque).

Plaques of type IV and V may evolve in other types:

e type VI: complicated lesion leading to unstable plaque due to intra-
plaque hemorrhage, thinning/rupture of the fibrous cap and throm-
bus formation;

e type VII: calcified plaque;
e type VIIIL: fibrotic plaque without lipid core.

Further studies (specific on MRI of carotid arteries) [7] improved this
template classification including the possible presence of calcifications in
type IV, V and VIII. A schematic of the evolution of the pathology is
depicted in Figure [I.2]

While stable plaques impair only the blood supply to the brain, un-
stable plaque may embolize due to the leakage of plaque material or
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FI1GURE 1.2: Schematic stages of endothelial dysfunction in atherosclerosis. Repro-
duced from http://en.wikipedia.org/.

migration of a superficial thrombus. If either of these occurs and blocks
the whole artery, a stroke may result. It is obvious that the heterogeneity
of the plaque composition determines its complex mechanical behavior
which is challenging to describe without accurate histological informa-
tion.

Causes of stroke related to cerebral arteries are instead more at-
tributable to aneurysms. An aneurysm is the bulging of the artery, due
to the weakening of the vessel wall layers. Its propensity to rupture
may lead to subarachnoid hemorrhage and thus stroke. The associa-
tion between anatomic variations and pathological conditions (such as
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hypoplasia or occlusion of a segment of the circle of Willis, high-flow
arteriovenous malformations, at points of flow bifurcation) which can
lead to local increase of flow-related forces, have suggested a fluid dy-
namic contribution to the disease. Aneurysm formation is associated
with enzymatic degradation of the main structural components of the
vessel wall, elastin and collagen, and smooth-cell apoptosis which lead
to loss of elasticity and mechanical properties. For a more detailed dis-
cussion on the topic the review of Sforza et al. is suggested [8]. Age,
family history of aneurysms, alcohol and drugs consumption, smoking,
hypertension or infections are acquired risk factors.

1.4 CURRENT TREATMENT OPTIONS

1.4.1 Carotid artery disease

The treatment options for the carotid artery disease are i) medical ther-
apy, ii) endarterectomy (CEA) and iii) endovascular treatment (angio-
plasty/stenting). The treatment is mainly chosen according to the steno-
sis degree calculated from angiography|9] (Figure , plaque vulnera-
bility, symptomatological history, age and co-morbidities. Guidelines for
carotid artery disease treatment have been provided [10] by stratifying
the patients in four categories according to the ratio benefit/risk. The
medical treatment consist of anti-platelet therapy to reduce progression
of the disease. This option is normally preventive for patients with or
without history of previous ischemic event, and it is followed when revas-
cularization is not recommended (stenosis <50%).

F1GURE 1.3: Methods for measuring the degree of stenosis.
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Ficure 1.4:  Schematic CEA procedure: A: Intact carotid; B: Arteri-
otomy and plaque removal; C: Suturing of the arteriotomy. Adapted from
https://www.nhlbi.nih.gov/.

CEA is a treatment to surgically remove the plaque. After incision
of the neck, the carotid is exposed. Clamping of distal and proximal
healthy portion is performed to interrupt blood flow in the vessel. When
the patient has inadequate collateral circulation shunting is chosen over
clamping. The vessel is incised, the plaque dissected and removed. Su-
tures (or patch angioplasty for large incisions) are used to close the ves-
sel and then the circulation is restored. CEA (depicted in Figure
is the leading treatment nowadays when medical treatment is not suf-
ficient. For a more extensive explanation of the procedure the reader
should refer to [11]. CEA is indicated for patients with low surgical risk
with previous non-disabling ischemic stroke, symptomatic patients with
stenosis >50% (documented by catheter angiography) and assessed risk
of stroke/mortality <6%, and it is suggested for asymptomatic patients
with stenosis >70% of the ICA.


https://www.nhlbi.nih.gov/health/health-topics/images/cad_endarterectomy.jpg
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Ficure 1.5: Schematic CAS procedure: A: Insertion of the of guidewire, sheet for
stent delivery and the embolic protection for possible plaque leakage; B: Balloon
angioplasty to enlarge the lumen by spreading and breaking the plaque; C: Insertion
of the stent D: Stent placement, catheter and filter removal. Adapted from [12].

Carotid artery stenting (CAS) is a minimally invasive endovascular
option to restore the vessel lumen through insertion of a self-expandable
metallic tubular mesh, i.e. the stent. The CAS procedure is schemat-
ically explained in Figure [I.5] The procedure involves the insertion of
a guidewire (normally by femoral access) through short sheath to reach
the ICA of the diseased artery. The guidewire will serve as a rail to
easily reach the stenosis by the catheters carrying the necessary devices.

An embolic protection device may be inserted and opened distally
to the lesion to collect eventual debris. Balloon angioplasty may be
performed to pre-dilate the stenotic lumen and thus allowing for easy
access of the stent delivery system. After balloon removal, the stent is
addressed to the lesion location and deployed. Finally eventual post-
dilation balloon inflation is performed to improve unsatisfactory proce-
dural outcomes. The outstanding work of Macdonald and Stansby [13]
provides a detailed overview of all facets of CAS. This procedure is sug-
gested for patients when CEA is not performable due to high risk for
surgery or in case of unfavorable anatomies for surgery. It is considered
an alternative to CEA for symptomatic patients with stenosis >50%

10



1.4. Current treatment options

with risk of stroke/mortality <6%. CAS might also be considered in
asymptomatic patients with stenosis >60%.

1.4.2 Cerebral aneurysms

Three primary treatment options are available for cerebral aneurysms:
observation with antihypertensive therapies, surgical clipping, (stent-
assisted) endovascular coiling (Figure .

The clinical condition of the patient, the aneurysm location and mor-
phology (diameter of the neck and its relation to the parent artery) and
the presence of branches arising from the sac or the neck are important
considerations when choosing the most appropriate treatment plan.

Clipping is a very invasive technique which involves craniotomy, ex-
posure of the aneurysm and placement of a metal clip across the neck of
the aneurysm to prevent blood flow into the aneurysm sac.

Endovascular coiling is a minimally invasive technique. A catheter
is inserted through femoral access and advanced until the cerebral ves-
sel sliding over the guidewire previously inserted. Once the catheter
is in place, platinum coils are advanced through the catheter into the
aneurysm, to conform to the shape of the aneurysm. The coils promote
embolization thus preventing rupture.

Stent-supported coiling is an extension of the previous technique for
wide-necked and giant aneurysms where a stent is used as a scaffold to
prevent coils herniation into the parent vessel. The insertion of the coils
can occur before or after stent placement. In the first case the balloon
remodeling technique for coiling can be used to assist the placement of
each coil in unfavorable geometries. In the latter case, catheterization
of the dome can occur through the stent cells, or by placing a micro-
catheter prior to stent deployment within the aneurysmal cavity, in order
to secure access for subsequent coiling (jailing technique).

New stent devices known as flow diverters exhibit a very fine mesh
which harbors flow circulation into the bulge, and thus induce emboliza-
tion without the use of coils. However, long latency times between device
placement and obliteration of the sac are considered a drawback of this
procedure.

An overview of the available endovascular techniques and their asso-
ciated complications is provided in [15].

While the International Subarachnoid Aneurysm Trial [16] has shown
lower recurrences with coiling than micro-surgical clipping for ruptured
aneurysms, the management of unruptured cerebral aneurysms remains
one of the most controversial topics in neurosurgery. Komotar et al. [17]
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FI1GURE 1.6: Intra-cranial cerebral aneurysm treatment options: A: Micro-surgical
clipping; B: Endovascular occlusion with coils; C': Endovascular occlusion with stent-
supported coils. Adapted with permission from [14].

provided guidelines by summarizing the large literature on the topic.
Main conclusions of the research were outlined as follows:

e symptomatic unruptured aneurysms should be treated;

e small incidental aneurysms <5 mm should be managed conserva-
tively;

e aneurysms >5 mm in patients less than 60 years of age should be
treated;

e large incidental aneurysms >10 mm should be treated in patients
less than 70 years of age;

e clipping should be the first choice in low-risk and long life ex-
pectancy cases due to the frequency of re-bleeding of coiling.

Other authors [18] cite different size thresholds strongly recommend-
ing treatment for unruptured aneurysms >12 mm except in older pa-
tients and in presence of significant comorbidities, for symptomatic pa-
tients and with enlarging aneurysm. It is suggested for aneurysms of 7-12
mm for young patients, for specific high risk locations (posterior circu-
lation and posterior communicating artery), in presence of daughter sac
and a family history of subarachnoid hemorrhage. It is also suggested
for young patients with aneurysms <7 mm for the same high risk loca-
tions, in presence of daughter sac and a family history of subarachnoid
hemorrhage. An overview of the recent indications for the treatment of
unruptured aneurysms can be found in [19].

Coiling is a valid alternative to clipping and platinum coil technology
has tried to address incomplete aneurysm occlusion, which increases the
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risk of coil compaction and aneurysm re-canalization. The major argu-
ment against the use of stent devices is linked to the need for concurrent
anti-platelet therapy which increases the risk of re-bleeding.

Other general guidelines for the management of aneurysmal sub-
arachnoid hemorrhage from the American Heart Association/American
Stroke Association [20] were also provided: treatment of hypertension,
choice of endovascular coiling over clipping when the ruptured aneurysm
is amenable by both procedures, preferred clipping for large hematomas
and middle cerebral artery aneurysms, coiling should be preferred in the
elderly (>70 years of age) and in those with aneurysms of the basilar
apex, stenting of a ruptured aneurysm is associated with increased mor-
bidity and mortality.

1.5 THESIS RATIONALE AND OUTLINE

The investigation performed in this thesis was motivated by unsolved
issues in CAS and stent-supported coiling. Peri-operative failure of the
procedure can lead to catastrophic events whose causes are not yet com-
pletely clear. Finite element modeling can help understanding the inter-
action between the vessel and the device, and analyze conditions which
are impossible or difficult to study in vivo.

The research shown in the following chapters aims to provide insights
into the mechanics of the stenting procedure from a structural point of
view applied to intra and extra-cranial vascular districts, using both
parametric and patient specific geometries and focusing on the geomet-
rical descriptors of the device and the stented vessel as potential tools
to evaluate the procedural outcome.

Previous work on the mechanics of stenting (see sections and
has been limited by simplified parametric geometrical models and
material properties, and though in wvitro validation has been reported,
in vivo studies are very limited. The in silico modeling performed in
this thesis aimed to capture the behavior of the device during and after
deployment hopefully helping paving the road for the use of numerical
simulation as a predictive tool in procedure planning.

The work described in this dissertation is organized as follows:

e A review of the state of the art of numerical simulations used to
study initiation and progression of main diseases leading to stroke
and to evaluate different treatment strategies.
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e Advances in finite element modeling are described for the creation

of both stent and vessel models and virtual stent placement strate-
gies.

e A parametric study on anatomically realistic carotid models is per-

formed to study the effect of plaque morphology and vessel patho-
logical anatomy on the stenting procedure.

e In vivo pre- and peri-operative data of two patients who underwent

carotid artery stenting were used to emulate the stenting procedure
using finite element modeling. After validation of the numerical
results, an analysis of clinically relevant geometrical parameters to
evaluate the procedural outcome is performed.

e Three patient specific aneurysmatic cerebral vessels were virtually

treated with three stent designs. The deployed configurations were
compared highlighting different effects of closed and open cell de-
vices.

e Finally, the previous stenting methodology (designed for an opti-

mal stent insertion) is adapted to account for collateral effect of
one specific stent design reported in clinical studies. A patient spe-
cific aneurysm was virtually treated and post-operative CT scans
were used to validate the finite element results.

e The main results of this research are summarized and conclusions

are drawn providing guidelines and advices towards future research
on virtual stenting.



CHAPTER

Computer simulations in stroke
prevention: state of the art

This chapter provides an extensive overview of the state of the art in
the domain of cerebrovascular biomechanics, with numerical simulations
being performed to (i) understand the evolution of the causes leading to
stroke; and (ii) as predictive tool for risk assessment. This chapter has
been adapted from its published version :

“Computer Stmulations in Stroke Prevention: Design Tools and Virtual
Strategies Towards Procedure Planning”, lannaccone, F., De Beule, M.,
Verhegghe, B., and Segers, P. Cardiovascular Engineering and Technol-

ogy, (2013) .

2.1 INTRODUCTION

Stroke is a heterogeneous disease caused by a sustained interruption of
the blood supply to part of the brain due to blockage (ischemic stroke)
of an artery to the brain or due to hemorrhage after the rupture of a
vessel (in most of the cases aneurysmatic) mainly located in the cerebral
circulation. Prevention and treatment of this disease is of primary im-
portance as it has been estimated to be the second leading cause of death
worldwide . Of all strokes, 85 to 87 % are of an ischemic nature while
the remaining are intra-cerebral and subarachnoid hemorrhage strokes
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23-25]. The source of the occluding embolus in ischemic stroke may
be cerebrovascular atherosclerosis, lacunar (related to small penetrating
brain arteries) or cardiogenic (e.g. the consequence of atrial fibrillation),
but the definite cause cannot be identified for a large amount of ischemic
strokes (cryptogenic) [25,26] as depicted in Figures and

Due to the large number of possible embolic origins there is no general
strategy for preventive treatment and evidence-based clinical recommen-
dations are given [27,28]. Thrombolytic therapy is normally preferred for
cardiogenic embolism, anti-platelet agents for non-cardioembolic stroke
,. Recently the use of a new class of temporary thrombectomy de-
vices (the so called stent retrievers, which have a similar design to stents
used in stent supported coiling) showed to be effective in the treatment
of acute ischemic strokes . Revascularization is possible in case
of cerebral aneurysm (ruptured and/or unruptured) by clipping, coiling,
stent supported coiling or using flow diverters.

The exact treatment strategy will depend on the location, shape
and dimension of the aneurysm. The use of an surgical approach or
revascularization using endovascular devices for atherosclerotic disease
is still controversial (at least in certain cases, mainly due to the lack
of knowledge on the long term effects of the endovascular devices) and
is normally performed in patients who have sustained symptoms despite
medical therapies ,. For patients with hemodynamically significant

B Atherosclerotic
cerebrovascular
Disease

E Lacunar

O Cardiogenic embolism
E Cryptogenic

W Other

O Hemorrhage

F1aure 2.1: Distribution of the mechanisms leading to stroke.
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intracranial stenosis, endovascular treatment (angioplasty and/or stent-
ing) is an effective solution to improve cerebral blood flow 27,31} 32].
Symptomatic extra-cranial vertebral stenosis without ulceration can be
successfully treated with stenting reducing the risk of elastic recoil and
restenosis compared to balloon angioplasty alone [33]. For atheroscle-
rotic carotid diseases, while low degree of stenosis does not seem to have
a preferential therapy, carotid endarterectomy (CEA) is still the rec-
ommended procedure for the majority of cases, except for symptomatic
severe stenosis and in patients with high risk for surgery that are suited
for carotid artery stenting (CAS) [34-38|.

2.2 ROLE OF COMPUTER SIMULATIONS IN STROKE PREVENTION

Several stroke-related cerebrovascular diseases have been associated with
specific hemodynamic and biomechanical “milieus”. Examples are the
specific flow patterns in the carotid bifurcation region (characterized
by low and oscillatory wall shear stress) which have been associated
with an atherosclerosis-prone environment, mechanical stress profiles in
vulnerable plaque types, or the influence of low shear stresses in the
growth of cerebral aneurysms. Numerical biomechanical analysis has
been introduced to analyze and quantify these biomechanical actors, and
has become an extra tool to study and understand the development of
some vascular diseases. More and more, the potential of this numerical
analysis is recognized as possible diagnostic or risk assessment tool, and
to evaluate clinical procedures. Computer simulations used in the field
of cerebrovascular disease focus on the study of:

1. Structural finite element analysis (SFEA), applying structural me-
chanics to study critical stress/stretch conditions,

2. Computational fluid dynamics (CFD), for the study of the fluid
domain in order to analyze potential hemodynamic factors,

3. Fluid structure interactions (FSI) simulations, a combination of
both SFEA and CFD that takes into account the relative effects of
both the structural and fluid domain, in general leading to a more
realistic solution.

The main issues in order to reproduce realistic numerical simulations
are related to the acquisition of the realistic conditions of the environ-
ments to be reproduced: accurate geometries of both the anatomical
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district and device, fluidodynamic and/or mechanical boundary condi-
tions and material parameters (blood rheology, tissue organization and
stiffness) that are specific for the subject at study. The anatomical sites
that have been most intensively studied through numerical modeling are
the carotid and cerebral arteries. These vascular territories will be the
focus of this chapter. The organization of the rest of this chapter is
as follows: first, imaging techniques are reviewed, as these provide the
essential information (geometrical data and boundary conditions) under-
lying the patient-specific models, followed by segmentation methods to
extract the model geometry. Next, computer model generation strategies
are reviewed, including techniques to obtain material properties. Finally,
applications are addressed, with

(i
(ii

initiation and progression of (carotid) atherosclerotic diseases,
atherosclerotic plaque rupture,

(iii) endovascular carotid treatments,
(v

(vi

aneurysm coiling,

)
)
)
(iv) initiation, progression and rupture of intracranial aneurysm,
)
) aneurysm stenting,

)

(vii) intracranial atherosclerosis.

2.3 IMAGING TECHNIQUES FOR NUMERICAL MODELING

Evaluation of vascular disease and related causes of stroke is mainly
performed using medical imaging techniques thanks to the improvements
of high-resolution in vivo imaging. Conventional angiography and in
particular digital subtraction angiography (DSA), both 2D (Figure 2.3h)
and 3D, is still the gold-standard to detect cerebral aneurysms and to
evaluate the degree of stenosis of carotid arteries because of the high
resolution (up to 150 pum) and accuracy. It is, however, associated with
high costs and high risk of morbidity and mortality due its invasive
nature due to the contrast injection and is therefore performed almost
exclusively in the peri-operative procedure [39).

On the other hand, ultrasonography (US) is the primary noninva-
sive test to evaluate extra-cranial cerebral vessels due to its simplicity,
low cost and ability to distinguish different structures (Figure [2.3p).
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The presence of dense calcification of the plaques, however, affects its
accuracy and due to operator dependence, vascular tortuosity and the
proximity of the transducer to the tissue of interest, it is not always feasi-
ble to obtain good image quality. Thus US requires to be complemented
with other diagnostic techniques when suspicious conditions are detected.
In most cases, a diagnostic evaluation for cerebral vascular disease can
be performed by using either magnetic resonance angiography (MRA)
or computer tomography angiography (CTA). Contrast-enhanced (CE)
MRA or CTA (Figure 2.3k, ¢’) offer full anatomic depiction of the cer-
vical and cerebral portions of the common and internal carotid artery
[40]. The strength of current MRA techniques, however, is the ability to
identify key determinants of plaques using multi-contrast imaging (typ-
ically time-of-flight angiography, T1, T2, and proton density weighted
sequences) [41]. As the prevalence of stroke (for untreated atherosclerotic
patients, after CAS or CEA) has demonstrated to be higher in patients
with carotid plaques containing fragile components [42-45], it is impor-
tant to evaluate the characteristics of a carotid artery plaque accurately
before endovascular treatment. US, MRA and recent multi-detector-row
CTA all seem to be able to differentiate plaque composition (and thus
identify vulnerable plaques) when compared with histological results and
among each other [45-47|. In particular CT and MR angiography of-
fer high-resolution images and can demonstrate the entire circumference
of the carotid arterial wall with excellent visualization of calcification
(CTA) and lipid-necrotic core, intra-plaque hemorrhage, ulcers and fi-
brous cap (MRA) [47]. Moreover MRA and CTA can both provide mea-
surements of the arterial wall thickness [48450] showing good agreement
with the intima-media thickness measured by US [51,52|, a parameter
used for cardiovascular risk assessment in general and for risk of carotid
stenosis progression in particular [53,/54]. Intracranial atherosclerosis is
normally detected by CTA [39], but new high resolution MR techniques
also demonstrated to be efficacious for intracranial plaque detection [54].
Due to their reproducibility, three-dimensional nature and the ability to
discriminate different structures, CTA and MRA are the most used tech-
niques for image-based numerical simulations [40,55].

In addition to its ability to define the vessel lumen and wall, phase
contrast (PC) MRI is one of the most powerful techniques for time re-
solved blood flow quantification in vivo [40]. Due to this feature PC-MRI
is largely used in image-based CFD for providing in vivo inlet and outlet
flow or velocity boundary conditions of the vessel geometries.
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F1GURE 2.3: Common imaging techniques for cerebrovascular diseases: a: 2D Digital
subtraction angiography; b: 2D Ultrasounds; ¢ and ¢’: Longitudinal cross sectional of
Contrast enhanced T1 Magnetic resonance angiography ¢ Multi-detector-row Com-
puter tomography angiography ¢’ (lumen and external wall are tracked); d and d’:
Intra-vascular Optical Coherence Tomography d Intra-vascular Ultrasounds d’ (ar-
row indicates the gap between the stent strut and the vessel wall). Adapted with
permission from [56], [57], [58], http://www.examiner.com/.

However, the presence of complex flow patterns, such as at the carotid
bifurcation, or turbulence, can introduce artifacts on the velocity mea-
surements [59]. US imaging of vascular anatomy, though widely used
in the clinic, has minor relevance in image-based numerical analysis,
mainly due to the lack of reference to a fixed coordinate system, making
it difficult to reconstruct 3D geometries [40]. However the advantage
of US to retrieve real-time blood flow measurements makes it suitable
to provide realistic boundary conditions for fluidodynamic simulations
[60,61]. On the other hand 3D US systems have served for image re-
construction and CFD simulations [62,63]. Intra-vascular US (IVUS)
has a higher potential in image-based CFD modeling studies [64-66] due
to its capability to acquire detailed images of the vessel structure. Due
to the invasiveness of the procedure, however, IVUS has been limited
to patients already referred for catheterization and is still uncommon
for patient with high risk of plaque rupture even though IVUS (Figure
[2.311) can well evaluate the result of stenting procedures [67]. In addition
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US and IVUS coupled with SFEA can be used to derive wall elasticity
by tuning the computational model with the displacements acquired by
the US technique [68/{70]. Intra-vascular Optical Coherence Tomogra-
phy (OCT) (Figure[2.3|d’) has also been proven to be an effective tool to
study stent strut apposition in carotid arteries, though the technique is
still in an experimental phase [7172].

2.4 BUILDING THE MODEL: SEGMENTATION STRATEGIES

The segmentation, i.e. the partitioning of the image to reconstruct vascu-
lar structures (Figure and Figure [2.4p) is of primary importance for
diagnosis, treatment and surgery planning and it is a major primary step
in realistic computer simulations. The processing of the large amount of
data from 3D imaging modalities such as CTA and MRA is still difficult
to fully automate and thus still requires significant manual operations,
with significant time cost. The growing interest for (semi) automatic
procedures to speed up the work flow and to obtain less inter-operator
variability is therefore logical [73|. Literature offers many reviews on
general vascular segmentation strategies |73}74], grouped by medical
imaging technique [75-79] or focusing on specific methods [80]. We refer
to these studies for more detailed information on the topic. The different
approaches can be clagsified as: pattern recognition techniques, model-
based, tracking-based, artificial intelligence-based, neural network-based,
and tube-like object detection [74]. The majority of these strategies for
automated segmentation is focused on the vessel lumen extraction which
is relatively easy when volumetric images have well defined lumen bound-
aries, such as CTA or CE-MRA images. Dealing with suboptimal images
or low contrast structures like vessel walls, thrombus or plaque compo-
nents leads to additional issues. Lately (semi) automatic detection tools
have been proposed [81-83| based on the previously described imaging
techniques in order to discriminate different structures and components
of the vessel and to recognize vessel wall borders. What emerges from
these studies is that, even though many steps can be seeded up with
automatic algorithms, the operator intervention is still crucial in the
procedure. Further optimization and validation on large datasets are
thus needed.

2.5 COMPUTATIONAL MODEL GENERATION

It is a challenging step to go from a segmented geometry to a meshed
3D geometrical model that is suitable for numerical analysis using CFD;,
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SFEA or FSI (Figure 2.4k). Structured meshes (characterized by a reg-
ular connectivity that can be expressed as a two or three dimensional
array) can be relatively easily built for simple vessel segments. For more
complex geometries with bifurcations and/or branching vessels, unstruc-
tured meshes (tetrahedral, hexahedral) are more easily generated [84]
using widely available mesh generators mainly intended for CFD simula-
tions. A survey of unstructured mesh generators, though not up to date,
can be found in [85]. Many of these software packages start from the
segmented geometry to discretize the volume using 3D elements. How-
ever, the resulting meshes can be over- or under-resolved relative to the
requirements of the solution [55] dramatically affecting the extraction
of relevant hemodynamic parameters [86]. Only few tools for structured
grids are described in literature due to the complexity of creating accept-
able quality elements over the complete domain of complex geometrical
structures [87190]. Structured grids can be built to organize the elements
along the main flow direction in order to assure more accurate numerical
solutions especially when solving the blood flow in large vessels where the
blood motion is highly directional [87]. It has been shown that structured
meshes have faster convergence compared to unstructured meshes [89].
An alternative for CFD simulations is the use of tetrahedral quadratic
elements with refined boundary layers composed of prismatic elements
[91] or adaptive refinement methods [86,/92,93|. 3D mesh generation
becomes more difficult when bifurcations, wall thickness and multiple
structures need to be included (i.e. plaques and calcifications), which
is typical for structural and FSI analysis. In-house solutions have been
developed to solve these issues. Even though an unstructured (tetrahe-
dral) mesh generator can serve, it is well known that hexahedral meshes
lead to a more accurate solution [94].

The basic approach to create a structured mesh of the vessel-wall
is to discretize the outer and inner surface and the internal structures
with an equal number of key-points and to connect these. For bifurcat-
ing vessels, additional interpolation is required at the bifurcation. This
process can be done either deriving the point on the contour of the 2D
segmented slices [95-98]) or either using 3D non-uniform rational basis
spline (NURBS) surface reconstructions |99]. These procedures are often
complex and require different software packages for every step to achieve
the final mesh. The pre-processing of 3D numerical simulations are thus
time consuming and not yet really suitable for routinely procedure plan-
ning.
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F1aure 2.4: Typical work-flow for a patient specific finite element simulation: Start-
ing from medical imaging (CT scan) (a), a 3D vessel geometry is reconstructed using
segmentation techniques (b) . Next the segmented 3D vessel model is discretized in
a mesh (¢). Combining this vessel model with the stent mesh (d) allows to predict
and evaluate the mechanical interaction between both using SFEA (e).
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2.6. Getting the material properties

In order to reduce the complexity, the problem may be simplified
with a bi-dimensional approach. Despite the computational cost ad-
vantage of 2D models (especially when using FSI simulations), these
models have great limitations especially when involving fluidodynamic
simulations. For example, as highlighted by Tang et al [95], 2D mod-
els ignore non-uniform pressure and the drop in pressure at the stenotic
region caused by the narrowing which has been shown to collapse arte-
rial stenotic models. Axial stretch, which leads to radial contraction, is
also often neglected and in very asymmetric models with complex plaque
structure it will introduce large errors. In addition 2D SFEA models do
not account for shear stresses, torque, or time-varying forces acting on
the lesion in the models.

A next step in complexity are simulations including the medical de-
vices (Figure and Figure [2.4p), which can increase enormously the
difficulties associated to the mesh generation and the simulation in gen-
eral. A common approach to model stent devices is the use of CAD like
programs to draw the basic pattern to be meshed using additional tools
[L00-103]. Image-based reconstruction strategies have also been pro-
posed for semi-automated mesh generation of stent [104], or coils device
[105,[106] . CFD/FSI modeling with implanted device can be extremely
challenging even with powerful codes [107,/108]. An interesting approach
is based on embedding methods well described in a recent review by
Lohner et al [109] which seems promising for CFD simulations including
stent and coils [105)].

2.6 GETTING THE MATERIAL PROPERTIES

Implementation of adequate constitutive laws to describe the complex
material behavior with correct (subject-specific) parameter values is ex-
tremely important for a correct SFEA or FSI analysis. Most of the stud-
ies available in literature use one layered vessel models with isotropic,
incompressible material behavior, which does not take into account dif-
ferences in radial and axial behavior of the vessel and the plaque. In-
deed the vessel wall and the plaque constituents have a highly non linear
anisotropic and viscoelastic behavior, and neglecting this can lead to high
differences in the derived biomechanical parameters [96|110]. Moreover,
during endovascular procedures manipulations through balloon angio-
plasty or stenting, arteries experience non-physiological loads showing
an inelastic behavior as a result of the damage to both arterial tissue
and the plaque. Damage can be expressed as a combination of stress
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softening and permanent deformations which might depend on plastic
deformation of the fibrous components [111].

In addition, not taking into account the axial in situ pre-stretch can
also lead to incorrect stress predictions [96]. This might be less critical
in comparative studies, but it is important to note that exact stress
magnitudes are not reliable without a complete and accurate description
of the mechanical properties of the vascular structure or the virtually
implanted device. There is a general lack of knowledge of human arteries
and plaque material properties and only few accurate mechanical test
studies have been performed [112/113]|. Moreover the variability between
individuals, complex characteristics of the plaque due to inhomogeneities
and remodeling processes can change the arterial morphology in the long
term, making realistic simulations very challenging.

2.7 NUMERICAL SIMULATIONS IN ATHEROSCLEROTIC DISEASES

2.7.1 Initiation and progression of atherosclerosis

The propensity for plaque formation at bifurcations, branching, and cur-
vatures (conditions common to the carotid and coronary arteries, infra-
renal abdominal aorta and vessels of the lower extremities) has led to
the hypotheses that local mechanical factors such as wall shear stress
(WSS) and wall tensile stress play a role in atherogenesis [114]. First,
experimental studies using in vitro models [115,/116] identified intimal
thickening at the carotid sinus and at bifurcations (all zones where WSS
is lower) and related plaque formation with low and oscillatory WSS.
Next, CFD has been extensively used to demonstrate the correlation be-
tween plaque formation and both low WSS and high oscillatory shear
stress in vivo for carotid arteries [117-119]. CFD simulations of 50 nor-
mal human carotid bifurcation samples found correlations between low
and oscillatory shear stresses and between indicators of disturbed flow at
the normal carotid bifurcation [120,|121] showing a significant relation-
ship between disturbed flow and both proximal area ratio and bifurcation
tortuosity, but not with bifurcation angle, planarity, or distal area ratio
[120].

However, as plaque progression continues, the severity of the steno-
sis increases and lumen narrowing induces complex flow features with
separation zones [122| which are associated with elevated local shear
stress conditions [123-125] while WSS oscillations are observed down-
stream [122}|126]. These results suggest that other mechanical factors
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such as plaque wall structural stresses contribute to the disease pro-
cess as the wall shear stress hypotheses alone cannot explain the plaque
progression process [127]. The interaction of mechanical forces on the
upstream plaque shoulder increases the pressure on the proximal plaque
region and can be measured as tensile stress. Consecutive hemodynam-
ical changes and/or modifications of the plaque configuration increase
the stress on the plaque and might lead to rupture, depending on plaque
stability [128]. The relative roles of wall shear stress, tensile stress, and
the metabolism of the artery wall in the progression and complication of
atherosclerosis remain to be clarified.

2.7.2 Plaque Rupture

Plaque rupture is the direct underlying cause of many acute manifesta-
tions of cardiovascular disease associated with adverse events [129]. This
is not only the case for vascular territories associated with stroke, but
also for the coronary arteries where plaque rupture leads to myocardial
infarction. As the underlying mechanical mechanisms are common, and
given the more extensive literature in this field, we will in this section
also refer to studies on coronary plaque mechanics. Currently, the deci-
sion for clinical intervention is based on the degree of luminal stenosis
and plaque severity. Guidelines for treatment have been developed based
on large clinical trials [34-36]. Nonetheless there was group of patients
in the European Carotid Surgery Trial [35] that revealed higher risk of
stroke in presence of ulceration [12§|. Criteria for plaque vulnerability
parameters were redefined [130] for a better risk stratification and in-
clude active inflammation, the presence of a thin cap with a large lipid
core, endothelial denudation with superficial platelet aggregation, a fis-
sured plaque (which is likely to induce thrombus [131}/132]) or stenosis
> 90%. Calcification seems to be not related to stroke symptoms [132].
Compensatory remodeling associated with atherosclerotic plaques as a
response to the pathological environment as first described by Glagov et
al [133] in coronaries may result in angiographically normal endoluminal
dimensions that mask the presence of underlying large atheromas at risk
of rupture [134}|135].

Prediction of plaque rupture is not an easy task as it depends on
many interlaced factors. Rupture is not only associated with plaque mor-
phology and composition (thin fibrous cap, soft lipid pool, thrombotic
lesions), but also with biomechanical stresses that are induced hemo-
dynamically [135]. This suggests that, provided these biomechanical
stresses can be accurately determined, there is a potential usefulness of
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simulations for patient-specific plaque assessment. Even though the role
played by hemodynamic actors in the early manifestation of atheroscle-
rosis has been studied extensively, there are few studies describing their
role on the mature plaque and the mechanisms inducing rupture [136).

The evidence that plaque rupture is likely to occur at the upstream
shoulder of the plaque [136,137] has suggested that high wall shear stress
is involved in the rupture. CFD studies on in vivo and ex vivo image-
based stenotic carotid models have confirmed this observation [138,/139).
CFD simulations have been used to correlate fluidodynamic descriptors
such as WSS, time averaged (TA) WSS and oscillatory shear index (OST)
with the histology of vulnerable plaques. The findings generally con-
firmed the general trend of previous experimental studies (i.e. lipids and
macrophages correlating negatively with WSS and TAWSS and posi-
tively with OSI) even though the results were not conclusive [140]. Note,
however, that a recent in vivo MRI-based study of 18 atherosclerotic
carotids (comparing 3D FSI simulations with histological analysis) sug-
gested that while flow shear stress values have good correlation with
the degree of stenosis, critical plaque mechanical stresses are a better
predictor of plaque rupture and the sites of occurrence |141].

Structural simulations combining mechanical factors and morpholog-
ical information have been introduced to study rupture in coronary and
carotid plaque, in order to study patterns of tensile stresses and to de-
fine critical stress levels. SFEA and FSI studies on simplified models
of the lumen section have provided a better understanding of the effect
of the morphology on the plaque rupture. One of the first works using
SFEA suggested that stress concentration on the fibrous cap is associ-
ated with high local pressure, which can be a trigger of plaque rupture
[143]. Lumen curvature and fibrous cap thickness showed to be major
determinants of plaque stress, while the size of the lipid core did not
seem to influence the stress distribution when it is covered by a thick
fibrous cap [144-146]. On the other hand thin fibrous caps in presence
of moderate degree of stenosis appear to increase the risk of rupture
[147]. Simulations based on ez vivo specimen derived from cadavers or
endarterectomy have been extensively performed. Using SFEA Cheng
et al [148] studied 2D histological-based patient specific models of coro-
nary arteries establishing a relation between circumferential stresses and
location of plaque rupture. This study also suggested that mismatch
in the exact rupture location was imputable to local defects in plaque
strength which could render less stress-solicited zones prone to rupture.
Huang et al [149] investigated the influence of calcification and the lipid
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FicURE 2.5: Correlation between maximal stress concentration and plaque rupture.
a T1 Weighted MRI (L: lumen; fibrous cap: yellow arrow; lipid pool: green star); b
Histological analysis shows rupture of the fibrous cap at the shoulder region (black
arrow) associated with a focal hemorrhage; ¢ Numerical model of the plaque; d Stress
distribution showing high stress at the ruptured location (black thick arrow). Repro-
duced with permission from [142].

pool on the plaque stresses comparing the real morphology with different
possible scenarios of the plaque composition, suggesting that the calci-
fication did not influence plaque stability. 2D and 3D FSI models [95]
indicated that large lipid pools and thin plaque caps are associated with
both extreme stress/strain levels. These results were also confirmed in
2D /3D FSI models compared with silicon experimental models in differ-
ent flow conditions and it has been highlighted that stenosis severity, ec-
centricity, lipid pool size, shape and position, axial stretch, pressure, and
fluid-structure interactions are factors leading to an increase of plaque
stress. Moreover tube compression and collapse, negative pressure and
high shear stress at the throat of the stenosis, flow recirculation and low
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shear stress upstream were observed. These critical flow and mechanical
conditions may be related to platelet aggregation, thrombus formation,
excessive artery fatigue and possible plaque cap rupture [123,|124}150].

With the advent of high resolution imaging techniques, detailed mor-
phological and structural characterization of carotid plaques could be
performed in vivo avoiding problems that can arise from analysis on ez
vivo specimens (possible structural alterations occurring during surgery,
histological preparation, morphological configuration, altered material
properties of the plaque components) and, as such, may provide a more
accurate quantitative assessment of plaque stress [142]. A significant
correlation has been found between plaque stress and lumen curvature,
the lumen curvature being significantly larger for symptomatic patients
[145//151] and ruptured plaque exhibiting higher maximal stresses than
unruptured [142[152,[153] as shown in Figure [2.5]

These studies also showed that ulcerating regions were affected by
higher WSS and it was noticed that stress concentration occurred at the
shoulders and the thinnest fibrous cap regions [141}/152]. These modeling
studies thus provided the initial in vivo evidence that plaque rupture may
be linked to higher plaque wall stress.

Local biomechanical stresses have been found to have a better corre-
lation with plaque morphological features than global maximum stress
[154]. Larger relative stiffness of the fibrous cap compared to lipid pool
resulted in higher stresses within the cap [142]. Whether numerical
analysis has an added clinical value is a topic of study. Even though
stress analysis seems to be able to differentiate different groups of pa-
tients, they failed to refine risk stratification among symptomatic pa-
tients with/without hemorrhage or thrombi. Stretches, instead, were
able to differentiate the two groups [153].

FSI was used to identify and verify the zone of pronounced stress
in a pre-rupture stenosed carotid confirming the location and extension
of the plaque rupture [155]. The same computational strategy applied
in a study on 61 patients demonstrated that biomechanical structural
stresses (with geometrical models based on MRI scans), are significantly
associated with the development of subsequent ipsilateral cerebrovascu-
lar ischemic symptoms in patients with a predominantly lesser degree of
carotid stenosis at baseline. This suggests a possible strategy for risk
stratification and selection of candidates for appropriate non-invasive or
surgical treatment |[156]. Anyway it must be taken into account that the
accuracy of the boundaries in the plaque reconstruction is crucial because
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it can significantly change stress values [157] and the lumen boundary
extraction affects the reproducibility of fluidodynamic simulations [158].

Besides excessive stress, plaque rupture may also be a fatigue-related
process as hypothesized by some authors [159,160]. Levels of pulse pres-
sure and mean pressure (descriptors of the fatigue process — but also of
stress level as such) indeed seem to be related to stroke events [161,/162].
Large cyclic stress/strain variations observed in FSI plaque models un-
der pulsating pressure may lead to material fatigue and possible plaque
rupture [95]. SFEA fatigue studies on generalized atherosclerotic cross
sections related the increment of crack propagation with blood pressure
and lipid stiffness [144].

2.7.3 Endovascular carotid treatment

Although CEA is still the preferred procedure to treat carotid stenosis,
CAS is emerging as an alternative technique. Its benefit over CEA is,
however, still controversial [37,/163,[164]. After CAS the peri-procedural
risk of stroke is high [163| and the implanted device may induce restenosis
[165]. There are indications that stent design has an influence on CAS
failure [166] and that changes in the biomechanical environment due
to stenting/angioplasty promote restenosis [64]. Anyway few numerical
studies are available on CAS. Numerical simulations have been used to
assess comparison between different stent designs when inserted in the
same vessel model. A study on an idealized carotid model comparing
the effect of two stent designs showed that strut length influences the
final configuration of the vessel [167]. Using a patient specific stenosed
carotid model, Auricchio et al [168| simulated the insertion of 6 different
commercially available laser-cut stent devices to study the impact of the
design on the stress configuration of the treated vessel (Figure .
They found that the closed-cell design provides a higher lumen gain,
that oversizing affects the stress induced in the vessel wall and that
configuration and size have a limited impact on the vessel straightening.
Important is also the scaffolding provided by the stent in order to
confine the plaque. There is no standardized vessel scaffolding defi-
nition and the proposed parameters [169] compare the stents in their
free-expanded state not taking into account the actual configuration of a
stent implanted in a tortuous carotid bifurcation. Conti at al |[170] val-
idated their numerical simulation with a stented carotid silicon model
(with the geometry based on patient data) showing good agreement with
the experimental results. They evaluated two different stent designs and
their ability to scaffold the vessel measuring the inter-strut angles of the
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F1GURE 2.6: Structural simulations for different carotid stents. a Pre-stenting carotid
artery; b post-stenting carotid artery with the ACCULINK (Abbott, IL, USA); ¢
post-stenting carotid artery with and the XACT (Abbott, IL, USA); d post-stenting
carotid artery with the Wallstent (Boston Scientific Co., Natick, MA, USA). The gap
between the stent and the vessel is highlighted in yellow. Reproduced with permission
from [168].

stents. The closed-cell design provided superior vessel scaffolding com-
pared to the open-cell but reduced the stent ability to accommodate to
the irregular eccentric profile of the vessel cross section, leading to a gap
between the stent surface and the vessel wall. Using a similar strategy
and the same model they compared four designs and analyzed the de-
formed cell area along the stent (as a measure of the scaffolding). This
study suggested that evaluation of the expanded configuration of the
stent neglects the post-implant variability, which seems to be more pro-
nounced in open-cell designs, especially at the bifurcation segment [110].
A virtual stent implantation in a simplified model associated the effect of
calcification on the stenting procedure with severe residual stenosis, dog-
boning effect, and corresponding edge stress concentrations after stent-
ing, which requires pre- and/or post-interventional management [171].
The hemodynamic effect of incomplete stent apposition to the vessel
wall was demonstrated in a CFD study. A virtual stent implantation in
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a realistic carotid model showed that malapposed stent struts can cause
disturbing flow and potentially lead to trombo-embolic events |[172]|. This
has been confirmed in a study performed in vivo on stented coronary ar-
teries, which related neo-intimal response with WSS and other hemody-
namic parameters derived from CEFD [108]|. Remarkable in both studies
is that the implanted geometry was derived from structural analysis. In-
complete stent apposition was previously assessed using SFEA for coro-
nary stents [173/174]. Cebral et al [175] also performed CFD in a stented
carotid geometry by use of virtual geometrical implantation describing
flow patterns changes. Hayase et al [61] via virtual prototyping per-
formed CFD to recommend the best design for surgical reconstruction
during a carotid treatment case study.

In addition SFEA has been used to study the behavior of an em-
bolic protection device for carotid stenting in different configurations
and computing the apposition of the device in a straight vessel [176].

The effect of balloon angioplasty has been rarely analyzed for carotid
arteries. Lee et al |[177] using 2D SFEA, could predict the location of
plaque rupture after angioplasty, which was simulated by simply apply-
ing pressure on the plaque. More accurate simulations of balloon an-
gioplasty (also combined with stenting) have been reported for other
districts. The effect of balloon angioplasty in a very accurate iliac
artery model (both from the anatomical and material point of view) has
been studied with and without stenting [96},97,178|. Coronary balloon-
expandable stents have been also virtually implanted [101]. Anyway
in these studies the balloon itself was either neglected or simplified.
Mortier et al [179| simulated the entire procedure for coronary balloon-
expandable stents with side branch access, emulating the real mechanics
of the balloon inflation. They reported that the procedure may com-
promise the downstream branch lumen. Similarly Gastaldi et al [103]
modeled the provisional side-branch stenting technique in atherosclerotic
coronary bifurcations analyzing effects of stent positioning, after in vitro
model validation. Unfortunately, in vivo validation of these numerical
studies is rare and not performed on a statistically relevant number of
cases.

2.8 NUMERICAL SIMULATIONS IN INTRACRANIAL ANEURYSM
TREATMENT

2.8.1 Formation, development and rupture of the aneurysm

The initiation, progression, and rupture of aneurysms are also related
to complex interactions of flow-dependent biomechanical factors, act-
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ing with similar underlying mechanisms of the atherosclerotic disease.
Hemodynamic characteristics, such as flow recirculation, secondary flows,
and jet impingement may be relevant to assess. In particular WSS
has emerged as a biomechanical flow-related parameter of interest for
aneurysm assessment and CFD is a valid tool for providing this informa-
tion [180]. A recent review [180] analyzed in detail the added value of
CFD in the aneurysm evaluation. The most important factor for accu-
rate calculation of intra-aneurysmal flow patterns is the vessel geometry
[181]. The improvements in medical imaging for detailed depiction of
the brain and cerebral blood vessels have produced an increase of CFD
studies on patient specific aneurysms derived from angiographic informa-
tion with clinical purposes. This overview complements and extends the
above mentioned interesting review paper and focuses also on relevant
studies including structural simulations.

As shown by fluid dynamic modeling, complex hemodynamic forces
and alteration of the WSS [182,/183], may induce pathologic remodeling
of the vascular structure, transmitted by the endothelial cells [184}[185].
An in wivo animal model, complemented with CFD showed that local-
ization of destructive wall remodeling, is correlated with high WSS and
high WSS gradients [186]. Similar results have been found in a recent
study [187] that suggested patients displaying zones of localized high
WSS (>5 times the parental vessel) to be prone to aneurysm formation
(Figure [2.7)).

On the other hand, low wall shear stress has been observed in many
aneurysm studies and could potentially be involved in the growth of
the aneurysm [188,(189]. Comparing in vivo aneurysm with virtually
reconstructed parental vessels prior to aneurysm formation, numerical
simulations revealed an area of relatively low WSS at the location at
which each aneurysm had developed [190]. Similarly, another study as-
sessing the in vivo intracranial aneurysm at two time points in 7 patients
[191], found that aneurysm growth is likely to occur in regions where the
endothelial layer lining the vessel wall is exposed to abnormally low wall
shear stress [187,/192,/193].

Omodaka et al [194] found that the rupture point was located in a low
WSS region of the aneurysm wall in 6 patients with ruptured aneurysm.
In a study on 20 cerebral aneurysms it has been found that ruptured
aneurysms had higher averaged WSS in the aneurysm region than un-
ruptured aneurysms, markedly low WSS in their tip and high WSS in
the body of the aneurysm. In this work the authors speculated that the
proximity of high and low WSS in a small aneurysm region promotes de-
generation of the aneurysm wall [188]. A study on 62 patients (classified
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FIGURE 2.7:  Evaluation of aneurysm evolution: A DSA of vessel in the pre-
aneurysmatic condition; B 3D reconstruction of vessel in the pre-aneurysmatic con-
dition; C pressure (upper) and WSS distribution (lower) show increased forces at
the aneurysm beginning (arrows); D along the defined line, a first peak in SWSSG
after point 3, followed by a lower WSS peak and again at points 6 and 7 respectively
(thick arrow). These points correspond to the proximal and distal edges of the grown
aneurysm. FE, Evolution of the aneurysm that ruptured (arrow). Reproduced with
permission from [187].
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into different categories, depending on the complexity and stability of the
flow pattern, the location and size of the flow impingement region, and
the size of the inflow jet) demonstrated an association between the size
and stability of the inflow into the aneurysm and its propensity of rup-
ture [195]. On a larger number of patients, the same authors also found
that concentrated inflow jets, small impingement regions and complex
and unstable flow patterns are correlated with a clinical history of prior
aneurysm rupture [196]. A recent CFD study on 100 patients suggested
the loss coefficient, a parameter characterizing energy expenditure and
the geometric shape of vessels, as a better discriminant of aneurysm
rupture than WSS [197].

The geometrical characteristic also seems to play a role in the rup-
ture. As the arterial curvature increased, flow impingement on the dis-
tal side of the neck intensified, leading to elevations in the WSS and
enlargement of the impact zone at the distal side of the aneurysm neck
[198]. The morphological parameters of the aneurysm sac (discrimi-
nants of rupture such as size ratio, undulation index, ellipticity index,
and non-sphericity index) have been shown in a large population study
to be highly correlated with computationally derived hemodynamic de-
scriptors (low WSS, high OSI which have been linked to rupture [199])
suggesting a possible role as clinical predictors [193].

As cerebral artery aneurysm rupture occurs when wall stress exceeds
the strength of the wall tissue, FSI simulations seem more appropriate for
predicting rupture [200]. Using FSI the effect of hypertension was stud-
ied, suggesting that blood pressure and deformation of the aneurysm wall
can influence rupture [201] and they are closely related to the aneurysm
shape [202]. Similarly a study on 7 patient-specific aneurysms found that
flow patterns, pressure, WSS and displacement of the aneurysm wall ex-
hibit large variations, depending on the morphology of the artery [203].
These results seem to suggest that WSS is not directly responsible for the
aneurysm rupture but rather for a vascular remodeling process leading
to rupture that is often related to low values of WSS, while other hemo-
dynamic factors (such as pressure or flow impingement) can directly lead
to rupture.

2.8.2 Aneurysm Coiling

A further challenge for numerical simulations is to account for the pres-
ence of endovascular devices to treat cerebral aneurysms, such as coils
and/or stents/ flow diverters that promote clot formation and thrombo-
sis to prevent rupture.
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For clinical purposes , a priori knowledge of the mechanical and hemo-
dynamic effects of the implantation is useful to evaluate and optimize
treatment options for example to compute the amounts of coils and their
optimal placement for flow occlusion [105,204]. A CFD study on 17 pa-
tients demonstrated that, after occlusion induced by coil embolization,
the increase of maximum WSS and partially averaged WSS can discrimi-
nate recanalized (a typical adverse event deriving from coils compaction)
and stable aneurysms [205].

Numerical simulations including coils have been developed using dif-
ferent strategies. The simplest approach is to model the coils as blocked
cells in the aneurysm lumen mesh [206]. In these studies the relative
pressure amplitudes did not change under different simulated aneurysm
filling conditions. It has been reported that coils can relieve the influx of
pulsating blood and allow for initial clotting provided that at least 20%
of the volume is filled.

Byun et al [207] analyzed the blood flow fields of lateral aneurysm
models for different coil locations (modeled as a sphere) and parent vessel
geometries suggesting that distal neck coiling better promotes emboliza-
tion. Ahmed et al [208] with a similar modeling strategy used FSI to
study inflow rate, WSS, apparent viscosity and effective stress of coiled
aneurysm models as a possible tool to address additional treatment.
An interesting approach was developed by Kakalis et al [209] modeling
the coiled part of the aneurysm as a porous medium with characteris-
tics determined by the coil sizes. CFD results showed that insertion of
coils rapidly changes intra-aneurysmal blood flow and causes reduction
in trans-mural pressure and blood velocity up to stagnation, providing
favorable conditions for thrombus formation. Cebral et al [105] showed a
more realistic technique for coil implantation based on in vive data and
an embedding grid technique. Morales et al [106] used a virtual coiling
technique based on a dynamic path planning approach to insert one-by-
one the coils inside a closed geometry consecutively selecting the next
position of the coil tip (Figure . Morales et al. also found that coils
configuration reduce its influence on the hemodynamics as the packing
density increases.

Due to the complexity of the procedure, real-time simulation of coil
insertion as a possible training tool have been proposed based on SFEA
[210] and a combination of a novel method to solve fluidodynamic prob-
lems and SFEA that takes into account the relative interaction between
flow and coils [211].
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FiGurE 2.8: Virtual coiling for real aneurysm geometries. A configuration of the
implanted coils. From the left untreated model and models with coil packing den-
sities of 5.6%, 11.2%, 16.7%, 22.2%, and 30.0%. B Blood flow velocity magnitudes
in gray-scale for an aneurysm cross-section at peak systole. Changes in the veloc-
ity are presented with a different coil configuration and increasing packing density.
Reproduced with permission from [106].

2.8.3 Aneurysm Stenting

Stent-supported coiling is used as a treatment option for fusiform and
wide-neck aneurysms to avoid coil protrusion in the parent vessel. In
case of flow diverters (stents with low porosity), the stent is used alone to
reduce the flow in the aneurysm. Stent placement induces hemodynamic
changes in the aneurysm dome which effects are not known.

CFD simulation used to analyze the effect of flow diverters in actual
cases showed that rupture of giant aneurysm is influenced by an increase
of pressure in the aneurysm [212]. This effect has been also described in a
CFD study comparing different idealized stent designs (both braided and
laser cut) in an internal carotid aneurysm model [213]|. Two commercial
stents were deployed at various locations and the computed residence
times were evaluated and compared, demonstrating the advantage as-
sociated with a lower stent porosity with respect to the maximum wall
shear stress in the aneurysm sac [214] (Figure [2.9).

A different approach used by Augsburger et al [215] is to model the
stent as a porous medium, which seems to give results comparable with
real stent geometries.
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FiGURE 2.9: Flow streamlines in an aneurysmatic artery virtually treated with a
stent for stent-supported coiling (left) and a flow diverter (right). Reproduced with
permission from [214].

Even though these CFD studies are appealing from a clinical point of
view they suffer of a major limitation in the stent placement technique.
The stent in fact is often deployed using geometrical projection methods
to the vessel wall [214,216],217] that neglect the stent mechanics and do
not reckon with the actual behavior of the stent and its effects on the
vessel wall. Tt has been shown #n vitro that the deployment method used
to deliver the vascular reconstruction device plays a critical role in stent
apposition to the vessel wall [218] which has already been associated with
adverse effects such as late stent thrombosis in the coronary circulation
[219]. Moreover stent placement induces changes in the vessel geometry
[220] that are not reflected using geometrical fitting of the stent for the
numerical simulations. SFEA can reproduce the real mechanics of stent
deployment.

Bernardini et al [221] compared different stent simulation techniques
(SFEA vs geometrical) showing that the final configuration of the stent is
affected by neglecting the mechanical material properties. A SFEA anal-
ysis simulating the insertion of a pipeline-like flow diverter mimicking a
complete endovascular procedure highlighted the importance of retrac-
tion and pushing steps of the device to obtain maximal flow diversion
and best apposition [222]. A CFD study validated in vitro showed that
the stent configuration has a strong impact on the flow in the aneurysm
dome, primarily due to strut protrusion [223], confirming the importance
of a realistic virtual stent insertion.
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An interesting SFEA study on vessel ring geometry addressed the
effect of the arterial clamping and validated it with an in vivo animal
experiment [224].

2.9 INTRACRANIAL ATHEROSCLEROSIS

There are only few studies investigating cerebral stenosis. The reason
is partially due to the limited resolution of stenotic lumen imaged by
current imaging techniques which precludes the development of a realis-
tic geometry for use in finite element modeling and CFD analysis [225].
CEMRI — based CFD modeling was used to determine WSS in one pa-
tient [225). The authors reported an increase of WSS at the stenotic re-
gion and they suggested that the border zone infarct in the patient may
have corresponded to thromboembolism that developed at the plaque
surface under the influence of hypo-perfusion. This shows the main dif-
ference with larger arteries where the plaque vulnerability is more likely
leading to stroke. Using pre- and post-stenting vessel geometries in one
patient [226] a decrease in WSS has been shown after stenting which
could predict minimal chance of restenosis and intimal hyperplasia [227].
The main limitation of the study was the lack of stent in the model.

2.10 CONCLUSION

Numerical analysis is gaining importance as a tool for clinical purposes.
CFD, SFEA and FSI allow studying different facets of and the inter-
actions between the patho-physiological biomechanical environment and
the risk of stroke. With the advancement in imaging techniques it is
possible to acquire non-invasively the complex structure of pathological
vessels and this under in vivo conditions. Numerical simulations allow
to study the relationship of biomechanical factors with initiation and
development of the disease leading to major catastrophic cerebrovas-
cular events. WSS has an assumed important role in the first stages
of atherosclerotic disease and possibly in the aneurysm formation, im-
plying a role for fluidodynamic analysis. Structural analysis has the
potential to be a predictor of plaque rupture and could be involved in
the risk stratification in the clinical arena. Also for patient treatment
using endovascular devices, there is a possible role for numerical simu-
lations in the choice of the treatment or the selection of the best device
design according to the patient specific conditions. Nevertheless, the
numbers of studies supporting the inclusion of numerical simulations in
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the clinical decision making process is still scarce and further in wvivo
validation is absolutely required. In addition, for efficient inclusion in
clinical practice there are still some issues to be solved. Computational
cost of the 3D simulation, especially involving fluid-structure interac-
tions are a large hurdle for diagnostic and procedure planning routine.
Regarding assessment of plaque rupture there are missing tools for au-
tomated segmentation of the plaque components, which is still highly
time consuming and operator dependent. Moreover realistic material
properties and boundary conditions, ideally specific for the individual
patient, are needed for a correct evaluation. Mesh generation is still
highly challenging for complex in wivo structures and in the presence
of endovascular devices. Image resolution is still suboptimal to retrieve
correct geometrical information or information on the vessel wall struc-
ture in the cerebral circulation. An additional major issue is the lack
of a reliable, well established strategy to include mechanobiology which
can take into account the remodeling response of the vessel and could
predict the long term effect of the mechanical changes in pathological
conditions and in presence of devices.
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CHAPTER

Advances in modeling strategies

The first step to be taken for the mechanical simulation of the endovas-
cular procedure is the reconstruction of both the design of the device
employed and the vessel geometry as well as their realistic mechanical
behavior. Adequate strategies for virtual stent implantation are also an
important step for the reliability of the numerical results. In this chapter
the methodologies adopted to overcome these issues are described.

3.1 STENT MODELING

3.1.1 Building a stent

Stent geometries used in this thesis have been retrieved from 3D models
of the real device when samples where available, analytically or from
image sources otherwise. The pattern of the stent meshes for endovascu-
lar peripheral treatment (normally laser cut from a cylindrical metallic
tube), can often be easily identified by a repetitive cell unit. However,
latest generations of stent designs have more complex shapes to improve
design performance and undergo mechanical treatments to further mod-
ify the shape of the device in order to improve specific features. A typical
example is the tapering of the stent to follow the natural narrowing of the
vessels moving downstream the peripheral vasculature and after branch
splitting (typically used for carotid stents e.g. Acculink stent - Abbott
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Vascular, Boston, IL, Cristallo Ideale - Medtronic, Minneapolis, MN|,
etc) and provide proper sizing along the vasculature. Another example
is the use of flaring ends, i.e. a gradual enlargement of the stent diam-
eter at the ends, to enhance apposition to the wall and reduce the risk
of migration (e.g. the Enterprise stent-Cordis Corporation, Miami, FL
that will be the topic of study in chapter [7)[228].

These methods can modify the original pattern of the stent, compli-

cating the task of deriving the initial parametrized design and simulating
the actual technological procedure especially with geometries which are
not created by the replication of few repetitive units. For this reason the
strategy adopted in this thesis is to draw and analytically modify the
stent geometry without emulating the mechanical process leading to the
final shape.
All available devices were scanned by the center for X-ray tomography
UGCT (http://www.ugct.ugent . be) using X-ray micro-tomography (u
CT). This non destructive imaging technique uses X-rays with stationary
source and detector to create cross-sections of an object (rotating during
the scan) with resolution in the micrometer range. The final dataset
of stacked 2D images is further processed to build a 3D virtual model
using common segmentation programs, such as the open source program
3Dslicer (http://www.slicer.org/). Thanks to the high quality of the
images due to the high contrast between stent and air, the stent geome-
try can be eagsily segmented by choosing an appropriate threshold for the
intensity levels of the images. Normally the threshold was chosen to give
thickness and width dimensions which matched measurements retrieved
by more accurate techniques, in particular optical microscopy, retrieved
from literature studies or from internal facilities. Direct user corrections
are sometimes needed to remove scattering artifacts of the radio-opaque
markers.

The result of the segmentation is a 3D model of the stent which is
then exported as a 3D triangulated surface (STL). The STL is processed
in pyFormex (http://www.pyFormex.org) to virtually longitudinally cut
and unroll the geometry using a cylindrical coordinate transformation in
order to retrieve the flattened mesh of the stent laying on a single plane
in a bi-dimensional coordinate system. This then serves as drawing basis
to trace the computational model (Figure and B).

While the mentioned operation results in a 2D pattern for cylindrical
stents, additional transformations are needed for tapered or flared stents.
The tapered stent will result in a 2D flat pattern rotated in 3D on the
longitudinal plane with an angle depending on the tapering. In this case
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3.1. Stent modeling

the flat geometry can be easily rotated to be aligned with the longitudinal
direction. The flared stents, instead, result in a more complex 3D pattern
which needs further adjustment. The adopted strategy is to find an
analytical description of the flaring to translate the points of the flares
on the bi-dimensional plane (Figure [3.1B).

When the STL of the device was not available other strategies were

used, in particular following an analytical description of the device or
images of the unrolled stent available in literature. This was the case
when a repetitive pattern was identifiable allowing a simple parametriza-
tion of the stent.
Once the 2D drawing pattern is obtained, the creation of the 3D stent
models for the numerical simulations was performed in pyFormex follow-
ing and improving the approach used in previous works [170]. In order to
simplify the reconstruction of the stents, a library of predefined shapes
was built based on bezier splines. The use of spline functions allows a,
high flexibility and versatility to adjust the curvature of the struts and
to create connectors among the struts (Figure ) Providing the ini-
tial and the final point of the centerline of the struts and controlling the
initial and final direction of the spline, a wide range of curved struts can
be obtained as shown in Figure [3.2B. The splines are then approximated
by piecewise polylines and the final struts are modeled by sweeping the
desired section along the centerline pattern. The local tangent of the
centerline is smoothed to provide a gradual transition of the sections
directions. This guarantees the quality of the element shape which can
otherwise introduce inaccuracies in the mechanical simulation (Figure
)

Connectors between the struts (Figure [3.1B) are created automati-
cally by getting the vertices of the struts, computing the normals of the
line joining the vertices of a single strut and finally connecting the adja-
cent points with bezier splines. Starting and ending tangent control the
direction of the spline. In addition a parametrical tip has been created
to allow strut connection of the cell crowns (Figure [3.1B).

With these three basic shapes it was possible to model all the stent
designs studied in this thesis.

Note that the use of splines simplifies a common CAD design pipeline.
Actual measurements of curvature angles or circle radii are not taken into
account during the design process but they are only controlled through
the spline parameters. Defining analytical relations among the distances
of the stent cells allows automation of the strut centerline creation,
speeding up the design process. In this way it was possible to have
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FiGURE 3.1: Processing of a scanned device with flairs at its endings to create the
computational model: A Unrolled stent in the XY plane; B Unrolled stent in XZ
plane. The black profile is derived from to cylindrical transformation. The flared
curvature is approximated with an analytical function (blue line) which is used to
compute the distance to the XY plane to flatten the pattern (red profile); C' Su-
perposition of the real device geometry (light gray) and the meshed stent(red); D
Detail of the superposition of the real device geometry (light gray) and the meshed
stent(red); E Peeling of the original hexahedral numerical model (in red), to obtain
its centerline to be modeled as beam elements.
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FIGURE 3.2: Stent meshing technique: A Library of the predefined shapes: linear
struts (in red), struts connectors (in blue) and tips (in green); B Different shapes of
the stent struts obtained by changing the initial angle « of the strut centerline (in
red).

a good approximation of the real stent geometry that, as mentioned be-
fore, might suffer from (small) deviations from the original design due
to the manufacturing process.

Once the pattern was traced, opportune rotations or flaring and in-
verse cylindrical transformation operations allowed to obtain the final 3D
stent model with a highly accurate replication of the original device (Fig-
ure and D). Additional operations on the final hexahedral model
can be performed to “peel” the mesh in order to retrieve the centerline of
the stent and convert the solid elements to beam elements as shown in
Figure [3.IE. Basically the elements belonging to the external surfaces,
i.e the elements with one face belonging only to a single element, are
consequently removed until obtaining a mesh with 2x2 elements on the
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strut section. At this point the edges connected to the external sur-
face of the stent are removed. The operation will keep only the edges
corresponding to the approximated centerline of the stent.

Though the strategy allows for a high flexibility in the stent design,
the procedure is far from being automated and requires substantial man-
ual interaction. On the other hand, it is a relatively fast technique for
accurate modeling of the device sample with a ready-to-use mesh for
computational simulations.

3.1.2 Insertion of the stent

For clarity, it must be pointed out that the stents used for the treat-
ment of carotid and cerebral arteries are self-expanding. Differently from
balloon-expanding stents used in other vascular districts, e.g. coronary
arteries, the expansion of the stent it is not controlled by inflating a
balloon, plastically deforming the stent. Self-expanding stents are man-
ufactured at the target vessel diameter (or slightly above), crimped and
constrained in a catheter of a smaller diameter. When the intended de-
livery site is reached, the constraint is removed and the stent self-expands
due to its superelastic properties.

To model the stent insertion an efficient strategy has been developed.
Two deformable sheets acting as the stent delivery system were used to
simulate the catheter which holds the stent before the implantation and
the guide-wire along with the catheter slides to guide the stent to the
target lesion. The deformations of the stent occur through displacement
driven contact with these sheets.

The problem is approached analytically by virtually defining the
nodal displacements of the catheter and the guide-wire through dedi-
cated user defined ABAQUS subroutines (DISP and VDISP) which al-
lowed to control the complete deployment procedure.

Two different insertion methods were developed. A first simplified
and more efficient strategy, depicted in Figure [3.3], includes:

e Reduction of the catheter radius around the stent to simulate the
crimped state of the device in the delivery system prior to the
implantation;

e Simultaneous bending of the catheter and the guide-wire along the
vessel centerline to position the stent inside the artery;

e Gradual expansion of the catheter from the distal end to release
the stent inside the vessel.
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FIGURE 3.3: Schematic overview of the simplified delivery technique. A Bending
of the catheter along the simulation; B Gradual opening of the catheter at different
time steps.
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A second version of the same code which allowed a more realistic
simulation of the procedure (Figure includes:

e Crimping of the catheter as described above;

Bending of the guide-wire along the centerline of the vessel;

Pushing of the catheter along the guide-wire to advance the stent
inside the vessel until the implantation site;

Catheter retrieval to allow the stent expansion inside the vessel;

Guide-wire retrieval.

A dedicated user interface was coded to provide the input parameters
of the subroutine. The vessel centerline, used to drive the motion of the
catheter and the guide-wire, is computed using the open source program
vtk http://www.vmtk.org/l Using pyFormex it was smoothed using
a NURBS approximation and cut at the initial and the ending points
chosen for the stent insertion. The centerline is then re-sampled using
polylines with a number of points sufficient to avoid discretization error.
The choice of the number of points depends on the tortuosity of the
vessel and the relative length of the stent. The cases studied in this
thesis were typically discretized with a minimum of 50 segments. Finally
the centerline is rotated to have the first polyline segment oriented in
the Z-direction.

Then the centerline is approximated with circular arcs in order to
have its complete analytical description. However, the approximation
is not automatic and requires user dependency. As shown in Figure
B.5] through the user interface, a plane is moved through the points
of the centerline. A circular arc is fitted between the initial and the
end point of the selected portion. When the user, by visual inspection,
retains that the centerline segment is adequately estimated by its planar
approximation, the input parameters of the subroutine are stored. The
remaining portion of the centerline is oriented again to the Z-direction,
and the operation is repeated. Subsequent regions are processed until
depletion of the segments.

The information stored will be used as input for the subroutine. A
schematic illustration of the parameters needed for the subroutine to
impose the displacement to the virtual delivery system is shown in Figure
3.6k
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3.1. Stent modeling

FI1GURE 3.4: Schematic overview of the realistic delivery technique. A Pushing of
the catheter (in yellow) over the guide-wire (in gray). The pulling back of the catheter
follows inverse displacements; B Gradual retrieval of the guide-wire at different time

steps.
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Ficure 3.5: Environment for the analytical approximation of the centerline. A
Moving plane for the visual evaluation of segment planarity; B Final approximation
(red line) of the original centerline (blue line); B User interface for the centerline
approximation showing main features.

1. Full length of the approximated centerline to define the length of
the catheter/guide-wire;

2. Length L; of each portion of the approximated centerline;

3. Bending angle vy, of each portion, i.e. the curvature angle of the
segment on the plane laying on the Z-direction;

4. Rotation angle «, of each portion with respect to the previous one
to set the direction of the bending for each segment.

The final bending radius Rp of each segment is derived from the
length of the centerline portion L; and the final bending angle ~,. The
decrease of the bending radius Rj is controlled at each time increment
tewrrent during the simulation until the final time step ¢, by the fol-
lowing equation:
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3.1. Stent modeling

F1GURE 3.6: Parameters of the bending procedure: The catheter is discretized in
segments of length L;. Bending angle -, and bending radius R control the final de-
formation of each segment while 7y, set the direction of the bending for each segment.

_ & 75finozl

Ry (3.1)

Yy tcur‘rent

There are some advantages linked to this strategy. First, it seems
to help the convergence of the contact algorithm in ABAQUS, probably
related to the smooth changes in the deformed configuration that avoids
abrupt differences in the contact surface distances and contact status.
Second, the subroutine only needs a few parameters, provided by the
dedicated pyFormex user interface, to fully describe any specific case.
This means that, given a stent and a vessel model, the pre-processing
time needed to set the displacements of the catheter and guide-wire,
only depends on the analytical fitting of the centerline. This operation
takes only few minutes, speeding up the pre-processing when multiple
configurations have to be tested. This is the case with in vivo validations,
which require several tests to match the stented location as seen in the
clinical outcomes (as in chapter [ and [7)).
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The methodology is very versatile and it has been used also in other
vascular districts [229).

When the pulling and retraction of the catheter is simulated, the
initial settings of the subroutine remain the same. However the final ge-
ometrical parameters (such as the bending radius) are not changed over
the time step. The current time step of the simulation is used to control
the position of the catheter along the centerline and to check at which
portion of the centerline it should belong. This methodology offers a
more realistic replication of the actual delivery procedure. Though, this
advantage comes at cost of computational time. Fast simulations can
suffer of unrealistic deformations by compacting the stent while retriev-
ing the stent-carrying catheter.

A quantitative comparison was not performed among the two tech-
niques. Though, to have an idea of the advantage in terms of compu-
tational cost between the two insertion techniques, it can be considered
that the setup with the simplified insertion strategy using brick elements
(e.g. chapters and took up to 10 hours to reach a solution, while the
realistic setup used in chapter [7| with beam and shell elements, which
already helped to reduce the computational cost, took about 10 hours
for the in wvivo case (using the same computer architecture). It is clear
that when the real emulation of the insertion technique is not needed, it
could be avoided to allow times comparable to the clinical environment
for procedural planning.

The choice between the two approaches was lead by the effects of the
delivery procedure. From the literature study performed in this thesis,
we can conclude that the delivery procedure has never been reported to
have an impact on the stent configuration for carotid treatment, while it
can be crucial when cerebral aneurysms are treated with coils supported
by specific stent designs which can experience incomplete stent apposi-
tion [218]. In particular the realistic strategy can capture the “hugging”
effect of the stent at the inner curvature of the vessel which derives from
the dragging of the stent while pulling back the catheter, which is im-
possible with the simplified virtual deployment strategy as the catheter
diameter is gradually increased without dragging the device. This effect
will be clarified in chapter

A drawback of both techniques is related to the positioning of the
guide-wire. With the mentioned strategies the guide-wire is bent along
the vessel centerline. During the real insertion the stiff wire is in contact
with the vessel, and the interaction can have an effect on the pre-stented
configuration of the vessel by forcing local straightening. These combined
effects can potentially influence the deployed stent shape.
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3.2 VESSEL MODELING

For the purpose of this thesis different approaches were used for the
construction of the vessel models. Initially, an in-house developed code
was used for vessel meshing (as in chapter @ of this thesis) which was
proven to be able to create high quality hexahedral structured meshes for
the fluid domain |89]. However, the lack of automation and interaction
with the viewport made the code not suitable to be used with complex
vessel shapes especially when the algorithm needed to be adapted for
structural models where the vessel wall had to be meshed. In particular
stenosed vessels can exhibit very different shapes between the lumen
and the external wall hampering the control of the hexahedral elements’
quality. According to the author no code commercial or in-house is
available for automatic meshing of hollow geometries (such as vascular
structures) starting from already available STL geometries. For this
reason strategies for meshing the arterial wall were developed and the
problem was approached in two different ways depending on whether the
vessel model is patient specific or parametric.

3.2.1 Parametric vessel models

The lack of accurate stenotic bifurcation carotid models, both from the
anatomically and morphological point of view, had motivated the cre-
ation of a realistic parametric finite element model. Only one in silico
model of the carotid bifurcation for structural simulations emerged from
the literature study [167]. From the paper it is clear that the condition
were not addressable for stenting considering current treatment guide-
lines derived from major clinical trials [1034,35]. The stenosis (56%) was
computed based on the lumen area which corresponds to a 33% steno-
sis according to NASCET or ECTS criteria using the reported diameter
dimensions.

The model developed in this work was entirely built in pyFormex
and a dedicated script was coded to create a geometry consisting of a
common carotid artery branching into the internal and external carotid
arteries. The vessel wall was modeled with different layers to take into ac-
count the heterogeneous composition of the artery. The internal carotid
artery contains a stenosis. The model is fully parametric, with the most
important parameters being length and wall thickness of the common
carotid and its branches, length and minimum diameter of the stenosis
and lumen shape (circular or elliptic).

First the centerlines from the common carotid to the two branches
were traced using Bezier splines. A circular section was swept along
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FiGURE 3.7: Initial setup for the creation of the parametric model: A Creation of
the STL geometries for each layer; B Computing the tangential and perpendicular
direction of the centerline point to define cutting planes directions; C Cut arcs of
vessel shells.

the patterns creating two tubular structures, each one representing the
common carotid elongated to one of its branches. Angles and curvatures
were adapted from a patient specific case (patient B of chapter . How-
ever, by changing the directions of the centerlines other anatomies can
be created.

The sections were tapered along the pattern to emulate the natural
narrowing of the arteries towards the peripheral region of the vascular
tree. Using the gts library (http://gts.sourceforge.net/) the tubular
structures, converted to STLs, are merged to obtain the vessel geometry.
The operation was repeated by adjusting the section radii to build the
outer vessel layer, i.e the shells identifying the adventitia.

For the lumen, the diameter reduction of the stenosis needed partic-
ular attention. The location of the stenosis was chosen in the internal
carotid artery. The section at the narrowest blockage site was set to have
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3.2. Vessel modeling

Ficure 3.8:  Creation of the initial coarse mesh. A Section of the vessel wall
obtained by connecting the cut arcs in the radial direction; B Connection of all the
sections to built the hexahedral mesh. Similar color identify regions that will be
re-sampled with same number of subdivisions.

a radius with the desired degree of stenosis with respect to the non de-
seased lumen section. For the presented case the degree of stenosis was
85% computed on the lumen area and a stenosis of 61% according to the
ECTS criteria presented in chapter The centerline at the occlusion
was translated to account for plaque eccentricity. Choosing the length of
the blockage site, the radius of the stenosis was symmetrically enlarged
until restoring the original lumen. In order to have a smooth transition
from the lesion to the non diseased lumen, the radius was increased with
a Gaussian function. The mean of the function represents the position
of the maximum stenotic location on the centerline, the standard devia-
tion controls the length of the lesion, while the peak value describes the
maximum protrusion of the plaque from the “pre-lesion” lumen.

Different shells were included in the model, hence defining different
layers in the arterial wall: the external vessel wall, the adventitia/media-
intima interface, the media-intima/fibrous cap layers, the lumen of the
vessel (Figure [3.7A).

Once all the STLs of each interface between two different layers were
created, they were processed to obtain the final hexahedral finite element
mesh. The centerlines were discretized with polylines. The density of
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FIGURE 3.9: Final seeding of the parametric carotid models. A The coarse mesh has
been re-sampled with different element densities. The red circle surrounds transition
elements between this regions; B and C Structure of the transition elements.

the discretization controlled the density of the final hexahedral mesh in
the longitudinal direction. The direction of every segment, previously
smoothed to allow a more gradual transition of the normals, was used
to determine the position of the cutting planes which were used to slice
the STLs (Figure and C). This cutting operation resulted in a se-
ries of polyline slices. The slices were re-sampled with the same number
of segments to ensure correspondence of their connectivity and finally
joined along the radial direction to obtain the vessel sections (Figure
3.8A). Next the section meshes (composed of quadrilateral elements)
were connected in the longitudinal direction to create a first coarse hex-
ahedral mesh with only one element per layer in the radial direction
(Figure 3.8B). A smart selection of the vessel mesh districts allowed to
increase the element density at the region of interest while providing a
coarser seeding elsewhere (Figure ) For this purpose a function for
a uniform element subdivision was coded and special element subdivi-
sion is performed to create transition regions between different element

densities parts as shown Figure [3.9B and C.
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3.2.2 Patient specific vessel models

The previous approach can be convenient with parametric models where
the equations describing the vessel layers are known. When dealing,
however, with complex 3D patient specific structures which can ex-
hibit more tortuous patterns, it is hardly adaptable and other strategies
need to be used. Block-structured techniques can be employed to gen-
erate structural meshes when dealing with geometries with non-trivial
boundaries such as anatomical domains. The domain is broken up into
topological blocks (see Figure allowing for geometric flexibility
while retaining computational efficiency. The open source mesher IA-
FEMesh (http://www.ccad.uiowa.edu/), based on this technique, ac-
celerates the development of anatomically correct finite element models,
also thanks to the integration with the 3Dslicer graphical environment.
This tool, however, is limited to the creation of surface or bulk meshes
from closed STLs. Meshing of the vascular wall can then be very tedious
and time consuming, because it will require the positioning of the blocks
around the sectors of the vessel wall. A strategy to recycle the capability
of IA-FEMesh for this purpose is hereby proposed, in combination with
pyFormex. The strategy is meant for the reconstruction of the vessel
wall when different vascular layers are provided. It also allows to include
different diseased regions.

FiGure 3.10: Multi-block structures created in IA-FEMesh: A Blocks are built
around the patient specific lumen; B Keeping the same structure topology, the nodes
of each block are adjusted around the STL of the external surface of the vessel.
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The procedure can be schematically summarized in the following
steps:

1.

The multi-block structure is created in IA-FEMesh around the
outer surface of the vessel wall (Figure A);

. The quadrilateral mesh of the outer surface of the vessel wall is

exported by choosing an adequate number of subdivisions for the
block discretization;

. A copy of the previously created multi-block structure is now ad-

justed around the lumen surface by repositioning the nodes of the
blocks on the new surface (Figure|3.10B);

. The quadrilateral mesh of the lumen surface is exported using the

same parameters used for the outer wall;

. The two meshes are imported in pyFormex and connected to create

the hexahedral mesh. The use of the same multi-block topology,
and the same number of subdivisions will ensure correspondence of
the connectivity tables of the quadrilateral meshes (Figure |3.11]A);

. Eventual additional mesh improvement (such as smoothing and

mesh refinement) is performed (Figure[3.11B and C). Special func-
tions for element splitting and subdivision are implemented. This
allows reducing the seeding of the IA-FEMesh meshes to avoid pos-
sible problems of mesh quality of the hexahedral mesh after con-
necting the quadrilateral geometries. If the quadrilateral meshes
are too fine, intersections can occur leading to negative volumes,
badly shaped elements (which can introduce inaccuracy of the FEA
results) or small sized elements (which can increase computational
times);

. The elements of the mesh to which to assign the plaque material

are selected by testing the points falling inside the STLs geometries

of the plaque (Figure [3.11D).

As the outputs of the mesher are in the open source Visualization
ToolKit (VTK) format (http://www.vtk.org/) a dedicated interface
has been coded in pyFormex to allow for the interaction with the result-
ing formats of the meshing tool. All the implemented function to recog-

nize
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3.2. Vessel modeling

Ficure 3.11: Processing of the quadrilateral meshes obtained in TA-FEMesh. A
Quadrilateral meshes of the inner and outer surface are connected in pyFormex to
create the hexahedral mesh; B The final mesh is smoothed to improve the element
quality and refined by element subdivisions; C Detail of a longitudinal section of the
final vessel mesh; D Selection of the elements laying in the diseased regions of the
vessel wall.

are made available in pyFormex. This hybrid open-source environment
can thus be a powerful tool for patient specific finite element vascular
modeling.
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CHAPTER

The influence of vascular
anatomy on carotid artery
stenting : a parametric study for
damage assessment

The modelling strategies described in the previous chapter are applied in
this chapter to a parametric study to assess the influence of plaque mor-
phology and composition on carotid artery stenting. Particular attention
is devoted to the potential damage of the artery due to the procedure.
The results of this study have been published in :

"The Influence of Vascular Anatomy on Carotid Artery Stenting: A
Parametric Study for Damage Assessment.” lannaccone, F., N. Debuss-
chere, S. De Bock, M. De Beule, D. Van Loo, F. Vermassen, P. Segers,
and B. Verhegghe. Journal of Biomechanics, (2014) [230].

4.1 INTRODUCTION

Atherosclerotic cerebrovascular diseases, in particular carotid artery oc-
clusive disease, have been estimated to be responsible for about 20%of
all ischemic strokes ,, the second major cause of death and mor-
bidity worldwide [22]. Carotid artery stenting (CAS) is emerging as an
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alternative technique to surgery [232] for the treatment of severe carotid
stenosis (>70%) in an elective patient population. The minimally inva-
sive nature of the procedure, the lack of need for general anesthesia and
the increased number of trained physicians contribute to the introduction
of CAS into routine clinical practice [233)].

Nevertheless both short- and long-term efficacy of CAS is debated
and the causes which lead to procedural failure are yet not completely
understood [37,163,164]. The peri-procedural risk of stroke is high [163]
and multi-center randomized trials demonstrated that the incidence of
restenosis is higher at one year compared to the surgical counterpart
[234].

Severe restenosis were strongly dependent on poor initial results,
mostly attributable to inadequate early angioplasty techniques which
were also suspected to induce neointimal hyperplasia due to excessive
dilation of the vessel. Thus, a balance is needed between post-implant
stenosis and vessel dilation [165]. These clinical results seem to support
the hypothesis that restenosis is related to tissue injury and response
due to local stress concentrations which initiate the remodeling process
leading to re-occlusion of the vessel [64}235].

Currently, interventional diagnosis is based on the degree of luminal
stenosis and plaque severity [34-36,[236]. However, the degree of steno-
sis alone may not adequately reflect the risk associated with the lesion.
High-risk vulnerable plaques are characterized by a large necrotic lipid
core, a thin overlying fibrous cap and ulceration while large calcifications
seem not to be related to stroke symptoms [131},132]. Plaque vulnera-
bility is extremely important in the context of CAS, where the plaque is
manipulated by the endoluminal devices [237]|. Large randomized trials
have shown that the incidence of peri-procedural major adverse events
increases with age [238,[239]. In elderly patients larger lipid cores, and
more calcified plaques are present as compared with younger patients
who show more fibrotic plaque tissue [239]. High prevalence of lipid
cores is associated with higher risk of embolism during and after CAS
[240] and superficially calcified lesions could potentially embolize during
stent deployment causing stroke [67].

Numerical simulations seem promising in assessing the plaque rup-
ture risk. Thanks to advances in diagnostic imaging, plaque compo-
sition is now detectable in wvivo allowing for the reconstruction of pa-
tient specific models for numerical analysis. Fluid-structure interaction
and structural finite element analysis (SFEA) of in vivo MRI based
atherosclerotic carotid models were able to relate sites of rupture with
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plaque structural stresses [141], differentiate ruptured and unruptured
plaques 147,152,153, refine risk stratification among symptomatic pa-
tient with /without hemorrhage or thrombi |153|, correlate plaque stress
and lumen curvature [145,/151] and correlate biomechanical structural
stresses with ipsilateral cerebrovascular ischemic symptoms [156]. Stress
concentration was found to occur at the shoulders and at the thinnest
fibrous cap regions while thicker fibrous caps prevent high stresses in
the lipid core [144H146]. Computational frameworks have also been used
to analyze the impact of different stent designs and interventional tech-
niques on the outcome of endovascular procedures in various vascular
districts [97,/167,168},/179].

However, the effect of anatomical differences and plaque composition
on endovascular procedure outcomes has been rarely studied [241]. The
majority of the aforementioned studies suffers of different limitations:
2D or simplified 3D geometries not taking into account the complex
plaque morphology, inadequate material descriptions which do not re-
flect the anisotropic behavior of both diseased and healthy tissues [242]
which lead to significantly different results compared to isotropic mate-
rial models [243]. The assumption of an anisotropic model can be suffi-
ciently general to study the pathophysiological atherosclerotic condition
[99] but over-stretching of the artery induces damage which can influence
the biomechanical interpretation of the interactions between vessel and
devices [244]. Thus, procedure related conditions and adequate anatom-
ical and material models challenge a complete accurate computational
analysis that captures the correct mechanics of the interventional proce-
dure.

In order to gain further insight on CAS, a virtual environment
based on SFEA was built to emulate the stenting procedure on gen-
eralized carotid models with inhomogeneous plaque composition focus-
ing on anatomical changes. Different morphology and composition of
the atherosclerotic plaque (lipidic, fibrotic, calcified) were considered,
incorporating a damage model to describe the vessel injury due to the
angioplasty and stenting procedure.

4.2 MATERIALS AND METHODS

4.2.1 Mesh generation
4.2.1.1  Carotid models

Three realistic carotid bifurcation models were created using the open-
source script based program pyFormex (http://www.pyFormex.org) us-
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ing the strategy described in detail in chapter 3] For all models, a fixed
diameter of 7 mm was chosen for the common carotid artery lumen,
while internal and external carotid artery diameters were smoothly re-
duced to 5 and 4 mm respectively. These are realistic values according to
ultrasonographic and conventional and digital angiographic data in male
patients (mean age 52 and 62 years) with no visible disease [245]246].
Vessel wall thickness was assumed to be 30% of the lumen diameter [112].
The geometries were designed to have an eccentric plaque with minimum
cross-section area of 15% of the original lumen (corresponding to 85%
stenosis) and 20 mm length. The stenosis is smoothly reduced until
restoring the normal diameter using a normalized gaussian shaped func-
tion. Only two layers were considered for the healthy vessel (adventitia,
media-intima) in order to apply experimentally derived material model
data [112], while fibrotic media, lipid pool, fibrous cap regions were con-
sidered for the lesion. Assuming a circular vessel shape with a fibrous
cap of 0.25 mm as baseline, the other geometries were modified i) to in-
crease the fibrous cap to 0.5 mm and ii) create an elliptic lumen shape (to
account for lumen curvature changes) as shown in Figure and Figure
M.2] The mesh was generated with 76200 hexahedral elements. The den-
sity of the elements was increased at the plaque location, while coarser
seeding was applied elsewhere (Figure [4.1)). Sensitivity analysis was not
performed as the number of elements was almost 6 times higher than a
previous study on carotid artery stenting [168] which demonstrated that
13000 elements were sufficient for accuracy of the stress analysis. More-
over the smart seeding guarantees a higher number of elements at the
stented location, increasing the accuracy of the results in this location.

FIGURE 4.1: Axial section of the baseline model with a detail of the element’s local
coordinate system.
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FI1GURE 4.2: Cross-sections of the internal carotid artery of a the baseline , b in-
creased fibrous cap thickness and c elliptical shape. The legend indicates the different
material regions considered in the model: A

4.2.1.2  Material model

To mimic the mechanical response of the diseased vessel, we imple-
mented the anisotropic hyperelastic constitutive model proposed by
[247] in a dedicated ABAQUS subroutine (VUANYSOHYPER) to de-
fine anisotropic materials. Following the nomenclature of Famaey et al.
[224], this model describes the hyperelastic strain energy function ¥ as
the addition of the isotropic contribution of the tissue matrix W, and
the anisotropic contribution Wz, of two families of collagen fibers Wz,
and W, and the dilatational contribution ¥g; to account for a slightly
compressible material behavior under pressure, which is needed for an
explicit solution scheme in the finite element solver ABAQUS. The strain
energy function is described by the following equations:

U =W + Wpip + Yai (4.1)
Ut = Cro(I1 — 3) (4.2)
Upip=» E6»”1310(Ei) (4.3)
“— ko
i=4,6
E; = (1—p)(I1 = 3)* + p(I; — 1)° (4.4)

where Cho, k1, ko are material parameters and p controls the dispersion
of the fibers. In this representation, a value of p = 1 means that the
fibers are fully dispersed and do not show any preferential orientation
resulting in an isotropic model, while a value of p = 0 represents the

71



4. INFLUENCE OF VASCULAR ANATOMY ON CAROTID ARTERY
STENTING

ideal case where all fibers are aligned. A dilatational component Wy
was added to the strain energy function W:

Wy = % <J22_ L zn(J)> (4.5)

where J is the elastic volume ratio and D is a parameter dependent on
the bulk modulus. To account for the rupture of collagen fibers upon
stretch, we included a damage model as described by Famaey et al. [224]
motivated in previous studies [244]. In this model, ¥, and Wy, are
multiplied by a scalar damage value 1 —d :

U = > (1-d)Y, (4.6)

i=mat, fiby, fibg

where d; is function of the undamaged strain energy :

b (1 e () -

Bi = sup(W; — W), Vi (4.8)

In these expressions, 3; keeps track of the maximum occurrence of the
undamaged function ¥¢ and W™ is an initial offset. The maximum value
of the damage is determined by ~;, whereas 7; is a scaling constant.

The parameters of the vascular material models were taken from lit-
erature for both the healthy carotid [248] and the atherosclerotic compo-
nents in iliac arteries [242|. The lipid pool was considered as a butter-like
material while the calcifications were assumed to be a stiff ceramic-like
material, as suggested by [242]. Table and Figure [4.3h, b, d resume
all the materials used in the model. The values of D for the dilata-
tional part were set to obtain a poisson ratio of 0.475 [249]. Though in
the mentioned studies the angle (Table between the collagen fibers
(considered arranged in symmetrical spirals [250]) and the circumferen-
tial direction was derived from an optimization process without a his-
tological comparison. Local material orientations needed to orient the
fibers were calculated per element (that due to the modelling strategy
are aligned in the longitudinal direction) and locally averaged to avoid
discontinuous orientations (Figure [4.1]).
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FIGURE 4.3: Curves describing the material behaviors for the stenting procedure.
Experimental data of axial and circumferential uniaxial tensile test for fibrous cap,
fibrotic media, calcification [242| and lipidic material a; adventitia b and media-
intima d layer behavior reconstructed from the material coefficients [248]; nitinol
stent material properties c.

4.2.1.8  Material damage model calibration

To calibrate the constants of the damage model a similar approach as
described by [224] was used. A first simulation was run on the baseline
geometry to record the initial values of the strain energy for the matrix
and the families of fibers. Differently from [224], who set the threshold
to a physiological systolic pressure (SP) we considered a more conser-
vative model hypothesizing that damage only occurs at the double of a
SP of 120 mmHg (i.e. 240mmHg). Lacking experimental data to fit the
model, we assumed that 95% of the “damageable” part of the material is
totally damaged at a value of §; being 2.5 times the strain energy value
associated with SP, which according to our simulation was leading to
stresses close to rupture (around 600 KPa for the healthy vessel com-
ponents, taken as reference) reported in experimental works [242]. The
values of ; were assumed to be all equal to 0.9 as in [224]. Parameters
are summarized in Table 1]
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TABLE 4.1: Summary of the material properties and damage parameters for the vessel domain.

Material parameters Source Damage parameters
C1o k1 Fibers ini ini '
Model (kPa) (kPa) ka angles (°) VYmat Yy Tmat  Tsiv
Adventitia 29.8 180.9 109.8 0.8 30.1 Sommer et al., 2012 [248] 3.58 5.0 298 4.17
Media-intima  61.15 24.7 16.5 0.8 6.9 Sommer et al., 2012 [248] 7.0 6.0 584 5.0

Fibrotic media 21.53 919.8 1919.6 1.0 23.59 Holzapfel et al., 2004 [242)] 5.1 1.7 4.25 147

Fibrous cap 13.98 40.08 65.35 0.75 77.55 Holzapfel et al., 2004 [242] 5.0 5.6 4.17 4.67
Lipid 0.5 - - - - - - - - -
Calcification 2250 - - - - - - - - -
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FIGURE 4.4:  Mesh generation procedure of the tapered Acculink stent model
(7x10x30 mm). Segmented geometry from the uCT scans a, creation of the of the
parametrized repetitive unit cell b, generation of the hexahedral stent mesh c.

4.2.2 Stent model
4.2.2.1 Mesh generation

The stent model was built starting from a uCT scan of an 8x20 mm
Acculink stent (Abbott Vascular, Boston, IL). 3DSlicer (http://www.
slicer.org/) was used to perform accurate geometrical measurements
of the stent and to generate a detailed triangulated stent geometry (Fig-
ure ) The geometry was then imported in pyFormex, virtually un-
rolled using a cylindrical coordinate transformation to obtain the planar
device pattern. The repetitive units of the stent were then drawn by
“tracing” the flattened geometry (Figure [£.4p). Hexahedral meshes for
the SFEA were obtained using the approach described in [251]. The
parametric model was adapted to create a 7x10x30 mm tapered stent
(Figure {1.4k) to respect the indication of the stent manufacturer for the
target vessel. Stent strut thickness and width of the implanted stent
were assumed equal to the available sample (0.17 mm and 0.12 mm).
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4.2.2.2  Material Model

In order to mimic the behaviour of the self expandable nitinol Acculink
stent, the stress—strain relationship of the nitinol alloy (Ti-55.8 wt%Ni)
was retrieved from literature [252] and defined using an embedded user
subroutine in ABAQUS based on the model of [253] (Figure [£.3f). Sym-

metry in compression was assumed.

4.2.3 Virtual stent deplyment procedure

The commercial finite element solver ABAQUS/Explicit (Simulia Corp,
Providence, RI) was used to perform a quasi static analysis of the virtual
CAS because of the non-linearity of the material model, large deforma-
tions, and complex contact problems. Five simulations were performed
inserting the stent in the different atherosclerotic models. We considered
the three previously described models and the baseline was modified to
substitute the lipid core with fibrotic material and calcifications (Ta-
ble . The nodes of the open branches of the carotid model were
constrained to allow only radial displacement. No vascular pre-stretch
was considered. The stent placement was performed in five major steps:
catheter driven stent crimping and bending along the vessel centerline,
balloon dilation at the stenotic location, balloon release, stent deploy-
ment by gradually expanding the catheter in the radial direction. Both
the catheter and the balloon were modeled as rigid cylinders and their
displacements were imposed analytically using a dedicated ABAQUS
subroutine (VDISP). A detailed description of the strategy is presented
in [251] and outlined in chapter 3| To reduce the potential damage of
the vessel, the balloon size was chosen such that it matches the pre-
lesion vessel diameter at the stenotic location (5 mm). This conforms
with stent manufacturer guidelines. Reduced integration elements with
hourglass enhancement were chosen for both stent and vascular domain
while for the rigid tubular structures quadrilateral surface elements with
reduced integration were used.

4.2.4 Data analysis

In order to evaluate the impact of the virtual procedure the following
data were analyzed:

1. The 99 percentile of the maximum principal Cauchy stresses
(99PCS) of the different vascular regions to study possible zones
of plaque rupture and tissue failure.
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TABLE 4.2: Description of the carotid artery models considering different lumen
shapes and plaque components.

Fibrous cap

Model Lumen shape thickness (mm) Lipid core material
Baseline circular 0.25 lipid
CIRC/025/FIB circular 0.25 fibrotic media
CIRC/025/CALC circular 0.25 calcification
CIRC/050/LIP circular 0.5 lipid
ELL/025/LIP elliptic 0.25 lipid

2. The volume of damaged arterial tissue (using the material model
damage criteria) beyond 50% (VD50%) at the stented location,
which could initiate the restenotic process. The volumes of dam-
aged extracellular matrix and collagen fibers are considered sepa-
rately.

3. The relative lumen gain at the maximum stenosed location (the
ratio between the area increase and the initial stenotic area) to in-
dicate poor early outcomes of CAS which can contribute to resteno-
sis.

4.3 RESULTS

4.3.1 Stress analysis

Figure [4.5| shows the results of the virtual stent deployments. The open
cell design of the Acculink stent adapts well to the tortuous stenotic
location with only limited gaps and, consequently, good scaffolding of
the plaque. The stress distribution contour plot is thresholded at 250
kPa, the experimentally determined stress at rupture for fibrous cap
in severely stenosed iliac arteries [242|. The geometries with lipid core
(CIRC/025/LIP, CIRC/050/LIP, ELL/025/1LIP), show a larger area with
higher stresses than the cases in which the lipid pool has been substituted
with calcified and fibrotic tissue (CIRC/025/FIB and CIRC/025/CALC).

No substantial differences are observed between these two steno-
sis with stiffer materials, while an increased fibrous cap thickness
(CIRC/050/LIP) reduces the area of the maximum stresses.

A detail of the Cauchy stresses at the maximum stenosed location af-
ter stenting is depicted in Figure[£.6] Stiffer plaques (CIRC/025/FIB and
CIRC/025/CALC) induce a larger area of stress concentration around
the vessel lumen. In particular, the calcification seems to create a zone
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Ficure 4.5: Deployed configuration after performing the virtual procedure. Maxi-
mum principal Cauchy stresses (kPa) are depicted for the fibrous cap. Positive values
are thresholded at 250 kPa, the chosen fibrous cap rupture limit according to exper-
imental data ( [242]).

of compressive stress at the fibrous cap/calcification interface and a bet-
ter shielding of the underlying tissues. The models with large lipid core
(CIRC/050/LIP, ELL/025/1LIP) show a similar stress distribution with
compression of the fatty plaque, high tensile stresses concentrated in the
fibrous cap and a smaller area of stress concentration around the lumen
region opposite to the plaque.

The thicker fibrous cap slightly reduces the stresses induced into the
lipid pool (CIRC/050/LIP), while the elliptic shape (ELL/025/LIP) has
the opposite effect. The elliptic lumen also causes an increase of stresses
at the opposite side of the plaque. This might be explained by the larger
post-stented area and smaller initial thickness of the healthy region.

Figure shows 99PCS in each region . Due to the symmetry of the
model, the damage of the fibers in every element is very close, so the
maximum values of fiber-contributed damaged volumes is considered.
The results can be interpreted considering the differences between soft
(lipidic) vs hard (fibrotic and calcified) plaques. While the 99PCS of
the adventitia and the fibrous media is comparable in all models, in
case of hard plaques the values of stress in the media are much higher,
while in the fibrous cap stresses are significantly smaller. The softer
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FIGURE 4.6: Maximum principal Cauchy stresses (kPa) at the maximum stenotic
location after stenting. Positive values are thresholded at 250 kPa, the chosen fibrous
cap rupture limit according to experimental data ([|242]).

mechanical behavior of fatty plaques allows larger deformation of the
fibrous cap, leading to higher stress values. This is in line with previous
computational studies [254]. The lipid pool shows lower 99PCS in the
modified geometries. In particular, lower stresses are found in the model
CIRC/050/LIP, demonstrating the shielding effect of a thicker fibrous
cap.

However, as shown in Figure {4.0] at the largest stenosed location,
higher compressive stresses were found in the model ELL/025/LIP. Com-
bined with stresses close to rupture in the fibrous cap, this might increase
the risk of plaque material leaking into blood circulation and suggests
that global indicators can mask zones of localized risk, as previously
reported [154].

4.3.2 Damaged volume

Figure[d.§|depicts the volumes of the damaged artery. The VD50% of the
extracellular matrix in the adventitia is almost zero in all models, while
the damage of the fibers is considerable only for hard plaques, suggesting
that soft plaques can protect a larger area of the underlying tissue but
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FIGURE 4.7: Maximum Cauchy Stress at 99 percentile.

can induce higher stresses in localized regions. The healthy media shows
an overall lower damage for soft plaques. Contrarily, the VD50% of the
fibers of the fibrous cap is generally lower in hard plaques while it shows
no changes among the fatty core models. This is in agreement with the
stress distribution in Figure 7.

FIGURE 4.8: Volumes of damaged the components. Damaged matrix (top) and
damaged fibers (bottom) volumes in every region per each model.
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FIGURE 4.9: Lumen gain of the different models.

4.3.3 Lumen gain

A bar plot of the lumen gain at the highest stenotic location is shown in
Figure[d.9] Stiffer material properties of the plaque, in similar procedural
conditions result in a smaller increase of the narrowed lumen, i.e. higher
residual stenosis, and may potentially lead to the restenotic process. A
thicker fibrous cap on the one hand is able to shield the lipid pool but
results in smaller lumen gain. The elliptic model shows the best result
with the lowest residual stenosis.

4.4 DISCUSSION

In this work we studied the effects of different plaque constitutions and
lumen shapes on CAS. In general, the procedure leads to a good clinical
outcome, but peri- and post-procedural complications still occur, such
as embolization and restenosis.

Higher residual stenosis in case of hard plaques compared to soft
plaque has previously been reported for coronary artery stenting [255-
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257| supporting the results obtained in this work. This is consistent
with the biomechanical properties of soft plaques that, because of the
low elastic modulus, experience higher strains [148}254,258].

The higher stresses in the fibrous cap region of soft plaques demon-
strate their vulnerability to potential plaque fragmentation and em-
bolization, as shown by clinical evidence [239,240)].

It has also been reported that eccentricity of the plaque results in
higher lumen gain and a larger amount of plaque reduction [256}259].
This can partially explain the higher lumen gain of the elliptic shaped
model (more eccentric than the circular lumen geometry) and the higher
compressive stresses at the maximum stenotic location. Additionally,
our results show that an elliptical lumen with a soft plaque allows for
a higher lumen gain due to the larger surface interacting with the lipid
pool.

Soft plaques have shown to give better post-procedural results, yet
they are also more prone to restenosis [257]. In the present work, the
models with lipid core have a larger area of the fibrous cap with high
stresses. This can comply with the higher risk of restenosis, which occurs
as a vascular response to injury [260,261].

Animal studies have demonstrated that stent configuration is related
to vascular injury, thrombosis and neointimal hyperplasia [261.,[262] and
numerical studies have indicated that the stent mesh influences differ-
ences in stress distribution in the vascular wall [168,263),264] which seems
to explain why stent design has been reported to affect restenosis [265].

Note, however, that in these aforementioned computational studies,
the results were obtained on a single vascular geometry while our results
suggest that the same stent inserted in similar procedural conditions is
influenced by the vascular morphology and plaque constituents. This is
similar to what has been reported after virtual procedures on concentric
atherosclerotic coronary arteries with different plaque composition [241].

In addition, our study shows that eccentricity leads to an uneven
stress distribution in the vessel, with high stresses in the regions not
masked by the plaque. This seems to provide a biomechanical basis to
the evidence that eccentric plaques are more prone to procedural failure
|266L[267]. Lumen shape, by affecting stress distribution, is known to
have an impact on plaque fracture location [144]|. This may be relevant
for calcified plaques with low fracture stresses, that have a high risk of
thrombosis, though become more vulnerable after endoluminal treatment
[241].
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Our approach allows to study the peri-operative CAS environment
from a structural point of view only, thus neglecting the effect of stent
placement on flow changes. The stent struts may induce clot forma-
tion [268]269] and, as in our cases, the flow to the external carotid
artery may be obstructed. Computational fluid dynamic results com-
pared with experimental data have shown that shear stresses induced by
local flow patterns due to the stent struts, promote neointimal prolifer-
ation [108}270] suggesting that the vascular characteristics, which drive
the deployed stent configuration, can also affect restenosis via pathways
related to the blood flow.

According to our results, the plaque shoulder regions, that exhibit
stress concentrations induced by the in wvivo loading conditions in un-
stented lesions [145,151], seem not to have an impact on the stress distri-
bution due to the stent placement. This is particularly visible comparing
the elliptical with the baseline model.

Even though the computational complexity of the presented models
is high, there are some limitations which might influence the interpre-
tation of the achieved results. The virtual insertion was performed by
bending the stent along the vessel centerline, without simulating the
advancement of the stent through the vascular network. Though due
to the superelastic behaviour of nitinol (with no plastic deformation at
working conditions), the mechanical history of the device should not
substantially affect the final stent configuration. The stent placement
was simulated by gradually opening the cylindrical catheter in the radial
direction without considering the catheter retraction which may slightly
affect stent positioning in real cases. Thus an ideal stent positioning
was simulated, excluding operator dependency. The balloon expansion
was modeled as a rigid surface displacement, regardless of a possible non
uniform expansion of the angioplasty balloon [103}/179].

Experimental data on human arteries are needed to correctly evaluate
the injury of the plaque and the vascular wall. The models also neglect
the in vivo pre-stretch condition which can cause an underestimation of
the numerical stress results [112]. The hard plaque morphologies have
a very high recoil. For these stiff materials, a hyperelastic formulation
with or without a damage model may not be adequate to describe the
endovascular procedure, and permanent deformations of the vascular
components should be included to obtain more realistic results [111].

In addition it must be considered that even though the value of nu-
merical models is to study conditions impossible or difficult to achieve
in in vivo setups, patient specific validations are needed to ultimately
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prove the accuracy of in silico models in the in vivo setting. Given,
however, the comparative nature of this study, we believe that these
simplifications and limitations are acceptable.
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CHAPTER

Feasibility of a priori numerical
assessment of plaque scatfolding
after carotid artery stenting in
clinical routine

The previously described virtual carotid stenting environment is now
pushed forward to analyze patient specific geometries from clinical data.
The real procedure is emulated in the numerical setting and the result-
ing outcome is validated with the post-operative datasets. Additionally
relevant geometrical parameters have been computed on the deployed
device to evaluate the quality of the procedure by analyzing potential
causes of procedural failure. The results of this study have been resumed
in a manuscript submitted to:

“Feasibility of a priori numerical assessment of plaque scaffolding after
carotid artery stenting in clinical routine: proof-of-concept”, lannaccone,
F., S. De Bock, M. De Beule, F. Vermassen, 1. Van Herzeele, P. Ver-
donck, P. Segers, and B. Verhegghe. International Journal of Artificial
Organs.
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5. FEASIBILITY OF NUMERICAL ASSESSMENT OF PLAQUE
SCAFFOLDING AFTER CAROTID ARTERY STENTING

5.1 INTRODUCTION

Carotid artery stenting (CAS) is an alternative procedure for treatment
of severely stenosed symptomatic (stenosis>=50%) or asymptomatic
carotid (stenosis>=60%) artery lesions in high-risk patients and is as-
sociated with a similar stroke, death and myocardial infarction rate,
compared with carotid endarterectomy (CEA) [37,271]. Younger pa-
tients (<69 years of age) have been shown to have lower event rates with
CAS compared with CEA in 2 large randomized trials |[272]. While the
physicians’ and centers’ experience in this technique is growing, the peri-
operative risks of the procedure are decreasing [166,272-274| shifting the
major events to post-procedural complications [273] in well-selected pa-
tients. It has been suggested that stroke after CAS may be caused by
embolization when the stent mesh is unable to adequately confine and
scaffold the plaque [166]. In 75% of all procedures, all type of stents are
likely to obtain similar results. However, the rest of the procedures need
accurate screening. In these cases carotid stent choice is influenced by
arterial anatomy and lesion morphology [275-277| as scaffolding of the
plaque by the stent is one of the key parameters for procedural success.
One of the requirements for carotid stent design is good apposition
of the stent to the vessel wall [169},278| as clot formation on the metallic
stent surface is accelerated by the decreased blood flow velocity at the
stenotic lesion by stent placement [268.,[269]. While the effect of incom-
plete stent apposition (ISA) has been studied in coronary arteries and
appears to be a factor potentially contributing to late stent thrombosis
[279], limited data is present in literature about consequences of ISA on
the clinical outcome of carotid stenting. Even though one study showed
that ISA is not related to adverse clinical events |269], the associated
risk of restenosis is yet to be clarified. This post-procedural risk is, at
present, not trivial to assess by imaging. Mono and biplane angiography;,
currently the gold standard to assess CAS [34], is not an optimal tech-
nique for the detection of stent malapposition. Other techniques such
as OCT |280] or IVUS [67] have been proven to be safe and effective
in quantifying stent malapposition and plaque prolapse (associated with
major adverse events) but they are not commonly used in CAS.
Whether stent design influences the peri-procedural and early post-
procedural neurologic outcome is also still an unsolved topic, mostly due
to the lack of data relating stent designs to the clinical outcome [166,
281-284]. When re-analyzing the SPACE trial data, Jansen et al. [281]
showed a statistically significant difference between open and closed stent
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designs, demonstrating a lower rate of events associated with closed cell
designs in these symptomatic patients, which is known to be associated
with an increased risk for peri-operative stroke [42]. A retrospective
analysis of patients treated with various carotid stents in symptomatic
and asymptomatic carotid artery disease noted increased post-procedural
event rates for the 4 open cell stents and for one of the 3 closed cell
stents used in the different considered studies [166]. When the stents
were sub-grouped according to the free cell area (FCA) higher post-
procedural event rates were correlated with an increase of FCA. The
differences were more pronounced in symptomatic patients confirming
the findings of previous works [285]. However, criticism has been raised
due to possible biases and confounders [286-288| in particular because
no objective measurement of silent brain infarction, such as diffusion-
weighted magnetic resonance imaging (DW-MRI), was performed. In
contrast, others have failed to prove any difference in stroke and death
risk between patients treated with open/closed stent designs or grouped
by FCA [282,287,288]. Still, uncertanty remains especially since the
occurrence of any stroke is unclear [289,290] and may have an impact
on the interpretation of the results [287]. Moreover, open cell stent
designs have also been associated with fewer new DW-MRI lesions [28§|,
although in this study in contrast to others [284], no embolic protection
device was used. More recently a meta-analysis of Tadros et al. [291]
noted that symptomatic patients with favorable anatomy treated with a
closed cell design, have fewer major adverse events, reopening the debate.

Geometrical features of the device may definitely play a role in CAS
outcomes and newer devices are focusing on the improvement of the scaf-
folding capabilities [290], which includes membrane stent systems such as
MembraX (Abbott Vascular, Behringen, Switzerland). Geometrical scaf-
folding parameters have been previously proposed on the free expanded
configuration [169], although the same device can have a different be-
havior in situ depending on the anatomical site [275-277].

Technical tools that are able to predict stent appositioning and its
mechanical behavior in the treated vessel are appealing, and may be
beneficial for procedure planning. Numerical studies are helpful in the
process of virtual carotid stent design and optimization and have demon-
strated to be a valid predictive tool when tested in vitro [170], and use-
ful to study the behavior of different stent designs implanted in a single
carotid model [1104167,168,172|. Although, to the authors knowledge, no
CAS in vivo validation has been previously reported. The present work
introduces a novel virtual patient-specific pre-operative environment to

87



5. FEASIBILITY OF NUMERICAL ASSESSMENT OF PLAQUE
SCAFFOLDING AFTER CAROTID ARTERY STENTING

evaluate the feasibility of numerical prediction of clinical outcomes after
CAS focusing on plaque scaffolding. Mechanical simulations have been
coupled with novel analysis tools to quantify scaffolding parameters in
situ. Two real patient cases treated with the Acculink stent (Abbott
Vascular, North Chicago, IL) were studied to proof the concept. Rou-
tine pre- and post-stenting imaging were compared with the computer
simulations to validate the virtual operative procedure.

5.2 MATERIALS AND METHODS

5.2.1 Patient data

Two patient datasets (obtained after informed patient consent for the
use of their data in this work) were available for the study referred as
patient A (male, 75 years, 75% degree of stenosis in the internal carotid
artery - ICA) and patient B (female, 61 years, 85% degree of stenosis
in the ICA). Both asymptomatic patients were treated via transfemoral
route using an embolic protection device (Emboshield NAV 6, Vascular,
North Chicago,IL) and an Acculink stent was implanted by an experi-
enced team: tapered 7 mm x 10 mm x 40 mm for patient A and tapered 7
mm x 10 mm x 30 mm for patient B. Pre-operative Computer Tomogra-
phy Angiography (CTA) images were acquired with a Siemens Somatom
Sensation Cardiac scanner with resolution of 0.37 mm x 0.37 mm x 1
mm for patient A and Siemens Somatom Definition Flash scanner with
resolution of 0.54 mm x 0.54 mm x 3 mm for patient B. Post-operative
monoplane angiography were acquired using a Philips AlluraXPer FD10.

5.2.2 Vessels models

From the pre-operative 3D CTA, geometries of the vessel lumen and
of the calcified plaques were segmented (Figure [5.1]A) using 3DSlicer
(http://www.slicer.org/). Other tissues (such as soft plaques and
vessel wall) were not visible on CTA. To create an approximate model
of the vessel wall the following steps were taken:

1. the geometry of the calcified plaque and the vessel lumen were
combined and manually corrected to create an approximated shape
of the assumed healthy lumen before lesion development (Figure

b-1B);

2. the actual lumen and calcified plaque were subtracted from the
geometry of the healthy lumen in order to obtain the non calcified

plaque geometries (Figure [5.1B);
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Fi1GURE 5.1: Work-flow of the vessel model reconstruction: A segmentation of the
vessel lumen and calcified plaque, B manual adjustment of the lumen shape to create
the assumed healthy lumen and retrieve the subtracted non calcified lesion depicted
in blue , C expansion of the healthy lumen to create the outer vessel wall.

3. subsequently, the 3D triangulated models were generated for the
diseased lumen, the plaques components and the healthy lumen;

4. the healthy lumen geometry was expanded to create the outer ves-
sel wall geometry. The healthy lumen distance to the centerline
of the vessel (computed in vmtk http://www.vmtk.org/) was in-
creased by 30% in the normal direction to the surface, a realistic
value of the carotid artery wall thickness [112].

5. Starting from the geometry of the real lumen and the reconstructed
outer wall, the 3D hexahedral mesh of the vessel (Figure for
the numerical solver is created using IA-FEmesh, a meshing tool
embedded in 3DSlicer [292], as described in chapter 3]

The vessel was considered as single-layered. We used a stress-strain
curve for the arterial wall published in a previous study [98]. We then
scaled the curve to calibrate the actual deformations induced by the stent
(using the pre- and post-operative imaging data), and coefficients of sev-
eral hyperelastic constitutive models were fitted to the material response
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FI1GURE 5.2: Reconstructed vessel geometries of the 2 patients. Calcifications are
depicted in white and the assumed hypocellular plaque in yellow.

curve using the tool “Evaluate” of the ABAQUS (Simulia Corp, Provi-
dence, RI) material property menu. Mainly due to stability concerns, we
opted for a third order Ogden hyperelastic material model formulation,
whose general strain energy potential ¥ is given by:

N
Mi ~—op | o oy
\1::22@@1 + X2+ A3 = 3) (5.1)
i=1 ?

where \; are the deviatoric principal stretches, N is a material parameter
and ay, p; are temperature-dependent material parameters. It needs to
be highlighted that the procedure was manual and not derived from an
automatic optimization process. At every iteration the diameters of the
lumen of the numerical simulation were compared with the clinical data
at specific vessel locations until obtaining the lowest mean error along
the entire stented region.

In order to assign different material properties at the plaque location,
the segmented geometries of the plaques were used to select the elements
of the vessel mesh located inside the plaques surfaces. The material
properties of the plaques were derived from Loree et al. [113] and fitted
using a first order hyperlastic Ogden model using the afore mentioned
ABAQUS tool. To roughly emulate the rupture of the plaque we assumed
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a constant plastic behavior at the reported values of plaque rupture (400
kPa). All material parameters are summarized in Table and 5.3

5.2.3 Stent models

The stent models were built starting from a pCT scan of a 8 mm x 20
mm Acculink straight design to retrieve the basic cell geometry of the
implanted stents. After segmentation of the stent geometry (in 3DSlicer),
a parametric hexahedral stent model was built in pyFormex (http://
www . pyFormex . org) using the approach described in De Bock et al. [251].
The parametric model was adapted to create the tapered stents (7 mm
x 10 mm x 30 mm and 7 mm x 10 mm x 40 mm) shown in Figure

Stent strut thickness and width were assumed equal to the ones of
the available sample, measured in 3DSlicer (0.17 mm and 0.12 mm re-
spectively). The stress—strain relationship of the nitinol alloy (Ti-55.8
wt% Ni) was retrieved from literature [252] and defined using an embed-
ded user subroutine in Abaqus based on the model of Auricchio et al.
[253]. Symmetry in compression was assumed (Table [5.3).

5.2.4 Virtual stent deployment procedure

The commercial finite element solver ABAQUS /Explicit with quasi static
analysis was used to mimic the real stent implantation. The numerical
simulation involved non-linearity due to the material properties, large
deformations, and complex contact problems. The general contact algo-
rithm was used to handle the interactions assuming a friction value of
0.05 for all the contact surfaces [167]. The stent placement was emulated

TABLE 5.1: Material parameters for the calibrated vessel wall.

IIT order Ogden parameters
p1(kPa) o1 p2(kPa) oz p3(kPa) ag

-3820 0.94 3490 2.75 620 -11.43

Calibrated
healthy wall

TABLE 5.2: Material parameters for the the fitted plaques components. Data are
retrieved from [113].

I order Ogden parameters

Plasticity
p(kPa) «a (kPa)
Hypocellular plaque 21.8 24.72 400
Calcified plaque 72.34 25 400
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TABLE 5.3: Nitinol material parameters for the stent devices. Symmetry in com-
pression was assumed.

Variable Value
Austenite elasticity (MPa) 41000
Austenite Poisson ratio 0.3
Martensite elasticity (MPa) 23333
Martensite Poisson ratio 0.3
Transformation strain 0.0437
Start of transformation loading (MPa) 450
End of transformation loading (MPa) 520
Reference temperature (°C) 37
Start of transformation unloading (MPa) 210
End of transformation unloading (MPa) 130
Start of transformation stress in compression (MPa) 450

FI1GURE 5.3: Schematic description of the evaluated scaffolding parameters.
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imposing analytical displacements to a cylindrical catheter (4-node sur-
face elements with reduced integration - SFM3D4R) by a VDISP sub-
routine to drive crimping, smooth bending along the centerline of the
vessel and deployment of the stent at the arterial lesion as previously
described [251]. A similar cylindrical geometry was used to emulate bal-
loon pre-dilation of the vessel up to the assumed diameter of the normal
vessel.

5.2.5 Validation

To validate the numerical results we compared the post-procedural mono-
plane angiographic images and the virtual implantation qualitatively
showing the stent struts shape. A quantitative validation was performed
measuring the relative errors € between the diameters D of the stented
location with respect to the clinical data measured as:

c— Dsimulation - Dz’n Vivo - 100 (52)

Din VIVOo
The monoplane angiograms were previously calibrated from the catheter
size used during CAS. The numerical results were imported in pyFormex
to extract the vessel lumen and the angle of view of the deformed model
was manually adjusted in the viewer to match the position of the in vivo
dataset. In wivo and simulated implantation images were calibrated to
match the diameter of the non-stented vessel portions.

5.2.6 Post-processing for scaffolding evaluation

Three different parameters were measured to evaluate the scaffolding
of the stent, i.e. the support given by the stent to the arterial lesion,
schematically depicted in Figure

1. Incomplete strut apposition (ISA) to the vessel wall, computed as
the distance from the external stent surface nodes to the closest
vessel surface element. The percentage area of stent struts within a
threshold distance of the vessel wall, relative to the total stent area
was computed as quantitative parameter of ISA. The threshold of
0.2 mm was chosen to identify most critical areas undergoing ISA
[280].

2. Stent cells’ areas of the implanted stent. The cell area was com-
puted from the minimal surfaces that could fill the FCAs. The
surface was created on the undeformed stent, triangulating the cell
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FIGURE 5.4: Implanted tapered Acculink stent models (7 mm x 10mm x 40 mm and
7mm x 10 mm x 30 mm).

nodes and keeping trace of the connectivity of each triangle. Using
the connectivity table, the surface was then deformed according to
the new position of the cell nodes after the implant.

3. Largest fitting sphere (LFS) going through the FCAs. The sur-
face fitting the FCA has been seeded with an adequate number of
points (determined after convergence estimation). The minimum
distance of each point to the free edges of the cell is computed.
The point (center of the sphere) with the largest distance (radius
of the sphere) is then selected.

5.3 RESULTS AND DISCUSSION

5.3.1 Validation

The numerical simulations were able to emulate the overall shape of
the implanted stents retrieved from the clinical monoplane angiographic
images (Figure and [5.6)).

Table 5.4l summarizes the relative error of the lumen diameter for
the indicated sections. Mean relative errors of the lumen diameters are
5.31+8.05% for patient A and 4.124+9.84% for patient B.
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F1GURE 5.5: Qualitative comparison of the implanted stent configuration for pa-
tient A showing the clinical and numerical results. From left to right: angiography
of stented lumen, numerical results and X-ray of the implanted stent. Red arrows

indicate the location of the measured diameters.

TABLE 5.4: Absolute values of the diameters of the stented vessel and the relative
error between the numerical simulation and the clinical data, computed at 9 different

sections.

Diameters Section average

S1 S2 S3 S4 S5 S6 S7 S8 S9

Pre Operative (mm) 6.95 859 399 347 431 285 3.68 4.08 4.13

Numerical (mm) 7.38 859 4.82 420 459 371 414 442 430

Patient A Clinical (mm) 744 812 399 3.78 417 394 394 430 4.37
% -0.85  5.82  21.06 11.01 10.15 -5.73 5.20 2.79 -1.61 5.31+8.05

Pre Operative (mm) 5.31 4.96 4.15 39 530 3.82 468 5.38 4.74

Numerical (mm) 6.45 6.18 654 589 530 496 521 596 5.37

Patient B Clinical (mm) 6.45 5.71 5.80 597 6.37 562 563 629 5.76
% 000 -762 -11.25 1.26 2028 1333 810 555 7.40 4.12+ 9.84
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F1aure 5.6: Qualitative comparison of the implanted stent configuration for patient
B showing the clinical and numerical results. From left to right: angiography of
stented lumen, numerical results, and X-ray of the implanted stent. Red arrows
indicate the location of the measured diameters.

Both the qualitative and quantitative comparison between post- pro-
cedural angiography and the projected image of the virtually implanted
stent show an overall good agreement, catching the main features of the
deformed stent shape. In particular patient A showed a better match of
the stent shape compared to patient B even though average diameters
errors are similar in both cases.

5.3.2 Scaffolding

Results of the scaffolding evaluation are summarized in Table and
Figures and
As can be observed in Figure the open cell design shows ISA to
the vessel wall in the most tortuous and anatomically complex regions.
The percentage of stent struts area with ISA is remarkably higher for
the patient A (8.8% vs 2.4%) but results can be misleading due to the
fact that patient B has a completely occluded external carotid artery and
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TABLE 5.5: Average results of incomplete strut apposition (ISA), free cell areas
(FCA) and the radius of the largest fitting spheres (LFS).

Global scaffolding parameters

Model Stent area FCAs Radius of LFSs
with ISA (%) (mm?2) (mm)
Patient A 8.8% 7.6943.05 0.4540.11
Patient B 2.4% 7.594+2.80 0.4640.11

FIGURE 5.7: Incomplete strut apposition (ISA) of the implanted stents (struts colored
in red). Threshold was set at 0.2 mm. The arrows indicate the regions where the fish
scaling effect occurs.
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patient A had a larger part of the stent deployed at the bifurcation region
where there is a higher mismatch between stent and vessel diameter,
consequently leading to a higher areas of ISA. Both cases show good
apposition to the ICA. For patient B the sections at the bifurcation and
at the ICA were similar, giving a better apposition to the vessel wall,
also due to smaller curvature of the vessel. At the inner curvature of
the vessel wall ISA is noted in both cases, showing the “fish scaling”
effect typical for open cell designs, which is very apparent in patient
A at the bifurcation (Figure . Distal ISA, which has previously
been reported [269], occurred in patient B while proximal ISA occurred
in both patients. The analysis of the deformed FCAs shows that the
target diameter of the vessel highly influences scaffolding provided by
the device. In fact, patient A, with a smaller ICA diameter resulted in
smaller FCAs compared to patient B with a larger ICA diameter (Figure
. Also, in patient B, the cross sectional change of the vessel following
stent deployment is less pronounced, leading to a more uniform cell shape
deformation.

Largest fitting spheres (Figure do not pace the free cell areas
distribution. Maximum values of FCAs do not necessarily correspond to
higher values of the LFSs.

FIGURE 5.8: Free cell areas (FCAs) of the implanted stents (in mm?). Top: patient
A, bottom: patient B.
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FIGURE 5.9: Radius of the largest fitting spheres (LFSs) of the implanted stents (in
mm). Red arrows show the concave regions of the vessel, which are associated with
relatively large spheres compared to the convex regions. The green arrow shows how
the fish scaling can influence the sphere dimensions.

For patient B the FCAs are similar at the bifurcation and at the
mid part of the stent, while the LF'Ss are more inhomogeneous, ranging
from 0.36 to 0.7 mm. High values of LFSs are found at the ICA, mainly
concerning the cells apposing at the concave region of the vessel. Similar
considerations can be made for patient A. The chosen stent, which cor-
responds to the diameter requirements of the distal ICA, was undersized
for the bifurcation diameter resulting in an under-expansion of the stent,
leading to a free expanded-like configuration with higher FCAs and also
high LFSs. It can be noticed that high values of LFCs are also found
at the distal location of the ICA, again at a concave part of the vessel
although the FCA is small. This seems reasonable when thinking of a
bending bar: at the inner curvature stent struts get closer, while at outer
curvatures they widen. The values are also influenced by ISA. In fact, if
the cell “opens” in the radial directions, due to fish scaling, this results
in higher LFSs compared to a more planar configuration, as indicated
by the green arrow in Figure |5.9]

As highlighted in our study the fish-scaling effect (the tendency of the
stent struts to protrude into the vessel lumen) is present even with mod-
erate tortuosity at the convex lumen regions, which will clearly be more
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accentuated with a more complex lumen shape. It has been speculated
that fish scaling contributes to restenosis and stent fracture [278|. The
price for the absence of shortening, optimal conformability and flexibil-
ity of the open cell design leads to plaque scaffolding with lower plaque
coverage, possibly promoting plaque protrusion through the interstices
of the stent struts allowing plaque material to embolize after implan-
tation [293|. Nevertheless, in the analyzed patients due to a straight
post-stented vessel geometry and adequate sizing, the stent seems to
offer a good scaffolding of the lesion.

Another variable to take into account may be device oversizing. Even
though manufacturers provide guidelines, the choice for a certain degree
of oversizing still depends on the operator’s preference and experience
and the high variability of the carotid anatomy. In patient A the stent
has a larger degree of oversizing, resulting in a higher closure of the
stent cells at the ICA, offering more lesion protection and increasing
surface coverage. Oversizing may, however, lead to increased tension on
the vessel wall, that may cause neointimal hyperplasia and restenosis
[235]. In a previous finite element study Conti et al. [110] constructed a
single atherosclerotic carotid model which was virtually treated with four
different types of stents (including Acculink) and analyzed the FCAs.
The authors found a higher reduction of the cell area at the middle
location as in patient A. Further comparisons are not possible due to
the different anatomy, the lower degree of stenosis, and different stent
positioning. In the same study, it has been highlighted that LFSs in
the free expanded configuration (as described by Mueller-Huesbeck et
al. [169]) cannot catch differences in stent designs. Nevertheless, it is
our opinion that LFSs in the deformed configuration can, however, be
relevant to measure the maximum plaque particles potentially protruding
through the stent struts, especially when similar devices are compared in
different conditions. LFSs may improve and refine the FCA analysis. In
fact, cells with similar FCAs may result in various deformed shapes which
influence the LFSs (see the ICA segment in Figure and Figure
for both patients), suggesting that both measures are complementary
scaffolding parameters. LFSs may be regarded as a measure of how
opposite struts of a single cell are tied, i.e. how the cell is assembled.

An obvious observation from our results is that the specificity of the
lesion influences stent behavior and its scaffolding capability. CAS suc-
cess is often thought to be influenced by grouping stent designs, i.e. open
versus closed stent design, but this may be too basic as previously sug-
gested [253|. To refine the discrimination, other studies refer to FCA in
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the free expanded configuration (more than open versus closed design) to
be an important parameter in CAS failure [166]. Other stent characteris-
tics, however, such as conformability in angulated arteries and low radial
force, play a role in selecting the appropriate stent [169,278,286,293|.

Measurements of the maximum free cell area and the cell pore diame-
ter of the free expanded stent previously proposed [169] can be misleading
as the deformed configuration of the deployed stent in a tortuous vessel
is neglected. Our approach may be more suitable to analyze the cell
support at the lesion. Our results also suggest that global values may
not be adequate for an appropriate analysis as they can mask zones at
higher risk for embolization (i.e. at the lipidic plaque location). Accord-
ing to Table the mean values of FCAs and LFSs do not show any
difference between the two patients, even though the two stents behave
very differently. On the other hand a visual evaluation of the scaffolding
parameters of the virtual implantation allows a direct assessment of the
possible CAS outcome scenarios.

A recent study, using a similar strategy as ours, compared vessel
changes after virtual balloon expanded coronary stenting with clinical
images from two patients [294]. They could reproduce the general geo-
metrical features of the stented vessel and performed both a qualitative
validation (comparing the conventional angiographic images of the inter-
ventional outcome and the numerical results) and a quantitative analysis
measuring the straightening of the vessel in one patient for whom 3D
CTA data were available. Although their results suggest the feasibility
of their numerical approach, the differences in the interventional proce-
dure, vascular district and parameters used for the validation, make a
direct comparison with the results of our work difficult.

5.4 LIMITATIONS

The main limitations of our study are related to the imaging techniques
used to retrieve pre- and post-operative data. The routine pre-operative
CTA scans do not provide accurate information about the vessel wall
and more importantly about soft plaques.

Validation of the results should ideally be based on imaging tech-
niques that allow a direct comparison with the post-op 3D stent config-
uration and/or are able to quantify the ISA which cannot be measured
by conventional angiography. Post-procedural angiography in a hybrid
angiosuite offers a higher detail compared with CTA. Inadequate CTA
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resolutions can mask abrupt changes of the plaque morphology intro-
ducing inaccuracies of the pre-stented vessel geometry, which may be
amplified by the smoothing algorithms applied to obtain a “clean” sur-
face for model meshing. The arterial configuration is acquired by CTA
at a certain phase of the cardiac cycle, which may be different during
post-procedural imaging due to a different pressure load. The position
of the neck also changes the carotid configuration [169,[295] potentially
raising mismatches between the numerical and the actual configuration.

The difficulties that may be encountered in linking pre- and post-
treatment imaging data can be shown by some of the pre-treatment
sequences obtained in patient B (for whom the computational results
showed less agreement with the clinical data). Figure shows how
translation of the artery (due either to patient movements, heart rate
or blood pressure changes) during the injection of the contrast agent
(pre-stenting) modifies the curvature and configuration of the vessel.

Rigorous validation using in vivo data thus requires strict protocols,
to obtain high resolution CTA. Ideally, an identical position of the pa-
tient should be used during the procedure with stable hemodynamics.
We believe that these factors contribute to an initial mismatch between
pre- and post-operative data as displayed in Figure [5.10B. Moreover the
angiographic pictures show irregularities and ulceration of the plaque
anatomy which could not be detected by the CTA scans due to the low
resolution in the axial direction (arrows in Figure [5.10)).

Although the level of complexity in the simulations is high, there are
still important simplifications on the in vivo loading (ignoring blood pres-
sure, pre-stretching and pre-stresses) and on the lesion morphology (lack
of ulceration, thrombus or fibrous cap, assumptions on vessel thickness)
as many of these features are not detected by clinical routine CTA scan-
ner. Multi detector scanner and specific reconstruction algorithms may
improve the lesion imaging [296]. These factors, together with the high
variability of the biological materials, complicate a correct per-patient
calibration of the anisotropic material models. We used an isotropic ma-
terial model, which might not adequately describe the real biomechanics
of the vascular tissue [243]. We therefore implemented a faster and eas-
ier tuning of the material behavior as described in the methods section.
We needed to scale the original arterial stress-strain curve to obtain a
stiffer material which achieved a better matching with the in vivo data
in both cases. This is in line with the results of Auricchio et al. [243]
who found larger vessel deformation with the mentioned model when
compared with other literature data. Even though the limited number
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FicURE 5.10: Mismatches of the pre-operative condition between conventional an-
giography and the reconstructed model. A Arterial configuration changes during
contrast agent injection. The border (in red) of the vessel from angiography at a
certain instant is overlaid to the angiography at a subsequent instant clearly showing
the modification of the lumen shape due to loading factors. B The arterial geometry
from the CTA is depicted. The red arrows indicates the irregularities not detected in
the CTA B, which are visible in the angiography A.

of cases does not allow any statistical consideration, one might spec-
ulate that when dealing with in wvivo structures even accurate ex-vivo
experimental material description may underestimate the real stiffness
of the treated vessel if the pre-stress condition and the interaction with
surrounding structures are neglected. To overcome the latter problem,
alternatively to our approach, spring elements might be considered to
describe these interactions as previously suggested [241].

5.5 CONCLUSION

In the present study we used finite element computer model simulations
to imitate CAS procedures, and applied automatic tools to quantify ves-
sel scaffolding in two patients. Results show the feasibility of the pro-
posed method with an overestimation of the predicted stented lumen
diameter of 5.31+8.05% and 4.124+9.84% for the two patients compared
to the clinical outcome. The quantitative measurements of the incom-
plete stent apposition, free cell areas and largest fitting spheres highlight
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the variability of device behavior in relation with the target lesion. In
general free cell areas depends on the target diameter and oversizing
while largest fitting spheres and apposition values are influenced by the
local concavity and convexity of the vessel region. The proposed method,
pending a more accurate 3D in vivo validation with a larger number of
datasets, may be an additional tool for cardiovascular interventionists
in complex anatomy. This may result in a proper selection of stent de-
sign and more accurate positioning resulting in reduced number of post-
procedural stroke by better assessing the potential risk of embolization
a priori.
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CHAPTER

Influence of stent design and
vessel anatomy on intracranial
aneurysm stenting

In this section of the thesis the vascular district of interest changes, mov-
ing towards the cerebral branches of the internal carotid artery. In this
chapter three patient specific cerebral aneurysms were virtually treated
with simulated deployment technique using three different stents. The
differences in outcome due to the stent designs (open vs closed cell) are
highlighted in each vessel geometry using geometrical parameters. The
results were published in :

“Our capricious vessels: The influence of stent design and vessel geom-
etry on the mechanics of intracranial aneurysm stent deployment”. EIDe
Bock, S., 'Tannaccone, F., De Santis, G., De Beule, M., Mortier, P.,
Verhegghe, B., Segers, P., Journal of biomechanics, (2012) [251].

6.1 INTRODUCTION

A cerebral aneurysm is a vascular disorder in which a blood vessel in the
brain shows a balloon-like swelling of the wall, due to a weakening of the
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vessel wall layers, with a propensity for rupture. Intracranial aneurysms
are not uncommon, with an estimated prevalence in the adult population
between 1 and 5% [14]. Fortunately, an estimated 50 to 80% of cerebral
aneurysms do not rupture during a person’s lifetime [297]. However,
as aneurysm rupture, leading to subarachnoid hemorrhage, is associated
with a high mortality (45-75%) and morbidity [298], preventive treat-
ment to reduce rupture risk is very appealing.

To reduce the risk of rupture, detection is usually followed by elective
therapy. Treatment options are clipping of the aneurysm by craniotomy;,
endovascular coiling with platinum wires and stent supported coiling.
This last option is commonly performed for wide-necked and fusiform
aneurysms, with the stent serving as a scaffold for the coils. From a
mechanical point of view, these stents must have longitudinal flexibility
to adapt to the curved vasculature, and a sufficiently low radial stiff-
ness to prevent vascular damage. The current intracranial stents in use
can be categorized by design in two major groups: open and closed-cell
self-expanding nitinol stents. Although it has been shown that both de-
signs can successfully assist coiling, each type is associated with its own
limitations [299,300].

These issues were the rationale for [299| to investigate the influence of
stent mesh pattern on the mechanical properties of closed and open cell
designs, coupling finite element modeling (FEM) and experimental bench
testing of fabricated nitinol stents. There has been an increasing interest
in simulating the mechanical deployment of stents, both in simplified
[167,/173,301] and patient specific vessel models [168,302|. Although
computational tools are being developed for the pre-operative decision
making process and planning, the state-of-art of virtual endovascular
aneurysm treatment is often based on a geometrical projection method
that does not take into account the deformation of the vessel model and
neglects the stent mechanics [216,303|.

It is known that stent placement induces changes in the vessel geom-
etry [149] and that incomplete strut apposition may be associated with
adverse effects such as late stent thrombosis |219] in the coronary circu-
lation. The position of stent struts have been shown to have considerable
impact on the local blood flow patterns and wall shear stress [213}303].
Clinical studies have evaluated thromboembolic and ischemic events as-
sociated with stent assisted aneurysm coiling [304,305], and while low
and oscillatory flow and shear stress may be associated with these ad-
verse effects, they also induce thrombus formation in the aneurysm, and
hence decrease its risk of rupture [306}307).
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Previous experimental and numerical research on intracranial stent-
ing has focused on idealized vessel geometries and experimental setups
when assessing the mechanical behavior of stents [2994300|,308].

While allowing for a straightforward comparison of stent behavior,
the model simplifications do not allow to capture certain in vivo con-
ditions. In an attempt to further increase the realism and usability of
cerebral stenting simulations, the presented study hopes to contribute
and improve virtual aneurysm treatment, using a new patient specific
environment as a possible pre-operative tool to evaluate different stent
geometries. In this study we examine the virtual deployment of three
stent designs in three different intracranial aneurysm geometries, quan-
tifying the strut coverage of the stented aneurysm neck, induced vessel
straightening and stent apposition to the vessel wall.

6.2 MATERIALS AND METHODS

6.2.1 Patient specific aneurysm models

Three different cerebral aneurysms were selected from an image database,
collected by the Biofluids Mechanics Lab (Charité-University Hospital,
Berlin). As can be seen from the models in Figure[6.1] and the geomet-
rical parameters in Table no two aneurysms or parent vessels are
alike. The selected geometries consist of one narrow necked (A3) and
two wide-necked (Al and A2) aneurysms, geometrically defined by [309)|
as aneurysms with a neck diameter larger than 4 mm. The parent vessels
show different diameters and diameter tapering over the aneurysm, a dif-
ferent branching configuration, and a difference in tortuosity. The most
notable feature is the large vessel curvature proximal of the aneurysm in
geometry A2.

The geometries were obtained as a triangular surface mesh (STL),
with segmentation being previously performed [310]. Because informa-
tion on the wall thickness was not available, a uniform wall thickness of
0.5 mm was assumed [311]. The 3D vessel wall was reconstructed and
meshed using the method proposed in [172], implemented in pyFormex
(http:/ /www.pyFormex.org), a program for generating and manipulat-
ing geometrical models of 3D structures by mathematical operations.
Starting from a surface model of the vessel lumen a multi-block struc-
tured and conformal hexahedral mesh of the vessel wall was generated.
The mesh element type was incompressible quadratic brick with reduced
integration (C3D20RH by Abaqus convention) and the material model
was isotropic second order hyperelastic polynomial (with material pa-
rameters from [312].
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FI1GURE 6.1: The meshed aneurysm geometries; vessel A1, A2 abd A3 Geometric
vessel and aneurysm parameters are indicated A: vessel diameter proximal and distal
to the aneurysm location, circle segment approximation angle and radius R, and the
aneurysm neck dimensions in circumferential (full line) and longitudinal (dashed line)
directions.

TABLE 6.1: Geometrical aneurysm dimensions; circumferential and longitudinal di-
ameter measurements of the aneurysm neck, proximal and distal vessel diameter
measurements, angle and radius R of a circle segment approximating vessel in the
stented region, the original diameter of the inserted stent, and the number of elements
used to mesh the geometry.

diml\jzflcsli{ons ?lists_;rg’x Angle  Radius  Stent o 7# el t
o elements

(mm x mm) (mm) ) (mm) (mm)

Al 4.7x5.2 2.0-3.0 51 10.6 3.5 30720

A2 4.5%x5.1 1.6-2.4 118 74 3 20480

A3 2.8%x3.3 2.6-3.0 92 7.2 3.5 35840
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6.2.2 Stent models

Three stent geometries were selected for the analysis: two generic closed-
cell designs (C1, C2) and a design resembling the open cell Neuro-
form (Stryker Neurovascular, Fremont, California, USA) stent (N1) (Fig-
ure . The geometries of the closed-cell models were composed of
hexagons according to Pythagorean tessellation theory [299]. All stents
were constructed with the same strut thickness and width of 0.06 and
0.065 mm respectively. All stents were 0.5 mm oversized with respect
to the vessel diameter (for undeployed stent diameters see Table [6.1)), to
allow for adequate deployment and stability of the stent. As a conse-
quence, six stent geometries were created: three stents with diameters
of 3.5 mm inserted in Al and A3 and three stents with diameter of 3
mm inserted in A2. The geometric parameters and number of mesh
elements can be found in Table The stent meshes were generated
with pyFormex, using a database of 2D building blocks for the straight
and curved struts, and the strut connections (Figure [6.2)). The blocks
were assembled to create the repeating stent unit cell. The 3D stent was
created by replication, extrusion and a cylindrical coordinate transfor-
mation on this unit cell. This bottom up approach results in a structured
mesh, with direct control on the element quality.

The stress-strain relationship of the nitinol alloy (Ti-55.8 wt% Ni)
was obtained from literature [252] and implemented using a user sub-
routine in Abaqus following the model of [253]. As in the paper by
[252] only uniaxial tension tests were conducted, we assumed symme-
try in compression. For all models, quadratic hexahedral elements with
reduced integration (C3D20R) were used, as they have been shown to
yield a more accurate solution compared to linear tetrahedral elements
for mechanical simulations, in particular when using non-linear material
behavior [94,[313,314]. Quadratic hexahedral elements are robust and
stable and although they are, per element, computationally more expen-
sive, it is possible to achieve a good accuracy with coarser meshes. A
mesh sensitivity analysis was performed, and established the stability
and convergence of the FEM results.

TABLE 6.2: Stent dimensions and mesh sizes.

Thickness Width # repetitive L
(mm) (mm) units over L (mm) # elements
C1 0.06 0.065 5 10 15072
C2 0.06 0.065 5 10 15072
N1 0.06 0.065 4 10 12480
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F1aure 6.2: The 3 stent designs used in the study, with a detail of the second order
hexahedral mesh; from top to bottom: C1,C2 and N1.
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6.2.3 Virtual stent deployment procedure

The commercial finite element solver ABAQUS/Standard (Simulia Corp,
Providence, RI, USA) in combination with the open source pyFormex
pre- and post-processor was used to virtually implant each stent in all
three vessel models. The simulations were performed using large de-
formation analysis and Newton’s method as a numerical technique for
solving the nonlinear equilibrium equations. The stent placement was
simulated in three steps: crimping, bending and the subsequent de-
ployment in the patient-specific geometry. All steps were solved as a
displacement driven contact problem, using the surface to surface con-
tact discretization with finite sliding tracking approach. The penalty
method constraint enforcement method was used to approximate hard
pressure-overclosure behavior. The motion was imposed on a cylindrical
sheath that represented the actual delivery system accommodating the
stent. The virtual displacement of the catheter was imposed using a
user subroutine (DISP) to analytically define the nodal displacements.
The centerline of the vessel was extracted from the vessel geometry us-
ing vitk (http://www.vmtk.org/). To enable analytical computations,
the centerline was approximated using circular arcs. The sheath was
bent according to these arcs. The radius of curvature was modified in
relation to the analysis time step. In this way the bending of the stent
occurred smoothly, helping the convergence of the implicit simulation.
The complete procedure is explained more in detail in chapter [3] The
stent deployment procedure at different procedural times is shown in

Figure [6.3]

6.2.4 Treatment evaluation

We evaluated the impact of the implanted stents in the different aneurysm
geometries, focusing on the following, potentially clinically relevant, pa-
rameters:

1. the strut coverage in the aneurysm neck, defined as the percentage
in neck area that is covered by the expanded stent surface. This
is calculated by taking a view cut of the vessel at the location
of the aneurysm neck, with the view perpendicular to the vessel
centerline and circumference. The percentage of stent surface in
the aneurysm neck is quantified using an image based pixel count
method;
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F1aure 6.3: The complete deployment procedure, starting from the undeformed
stent. The stent is crimped and bent according to the vessel geometry. Upon release,
the super-elastic stent expands to fit the vessel geometry.

2. vessel tortuosity is calculated pre- and post-stenting, as a measure
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of the vessel straightening induced by the stent insertion. It is
defined as

L
=—=-1 6.1
r== (6.1)
where L is the length of the (tortuous) centerline from the origin
to the end of the stented region and D is the straight distance
between these two points [315]. The tortuosity measure describes
the fractional increase of the vessel length, relative to the shortest

path between its two endpoints (a straight vessel having a 7 = 0).

. incomplete strut apposition to the vessel wall, computed as the

distance from the external stent surface nodes to the closest vessel
surface element. In order to quantify the amount of stent struts
that are well apposed, we computed the percentage area of stent
struts within a threshold distance of the vessel wall, relative to the
total stent area. Two thresholds (0.1 and 0.2 mm) were chosen to
differentiate in the severity of the malapposition, with a third, high
threshold (0.5 mm) indicating stent struts that are located at the
aneurysm dome or at vessel branches.



6.3. Results

F1IGURE 6.4: A schematic view of the calculated parameters used for treatment
evaluation; the strut coverage (SC), tortuosity 7 and the apposition, quantified by
the strut to vessel wall distance.

6.3 RESULTS

6.3.1 Strut coverage

The strut coverage of the aneurysm neck is visualized and quantified in
Figure [6.5] While for an undeformed stent, the percentage stent strut
surface area covering a cylindrical vessel of the same diameter is simi-
lar for the three designs (8.1%, 8.4% and 8.3% for C1, C2 and NI re-
spectively), notable differences can be observed between different stent
designs, and different aneurysm geometries, with clear dissimilarities be-
tween wide (Al, A2) and narrow-necked (A3) aneurysms.

In the wide neck A1l and A2 geometries, the closed-cell designs do not
cover the aneurysm neck but pass the aneurysm with, approximately, a
diameter that is the same as the parent vessels diameter, resulting in
low strut coverage (7.3/6.5% for C1 and 8.2/7.5% for C2 in A1/A2). On
the other hand, the N1 stent can more easily adapt to the vessel shape
(11.5/11.8% for N1 in A1/A2). The A3, having a narrow neck, allows
for all designs to cover the aneurysm neck surface (9.5/10.5/9.8% for
C1/C2/N1 in A3).
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FIGURE 6.5: Percentage strut coverage (SC) of the aneurysm neck, for all three
designs in the three aneurysm geometries.

6.3.2 Tortuosity

The vessel straightening is summarized in Table It can be clearly
observed that this straightening behavior is stent design dependent, with
the open cell design inducing the least straightening. Additionally, the
difference in straightening of stent C2 in aneurysm 1 (41%) and 3 (21%)
shows that different target anatomies can invoke different stent-vessel
reactions, even when the original tortuosity measure is similar (i.e., 0.11

and 0.10).

6.3.3 Apposition

All the investigated stent designs show incomplete strut apposition to
the vessel wall, and this occurs in all three aneurysm models. Figure
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TABLE 6.3: Tortuosity measure 7, and the relative change (%) versus the unstented
condition.

Tortuosity Tortuosity Tortuosity Tortuosity Increase Increase Increase

Unstented T C1 T C2 7 N1 T C1 T C2 T N1
Al 0.11 0.06 0.07 0.11 -46% -41% -5%
A2 0.39 0.26 0.31 0.37 -32% -19% -3%
A3 0.10 0.05 0.08 0.09 -51% -21% -1%

displays the calculated apposition measures, as the fraction of well
apposed stent area with a given threshold to the complete external stent
surface.

The quantitative results show that the N1 design does not appose
well to the vessel wall, and less than 30% area of struts are within 0.1
mm of the vessel wall, for each geometry. However, as can also be seen
from the visualized results, the open cell design better adapts to the
vessel widening at the aneurysm (in the background of Figure [6.7] in-
dicated by the arrowhead; also visible in Figure . Well pronounced
malapposition occurs at the location of vessel tapering, and at the end
of the stented location when situated at a vessel curve (indicated by
an arrow in Figure . Additionally, for closed-cell designs with low

FIGURE 6.6: Percentages of the stent surface S with distance to the vessel wall less
than thresholds 0.1, 0.2 and 0.5 mm, for the three stent designs (C1, C2, N1) and
three aneurysm geometries (Al, A2, A3).
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flexibility, incomplete strut apposition occurs at curved vessel regions
(double arrowhead indicators). However, this remains limited due to the
large straightening of the vessel. At the same location, for the open cell
stent, fish scaling is present. This “fish-scaling”, the tendency of stent
struts to protrude in- or outwardly, is another aspect of stent deployment
of an open cell design. The fish scaling of the N1 is well detected from
the simulations and can occur at different locations:

i in the inner curvature of the vessel, protruding in the parent artery
(Figure [6.7Fdouble arrowhead indicator)

ii at an enlargement of the vessel diameter due to the (wide necked)
aneurysm (Figure [6.7A1/N1 and A2/N1, at the aneurysm neck)

In these aneurysm geometries, incomplete apposition of the stent
struts is, for the large part, located at the same locations for the dif-
ferent designs, with the largest differences between designs originating
from fish-scaling of the N1 design, visible at multiple locations. Table
summarizes the performance of the stents, averaged over the three
aneurysms.

6.4 DISCUSSION

In this study we have used finite element analysis to gain insight into the
deployment and mechanical behavior of cerebrovascular stents and their
interaction with the vascular wall. The simulation results are used to
assess how a stent meets the primary mechanical requirements, and to
quantify possible adverse effects of stent deployment. The strut coverage
of the aneurysm neck can be an indirect indicator of coil protrusion and
can promote aneurysm occlusion by reducing the blood flow in the dome.
The amount of struts covering the aneurysm neck depends not only on
stent design, but also on the vessel geometry. While this dependence

TABLE 6.4: Tortuosity increment, strut coverage and percentage of stent surface with
distances less than the chosen thresholds. Values are averaged for each stent on all
the vessel geometries. .

Tortuosity Strut S0.1/Sstent S0.2/Sstent S0.5/Sstent
increment (%) coverage (%) coverage (%) coverage (%) coverage (%)
C1 -42.949.8 7.8%£1.6 56.7+10.1 70.4+5.1 83.8+1.1
C2 -26.9+11.9 8.7£1.6 59.8+2.6 73.4+£4.6 85.8%0.7
N1 -5.1£1.6 11.0£1.1 25.0£5.9 56.0+6.4 81.8+3.4
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FIGURE 6.7: Stent apposition to the vessel wall for all cases. The contourplot shows the distance to the vessel wall, ranging from blue
(0 mm) to red (>0.2 mm).
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on diameter has been previously reported in silicone mock arteries [300],
the finite element results take into account the complex geometry of
patient-specific aneurysms.

In general, for a wide-necked aneurysm, closed-cell designs adapt less
to the aneurysm geometry than open-cell designs. Closed-cell designs can
be designed to have a low bending stiffness [299]; however for the more
flexible (C2) design investigated, the low straightening observed with the
open-cell design is not reached. As demonstrated here, open-cell stents
like the N1, are more adaptable to the global vessel curvature and tortu-
osity, and induce a low straightening of the vessel. Vessel straightening
by the Neuroform has been previously reported, and it could potentially
induce arterial kinking, uneven mechanical strain distributions, or other
mechanical effects, which might cause in-stent stenosis [316].

The open-cell design does have some well known shortcomings, which
appear in the two wide-necked aneurysms. In those cases the stents show
outward prolapse of struts into the aneurysm dome (i.e. fish-scaling)
when situated at a convex curve of a parent artery, and into the vessel
lumen, at the concave regions of an artery. For the former case, fish-
scaling can cause an increased opening of one or more stent cells, which
may facilitate migration of small coils through the stent cells [317,318|.
In the latter case, the inward protruding struts will likely promote a
hemodynamic effect, inducing unfavorable flow patterns that could lead
to stent thrombosis and/or in-stent stenosis. The presence of struts in
the lumen may also obstruct or encumber the placement of the throm-
boembolic coils or other endovascular devices. Moreover, both for open
and closed designs, quantification of incomplete stent apposition can be
one of the predictors of long term patency of the stented aneurysm [319).

An experimental in vitro study reports kinking and incomplete stent
apposition for closed cell design at high curvature angles [300], and in
viwo studies also suggest that closed cell designs are more susceptible to
malapposition [320,321]. Contrary to these findings, the results obtained
in these vessel geometries suggest that the N1 design gives worse apposi-
tion values compared to the closed cell designs. It is possible that these
discrepancies arise from the geometries of the parent artery, that can
easily accommodate both stent designs, and from the design of the in-
vestigated closed cell stents, which are either overly stiff, and straighten
the vessel, or sufficiently flexible, and appose well. Furthermore, pre-
viously discussed fish-scaling of the N1 design also contributes to the
incomplete apposition.

The presented virtual framework can be used to assess the risk of
adverse effects of stent design, and predict the stent behavior for each
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specific patient in an acceptable run time (3 h on a modern desktop pc).
In contrast, when using a projection method, these mechanical effects
would not have made an impact on the results. Furthermore, in vivo
assessment of stent deployment, e.g. as an indirect indicator for good
wall apposition, has proved to be extremely challenging [319]. The main
body of the nitinol stents currently on the market is usually not visible
under fluoroscopy in clinical practice. Hence, very little data is available
about cerebral stent positioning, after already 8 years of use in clinical
practice [322]. Our approach allows visualization and quantification of
stent apposition.

In future works, the method presented can be used to also assess the
fatigue life of stent designs, specific for each patient. Furthermore, a
specific future application lies in hemodynamic investigations. The solid
mechanic finite element results can be used as a starting point for CFD
calculations. This research can be an additional step towards bringing
pre-operative computational engineering results to the operating room.
The presented method can serve as a link between stent design and
clinical implications of stent deployment. However, clinical and patho-
physiological implications of mechanical considerations should be further
investigated in animal models or in a clinical setting.

Even though previous experience in the finite element method and
its validation [174] make us confident in the presented results, the lack
of specific, experimental validation is one of the shortcomings of the
manuscript. Other limitations of this work are model simplifications,
such as the lack of realistic values for the wall thickness, which varies
along the vasculature [323]. The use of an estimated wall thickness is
however necessary when image modalities do not support localized thick-
ness measurements, as in this case. Further simplifications include the
material properties of the vessel wall, modeled with an isotropic hypere-
lastic constitutive model which does not take into account the anisotropy
of the vascular wall. Recent work on the multiaxial response of cerebral
arteries [324] or on the different layers of the internal carotid artery [112]
can be considered for a more accurate and complex material formulation.
For the purpose of this study, we find that the isotropic constitutive rela-
tion offers adequate detail for comparing the mechanical behavior of the
stents. A more constraining aspect is the lack of the surrounding tissues
which can influence the vessel wall response, probably reducing the vessel
straightening due to the interconnectivity of surrounding tissues. How-
ever, for the purpose of this comparative study, these approximations
are considered to be acceptable.
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6.5 CONCLUSION

This study provides a new computational framework to virtually implant
stents in a patient based cerebral aneurysm model to assess the impact of
stent placement and provide ingight into the biomechanics of the stented
aneurysms. The following conclusions can be drawn from this analysis:

i due to the intrinsic adaptability of the open cell design, the Neuroform-
like stent adjusts better to the wide-neck aneurysm geometries, re-
sulting in higher percentage of struts covering the neck;

ii altering the design can lower the bending stiffness of closed cell stents,
yet for the investigated designs, the high flexibility and low vessel
straightening of an open cell stent was not reached;

iii stent malapposition is present for all investigated cases but the open
cell stent shows a higher region of stent struts not apposing well to
the vessel wall due to fish scaling.

The stiff closed cell design forces the vessel to adapt to the stent
shape, and as such, it has a higher number of well apposed stent struts.
For the presented designs and aneurysm geometries, the more flexible
closed-cell apposes best.
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CHAPTER

In vivo case study of stent
supported coiling

The previous chapter showed the potential of the numerical environment
and geometrical analysis to compare different stent designs for cerebral
aneurysm treatment. Nevertheless a validation with a real procedure
is needed to assess the numerical outcome, especially because model
simplifications and assumptions can alter the results of the simulated
procedure. In this chapter an in vivo case with pre- and post-operative
data has been compared to the virtual procedure to prove its reliability.
Particular attention was given to the stent delivery technique which has
been shown to have an impact on the final stent configuration.

7.1 INTRODUCTION

Series of clinical studies have consecutively provided guidelines and have
demonstrated the efficacy of endovascular treatment of intra-cranial
aneurysms also in the long term [328].

The interventionalist community started endorsing the coiling pro-
cedure after the positive results of the International Sub-arachnoid
Aneurysm Trial , recognizing aneurysm coiling as an effective and
permanent treatment option in small necked aneurysms.
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Still, technical limitations prevent complete occlusions of large and
wide necked aneurysms. To overcome this issue, neurovascular stents
have been designed to avoid herniation of the coils into the parent artery
lumen [329]. Additionally, these stents have shown to offer other advan-
tages by helping diverting blood from the aneurysm, hereby promoting
dome thrombosis [329,330] and providing a matrix for orifice endothe-
lialization [12}329,331}332].

Despite the encouraging outcomes, some issues are yet to be ad-
dressed. In particular incomplete stent apposition (ISA) seems related to
adverse events [219304,305|. Assessment of deployed stent configuration
and stent malapposition is consequently of high importance [326,327,333]
also for subsequent re-treatment of the aneurysm or distal vascular access
[334].

This seems particularly relevant for closed stent designs [321,322,[334]
but stent related data in the intra-cranial vasculature remain scant [218|
due to the limitations of the routinely acquired imaging techniques. Con-
ventional angiography is unable to visualize current nitinol neurovascular
stents due to the reduced strut thickness and material attenuation. Visu-
alization improvements with radio-opaque markers are not yet sufficient
to provide information regarding the deployed configuration [334].

Advances in high-resolution imaging with C-arm flat-panel angio-CT
(FPCT) seems promising to assess the stent structure in vitro around
bends [218},1319,1335]. FPCT has also shown the ability in vivo to de-
tect ISA and the global configuration of implanted intra-cranial stents
[321,1322]. 3T-MRA also appears to be able to quantify ISA but poor
information of the stent configuration is given, and cannot be performed
peri-operatively [322]. More recently contrast-enhanced cone-beam CT
data (also known as VasoCT) have proven the ability to provide detailed
and simultaneous visualization of neurovascular stents and host arteries
both in experimental and in vivo setups [3341336].

A finite element (FE) environment could be a solution to verify these
conditions and potentially be used as a pre-operative tool to predict
possible undesired events.

FE simulation have been successfully used and validated against
in vitro models |1704229]. Patient-specific simulations of endovascular
treatments, such as stenting, have been performed in coronary [173[[302]
and carotid arteries [167,|168] and cerebral aneurysms [222]251], but
rarely validation with post-procedural data have been performed [294].
This lack in literature motivated the present study, in an attempt to fill
this gap.
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Ficure 7.1: Optical Microscopy measurements of the Enterprise stent. A detail of
the stent struts shows the measurements of the thickness (left) and width (right).
Irregularities of the surface are imputable to dirtiness of the sample.

The endovascular procedure of one patient treated with an Enter-
prise endovascular reconstruction device (Cordis Corporation; Miami, F1,
USA) has been reproduced in a FE setting showing specific challenges of
a virtual patient-specific environment. The numerical deployment strat-
egy presented in previous studies [229,230,251] has been improved to
replicate the so-called “push-back” delivery technique as suggested by the
instructions for use of the device (http://www.cordislabeling.com).
After qualitative validation of the deployment method with previously
reported experimental work [218], available pre- and post-operative CT
scans were used to build the patient specific geometry and validate the
final configuration of the inserted device.

7.2 MATERIALS AND METHODS

7.2.1 Stent geometry and material properties

The devices used in this study were Enterprise vascular reconstruction
devices of different lengths (4.5x22 mm and 4.5x28 mm). This is a
closed-cell design intra-cranial nitinol stent for treatment of wide-necked
aneurysms. The stent geometries were obtained using X-ray micro-
tomography (uCT) scans of the devices performed at the center for
X-ray tomography UGCT (http://www.ugct.ugent.be) with a reso-
lution of 14 um. The numerical stent models with hexahedral elements
were created in pyFormex (http://www.pyFormex.org) with the strat-
egy already used in previous studies [230,251] and outlined in chapter
Additional processing was used to remove the outer elements of the
mesh until obtaining the centerline of the stent (as described in chapter
. The centerline points were approximated by polylines, subdivided to

125


http://www.cordislabeling.com
http://www.ugct.ugent.be
http://www.pyFormex.org

7. IN VIVO CASE STUDY OF STENT SUPPORTED COILING

refine the mesh and smoothed to have a softer transition of the tangents
of the segments. The final stent mesh was modeled using Timoshenko
beam elements, which are reported to yield accurate results in stent mod-
eling [337] and show stable results, even for coarser meshes [229]. The
meshes counted 6200 and 6800 elements for the 22 mm and the 28 mm
device respectively. The stent thickness and width were measured with
optical microscopy of the device (Figure . Averaged values of 70 pm
and 48 pm for the thickness and width of the devices were measured.

The superelastic behavior of the nitinol material is modeled using a
user-defined material subroutine embedded in the FE solver ABAQUS
(Simulia Corp, Providence, RI), based on the model described by Auric-
chio and Taylor [253]. Flat plate testing at 50% of the labeled diameter
[300] of the Enterprise stent (4.5x22 mm) were carried out to deter-
mine the material properties of the nickel titanium alloy. The test was
performed using an Instron 5942 electromechanical tensile test system
(Instron, Norwood, MA, USA) at 37 °C temperature repeated 3 times
to account for any difference in the initial sample position. The system
was configured with a 10N load cell (Figure . The flat plate test was
simulated using Abaqus/Explicit in a quasi-static analysis. Frictionless
penalty contact was used. Figure shows the mechanical result and
the numerical approximation.

The test, however, does not provide the entire description of the
nitinol behavior so it was used only to estimate the austenitic elastic
modulus while the other parameters were taken from literature [252].

Ficure 7.2: Flat plate test setup.
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Additional tests (not reported) were performed with a radial crimping
head (MPT Europe, Leek, The Netherlands) with an 8-segment iris to
reduce the diameter of the inserted stent. As the measured radial force
was too low compared to the noise induced by the friction of the machine,
data were discarded for the evaluation of the additional coefficients of
the Nitinol model.

The material properties finally selected for the device are summarized
in Table

7.2.2 Patient specific aneurysm model

Anonymized pre- and post-operative CT DICOM data were obtained for
one patient with an aneurysm located at the anterior cerebral artery. The
aneurysm was treated with stent supported coiling using an Enterprise
stent (4.5x22 mm). VasoCT data were acquired using a angiographic
C-arm system (Allura FD20/20, Philips Healthcare, Best, the Nether-
lands). Reconstruction was performed on an XtraVision workstation.

In plane resolution and slice thickness were 0.4 mm and 0.2 mm for
the pre-operative and the post-operative datasets respectively.

DICOM data were processed in 3DSlicer (http://www.slicer.org/).
Due to the low contrast and to the artifacts introduced by the coil,
the stent images were manually segmented slice per slice, removing the
streaks of the radio-opaque material. The vessel lumen and the stent
geometry were exported as triangulated surfaces (STL).

The pre-stented vessel wall was discretized using quadrilateral ele-
ments in FE-IAMesh, a meshing tool embedded in 3DSlicer [292]|. The
vessel wall was assumed having a constant thickness of 0.5 mm derived
from the relationship between arterial diameter and thickness described
in [311]. The choice was based on the following considerations:

Ficure 7.3: Flat plate test results and numerical approximation.
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TaABLE 7.1: Nitinol material parameters for the stent device. Symmetry in compres-
sion and a was assumed.

Variable Value
Austenite elasticity (MPa) 45000
Austenite Poisson ratio 0.3
Martensite elasticity (MPa) 23333
Martensite Poisson ratio 0.3
Transformation strain 0.0437
Start of transformation loading (MPa) 450
End of transformation loading (MPa) 520
Reference temperature °C 37
Start of transformation unloading (MPa) 210
End of transformation unloading (MPa) 130
Start of transformation stress in compression (MPa) 450

1. the image modality did not allow extraction of the vessel wall;

2. the image voxel size was 20 to 30 % of the lumen diameter of the
stented location;

3. the diameter of the stented artery had a very small variation in
diameter (2.3 to 2.7 mm).

The vessel has been modeled with 4200 surface elements with reduced
integration (S4R in the Abaqus nomenclature). The thickness for this
planar elements was applied outward the vessel to keep the lumen size.

The wall was assumed isotropic. Averaged stress-strain curves of hu-
man cerebral arteries from literature [338] were fitted with a second order
reduced polynomial hyperlastic model. However, this simplification does
not take into account the anisotropic behavior of cerebral arteries which
exhibit lower stiffness in the circumferential direction [339] when their
passive response is tested.

7.2.3 Simulation strategy
7.2.8.1  Virtual deployment method

FE simulations were performed using Abaqus/Explicit 6.12 in a quasi-
static analysis. The default contact algorithm - node to face and edge
to edge contact with penalty enforcement - was used.
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FI1GURE 7.4: Deployment methodology at different time steps ¢;. The stent is pushed
(t1 and t2) and the micro-catheter is pulled (¢35 and t4).

A small viscous surface load, added to the vessel wall to remove
oscillations was kept smaller than 5% of the internal energy to avoid the
influence of viscous damping on the final outcome.

To guide the stent deployment, the strategy presented in previous
studies [229],230,251] was improved to apply more realistic boundary
conditions to the cylindrical surface employed as guidewire and deliv-
ering sheath. The guidewire is bent along the centerline of the vessel
(extracted from the lumen surface using vmtk - www.vmtk.org ), the
stent is crimped by reducing the catheter radius up to 5Fr (1.67 mm)
[218], pushed along the guidewire and then retrieved maintaining the
bottom surface of the catheter fixed to keep the stent in place. Finally
the guidewire is retracted. Some instants of the procedure are shown in
Figure[7.4 The detailed procedure has been presented in chapter [3] To
speed up the simulation, the insertion is started from the location where
the proximal portion of the stent should lay after the delivery, to avoid
unnecessary additional computational cost by simulating the insertion
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from the internal carotid artery segment. FEven though this method is
less computationally efficient than the gradual deformation and release
of the catheter presented in the aforementioned studies, the procedure
guarantees a more realistic replication of the deployment in case the de-
livery technique has an impact on the deployed configuration (as for the
Enterprise stent). In particular the deployed device is prone to under-
expansion, with the typical effect of “hugging” the inner curvature of the
vessel - see Figure [7.5]

7.2.4 Data analysis
7.2.4.1 Validation of the virtual deployment method

The deployment method has first been employed in a tubular structure to
validate the effect of the push-back technique. The complete simulation
strategy ran for 7 hours on 8 3.4GlHz CPU cores on a high performance
computing cluster. This simplified vessel model was approximated from
previous experimental work [218]. Results of the simulated deployment
of the Enterprise 4.5x22 mm stent were qualitatively compared with the
CT scan of the device inserted in vitro in the previously mentioned study
[218]. Additionally the Enterprise 4.5x28 mm was inserted to prove the
efficiency of the technique and study its effect on different length sizes
of the device.

7.2.4.2  Validation of the in vivo outcome

The complete simulation strategy ran for 10 hours on 8 3.4GHz CPU
cores on a high performance computing cluster. The 22 mm device used
in the real procedure has been inserted in the patient specific vessel
geometry to match the stented location. The numerical results were

Ficure 7.5: A Hugging effect in a curved vessel B and consequent ovalization of the
stent section.
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compared both qualitatively (by superposition of the simulated and real
deployed stent) and quantitatively by measuring the tortuosity of the
pre- and post-stented vessel region as proposed in a previous study [294].
To account also for the surrounding regions influenced by the device, the
centerline portion at the stented location was extended of 25 % both
distally and proximally.

The tortuosity 7, as a measure of the vessel straightening induced by
the stent insertion, is defined as

(L) -

where L is the length of the (tortuous) centerline from the origin to
the end of the stented region and D is the straight distance between
these two points [315]. The tortuosity measure describes the fractional
increase of the vessel length, relative to the shortest path between its
two endpoints. The percentage error € between the final tortuosities of
the simulation and the clinical outcomes is computed as:

c— <Tsimulatians . 1) % 100 (72)

Telinical

In order to compare the results, pre- and post-operative vessel geome-
try scans were registered. For this purpose a registration tool has been
created in pyFormex using VIK (http://www.vtk.org/) functions for
landmark registration. An initial alignment of the geometries was ob-
tained by selecting three corresponding points. After, a more refined
registration was performed using an iterative procedure to minimize the
error distance between the two surfaces. Because of the changes in vessel
shape from the pre- to the post-operative condition the landmarks were
positioned on regions of the vessel far from the stented location (with
the limitations of the size of the scanned region) in order to perform the
registration on the portions of the vessel potentially not affected by the
device.

7.2.5 Results
7.2.5.1 Virtual deployment method validation

Figure shows the comparison of the CT scan of the in vitro exper-
iment [218] and the result of the simulation in the approximated vessel
model. Though some mismatch due to the difficulties to recreate the
exact in vitro geometry is visible, it is evident that the deployment pro-
cedure can replicate the mentioned side effect in an in wvitro setup. The
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FIcure 7.6: In vitro validation of the Enterprise stent deployment using the push-
back technique; A CT scan of the experimental deployment of the Enterprise 22 mm
[218|; B Numerical deployment of the Enterprise 22 mm; C Numerical deployment
of the Enterprise 28 mm. The red arrow indicates the malapposed area due to hug-
ging. The red circles indicates the malapposed zones not properly detected by the
simulation in the tested case. The blue and black lines mark the different extension
of the malapposed area between the two devices with different lengths.

pull-back technique leads the stent to hug the inner curvature of the ves-
sel while leaving a large region not apposing the outer curvature. The
effect is even more critical when using a longer stent which increases the
malapposed area.

7.2.5.2 In vivo outcome validation

The n vitro validation is extended to prove the reliability of the tech-
nique in an in vivo setup. Figure shows the superposition of the pre-
and post-operative vessel configuration for both the simulated and real
procedure.

Despite the fact that registration errors, triggering errors of the car-
diac cycle and bad lumen approximation due to the artifacts induced
by the device, do not allow an accurate comparison, it is still clear that
main effects of the deployed device are replicated. The stent forces the
straightening of the vessel which induces a translation in the proximal
portion of the vessel (yellow arrow) and after the main curve of the an-
terior cerebral artery (red arrow). Figure shows the superposition
of the segmented stent from the post-operative data with the simulated
deployed device. The clinical data show a tortuosity of 0.37, while the
simulations demonstrate a tortuosity value of 0.44, which corresponds to
an underestimation of 18.9% of the in vivo data.
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Ficure 7.7: Final vessel configurations for the clinical A and numerical outcome
B. The arrows indicates the straightening effect on the vessel.

7.3 DISCUSSION

In this work, we presented a patient-specific in silico evaluation of an
Enterprise stent deployment. In order to catch the real mechanics of the
procedure, we implemented a more realistic delivery technique which was
first validated with previous experimental data [218].

Structural FE studies on cerebral aneurysm stenting are scant. Vir-
tual stent deployment has been used to evaluate different stent positions
in simplified models [301,308| mainly for further fluid-dynamic analysis.
These studies provide, albeit, limited information due to the planarity
of the vessel and the very limited curvature which do not reflect the
tortuous reality of the cerebral vasculature. More accurate simulations
have been performed on patient-specific models [251] with efficient de-
ployment strategies computing strut coverage of the aneurysm neck, wall
apposition and conformability to evaluate different stent designs. Ma et
al. [222] deployed a flow diverter in a patient specific geometry using an
accurate stent deployment strategy comparable to the one presented in
this work.
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Fiaure 7.8: In wvivo validation of the stent deployment. Superposition of the seg-
mented post-procedural device (gray) and the deployed beam model of the numerical
simulation (red).

Other groups have proposed geometrical methods for self-expandable
stent implantation with different levels of complexity [105,[303}340],
which also seem to achieve good agreement with in witro models in op-
timal conditions [216].

While these strategies are faster, and might give a possible success-
ful outcome of the procedure, they neglect the lack of conformability of
the stent and frequent incomplete apposition described in vivo due to
hugging and ovalization of the stent [218,321}322]. However, this limi-
tation might be confined to the closed cell device which experiences this
collateral effect, and may be less relevant for open cell stents |300,322].

To the best of our knowledge, the results presented in this study is
the first attempt for an in vivo validation of virtual cerebral aneurysm
stenting.

Particular attention has been paid to the delivery technique which
was validated with previous in vitro data [218| to ensure the inclusion of
potentially undesired effects experienced in real endovascular procedures.
The FE method shows a good agreement with the experimental results,
capturing the hugging of the inner curvature leading to large malapposed
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areas, which has been described to occur in vivo using the Enterprise
stent [321}322,334].

Follow-up has traditionally focused on the presence or absence of
residual filling in the dome [334,[341]. Though ISA seems to be an un-
derestimated key factor leading to procedural failure. In fact, neointi-
mal growth over the stent struts to embed the device into the artery is
a response to endothelial injury from the device [342,343|. The lack of
apposition due to ovalization of the stent may prevent neointimal cov-
erage of the treated segment and the exposure of the stent to the blood
circulation can promote thrombosis and thromboembolism which have
been related to ischemic events [219,304,305]. A reliable tool, as the
presented environment, to quantify ISA in a pre-operative setup might,
then, have an impact in the clinical community.

When comparing the simulated deployment with the in wvitro out-
come a small mismatch in the proximal segment of the device is present,
exhibiting smaller ISA than in the in vitro model. This can depend on
a number of factors, but it might be possible that the position of the
guidewire over which the stent slides, can also play a role in the under-
expansion of the device in the simulations. A guidewire positioned along
the centerline of the vessel can promote a more uniform expansion of the
stent, which is an idealization of the more complex reality.

Additionally, we tried to answer unsolved questions addressed by
the authors of the in vitro experiment [218] by analyzing the effect of a
different length of the device in the same model. The 28 mm stent shows
a larger zone of incomplete apposition compared to the shorter design.
From this result it is clear that the push-back technique operates on the
closed stent by dragging the stent proximally. Once the distal portion
of the stent is anchored to the vessel, the friction between the micro-
catheter and the stent stretches the device during the retraction due
to the fully connected mesh of the stent. The longer device of course
offers more contact surface amplifying the dragging consequences and
experiencing higher ISA. This is a possible explanation why hugging is
not reported for open cell designs such as the Neuroform, whose structure
is less connected offering less dragging during pulling [300},321}322]. We
speculate that reduction of the friction of the micro-catheter can help
solving this drawback for the closed cell device.

An acceptable agreement of the validated delivery technique is also
shown when the strategy is applied to the patient-specific setup. The
FE method captures the global configuration of the deployed device and
the final shape of the stented artery. The difference in the tortuosity
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values also provides a (weak) quantitative validation of the numerical
outcome. As previously reported |300,344] the Enterprise stent has low
conformability and forces the vessel to straighten as confirmed by the
reduction in the tortuosity parameter. A visual inspection of the causes
of the straightening highlights that the distal segment of the stent ends
in region of the vessel with low curvature angles. Due to the force exerted
by the stent, the bend is straightened and the more peripheral region of
the vessel is translated outward.

A detailed quantitative comparison was not possible due the device-
induced artifacts in the post-operative images. An example of the impact
of these artifacts is the observation that, after the segmentation, the
proximal part of the vessel displays a smaller diameter in the non-stented
region due to the scattering induced by the coils’” mass (Figure[7.7)). This
prevented a luminal analysis of the post-procedural outcomes. Also, the
attenuation of the stent increases the actual size of the struts, hindering
a comparison of the apposition as performed in our previous study [251].

Still lacking extensive validation on multiple cases, the present study
shows the feasibility of pre-operative assessment of the deployed device.
The method, possibly improved with a more realistic guidewire insertion,
represents a first step for the use of FEA in a clinical setting and could
provide knowledge on the occurrence of undesired effects.

The method could allow to inspect neck coverage and stented vessel
shape to assess aneurysm catheterization [345], evaluate stent size and
positioning to reduce straightening of the artery, evaluate hugging and
the location of ISA which may prevent neointimal coverage of the treated
segment [342,343|, and thus promoting thromboembolic-related ischemic
events [219,[304}305] or induce late stent migration [346).

7.3.1 Limitations

Limitations of this study are mostly associated to the in vivo data, espe-
cially from the post-operative condition: streak artifacts caused by the
radio-dense stent markers and by the coil mass harboring portions of
the stent, relatively low resolution compared to the stent struts’ dimen-
sions, configuration changes caused by the hemodynamic variations and
non-triggered boundaries acquisitions.

Another limitation of this study might arise from the specific case
geometry. The curvature angle of the vessel is not sufficient to induce
significant ISA [321]. It has been speculated that the Enterprise stent
may not be able to completely appose the vessel wall beyond a certain
level of tight curvature [218]. Nevertheless, the experimental validation
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makes us confident of the applicability of the procedure to more angu-
lated cases.

Also, as shown in this study and in the previous in vitro experiments
[218], the delivery technique influences the deployed configuration. This
adds operator dependency to the uncertainties of the outcome.

Furthermore, modeling simplifications have been applied (single lay-
ered vessel model, constant thickness of the wall, no pre-stressing or
pre-stretching of the vessel, isotropy of the artery, non complete ma-
terial device description, lack of influence of the surrounding tissues)
which might affect the outcome of the numerical model. Nevertheless,
the detail achieved by the numerical outcome seems sufficient to catch
the main features of the implanted device. In the authors opinion, a
balance is needed between desired accuracy of the results and cost in
terms of modeling complexity and computational efficiency. In the per-
spective of moving numerical simulations to a clinical environment as
a pre-assessment tool for procedure planning, speed and ease of model
pre-processing, short simulation times and ease of result interpretation
are required.

137






Five

Conclusions

139






CHAPTER

Final remarks

In this chapter, the conclusions of this thesis are presented. Improve-
ments of the numerical methodologies realized within the scope of this
PhD thesis and the main results are summarized. Finally unsolved issues
of this research are discussed and suggestions for further investigations
are proposed.

8.1 STUDY CONCLUSIONS

At the beginning of this project, only few biomechanical studies had in-
vestigated the endovascular procedures for stroke prevention. Existing
studies were focusing on simple parametric models, in vitro models and
rarely on patient-specific conditions. This thesis continues previous PhD-
works on the biomechanical aspects of the interventional stenting proce-
dures performed at our department [347-349] aiming to investigate stent
devices and their interaction with the arterial wall for stenotic carotid
and aneurysmatic cerebral arteries. A patient-specific setup presents
challenges in the modeling of the complex structures of pathological ar-
teries, in the simulation of realistic and computationally efficient approx-
imations of the delivery procedure as well as post-processing techniques
for validation of the results.

The introductory chapters give a short overview of the current clinical
strategies for stroke prevention, major causes of the pathology and the
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existing literature on computational biomechanics studies investigating
initiation, progression and treatment of the disease.

8.1.1 Challenges in biomechanical modeling of endovascular
treatments

The technological mechanical process for stent creation may result in
complex geometrical patterns of the device mesh. A first step for accu-
rate procedural emulation is the reconstruction of realistic stent geome-
tries. Chapter [3|starts by detailing the strategies to build the numerical
models of the devices from pCT scans of the samples or other sources
using a library of predefined structures. These are then assembled to
obtain the numerical device model. Further the specific methodologies
developed for accurate vessel modeling are presented. First the construc-
tion of a very accurate parametric bifurcated vessel model is described.
The model includes high detail of the wall structures and special mesh-
ing strategies ensure increased element density at the region of interest.
Next, patient-specific vessel reconstruction and meshing strategies are
presented. The outer and inner wall surfaces are meshed with quadrilat-
eral elements, connected and refined to create the diseased artery model.
Elements laying in the STLs of the plaque geometries are selected to rep-
resent the diseased vessel regions.

Finally two insertion strategies are described. A simplified method
has been implemented to smoothly bend the delivery catheter along the
centerline of the vessel and place the device by a gradual opening of
the catheter. Furthermore, a more realistic insertion method has been
developed to simulate the pushing of the stent on the guide-wire and the
retraction of the catheter. The advantage of each strategy is discussed.

8.1.2 Carotid artery stenting

Parametric and simplified vessel geometries are relatively fast to allow
for an easy comparison and evaluation of different procedural solutions.
This is impossible to assess in vivo. However, to ensure reliability of
parametric models an adequate level of complexity is needed to reflect
a realistic vascular morphology. Chapter {] details the deployment of
an Acculink stent in five possible lesion scenarios simulated by changing
both material properties (to switch from vulnerable to stable plaques)
and vascular geometrical features of an accurate carotid model which in-
cluded a damage model to quantify the injury of the vessel. The results
were analyzed with respect to lumen gain and wall stresses, both param-
eters potentially related to failure of the procedure in the clinical setting.
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Results show that an elliptic lumen shape and a thinner fibrous cap with
an underlying lipid pool exhibit higher stenosis reduction, while large
calcifications and fibrotic tissue are more prone to recoil. The shielding
effect of a thicker fibrous cap helps to reduce local compressive stresses in
the soft plaque. The presence of a soft plaque reduces the damage in the
healthy vascular structures. Contrarily, the presence of hard plaques is
favorable in terms of less damaged volume in the fibrous cap and reduces
stress peaks in this region, but it increases stresses in the media-intima
layer. Finally the reliability of the achieved results is put into clinical
perspective.

Though in silico models provide a useful comparative environment,
validation with in vivo data is needed to assess the numerical outcome.
In chapter 5], two patients who underwent CAS with two different sizes
of the Acculink stent were studied. Pre-operative data were used to
build the numerical vessel models with heterogeneous material proper-
ties. Numerical results were validated with post-operative angiography.
Incomplete stent apposition, free cell areas and largest fitting spheres in
the stent cell were evaluated in situ as potential risk factors for CAS com-
plications. The simulations compared well with the post-operative angio-
graphic data both qualitatively and quantitatively. The measurements
of the scaffolding parameters on the virtually deployed stents highlight
the variability of device behaviors in relation with the target lesion.

8.1.3 Cerebral aneurysm endovascular reconstruction

The deployment technique is further applied in a different vascular dis-
trict for the treatment of cerebral aneurysms. There is an open debate
among clinicians on the superiority of closed versus open cell stents. To
gain insights on the influence of stent design in stent assisted coiling a
FE environment was devised. In chapter @] three stent designs (an open
cell stent resembling the Neuroform, a generic stiff and a more flexi-
ble closed cell design), were deployed in three patient-specific cerebral
aneurysmatic vessels. Outcomes of all procedures were investigated with
respect to the percentage of strut area covering the aneurysm neck, the
straightening induced on the cerebrovasculature, and stent apposition
to the wall. The results suggest that the open cell design better cov-
ers the aneurysm neck compared to closed cell stents, and induces less
straightening of the vessel. This, however, comes at cost of a larger area
of incomplete apposition to vessel wall.

In the perspective of a clinical use of FE models for cerebral stenting
as pre-operative tool, in vivo comparison is needed to assess the relia-
bility of the numerical outcome. Chapter [7| provides a validation of the
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virtual setup with one patient specific case study treated with an Enter-
prise stent. As the delivery technique influences the deployed configura-
tion, in vitro experiments are firstly used to validate the FE simulation
of the push-back insertion. Further the virtual procedure is performed
on the CT-based numerical vessel model. Post-operative CT scans were
compared with the numerical results with good agreement of the global
stent configuration, and changes in vessel shape. Vessel straightening is
also quantitative similar in both the real and simulated case showing the
capability of the method to reproduce realistic deformations.

To summarize, the main achievements of the research activities de-
scribed in this dissertation are:

1. the development and implementation of efficient techniques for pre-
processing of the virtual endovascular procedure, both for mesh
creation of stents and accurate vessel models, and device deploy-
ment;

2. the development of accurate parametric vessel models to study the
effect of the stent design on different pathological morphologies;

3. in wwo validation of realistic simulation strategies to study pa-
tient specific CAS with an advanced post-processing environment
to evaluate clinical outcome;

4. new insights on the effect of different stent designs in aneurysmatic
cerebral vessels and their dependency on the variability and com-
plexity of patient-specific vasculature;

5. in wvivo validation of the deployment strategy for stent supported
coiling emulating the push-back catheter retrieval technique.

Differently from previous works [347-349| in the field, which were
focused on fundamental research and comparison of different stents, this
research was mainly focused on the application of accurate simulation
strategies in realistic anatomical models. Furthermore, a more clinical
evaluation has been performed to extract information from the simula-
tions (potentially) useful for a clinical community.

The validation process has intrinsic difficulties due to the manipu-
lation of in wivo data which require a superior effort in terms of pre-
and post-processing. Further validation is, however, a mandatory step
to transfer finite element strategies in a medical setting for procedure
planning.
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8.2 FUTURE PERSPECTIVES

The results achieved and the methodologies proposed in this disserta-
tion can pave the way for further investigation in accurate modeling of
endovascular treatment for stroke prevention.

A patient-specific numerical procedure for clinical routine needs not
only be reliable and fast compared to procedure planning times, but
should also be easily analyzed by the operator to retrieve the needed
parameters under investigation.

Instead of developing novel strategies for vessel meshing, the pro-
posed methods based on validated and available (open source) meshing
tools can be improved by automatically creating the multi-block struc-
ture to limit user interaction on the procedure. Modified oriented bound-
ing box methods could be implemented to create connected structures
following the centerline of the vessel. The stent meshing tool could be
included in a user friendly environment for automated selection of the
control points of the basic structures.

Accurate modeling of the stent will also require mechanical testing
of the device samples using flat plate and/or radial compression tests for
a correct description of the nitinol material coefficients.

On the other hand a systematic investigation should be performed
on the validated vessel models, to analyze the dependency of the out-
come on specific parameters, and study which simplifications can he
adopted without loss of accuracy of the simulation. Material proper-
ties should be better investigated (isotropic vs anisotropic materials),
inclusion of plasticity of the vessel which becomes relevant in balloon
angioplasty /stenting, effect of pre-stress due to vessel pressurization and
pre-stretch. This could lead to better understanding of the real configu-
ration of the vessel geometry, initial stresses and stretch levels. It might
be speculated that as the combined effect of all these parameters moves
the vessel stress-strain curve in a region with stiffer behavior, a linear
approximation could be actually less critical for the description of the
vessel behavior in in vivo conditions.

The stent deployment technique could be improved to simulate a
more realistic shape of the inserted guidewire. A first approach could
include the real advancement of the guidewire into the vessel, to include
contact and straightening of the vasculature. This solution might be
computationally expensive to perform and probably the advancement
could be difficult to control, especially in tortuous and branching ves-
sels. A solution might be to drag the guidewire from the distal end
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along predefined points extracted from the center of a sequence of lumen
cross-sections as suggested in [222] which might help to enforce contact
between the vessel and the delivery system. An easier solution might fol-
low the approach presented in [348| to directly draw the bent guidewire
by guessing a more realistic shape. Finally a mixed approach might be
to bend a flexible wire along the path of minimal bending energy (as
described in [350]) then to “relax” the guidewire in the vessel to have a
more natural shape of the wire and to account for the straightening of
the vessel due the stiff wire. The final path could then be discretized
with the approach presented in chapter

The validated deployment method should be extended to study co-
horts of stented patients, in order to retrieve average material properties
of the vessel to be used as reference for virtual endovascular treatment.

In addition cases with device-related complications should be in-
cluded to establish the influence of specific mechanical parameters and
device characteristics on the endovascular outcome. This, however, im-
plies that a more realistic balloon angioplastic intervention should be
implemented by using realistic or engineering equivalent methods.

Long term results of the interventional treatment could help to re-
late failure due to restenosis, stent fracture or stent migration and thus
to some extent to stent design. The in wvivo cyclic condition should be
studied for fatigue rupture (inexpensively through computational analy-
sis) and should be used to calculate a factor of safety for the implanted
geometry being imposed to the pulsatile blood conditions.

Finally the validated model(s) could be used to better compare in
vivo effects of different stent designs.
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