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Samenvatting

Hoofdstuk 1: Inleiding

Het opmeten van de anatomie aan de hand van referentiepunten is een gevestigde
techniek in chirurgische procedures waarbij botten en protheses correct gepositi-
oneerd dienen te worden. Aan de hand van homologe, opvallende kenmerken op
het bot kunnen verscheidene lineaire en angulaire metingen worden uitgevoerd,
waarop de chirurg zijn beslissingen baseert gedurende de hele behandelingsproce-
dure. Naast punten kunnen ook kenmerkende lijnen of zones gedefinieerd worden,
die vaak een biologische betekenis hebben. Typische voorbeelden zijn uitsteeksels
op het bot, naden tussen botten of aanhechtingszones van ligamenten.

Verschillende types medische beelden kunnen worden gebruikt om referentiepun-
ten en klinisch relevante metingen te bepalen. Traditioneel worden tweedimensi-
onale (2D) radiografische beelden gebruikt, maar deze verschaffen enkel een 2D
aanzicht van de anatomie, waarbij de verschillende structuren bovendien overlap-
pen. Via computertomografie (CT) kunnen 2D doorsnedes verkregen worden met
hoog contrast voor de botstructuren. Bovendien laat deze techniek toe om driedi-
mensionale (3D) multiplanaire reconstructies en modellen te genereren.

Een aandachtspunt bij het opmeten van de anatomie aan de hand van referentiepun-
ten is dat de manuele lokalisatie van deze punten vaak geassocieerd is met intra- en
interwaarnemer variabiliteit. Bovendien kan het bepalen van de punten tijdrovend
zijn en is een aanzienlijke ervaring vereist om precieze metingen te bekomen. Au-
tomatische methodes om de punten te lokaliseren bieden verschillende voordelen
ten opzichte van manuele analyses. Deze technieken laten een snellere analyse
van de beelden toe, waardoor de chirurg tijd kan besparen. Door het gebruik van
gestandaardiseerde procedures worden intra- en interwaarnemer variaties verme-
den, wat kan leiden tot meer precieze metingen, een beter klinisch resultaat en een
betere vergelijking van resultaten en uitwisseling van data.

Het doel van deze thesis is om, aan de hand van automatische methodes, referen-
tiepunten en -assen op 3D virtuele modellen van de schedel en femur te bepalen.
De punten en metingen zou men respectievelijk kunnen aanwenden voor orthog-
natische chirurgie en het plaatsen van totale knieprotheses. Orthognatische chirur-
gie wordt uitgevoerd om één of beide kaaksbeenderen te herpositioneren om zo
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bijvoorbeeld aanzienlijke afwijkingen tussen de posities van verschillende boton-
derdelen te corrigeren. De operatie wordt gepland door de dentale, skeletale en
faciale verhoudingen in het hoofd op te meten, wat cefalometrische analyse wordt
genoemd. Cefalometrie laat ook toe om te evalueren hoe goed de postoperatieve
posities van de kaken overeenstemmen met de geplande posities en om de posto-
peratieve stabiliteit van de botsegmenten te bepalen. Afwijkingen van 2 à 4 mm
kunnen reeds klinisch relevant zijn.

Een totale knieprothese (TKP) wordt geplaatst bij degeneratieve artrose van de
knie, wanneer andere behandelingen geen oplossing bieden. Tijdens de operatie
worden de gewrichtsoppervlakken van de femur (dijbeen) en tibia (scheenbeen)
verwijderd en vervangen door een prothese. De uitlijning of het alignement van
de protheseonderdelen wordt gepland op basis van verscheidene referentieassen in
de knie. Het correct aligneren van de protheseonderdelen wordt beschouwd als
een cruciale factor voor het welslagen van de operatie. Een postoperatief verkeerd
alignement kan leiden tot het falen van de prothese zowel op korte als op lange
termijn en is typisch gedefinieerd als een afwijking van 3◦ of meer ten opzichte
van de beoogde positie.

Driedimensionale computerplanning wordt steeds vaker gebruikt bij deze chirur-
gische ingrepen. Aan de hand van computertechnieken kan de 3D anatomie gevi-
sualiseerd worden en kunnen verschillende simulaties van de operatie uitgevoerd
worden. Bovendien zijn verscheidene technologieën beschikbaar om het preopera-
tieve plan over te brengen van de computer naar het operatieveld tijdens de ingreep.
Hoewel reeds verschillende 3D punten en metingen werden voorgesteld in de li-
teratuur, is er nood aan meer gestandaardiseerde definities en referentiesystemen.
Automatische methodes om de referentiepunten op het bot te bepalen kunnen tot
een snellere en meer precieze 3D analyse leiden. Dit kan bijdragen tot een verbe-
terde planning en evaluatie van de chirurgische ingrepen.

Hoofdstuk 2: Overzicht van de literatuur omtrent 3D
lokalisatie van referentiepunten

Het is belangrijk om de reproduceerbaarheid van de referentiepunten te bepalen
om te evalueren welke metingen met voldoende klinische precisie kunnen uitge-
voerd worden en dus een correcte analyse van de patiëntdata toelaten. Verschil-
lende auteurs geven aan dat 2 mm of 2◦ een mogelijke drempelwaarde is voor kli-
nisch significante verschillen bij het bepalen van cefalometrische punten. In TKP
worden referentieassen met variaties van 3◦ beschouwd als niet betrouwbaar. Dit
hoofdstuk vat enkele studies samen omtrent de reproduceerbaarheid van punten en
assen bepaald op 3D beelden van het hoofd en de onderste ledematen, en heeft
als doel enkele algemene conclusies te trekken omtrent de betrouwbaarheid van
verschillende punten en metingen.
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De literatuur omtrent de manuele identificatie van referentiepunten toont aan dat
intra- en interwaarnemer variaties een beperkende factor kunnen zijn voor het ver-
krijgen van correcte metingen op basis van 3D medische beelden. Er zijn duide-
lijke verschillen tussen punten en anatomische richtingen en deze blijken consis-
tent te zijn tussen verschillende studies. Referentiepunten op relatief vlakke of
wijd gekromde anatomische structuren vertonen doorgaans een grotere variabili-
teit. Toch kunnen precieze metingen verkregen worden op basis van dergelijke
punten indien de variatie klein is in de relevante richtingen. Bovendien hangt de
betrouwbaarheid van de manuele analyse af van de ervaring van de operator en kan
deze verbeterd worden via training of door gedetailleerde definities en anatomische
tekeningen te gebruiken. De referentiesystemen die worden voorgesteld in de li-
teratuur zijn meestal gedefinieerd aan de hand van de meest betrouwbare punten.
Uit de resultaten voor een set van vaak gebruikte cefalometrische referentiepun-
ten op de schedel wordt afgeleid dat 40 % van de gemiddelde 3D intrawaarnemer
waarden groter zijn dan 1.5 mm en dat 52 % van de gemiddelde 3D interwaarne-
mer waarden groter zijn dat 2 mm. Sommige referentieassen in de knie blijken
zeer betrouwbaar te zijn, terwijl voor andere gemiddelde variaties groter dan 2◦

voorkomen.

Verscheidene (semi-)automatische methodes werden voorgesteld in de literatuur
omwille van de nadelen verbonden aan de manuele lokalisatie van referentiepun-
ten. In het tweede deel van dit hoofdstuk wordt de literatuur omtrent automatische
lokalisatie op 3D beelden van het hoofd en de onderste ledematen besproken, en
worden enkele conclusies omtrent de state-of-the-art getrokken. Bij het gebruik
van multiplanaire beelden dienen gelijktijdig de botstructuren geselecteerd te wor-
den en de referentiepunten bepaald te worden. Voor de analyse van de 3D model-
len daarentegen dient enkel geometrische informatie verwerkt te worden, maar dit
vereist dat de botstructuren reeds werden gesegmenteerd uit de medische beelden.

De literatuur omtrent automatische lokalisatie van referentiepunten toont aan dat
volledig geautomatiseerde technieken om de multiplanaire beelden te verwerken,
moeilijk te ontwikkelen zijn. De methodes kunnen worden opgedeeld in opera-
toren op basis van afgeleiden en vervormbare analytische modellen, sjablonen en
statistische vormmodellen. Via de automatische aanpak kan de tijd voor manu-
ele interventie gereduceerd worden en de precisie van de punten verbeterd wor-
den. Er werden echter slechts weinig studies gepubliceerd omtrent de schedel en
de onderste ledematen. In tegenstelling tot multiplanaire beelden werden reeds
verschillende studies over automatische analyse van 3D modellen van de onder-
ste ledematen uitgevoerd. De meest gebruikte methodes zijn het analyseren van
de kromming en het fitten van analytische curves en oppervlakken. De meeste
publicaties beschrijven echter slechts één of twee technieken of een beperkt aantal
geometrische parameters. Het meest uitvoerige werk werd gepubliceerd door twee
onderzoeksgroepen: de eerste beschreef methodes om afwijkingen in de onderste
ledematen op te meten en de tweede bepaalde verscheidene punten en assen van
de femur en het bekken en toonde aan dat de meeste parameters in relatief goede
overeenstemming zijn met manuele metingen (<2 mm en 2◦). Een volledige set
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van metingen met betrekking tot het alignement van de femur en tibia ontbreekt
echter. In tegenstelling tot de onderste ledematen werden geen automatische me-
thodes voor de lokalisatie van referentiepunten op de virtuele schedel voorgesteld.

Het doel van deze thesis is het ontwikkelen van automatische methodes om re-
ferentiepunten en -assen op de 3D virtuele schedel en femur te bepalen, die men
respectievelijk zou kunnen aanwenden bij orthognatische chirurgie en TKP. Zoals
werd aangetoond in dit hoofdstuk, is het automatisch bepalen van referentiepunten
op het 3D model van de schedel een nieuwe aanpak voor 3D cefalometrie. Boven-
dien worden de huidige beperkingen in de automatische opmeting van het distale
alignement van de femur behandeld in deze thesis.

Hoofdstuk 3: Automatische methodes voor het bepa-
len van 3D referentiepunten

Dit hoofdstuk geeft een overzicht van de algoritmes die in deze thesis worden
aangewend om de botten te analyseren. De voornaamste wiskundige achtergrond
wordt gegeven en iedere techniek wordt geı̈llustreerd aan de hand van voorbeelden
op de schedel en femur. De algoritmes werden geı̈mplementeerd aan de hand van
de pyFormex software en werden specifiek ontwikkeld voor driehoekige opper-
vlaktemeshes, het meest voorkomende type van 3D modellen dat wordt gegene-
reerd uit medische beelden.

Verschillende operaties om een vereenvoudigd of verfijnd model te bekomen of
om ruis te verwijderen worden besproken. De vereenvoudigingsmethode van Lin-
dstrom & Turk wordt toegepast om het aantal elementen in het model te redu-
ceren. Ruis en overbodige details worden verwijderd aan de hand van het λ|µ
algoritme voorgesteld door Taubin. Het verfijnen van de mesh gebeurt via de
subdivisie-techniek van Dyn et al. en Zorin et al., die een gladde interpolatie tussen
de oorspronkelijke hoekpunten van het model toelaat. Tenslotte werd een functie
geı̈mplementeerd om de geometrische afstand tussen beide meshes te meten en
werd geverifieerd dat de meshoperaties geen grote geometrische fouten introduce-
ren.

Omwille van de verschillende soorten referentiepunten is het vaak aangewezen een
combinatie van meerdere technieken te gebruiken om de geometrie van het bot te
bestuderen. Daarom werden verschillende methodes geı̈mplementeerd en getest
op de schedel en femur. Zowel convexe, concave als zadelvormige structuren kun-
nen worden geanalyseerd door extreme punten in vooraf vastgelegde richtingen te
bepalen. Bovendien werden methodes geı̈mplementeerd om de kromming van 3D
curves en oppervlakken te berekenen. Terwijl de eerste methode toelaat om punten
met lokaal extreme kromming op een curve te bepalen, zijn de krommingswaar-
den van de oppervlakken moeilijker te verwerken en te herleiden tot één specifiek
punt. Het fitten van geometrische objecten laat toe om de anatomische structuren
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te benaderen door een vooraf gedefinieerde vorm en kan daarom robuuster zijn
tegen ruis in het model. Verder kan de kleinste of grootste doorsnede van de mesh
berekend worden door een optimaal snijvlak te bepalen. Via het berekenen van de
rotationele inertie van de oppervlaktemesh is het mogelijk de hoofdassen van de
geometrie te bepalen. Tenslotte werd een algoritme geı̈mplementeerd om de mesh
te projecteren op een vlak en de 2D contour te bepalen.

Hoofdstuk 4: 3D analyse van de schedel

In dit hoofdstuk worden twee studies omtrent de lokalisatie van referentiepun-
ten op de schedel besproken. Eerst wordt een methode voorgesteld om op semi-
automatische wijze de punten op de schedel te bepalen. Deze nieuwe techniek laat
toe om een zone te selecteren waarin het punt gelegen is, waarna de positie van
het punt automatisch berekend wordt. Aangezien vele cefalometrische punten in
de literatuur beschreven worden als het verst gelegen in een welbepaalde anatomi-
sche richting, werd gekozen om de aanpak van de extreme punten te volgen. De
nieuwe methode wordt geëvalueerd door de intra- en interwaarnemer variabiliteit
van metingen die worden uitgevoerd op eenzelfde beeld van de schedel te bepalen.
Acht van de tien punten vertonen variaties kleiner dan 0.2 mm.

Vervolgens werd verder onderzoek gedaan om de techniek te verbeteren, wat be-
schreven is in de tweede studie. De intrawaarnemer variabiliteit van metingen die
worden uitgevoerd op verschillende beelden van dezelfde schedel wordt bepaald,
aangezien de positie van het punt beı̈nvloed wordt door de precieze discretisatie
van de anatomie via de mesh. Bovendien worden de parameters voor het verwij-
deren van ruis verder bestudeerd. De resultaten worden vergeleken met studies
omtrent de manuele lokalisatie van referentiepunten op 3D beelden. De automati-
sche werkwijze laat een precieze lokalisatie van de punten toe. Verschillen tussen
punten en anatomische richtingen werden geobserveerd en blijken in overeenstem-
ming te zijn met andere studies. De gemiddelde 3D intrawaarnemer variaties zijn
kleiner dan 1.4 mm en de maximale waarden zijn kleiner dan 2 mm voor 11 van de
15 bestudeerde punten. Deze resultaten tonen aan dat de semi-automatische me-
thode een hogere precisie toelaat dan de manuele analyse. Een belangrijk voordeel
van de automatische analyse zou het beperken van extreme variaties kunnen zijn.
Tenslotte wordt aangetoond dat een betrouwbaar coördinatenstelsel voor cefalo-
metrische analyse kan worden opgesteld op basis van de referentiepunten.

Er kan besloten worden dat de voorgestelde methode vernieuwend is en een meer
objectieve en gestandaardiseerde 3D analyse van de schedel toelaat. De automati-
sche analyse kan bijdragen tot een betere 3D planning en evaluatie van orthogna-
tische chirurgie.



xiv

Hoofdstuk 5: 3D analyse van de femur

In dit hoofdstuk wordt de femur volledig automatisch geanalyseerd aan de hand
van verscheidene algoritmes. In een eerste studie wordt de gekromde anatomi-
sche as van de femur berekend door de diafyse te benaderen met een reeks hy-
perboloı̈des. Deze as wordt vervolgens gebruikt om het optimale ingangspunt van
de intramedullaire staaf, die tijdens TKP wordt ingebracht in het mergkanaal, te
bepalen. Daarnaast wordt nagegaan of een gereduceerd scanprotocol kan gebruikt
worden door de methode toe te passen op zowel volledige als gereduceerde model-
len van de femur, waarbij de laatste verkregen worden door bepaalde zones uit het
model te verwijderen. Precieze metingen kunnen verkregen worden wanneer twee
buitenste delen en een centraal deel van de femur wordt gescand. Het toevoegen
van het centrale deel is vereist om de buiging van de femur correct te meten.

In een tweede studie worden de verschillende methodes van hoofdstuk 3 toegepast
om verscheidene referentieassen te berekenen, die gebruikt worden om het aligne-
ment van de femur te meten. Er worden relevante metingen in de drie anatomische
vlakken bepaald en de resultaten worden vergeleken met gemiddelde waarden uit
de literatuur. Via de automatische methodes kunnen bepaalde assen berekend wor-
den die manueel moeilijk te bepalen zijn. Hoewel de gemiddelde waarden van
de meeste metingen in overeenstemming zijn met andere studies, is verder werk
noodzakelijk om de automatische procedure te valideren.

De voorgestelde technieken vormen een basis voor een meer objectieve en ge-
standaardiseerde 3D analyse van het alignement van de femur. De automatische
analyse kan bijdragen tot een snellere en preciezere 3D planning en evaluatie van
TKP.

Hoofdstuk 6: Conclusies en perspectieven

Dit hoofdstuk geeft een overzicht van de belangrijkste verwezenlijkingen van de
thesis met betrekking tot het lokaliseren van 3D referentiepunten en -assen. Daar-
naast worden enkele suggesties voor verder onderzoek geformuleerd. Het doel van
deze thesis was het ontwikkelen van automatische methodes om referentiepunten
en -assen te bepalen die aangewend worden voor orthognatische chirurgie en TKP.
Een nieuwe semi-automatische methode om referentiepunten op de virtuele sche-
del te lokaliseren en een uitgebreide set van functies om het alignement van de
femur op te meten, werden voorgesteld. Definities werden aangepast naar de drie
dimensies, wiskundige beschrijvingen en referentiesystemen werden voorgesteld
en de methodes werden geëvalueerd aan de hand van verschillende technieken. De
automatische aanpak zou kunnen bijdragen tot een snellere en objectievere analyse
van de patiëntdata, maar verder onderzoek is nodig om de resultaten nog beter te
evalueren en om de methodes aan te wenden voor klinische toepassingen. Met be-
trekking tot cefalometrie werden reeds verscheidene referentiepunten op de sche-
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del bepaald, maar moet de semi-automatische procedure aangewend worden om
ook de punten op de kaken, tanden en het aangezicht te bepalen. Bovendien moe-
ten betrouwbare metingen voor de cefalometrische analyse voorgesteld worden op
basis van deze punten. Met betrekking tot TKP moeten relevante metingen voor de
planning en evaluatie van de operatie bepaald worden en moet het alignement van
de tibia en de protheseonderdelen bestudeerd worden. Tenslotte wordt ook aange-
toond dat de technieken kunnen gebruikt worden voor vele andere toepassingen,
zowel in medische als andere onderzoeksdomeinen.





Summary

Chapter 1: Introduction

Landmark-based measurement is a well-established technique in surgical proce-
dures requiring correct positioning of bones and prostheses. From homologous,
prominent features on the bones various linear and angular measurements can be
derived, which aid the surgeon in decision making throughout the whole patient
treatment process. Landmarks can be isolated points, lines or regions and often
have a biological meaning. Typical examples are a prominence on the bone, a
suture between bones or an insertion site of ligaments.

Several types of medical images are used to obtain landmark coordinates and clin-
ically relevant measurements. Two-dimensional (2D) radiographs are most com-
monly employed, but only provide a 2D representation of the anatomy, with the
structures being superimposed onto each other. Computed tomography (CT) pro-
duces cross-sectional images with high contrast for the bony structures. Further-
more, three-dimensional (3D) multiplanar reconstructions and models can be gen-
erated from the slices.

An important issue in landmark-based measurement is that the manual localisa-
tion of landmarks is prone to intra- and interobserver variations. Moreover, pre-
cise landmark identification is time-consuming and requires a high level of expe-
rience. Automatic approaches to localise the landmarks offer several advantages
over manual analysis. They allow for a faster analysis and could thus save time for
the surgeon. Observer variability is eliminated by using standardised procedures,
which could result in more reliable measurements and improved clinical outcome,
result comparison and data exchange.

This thesis aims at developing automatic approaches to extract reference points
and axes from 3D virtual models of the skull and femur. The studied landmarks
and measurements could be applied for orthognathic surgery and total knee arthro-
plasty, respectively. Orthognathic surgery is a procedure in which one or both jaws
are repositioned, for example to correct significant skeletal discrepancies. The
surgical movements are planned by measuring the dental, skeletal and soft tis-
sue relationships in the head, which is called cephalometric analysis. In addition,
cephalometry can be used to evaluate how well the planned jaw positions were
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reached during the operation and to assess the postsurgical stability of the bone
segments. Deviations in the range of 2-4 mm can already be considered poten-
tially clinically significant.

Total knee arthroplasty (TKA) is a surgical procedure to treat end stage osteoarthri-
tis of the knee. During surgery the articular surfaces of the femur (thighbone) and
tibia (shinbone) are removed and replaced by a prosthesis. The alignment of the
prosthesis components is planned based on various reference axes in the knee. It
has been demonstrated that correct alignment of the prosthesis components is a
crucial factor for the success of TKA. Postoperative malalignment has been as-
sociated with failure on short as well as long term and is typically defined as a
deviation of 3◦ or more from the targeted position.

An increased interest for 3D computer-assisted planning is shown for both of these
procedures, as it allows for visualising the 3D anatomy of the bones and simulating
different surgical procedures. Moreover, several technologies can aid in transfer-
ring the preoperative plan from the computer to the operating room. Different
3D landmarks and measurements have been proposed, but there is still a lack of
standardised definitions and reference systems. Automatic approaches to identify
the landmarks on the virtual bone model could speed up and increase the preci-
sion of the 3D analysis. This could contribute to an improved planning as well as
evaluation of the surgical procedure.

Chapter 2: Literature review on 3D landmark locali-
sation

The reliability of landmarks should be measured to determine which measure-
ments are clinically acceptable and thus allow for correct analysis of the patient
data. Several authors suggested that 2 mm or 2◦ provides a potential threshold
for clinically meaningful differences in cephalometric landmark identification. In
TKA, reference axes with observer variations approaching 3◦ can not be consid-
ered as reliable landmarks. This chapter summarises some of the studies reporting
on the reliability of landmark identification on 3D images of the head and lower
limbs and aims at drawing some conclusions about the reliability of different land-
marks and measurements.

The literature review on manual landmark localisation demonstrates that intra- and
interobserver variability can be a limiting factor for obtaining correct measure-
ments from 3D medical images. Differences between landmarks and anatomical
directions are found and seem to be consistent among different studies. Landmarks
located on relatively flat or widely curved anatomical structures and short axes are
more prone to observer variability. However, precise measurements can also be
obtained based on these points if the variations are small in the relevant direc-
tions. Furthermore, the reliability of manual landmark localisation may depend on
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the experience of the operator and might be improved through training and by us-
ing detailed landmark definitions and anatomical drawings. Finally, the reference
frames proposed in literature are usually defined from the most reliable landmarks
or landmark directions. By summarising the results for a set of commonly used
skeletal cephalometric points it is found that 40 % of the mean 3D intraobserver
values are above 1.5 mm and that 52 % of the mean 3D interobserver values are
greater than 2 mm. Some of the axes of the knee were found to be very reliable,
while other showed mean variations above 2◦.

Because of the disadvantages associated with manual landmark localisation, sev-
eral (semi-)automatic approaches have been presented in literature. In the second
part of this chapter, the literature on automatic landmark localisation on 3D images
of the head and lower limbs is reviewed, and some conclusions about the current
state-of-the-art are drawn. When using multiplanar images, both the selection of
the bony structures and landmark extraction need to be performed at the same time.
For the 3D models, only geometrical information needs to be processed, but this
requires that the bony anatomy is already segmented from the medical images.

By reviewing the literature on automatic landmark localisation, it is seen that fully
automatic approaches to process 3D multiplanar images are hard to develop. The
methods can be grouped into differential operators and deformable analytical, tem-
plate and statistical shape models. The automatic approaches seem to reduce the
time spent for manual intervention and improve the landmark localisation preci-
sion. However, the amount of work published on the skull and lower limb bones
is very limited. In contrast to multiplanar images, several studies on automatic
analysis of 3D models of the lower limbs have been published. The most com-
monly used methods are curvature analysis and analytical curve and surface fit-
ting. However, most papers describe only one or two techniques or extract only
a limited amount of geometrical parameters. The most extensive work has been
performed by two research groups: one presented methods for automatically mea-
suring lower limb deformities and the other extracted several points and axes on the
femur and pelvis and showed that most of the parameters were relatively close to
the manual measurements (<2 mm and 2◦). However, a complete set of measure-
ments of femoral and tibial alignment has not yet been presented. In contrast to
the lower limbs, no automatic approaches for landmark localisation on the virtual
skull model have been proposed.

This thesis aims at developing automatic approaches to extract reference points
and axes from the 3D virtual skull and femur, which could be used in orthog-
nathic surgery and TKA, respectively. As shown in this chapter, extracting land-
marks from the 3D model of the skull is a novel approach for 3D cephalometry.
Moreover, the current limitations in the automatic measurement of distal femoral
alignment are addressed in this thesis.
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Chapter 3: Automatic approaches to 3D landmark ex-
traction

This chapter provides an overview of the algorithms that are used in this thesis
to analyse the bone models. The main mathematical background is given and
each method is illustrated using examples on the skull and femur models. The
algorithms are implemented using the pyFormex software and are developed for
triangulated surface meshes, the most common type of 3D models that are obtained
from medical images.

Several operations to obtain a simplified, refined or smoothed approximation of the
original surface mesh are discussed. The simplification method proposed by Lind-
strom & Turk is applied to reduce the model size. Using Taubin’s λ|µ algorithm,
the models are smoothed to remove noise and useless details. The subdivision
technique of Dyn et al. and Zorin et al. was implemented to smoothly refine the
mesh. Finally, a tool to quantify the geometric difference between the meshes
was implemented and it was verified that the mesh operations can be performed
without introducing large geometrical errors.

Because of the many different types of landmark definitions found in literature,
the combination of multiple landmark extraction techniques is often desired for a
complete 3D analysis of the bone geometry. Therefore, different methods were
implemented and tested on the skull and femur. Convex-, concave- as well as
saddle-shaped structures can be processed to detect the extreme points in prede-
fined directions. Also, methods for curvature analysis of 3D curves and surfaces
were implemented. While the first method allows for extracting points of local
extreme curvature on a curve, the surface curvature values are more difficult to
process and to reduce to one particular point. Geometrical entity fitting could be
more robust to noise as it allows to approximate the anatomical structures with
several predefined shapes. Furthermore, the smallest or largest cross-section of the
mesh can be computed by searching for an optimal slicing plane. Another method
is to use the rotational inertia characteristics of the surface mesh to extract the prin-
cipal axes of the geometry. Finally, a 2D projection algorithm was implemented to
create a 2D contour from the 3D surface mesh.

Chapter 4: 3D analysis of the skull

In this chapter, two studies about landmark localisation on the skull are presented.
First, a method for semi-automatic localisation of landmarks on the virtual skull
is proposed. This novel approach allows the user to select a region-of-interest in
which the landmark is located and the position of the point is then determined
automatically. It was chosen lo localise the landmarks using the extreme point
technique, as many cephalometric points have been described in this way. The
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new approach is evaluated by assessing the intra- and interobserver variability for
measurements performed on one image of each skull. Observer variations below
0.2 mm were found for eight out of ten landmarks.

Further research was done to improve the technique, as described in the second
study. The intraobserver variability for measurements performed on different im-
ages of the same skull is obtained, as the landmark position may change if the
anatomy is discretised in a different way. In addition, the effect of using dif-
ferent smoothing parameters is investigated. The results are compared to studies
reporting on manual landmark localisation on 3D images. The automatic approach
allows for precise landmark localisation. Differences in precision between land-
marks and anatomical directions were observed and were in agreement with other
studies. The mean 3D intraobserver variations are below 1.4 mm and the maxi-
mum variations are below 2 mm for 11 of the 15 studied landmarks. These results
show that the semi-automatic approach allows for an improvement in landmark
precision compared to the manual analysis. A major advantage of the automatic
analysis might be that it is less prone to outlier variations. Finally, it is demon-
strated that a reliable coordinate system for cephalometric analysis can be set up
from the studied landmarks.

Overall, the proposed method is novel and allows for a more objective and stan-
dardised 3D analysis of the skull. The automatic analysis can contribute to an
improved 3D surgical planning as well as evaluation of orthognathic surgery.

Chapter 5: 3D analysis of the femur

The femur is fully automatically analysed in this chapter using a variety of land-
mark extraction techniques. In a first study, the 3D femoral anatomical axis is ex-
tracted from a series of best-fit hyperboloids to the shaft. This axis is then used to
determine the optimal entry point for the intramedullary rod, which is inserted into
the medullary canal during TKA. In addition, the feasibility of a reduced scanning
protocol is investigated by applying the method on both full and reduced models of
the femur, the latter being obtained by removing specific regions from the model.
Precise measurements can be obtained by scanning two outer and a central part of
the femur. Including the central part of the femur is required to correctly measure
femoral bowing.

In a second study, various reference axes to study femoral alignment are automat-
ically determined by applying the different feature extraction methods presented
in chapter 3. Relevant angular measurements in the three anatomical planes are
made and compared to mean values reported in literature. It is shown that the au-
tomatic methods allow for determining axes that are difficult to identify manually.
While the mean values for most measurements are in agreement with other studies,
further work is required to validate the automatic procedure.

The presented techniques form a basis for a more objective and standardised 3D



xxii

analysis of femoral alignment. The automatic analysis can contribute to a faster
and more precise 3D planning and evaluation of TKA.

Chapter 6: Conclusions and perspectives

This chapter gives an overview of the main contributions of this work to the field of
3D landmarks and offers some suggestions for further research. This thesis aimed
at developing automatic approaches to extract reference points and axes that could
be used for orthognathic surgery and TKA. A novel semi-automatic approach for
landmark localisation on the virtual skull was proposed and an extensive set of
tools to measure femoral alignment was presented. Landmark definitions were
adapted to include the three dimensions, mathematical descriptions and reference
frames were proposed and the methods were evaluated using different techniques.
The automatic techniques may save time for the surgeon and allow for a more ob-
jective analysis of patient data, but further work is needed to evaluate the results
and to employ the methods for clinical applications. Regarding cephalometry,
several landmarks of the skull have been extracted, but the semi-automatic pro-
cedure should be employed to also detect the landmarks on the jaws, teeth and
face. Furthermore, reliable measurements for cephalometric analysis should be
proposed based on these landmarks. Concerning TKA, relevant measurements for
planning and evaluation of surgery should be determined and the alignment of the
tibia and prosthesis components should be studied. Finally, it is illustrated that the
techniques could be used for many other applications, both within or outside the
medical field.



1
Introduction

1.1 Motivation

Landmark-based measurement is a well-established technique in surgical proce-
dures requiring correct positioning of bones and prostheses. From homologous,
prominent features on the bones various axes, planes, sizes and linear and angular
measurements can be derived, which aid the surgeon in decision making through-
out the whole patient treatment process: diagnosis of the pathological anatomy,
surgical planning, restoration of normal anatomy, positioning of surgical instru-
ments and postoperative follow-up.

Due to the subjective perception of human operators, each attempt of one or dif-
ferent observers to identify a specific landmark may result in slightly different
coordinates. Even when high quality images are used and clear definitions are
provided for the landmarks, intra- and interobserver variabilities occur. Precise
landmark identification is also time-consuming and requires a high level of experi-
ence. To allow for good clinical outcome, however, the variability of the landmark
coordinates and corresponding measurements should be in the clinically accept-
able range. In addition, patient data, such as pre- and postoperative images, can
only be compared in a reliable way if the morphological measurements are ob-
tained with sufficient precision. Computer-assisted methods can be used to aid
the operator in landmark identification, e.g. by creating intersections or fitting ge-
ometrical shapes. While these might allow slight improvement in precision and
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analysis time, the disadvantages of the manual procedure remain.

Automatic approaches to localise the landmarks offer several advantages over
manual analysis. They allow for a faster analysis and could thus save time for the
surgeon. In addition, rapid data processing is of interest for obtaining morpholog-
ical measurements of large control and patient populations. They can be applied
to gain additional insights in different pathological morphologies and to compare
the results of different surgical procedures. Observer variability is eliminated by
using standardised procedures, which could result in more reliable measurements
and improved clinical outcome, result comparison and data exchange.

This thesis aims at developing automatic approaches to extract anatomical land-
marks from three-dimensional (3D) virtual models of the skull and femur. The
studied landmarks and measurement could be applied for orthognathic surgery
and total knee arthroplasty, respectively. An increased interest for 3D computer-
assisted planning is shown for both of these procedures, due to difficulties asso-
ciated with the two-dimensional (2D) approach and easier transfer of the 3D pre-
operative plan to the operating room and due to advances in 3D imaging, image
processing and computer technology.

This chapter first gives a brief introduction to the use of bony anatomical land-
marks and medical images. Then, the anatomical terminology is illustrated and
validation terms are explained. Next, the two surgical procedures considered in
this thesis are discussed: orthognathic surgery and total knee arthroplasty. The
conventional landmark-based 2D measurement method is explained and the cur-
rent trend towards 3D analysis is demonstrated. Some remarks about 3D automatic
landmark extraction are given and finally, the outline of the thesis is described.

1.2 Anatomical landmarks

Anatomical landmarks are prominent features that establish an unambiguous cor-
respondence among specimens. They can be isolated points, lines or regions and
often have a biological meaning. Typical examples are a prominence on the bone,
a suture between bones, an insertion site of muscles or ligaments or an axis around
which a bone rotates. They are often defined based on a geometrical description,
i.e. using shape, size and relative position. Because their positions are homologous
among specimens, they can be used to determine relevant axes, planes, sizes and
linear and angular measurements. Bony landmarks can be both identified on the
skin or underlying bone through manual palpation and digitised using a probe or
on medical images through virtual, either manual or automatic, palpation. Manual
palpation on the body is often performed during surgery, e.g. to position an im-
plant or surgical instrument, or before in-vivo kinematic analysis to place markers
on the body. In addition, functional methods can be used to estimate the centre of
rotation of a ball-and-socket joint from kinematic data. Landmarks obtained from
medical images, which allow to view the inner structures of the body, are primarily
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used for diagnosis, surgery planning and treatment evaluation.

Bony landmarks are employed for various reasons in medicine. Many morphologi-
cal parameters (e.g. distances, angles, sizes) have been defined based on landmarks
to describe the geometry of anatomical parts [1–3]. A reference set of measure-
ment values obtained from normal anatomies can be used to diagnose pathological
cases [4] and to restore the anatomy [5]. Joint prostheses are often positioned with
respect to certain anatomical reference axes and various recommendations for the
orientation angles have been presented [6]. Also, joint kinematics are often de-
scribed relative to joint coordinate systems that are defined based on anatomical
landmarks [7]. Another application is landmark-based image registration, which
uses the locations of corresponding landmarks to determine the geometric transfor-
mation between images [8]. This allows for example to superimpose images of a
patient obtained with different imaging modalities or at different times. In image-
based navigation, patient-to-image registration can be performed using landmarks
that are determined on the image as well as on the patient during the operation [9].
Furthermore, different landmarks can be used to determine the insertion locations
in ligament reconstruction [10, 11]. Finally, statistical shape models, representing
the mean shape and modes of shape variation of a specific anatomical part, can be
built from a set of corresponding landmarks in the training shapes [12].

An important issue in landmark-based measurement is the use of standardised def-
initions. It has been shown that the use of more anatomically detailed landmark
definitions [13] increase their localisation reproducibility [14]. Also, standard-
ised patient positioning during 2D image acquisition is required as the resulting
measurements can be significantly affected by variabilities in orientation of the
anatomical part [15, 16]. Differences in the choice of reference frame and in the
definition of orientation angles may lead to inconsistencies in the recommenda-
tions for correct positioning of joint prostheses [6]. Quantifications of how differ-
ent coordinate systems produce different outputs for joint motion [17] also reveal
the need for using standardised definitions and recommendations on the defini-
tions of joint coordinate system of various joints have been presented [18, 19].
Automatic approaches for landmark localisation may contribute to improved stan-
dardisation by employing unambiguous definitions.

1.3 Medical images

Several types of medical images can be used to obtain landmark coordinates and
clinically relevant measurements (see Figure 1.1). Two-dimensional radiography
is the most commonly used imaging technique for deriving landmark-based mea-
surements. A disadvantage of these images is that they provide a 2D represen-
tation in which the anatomical structures are superimposed onto each other. The
analysis of asymmetrical anatomies, for which bilateral structures are not super-
imposed, might therefore be more difficult and thus prone to error. The presence
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of large deformities might also hamper radiographic analysis because traditional
measurements might not suffice. The imaged plane and consequently the obtained
measurements may also vary if the anatomical part is oriented differently during
imaging [20]. In addition, magnification and distortion errors occur depending on
the distances between the X-ray source, the patient and the film [21]. Multiplanar
images (e.g. a frontal and lateral radiograph) can be used to obtain 3D measure-
ments [22], but these require that the landmarks are visible on both images and that
the difference in magnification of the various anatomical structures is corrected.

More detailed, cross-sectional images are provided by computed tomography (CT)
and magnetic resonance (MRI) imaging. In addition, software programs allow to
generate 3D multiplanar reconstructions and surface renderings or models from the
2D slices. These allow to view the 3D anatomical structures from different angles
and can provide additional useful information for patient treatment. While MRI is
most adequate for visualising soft tissues, CT is preferred to obtain high contrast
images of the bone structures. Combined techniques may also be used, such as
arthro-CT, which uses a contrast agent to obtain a better view of the cartilage.
Both radiography and CT imaging expose the patient to X-ray radiation, but the
effective dose is considerably larger for the latter. Because of radiation issues
and higher cost, CT imaging is currently mainly used to treat patients with more
complex anatomies, such as asymmetrical cases or large deformities. However,
an increasing amount of studies is ongoing on how radiation dose can be reduced
without compromising the image quality [23, 24]. In particular, new software
technologies [25, 26] and individual settings adjusted to the body type and to the
anatomical part that is imaged [27] allow for low-dose CT scanning. Reduced
radiation dose will likely result in a more widespread use of this technology for
cases where improved outcome is expected or has been proven.

The medical images used for landmark localisation can thus be classified into four
types with regards to their dimensions and to how the information is stored in the
image: 2D projections, 2D slices, 3D multiplanar reconstructions and 3D mod-
els. Two-dimensional images, both projections and slices, display the object using
pixel intensity values, usually grayscale values. The image’s signal (the intensity
function) is a function of the position values (the pixels). Similarly, 3D multi-
planar reconstructions contain voxel information: an intensity function is defined
over the 3D voxel positions. In 3D models, however, the information is stored in
a different way as the signal’s values are the positions themselves. This is a direct
result of the additional segmentation step that is performed before generating the
3D model.
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Figure 1.1: Different types of medical images: 2D radiograph (top left), set of 2D axial CT
slices (top right), 3D multiplanar reconstruction showing coronal, axial and sagittal slices

(bottom) and 3D model (bottom).
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1.4 Terminology

Anatomical directional terms and planes of reference are employed throughout
the thesis to indicate the locations of anatomical structures and landmarks and to
define the reference frames. These are illustrated in Figures 1.2 and 1.3.

Figure 1.2: Anatomical directions [28].

Figure 1.3: Anatomical planes [29].
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Furthermore, the macroscopic anatomy of the studied bones is given in this section.
Figures 1.4 to 1.7 give an overview of the skull bones and their main anatomical
structures. The skull is composed of 28 bones: 8 cranial bones protecting the brain,
14 facial bones supporting the face and 6 ear ossicles.

Figure 1.4: Anatomical structures in the skull: anterior view [30].

Figure 1.5: Anatomical structures in the skull: right view [30].
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Figure 1.6: Anatomical structures in the skull: intracranial superior view [30].

Figure 1.7: Anatomical structures in the skull: inferior view [30].

Figure 1.8 gives an overview of the 31 bones that are found in each lower limb:
the hip bone, femur, patella, tibia, fibula, 7 tarsal bones, 5 metatarsals and 14
phalanges. The hip bone, which is illustrated in Figure 1.9, is formed by the union
of three bones at the acetabulum: the ilium, the pubis and the ischium. The femur
and tibia are shown in Figure 1.10.
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Figure 1.8: Bones of the lower limbs: anterior view [28].

Figure 1.9: Anatomical structures in the hip bone: anterolateral view [30].
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Figure 1.10: Anatomical structures in the leg: (a) anterior view of the femur, (b) posterior
view of the femur, (c) anterior view of the tibia [30].

Finally, some terminology on validation of the measurements should be explained.
The most adequate method to validate the position of the landmarks is to assess
the accuracy of the measurements. Accuracy refers to a combination of trueness
and precision, with the latter one being defined in terms of repeatability or repro-
ducibility. These terms can be described as follows:

• Accuracy/validity: the closeness of agreement between a measurement re-
sult and the true value or an accepted reference value;

– Trueness: the closeness of agreement between the average value ob-
tained from a large series of measurement results and the true value or
an accepted reference value;

– Precision/reliability: the closeness of agreement between independent
measurement results obtained under stipulated conditions;

∗ Repeatability: the closeness of agreement between independent
measurement results obtained with the same method on identical
test material, under the same conditions (same operator, same ap-
paratus, same laboratory and after short intervals of time);
∗ Reproducibility: the closeness of agreement between independent

measurement results obtained with the same method on identical
test material, but under different conditions (different operators,
different apparatus, different laboratories and/or after longer in-
tervals of time).
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The difference between accuracy, trueness and precision is illustrated in Figure 1.11
using the analogy of arrows that are shot at a target. The accuracy or closeness of
an individual test result to the accepted reference value, which is indicated by the
centre of the target, improves with increasing precision and increasing trueness
and therefore is a measure of both of these validation parameters [32].

Measurement errors can be split into two components: systematic errors or bi-
ases and random errors. Systematic errors are constant, while random errors are
caused by unknown and unpredictable variations in the experiment. Trueness and
precision are limited by systematic and random errors, respectively.

Two commonly used variables to express the precision of the landmark positions
are intra- and interobserver reproducibility. These terms refer to the closeness of
agreement between measurement results obtained by one observer after relatively
long intervals of time (e.g. more than one day) and measurement results obtained
by multiple observers, respectively. The main goal of this thesis is to employ au-
tomatic landmark localisation methods to improve the precision of the 3D analysis
of the bones.

Figure 1.11: Illustration of accuracy, trueness and precision using the analogy of arrows
that are shot at a target. The accuracy improves with increasing precision and increasing

trueness [31].

1.5 Orthognathic surgery

Orthognathic surgery is a procedure performed to reposition one or both jaws.
During surgery, the maxilla (upper jaw) is cut loose from the skull and is usually
repositioned relative to the mandible (lower jaw), while the mandible is usually
split at the left and right ascending rami and repositioned relative to the moved
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maxilla, or vice versa. After the bones are realigned, they are held in place with
plates and/or screws. The main indications for orthognathic surgery are significant
skeletal discrepancies, temporomandibular joint pathology and obstructive sleep
apnea [33–35]. Traditionally, the procedure is planned using photographs, lateral
and/or frontal radiographs and plaster dental casts as well as bite registrations es-
tablishing the antagonistic tooth contacts in generally habitual occlusion, i.e. when
the teeth in both jaws are brought into maximum contact. A double jaw surgery
is generally planned in the following way. The new position and corresponding
movements of the maxilla relative to the skull are determined from the clinical
examination, photographs and radiographs and are based on esthetical, anatomical
and functional norms. The dental casts are mounted onto an articulator in their
correct anatomical positions using a face-bow and a bite impression. The face-
bow records the position of the maxilla relative to the skull and is used to orient
the maxillary cast in the articulator, while the bite impression records the patient’s
occlusion and is used to orient the mandibular cast in the articulator. The planned
movements are then transferred to the articulator by separating the maxillary cast
from its base and moving it to the new position. Next, the mandibular cast is sep-
arated from its base and moved to its new position by determining the optimal
occlusion between the two dental arches. To position the jaws during surgery, two
acrylic temporary splints are fabricated: an intermediate splint to simulate the new
position of the maxilla relative to the original position of the mandible and a final
splint to simulate the new position of the mandible relative to the moved maxilla.
Figure 1.14 shows the splints in case of computer-assisted planning.

The radiographic analysis is based on various landmarks and measurements that
allow to determine the relationships between the teeth, bones and soft tissues. The
study of the dental, skeletal and soft tissue relationships in the head is named
cephalometric analysis. Cephalometry was introduced by Broadbent [36] and
Hofrath [37] in 1931 by the development of the cephalostat, a head-positioning de-
vice to obtain more standardised lateral and frontal views of the skull. Since then,
it is a widely used measurement tool for diagnosis, treatment planning and evalu-
ation of dentofacial disharmonies. Several types of analyses have been presented
to relate the cranial and facial bones and teeth with each other [2, 3]. Figure 1.12
gives an overview of commonly used hard tissue landmarks. Figure 1.13 shows
two common types of analyses. Among other measures, the Downs analysis uses
the facial angle (N-Pg to FH), angle of convexity (N-A-Pg) and A-B plane angle
(A-B to N-Pg) to describe the positions of the maxilla and mandible relative to the
Frankfort horizontal plane (Po-Or). In the Steiner analysis, the SNA and SNB an-
gles relate the horizontal position of the maxilla and mandible to the cranial base.
The ANB angle describes the relationship between the maxilla and mandible [2].

Besides planning, cephalometry can be used to evaluate the outcome of the sur-
gical procedure. Postoperative images can be analysed to evaluate how well the
planned jaw positions were reached during the operation. In addition, short- and
long-term postsurgical stability of the bone segments can be assessed. Instabil-
ity or relapse may occur due to several factors such as inadequate mobilization of
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Figure 1.12: Landmarks commonly used in the analysis of the skull: lateral view (left) and
frontal view (right) [2] (abbreviations are explained in Table 1.1).

Figure 1.13: Cephalometric analysis based on a lateral radiograph: Downs analysis (left)
and Steiner analysis (right) [2] (abbreviations are explained in Table 1.1).

the repositioned jaws, improper positioning of the condyles in the fossa, muscular
forces and bone resorption [38, 39]. The amount of relapse varies largely by the
direction of surgical movement. Proffit et al. [40] presented a hierarchy of stability
for orthognathic surgery with rigid fixation and reported that isolated mandibular
setback, downward movement of the maxilla and widening of the maxilla are the
least stable procedures within one year after surgery. They considered changes
below 2 mm to be within the range of method error and clinically insignificant,
2-4 mm outside the range of method error and potentially clinically significant and
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above 4 mm as often beyond the range of orthodontic compensation and clinically
highly significant. Similarly, according to Lagravère et al. [41] it is reasonable that
mean differences in landmark identification less than 1 mm are clinically accept-
able, that mean differences between 1 and 2 mm are useful in most analyses, and
that landmarks with mean differences greater than 2 mm should be used with cau-
tion. While there is no general accepted standard for the maximum allowable error,
many authors suggest that 2 mm or 2◦ provides a potential threshold for clinically
meaningful differences, because these are generally within one standard deviation
of norm values of most of the cephalometric analyses, are not likely to be notice-
able to the naked eye or will probably not make a difference in treatment [42–46].

Because of the difficulties associated with developing a 3D surgical plan based
on the 2D cephalograms and 3D dental casts that do not visualise the jawbones,
3D computer-assisted planning is more and more performed [47–49]. In contrast
to the traditional approach, this virtual environment allows the surgeon to view
the 3D anatomy of the teeth, bones and soft tissues and simulate different surgi-
cal procedures and setups. As shown in Figure 1.14, the jaws can be virtually
cut and repositioned and surgical splints can be fabricated from the virtual oc-
clusion allowing to transfer the treatment plan and occlusal characteristics to the
operation table. As an alternative, surgical navigation has been used to position
the jaws according to the preoperative plan [50]. This technique allows tracking
and displaying of the anatomy and surgical instruments on a computer screen by

Figure 1.14: Computer-assisted planning of orthognathic surgery: two surgical splints are
fabricated from the virtual treatment plan, which relate the new position of the maxilla to

the original position of the mandible (top) and the new position of the mandible to the
moved maxilla (bottom) [49].
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registering the preoperative image to the patient’s anatomy during surgery. It has
the advantage that the maxilla does not need to be moved relative to the mandible,
which is not fixed in relation to the skull.

As for the 2D cephalometric analyis, different 3D landmarks and measurements
have been proposed [13, 51–53]. Table 1.1 gives an overview of 3D landmark
definitions proposed by Swennen et al. [51]. Automatic approaches to identify the
landmarks on the virtual skull model could speed up and improve the precision of
the 3D analysis. They could contribute to an improved surgical planning as well
as evaluation of the procedure, which requires quantifying deviations in the order
of 2 mm.

Table 1.1: Landmarks commonly used in the analysis of the skull and their 3D definition as
proposed by Swennen et al. [51] (abbreviations according to Figure 1.12).

Landmark 3D definition
Anterior nasal spine (ANS) Most anterior midpoint of the anterior nasal spine of the

maxilla
A-point (A) Point of maximum concavity in the midline of the alveolar

process of the maxilla
Basion (Ba) Most anterior point of the great foramen (foramen mag-

num)
B-point (B) Point of maximum concavity in the midline of the alveolar

process of the mandible
Condylion left/right (Co) Most postero-superior point of each mandibular condyle

in the sagittal plane
Frontozygomatic Point (Zfs) Most medial and anterior point of each frontozygomatic

suture at the level of the lateral orbital rim
Gnathion (Gn) Most anterior and inferior midpoint of the chin on the out-

line of the mandibular symphysis
Gonion left/right (Go) Point at each mandibular angle that is defined by dropping

a perpendicular from the intersection point of the tangent
lines to the posterior margin of the mandibular vertical ra-
mus and inferior margin of the mandibular body or hori-
zontal ramus

Menton (Me) Most inferior midpoint of the chin on the outline of the
mandibular symphysis

Nasion (N) Midpoint of the frontonasal suture
Orbitale left/right (Or) Most inferior point of each infraorbital rim
Pogonion (Pg) Most anterior midpoint of the chin on the outline of the

mandibular symphysis
Porion left/right (Po) Most superior point of each external auditory meatus
Posterior nasal spine (PNS) Most posterior midpoint of the posterior nasal spine of the

palatine bone
Sella (S) Centre of the sella turcica
Zygion left/right (Za) Most lateral point on the outline of each zygomatic arch
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1.6 Total knee arthroplasty

Total knee arthroplasty (TKA) is a surgical procedure to treat end stage osteoarthri-
tis of the knee. During surgery the articular surfaces of the femur (thighbone) and
tibia (shinbone) are removed and replaced by a prosthesis. Traditionally, radio-
graphic images are used to plan the size and alignment of the prosthesis compo-
nents relative to specific reference axes of the bones. Figure 1.15 gives an overview
of commonly used reference axes of the femur. Alignment in the frontal plane usu-
ally aims at obtaining a neutral lower limb mechanical axis, i.e. the angle between
the mechanical axis of the femur and the mechanical axis of the tibia is 180◦. As
shown in the top left part of Figure 1.15, the femoral mechanical axis joins the
centre of the hip with the centre of the knee. Similarly, the tibial mechanical axis
joins the centre of the knee with the centre of the ankle. The femoral and tibial
prosthesis components are positioned perpendicular to the mechanical axes of the
femur and tibia, respectively. Regarding the sagittal and horizontal plane align-
ment there is less agreement. For example, the bottom part of Figure 1.15 shows
different axes that are used for determining rotational (horizontal plane) alignment.

Figure 1.15: Reference axes commonly used in the analysis of the femur: frontal plane (top
left) [1], sagittal plane (top right) [1] and horizontal plane (bottom) [54].
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Positioning of the femoral component relative to the mechanical axis is not straight-
forward as the centre of the hip can not be readily identified during surgery. There-
fore, the femoral anatomical axis or medial axis of the long diaphysis (see top fig-
ures) is commonly used as a reference axis. During surgery, this axis is determined
by inserting a metal rod into the medullary canal of the femur. The preoperatively
measured angle between the mechanical and anatomical axis is then used to cut
the distal femur. In the horizontal plane, the posterior condylar line is often used
as a hard reference for positioning the cutting guide. The preoperative measure-
ment of the angle between the posterior condylar line and the desired reference
axis (e.g. surgical transepicondylar axis) then allows for determining the proper
cutting angle.

It has been demonstrated that correct alignment of the prosthesis components is
a crucial factor for the success of TKA [55, 56]. Postoperative malalignment has
been associated with instability, stiffness, loosening and patellar dislocation [57–
59] and is typically defined as a deviation of 3◦ or more from the targeted position
[60, 61]. Several factors may contribute to errors in alignment, such as observer
variability during preoperative planning, difficulties in locating the reference axis
during surgery and improper positioning of surgical instruments. In particular, the
positioning of intramedullary rods, which allow for determining the anatomical
axis, is prone to error. It has been shown that the alignment of the rod is highly
dependent on the position of its entry point [62–64]. A thorough planning should
therefore be performed, especially in case of large bowing of the distal femur [65].

Computer-assisted planning is more and more performed to allow for visualising
the 3D anatomy of the bones and simulating different surgical procedures. The
preoperative plan is then transferred to the operation room by fabricating physi-
cal guides [66, 67] or using intraoperative navigation [68]. Figure 1.16 shows an
example of patient-specific instrumentation for the femur: a surgical guide that
fits the patient’s anatomy (left) is used to drill the fixation pins of a cutting block
(right), which allows to transfer the preoperatively planned bone cuts.

Figure 1.16: SignatureTMfemoral positioning guide (left) and cutting block (right) for
distal resection [69].
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A set of 3D landmark and axis definitions, as presented by Victor et al. [70], is
summarised in Figure 1.17 and Tables 1.2 and 1.3. Automatic approaches to ex-
tract these reference axes could contribute to a faster and more precise 3D planning
and evaluation of the procedure.

Figure 1.17: Landmarks commonly used in the analysis of the femur: horizontal plane
(left) and sagittal plane (right) [70].

Table 1.2: Landmarks commonly used in the analysis of the femur and their 3D definition
as proposed by Victor et al. [70].

Landmark 3D definition
Femoral hip centre (FHC) Centre of best-fit sphere to the head of the femur
Femoral knee centre (FKC) Most anterior point in the middle of the femoral

notch on a caudal to cranial view of the fe-
mur, aligning the hip centre with the roof of the
femoral notch

Femoral lateral condyle centre (FLCC) Centre of the best-fit sphere to the lateral condyle
Femoral lateral condyle posterior (FLCP) The most posterior point of the lateral condyle

on the 3D model of the femur, aligned along the
mechanical axis

Femoral lateral epicondyle (FLE) The most anterior and distal osseous prominence
over the lateral aspect of the lateral femoral

Femoral medial condyle centre (FMCC) Centre of the best-fit sphere to the medial condyle
Femoral medial condyle posterior (FMCP) The most posterior point of the medial condyle

on the 3D model of the femur, aligned along the
mechanical axis

Femoral medial epicondyle (FME) Most anterior and distal osseous prominence over
the medial aspect of the medial femoral condyle

Femoral medial sulcus (FMS) Depression on the bony surface slightly proximal
and posterior to FME

Femoral trochlea proximal (FTP) Deepest point of the trochlear groove on the 3D
model of the femur, aligned along the mechanical
axis
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Table 1.3: Axes commonly used in the analysis of the femur and their 3D definition as
proposed by Victor et al. [70].

Axis 3D definition
Anatomical transepicondylar axis FME - FLE
Mechanical axis FHC - FKC
Posterior condylar line FMCP - FLCP
Surgical transepicondylar axis FMS - FLE
Transverse axis FMCC - FLCC
Trochlear antero-posterior axis
(also called Whiteside line)

FKC - FTP

1.7 Remarks on 3D automatic landmark extraction

While many 2D landmark definitions are available in literature, the data on 3D
measurements is more limited. Many conventional 2D landmarks can be used
by adding definitions for the third dimension, but new landmarks should also be
defined to allow for a 3D analysis of the anatomical structures. As only a lim-
ited number of approaches for 3D measurement have been described and different
definitions for the same landmarks are sometimes found, standardisation of 3D
analyses is still an issue. Compared to conventional radiographic analysis, some
landmarks might be easier and other more difficult to define and localise. Studies
on the accuracy and precision of these 3D landmarks and measurement are thus
required. The orientation of the anatomical part during image acquisition is no
longer a concern using CT and MRI as a 3D reconstructed image of the anatomy is
provided. However, many measurements require the definition of proper anatomi-
cal directions. Establishing one or more standardised reference frames during the
analysis is thus usually required.

As mentioned above, automatic landmark extraction techniques may allow for im-
proved standardisation by employing unambiguous definitions. However, the land-
marks should be chosen carefully as they should be both anatomically relevant and
automatically computable. The well-established geometrical definitions used for
manual analysis could be translated into mathematical descriptions, but a good
correspondence between both definitions should be found to allow for accurate re-
sults. Alternatively, slightly modified definitions for existing landmarks could be
proposed and mathematical descriptions for new landmarks could be presented.

While each trial to manually identify a landmark on a medical image may result in
different coordinates, automatic procedures aim at determining a unique solution.
However, it should be noticed that this only applies to landmark localisation on
a single medical image. Different results may be obtained if the algorithms are
applied on multiple images of the same anatomical part because the geometry is
discretised in different ways. As for manual analysis, the image quality should
also be sufficient to allow for accurate results. It is thus desirable to investigate the
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effect of using different images of the same structure and to compare the results for
different image qualities. In addition, the results of the automatic analysis should
be compared to the mean values of a set of manually obtained measurements to
assess the closeness of agreement between the automatic methods and the clinical
knowledge.

Throughout the thesis, several of these issues are addressed: landmark definitions
are adapted to include the three dimensions, mathematical descriptions and ref-
erence frames are proposed and different images of the same anatomical part are
analysed.

1.8 Outline

The thesis is organised as follows:

• In chapter 2, the literature on 3D landmark localisation is reviewed. First,
some reports on intra- and interobserver variability associated with manual
landmark identification on 3D images of the head and lower limbs are sum-
marised. The results of different studies are compared to see if valuable con-
clusions about the reliability of different landmarks and measurements can
be drawn. Second, the literature on (semi-)automatic landmark extraction
from 3D images of the head and lower limbs is reviewed and conclusions
about the current state-of-the-art are drawn.

• Chapter 3 provides an overview of the algorithms that are used in this thesis
to analyse the skull and femur models. Some mesh operations to simplify,
smooth and refine the 3D models and several automatic approaches for land-
mark extraction are discussed. The main mathematical background is given
and each method is illustrated using examples on the skull and femur mod-
els.

• In chapter 4, two studies about landmark localisation on the skull are pre-
sented. First, a method for semi-automatic localisation of landmarks on
the virtual skull is proposed. The new approach is evaluated by assesssing
the intra- and interobserver variability for measurements performed on one
image of each skull. The second study presents the extraction of a larger
number of landmarks and evaluates the method by determining the intraob-
server variability for measurements performed on multiple images of the
same skull.

• In chapter 5, two studies about landmark extraction on the femur are pre-
sented. The first study deals with the insertion of intramedullary rods and
aims at determining the optimal entry point. In addition, the feasibility of
a reduced scanning protocol is investigated by applying the method on both
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full and reduced models of the femur, the latter being obtained by remov-
ing specific regions from the model. In the second study, the alignment of
the femur in the three anatomical planes is considered by extracting various
reference axes.

• Finally, chapter 6 gives an overview of the main contributions of this the-
sis to the field of 3D landmarks and offers some suggestions for further
research.
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2
Literature review on 3D landmark

localisation

This chapter provides an overview of the literature on 3D landmark localisation.
First, some reports on intra- and interobserver variability associated with manual
landmark identification on 3D images of the head and lower limbs are summarised.
The results of different studies are compared to see if valuable conclusions about
the reliability of different landmarks and measurements can be drawn. Second, the
literature on (semi-)automatic landmark extraction from 3D images of the head
and lower limbs is reviewed and conclusions about the current state-of-the-art are
drawn. Most studies have been published in the last decade, which shows that
3D landmark-based analysis is a relatively new topic both in academic research
and clinical practice. The reader is referred to Figure 1.12 and Table 1.1 for an
overview of the landmarks that are most commonly used in the analysis of the
skull and to Figures 1.17 and 1.15 and Tables 1.2 and 1.3 for an overview of the
points and axes that are most commonly used in the analysis of the femur.

2.1 Variability of manual landmark identification

The manual localisation of landmarks, either on the bone or on medical images,
is prone to intra- and interobserver variations. Different factors contribute to the



30 CHAPTER 2

landmark localisation variability: the perception of human operators is subjective,
the image resolution might be insufficient, the operators might use other landmark
definitions, the landmarks are often not merely points but relatively large areas,
etc. It is important to measure their reliability to determine which landmarks are
clinically acceptable and thus allow for correct analysis of the patient data. This
section summarises some of the studies reporting on the reliability of landmark
identification on 3D images of the head and lower limbs and aims at drawing some
conclusions about the reliability of different landmarks and measurements. Studies
reporting on the precision of a relatively large number of landmarks and/or includ-
ing a large number of datasets were selected. In addition, results on the precision
of the individual landmarks were preferred over the precision of linear or angu-
lar measurements between the landmarks. Finally, linear or angular deviations
were preferred over correlation coefficients as they allow for a better evaluation of
clinically significant values. The literature study is split into two parts: first, the
landmarks of the skull are analysed and second, the lower limbs are discussed.

2.1.1 Landmarks of the skull

2.1.1.1 Studies

Swennen et al. [1] obtained CT scans with 1.25 mm slice thickness of 20 patients to
compute the reliability of 14 landmarks. The points were identified using the cor-
responding 3D surface models and using virtual lateral and frontal cephalograms
that are computed as orthogonal projections from the CT dataset. Two investiga-
tors each marked the points two times. Correlation tests were performed for each
landmark and each anatomical direction based on the two trials (intraobserver)
and on the average observer values (interobserver). Intraobserver squared corre-
lation coefficients were above 0.95 for all anteroposterior (AP), 13 superoinferior
(SI) and 8 mediolateral (ML) measurements. Interobserver squared correlation
coefficients were above 0.95 for all AP, 12 SI and 7 ML measurements. The land-
marks that were least reliable in the SI direction were condylion and zygion. The
landmarks that were least reliable in the ML direction were anterior nasal spine,
A-point, posterior nasal spine and orbitale.

Ludlow et al. [2] studied the reliability of 14 hard tissue and 10 soft tissue land-
marks. They used multiplanar reconstructed images with 0.4 mm slice thickness
and 3D surface renderings obtained by cone-beam CT (CBCT) scanning of 20
presurgical orthodontic patients. Five observers each performed four analyses,
spread over two weeks. Interobserver pairwise differences were calculated and
averaged across all trials and datasets. The mean values of the 3D distances for
the bony landmarks ranged between 1.24 mm and 8.07 mm. The most reliable
landmarks were nasion and sella (<1.5 mm), while the least reliable points were
orbitale and porion (>6.0 mm). The mean values for the remaining points ranged
between 1.5 mm and 3.3 mm. Significant differences in variability between the dif-
ferent anatomical directions were found for some of the landmarks. For example,
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both orbitale and porion showed large variations in the ML direction (5.76 mm
and 7.14 mm). The large deviations for landmark porion, however, were due to
differences in the definition that was employed by different observers.

The reliability of landmark identification for two different types of analyses, 3D-
Swennen [1] and 3D-ACRO [3], was studied by Olszewski et al. [4]. They used
3D surface renderings, generated from CT images with 1 mm slice thickness, from
13 patients. Two observers made two series of landmark identifications that were
1 week apart. For both types of analyses 22 landmarks were marked and for each
landmark two intraobserver and four pairwise interobserver distances were ob-
tained. The mean interobserver variation for the 3D-ACRO analysis (1.8 mm ±
1.04 mm) was significantly lower than the mean interobserver variation for the
3D-Swennen analysis (2.47 mm ± 1.04 mm). The least reliable landmarks in the
3D-Swennen analysis were zygion (>8 mm), pogonion (>5 mm), porion, orbitale,
infraorbitale, mentale and gonion (>3 mm). The most reliable landmarks were
anterior nasal spine, frontozygomatic and basion (<1.5 mm). Some differences in
landmark ranking are observed compared to the study of Swennen et al., where for
example orbitale was found to be less reliable than pogonion, and low precision
was found for anterior nasal spine in the ML direction. However, different sets of
landmarks were included in the studies, making it difficult to compare them.

Lagravère et al. [5] used CBCT scans with 0.5 mm slice thickness of 10 patients
to determine the reliability of 26 points. Multiplanar and 3D reconstructions were
created and landmark coordinates were obtained for each image set by one inves-
tigator three times and by two investigators one time. All examiners were trained
in using the software and in landmark identification. Intraclass correlation co-
efficients and measurement errors (mean differences between measurement trials)
were obtained for all landmark coordinates. Intraclass correlation coefficients were
greater than 0.9. Interobserver errors were higher than 1 mm for 21, 12 and 11 of
the landmarks respectively in the ML, AP and SI directions. Landmarks that were
least reliable were gonion (>6 mm), anterior nasal spine, condylion, orbitale and
porion (>3 mm).

The interobserver variability for a large number of operators was investigated by
Schlicher et al. [6]. Nine second- and third-year orthodontic residents identified 32
landmarks in 19 datasets. Multiplanar reconstructions with 0.3 mm slice thickness
and 3D renderings, obtained from the CBCT scans, were available for landmark
identification. All examiners attended two 1 hour training sessions and were then
given six months to locate the points on the 19 patient files. The interobserver
consistency was obtained by calculating the distance of each landmark value from
the mean value across all observers. Mean variations were obtained by averaging
across all observers and datasets. Outliers, greater than 2 times the standard devi-
ation (SD) from the mean landmark location, were assumed to be due to technical
errors and were removed from the dataset. They found that midline structures and
landmarks formed by acute angles were more consistently identified than bilateral
structures and landmarks along broad curves. Among the most consistent points
were sella, basion and nasion (<1.1 mm), while orbitale, porion, condylion and
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gonion were among the least consistent landmarks (>2 mm). The ML error was
largely responsible for the low reliability of orbitale and porion.

Titiz et al. [7] measured the reliability of 28 landmarks using spiral CT scans of
20 patients. Axial sectional images were reconstructed at 0.6 mm intervals and
3D reconstructions were created. The datasets were analysed by two orthodontists
and two postgraduate students. Each dataset was analysed twice by each observer
with an interval of three weeks. Outliers, outside of the range of 4 times the SD,
were detected for each subgroup defined by patient, landmark and coordinate axis
and excluded from the analysis. The number of outliers per patient ranged from
0 to 2.2 %. The intraobserver SD ranged between 0.14 mm and 2.00 mm (median
0.46 mm) and interobserver SD ranged between 0.02 mm and 2.47 mm (median
0.20 mm). About 85 % of the landmarks were measured with a total SD of less
than or equal to 1 mm. The landmarks nasion and infradentale were most reliable,
with minor SD for all three coordinates. Point orbitale revealed high interobserver
SD, especially in the ML direction (2.54 mm).

The mean 3D intra- and interobserver variations for a number of commonly used
skeletal landmarks are summarised in Table 2.1. It should be mentioned that mean
3D values were only reported by Olszewski et al. [4]. Therefore, the other 3D
values in the table are computed from the mean variations in the three anatomical
directions. The interobserver variations for each direction are given in Table 2.2
for three of the studies.

Table 2.1: Mean 3D intra- and interobserver precision for landmarks commonly used in
the analysis of the skull.

Intra (mm) Inter (mm)
Landmark / Study [4] [5] [7] [2] [4] [5] [6] [7]
Anterior nasal spine 0.61 1.51 0.71 1.74 0.71 3.36 1.15 0.36
A-point 1.22 0.90 0.99 2.25 1.80 1.44 1.20 0.40
Basion 0.83 1.62 0.66 / 1.14 1.87 0.85 0.40
B-point 2.38 1.58 1.40 2.65 2.97 2.42 1.50 1.50
Condylion left / 1.07 / / / 3.43 2.06 /
Condylion right / 1.78 / 3.29 / 3.75 2.42 /
Gnathion / 0.74 0.87 2.51 / 1.85 1.35 0.58
Gonion left 0.80 1.65 1.59 / 2.26 4.97 2.31 1.18
Gonion right 1.45 1.60 / 2.73 3.09 6.70 1.91 /
Menton 1.79 0.92 / 2.31 1.84 2.01 1.58 /
Nasion 0.55 0.66 0.58 1.24 1.13 2.09 1.02 0.18
Orbitale left 0.74 1.41 2.17 / 1.09 2.91 2.43 2.72
Orbitale right 1.71 1.14 / 6.45 3.35 3.69 2.69 /
Pogonion 2.16 0.90 1.06 2.44 5.14 2.02 1.63 0.17
Porion left 2.08 3.69 1.29 / 2.64 3.42 2.33 0.99
Porion right 2.52 2.90 / 8.07 3.21 2.94 2.69 /
Sella 0.75 1.70 0.82 1.40 1.72 1.40 0.50 0.32
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Table 2.2: Mean interobserver precision in the mediolateral (ML), anteroposterior (AP)
and superoinferior (SI) directions for landmarks commonly used in the analysis of the

skull.

ML (mm) AP (mm) SI (mm)
Landmark / Study [2] [5] [6] [2] [5] [6] [2] [5] [6]
Anterior nasal spine 0.66 1.93 0.47 1.43 2.51 0.76 0.73 1.13 0.36
A-point 0.68 0.92 0.47 0.74 0.80 0.34 2.01 0.77 1.07
Basion / 1.23 0.33 / 0.97 0.32 / 1.03 0.35
B-point 1.32 1.51 0.65 0.69 0.54 0.55 2.19 1.81 0.87
Condylion left / 3.08 1.04 / 1.28 1.50 / 0.78 0.52
Condylion right 2.55 3.48 1.25 1.82 1.36 1.07 1.01 0.37 0.46
Gnathion 1.40 1.42 0.67 1.04 0.93 0.78 1.80 0.73 0.72
Gonion left / 1.57 0.86 / 3.90 0.96 / 2.66 1.78
Gonion right 1.22 1.54 0.71 1.71 5.50 0.77 1.75 3.50 1.37
Menton 1.43 1.51 0.69 1.65 1.21 1.20 0.75 0.55 0.38
Nasion 0.65 0.68 0.48 0.66 0.86 0.33 0.83 1.78 0.62
Orbitale left / 2.57 2.09 / 1.20 0.59 / 0.64 0.62
Orbitale right 5.76 3.25 2.37 2.80 1.63 0.94 0.80 0.61 0.43
Pogonion 1.35 1.44 0.70 0.69 0.71 0.50 1.91 1.22 1.23
Porion left / 2.94 2.20 / 1.65 0.62 / 0.59 0.49
Porion right 7.14 2.70 2.37 1.46 0.90 0.94 3.46 0.73 0.43
Sella 1.05 1.21 0.14 0.65 0.41 0.23 0.66 0.57 0.31

2.1.1.2 Discussion

Studies reporting on the reliability of landmarks of the skull generally include
a large number of points. This is partially due to the fact that some landmarks
can be found on the left as well as on the right part of the skull. Nevertheless,
they allow to compare between the different landmarks and anatomical directions.
Among the least reliable points are porion, orbitale, zygion, gonion and condylion,
while basion, nasion and sella are typically among the most reliable landmarks.
Some points, such as gonion and condylion, are located on widely curved surfaces,
making it difficult to identify them as one specific point. For other points, it is
found that they are easily identified along one or two directions, but more difficult
along a third direction. For example, orbitale is most easily distinguished along
the SI and AP axes, but can be hard to identify in the ML direction if the inferior
orbital margin has a relatively flat shape. Also porion is usually more difficult
to localise along the ML axis because of the relatively flat shape of the external
acoustic meatus in this direction. In general, the reliability of landmark localisation
is least in the ML direction. This might be a result of the traditional use of lateral
cephalograms, which allow for measurement in the SI and AP directions.

The reported values of intra- and interobserver variability vary among different
studies. This might be due to different factors: the method used to calculate intra-
and interobserver variability, the number of trials, the experience of the operators,
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the image quality, etc. For example, Swennen et al. calculated correlation coeffi-
cients, Ludlow et al., Olszewsi et al. and Lagravère et al. used pairwise differences,
Schlicher et al. obtained differences from the mean value and Titiz et al. calculated
the SD of the landmark positions. The 3D interobserver variations reported by
Schlicher et al. and Titiz et al. are in general smaller compared to the other stud-
ies, which might be related to their definition of variability and the exclusion of
outliers from the analysis.

Based on the studies discussed in this section, it is found that the mean 3D in-
traobserver error of the points basion, nasion and sella is usually below 1 mm and
that their interobserver error is mostly below 1.5 mm (see Table 2.1). While for
some of the landmarks mean interobserver values below 1 mm are found in one of
the anatomical directions (e.g. AP direction for pogonion, SI direction for orbitale,
porion and menton), mean variations above 2 mm occur for several other points
along one of the axes (see Table 2.2). From Table 2.1 it is found that 17 out of 42
(40 %) of the mean 3D intraobserver values are above 1.5 mm and that 37 out of
71 (52 %) of the mean 3D interobserver values are greater than 2 mm.

Because of the differences in observer variability between the landmarks, it is de-
sirable to define a coordinate system based on the more reliable landmarks. For
example, Swennen et al. [1] proposed to orient the skull relative to the midsagittal
plane using paired midfacial anatomical structures (e.g. the orbits, frontal process
of the maxilla, frontozygomatic suture) and to position the horizontal plane 6◦ be-
low the anterior cranial base (sella-nasion). While the points orbitale and porion
may suffer from large observer variability in the ML direction, they are usually
very reliable in the SI direction, making them appropriate for defining the horizon-
tal plane. Haffner et al. [8] presented a coordinate system with the ML, AP and SI
axes respectively parallel to the orbitale-orbitale line, sella-nasion line and nasion-
A-point line. Also, Park et al. [9] established the horizontal plane based on orbitale
left and both porion right and left, and the midsagittal plane based on nasion and a
point in the prechiasmatic groove. The studies discussed in this section show that
the proposed reference frames for cephalometric analysis are indeed based on the
more reliable landmarks.

2.1.2 Landmarks of the lower limbs

2.1.2.1 Studies

Yoshino et al. [10] measured the posterior condylar line and surgical and anatomi-
cal transepicondylar axis on CT scans of 48 patients who were candidates for total
knee arthroplasty. Five continuous, 2 mm thick images at the level of the femoral
epicondyle were obtained and rotational alignment of the distal femur was mea-
sured by three observers using the single slice in which both epicondyles were seen
most clearly among the five images. However, the medial sulcus was detected in
only 33 knees. The more severe the grade of osteoarthritis, the more difficult it was
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to detect the medial sulcus. Pairwise interobserver differences were calculated and
averaged across all scans. The mean interobserver variability of the angle between
the posterior condylar line and surgical transepicondylar axis across 33 scans was
below 1.1◦, while for the angle between the posterior condylar line and anatomical
transepicondylar axis the mean value across 96 scans was below 0.7◦.

Hung et al. [11] used both 2D axial CT slices with 0.625 mm thickness and 3D
reconstructions to identify the surgical transepicondylar axis. The position of the
transepicondylar axis was expressed as the degree of rotation from the posterior
condylar line and compared to the measurements on the 10 cadaveric knees. Six
observers performed the measurements on 2 separate occasions at least 1 week
apart. They obtained an average of 2.4◦ ± 2.8◦ external rotation error in the iden-
tification of the transepicondylar axis with 2D CT and an average of 2.9◦ ± 3.1◦

with 3D CT. The reported SD shows considerable interobserver differences for the
angle between the surgical transepicondylar axis and the posterior condylar line.

A study on the accuracy in ankle centre location was performed by Nofrini et
al. [12]. They evaluated the localisation accuracy and reliability of four landmarks
and three corresponding tibial mechanical axes (based on most prominent points
of malleoli, tibialis anterior tendon point and most distal points of malleoli). The
manual measurements were performed using two scout views (frontal and lateral)
and a set of 70 axial CT slices with 1 mm thickness. Four surgeons identified
the landmarks on the images of four cadaveric limbs. In addition, one surgeon
repeated the acquisition three times for each limb. Pairwise differences were cal-
culated and averaged across all trials and limbs. The intraobserver reliability of the
four landmark points ranged between 2.8 mm and 5.4 mm, while the interobserver
reliability ranged between 3.1 mm and 5.4 mm. The reliability of the three tibial
mechanical axes was below 0.6◦, 1.2 ◦ and 0.7◦ for the three methods used.

While the above studies include only a limited number of measurements, Victor
et al. [13] evaluated the reliability of a large set of landmarks on the knee. Six
cadaver specimens were scanned with a CT slice thickness of 1.25 mm and 3D
models of the femur and tibia were reconstructed. Three observers participated in
the study: one experienced surgeon, one medical student and one engineer. After
a brief teaching session by the surgeon, they all identified 17 landmarks on each
dataset. Two observers also performed all analyses three times with a minimum
interval of one week. In addition to the landmarks, the variation of the femoral and
tibial axes was quantified. A coordinate frame was defined for the femur and tibia
based on the mean positions of the selected landmarks to differentiate between
precisions along the relevant anatomical axes. Also, the axes relevant for rotational
alignment were projected on the horizontal plane. The difference of the observed
values from the mean values were calculated and averaged across all trials and
datasets. The intraobserver variability ranged between 0.4 mm and 1.4 mm. The
joint centres and condyle centres showed to be most reliable (<1 mm), while the
femoral epicondyles and sulcus and the posterior points on the tibial condyles
were least reliable (>1 mm). Interobserver variability ranged between 0.3 mm and
3.5 mm. The lowest variation was obtained for the joint centres (<1 mm, except
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for the tibial knee centre), while the highest variation was shown for the posterior
points on the tibial condyles, the tibial tubercle and the femoral lateral epicondyle
(>2 mm). Both mechanical axes were determined very precisely (< 0.3◦). The
most reliable axes for rotational alignment were the femoral posterior condylar
line (0.56◦) and tibial transverse axis (1.66◦). The highest variability was found
for the femoral trochlear antero-posterior axis (2.07◦) and tibial posterior condylar
line (3.16◦). Finally, it was demonstrated that the coordinate systems are defined
based on reliable landmarks.

In a study about automatic landmark extraction on 3D models of the knee, Subbu-
raj et al. [14] compared their results to manual measurements performed by three
experienced surgeons on three knee models. The models were reconstructed from
CT scans with 0.67 mm slice thickness. The interobserver SD was calculated and
averaged across all datasets and coordinate axes. The mean values ranged between
2.15 mm and 5.98 mm. All landmarks were located on prominent structures. As a
result, the lowest variation was obtained for sharp regions (e.g. tibial intercondylar
tubercles) and the highest variation was found for indistinct regions (e.g. tibial me-
dial and lateral peak, femoral medial epicondyle and adductor magnus tubercle).

Similarly, Cerveri et al. [15] presented automated methods to analyse 3D mod-
els of the proximal femur and obtained manual measurements to evaluate their
method. For intraobserver variability one orthopaedic surgeon analysed 20 CT
datasets with 1 mm slice thickness, obtained from cadavers, three times. For inter-
observer variability three surgeons analysed four datasets once. The difference of
the observed values from the mean values were calculated and averaged across all
trials. Finally, the maximum values across all datasets were considered for each
landmark. The intraobserver results showed high reproducibility for the femoral
diaphysis axis (0.4◦), head centre (1.9 mm) and head radius (0.8 mm) and lower
reproducibility for the neck centre (2.4 mm), neck axis (3.2◦), offset (3.0 mm) and
neck-shaft angle (3.5◦). The values for interobserver variability confirmed these
results: diaphysis axis (0.5◦), head centre (1.8 mm), head radius (0.5 mm), neck
centre (3.1 mm), neck axis (3.3◦), offset (3.0 mm) and neck-shaft angle (3.7◦).

In a second study on the distal femur [16], the same methodology was followed.
The mean intraobserver reliability was highest for the diaphysis axis (0.45◦) and
posterior condylar line (0.31◦) and lower for the anatomical transepicondylar axis
(1.01◦) and Whiteside line (1.17◦). Similar observations were made for the in-
terobserver variability: diaphysis axis (0.50◦), posterior condylar line (0.68◦),
anatomical transepicondylar axis (2.11◦) and Whiteside line (2.52◦).

The surgical transepicondylar axis and Whiteside line were measured in a third
study [17]. A higher number of analyses was performed as the three experts each
analysed all 20 datasets four times. Again, the difference of the observed values
from the mean values was obtained and root mean square errors across all trials
were calculated. Finally, the median value of the errors across all datasets was
reported. The intraobserver error was below 1 mm for all landmarks, while the
interobserver error was less than 2 mm. The interobserver reliability was least for
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the anterior patellar groove, resulting in higher variations for the Whiteside line
(3.5◦) compared to the transepicondylar axis (2.0◦).

The same methodology, but using mean instead of root mean square, was applied
for measurements of the hip joint [18]. Intraobserver values were reported for the
acetabular centre (2.41 mm), radius (0.45 mm) and axis (3.38◦). The interobserver
values were: centre (2.80 mm), radius (1.02 mm) and axis (3.51◦).

2.1.2.2 Discussion

Except for the study of Victor et al., few data are available on the reproducibility
of landmarks used for CT-based measurement of lower limb alignment. However,
some conclusions can be drawn from the different studies. In the horizontal plane
of the femur, both Victor et al. and Cerveri et al. found that the posterior condy-
lar axis is most reliable, while the Whiteside line is least reliable. This can be
explained from the reliability of the landmarks that define these axes. The poste-
rior points of the femoral condyles have high reproducibility in the AP direction,
leading to low variations in the posterior condylar line. In contrast, the deepest
points of the trochlea and femoral notch are more prone to observer variability in
the ML direction, leading to higher variations in the Whiteside line. In addition,
the Whiteside line is short and consequently, reliability is highly dependent on the
precision of its endpoints. As this axis exceeds the clinically acceptable limit of
3◦, it is not a reliable landmark for determining rotational alignment. Large differ-
ences between the studies are found for the reliability of the surgical and anatom-
ical transepicondylar axis. Interobserver variability below < 1.1◦ was found by
Yoshino et al., but measurements were made on a single slice and the medial sulcus
was not identified in all images. In contrast, Hung et al. found larger deviations be-
tween different observers (3.1◦). While Cerveri et al. reported mean interobserver
variabilities around 2◦, Victor et al. found values around 1◦. However, their mea-
surements were made after a short teaching session and with anatomical drawings
at hand. The mechanical axes of femur and tibia were found to be very reliable,
which might be due to the large distance between the joint centres. Cerveri et
al. also found the long diaphysis axis to be highly reliable, while the neck axis and
acetabular axis had lower reproducibility. The interobserver variations reported by
Subburaj et al. were relatively high for all landmarks (>2 mm), but the effect on
the clinical parameters was not obtained.

2.2 Approaches to automatic landmark extraction

Because of the disadvantages associated with manual landmark localisation, sev-
eral (semi-)automatic approaches have been presented in literature. This section
summarises some of the studies on (semi-)automatic landmark extraction from 3D
images of the head and lower limbs and aims at drawing some conclusions about
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the current state-of-the-art. As mentioned in chapter 1, there is a fundamental dif-
ference between 3D multiplanar reconstructions and 3D models: 3D multiplanar
images are defined by an intensity function over the 3D voxel positions, while 3D
models are usually defined by a mesh topology (i.e. a set of nodes and elements,
usually triangles). Therefore, the literature study is split into two parts according
to the type of images that is used.

2.2.1 Approaches for 3D multiplanar reconstructions

Many digital image processing techniques have been developed since the 1960s.
The types of operations that can be applied to digital images to transform an input
image into an output image can be classified into three categories: point, local and
global operators if the output value at a specific coordinate is dependent on respec-
tively the input value at that same coordinate, the values in the neighbourhood of
that coordinate or the values in the whole image [19]. A popular point operator
is contrast stretching by histogram normalisation: the histogram is stretched and
shifted so that the intensities lie between the specified upper and lower limits. A
typical example of local operators are convolution-based methods, which compute
a new value for each pixel in the following way: a window or kernel mask of finite
size is overlaid on the image, with the central pixel of the mask matching the pixel
to be convolved, and the products of the input values and mask values are summed.
The output value is thus calculated as a weighted sum of the input pixels within
the convolution kernel. For example, smoothing or noise reduction can be per-
formed using various convolution filters, such as uniform filters (3x3 kernel with
equal weights) or Gaussian filters (weights defined by a Gaussian function). The
discrete Fourier transform, which converts an image from its spatial domain rep-
resentation to its frequency domain representation, is a global operator. Its kernel
spans the whole image and changes from pixel to pixel.

Different methods for low-level and high-level feature extraction from 2D images
have been proposed [20]. Low-level feature extraction methods require only local
processing. Typical examples are edge detection and corner detection using first-
order and second-order differentiation kernels. High-level feature extraction aims
at finding shapes in the image, using for example (rigid and deformable) template
matching and active contours.

2.2.1.1 Studies

The 3D analogue of 2D corners are prominent points, such as peak (or tip) and sad-
dle points. Intuitively, corners are understood as points of high curvature on the
region boundaries [21]. As for the 2D case, these point landmarks can be detected
from the intensity variations in a certain neighbourhood around the point. Various
3D differential operators have been proposed for landmark extraction. Monga et
al. [22] and Thirion et al. [23] described the extraction of characteristic lines using
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differential operators. Two extremality functions are derived from the differential
characteristics of the intensity function of the image. These functions are defined
as the derivatives of the principal curvatures along the associated principal direc-
tions. Its zero-crossings are a set of extremal lines, where the principal curvature
is locally extremal in the corresponding principal direction. In [24], the extremal
lines are extracted from the 3D image as the intersection of two isosurfaces: one of
constant intensity value (e.g. representing the bones) and one of zero extremality.
Figure 2.1 shows an example of extremal line extraction on 3D images of the skull.
Analogously, extremal points are found where both extremality functions are zero.
While some of the extremal lines and points may be recognized as anatomical
landmarks, they have been mainly applied for fully automatic image registration.
Moreover, the extremality functions use partial derivatives up to the third order,
which in general are very sensitive to noise [26]. Differential operators based on
the mean and Gaussian curvatures of isocontours [27] and 3D generalizations of
2D corner detectors [26] using partial derivatives up to the second order have also
been described to detect points with high intensity variations.

Figure 2.1: Landmark extraction based on differential operators: extremal lines
superimposed on the isosurface of the skull [25].

The 3D point landmarks are often determined using a semi-automatic procedure.
First, an approximate position of a specific landmark is manually determined.
Then, a 3D operator is applied within a region-of-interest (ROI) around the ap-
proximate position to extract potential landmark candidates. Finally, the user se-
lects the most promising candidate [28]. A general problem is, however, that often
a rather large number of false detections are obtained, due to image noise and the
presence of neighbouring anatomical structures in the ROI [29]. Moreover, the
differential methods yield voxel positions. Frantz et al. [29] proposed a multi-step
approach that combines the 3D point detection with automatic ROI size selection
and incorporation of a priori knowledge of the intensity structure at a landmark
(e.g. a peak or saddle) to reduce the number of false detections. In addition, they
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described a method for subvoxel localisation of the 3D point landmarks [30]. Fig-
ure 2.2 shows the extraction of the tips of the horns of the ventricular system of the
brain. The performance of the multi-step semi-automatic approach was compared
with that of a purely manual procedure: five observers each identified up to 76
landmarks on five MRI/CT image pairs. They reported a mean reduction of 38 %
of the time spent for landmark extraction (11’30 versus 18’28 minutes) and a mean
RMS distance from the mean landmark position of 1.06 mm versus 2.22 mm.
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Figure 2.2: Landmark extraction based on differential operators: ventricular system of the
brain (left) and axial slices of MRI image with the tips of the frontal and occipital horns

(middle) and of the temporal horns (right) marked by white crosses [30].

Despite their relatively low computational costs, differential operators use local
image information and are therefore generally sensitive to noise, which leads to
false detections and also affects the localisation accuracy [31]. Semi-global ap-
proaches based on parametric deformable models have therefore been proposed by
Frantz et al. [32, 33]. These models approximate tip- and saddle-like anatomical
structures as quadric surfaces (ellipsoids and hyperboloids), which are combined
with additional global deformations (like bending or tapering) to enlarge the range
of shapes (see Figure 2.3). An initial landmark position is first estimated using the
differential approach and the initial model parameters are semi-automatically esti-
mated. The model is then fit to the image data by optimising an edge-based fitting
measure that incorporates the strength as well as the direction of the intensity vari-
ations. The better the similarity between the directions of the intensity gradients
and the normals of the surface model and the stronger the intensity variations along
the model surface, the smaller is the fitting measure. Finally, the landmark position
can be found as the prominent point of the model, which can be directly computed
from the model parameters. The localisation accuracy of the model-fitting ap-
proach was compared with that of a differential approach alone for 6 landmarks
identified on one MRI/CT image pair of the head. Mean distances to the ground
truth positions (manually determined with up to four persons) of 1.22 mm versus
2.11 mm were reported.

Because the deformable surface model approach requires the detection of 3D im-
age edges and uses a relatively complicated fitting measure based on the image
gradient as well as the first-order partial derivatives of the surface model, the con-
cept of parametric intensity models was introduced by Worz and Rohr [31]. This
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Figure 2.3: Landmark extraction based on parametric intensity models: ellipsoid model
(representing tip-like landmarks) without deformations, with bending, with tapering and

with both bending and tapering [31].

method uses a fitting measure that directly exploits the intensity information. This
work was applied on the ventricular system, zygomatic and occipital bones and
orbits using 2 MRI and 1 CT image dataset. A fully automated ROI size selection
and parameter initialization was presented, but resulted in unsuccessful model fit-
ting for some of the landmarks, especially in the case of small structures and poor
image quality due to image noise. The localisation accuracy of the semi-automatic
model-fitting approach was again compared with that of a differential approach
alone. While the mean distance to the ground truth position (manually determined
with up to four persons) was 1.14 mm versus 2.18 mm for 19 tip-like landmarks,
a comparable localisation accuracy was found for 6 saddle-like landmarks. Also,
better results were found in comparison to the surface model approach for four
tip-like landmarks: 0.68 mm versus 1.26 mm.

Both deformable surface and intensity models allow to extract tip- and saddle-like
points. However, the localisation of anatomical landmarks is defined on a histori-
cal basis and often does not coincide with points of maximum curvature [34]. This
problem might be overcome by using a global approach, such as deformable tem-
plate matching, a technique which was applied by Ehrhardt et al. [34] to extract
landmarks of the pelvis from patient data. They built two 3D atlases of the pelvis
(one for each gender), holding labeled CT data sets, 3D models of the separate
bone structures and their associated anatomical point landmarks. After automatic
segmentation of the bony voxels of the patient data, a gray value-based registra-
tion process is performed to align the bone structures of the atlas to the patient
data. The bone structures of the patient data set are then separated by means of
a nearest-neighbour approach, i.e. the label of the nearest structure in the trans-
formed atlas data set is assigned to each segmented voxel, resulting in an initial
set of landmark points. To account for high intersubject anatomical variability, the
final landmark position is iteratively computed by performing a non-linear regis-
tration of the surface areas in the local neighbourhoud of the atlas landmark and
previous patient’s landmark. Finally, a patient-related coordinate system is de-
termined and orthopaedic parameters are calculated. The method was applied on
seven datasets and by comparison with manual segmentation it was found that for
six cases 98.5 % of the bony voxels were correctly labeled. However, an interactive
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correction was needed for the hip joint and took between 20 and 60 minutes per
data set. The detected landmark positions were evaluated visually and found to be
correct, except for landmarks near pathological deformations. For one model, a set
of 26 manually identified points was obtained five times by two persons, but be-
cause of the high deviations of these points (mean value of 2.5 mm), a quantitative
comparison of manually and automatically detected landmarks was omitted.

Seim et al. described a procedure for fully automatic segmentation of the pelvis
based on a statistical shape model [35] and corresponding landmark extraction
[36]. A statistical shape model, representing the mean shape and modes of shape
variation is generated from 50 CT scans with a slice thickness of 5 mm. Next,
a three-step process is proposed to automatically segment new CT datasets: an
affine transformation between the average shape and CT data based on the Gen-
eralized Hough Transform, a statistical shape model adaptation, and a free-form
deformation based on optimal graph searching. Three different methods were then
presented to extract the anterior pelvic plane, which is defined by the left and right
anterior superior iliac spines and the pubic symphysis. In the first method, the
convex hull of the pelvis is computed and the triangle, whose vertices have the
smallest sum of distances from the pubis and the left and right ilium, is deter-
mined. The three landmarks are then found from the closest points of the pubis
and ilium to the extracted triangle. In the second method, the manually determined
landmarks of each training shape are included in the statistical shape model. The
adaption of this model yields landmark positions, which are then expressed as a
weighted sum of the mesh vertices. These weights are used to calculate the final
landmark coordinates from the free-form deformed mesh. In the third method,
the manually determined landmarks of a small set of training shapes are used to
generate averaged weights, which are applied on the final mesh.

The extracted landmark coordinates and anterior pelvic plane were compared to
the positions that were manually identified by one expert. Furthermore, the posi-
tions determined by two other experts were used to obtain the interobserver vari-
ability. Finally, an additional set of measurements was obtained from 50 higher
resolution images (slice thickness of 1 mm). High mean landmark position errors
were found for all methods in the low resolution datasets: 2.5 - 6.8 mm for the
manual method and 3.6 - 7.8 mm for the automatic methods. The deviation of the
anterior pelvic plane was lowest for the convex hull method (1.0◦), followed by the
manual identification and averaged weights (1.3◦) and the statistical shape model
weights (1.6◦). The landmark position errors improved for the high resolution
datasets: 2.3 - 3.9 mm for the manual and convex hull method and 3.5 - 6.8 mm for
the other methods. However, the anterior pelvic plane angle only improved for the
manual identification (0.7◦). The authors state that the lower values for the aver-
aged and statistical shape model weights methods may be attributed to the training
landmarks which stem from low resolution data.
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2.2.1.2 Discussion

Direct processing of the 3D images requires both selection of the anatomy and
landmark extraction to be performed at the same time. As shown by the above
studies, fully automatic approaches to handle this complex task are hard to de-
velop. Most of the proposed methods require to manually estimate the landmark
position or the deformable model parameters, select the landmark from a set of
candidates or perform some manual segmentation. While the extremal line and
point algorithm of Thirion et al. is fully automatic, it is mainly used for image
registration as only part of the extracted features corresponds to anatomical land-
marks. The automatic methods presented by Seim et al. were only evaluated for
a small number of landmarks. Also, the number of processed image datasets was
relatively low in most of the studies. Nevertheless, automatic approaches can re-
duce the time spent for manual intervention and improve the landmark localisation
precision. Compared to local differential operators, the semi-global deformable
models are more robust to image noise by including more a priori knowledge about
the landmarks, resulting in better values for the reproducibility. As the above stud-
ies mainly focused on the ventricular system, hip and pelvis, automatic landmark
extraction from 3D multiplanar images of the skull and femur can be considered a
nearly undiscussed topic in literature.

2.2.2 Approaches for 3D models

Unlike for 3D multiplanar images, only geometrical information needs to be pro-
cessed for automatic landmark localisation on the 3D model. However, this re-
quires that the bony anatomy is already available from the medical images. Al-
though CT imaging allows to obtain high contrast images of the bone structures,
which can be mainly segmented using thresholding and region growing algorithms,
some manual intervention might be required. (Semi)-automatic approaches for
segmentation might also be used, but these methods are beyond the scope of this
thesis. Several studies have demonstrated the feasibility of fully automatic land-
mark extraction from 3D models. As for the 3D multiplanar images, local as well
as semi-global and global methods have been described.

2.2.2.1 Studies

A local approach that has been used by different authors is to compute 3D curva-
ture characteristics and then use shape descriptors to select points of local mini-
mum/maximum curvature. For example, Liu et al. [37] applied curvature analysis
on optical surface scans of the foot and leg. From the discrete surface data points a
regular coordinate grid is generated by least-squares fitting of small second-order
polynomial surface patches. A Koenderink shape index colormap is then created
from the polynomials to distinguish between convex-shaped, concave-shaped and
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saddle-shaped structures. The method was tested by scanning a leg 10 times and
manually localising five landmarks based on the curvature maps: lateral and me-
dial malleolus, fibular head, point anterior to lateral tibial condyle and medial tibial
condyle. Consistent measures of tibial torsion were obtained from the landmarks,
with a standard deviation of 0.75◦.

A fully automatic approach was presented by Subburaj et al. [14] to determine 14
landmarks on the knee (see Figure 2.4). They segment the mesh surfaces of the fe-
mur and tibia into different landmark regions based on surface curvature and label
them based on the spatial adjacency relationship between the landmarks. First, the
vertices and triangles are grouped based on their mean and Gaussian curvatures
values, leading to six different groups. Each group corresponds to a certain geo-
metrical shape, such as a peak or a pit. Probable landmark regions are then formed
by searching for edge-connected triangles within a group. Figure 2.5 shows an
example of the extracted landmark regions on a femur and tibia model. Next,
unwanted regions are detected, e.g. based on area and location, and removed. Fi-
nally, the spatial relationships between the landmarks, expressed in terms of the
anatomical directions, are used to label the remaining regions by means of a re-
cursive process. The location of each landmark is then given by the mean location
of the points in the region. The method was evaluated based on 3 knee models by
comparing the extracted landmark locations to the mean values of manual mea-
surements performed by three experienced surgeons. The deviation, averaged over
the models and coordinate axes, ranged between 1.92 mm and 4.88 mm for the 14
landmarks. It was found that the automatic identification consistently performed
equal or better than the manual method, which resulted in mean interobserver vari-
abilities between 2.15 mm and 5.98 mm. The same approach was also applied on
a pelvis model [38].

A commonly used semi-global approach for landmark extraction is analytical curve
and surface fitting. Several anatomical structures can be approximated by 2D or
3D quadratic shapes, such as circles and spheres. For example, Li et al. [39] com-

Figure 2.4: Landmarks on femur and tibia extracted by Subburaj et al. [14].
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Figure 2.5: Landmark extraction based on curvature analysis: extracted landmark
regions [14].

bined curvature characteristics with ellipse fitting to automatically analyse the dis-
tal femur articular geometry. They compute the curvature of 2D sagittal profiles to
separate the articulating and nonarticulating portions of the condyles. The anterior
and posterior extremities of the articulating surface in each cross section are iden-
tified from the local curvature maxima and by considering specific regions for each
point. This is illustrated in Figure 2.6, where points A and B indicate the posterior
and anterior endpoints. A unified sagittal plane is then established by minimizing
the eccentricity of all best-fit ellipses to the articular portions, where eccentricity
is measured as the dispersion of the focus locations. The proposed framework was
tested on 12 knee models. Also, the importance of using a standardised protocol
was demonstrated by comparing the radii of best-fit circles to the flexion facet for
different lower end locations of the facet and different sagittal plane orientations.
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Figure 2.6: Curvature analysis of femoral condyle profiles: the anterior (B) and posterior
(A) extremities of the articulating surface are identified from the local curvature maxima

and by considering specific regions for each point [39].
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Mahaisavariya et al. [40] used conic sections and quadric surfaces to study the ge-
ometry of the proximal femur. A best-fit sphere function is applied to the femoral
head to derive the femoral head centre and diameter. The neck isthmus centre is
found iteratively from the smallest circular cross-section to an iterative neck axis,
which is estimated from the centres of best-fit ellipses to the femoral neck. The
final femoral neck axis is then defined as the line between the femoral head centre
and the neck isthmus centre. Finally, the shaft isthmus and proximal and distal
shaft axes are computed from a series of best-fit circles to the medullary canal and
shaft. The methods were applied to extract 10 morphological parameters from 108
Thai cadaveric femora. The average values were compared to those reported for
Caucasians, but precision or accuracy was not assessed.

Similar methods were applied by Jun and Choi [41] to extract geometrical param-
eters of the proximal femur to design a patient-specific hip implant. The femoral
shaft axis is determined from the centres of best-fit circles to the medullary canal
and the shaft isthmus is defined as the location of the smallest circle (see Fig-
ure 2.7). A similar approach is used to determine the femoral neck axis and neck
isthmus. The femoral head is analysed with slicing planes having a 45◦ orienta-
tion in the AP view. The head radius is found as the maximum radius of a series of
best-fit circles and the head centre is the centre of the maximum circle. While the
above landmarks are extracted semi-automatically, some other parameters must be
determined with the surgeon’s intervention to obtain a full set of measurements for
implant design. The system also allows the surgeons to modify the value of the
extracted parameters based upon their experience. The feasibility of the method
was tested using 10 models. They also measured the distance from the implant
model to the inner bone surface to study the fit between the models, but the results
were not reported.

Figure 2.7: Landmark extraction based on geometrical entity fitting: femoral shaft axis
determined from the centres of best-fit circles to the medullary canal [41].
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Kim et al. [42] measured femoral neck anteversion using a combination of differ-
ent techniques. The head centre and radius are estimated by fitting circles to the
femoral head. Then, the slicing plane that minimises the cross-sectional area of the
neck is determined and the neck axis is defined as the line between the centre of
the head and the centre of the neck. The long axis of the femur is found by fitting
a line to the centres of a series of cross-sections of the femoral shaft. Finally, the
condylar line is determined by iteratively computing the most posterior points on
the medial and lateral condyles. Neck anteversion is measured as the angle be-
tween the neck axis and condylar line projected onto a plane perpendicular to the
long axis. The angle was measured on 20 models and compared to measurements
on the dried femurs to determine the accuracy of the method. It was shown that
the method greatly improves accuracy compared to the manual measurement on
2D CT slices as the absolute difference from the dried femur angle was 1.10◦ ±
1.19◦ for the automatic 3D method compared to 5.33◦ ± 1.93◦ for the manual 2D
CT method.

Miranda et al. [43] combined quadric surfaces with inertial properties to establish
anatomical coordinate systems defined solely on the knee geometry, i.e. that do not
use the proximal femur and distal tibia. The femoral coordinate system is obtained
by fitting a cylinder to the condyles (ML axis) and computing the smallest inertial
axis of the diaphysis (axis lying in the frontal plane). Its centre is located at the
centroid of the cylinder. The tibial coordinate system is found by isolating the
tibial plateau and calculating its centre of mass and inertial axes. To evaluate
the repeatability of the algorithm the distal femur and proximal tibia models of 10
cadavers were scaled and aligned to a template bone and the differences in location
and orientation of each coordinate system compared to the mean coordinate system
were computed. The mean values were below 1.5 mm and 2.5◦ and the variability
between the coordinate systems was thought to arise primarly from differences in
bone morphology between specimens.

Subburaj et al. [44] applied their curvature approach along with sphere fitting and
medial axis computation to measure lower limb deformities. The medial axes of
the bones are extracted using a distance-controlled thinning process, which itera-
tively removes the outer-most surface of the object, while preserving the topology,
until a thin medial structure is left. The following axes were calculated on the fe-
mur: mechanical axis, anatomical axis, distal condylar axis, transepicondylar axis
and neck axis. The algorithms were tested on three femur and tibia models and
angular measurements in the three anatomical planes were derived. The obtained
parameters were verified by manual measurement by an experienced surgeon, but
no values on the deviations were reported.

A combination of techniques was presented by Cerveri et al. to determine mor-
phological parameters of the femur and pelvis. In a first study [15] they analysed
the proximal femur. The femoral diaphysis is approximated by a best-fit cylinder
that is initialised from the first principal component direction. Then, the proximal
and distal parts are isolated based on the equivalent radius of subsequent cross-
sections along the shaft. The femoral head is approximated by a best-fit sphere
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and the neck centre and axis are defined from the slicing plane that minimises
the cross-sectional area of the neck. The reliability of the method was assessed by
comparing the measurement values with those obtained by manual expert analysis.
Median errors below 1.0 mm, 1.5 mm, 2.0◦, 1.0◦, 2.1◦, 0.2 mm and 1.5 mm were
reported for the femoral head centre, neck centre, neck-shaft angle, diaphysis axis,
neck axis, head radius and offset.

Their second paper [16] describes the extraction of axes of the distal femur. The
anatomical sagittal direction is obtained by iteratively fitting an ellipse to a 2D
profile of each condyle and minimizing the difference between the two focal pa-
rameters. The anatomical flexion axis is then assumed to be parallel to the sagittal
direction and passing through the lateral epicondyle, which is calculated as the sur-
face point at maximum lateral distance. The medial epicondyle is calculated from
the 2 mm most medial lying surface of the protuberance. The posterior condylar
line is found by connecting the two most posterior points on the medial and lateral
condyles. Finally, the Whiteside line or trochlear axis is computed by slicing the
intercondylar fossa with a set of planes parallel to the frontal plane, approximat-
ing the contours with fourth-order polynomials and fitting a line to the points of
maximum curvature of the polynomials. The median values for the reliability test
were below 1.0◦, 1.6◦, 2.0◦ and 2.4◦ for the diaphysis axis, posterior condylar line,
Whiteside line and anatomical transepicondylar axis.

A third study [17] was presented about the extraction of the Whiteside line by
fitting fifth-order polynomials to the cross-sections of the intercondylar fossa. The
method is illustrated in Figure 2.8. This paper reported an error of 4.0◦ ± 2.64◦

between the automatic and manual measurements. This result might be due to the
high median interobserver error of 3.5◦ that was found in this study.

πf

Figure 2.8: Landmark extraction based on polynomial fitting: processing of the femoral
intercondylar notch [17].

In their fourth paper [18], they used curvature analysis and sphere and circle fitting
to study the acetabular morphology. Based on the Koenderink shape index two
groups of clustered regions are generated, corresponding to pit and ridge shapes.
A combination of requisites is then used to filter out unwanted regions and generate



LITERATURE REVIEW ON 3D LANDMARK LOCALISATION 49

two single clusters from the pits and ridges, representing respectively the internal
acetabular surface and acetabular rim surface. The morphological parameters are
then found as follows. The acetabular centre and radius are determined from the
best-fit sphere to the union of both surfaces. The acetabular axis is calculated as
the normal vector of the best-fit circle to the acetabular rim, passing through the
acetabular centre. The notch point and roof thickness are obtained by intersecting
the acetabular axis with the pelvic bone surface. The median values for reliability
were below 2.7◦, 1.5 mm and 0.3 mm for the acetabular axis, centre and radius.

While in most studies local and semi-global methods are applied for landmark
extraction, some global approaches have been presented as well. Gargouri and
De Guise [45] represented the femur as an algebraic surface using implicit mod-
eling. The implicit function blends together basic geometries such as quadrics
(e.g. spheres, cylinders) and superquadrics. The function parameters (positions,
orientations, sizes) are found through optimisation. In a next step, landmarks
are extracted from the function parameters and the normal vectors on the surface.
However, no details are given about the landmark extraction process. The implicit
modeling technique was tested on 9 femurs, which were each reconstructed three
times, and by visual inspection it was found that the method converges to the same
landmarks for all three reconstructed models. Figure 2.9 (left) shows the represen-
tation for the proximal femur, which is modelled with an elliptic cylinder and four
spheres. It could be critized that the basic geometries might not closely represent
the anatomy of the whole bone. However, as demonstrated in Figure 2.9 (right) the
method is able to detect the different anatomic regions and the boundaries between
them.
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Figure 2.9: Landmark extraction based on implicit modeling: representation of the
proximal femur (left) and detection of different regions (right) [45].

Sholukha et al. [46] proposed a regression method to approximate the position of
joint coordinate systems and the shape morphology of the femur from three pal-
pable anatomical landmarks: lateral epicondyle, medial epicondyle and greater
trochanter. A database of 75 virtual femurs was processed, resulting in three
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anatomical landmarks and 36 morphological characteristics for each bone. Multi-
ple regression was then performed to determine the relationship between each of
the measurements and the three landmarks, i.e. the regression coefficients. This
method has the advantage that it can be used in an in-vivo setting: after identifying
the location of the three anatomical landmarks on the patient, the morphological
characteristics can be estimated using the regression coefficients. The method was
validated by manual and virtual palpation of the three landmarks on a (virtual fe-
mur of a) healthy volunteer. The morphological measurements predicted from the
regression method were compared with the same data obtained directly on the vir-
tual femur. Mean distance and orientation errors of 2.7 mm ± 2.5 mm and 6.8◦

± 2.7 ◦ for virtual palpation and 4.5 mm ± 5.2 mm and 7.5◦ ± 5.3◦ for manual
palpation were reported. These results show that the method accuracy depends
on the palpation accuracy: the soft tissue interposition on the individual leads to
higher errors compared to the landmarks identified on the 3D bone model. It is
mentioned by the authors that some of the large errors might be due to large inter-
subject variations in the database and it has been proposed to address this problem
by including sub-groups characterised by particular bone morphologies.

Figure 2.10 shows how the database models were processed to generate the 36
morphological measurements. Three point landmarks are identified: lateral epi-
condyle, medial epicondyle and greater trochanter (LE, ME, TC). Also, land-
mark clouds are selected by virtual palpation on each femoral joint surface: head,
lateral and medial condyles at tibiofemoral joint, lateral and medial aspects of
patellofemoral joint and patellofemoral sulcus (H, LT, MT, PL, PM, S). These joint
surfaces are then approximated by primitive shapes, such as planes and spheres. In
addition, each database bone is semi-automatically split into 9 areas-of-interest by
transformation of a manually divided template bone and by making manual cor-
rections if required (1-9). Quadric surfaces are then fit to each of the 9 regions:
the femoral head is processed as a sphere, the two condyles as ellipsoids and the
femoral neck and five diaphysis segments as hyperboloid sheets.

2.2.2.2 Discussion

The above studies show that different approaches for landmark extraction from the
virtual lower limbs have been applied. While for some methods, a ROI is first se-
lected, which is then processed to find the specific landmark, other methods allow
to segment the whole model into different landmark regions. Curvature analysis
has been applied for both semi-automatic as well as fully automatic landmark lo-
calisation. The main problem with this method is that the curvature values and thus
the landmark position can be strongly influenced by the bone morphology. Ana-
lytical curve and surface fitting seems to be the most commonly used method for
analysing the lower limb bones. However, different approaches have been used to
study the same anatomical part. For example, the femoral diaphysis has been ap-
proximated with best-fit circles as well as cylinders and hyperboloids. This shows
that there is currently still a lack of standardisation in the 3D analysis. The regres-
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Figure 2.10: Landmark extraction based on multiple regression: processing of database
models by point landmark selection (LE, ME, TC), plane and sphere fitting to landmark

clouds on the joint surfaces (H, LT, MT, PL, PM, S) and quadric surface fitting to 9
areas-of-interest (1-9) [46].

sion method proposed by Sholukha et al. has the advantage that it can be used in an
in-vivo setting, such as for gait analysis, but the precision is currently insufficient
for surgical procedures. Nevertheless, they were able to extract a large amount of
morphological parameters from the virtual femurs.

While most authors apply one or two techniques for landmark extraction, the com-
bination of multiple techniques might be desirable because of the many different
types of landmark definitions found in literature. This was demonstrated by Sub-
buraj et al. and Cerveri et al., who were able to extract a large amount of geomet-
rical parameters. Also, they tested the reliability of their algorithms by comparing
the results to the mean values of a set of manually determined measurements.
The deviations obtained by Subburaj et al. using the curvature method ranged be-
tween 1.92 mm and 4.88 mm. These values are relatively high and the effect on the
clinical parameters was not obtained. Moreover, the algorithms were only tested
on three knee models. Cerveri et al. showed that most of their parameters were
relatively close to the manual measurements (<2 mm and 2◦). The least reliable
axes were the Whiteside line, anatomical transepicondylar axis and acetabular axis,
which shows that some of the axes are more prone to variability in both the manual
and automatic approaches. The posterior condylar line, however, showed a larger
deviation (1.6◦) compared to the manual analysis.

This thesis aims at developing automatic approaches to extract reference points
and axes from the 3D virtual skull and femur, which could be used in orthognathic
surgery and TKA. Despite the growing use of 3D cephalometry and virtual sur-
gical planning, no automatic approaches for landmark localisation on the virtual
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skull model have been proposed. This might be related to the complexity of the
skull, which consists of many different bones, making it more difficult to analyse
automatically. Applying landmark extraction techniques to the 3D model of the
skull would thus be a novel approach for 3D cephalometry. Several relevant axes
for TKA have been determined in literature, but a complete analysis of femoral
and tibial alignment is currently lacking. Regarding the femur, Subburaj et al. ex-
tracted the mechanical, anatomical, distal condylar and anatomical transepicondy-
lar axis. However, various other axes are used in clinical practice for measuring
rotational alignment. Cerveri et al. extracted the diaphysis axis, anatomical flexion
axis, anatomical transepicondylar axis, posterior condylar line and Whiteside line.
A major limitation is that the diaphysis axis is defined from a best-fit cylinder to
the shaft, which does not take into account femoral bowing. Also, the femoral
condyles were approximated by ellipses, while several authors demonstrated the
circular profile of the posterior condyles and proposed to calculate the flexion-
extension axis from best-fit circles, spheres or cylinders to the flexion facets of the
condyles. Finally, the mechanical axis and surgical transepicondylar axis were not
determined. A more comprehensive study of femoral alignment is thus required to
allow for applications in clinical practice.

2.3 Conclusions

The studies discussed in this chapter show that intra- and interobserver variabil-
ity can be a limiting factor for obtaining correct measurements from 3D medical
images. Differences between landmarks and anatomical directions are found and
seem to be consistent among different studies. Landmarks located on relatively
flat or widely curved anatomical structures and short axes are more prone to ob-
server variability. However, precise measurements can also be obtained based on
these points if the variations are small in the relevant directions. Furthermore, the
reliability of manual landmark localisation may depend on the experience of the
operator and might be improved through training and by using detailed landmark
definitions and anatomical drawings. Finally, the reference frames proposed in
literature are usually defined from the most reliable landmarks or landmark direc-
tions. By summarising the results for a set of commonly used skeletal cephalo-
metric points it is found that 40 % of the mean 3D intraobserver values are above
1.5 mm and that 52 % of the mean 3D interobserver values are greater than 2 mm.
Some of the axes of the knee were found to be very reliable, while other showed
mean variations above 2◦.

By reviewing the literature on automatic landmark localisation, it is seen that fully
automatic approaches to process 3D multiplanar images are hard to develop. The
methods can be grouped into differential operators and deformable analytical,
template and statistical shape models. Compared to local differential operators,
deformable models are more robust to image noise by including more a priori
knowledge about the landmarks, resulting in better values for the reproducibility.
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The automatic approaches seem to reduce the time spent for manual intervention
and improve the landmark localisation precision. However, the amount of work
published on the skull and lower limb bones is very limited. In contrast to mul-
tiplanar images, several studies on automatic analysis of 3D models of the lower
limbs have been published. The most commonly used methods are curvature anal-
ysis and analytical curve and surface fitting. However, most papers describe only
one or two techniques or extract only a limited amount of geometrical parameters.
The most extensive work has been performed by two research groups: one pre-
sented methods for automatically measuring lower limb deformities and the other
extracted several points and axes on the femur and pelvis and showed that most
of the parameters were relatively close to the manual measurements (<2 mm and
2◦). However, a complete set of measurements of femoral and tibial alignment has
not yet been presented. In contrast to the lower limbs, no automatic approaches
for landmark localisation on the virtual skull model have been proposed.

This thesis aims at developing automatic approaches to extract reference points
and axes from the 3D virtual skull and femur, which could be used in orthognathic
surgery and TKA. These methods may save time for the surgeon and allow for a
more objective analysis of patient data. While some landmarks are more prone to
variability in both the manual and automatic method, the latter may allow for a
more standardised approach. As shown in this chapter, extracting landmarks from
the 3D model of the skull is a novel approach for 3D cephalometry. Finally, the
current limitations in the automatic measurement of distal femoral alignment are
addressed in this thesis.
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3
Automatic approaches to 3D landmark

extraction

This chapter provides an overview of the algorithms that are used in this thesis to
analyse the skull and femur models. Some mesh operations to simplify, smooth
and refine the 3D models and several automatic approaches for landmark extrac-
tion are discussed. As demonstrated in chapter 2, several landmark extraction
methods have already been proposed by other authors. In addition, quality im-
proving mesh operations have been widely described in the literature. Therefore,
this thesis focuses on implementing and employing a variety of pre-existing mesh
processing and landmark localisation tools, rather than on developing new math-
ematical strategies for these operations. In this chapter, the main mathematical
background of the algorithms is given and each operation is illustrated using ex-
amples on the skull and femur models. When applying the automatic landmark
extraction tools, however, a priori knowledge about the shape and location of the
specific anatomical structures and landmarks is required. Moreover, a specific
strategy needs to be developed for the (semi-)automatic analysis of each bone.
This includes orienting the model in a standardised way, selecting the anatomi-
cal structures on which the landmarks are located, extracting the positions of the
points and axes and deriving clinically relevant measurements. Such strategies are
presented in chapters 4 and 5 for the skull and femur, respectively.

The landmark localisation techniques studied in this research are implemented
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using the pyFormex software (http://www.pyformex.org). pyFormex is an open-
source program under development at the IBiTech-bioMMeda research group of
Ghent University and is intended for generating, manipulating and operating on
3D geometrical models. The models obtained from medical images are usually
triangulated surface meshes. They are defined by a set of nodes, edges and trian-
gular faces, describing the contour of the object. The algorithms described in this
chapter are developed for this particular type of geometrical models.

3.1 General mesh operations

In this section, several operations to obtain a simplified, refined or smoothed ap-
proximation of the original surface mesh are discussed. To verify that the new
mesh is a good approximation of the original geometry, the error between the two
triangular meshes should be measured. Therefore, a tool to quantify their geomet-
ric difference was also implemented.

3.1.1 Geometric error between triangulated surfaces

A commonly used method is to approximate the Hausdorff distance between the
surfaces [1, 2]. Given points p1 on surface S1 and p2 on surface S2, the one-sided
distance between the two surfaces S1 and S2 is defined as

d(S1, S2) = max︸︷︷︸
p1∈S1

d(p1, S2) = max︸︷︷︸
p1∈S1

[min︸︷︷︸
p2∈S2

d(p1, p2)] (3.1)

The two-sided Hausdorff distance is then the maximum of the non-symmetrical
one-sided distances:

dH(S1, S2) = max[d(S1, S2), d(S2, S1)] (3.2)

A mean distance measurement between surfaces S1 and S2 can be obtained using
the mean error of all triangle faces of S1:

dm(S1, S2) =
∑N
i=1

|ei1|+|ei2|+|ei3|
3 Ai∑N

i=1Ai
(3.3)

where eij are the distances of the triangle’s vertices to S2 and Ai is the area of
the triangle. To find the distance from S1 to S2, the surface S1 is sampled and
the distance d(p1, S2) of each sample p1 to the surface S2 is calculated as the
minimum of the distances between p1 and all the faces F2. The point to triangle
distance d(p1, F2) is found by first projecting the point p1 onto the plane of F2 and
determining the position of the projected point p′1 with respect to the triangle (see

http://www.pyformex.org
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Figure 3.1) [3]. To check if p′1 lies inside or outside the triangle, it is expressed as
a barycentric combination of the triangle vertices (V0, V1, V2):

p′1 = rV0 + sV1 + tV2 (3.4)

As the barycentric coordinates (r, s, t) sum to one, this can be written as

p′1 = V0 + s(V1 − V0) + t(V2 − V0) (3.5)

Figure 3.2 and Table 3.1 give an overview of the position of p′1 with respect to the
triangle for different combinations (s, t) and of the corresponding position of the
closest point on the triangle. When the barycentric coordinates are not negative
(s ≥ 0, t ≥ 0, s+ t ≤ 1), p′1 lies in the convex hull of (V0, V1, V2), i.e. inside the
triangle, which corresponds to region 0. It this case, the point to triangle distance
is equal to the point to plane distance (Figure 3.1 (left)). If p′1 falls outside the
triangle, it is the distance to the closest edge or vertex of F2 ( Figure 3.1 (right)).
Finally, a signed distance can be obtained using the normal vector Np1 to S1 in p1.
If p′1 is the closest point in S2, the sign of the distance is the sign ofNp1 · (p′1−p1).
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Figure 3.1: Distance between a point and a triangle: the closest point is equal to the
projected point if it lies inside the triangle (left); otherwise, the closest point lies on an

edge (right) or is one of the vertices, adapted from [3].

The sampling resolution of the triangles will influence the precision of the distance
calculation. The sampling method is illustrated in Figure 3.3, where each side is
sampled with n = 5 points and a regular grid is built over the triangle. As shown in
the following equation, the sampling frequency n is calculated from the triangle’s
area A and the sampling step δ, which is expressed as a percentage of the diagonal
length of the surface’s bounding box [2].

n =

√
1
4

+
2A
δ2
− 1

2
(3.6)

The number of samples in the triangle is then

nsamples =
n(n+ 1)

2
=
A

δ2
(3.7)



62 CHAPTER3

2

4

1

5 6

3

0

s

t

V V10

V
2

Figure 3.2: Partitioning of the triangle plane for different combinations of barycentric
coordinates (s, t) of the projected point, adapted from [3].

Table 3.1: Distance between a point and a triangle: position of the projected point and
closest point for different combinations of barycentric coordinates (s, t).

(s,t) projected point closest point
(s ≥ 0, t ≥ 0, s+ t ≤ 1) in region 0 inside triangle
(s ≥ 0, t ≥ 0, s+ t > 1) in region 1 on edge V1V2

(s < 0, t ≥ 0, s+ t > 1) in region 2 on edge V1V2 or V2V0

(s < 0, t ≥ 0, s+ t ≤ 1) in region 3 on edge V2V0

(s < 0, t < 0, s+ t ≤ 1) in region 4 on edge V2V0 or V0V1

(s ≥ 0, t < 0, s+ t ≤ 1) in region 5 on edge V0V1

(s ≥ 0, t < 0, s+ t > 1) in region 6 on edge V0V1 or V1V2

Figure 3.3: Sampling of a triange: each side is sampled with 5 points, a regular grid is
built over the triangle and 15 samples are created [2].

Calculating the distance of a sample p1 to all faces F2 would tremendously slow
down the computation for large meshes. This extensive computation can be avoided
by creating a voxel grid in the bounding box of S1 ∪ S2 [1, 2], which allows iter-
ative processing of the faces. After the voxel grid is created, it is determined for
each point p1 and face F2 in which voxel(s) they are contained, resulting in a list
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of points and faces for each voxel. Finally, the minimum distance between each
point and the faces is calculated using the voxel information. For each point the
faces contained in the same voxel are first tested and subsequently, adjacent voxels
in an increasing neighbourhood are processed, until all not tested voxels are farther
than the current nearest face, i.e. the minimum distance between the voxel holding
p1 and the not tested voxels is greater than the distance between p1 and its current
nearest face.

The algorithm is applied on two triangulated spheres to show the influence of the
sampling step δ on the distance calculation. The mean face distance (see Equa-
tion 3.3) of a simplified mesh with 640 faces to the original mesh with 1280 faces
for different sampling steps is depicted in Figure 3.4. Both the sampling step and
the distance are expressed as a percentage of the diagonal length of the simplified
surface’s bounding box. The number of samples ranges between 322 (δ = 10 %)
and 1049411 (δ = 0.1 %). The computation time increases from 1 to 52 seconds.
Sampling steps below 0.5 % result in a stable distance measurement. The signed
sample distances for δ = 0.1 % are shown on the mesh in Figure 3.5. Figure 3.6
shows the two surfaces, the original mesh in red and the sampled simplified mesh
in grey, and illustrates that positive (negative) distances are obtained where the
original mesh lies outside (inside) the simplified one.
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Figure 3.4: Mean face distance of a simplified sphere to the original surface as a function
of the sampling step δ.

3.1.2 Simplification

Surface mesh simplification (or coarsening) is the process of reducing the num-
ber of faces in the mesh while keeping the overall shape, volume and boundaries
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Figure 3.5: Distribution of signed sample
distance (mm) on the sphere for δ = 0.1%.

Figure 3.6: The original mesh (red) and
sampled simplified mesh (grey) plotted

onto each other.

preserved as much as possible. It reduces the level of detail in the mesh, result-
ing in a simplified geometry that requires less processing time. A simplication
algorithm proposed by Lindstrom & Turk [4], which is available in the GNU Tri-
angulated Surface Library (GTS), is used. GTS is an open source free software
library providing a set of useful functions to deal with triangulated surface models
(http://gts.sourceforge.net). The GTS functions can be invoked from pyFormex by
running external commands.

The algorithm uses edge collapse, as demonstrated in Figure 3.7. It iteratively
replaces an edge with a single vertex, thereby removing one vertex, three edges
and two faces. The ordering of the edges to be collapsed as well as the position
of the new vertices are determined using volume, boundary and shape optimisa-
tion. Inserting a new vertex causes a volume change that is equal to the sum of
the volumes of the tetrahedra formed by each original triangle and the new vertex
(see Figure 3.7 (bottom)). A vertex placed along the outer normal of the trian-
gle produces a positive volume change, while a vertex on the inside produces a
negative volume change. Volume preservation is obtained by setting the volume
change due to edge collapse to zero. In addition, the vertex position is constrained
by minimizing the unsigned volume of each tetrahedron, called volume optimisa-
tion. Analogous to volume preservation and optimisation, the area enclosed by the
surface boundaries is taken into account for collapsing a boundary edge. In addi-
tion, the shape of the triangles can be optimised (e.g. if no single solution is found
using the previous constraints), with equilateral triangles being preferred. The cost
of collapsing an edge is a weighted sum of the functions that are minimized in the
volume and boundary (and shape) optimisation. The algorithm repeatedly selects
the edge with minimum cost, collapses this edge, and then re-evaluates the cost of
edges affected by this edge collapse.

http://gts.sourceforge.net
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Figure 3.7: Mesh simplification using edge collapse: the edge e is collapsed and replaced
with a vertex v (top); the volume change is determined from the tetrahedra formed by the

triangles t0, t8 and t3 and the vertex v (bottom) [4].

It has been demonstrated by the authors that their algorithm is computationally
efficient and results in smaller mean geometric errors than many other published
techniques [5]. In their studies, shape optimisation is only used if the solution
is underconstrained after volume and boundary optimisation. However, for some
landmark extraction algorithms it might be desirable to have equilateral triangles
as the vertices are more uniformly spaced. By choosing a non-zero weight for the
shape optimisation, the creation of elongated triangles is better avoided.

To study the effect of the simplification tool for different parameters, the algorithm
was applied on a femur model with 482280 edges. The 95th percentile of the sam-
ple distance and Hausdorff distance between the original and simplified mesh was
calculated and is displayed as a function of the number of edges in the simplified
model in Figures 3.8 and 3.9. The model size as well as the distances are shown
on a logarithmic scale. For both measures, the maximum of the one-sided values
was used. The distances between the meshes were calculated using a sampling
step of 0.1 %. Two different weights for the triangle shape quality were chosen: 0
and 1/3. Both figures demonstrate that a larger geometric error is introduced when
the shape quality of the triangles is taken into account. The largest difference be-
tween the graphs is found for the first simplification (1/2 of the original number
of edges). For a small reduction of the model size, the volume optimisation seems
to result in a close match between the original and simplified meshes everywhere
in the mesh (Hausdorff distance = 0.10 mm), while the shape optimisation already
causes larger geometric errors (Hausdorff distance = 0.61 mm). The difference
becomes smaller as the model size decreases and both volume and shape optimi-
sation produce larger errors. The 95th percentile distances are on average 2 times
larger for the 1/3 shape weight compared to the zero weight.

Figure 3.10 shows that the shape quality of the mesh is greatly improved by using
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Figure 3.8: 95th percentile of the sample distance between a femur model with 482280
edges and simplified model as a function of the number of edges in the simplified mesh.
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Figure 3.9: Hausdorff distance between a femur model with 482280 edges and simplified
model as a function of the number of edges in the simplified mesh.

the non-zero weight for shape optimisation. A quantitative comparison is made
by calculating the aspect ratio of the triangles, which is defined as the ratio of
the longest edge over the smallest altitude, with equilateral triangles having the
smallest value (2/

√
3 = 1.15). The 50th and 95th percentile values are 2.61 and

8.52 for the zero shape weight versus 1.94 and 4.15 for the non-zero shape weight.
These values demonstrate that the aspect ratio is greatly reduced for the majority
of the triangles.
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The original model and a series of meshes obtained with the shape optimisation
approach are shown in Figure 3.11. The Hausdorff distance is around 1 mm for the
model with 60285 edges. The 95th percentile distance however is approximately
ten times smaller, which means that only a small part of the samples have a ge-
ometric error of more than 0.1 mm. The volume change for all models is below
0.002 %, which demonstrates the volume preservation constraint. The simplifica-
tion time ranges between 31 and 52 seconds. These results show that the simplifi-
cation tool proposed by Lindstrom & Turk allows to create simplified meshes with
small geometric errors and a good triangle shape quality and has a relatively low
computation time.

Figure 3.10: Simplified meshes with 60285 edges: zero weight for shape optimisation
(left), non-zero weight for shape optimisation (right).

Figure 3.11: Original femur model with 482280 edges and simplified meshes with 241140,
120570, 60285, 30144 and 15072 edges.
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3.1.3 Smoothing

The goal of smoothing is to remove noise and useless details from the mesh. A
smoothed mesh allows to capture the most important geometrical features by fil-
tering out the small scale features. Most smoothing algorithms modify the position
of the vertices, while preserving the topology of the mesh.

3.1.3.1 Fourier analysis on meshes

The principles of smoothing can be explained by the concepts of signal process-
ing, as shown by Taubin [6, 7]. The mesh geometry is represented by a discrete
signal x = (x1, . . . , xn) of 3 spatial dimensions defined on the vertices of the
mesh. When looking at its frequency domain representation instead of space do-
main representation, noise (or rapidly changing geometries) can be distinguished
as high frequency components. A smoother geometry is obtained by changing the
frequency contents of the mesh, i.e. by removing the highest frequency compo-
nents.

The mathetical operation that decomposes a signal into its frequency components,
is called the Fourier transform and is defined as

F(k) =
∫ ∞
−∞

f(x) e−i2πkx dx (3.8)

where f(x) is a continuous signal and k is the frequency. To analyze the frequen-
cies contained in a discrete (or sampled) signal on a finite domain, such as the
polygonal mesh, the discrete Fourier transform (DFT) can be employed. The DFT
can be computed efficiently using a fast Fourier transform (FFT) algorithm.

F(k) =
N−1∑
x=0

f(x) e−i
2π
N kx (3.9)

Taubin’s work is based on the observation that computing the DFT of a signal
defined on a closed polygon of n vertices is equivalent to decomposing the signal
as a linear combination of the eigenvectors of the Laplacian operator ∆f = ∇2f ,
where the vector of coefficients is the DFT. This is explained as follows. The one-
dimensional (1D) discrete Laplacian of a polygon x = (x1, . . . , xn) of n vertices
is given by

∆xi =
1
2

(xi−1 − xi) +
1
2

(xi+1 − xi) (3.10)

Analogously, the discrete Laplacian of a surface signal is defined as

∆xi =
n−1∑
j=0

wij(xj − xi) (3.11)
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where xj are the neighbours of xi and the weights wij are non-negative numbers
that add up to one for each vertex xi. If we define the matrix K = I −W , with I
the identity matrix and W = (wij) the matrix of weights, the Laplacian operator
can be written in matrix form as

∆x = −Kx (3.12)

Since K is symmetric, it has real eigenvalues (k1, . . . , kn) and a set of orthonor-
mal eigenvectors (e1, . . . , en), which form a basis. Any vector of size n can be
expressed as a linear sum of these basis vectors. In particular, the mesh signal x
can be written as

x =
n∑
i=1

x̂i ei (3.13)

As mentioned above, it has been shown that the eigenvectors of the 1D discrete
Laplacian coincide with the complex exponential basis functions used in the DFT,
i.e. the vector of coefficients x̂i form the DFT of x [8]. The eigenvectors can
be considered as the natural vibration modes of the discrete surface signal, and
the corresponding eigenvalues as the associated natural frequencies. A vibration
mode of high natural frequency then corresponds to a rapid oscillation in the space
domain. The first 8 eigenvectors of the 1D discrete Laplace operator for n = 401
are shown in Figure 3.12. As the eigenvalue increases, the eigenvectors start to
oscillate as sinusoidal curves at higher and higher frequencies [9].
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Figure 3.12: Decomposition of the mesh signal in the frequency domain: plots of the first 8
eigenvectors of the 1D discrete Laplace operator (n = 401) [9].

Fourier analysis thus allows to denoise the signal by decomposing it according to
Equation 3.13 and discarding its high frequency coefficients. But for large meshes,
there are no analytic expressions for the eigenvalues and eigenvectors of K and it is
almost impossible to reliably compute them [7]. However, for filtering operations
it is not necessary to compute the eigenvectors explicitly. The signal can be filtered
by changing its frequency distribution according to an analytical transfer function
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f(k) that can be evaluated in the matrix K:

x
′

=
n∑
i=1

f(ki) x̂i ei = f(K)x (3.14)

where f(K) is a matrix with the same eigenvectors as K, but with eigenvalues
(f(k1), . . . , f(kn)). If this process is repeated N times, the output signal can be
expressed as

xN = f(K)Nx (3.15)

3.1.3.2 Laplacian smoothing

A common method for smoothing polygonal meshes is Laplacian smoothing, which
iteratively moves each vertex towards a weighted average of its neighbouring ver-
tices:

x
′

i = xi + λ∆xi = xi + λ

n−1∑
j=0

wij(xj − xi) (3.16)

where ∆xi is the discrete Laplacian, xj are the neighbours of xi (i.e. vertices
connected to it by an edge), n is the valence (number of edges connected to xi),
wij are non-negative weights that add up to one and λ is a scale factor (0 < λ < 1).
However, Laplacian smoothing produces shrinkage and in the limit all the vertices
of the mesh converge to one point. The shrinkage problem can be explained by the
concepts of signal processing. Based on Equations 3.16 and 3.12, the Laplacian
smoothing step can be described in matrix form as follows

x
′

= x+ λ∆x = (I − λK)x (3.17)

which means that the transfer function of the Laplacian filter is the polynomial
f(k) = 1 − λk. In Figure 3.13 (left), the Laplacian filter for λ = 0.5 and N = 2
is shown. For certain choices of weights (e.g. inverse of the valence, inverse of
the edge length), the eigenvalues are 0 ≤ k1 ≤ k2 ≤ . . . ≤ kn ≤ 2. The
filter produces shrinkage because all the frequency components, other than the
zero component, are attenuated (|f(k)N | < 1 for 0 < k ≤ 2).

3.1.3.3 λ|µ algorithm

Taubin [6] proposed the following second degree transfer function to solve the
problem of shrinkage:

f(k) = ((1− λk)(1− µk))1/2 (3.18)

This filter alternates between two steps of Laplacian smoothing: a shrinking step
with positive scale factor λ and an unshrinking step with negative scale factor µ,
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Figure 3.13: Transfer functions that change the frequency distribution of the mesh signal:
Laplacian smoothing (left) and λ|µ algorithm (right); the scale factor λ = 0.5 and the

number of iterations N = 2.

Figure 3.14: Transfer function of the λ|µ algorithm for different scale factors λ: N = 2

(left) and N = 20 (right).

greater than λ in absolute value (µ < −λ < 0). Since f(0) = 1 and µ + λ < 0,
there is a positive value kPB , such that f(kPB) = 1, which is called the pass-band
frequency and is given by

kPB =
1
λ

+
1
µ

(3.19)

A typical value for kPB is 0.1 [7]. The transfer function for kPB = 0.1, λ = 0.5
and N = 2 is shown in Figure 3.13 (right). The filter preserves low frequency
components (f(k)N ≈ 1 in the pass-band region 0 ≤ k ≤ kPB) and attenuates
higher frequency components (|f(k)N | < 1 in the stop-band region kPB < k ≤ 2)
and is therefore called a low-pass filter. The faster the transfer function decreases
in the stop-band region, the better. As illustrated in Figure 3.14, a sharper filter
can be obtained by increasing the scale factor λ or the number of iterations N .
However, in order to have a low-pass filter, it is necessary that f(2) > −1, which
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results in the following constraint:

λ <
−kPB +

√
(2− kPB)2 + 4

2(2− kPB)
(3.20)

For kPB = 0.1, λ should be below 0.7 to avoid that high frequencies are enhanced
instead of attenuated. This can also be observed in Figure 3.14, where instability
starts to develop at the highest frequencies if λ exceeds this value.

The algorithm was again applied on a femur model to compare the Laplacian
smoothing and λ|µ algorithm and to study the influence of the number of itera-
tions on the geometric error and volume change. The femur mesh has a model
size of 33336 vertices, 100002 edges and 66668 faces. The pass-band frequency
kPB was set to 0.1, as proposed by Taubin. A scale factor λ of 0.5 was chosen,
which means that higher frequencies are better attenuated as the filters go to zero
for k = 2. The scale factor µ can then be calculated from Equation 3.19 and is
-0.526. The weights wij were calculated as the inverse of the valence. The 95th
percentile of the sample distance and Hausdorff distance for the λ|µ algorithm is
shown in Figure 3.15. The number of smoothing iterations ranges between 2 and
20. The maximum calculation time is 6 seconds. The graph illustrates that small
geometric errors are obtained using this algorithm. For 20 iterations, the Hausdorff
and 95th percentile distances are 1.02 mm and 0.15 mm.
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Figure 3.15: 95th percentile and Hausdorff distance between the original and λ|µ
smoothed mesh as a function of the number of smoothing iterations.

A comparison between the two smoothing filters is made in Figures 3.16 and 3.17.
Both the 95th percentile distance and the volume change are much larger for the
Laplacian smoothing algorithm. While Laplacian smoothing causes severe shrink-
ing, Taubin’s low-pass filter slightly expands the mesh, because the frequencies
in the pass-band region are actually enhanced. This can also be seen from the
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fact that the negative scale factor µ is greater in absolute value than the positive
scale factor λ. The volume change will increase as the pass-band frequency gets
larger and the absolute value of µ increases. For the parameters chosen above, the
volume change is below 0.08 %.

The appearance of the mesh after different numbers of iterations of the λ|µ algo-
rithm (0, 4, 8, 12, 16, 20) is shown in Figure 3.18. It can be seen that the effect
of additional smoothing decreases as the number of iterations gets larger. The
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Figure 3.16: 95th percentile distance between the original and smoothed mesh for the λ|µ
algorithm and Laplacian smoothing algorithm.
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Figure 3.17: Volume change between the original and smoothed mesh for the λ|µ
algorithm and Laplacian smoothing algorithm.
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smoothness can be evaluated quantitatively using the edge angle, i.e. the angle be-
tween the normal vectors of the two faces adjacent to an edge. The 50th percentile
angles are 5.12◦, 3.22◦, 2.77◦, 2.60◦, 2.55◦ and 2.50◦ respectively. The greatest
improvement is found for the first iterations and the edge angle is reduced by 50 %
after 16 iterations.

Figure 3.18: Original femur model and λ|µ smoothed meshes after 4, 8 ,12, 16 and 20
iterations.

3.1.3.4 Gaussian smoothing

Laplacian smoothing is sometimes called Gaussian smoothing, a method which
is commonly used to smooth or blur a 2D image. Gaussian smoothing is applied
by convolving the signal with a Gaussian function. The convolution of f and g is
defined as the integral of the product of the two functions, one being reflected and
shifted

(f ∗ g)(x) =
∫ ∞
−∞

f(t) g(x− t) dt (3.21)

For a discrete function, this becomes

(f ∗ g)(x) =
∞∑

t=−∞
f(t) g(x− t) (3.22)
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The convolution of the input signal f(x) with a filter or kernel g(x) will thus
calculate the output signal at each point as a weighted average of the input signal’s
values. The weights are defined by the filter g(x). A similar strategy is applied
during Laplacian mesh smoothing, where each vertex is computed using a weight
1 − λ for the vertex itself and a weight λwij for the neighbouring vertices (see
Equation 3.16).

The Gaussian filter, in one dimension, is defined as

G(x, σ) =
1√
2πσ

e−
x2

2σ2 (3.23)

where σ is the standard deviation, which determines the width of the kernel. Fig-
ure 3.19 (left) shows the graphs of the Gaussian kernel for σ = 1, σ = 2 and
σ = 3. The constant 1√

2πσ
normalizes the kernel (its integral over the full domain

is one), which ensures that the average signal’s value remains the same. In the
Gaussian filter, the highest weight is assigned to the original point and the weight
decreases as the distance of the neighbouring point to the original point increases.
While in theory the entire input signal should be included in the calculation of each
output value, in practice, the weights of the points at a distance of more than 3σ
are small enough to be considered zero. This is also observed in Figure 3.19 (left).
In N dimensions, the Gaussian filter is formed by the product of the Gaussians in
each dimension

G(~x, σ) =
1

(
√

2πσ)N
e−
|~x|2

2σ2 (3.24)

The effect of the convolution can be easily understand using the frequency domain.
The Fourier transform of a Gaussian with variance σ2 is another Gaussian with

Figure 3.19: Gaussian function and transfer function for different values of the standard
deviation σ.



76 CHAPTER3

variance 1/σ2:
f(k, σ) = e−2π2σ2k2

(3.25)

As convolution in the time domain is equivalent to multiplication in the frequency
domain, the frequencies are filtered with a Gaussian function, which reduces the
high frequency components, as shown in Figure 3.19 (right). A sharper filter is ob-
tained by increasing the standard deviation, as a wider kernel in the spatial domain
gives a smaller kernel in the frequency domain (and vice versa). Because Gaussian
smoothing also produces shrinkage, it was not used to smooth the surface meshes.
However, the Gaussian convolution can be applied to compute smoothed deriva-
tives of the input signal, and therefore also smoothed curvature values, as shown
later on in this chapter.

3.1.4 Subdivision

Subdivision is the process of producing successive refinements of an initial polyg-
onal control mesh that converges to a smooth limit surface. In each step, new
vertices and faces are created that better approximate the smooth surface. New
vertices are computed as weighted sums of nearby vertices. While interpolating
schemes match the original data exactly, approximating schemes will adjust the
original position of the vertices.

Dyn, Levin and Gregory introduced an interpolating scheme, named the Butterfly
scheme, to generate a smooth surface over a regular triangular mesh (all vertices
have valence 6) [10]. The scheme recursively transforms each triangular face of
the control mesh into a patch consisting of four triangular faces interpolating the
old vertices (see Figure 3.20). A new vertex is inserted on each edge using the
weights in an eight-point stencil (Butterfly scheme), which was later extended to a
ten-point rule [12], as depicted in Figure 3.21. The weights are given by

a =
1
2
− w, b =

1
8

+ 2w, c = − 1
16
− w, d = w (3.26)

The weights are chosen so that the limit surface is C1 continuous, i.e. has con-
tinuous tangent planes, if w ∈ [− 1

16 , 0]. The parameter w serves as a tension
parameter: as w decreases, the limit surface is more tightened toward the control
mesh.

Because the Butterfly scheme only leads to C1 surfaces for vertices of valence
6, this work was extended by Zorin, Schröder and Swelden [13]. They modified
the scheme so that it guarantees C1 continuity for triangulations which are not
topologically restricted [14], including the proper handling of boundaries. They
distinguish between ten cases, depending on the characteristics of the edges that
are subdivided (boundary or interior edge, boundary or interior vertices, valence
of the vertices) and proposed seven types of rules [15].

Figure 3.22 shows how a smooth sphere is obtained after three iterations of the
subdivision algorithm. A quantitative evaluation of the C1 continuity can be made
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Figure 3.20: Subdivision of triangular faces: each triangle is split into a patch consisting
of four triangles [11].

b

aa

c

d d

cc

cb

Figure 3.21: Subdivision rule for regular vertices: ten-point stencil [13].

using the edge angle. The 50th and 95th percentile values are 5.43◦ and 5.73◦ for
the original sphere versus 0.65◦ and 0.80◦ after three subdivision iterations. The
algorithm thus allows for a smooth refinement of the surface mesh. The computa-
tion time for the sphere with 1280 faces is 23 seconds.

Figure 3.22: Original sphere model and subdivided meshes after 1, 2 and 3 iterations.
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3.2 Extreme point

A straightforward method to extract landmarks is to find the extreme point of a cer-
tain anatomical structure using the anatomical directions. Many landmarks have
been described in literature using such a definition. Such extreme points may lie
in a convex- or concave-shaped anatomy, such as a large prominence on the bone.
Figure 3.23 shows an example for the mastoid process, a conical prominence on
the temporal bone of the skull, which holds the landmark mastoid on its inferior
end. Several saddle-shaped structures are also found in the human bones, which
follow a convex curve along one axis and a concave curve along another perpen-
dicular axis. An example is given in Figure 3.24 for the frontonasal suture, which
is the junction of the frontal and nasal bones of the skull. The landmark nasion is
the central point of this suture, where the anatomy has a convex shape along the
transverse axis and a concave shape along the longitudinal axis.

3.2.1 Convex- and concave-shaped anatomy

For convex/concave structures, the extreme point along one of the anatomical di-
rections is computed as the mesh vertex for which the length of the projection
on the direction vector is maximal. However, it should be noticed that using this
method the accuracy of the landmark extraction will depend on the size of the tri-
angle faces. A fine mesh should be used to increase the number of candidates for
the landmark point. But reducing the face size of the complete bone model may
drastically increase the processing time and is inefficient as only a fine grid in the
neighbourhood of the landmark is needed. Therefore, it is chosen to select the
anatomical structure that holds the landmark on the coarser mesh of the bone and
then refine the mesh of the anatomical structure before calculating the landmark.
The same method can be used for the smoothing operation as for large models,
such as those of the skull, this will reduce the computation time. The vertices are
smoothed using Taubin’s λ|µ algorithm, which has shown to result in only small
geometric errors. The triangles are subdivided according to the algorithm proposed
by Dyn et al. and modified by Zorin et al., which allows for a smooth interpolation
between the mesh vertices. The mastoid process with coarse mesh is shown in
the top left panel of Figure 3.23. The meshes after 20 smoothing iterations and 3
subdivision iterations are shown in the right and bottom panels. The mean length
of the edges in the final model is around 0.1 mm. As shown in the bottom panel,
the landmark mastoid is calculated as the most inferior point of the structure.

3.2.2 Saddle-shaped anatomy

As mentioned above, saddle-shaped anatomies are curved differently along differ-
ent directions. Two orthogonal axes can be found along which the surface is re-
spectively convex- and concave-shaped. Therefore, a series of intersections along
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Figure 3.23: Extraction of extreme point of the mastoid process: coarse mesh (top left),
smooth mesh (top right), refined mesh and most inferior point (bottom).

Figure 3.24: Extraction of extreme point of the frontonasal suture: coarse mesh (top left),
smooth mesh (top right), refined mesh, frontonasal suture and most anterior point using

discrete points (bottom left) and splines (bottom right).

one of these directions is first made and the extreme points of the cross sections
are calculated. Next, the landmark is found as one of these extreme points. This
is illustrated in Figure 3.24 for the frontonasal junction, where a series of inter-
sections along the transverse axis is made and the most posterior points of these
2D cross sections are calculated (blue points in bottom left panel). The landmark
nasion is then found as the most anterior point of this suture. However, it can be
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seen in the figure that using this method a number of discrete points are obtained
and that there are some gaps between the points because of the limited smoothness
of the model. If such gaps occur in the neighbourhood of the landmark, its po-
sition may largely depend on how the surface was discretised in the initial mesh.
Therefore, another approach was added, where a smooth spline is calculated from
the points (blue curve in bottom right panel). First, multiple natural cubic splines
are generated using different series of equidistant points. The splines consist of
multiple curves that are joined together with C2 continuity at the points. Then, a
mean curve is computed from all these splines. Using this method the influence
of outliers is reduced as the result does not depend on a small selection of sagittal
cross sections.

3.2.3 Standardised orientation

When using the extreme point method, it should be taken into account that the
landmark point will depend on the orientation of the surface mesh. Because the
bones are not oriented in a standardised way during CT scanning, the coordinate
axes of the model do not coincide with the anatomical directions. To account for
this random orientation, a standardised coordinate system should be set up from
the surface mesh. If the coordinate system itself is defined based on extreme land-
mark points, an iterative approach should be used. The orientation of the bone (or
corresponding anatomical directions) is adjusted based on the extracted landmarks
and then the landmarks are recalculated using the new coordinate system. This
process is repeated until the landmark coordinates are stable.

3.3 Curvature

Landmarks are often found as a prominence rather than as a discrete point. Such
prominences can sometimes be seen as regions of high curvature compared to the
nearby anatomy. The curvature characteristic measures how fast the geometry is
changing direction at a given point. Sharp corners or ridges will thus have high
curvature values. From this intuitive definition, it can be seen that the curvature
does not depend on the orientation of the object. This allows determining the land-
marks without setting up a standardised coordinate system. This section describes
several methods to compute and process the curvature values of 3D curves and
surfaces.

3.3.1 3D curves

The curvature at a given point p on a smooth 2D curve is defined as the inverse of
the radius of the osculating circle at p (circle that best approximates the curve near
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p). It is a measure of how fast the unit tangent vector to the curve rotates. For a 3D
curve, the osculating circle in the plane containing the tangent and normal vector
(osculating plane) should be considered. If γ(s) is the arclength parametrisation of
the curve γ(u), then the unit tangent vector T (s), curvature k(s) and unit normal
vector N(s) are given by

T (s) = γ̇(s) (3.27)

k(s) = ||Ṫ (s)|| = ||γ̈(s)|| (3.28)

N(s) =
Ṫ (s)
||Ṫ (s)||

(3.29)

A more general expression for the curvature of γ(u), where the parameter u does
not need to be the arclength, is

k(u) =
||γ̇(u)× γ̈(u)||
||γ̇(u)||3

(3.30)

This definition of curvature can for example be applied on the 2D polylines that
are obtained when the mesh is intersected with or projected onto a plane. An ex-
ample is shown in Figure 3.25, where the femur is projected onto the transverse
plane (top left). A cubic Bezier spline interpolating the polyline vertices with C1

continuity could be created. After computing the derivatives of the third degree
function, Equation 3.30 can then be evaluated at the polyline vertices. A disadvan-
tage of this method is that if the polyline parts are small, so will the Bezier parts
and the resulting curvature values will contain a lot of noise. This is illustrated
in the top right panel, where the color scale was clipped to remove outliers. A
better solution would be to fit a spline with a limited number of Bezier parts to the
polyline vertices. Such fitting algorithm would produce a smoother spline and thus
smoother curvature values. However, this method requires that the control points
are estimated and optimised during the fitting algorithm.

A simpler approach is to use the properties of the convolution operator to smooth
the curvature values. It was already shown that the Gaussian convolution kernel
can be applied to obtain a set of smoothed points. Moreover, the convolution
operator commutes with differentiation, which means that smoothed derivatives
can be calculated by convolution with the derivative of the Gaussian filter:

d

dx
(f ∗G) =

df

dx
∗G = f ∗ dG

dx
(3.31)

This property can be used to calculate a smoothed curvature for a 3D parametric
curve γ(u) = (x(u), y(u), z(u)). The derivates of γ(u) are obtained by convolu-
tion with the derivatives of the Gaussian kernel G(u, σ):

ẋ(u, σ) = x(u) ∗ Ġ(u, σ) (3.32)
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Figure 3.25: Curvature of 2D projection of the femur onto the transverse plane (top left):
using Bezier spline interpolating the vertices (top right), Gaussian filter with σ = 1

(bottom left) and Gaussian filter with σ = 3 (bottom right).

ẍ(u, σ) = x(u) ∗ G̈(u, σ) (3.33)

Analogous expressions are used for the y and z coordinates. The smoothed curva-
ture is then calculated as

k(u, σ) =
||γ̇(u, σ)× γ̈(u, σ)||
||γ̇(u, σ)||3

(3.34)

The 1D Gaussian filter implemented in the SciPy library (http://www.scipy.org) is
used, which works on a 1D array of data. Therefore, a series of equidistant points
is first calculated from the polyline. The amount of smoothing depends on the
standard deviation σ. In the bottom part of Figure 3.25 the result for σ = 1 and
σ = 3 is shown. The points are approximately 1 mm apart. Positive curvature
values correspond to convex parts, while negative values represent concave parts.
It can be seen that σ = 3 produces a smooth colormap, where the most convex and
concave regions can be clearly distinguished.

The next step in the landmark extraction process is to quantitatively determine the
points of maximum or minimum curvature. It can be seen in Figure 3.25 that some
local extrema are present in the 2D curve. These can be found by calculating the
minimum/maximum in a symmetric region around each point. The extrema are lo-
cated where the output local minimum/maximum value is equal to the input value.
The number of extrema and their location depends on the size of the neighbour-
hood that is considered around each point. By imposing additional constraints on

http://www.scipy.org
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where the point should approximately be located, the landmark lying in a certain
anatomical region can be found. An example is given in Figure 3.26 for the lateral
and medial epicondyles and the deepest point of the trochlea.

Figure 3.26: Extraction of landmarks as points with local maximum or minimum
curvature: lateral and medial epicondyles and deepest point of trochlea.

3.3.2 3D surfaces

As mentioned in the previous section, a 3D surface is usually curved differently
in different directions. The normal curvature kn along a given direction t in the
tangent plane is defined as the curvature of the normal curve, obtained by intersect-
ing the surface with the plane spanned by t and the surface normal vector n. The
principal curvatures k1 and k2 are defined as the maximum and minimum normal
curvatures and the principal curvature directions are the corresponding directions
in the tangent plane. The normal curvature for the direction t forming an angle
θ with the first principal curvature direction is then given by the Euler curvature
formula:

kn(θ) = k1cos
2(θ) + k2sin

2(θ) (3.35)

The principal curvature values and directions of the surface γ(u, v) can be cal-
culated as the eigenvalues and eigenvectors of the matrix of second order partial
derivatives or Hessian matrix:

H =
[
γuu γuv
γvu γvv

]
(3.36)

3.3.2.1 Curvature estimation on triangular meshes

Dong and Wang [16] described a method to calculate curvature values at the ver-
tices of a triangulated surface mesh. The normal curvature is estimated based on
the adjacent surface normal information and the principal curvatures are deter-
mined using the Euler curvature formula. For a vertex p with unit surface normal
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N and a nearby vertex pi with unit surface normal Ni, the normal curvature is
approximated as

kn(ti) =
(pi − p) · (Ni −N)
||pi − p||2

(3.37)

where t is the unit length projection of the vector pi − p onto the tangent plane:

ti =
(pi − p)− ((pi − p) ·N)N
||(pi − p)− ((pi − p) ·N)N ||

(3.38)

The unit surface normal at a vertex is calculated as a weighted average of the
normals to the triangular faces adjacent to that vertex. They illustrate this approx-
imation for a sphere with radius R, where the vectors pi − p and Ni − N are
parallel, as shown in Figure 3.27, and the normal curvature is equal to the inverse
of the radius:

kn(ti) =
(pi − p) · (Ni −N)
||pi − p||2

=
||Ni −N ||
||pi − p||

=
1
R

(3.39)

The points pi are the vertices connected to p via a shortest path of n edges, which
is also called the n-ring neighbourhood of p. If the edges are short, the 1-ring
neighbourhood might result in a very local and noisy curvature map and it might
thus be useful to take a larger neighbourhood to obtain better results.

Figure 3.27: Normal curvature calculation for a triangular mesh: illustration for a sphere
with radius 1/R [16].

To calculate the principal curvatures, a coordinate system {ê1, ê2} on the tangent
plane is chosen so that ê1 is the direction corresponding to the maximum value of
the normal curvatures kn(ti). If θ0 is the angle between ê1 and the first principal
direction and θi is the angle between ê1 and ti, then the normal curvature is given
by the Euler curvature formula:

kn(ti) = k1 cos
2(θi − θ0) + k2 sin

2(θi − θ0) (3.40)
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This formula can be rewritten as

kn(ti) = a cos2(θi) + b cos(θi)sin(θi) + c sin2(θi) (3.41)

where the constants a, b, c are given by
a = k1 cos

2(θ0) + k2 sin
2(θ0)

b = 2(k2 − k1) cos(θ0)sin(θ0)
c = k1 sin

2(θ0) + k2 cos
2(θ0)

(3.42)

As a is chosen to be the normal curvature in the direction ê1, b and c can be
calculated by elimination from

m∑
i=1

kn(ti)− a cos2(θi) =
m∑
i=1

b cos(θi)sin(θi) + c sin2(θi) (3.43)

Finally, the angle θ0 and the principal curvatures and corresponding directions can
be calculated from these constants.

3.3.2.2 Shape classification

While landmarks on a curve can be determined based on local maximum or mini-
mum values of the curvature, landmarks on a 3D surface are obtained by looking
at the combination of both principal curvatures. The surface points can then be
classified into different shapes:

• Elliptic (k1 k2 > 0): both principal curvatures have the same sign. The
surface is locally convex or concave.

• Umbilic (k1 k2 > 0, k1 = k2): both principal curvatures have the same sign
and are equal. Every tangent vector can be considered a principal direction.
The surface is locally spherical.

• Hyperbolic (k1 k2 < 0): the principal curvatures have opposite signs. The
surface is locally saddle shaped.

• Minimal (k1 k2 < 0, k1 = −k2): the principal curvatures have opposite
signs and equal magnitude.

• Parabolic (k1 = 0, k2 6= 0): one of the principal curvatures is zero. The
surface is locally flat in one direction. Parabolic points generally lie on the
boundaries between elliptical and hyperbolic regions.

• Flat (k1 = k2 = 0): both principal curvatures are zero. Every tangent vector
can be considered a principal direction. The surface is locally flat.
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In addition, other curvature parameters that allow for shape classification can be
calculated from the principal curvature values.

Gaussian (K) and mean (H) curvatures
These quantities can be calculated using the following equations:

K = k1 k2 (3.44)

H =
k1 + k2

2
(3.45)

Also, K can be calculated as the determinant of the Hessian matrix and H is equal
to half of the trace of this matrix. While K classifies the surface as locally elliptic,
hyperbolic or parabolic, H allows to measure the convexity and concavity of the
surface. This is illustrated in Table 3.2. As it is practically impossible to have
zero H and K values in the mesh, thresholds should be used to decide whether
the values are zero or not [17]. Both parameters are orientation invariant, as they
depend solely on the principal curvatures. However, since the principal curvatures
change when the surface is scaled, they are not scale invariant.

Table 3.2: Shape classification based on Gaussian (K) and mean (H) curvatures.

K < 0 K = 0 K > 0
(hyperbolic or minimal) (parabolic or flat) (elliptic or umbilic)

H < 0 saddle valley valley concave
H = 0 minimal plane not possible
H > 0 saddle ridge ridge convex

Figure 3.28 demonstrates the curvature calculation on the junction between the
frontal and nasal bones. This region is concave-shaped along the longitudinal axis
and convex-shaped along the transverse axis. Usually, the curvedness is larger
along the longitudinal axis, which means that it is shaped as a saddle valley. The
colormap for the mean curvature H on the mesh obtained after 20 smoothing it-
erations and 3 subdivision iterations is shown in the left part of the figure. An
8-ring neighbourhood of vertices was used to calculate the curvature values for
each vertex. For this ring the mean 3D distance to the neighbouring vertices is
2.60 mm. The curvature is clipped between the 10 and 90th percentile values to
remove outliers from the colormap. As the frontonasal suture is shaped as a saddle
valley, the H values are negative in this region. On the right part it is illustrated
that smoother curvature values can be obtained if the mesh is also smoothed after
each subdivision iteration. The colormap for the Gaussian curvature K is shown
in the bottom left figure for the same clipping interval. The 90th percentile value
is close to zero, which means that almost the complete geometry is saddle-shaped.
By selecting the triangles with negative H values (e.g. <-0.01) and splitting them
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in connected regions, part of the frontonasal suture is displayed (see blue region
in bottom right figure). The nasion point could then be determined as the most
anterior point of this region (shown in red). While in this case the landmark seems
to lie in the midsagittal plane, it is hard to obtain good results for each dataset
using the same threshold values for the curvature. Also, the selection of the suture
may span several triangles in the vertical direction and thus result in a landmark
position above or below the desired one and outside the midsagittal plane. Finally,
the suture might be less curved in some patients and the curvature values are very
sensitive to noise in the 3D model.

Figure 3.28: Curvature of the 3D surface mesh at the junction between the frontal and
nasal bones: original mean curvature (tof left), smooth mean curvature (top right),
Gaussian curvature (bottom left) and extracted frontonasal suture (bottom right).

Shape index (S) and curvedness (C)
These measures were introduced by Koenderink and van Doorn [18]. The curved-
ness ranges from 0 to infinity and specifies the amount of curvature. It is orienta-
tion, but not scale invariant. The shape index is a number in the range [−1,+1]
and is orientation as well as scale invariant:

S =
2
π
arctan

(
k1 + k2

k1 − k2

)
(k1 ≥ k2) (3.46)

C =

√
k2
1 + k2

2

2
(3.47)

As shown in Table 3.3, it covers all shapes except for the planar shape. However,
this can be detected using the curvedness, which will be close to zero for planar
regions. A graphical representation of the shapes as a function of S and C is given
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in Figure 3.29. While the HK method uses two thresholds to detect zero values,
the SC method uses one threshold for the C values to classify planar regions [17].

Table 3.3: Shape classification based on shape index (S).

Shape Index range
convex S ∈ [5/8, 1]
ridge S ∈ [3/8, 5/8]

hyperbolic S ∈ [−3/8, 3/8]
valley S ∈ [−5/8,−3/8]

concave S ∈ [−1,−5/8]

Figure 3.29: Graphical representation of shapes based on shape index (S) and curvedness
(C): S = −1: concave umbilic, S = −0.5: valley, S = 0: minimal, S = 0.5: ridge,

S = 1: convex umbilic [19].

Figure 3.30: Curvature of the 3D surface mesh at the junction between the frontal and
nasal bones: shape index (left) and extracted frontonasal suture (right).
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The left part of Figure 3.30 shows the colormap for the shape index of the junction
between the frontal and nasal bones. The saddle-valley-shaped region is found by
selecting triangles with S ∈ [−3/8, 0]. The extracted frontonasal suture and nasion
point are shown in the right figure. The distance from the previously extracted
point using the mean curvature is 0.28 mm. The two methods thus seem to result
in similar landmark positions.

3.4 Geometrical entity fitting

This section gives an overview of landmark extraction by fitting geometrical enti-
ties to a set of points. Several anatomical points and axes are defined using quadric
surfaces, such as the centre of the best-fit sphere to the anatomy or the longitudinal
axis of the best-fit cylinder. Compared to the extreme point and curvature method,
which have been applied to locate landmarks as discrete points, this allows for a
more global approach. The mesh data are used as input for the fitting algorithm
to find a smooth surface that locally approximates the mesh. Besides quadric sur-
faces, other shapes can be used, such as lines and conic sections (e.g. a circle).

The fitting problem can be described as finding the set of parameters that mini-
mizes some distance measure between the input points and the geometrical entity.
One method is to measure the algebraic distance for each point, i.e. the deviation of
the function value from the expected value. Because the algebraic distance is lin-
ear to the algebraic parameters, this approach has a low computing cost. However,
its physical interpretation is usually not clear as it has no geometrical meaning.
A more natural method is to use the orthogonal or geometric distance, which is
defined as the shortest distance from the given point to the geometrical entity. Two
types of parameters can be used to describe the geometry. The first one defines
its size(s) (e.g. radius of a sphere) and the second one defines its position. The
optimal parameters are found by minimizing the sum of squares of the distances
using the nonlinear Levenberg-Marquardt least-squares optimisation [20, 21] rou-
tine of the SciPy library. Since the Levenberg-Marquardt algorithm only finds a
local minimum, an initial guess should be provided for the parameter set.

3.4.1 Line fitting

A line can be described by a point q and vector m. The orthogonal distance of a
point x from this line can then be calculated using Pythagoras’ theorem:

d =

√
|q − x|2 − | (q − x) ·m

|m|
|2 (3.48)
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3.4.2 Quadric surface fitting

A quadric surface, or simply quadric, is described by a second degree equation in
three variables:

l1x
2 + l2y

2 + l3z
2 + l4xy + l5yz + l6zx+ l7x+ l8y + l9z + l10 = 0 (3.49)

Typical examples of quadrics are spheres and cylinders. The equation can be writ-
ten in matrix notation as

[
x y z

] l1 l4
2

l6
2

l4
2 l2

l5
2

l6
2

l5
2 l3

xy
z

+
[
l7 l8 l9

] xy
z

+ l10 = 0

xAxT + bxT + c = 0 (3.50)

For a general quadric, calculating the orthogonal distance from a point x requires
solving the following set of equations, which states that the line connecting the
point x and its closest point xc on the quadric Q should be orthogonal to Q in xc:{

Q(xc) = xcAx
T
c + bxTc + c = 0

x− xc = t∇Q(xc) = t(2xcA+ b)
(3.51)

The closest point xc can then be eliminated:

xc = (x− tb)(I + 2tA)−1 (3.52)

(x− tb)(I + 2tA)−1A(I + 2tA)−1(x− tb)T+

b(I + 2tA)−1(x− tb)T + c = 0 (3.53)

If we use the eigendecomposition A = RΛRT of A, where R is an orthonormal
matrix (since A is real and symmetric) whose columns are the eigenvectors of A
and Λ is a diagonal matrix whose entries are the eigenvalues, the above formulas
can be written as

xc = (x− tb)R(I + 2tΛ)−1RT (3.54)

(x− tb)R(I + 2tΛ)−1Λ(I + 2tΛ)−1RT (x− tb)T+

bR(I + 2tΛ)−1RT (x− tb)T + c = 0 (3.55)

As the inverse matrix (I+2tΛ)−1 has three diagonal values 1/(1+2tλi), it can be
seen that by multiplication with (1 + 2tλ1)2(1 + 2tλ2)2(1 + 2tλ3)2, a polynomial
equation of at most sixth degree is obtained [3]. Quadric surface fitting using the
exact orthogonal distances thus requires to find the roots of a (at most) sixth degree
polynomial for every point in each iteration of the minimization algorithm. This
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computationally expensive method is avoided by calculating approximate geomet-
rical distances for each point x. These are found by intersecting the quadric with
the normal vector n of the surface mesh at x. This problem is described by the
following equations {

Q(xc) = xcAx
T
c + bxTc + c = 0

x− xc = tn
(3.56)

The parameter t is easily solved from the second degree polynomial

(x− tn)A(x− tn)T + b(x− tn)T + c = 0 (3.57)

and the smallest distance is retained. When no intersection with the mesh normal
is found, the tetrahedron height vector is used. This method was proposed by
Sappa and Rouhani [22] and is illustrated in Figure 3.31. If r, s and t are the
intersection points along three orthogonal directions, creating a triangular planar
patch, the quadric normal vector is approximated by the normal to this planar
patch, also called the tetrahedron height vector. When intersections with some of
the directions cannot be found, this method results in a 2D case (triangle height
vector), 1D case or outlier.
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Figure 3.31: Estimation of the quadric surface normal using the tetrahedron height vector
(red) for two surfaces: the vector is perpendicular to the plane formed by the intersection

points r, s and t along three orthogonal axes [22].

An example of the quadric surface fitting method is given in Figure 3.32. The face
centroids and normal vectors of the femoral head, shown in the left panel, are used
as input to find the best-fit sphere to the anatomy. The result of the fitting algorithm
is shown on the right. As the 50th and 95th percentiles of the distance values are
0.26 and 1.03 mm, the femoral head is well-approximated by the sphere. The
centre of the sphere corresponds to the femoral hip centre, shown in red. A second
example is shown in Figure 3.33 for the mastoid process of the skull. This structure
is approximated with an elliptic paraboloid and the mastoid point is extracted as the
centre of the quadric surface. The 50th and 95th percentile values of the distance
for this case are 0.11 and 0.35 mm.



92 CHAPTER3

Figure 3.32: Example of quadric surface fitting: face centroids and normal vectors on the
femoral head (left) and sphere fitted to the data (right).

Figure 3.33: Example of quadric surface fitting: elliptic paraboloid fitted to the mastoid
process: front view (left) and right view (right).

3.4.3 Error norm

As stated above, the fitting problem is solved by minimizing the sum of squares of
the distances of the points to the geometrical entity. This method uses a quadratic
error norm, as shown in Figure 3.34 (left). As the error gets large for points lying
far from the optimal geometry, a single outlier in the point set may bias the solu-
tion. A Gaussian error norm [23] was therefore added, which is more robust to the
presence of outliers by limiting the influence of the large errors on the minimiza-
tion. The Gaussian error norm is given by the following equation and is shown in
Figure 3.34 (right):

f(x) = 1− e
−x2

2σ2 (3.58)

The scale parameter controls how quickly points are treated as outliers. It can be
seen that the error asymptotically approaches 1 for values above 3σ.

The effect of the Gaussian error norm is illustrated using the example of the
femoral head. Figure 3.35 shows a new set of input points, with outliers that do
not lie on the femoral head. The results for the quadratic (left) versus Gaussian
(right) error norm with σ = 1 demonstrate that using the first method the sphere is
pushed towards the outlier points, while using the second method the influence of
the outliers is limited and a much better fit is obtained.
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Figure 3.34: Graphs of the error function applied on the fitting distance: quadratic error
norm (left) and Gaussian error norm for σ = 1 (right).

Figure 3.35: Effect of the error norm when outliers are present (top): quadratic error
norm (bottom left) and Gaussian error norm (bottom right).

3.5 Cross-sectional area

The cross-sectional area of the mesh could be measured to determine the isthmus
or narrowest part of a bony canal. Optimisation tools can be used to vary the posi-
tion and orientation of a slicing plane that results in the smallest area. Analogously,
the largest cross-section in a certain anatomical region could be determined. The
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slicing of the 3D mesh with a plane results in a 3D polygon. The area can then be
computed using the following formula:

A = N ·
n−1∑
i=0

Pi × Pi+1

2
(3.59)

where Pi are the vertices and N is the normal vector of the polygon. The opti-
mal slicing plane is found using the Nelder-Mead Simplex algorithm of the SciPy
library.

Figure 3.36 shows the smallest cross-section in the neck of the femur. The red
line is the normal vector to the slicing plane, positioned at the centre of the cross-
section, and may represent the femoral neck axis.

Figure 3.36: Smallest cross-section in the femoral neck region (blue) and normal vector of
the slicing plane (red).

3.6 Rotational inertia

Rotational inertia or moment of inertia (MOI) of an object around a given axis is
a measure of its resistance to changes in angular motion around that axis. It is
the rotational analogy of mass, which describes the resistance to changes in linear
motion. The MOI of a rigid body of n point masses around an axis through its
centre of gravity can be calculated as the sum of the MOI’s of each point mass:

I =
n∑
i=1

mir
2
i (3.60)

where mi is the mass of the point and ri is its orthogonal distance to the rotation
axis. For a continuous rigid body, this is replaced by an integral expression. From
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the above equation it can be seen that the MOI depends on the distribution of mass
and geometry (shape) of the object. If we assume that the mass is uniformly dis-
tributed, the MOI of the surface contour could be used as a measure of how much
the geometry is spread around that axis. Any asymmetrical rigid body has two
perpendicular axes of rotation around which the MOI is largest and smallest and
which, together with their perpendicular vector, are called principal axes of inertia.
In addition, any symmetry axis is a principal axis of inertia. The inertial proper-
ties of the surface mesh could thus be used to determine the axes around which
the geometry is most or least spread and to find symmetry axes of the object. To
account for non-uniform face sizes, the surface contour is discretised as a collec-
tion of point masses, where the points and masses are defined by the centroids and
areas of the mesh faces.

The principal axes can be calculated from the MOI tensor I , which describes the
relationship between the angular momentum vector L and the angular velocity
vector ω of a rigid body rotating around some fixed axis:

L = Iω (3.61)

I =

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 (3.62)

where Ijk is the MOI around the k-axis (j-axis) when the object is rotated around
the j-axis (k-axis), e.g.:

Ixx =
n∑
i=1

mi(y2
i + z2

i )

Ixy =
n∑
i=1

mi(−xiyi)
(3.63)

and the scalar MOI Iω around a given axis ω can be calculated from the tensor I
as

Iω = ωT Iω (3.64)

Since I is real and symmetric, it has three orthonormal eigenvectors, which form a
Cartesian coordinate system. These eigenvectors are the principal axes of inertia.
From the definition of an eigenvector, it can be seen that if the axis of rotation is a
principal axis, the angular momentum and angular velocity vectors are parallel:

L = Iω = λω (3.65)

where λ is the corresponding eigenvalue, which is called a principal MOI.

In addition, the geometric centre of the surface contour can be found using the
definition of the centre of gravity on the triangles’ centroids Xi and areas mi:

X =
∑n
i=1miXi∑n
i=1mi

(3.66)
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Figure 3.37 shows the calculation of the geometric centre and principal axes of
inertia of a femur model. The red and blue lines are the axes around which the mo-
ment of inertia is maximal and minimal. It can be seen that the mesh is least spread
along the red axis and most spread along the blue axis. Also, the principal axes of
the femur model seem to be a good first estimate for the anatomical directions. If
the bone model would be oriented in a random way, this is a good start point for
determining certain anatomical regions and setting up a standardised coordinate
system.

Figure 3.37: Principal axes of inertia of a femur model (front and bottom view): the axes
can be used as a first estimate for the anatomical directions.

3.7 2D projection contour

While our main goal is to extract 3D landmarks from the surface mesh, a method
to project the mesh on an arbitrary plane and compute its outer contour allows to
extract 2D characteristics of the superimposed anatomy. This might be useful to
compare some 3D measurements to 2D measurements, as currently obtained us-
ing radiographic images or CT slices. An approach proposed by Qin et al. [24]
to find the 2D contour of a closed surface mesh was implemented and is illus-
trated in Figure 3.38. First, the possibly visible triangles are detected based on
the angle of their normal vector with the projection axis. If this angle is greater
than 90◦, the normal points away from the projection axis and the triangle will be
covered since the surface is closed. The edges possibly belonging to the 2D outer
contour are found as the boundary edges between visible and invisible triangles.
These edges form a set of closed polygons, which are then projected onto the given
plane (see top left part of Figure 3.38). Each polygon surrounds a set of triangles,
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which may lie completely or partially in front of or behind another set of triangles.
The next step is thus to determine which polygons or polyline pieces surround the
front structures and to join them together to one outer contour. According to Qin
et al. the contour is found by first deleting the inner polygons (lying completely
inside another polygon) (bottom left) and then inserting vertices at the intersec-
tions of two polygons and removing the pieces that are inside the other polygon
(bottom right). However, an extra step was added to our algorithm to account for
self-intersecting polygons, which are first split into non-intersecting polygons (top
right).

Figure 3.38: Example of 2D projection contour calculation: boundary between visible and
invisible triangles (top left), self-intersecting polylines are split (top right), inner polylines
are removed (bottom left), remaining polylines are intersected and outer parts are joined

(bottom right).

3.8 Conclusions

Various mesh operations to process the original 3D model were presented in this
chapter. The simplification method proposed by Lindstrom & Turk allows to re-
duce the model size and thus create meshes that require a smaller processing time.
Using Taubin’s λ|µ algorithm, the mesh vertices, and thus also the normal vectors,
are smoothed, thereby removing noise from the model. The subdivision tech-
nique of Dyn et al. and Zorin et al. allows to interpolate between the mesh vertices
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by smoothly refining the triangular faces. Also, by implementing an algorithm to
measure the distance between two triangulated surfaces it was shown that the mesh
operations can be performed without introducing large geometric errors.

Different methods to automatically identify landmark features were implemented.
The local extreme point approach is relatively straightforward, but of great interest
as many landmarks have been defined as the extreme point of a certain anatomi-
cal structure in literature. Convex-, concave- as well as saddle-shaped structures
can be processed using this method and by applying the subdivision algorithm the
number of candidate points is increased to allow for more precise results. Two
curvature algorithms to process 3D curves and surfaces were tested. The Gaussian
smoothing method seems to be very useful to obtain a smooth curvature colormap
over a curve. Points of extreme curvature can then be detected by searching for
local minima or maxima. The 3D surfaces are more difficult to deal with. While
several orientation (and scale) invariant measures can be used to select a region cor-
responding to a particular shape, it is hard to obtain good results for each dataset
using the same threshold values for the curvature. The result might also be greatly
affected by the mesh quality and morphology of the bone. It could be interesting to
apply a 2D Gaussian smoothing filter to the mesh vertices to further reduce the in-
fluence of noise and small scale features. Nevertheless, it might not be obvious to
extract a single, stable point from the extracted landmark region. The semi-global
geometry fitting approach is more robust to noise compared to the local techniques
as it approximates an anatomical structure with a predefined geometrical shape. In
addition, the influence of outliers on the solution can be reduced using the Gaus-
sian error norm. Furthermore, the smallest or largest cross-section of the mesh
can be computed by searching for an optimal slicing plane. This method could for
example be combined with circle fitting to find the smallest circular profile. The
rotational inertia method allows to obtain the principal directions of the surface
mesh. It gives an idea of how much the geometry is spread in a certain direction
and can be used to extract initial estimates for relevant anatomical axes. Finally,
the 2D projection algorithm can be applied to create a 2D contour from the 3D
surface mesh. Using this method, some of the traditional 2D measurements can be
determined in any plane.

As shown in the previous chapters, many different types of landmark definitions
have been presented in literature. It is thus of great importance that various land-
mark extraction techniques are available and that the best possible method is cho-
sen for each landmark. The methods presented in this chapter can be applied for
different types of landmark features and bones. In the following chapters, they will
be employed to analyse the skull and femur.
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[13] Zorin D, Schröder P, Sweldens W. Interpolating subdivision for meshes with
arbitrary topology. Proceedings of the 23rd Annual Conference on Computer
Graphics (SIGGRAPH), New Orleans, LA, USA, pp. 189-192, 1996.

[14] Zorin D. Subdivision and multiresolution surface representations. PhD the-
sis, California Institute of Technology, Pasadena, California, USA, 1997.



100 CHAPTER3

[15] Zorin D, Subdivion on arbitrary meshes: algorithms and theory. IMS Lecture
notes series, Mathematics and Computation in Imaging Science and Informa-
tion Processing, 11:1-46, 2007.

[16] Dong CS, Wang GZ. Curvatures estimation on triangular mesh, Journal of
Zhejiang University SCIENCE 6A Suppl.I: 128-136, 2005.

[17] Akagunduz E. 3D object recognition using scale space of curvatures. PhD
thesis, Middle East technical university, 2011.

[18] Koenderink JJ, Doorn AJ van. Surface shape and curvature scales. Image
Vision Comput, 10(8):557-565, 1992.

[19] van Damme WJM, Oosterhoff FH, van de Grind WH. Discrimination of
3D shape and 3D curvature from motion in active vision. Percept Psychophys,
55(3):340-349, 1994.

[20] Levenberg K. A method for the solution of certain non-linear problems in
least squares. Quart Appl Math, 2(2):164-168, 1944.

[21] Marquardt W. An algorithm for least-squares estimation of nonlinear param-
eters. SIAM J Appl Math, 11(2):431-441, 1963.

[22] Sappa A, Rouhani M. Efficient distance estimation for fitting implicit
quadric surfaces. IEEE Int Conf on Image Processing, Cairo, Egypt, pp. 3521-
3524, 2009.

[23] van den Boomgaard R, van de Weijer J. Least squares and robust estimation
of local image structure. IJCV, 64(2/3):143-155, 2005.

[24] Qin Z, Jia J, Li T, Lu J. Extracting 2D projection contour from 3D model
using ring-relationship-based method. Inform Technol J, 6(6):914-918, 2007.



4
3D analysis of the skull

In this chapter, two studies about landmark localisation on the skull are presented.
First, a method for semi-automatic localisation of landmarks on the virtual skull is
proposed1. The new approach is evaluated by assessing the intra- and interobserver
variability for measurements performed on one image of each skull. The second
study presents the extraction of a larger number of landmarks and evaluates the
method by determining the intraobserver variability for measurements performed
on multiple images of the same skull2.

1This study was published: Van Cauter S, Okkerse W, Brijs G, De Beule M, Braem M, Verhegghe B.
A new method for improved standardisation in three-dimensional computed tomography cephalometry.
Computer Methods in Biomechanics and Biomedical Engineering, 13(1): 59-69, 2010.

2Parts of this study were published: Van Cauter S, Okkerse W, Brijs G, De Beule M, Verhegghe
B, Braem M. Reproducibility of landmark identification on different CT images of the head in three-
dimensional cephalometry. Proceedings of the 9th international symposium on Computer Methods in
Biomechanics and Biomedical Engineering, Valencia, 2010.
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4.1 Semi-automatic approach for landmark locali-
sation - intra- and interobserver reproducibility

4.1.1 Introduction

Cephalometry is the scientific study of the measurement of the head in relation
to specific reference points. Based on these points, which are called anatomical
landmarks, various distances, angles, lines and planes are traced and calculated.
Since its introduction by Broadbent [1] and Hofrath [2] in 1931, cephalometry is
a widely used measurement tool for diagnosis, treatment planning and outcome
evaluation of dentofacial disharmonies in orthodontics and craniofacial surgery.

Traditionally, the landmarks are identified on tracings of 2D cephalometric radio-
graphs. However, conventional radiographs are characterised by overlap effects
due to superimposition of anatomical structures and by magnification and distor-
tion errors depending on the distances between the X-ray source, the object and the
film [3–5]. Moreover, it has been found that tracing variance is an important source
of error [6–8]. Another disadvantage is that facial asymmetry in the frontal plane
induces error in the evaluation of the lateral cephalogram as bilateral structures do
not align or superimpose [9]. Because of these limitations, three-dimensional (3D)
analyses using multiplanar radiography have been proposed [10, 11], which show
better accuracy and reproducibility when compared to 2D cephalometry [12]. In
this case the landmarks should be visible on images obtained from two or more dif-
ferent points of view and the difference in magnification of the various anatomical
structures should be corrected.

Three-dimensional computed tomography (3D CT) cephalometry has gained pop-
ularity over the last two decades due to the progress in CT imaging and the in-
creased interest for computer-assisted planning of surgery. It has been shown
that CT data can provide additional useful information to standard radiography
for patient management and that in most of the cases 2D CT scan slices are not
as useful without 3D rendered images [13, 14]. Furthermore, distance measure-
ments are more exact using reformatted 3D images than using original 2D slice
data [15, 16]. With the aid of 3D CT, the model can be viewed from any angle,
the inner structures can be visualised and various organ parts (e.g. bone and soft
tissue) can be observed independently [17]. In addition, 3D CT cephalometry al-
lows evaluation of complex abnormal anatomies such as asymmetrical cases since
3D images and measurements are assessed [18, 19]. Finally, compared to 2D ra-
diographic cephalometry intra- and interobserver reproducibility are significantly
superior following the 3D CT method [20].

The anatomical landmarks or cephalometric points are commonly determined by
manual point-picking on these surface renderings. Because of the variability in
head position during scanning, orientation of the image is required. This is done
either by manual (subjective) alignment of anatomical structures or by automatic



3D ANALYSIS OF THE SKULL 103

set-up of a reference system based on previously determined landmarks. Conse-
quently, reproducibility depends mainly on the judgement and experience of the
examiner.

Cephalometric analysis could be used to evaluate the outcome of orthognathic
surgery, in which the position of one or more jawbones is corrected. Reproducibil-
ity of the landmark coordinates should be high to allow for correct comparison of
data such as pre- and postoperative images. Otherwise, the variability in measure-
ment values could lead to misinterpretation of the data. In this paper, new methods
for landmark identification and image orientation are investigated, which aim to
improve reproducibility of cephalometric measurements. The approach which is
used is twofold: advance standardisation in cephalometry and limit the input of
the examiner.

4.1.2 Materials and methods

The new methods for improved standardisation in 3D CT cephalometry were de-
veloped using pyFormex (http://www.pyformex.org), which is an open-source pro-
gram under development at IBiTech. This software is intended for generating, ma-
nipulating and operating on large geometrical models of 3D structures. A module
for cephalometric analysis was created combining general features of pyFormex
and newly implemented tools for landmark identification and image orientation.
All operations are performed on a triangular model of the skull.

4.1.2.1 Landmark identification

The cephalometric points determined in this study are summarised in Table 4.1.
Two types of points can be distinguished: biological (type B) and constructed (type
C) landmarks. Biological landmarks are situated on a certain anatomical structure
of the body. In this work they are identified by calculating the extreme point in a
specified direction of the structure. This is illustrated in Figure 4.1 for the point
orbitale right (OrR), which is defined in literature as the most inferior point of the
right infraorbital rim. The following procedure is carried out to determine OrR:

• The examiner selects a surface region on the triangular model of the skull.
For this operation a picking procedure was developed which allows the user
to (de)select triangles, remove unconnected parts from the selection and re-
fine the selection in a new picking operation. For the landmark OrR the
surface region is the lower part of the right orbit (see Figure 4.1 (a)).

• The quality of the surface region is improved. As shown in Figure 4.1 (b), the
triangular surface model is quite coarse. Therefore, some quality improving
techniques are performed.

http://www.pyformex.org
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(a)

(b)

(c)

Figure 4.1: Landmark determination illustrated for the point OrR. (a) The user picks a
surface region on the triangular model. (b) The original surface region is quite coarse. (c)
The surface region is smoothed and refined, a line region is calculated and the landmark is

determined.
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Figure 4.2: Different smoothing filters: k are the frequencies of the surface signal
(0 ≤ k ≤ 2) and f(k) is the transfer function of the filter. Low frequencies correspond to

low curvatures, while high frequencies correspond to high curvatures.
Left: Laplace filter: f(k) = (1− λk)n (λ = 0.5, n = 4).

Right: low-pass filter: f(k) = ((1− λk)(1− µk))n/2 (λ = 0.5, n = 4, kPB = 0.1).

– The surface region is smoothed to remove noise and to obtain a more
uniform curvature. The vertices (corner points of the triangles) are
submitted to a low-pass filter algorithm [21, 22], which is a combi-
nation of two Laplace filters. During Laplacian smoothing the vertex
coordinates are recalculated according to Equation 4.1, in which p are
the original coordinates, n is the valence (number of edges connected
to p), qi are the adjacent points (points that share an edge with p) and
λ is a scale factor (0 < λ < 1):

p′ = p+
λ

n

n−1∑
i=0

(qi − p) (4.1)

However, the object tends to shrink drastically after applying the Laplace
filter iteratively a large number of times. In Figure 4.2 (left), the
Laplace filter for a scale factor λ of 0.5 and four iterations is shown. In
this figure, k are the frequencies of the surface signal (0 ≤ k ≤ 2) and
f(k) is the transfer function of the filter. Low frequencies correspond to
low curvatures, while high frequencies correspond to high curvatures.
The Laplace filter produces shrinkage because all the frequency com-
ponents, other than the zero component are attenuated (|f(k)| < 1 for
0 < k ≤ 2).
To prevent shrinkage, the low-pass filter alternates between two steps
of Laplacian smoothing: a shrinking step with positive scale factor λ
and an unshrinking step with negative scale factor µ, greater than λ in
absolute value (µ < −λ < 0). As shown in Figure 4.2 (right), this filter
preserves low frequency components (0 ≤ k ≤ kPB) and attenuates
higher frequency components (kPB < k ≤ 2). The boundary is the
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pass-band frequency kPB (f(kPB) = 1). If the scale factor λ and
the pass-band frequency kPB are known, µ can be calculated from
Equation 4.2:

1
λ

+
1
µ

= kPB (4.2)

As suggested by Taubin, a pass-band frequency of 0.1 was chosen. The
surface region is smoothed using four iterations of a low-pass filter
with a scale factor λ of 0.5. For this combination of parameters, the
transfer function f(k) decreases to zero, as k increases from k = kPB
to k = 2 (see Figure 4.2 (right)).
The surface regions of one skull model before and after low-pass filter-
ing were compared to evaluate the error induced by smoothing. Since
the regions are not closed, the volume change could not be used as an
appropriate measure for shrinkage and the change in surface area was
used instead. The area change varied between -0.23% and -1.16% and
is therefore negligible. As a comparison, the analogous Laplace filter
would result in an area change between -0.82% and -13.46%.

– The surface region is refined to allow for interpolation between the
original vertices of the model. For this step, a subdivision algorithm
based on the modified butterfly scheme [23, 24] was implemented.
This algorithm splits every triangle into four new triangles by inserting
one vertex per edge. The new vertex is calculated as a weighted sum
of vertices adjacent to the edge. The weights depend on the charac-
teristics of the edge (boundary or interior edge, boundary or interior
vertices, valence of the vertices) and in total seven types of rules can
be distinguished. The modified butterfly scheme guarantees that the
limit surface is C1 continuous, i.e. has continuous tangent planes [25].
The surface region is refined using three iterations of the subdivision
algorithm.

The model resulting from the smoothing and refinement operation is shown
in Figure 4.1 (c).

• A line region is calculated. In this case, the line region approximates the
infraorbital rim. It is defined as the highest points of sagittal (yz) profiles
through the surface region (see Figure 4.1 (c)). The distance between these
profiles is approximately 0.05 mm. Since not all landmark definitions in-
clude a line region, this step is optional.

• The landmark coordinates are determined. For the point OrR the lowest
point of the line region is calculated (see Figure 4.1 (c)). For landmarks
which do not have a line region, the extreme point of the surface region is
calculated.

This approach restricts the input of the user to the selection of the surface region on
the triangular model of the skull. All following steps are performed automatically.
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Other biological landmarks used in this study are points orbitale left (OrL), nasion
(N), clinoid (CAR, CAL, CPR, CPL) and sella inferior (SI). As shown in Table 4.1,
these points are defined by the anatomical structure (surface and/or line region) on
which they are situated and by the direction in which they are calculated as the
extreme point. The position of all the semi-automatically extracted landmarks is
depicted in Figure 4.3.

Constructed landmarks are defined using a combination of other landmarks. As
an example, the construction of point sella (S) is explained. This landmark is
traditionally defined as the centre of the sella turcica, which is a saddle-shaped
concavity in the sphenoid bone (see Figure 4.3 (b) and (c)). It is computed by the
following procedure:

• Four clinoid points are determined: two on the lesser wing and two on the
dorsum sellae (see Table 4.1 and Figure 4.3 (b)).

• Landmark sella superior (SS) is calculated as the mean of the four clinoid
points (see Figure 4.3 (c)).

• Landmark sella inferior (SI) is determined as the lowest point of the inter-
section of the hypophyseal fossa (seat of the sella turcica) with a sagittal
plane through sella superior (see Figure 4.3 (b) and (c)).

• Landmark sella (S) is calculated as the mean of sella superior and sella in-
ferior (see Figure 4.3 (c)).

Both constructed points used in this study, sella superior and sella, are again cal-
culated automatically.

4.1.2.2 Image orientation

To orientate the model, a reference system based on four landmarks is set up:
orbitale right (OrR), orbitale left (OrL), sella (S) and nasion (N). During image
orientation four requisites are taken into account, which correspond to three rota-
tions and one translation (see Table 4.2). The rotation in the frontal and transversal
plane aims to obtain an orientation in which similar anatomical structures are po-
sitioned symmetrically relative to the midsagittal (yz) plane. This is the natural
head position, which in addition will result in landmarks which are most clinically
meaningful. For example, point nasion will be situated more in the middle of the
nasal bone along the transversal (x) axis if the skull is positioned symmetrically.
To obtain such an orientation, orbitale right and orbitale left are placed at the same
height and sella and nasion are positioned in the same sagittal plane. Rotation in
the sagittal plane puts the anterior cranial base (S-N line) 6◦ above the horizontal
plane. This transformation is based on the two- to nine-degree average orientation
of the S-N line from true horizontal [26]. Finally, sella is positioned at the ori-
gin. The reference system is visualised in Figure 4.4. Since all transformations
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(a)

(b)

(c)

Figure 4.3: Landmarks used in this study. The surface regions (red), line regions (blue)
and points (yellow) are visualised. (a) Anterior view: landmarks OrR, OrL and N. (b)

Superior view: landmarks CAL, CAR, CPL, CPR and SI. (c) Paramedian sagittal view:
landmarks SS, SI and S.
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Table 4.2: Orientation requisites used to set up the reference system.

Transformation Requisite
Rotation in the frontal plane OrR and OrL at the same height
Rotation in the transversal plane S-N line in a sagittal plane
Rotation in the sagittal plane S-N line 6◦ above the horizontal plane
Translation S at the origin

(a) (b)

(c) (d)

Figure 4.4: The reference system used to orientate the skull (x, transversal axis; y, sagittal
axis; z, longitudinal axis). (a) 3D view. (b) Anterior view: OrR and OrL are at the same
height. (c) Superior view: the S-N line is positioned in the midsagittal plane. (d) Lateral

view: the S-N line is situated 6◦ above the horizontal plane.

are based on previously determined landmarks, the orientation procedure can be
performed automatically.

Because after rotating the skull the extreme points may have changed, the line
regions and landmark coordinates have to be recalculated. Since this may result in
a different reference system, image orientation has to be repeated as well. Hence,
an iterative procedure is used. During each iteration, the skull is re-orientated
and the line regions and landmarks are recalculated. After each iteration, the four
orientation requisites of Table 4.2 are evaluated. The orientation procedure stops
when all requisites are fulfilled. In this case, the three rotation angles associated
with these requisites have converged to zero. However, due to the character of the
model, only a finite number of vertices can be taken into account. As a result, it
is possible that the orientation procedure does not converge, i.e. that one or more
rotation angles do not converge to zero. Instead, consecutive angles which have the
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same absolute value but different sign can be observed. Therefore, the procedure
stops after equal rotation angles are detected in three iterations. To decrease the
deviation from a converged referenced system, a last iteration is performed, in
which the skull is rotated over angles that are half of the recurrent rotation angles
in absolute value. In this case, a warning message is shown to the user and the final
deviation (the deviation of the current reference system from the reference system
set up by the final landmark coordinates) can be viewed.

4.1.2.3 Evaluation of the new methods

To study the performance of the new methods, three sets of CT scans were used.
All images had an intra-slice resolution of 0.48 mm and inter-slice resolution of
0.6 mm. Segmentation and 3D reconstruction of the skull was done using Mimics R©

(Materialise NV, Leuven, Belgium). The predefined threshold interval for bone in
CT images (226–3071 HU) was chosen to identify the skull and the optimal qual-
ity parameters were selected to calculate a triangular surface mesh. Then, the 3D
surface model was loaded into pyFormex.

Using the cephalometry module, two examiners each performed five analyses for
the three skull models, with a minimum time interval of two days. One examiner
was a dentist who is experienced in using 3D cephalometry, while the other was
an engineer who implemented the semi-automatic landmark identification tool.
Based on these data, the orientation of the skull models and the reproducibility of
the landmark coordinates were investigated. To evaluate the orientation method,
a quantitative judgement of the symmetrical appearance of the models was made.
Since all data were obtained from patients undergoing orthognathic surgery, the
jaws are likely to have an asymmetrical position and thus they were removed from
the skull model. Next, the model was split into two parts, separated by the mid-
sagittal (yz) plane. The positive vertices were mirrored against the midsagittal
plane and the minimum distance of each mirrored positive vertex from the nega-
tive vertices was calculated. Finally, the percentage of mirrored positive vertices
lying within a certain distance from the negative vertices was determined. Intraob-
server reproducibility was examined by means of the standard deviation of the five
analyses of each user. Interobserver reproducibility was evaluated by calculating
the difference between the mean values of the five analyses of each observer.

4.1.3 Results

4.1.3.1 Orientation

The orientation of the skull models after calculation of the reference system is
shown in Figure 4.5. A symmetrical orientation relative to the midsagittal (yz)
plane can be observed for the three models. The percentage of mirrored positive
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vertices lying within a certain distance from the negative vertices is shown in Fig-
ure 4.6. 50% of the mirrored positive vertices lies within 0.8 mm, 75 % within
1.3 mm and 90% within 2.2 mm of the negative vertices. The mean calculation
time for the orientation procedure was approximately six minutes. Two calcula-
tions did not converge, but this did not result in a significant error since the max-
imum deviation of the final reference system from the reference system set up by
the final landmark coordinates was -0.03◦.

(a) (b) (c)

Figure 4.5: The skull models after the calculation of the reference system. A symmetrical
orientation relative to the midsagittal (yz) plane is obtained. (a) model 1, (b) model 2 and

(c) model 3.
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Figure 4.6: Quantitative evaluation of the symmetrical appearance of the models: the
percentage of mirrored positive vertices lying within a certain distance from the negative

vertices.

4.1.3.2 Intraobserver reproducibility

Intraobserver reproducibility is depicted in Figures 4.7 and 4.8. The standard de-
viations of the 10 landmarks along the transversal (x), sagittal (y) and longitudinal
(z) axis before and after the orientation procedure were calculated.
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Figure 4.7: Intraobserver reproducibility for examiner 1: standard deviation of five
analyses along the transversal (x), sagittal (y) and longitudinal (z) axis.

For the first examiner, all landmarks except OrL and OrR have standard devia-
tions below 0.1 mm, which indicates high reproducibility. The higher values for
the orbitale points can be explained as follows. In the second model the line re-
gion for OrL is rather horizontal in the neighbourhood of the lowest point before
orientation. As a result, a higher standard deviation (0.96 mm) was obtained for
the x-coordinate of the landmark. After orientation, however, all values are below
0.22 mm. The results for the third model show high variability for the points OrL
and OrR, before as well as after calculation of the reference system. This is caused
by the fact that the infraorbital rim can not be readily distinguished. If the surface
region does not clearly go up and down in the sagittal (y) direction (see Figure 4.1
(c)), then the result for the line region, which was defined as the highest points of
sagittal (yz) profiles through the surface region, will depend on the area to which
the surface region extends in the sagittal direction. Consequently, high standard
deviations occur in the sagittal direction for the points OrL and OrR (0.85 mm and
1.82 mm after orientation).

Similar results are obtained for the second examiner. In the first and second model
eight of ten landmarks have standard deviations below 0.1 mm, while points OrL
and OrR have standard deviations below 0.46 mm and 0.29 mm. The highest vari-
ability is again observed for the third model, in particular for points OrL and OrR
(3.40 mm and 1.70 mm after orientation).
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Figure 4.8: Intraobserver reproducibility for examiner 2: standard deviation of five
analyses along the transversal (x), sagittal (y) and longitudinal (z) axis.

4.1.3.3 Interobserver reproducibility

Interobserver reproducibility is shown in Figure 4.9. The difference between the
mean values of both examiners is below 0.1 mm for all landmarks except OrL
and OrR in the three models. The highest values for OrL and OrR are 0.43 mm
and 0.05 mm in the first model, 0.49 mm and 0.34 mm in the second model and
1.46 mm and 2.81 mm in the third model.

4.1.4 Discussion

Many studies regarding 3D CT cephalometry have been performed, presenting
various methods for landmark identification, image orientation [17, 27–29] and
cephalometric analysis [17, 30, 31] and showing the need for improved standard-
isation and for investigation of the accuracy and reproducibility of cephalometric
measurements. Several studies about reproducibility of 3D CT cephalometry have
been published. Some of them investigated correlation coefficients, while oth-
ers calculated standard deviations. Intraobserver intraclass correlation coefficients
between 0.970 and 0.998 for ten subjects and four landmarks [28] and between
0.941 and 0.993 for 23 subjects and 20 linear distances [32] have been reported.
Intra- and interobserver intraclass correlation coefficients for 26 subjects and nine
linear distances were obtained with 3D CT cephalometry and 2D radiographic
cephalometry [20]. The 3D method proved to be significantly superior, showing
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Figure 4.9: Interobserver reproducibility: difference between the mean values of both
examiners along the transversal (x), sagittal (y) and longitudinal (z) axis.

intraobserver correlation coefficients between 0.972 and 0.998 and interobserver
correlation coefficients between 0.936 and 0.997. Maximal intraobserver standard
deviations of 0.86, 0.93 and 1.67 mm for the transversal, sagittal and longitudi-
nal direction for one subject and 19 landmarks [17] have been reported. Mean
intraobserver standard deviations were 0.39, 0.45 and 0.74 mm.

These studies rely on the examiner to manually point-pick the landmarks and/or
orientate the skull. The method for landmark determination presented in this paper
limits the input of the user to the selection of a surface region on the skull model.
Since this operation is less user-dependent, higher reproducibility can be achieved.
In this study, intraobserver standard deviations and interobserver differences lower
than 0.1 mm were obtained for most landmarks. When compared to the intraob-
server standard deviations reported by Park et al. [17], these results indicate that
a significant improvement can be achieved with the new methods. Nevertheless,
some landmarks perform poor if the feature that distinguishes them is not present
in the geometry. This is for example the case for the orbitale points, if the infraor-
bital rim can not be approximated using the definition of the line region. When
using the manual point-picking method however, the user has to deal with the ab-
sence of characteristic features on the surface rendering as well. Such landmarks
require further investigation. An automated procedure is used to orientate the skull
based on four landmarks. Taking into account the method used for landmark de-
termination, an iterative procedure is required to compensate for variations due
to rotating the skull. The results obtained in this study show that a symmetrical
orientation is achieved with the presented reference system. The distance between
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the mirrored left part and the right part of the skull is less than 2.2 mm for 90%
of the vertices. When evaluating the orientation of the skull models, it should be
kept in mind that some skulls may have asymmetrical features, that no skull is
completely symmetrical and that the reproducibility of the orientation should be
the most determining factor for choosing the reference system.

Cephalometric measurements can be used to evaluate the outcome of a treatment
if a correct interpretation of the data is possible. If the observed values of a clinical
study are, however, smaller than the reported error, it cannot be concluded that the
observed effect is due to therapy [8]. This study shows that the error in landmark
determination on 3D surface models can be limited. Moreover, the set-up of a
standardised reference system should contribute to the comparison of data, such as
pre- and postoperative images from orthognathic patients.

Although interesting preliminary results were obtained in this study, some limita-
tions remain. The number of patient data and landmarks used in this work was
rather small. Reproducibility should be tested for a larger amount of data and
other landmarks should be investigated. Because of the lower reproducibility of
the orbitale points, other reference systems should be evaluated as well. The accu-
racy of the landmark coordinates was not studied. In future, landmark coordinates
measured on 3D CT models could be compared to direct measurements on the dry
skulls to study the accuracy of the new methods. The number of smoothing and
subdivision steps applied on the surface regions was chosen arbitrarily. The influ-
ence of smoothing and subdivision on the accuracy of the landmark coordinates
could be used to determine an optimal number of iterations. The main drawback
of CT imaging is the increased radiation exposure compared to conventional ra-
diography, but it is shown that with cone-beam CT the radiation dose can be sig-
nificantly reduced [33]. Therefore, cone beam CT will probably enhance the use
of 3D CT cephalometry in orthodontic and craniofacial applications.

4.1.5 Conclusions

The number of studies concerning 3D CT cephalometry show that this technique
will become an important measurement tool in both orthodontics and craniofa-
cial surgery. The methods proposed in this study, namely landmark calculation
and image orientation, contribute to an improved standardisation in cephalometry.
Because the region-picking operation is less user-dependent, high reproducibility
can be achieved for most of the investigated landmarks. Along with the set-up of a
standardised reference system, this approach could allow for improved comparison
of patient data.
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4.2 Semi-automatic approach for landmark locali-
sation - precision for multiple CT images

4.2.1 Introduction

In the previous study, it was shown that the new method for 3D landmark locali-
sation results in high precision for several landmarks when multiple analyses are
performed on the same 3D model of the skull (intraobserver SD ≤ 0.15 mm and
interobserver difference between the mean values of each operator ≤ 0.10 mm for
eight out of ten landmarks). However, all the steps that are performed to gener-
ate the final model introduce some geometrical error: the anatomy is discretised
in voxels, the bony structures are segmented, a 3D reconstruction is generated,
the model size is reduced and the mesh is smoothed. Also, when the process is re-
peated using different parameters, another surface mesh is obtained. As mentioned
in chapter 1, the landmark position may change if the anatomy is discretised in a
different way and it is thus important to compare the results for different models
of the same anatomy. In this study, the effect of using different smoothing pa-
rameters and multiple CT images of the same skull on the landmark positions is
investigated.

4.2.2 Materials and methods

4.2.2.1 Skull models

Pre- and postoperative CT images of 12 patients that underwent jaw surgery were
used to construct two triangulated meshes of each skull. All images had an intra-
slice resolution of 0.48 mm and an inter-slice resolution of 0.60 mm. Segmentation
and 3D reconstruction of the skull was done using Mimics R© (Materialise NV, Leu-
ven, Belgium), by applying the predefined threshold interval for bone (226-3071
HU) and the optimal 3D reconstruction quality parameters (contour interpolation,
two iterations of Laplacian smoothing and three iterations of triangle reduction).

4.2.2.2 Landmark identification

The surface models were imported into pyFormex and for each model, 15 land-
mark regions, situated on the non-operated part of the skull, were identified. The
analyses were performed once by one investigator: the engineer who implemented
the semi-automatic landmark identification tool and who is experienced in using
the software. Table 4.3 gives an overview of the 3D landmark definitions and Fig-
ure 4.10 shows the landmark positions. The methods described in the previous
study were used to localise the points, but some improvements to the procedure
were made:
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• The direction for the extreme point extraction was modified for some of the
anatomical structures. For example, the infraorbital rim was found to be
slightly oriented in the anterior direction and therefore, an AP component
was added for the localisation of this ridge.

• Sella was previously defined as a point lying inside the sella turcica and
was obtained using two other landmarks, lying at the top and bottom of the
sella turcica: sella superior and sella inferior. However, the hypophyseal
fossa or floor of the sella turcica is a thin bony structure and can be hard
to distinguish on the CT scans. As a result, especially using thresholding
for the segmentation, holes might be present in the fossa of the 3D model.
Therefore, it was chosen to use sella superior as the reference point of the
sella turcica in this study.

• In the previous study, the ridge and valley regions were calculated as a dis-
crete set of extreme points (e.g. the most superior points of the lower orbit
region). As illustrated in chapter 3, however, a smooth spline can be cre-
ated from the points. Using this new method, the landmark position is less
affected by small changes in the orientation of the model.

Table 4.3: Landmark definitions. The landmarks are visualised in Figure 4.10.

Landmark Definition
Basion (Ba) Most anterior point of great foramen
Clinoid anterior left (CAL) Most posterior point of left posterior angle of lesser wing
Clinoid anterior right (CAR) Most posterior point of right posterior angle of lesser wing
Clinoid posterior left (CPL) Most anterior point of left anterior angle of dorsum sellae
Clinoid posterior right (CPR) Most anterior point of right anterior angle of dorsum sellae
Mastoid left (MaL) Most inferior point of left mastoid process
Mastoid right (MaR) Most inferior point of right mastoid process
Nasion (N) Most anterior point of frontonasal suture
Orbitale left (OrL) Most inferior point of left infraorbital rim
Orbitale right (OrR) Most inferior point of right infraorbital rim
Porion left (PoL) Most superior point of left external auditory meatus
Porion right (PoR) Most superior point of right external auditory meatus
Sella superior (SS) Mean position of CAL, CAR, CPL & CPR
Zygion lateral left (ZyL) Most lateral point of left zygomatic arch
Zygion lateral right (ZyR) Most lateral point of right zygomatic arch
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(a) (b)

(c)

(d)

Figure 4.10: Landmarks determined in this study: (a) anterior view, (b) right view, (c)
paramedian sagittal view, (d) top view.
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4.2.2.3 Reference system

As in the previous study, a standardised coordinate system was set up from the
landmarks (see Figure 4.11):

• the MaL-MaR line is parallel to the horizontal plane;

• the Ba-N line is positioned in the midsagittal plane;

• the Ba-N line lies 23◦ above the horizontal plane;

• the origin is positioned at Ba.

(a) (b)

(c) (d)

Figure 4.11: Reference system based on landmarks: (a) 3D view, (b) posterior view: the
MaR-MaL line is parallel to the horizontal plane, (c) superior view: the Ba-N line is

positioned in the midsagittal plane, (d) lateral view: the Ba-N line is situated 23◦ above
the horizontal plane.
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The coordinate system is based on the bilateral mastoid points and midsagittal
points basion and nasion. Madsen et al. [26] reported a two- to nine-degree average
orientation of the sella-nasion line from true horizontal, while the data reported
by Kuroe et al. [34] suggest that the mean angle between the sella-nasion and
basion-nasion lines is around 17◦. Based on these values, it is proposed to put the
basion-nasion line 23◦ above the horizontal plane.

4.2.2.4 Landmark precision

Smoothing
The landmarks were computed from the selected landmark regions using four dif-
ferent numbers of smoothing iterations (0, 4, 10, 20). The influence of smoothing
on the landmark coordinates was then studied by calculating the distance between
the points obtained without smoothing and the points obtained with smoothing.

Image
Next, the influence of the different triangulated meshes, obtained from each pair
of CT images, on the landmark positions was investigated. The pre- and post-
operative models were first oriented in the same way using an image registration
function in the Mimics software. A coordinate system was then set up using the
postoperative landmarks (as described above) and both models were transformed
to the new reference frame. Finally, the distance between the pre- and postoper-
ative landmarks was calculated. This process was repeated for the four different
numbers of smoothing iterations.

Orientation
The 3D analysis of the skull requires to set up a reference system for each skull
model. However, a slightly different orientation might be obtained for two models
of the same skull as the reference system depends on the landmark coordinates.
The effect of the differences in orientation was investigated by setting up a separate
reference system for the pre- and postoperative models. The landmark positions
on both models, transformed to their respective reference frames, were compared
for one particular number of smoothing iterations.

4.2.3 Results

Smoothing
Figure 4.12 shows the 3D distance between the points obtained without smoothing
and the points obtained with smoothing. The mean values across the 24 skull
models for three different numbers of smoothing iterations (n) are displayed. All
values are below 0.7 mm. The mean values across the landmarks are 0.19 mm
(n=4), 0.28 mm (n=10) and 0.33 mm (n=20). In general, the distance increases as
the number of smoothing iterations gets larger. However, the variation resulting
from additional smoothing iterations decreases (i.e. the first iterations contribute
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the most). The effect of smoothing on the landmark coordinates is largest for
zygion and mastoid (>0.5 mm).
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Figure 4.12: Effect of smoothing: mean 3D distance between points obtained without
smoothing and with smoothing for different numbers of smoothing iterations (n).
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Figure 4.13: Comparison of landmarks calculated on different triangulated meshes,
obtained from pre- and postoperative CT images: mean 3D distance for different numbers

of smoothing iterations (n).



3D ANALYSIS OF THE SKULL 123

Image
The mean 3D distance between the 12 pre- and postoperative points for the four
smoothing parameters is shown in Figure 4.13. All values are below 1.4 mm. The
mean values across the landmarks are 0.67 mm (n=0), 0.62 mm (n=4), 0.60 mm
(n=10) and 0.60 mm (n=20). The distance decreases between 0 and 4 iterations for
most landmarks, especially for mastoid left, mastoid right and zygion left, while
the distance increases for zygion right.

The results for n=10 are displayed in Figures 4.14 (mean values) and 4.15 (max-
imum values). The distances are split up along the three coordinate axes. A high
precision is found for all points, as the mean 3D distance ranges between 0.20 and
1.33 mm. The most reliable landmarks are sella superior, basion and the clinoid
points, while zygion, orbitale, porion and mastoid are less reliable. The maximum
values of the 3D distances range between 0.33 and 3.57 mm. The maximum 3D
distance is smaller than 1 mm for basion, clinoid and sella superior and smaller
than 2 mm for 12 out of 15 points. The distance is below 1 mm for nasion in the
AP direction, for mastoid, orbitale and porion in the SI direction and for zygion in
the ML and SI directions.
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Figure 4.14: Comparison of landmarks calculated on different triangulated meshes,
obtained from pre- and postoperative CT images: mean mediolateral (ML),
anteroposterior (AP), superoinferior (SI) and total (3D) distance for n = 10.
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Figure 4.15: Comparison of landmarks calculated on different triangulated meshes,
obtained from pre- and postoperative CT images: maximum mediolateral (ML),

anteroposterior (AP), superoinferior (SI) and total (3D) distance for n = 10.

Orientation
Figures 4.16 (mean) and 4.17 (maximum) show the distance between the pre- and
postoperative points if a reference system is set up for both models separately.
Again, the values for n=10 are displayed and split up along the three coordinate
axes. The deviation is zero for basion as this is the origin of the coordinate system.
Also, nasion is positioned in the midsagittal plane for both models, leading to
smaller variations for this point. The precision is relatively similar to that for
the registered images, with mean 3D distances up to 1.29 mm and maximum 3D
distances up to 4.10 mm. The maximum 3D distance is smaller than 1 mm for
basion, clinoid, nasion and sella superior and smaller than 2 mm for 11 out of 15
points. The distance is below 1 mm for mastoid, orbitale and porion in the SI
direction and for zygion in the ML direction.
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Figure 4.16: Comparison of landmarks calculated on different triangulated meshes, after
orienting each mesh separately: mean mediolateral (ML), anteroposterior (AP),

superoinferior (SI) and total (3D) distance for n = 10.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

Landmark

M
ax

im
u

m
 d

is
ta

n
ce

 (
m

m
)

ML AP SI 3D

ML 0.00 0.54 0.69 0.78 0.77 1.34 1.21 0.10 1.40 3.40 1.45 0.39 0.49 0.44 0.77

AP 0.00 0.72 0.78 0.73 0.69 1.57 1.02 0.84 0.95 1.37 1.54 1.23 0.73 3.97 2.62

SI 0.00 0.47 0.53 0.58 0.81 0.41 0.41 0.35 0.82 0.51 0.69 0.66 0.47 1.19 0.58

3D 0.00 0.75 0.88 0.85 1.00 2.06 1.28 0.91 1.69 3.68 1.66 1.25 0.75 4.10 2.67

Ba CAL CAR CPL CPR MaL MaR N OrL OrR PoL PoR SS ZyL ZyR

Figure 4.17: Comparison of landmarks calculated on different triangulated meshes, after
orienting each mesh separately: maximum mediolateral (ML), anteroposterior (AP),

superoinferior (SI) and total (3D) distance for n = 10.
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4.2.4 Discussion

The aim of this study was to compare the landmark positions obtained from two
CT images of the same skull. In addition, the effect of the number of smoothing
iterations on the results was studied. It was found that smoothing up to 20 itera-
tions changes the landmark coordinates by at most 0.7 mm. As also shown in the
previous chapter, the smoothing operation does not result in large geometrical er-
rors. The largest variation was obtained for mastoid and zygion. By visualising the
landmark positions on the skull models, some local prominences on the mastoid
process were seen. By smoothing the model, these prominences become smaller
and a different mesh vertex might be selected. The zygomatic arch might be rel-
atively flat at the most lateral part. In this case, a small change in the parameters
might result in a different extreme point being detected. The same observation is
made for the infraorbital rim.

The precision of the proposed semi-automatic method was evaluated by comparing
the pre- and postoperative landmark coordinates. The results for different smooth-
ing iterations show that applying some smoothing improves the precision for most
landmarks and the results for ten iterations were further evaluated. It was found
that applying additional smoothing does not largely affect the precision of the land-
marks. This is in agreement with the observation that the effect of additional
smoothing on the edge angles decreases as the number of iterations gets larger,
as shown in the previous chapter. In addition, a spline interpolation was used for
the ridge and valley regions (Ba, N, Or, Po), which also smooths the geometry.

By looking at the results for ten smoothing iterations, it was found that the points
zygion, orbitale, porion and mastoid are least reliable. As observed for the different
smoothing iterations, regions that tend to be relatively flat in one of the directions
(e.g. ML axis for Or and Po, AP axis for Zy and Po) are more influenced by the
exact discretisation of the model. In addition, they are more likely to show larger
variations for small changes in the model orientation. Also, as one particular ex-
treme point is extracted from the landmark region, local prominences in the model
might increase the variation. The differences in landmark precision correspond to
other studies found in literature (see chapter 2), which showed that basion, nasion
and sella are among the most reliable points and that zygion, orbitale and porion
are usually much more reliable in one of the anatomical directions compared to
the other axes.

The mean 3D intraobserver variations were below 1.4 mm, which shows that the
precision of all points is clinically acceptable. In chapter 2, mean 3D intraob-
server values below 1 mm and interobserver values below 1.5 mm were found for
the most reliable points basion, nasion and sella, but 40 % of the mean 3D intraob-
server values were above 1.5 mm and 52 % of the mean 3D interobserver values
were greater than 2 mm. These results show that the semi-automatic approach al-
lows for an improvement in landmark precision compared to the manual analysis.
Moreover, the maximum 3D intraobserver variations are below 2 mm for 11 of the
15 studied landmarks. A major advantage of the automatic analysis might thus be
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that it is less prone to outlier variations.

Many studies reporting on the precision of landmark localisation do not take into
account the variability resulting from setting up a reference system, either manu-
ally or based on the landmarks. However, as the head orientation during CT scan-
ning is not standardised, this is an important step of the cephalometric analysis. To
split up the movements determined during preoperative planning or postoperative
evaluation, the anatomical axes should be determined. In this study, high repro-
ducibility was found for all landmarks if the images are superimposed as well as
oriented separately. As the more reliable landmarks or directions are used to set
up the reference system, the variability is only slightly increased if the models are
oriented separately. While the precision of sella superior was higher than the pre-
cision of nasion in this study, the sella turcica region is more prone to have low
contrast in the image and was therefore not included in the reference system.

An important limitation of this study is that the landmark regions were identified
only once on each skull model by the same observer. Larger variations might be
found if the data are processed by different operators or if the time between two
analyses is larger. Moreover, only the precision of landmarks on the non-operated
part of the skull was determined. Further work should be done to investigate
the precision of the landmarks of the maxilla and mandible and the correspond-
ing cephalometric measurements. Finally, the accuracy of the landmark positions
should be assessed to further validate the method.

4.3 General discussion and conclusions

A semi-automatic approach for landmark localisation on the 3D virtual skull was
developed. Because of the complex anatomy of the skull, it was chosen to let the
user select a ROI in which the landmark is located, while the exact position of
the point is determined automatically. The literature review of chapter 2 shows
that no other studies regarding automatic landmark localisation on the 3D skull
model have been presented. The proposed method is novel and allows for a more
objective and standardised analysis of the skull.

A new reference frame for cephalometric analysis was presented. In the first study,
nasion, sella and orbitale were used to define the coordinate system. However,
in the second study, it was found that the points mastoid are more reliable than
orbitale. In addition, sella is sometimes difficult to determine because the sella
turcica region is more prone to have low contrast in the CT image and can thus
be hard to segment, especially using thresholding techniques. Finally, the point
basion showed to be very reliable. These observations resulted in a second coor-
dinate system, based on basion, nasion and mastoid. It could be further evaluated
if the resulting orientation of the skull is reasonable, i.e. if it allows to determine
translations in and rotations around relevant axes. It could be evaluated if bilateral
structures are positioned symmetrically relative to the midsagittal plane, as shown
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in the first study, and if the orientation corresponds to the natural head position.
Nevertheless, the precision of the measurements should be the most determining
factor for choosing the reference system.

It was shown that the automatic method allows for precise localisation of land-
marks on the 3D skull model. The results were compared to studies reporting on
manual landmark localisation using 3D images, either multiplanar images or 3D
models. Differences in precision between landmarks and anatomical directions
were observed and were in agreement with other studies. The mean 3D intraob-
sever variations are below 1.4 mm and the maximum variations are below 2 mm
for 11 of the 15 studied landmarks. A major advantage of the automatic analysis
might be that it is less prone to outlier variations.

During the development of the automatic methods, the landmark definitions and
landmark computation procedure were optimised to obtain better results. However,
some limitations remain. The landmarks are determined through local processing
of the surface mesh and by detecting a single extreme point. It was shown that this
approach might lead to relatively large variations, especially in the direction where
the anatomy is relatively flat. It might thus be better to calculate the landmark po-
sition from a larger set of points, e.g. by using the mean value of the most extremal
region or by fitting a predefined geometrical shape to the anatomical region. Also,
while many cephalometric points are defined as extreme points in one or more
anatomical directions, distinct ridges might be better detectable using a curvature
analysis in one of the planes. Moreover, the semi-automatic procedure should be
employed to detect the landmarks on the jaws, teeth and face and it should be
determined which clinically relevant measurements can be obtained to perform a
precise 3D cephalometric analysis. Finally, the accuracy of the landmark positions
should be assessed to further validate the method.
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5
3D analysis of the femur

In this chapter, two studies about landmark extraction on the femur are presented.
The first study deals with the insertion of intramedullary rods and aims at deter-
mining the optimal entry point1. In addition, the feasibility of a reduced scanning
protocol is investigated by applying the method on both full and reduced models of
the femur, the latter being obtained by removing specific regions from the model.
In the second study, the alignment of the femur in the three anatomical planes is
considered by extracting various reference axes.

5.1 Automatic extraction of intramedullary rod en-
try point

5.1.1 Introduction

Anatomical reference parameters or landmarks are prominent features of an or-
ganism. In orthopaedic surgery, landmarks are widely used and mainly employed

1This study was published: Van Cauter S, De Beule M, Van Haver A, Verdonk P, Verhegghe B.
Automated extraction of the femoral anatomical axis for determining the intramedullary rod parameters
in total knee arthroplasty. International Journal for Numerical Methods in Biomedical Engineering,
28(1):158-169, 2012.
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for the quantification of morphological parameters (e.g. distances, angles) and the
definition of joint coordinate systems. They have proven to be applicable through-
out all steps of the patient treatment process: diagnosis [1, 2], preoperative plan-
ning [3], surgery [4, 5] and postoperative follow-up [6]. Software programs are
available for the manual identification of landmarks on digital medical images and
3D computer models. Moreover, computer methods have been developed to assist
the user in landmark identification [7]. Despite these efforts, the manual proce-
dure is time-consuming, requires a high level of expertise, may lack in accuracy
and is inherently characterized by observer variability [8–10]. To overcome these
drawbacks, techniques for automated landmark extraction are increasingly being
developed.

Many studies have shown that accurate prosthetic component positioning is a key
factor for the success of joint replacement surgery and recommendations for the
joint orientation angles have been presented [11, 12]. One example is total knee
arthroplasty (TKA), which aims at restoring the neutral alignment of the mechani-
cal axis of the lower limb (line from the centre of the hip joint through the centre of
the knee joint to the centre of the ankle joint). In conventional TKA, however, the
femoral anatomical-mechanical angle (FAMA) is used to orient the femoral com-
ponent with respect to the femoral anatomical axis (FAA). The FAA is defined as
the central axis of the diaphysis (or shaft) of the femur and is usually straight in
the frontal plane but curved in the sagittal plane. It is determined during surgery
by inserting a metal rod into the medullary cavity of the distal femur. A limitation
of this procedure is that errors in the entry point location of the intramedullary rod
(FIR) may lead to malalignment of the femoral prosthesis [13–15]. An automated
preoperative determination of the FAA and, in addition, of the FIR parameters (ori-
entation and entry point), could therefore offer a valuable support to the surgeon
and might improve the alignment accuracy in conventional TKA.

Different studies have been performed to automatically determine the FAA on
three-dimensional (3D) virtual femur models reconstructed from computed tomog-
raphy (CT) scans. Mahaisavariya et al. [16] first computed the smallest circular
cross section of the medullary canal (shaft isthmus). The proximal and distal FAA
were extracted by fitting circles at different levels of the shaft and computing the
best fit line to the centre of each circle from the shaft isthmus level in proximal
and distal directions. Cerveri et al. [17] applied a Gauss-Newton cylinder fitting
algorithm to the middle femoral shaft surface to compute a line approximation of
the FAA. Subburaj et al. [18] used a distance-controlled thinning process to ex-
tract the medial axis of the femur. This process iteratively removes the outermost
surface of the object, while preserving the topology, until a thin medial structure
is left. The FAA is then represented by the medial axis of the middle long portion
(1/8 to 3/4 of the height) of the femur.

Because of the considerable radiation exposure involved in CT scanning, obtaining
scans of the complete femur is not feasible in patient treatment. A new method for
computing the FAA and the FIR parameters is therefore proposed, which can be
applied to full and reduced 3D models of the femur. The analyses for different



3D ANALYSIS OF THE FEMUR 135

reductions of the femur are compared to those of the full femur to study the effect
of the scanning reduction.

5.1.2 Materials and methods

5.1.2.1 Bone models

The algorithms were developed and evaluated using CT images of 50 cadaveric
femur specimens from the Department of Experimental Anatomy of the Vrije Uni-
versiteit Brussel. The images were acquired using a 64-slice CT scanner (Light-
Speed VCT, GE Healthcare, Milwaukee, WI) and have a 0.79 x 0.79 mm pixel size
and 0.63 mm slice increment. The femurs were segmented with the Mimics R© soft-
ware (Materialise NV, Leuven, Belgium) and 3D triangular surface meshes were
created with the gray value interpolation method and without applying smooth-
ing or reduction. The 3D models were then imported into pyFormex (http://www.
pyformex.org), which is an open-source program under development at IBiTech-
bioMMeda, providing a wide range of operations on surface meshes. All further
processing is performed automatically, using some of the general features of py-
Formex, combined with newly implemented tools for landmark extraction. First,
the GNU Triangulated Surface Library is invoked to reduce the number of edges
in the model to 100000, which corresponds to approximately 66668 triangles. The
edge reduction algorithm [19] allows for volume, boundary and shape optimisa-
tion and equal weights were chosen for these 3 parameters. Next, the model is
smoothed with a low-pass filter, which has been shown to preserve the volume of
the object [20]. The smoothing filter runs 20 iterations with a scale factor of 0.5.

5.1.2.2 Reference parameters

The presented feature extraction process is intended to be invariant to the orien-
tation of the bone and is therefore started by the determination of a standardised
coordinate system for the complete femur. This allows to orient the femurs, which
had an arbitrary position during CT scanning, in a standardised way. Next, the
femoral middle diaphysis axis (FMDA), which is defined as the straight medial
axis of the middle diaphysis, is computed. The FMDA is later on used to simulate
a reduced scanning by clipping the femur models along this axis. The procedure
then continues by extracting the FAA, which is defined as the curved medial axis
of the diaphysis. Finally, the FIR, which is inserted into the distal femur along the
FAA, is computed.

Standardised coordinate system
A coarse estimation of the anteroposterior (AP), right-left (RL) and distoproximal
(DP) directions of the femur is made by calculating the principal axes of inertia
of the outer surface. The centre of gravity (C) of the surface mesh is chosen as
the origin. This is illustrated in Figure 5.1. The following step is to select the

http://www.pyformex.org
http://www.pyformex.org
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correct senses for the axes (e.g. anterior versus posterior) and detect the side of
the bone (right or left). Two outer parts are created by cutting the model along the
DP direction at 10 and 90 % of its length and the centres of gravity of these parts
are calculated. Assuming that Cd and Cp are the centres of gravity of the distal
and proximal part, respectively, a number of geometrical conditions are taken into
account:

• Cd lies closer to C along the RL axis than Cp (see Figure 5.1 (left));

• Cp is situated anteriorly to Cd (see Figure 5.1 (right));

• Cp lies medially to C (see Figure 5.1 (left)).

The axes (RL,AP,DP) are then modified by rotating the RL axis in the horizontal
plane parallel to the posterior condylar line (PCL), which is defined by the most
posterior points of the medial and lateral condyles. The coordinate system is shown
in Figure 5.2. The posterior condylar points are extracted by creating a right and
left distal part, containing the condyles, and computing the most posterior points
of these two parts. An iterative process is run to rotate the coordinate system and
recalculate the PCL.

Figure 5.1: Centre of gravity C and principal axes of inertia (RL,AP,DP). Cd and Cp are
the centres of gravity of the distal and proximal part.

Geometrical entity fitting
Since the reference parameters that are described in the following sections are de-
termined by fitting geometrical entities (i.e. lines and quadric surfaces), a brief
overview of this technique is first given. The fitting problem can be described as
finding the set of parameters that minimizes the distance between a set of points
and a geometrical entity. Two types of parameters are used. The first one defines
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Figure 5.2: The RL axis is rotated in the horizontal plane parallel to the posterior
condylar line (PCL).

the size(s) of the geometrical shape (omitted for lines) and the second one de-
fines its position. While the lines are fitted using the exact geometrical distances,
approximate geometrical distances are calculated for fitting the quadric surfaces.
These distances are found by intersecting the quadric with the average normal
vectors of the femur surface at the points. Where the lines do not intersect with
the quadric, the distance is computed from the intersection points along three or-
thogonal axes [21]. The optimal parameters are found by minimizing the sum of
squares of the distances using the nonlinear Levenberg-Marquardt least-squares
optimisation [22, 23] routine of the SciPy library. Since the Levenberg-Marquardt
algorithm finds only a local minimum, an initial guess is provided for the parame-
ter set.

Femoral middle diaphysis axis (FMDA)
The middle shaft is obtained by clipping the surface along DP, symmetric around
C, over a height that is equal to half of the femoral length along DP. Next, an el-
liptic cylinder is fitted to the points of the middle shaft and their corresponding
average normal vectors (see Figure 5.3). The centroid of the points and the axes
(RL,AP,DP) are used as initial estimates for the centre of the cylinder and its prin-
cipal axes, respectively. The FMDA is then defined by the longitudinal axis of the
cylinder.

Femoral anatomical axis (FAA)

The FAA is computed by fitting a series of elliptic hyperboloids of one sheet to the
shaft (see Figure 5.4 (left)). The fitting procedure begins by clipping the diaphysis
centrally along DP. The centroid of the selected point set and the axes (RL,AP,DP)
are used as starting estimates for the centre of the hyperboloid and its principal
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Figure 5.3: Femoral middle diaphysis cylinder and axis (FMDA).

Figure 5.4: Femoral diaphysis hyperboloids and their longitudinal axes (left) and femoral
anatomical axis (FAA) (right).

axes, respectively. The procedure is then continued in the proximal and distal di-
rections. Each following point set is generated by clipping the shaft along the
longitudinal axis of the previous hyperboloid. The new hyperboloid is initialized
by the centroid of the point set and the principal axes of the previous hyperboloid.
The longitudinal axis of each hyperboloid is a local linear approximation of the
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FAA. The curved medial axis is obtained by computing a cubic Bezier curve, go-
ing through the endpoints of the most distal and proximal axes and through the
midpoints of the other axes (Figure 5.4 (right)).

A number of prerequisites are implemented to assure a proper outcome for the
FAA:

• Each hyperboloid should have a height between 5 and 10 mm. A minimum
height is used to provide enough surface points to perform a correct fitting.
A maximum height is applied to allow capturing the curved nature of the
diaphysis by generating a sufficient number of hyperboloids.

• The angle between the axis along which the shaft is clipped, and the longi-
tudinal axis of the fitted hyperboloid, should not be larger than 5◦. Other-
wise, there might be a large difference between the point set to which the
hyperboloid is fitted and the point set that is generated along the resulting
longitudinal axis, and this axis might therefore be a poor representation of
the FAA. When the angle is larger than 5◦, a new fitting procedure is started,
using the axes of the previously fitted hyperboloid as a starting estimate. A
maximum number of 5 trials are allowed, assuming that the cross section of
the femur is not nearly elliptical in that region if no convergence is achieved.

• To find the distal and proximal endpoints of the FAA, a stop criterion is
implemented, stating that the radius change along the axis should not be
larger than 10 %. This is evaluated by computing the radius and arc length
for each point that defines the FAA and constructing a cubic Bezier curve
of the radii versus the arc lengths. The slope of this curve is a measure
for the radius change over the FAA. The radius at a point is calculated as
the equivalent radius (i.e. radius of the circle with equivalent area) of the
polygonal cross section of the femur surface at that point.

Femoral intramedullary rod (FIR)
The orientation of the FIR is obtained by fitting a line to the distal FAA and the
entry point of the rod is calculated by intersecting this line with the distal femoral
surface. This is shown in Figure 5.5. A series of points at equal distance of approx-
imately 1 mm are first generated along the FAA. The points are equally spread via
a polyline approximation of the FAA, which is obtained by subdividing the curve
using de Casteljau’s algorithm until all Bezier parts are sufficiently flat. An initial
guess for the FIR orientation is provided using the principal axis of inertia with
the smallest principal value. A rod length of 200 mm is assumed and an iterative
process is run to fit a line to the points of the FAA lying within 200 mm from the
entry point of the rod.
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Figure 5.5: Femoral intramedullary rod (FIR).

5.1.2.3 Reduced femur models

To simulate the effect of obtaining a partial scan of the patient’s leg, all 50 femur
models are reduced along their FMDA. The scan heights are expressed in mm and
not as percentages of the total femoral length to allow for a more practical imple-
mentation of the scanning protocol. The model is first clipped into a distal, central
and proximal part, with heights of 150, 50 and 150 mm, respectively. Figure 5.6
(left) shows the reduced femur model and its FAA. It should be noticed that the
FAA is estimated at the non-scanned regions by interpolating between the different
parts. Because only the triangles of the surface mesh that fall completely between
the clipping planes, are included, an additional prerequisite is implemented for de-
termining the FAA on the reduced models. The triangles and corresponding points
to which the hyperboloid is fitted should have a closed cross section over at least
5 mm. This assures that enough surface points are available for a good fitting. The
central part of the model is then further reduced to study the effect on the FAA and
FIR parameters. Its height is repeatedly decreased by 10 mm until large deviations
from the results for the full models are observed. Next, the distal and proximal
parts are repeatedly diminished by 10 mm to find the acceptable scanning reduc-
tion. The second configuration consists of a distal and proximal part (shown in
Figure 5.6 (right)). The analysis starts again with a height of 150 mm for each
part, which is then reduced in 10 mm decrements.
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Figure 5.6: FAA computed on a reduced femur model consisting of three parts (left) and
two parts (right): the curve is interpolated between the different parts.

5.1.2.4 Evaluation

Full femur models
The performance of the automated techniques is studied on the 50 full femur mod-
els. The computation time for extracting the anatomical features is recorded (T).
The edge reduction and smoothing operations are performed in advance to the fea-
ture extraction procedure and are thus not included in the computation time. The
analyses are run on a regular laptop (Dell M4300, processor 2x Intel R© CoreTM2
Duo CPU T9300 @ 2.50GHz, memory 2059MB). Furthermore, the 95th per-
centiles of the distances of the geometrical entity fittings are calculated for the
FMDA cylinder, FAA hyperboloids and FIR lines (FMDA-FIT / FAA-FIT / FIR-
FIT). For the FAA, a mean value over all hyperboloids that are fitted to the diaph-
ysis, is used.

In addition, some clinical parameters are studied for the 50 models: the length of
the femur along the FMDA (FDP-FPP); the distances of the distal and proximal
endpoints of the FAA to the most distal and proximal points of the femur, respec-
tively (FAA-FDP / FAA-FPP); the angle from the FMDA to the FIR in the coronal
and sagittal planes (FMDA-FIR-COR / FMDA-FIR-SAG).

Finally, the orientation-invariance of the procedure is evaluated by randomly ro-
tating one femur 100 times (three random angles around the x, y and z-axes) and
comparing the results with those of the initial femur.

Comparison between full and reduced models
To determine the effect of the scanning reduction, the analyses of the full and re-
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duced models are compared, by computing the following values: maximum/mean
orthogonal distances between the FAA (FAA-max / FAA-mean); 3D distances be-
tween the distal/proximal endpoints of the FAA (FAA-DP / FAA-PP); absolute 3D
angle between the axes of the FIR (FIR-A); 3D distance between the entry points
of the FIR (FIR-EP). To find the orthogonal distances between the curves, a poly-
line approximation of each curve is first computed. Next, a series of points and
corresponding tangent vectors at equal distance of approximately 1 mm are calcu-
lated along each polyline. Finally, the distances of each point set from the other
polyline, perpendicular to the corresponding tangent vectors, are computed.

5.1.3 Results

Table 5.1 shows the performance parameters for the analyses of the 50 full femur
models (mean, standard deviation and range). The feature extraction process is fast
and good results are obtained for the geometrical entity fitting (95th percentile dis-
tances between 0.48 and 5.47 mm). Comparable results are found for the reduced
models.

The results for the clinical parameters are given in Table 5.2. The difference in
length between the shortest and largest femur model is 120.63 mm, which resulted
in 28.72 and 33.21 mm ranges for the FAA-FDP and FAA-FPP. On average, the
FIR is parallel to the FMDA in the coronal plane, while the anterior bow of the
femur results in a positive angle between the FMDA and the FIR in the sagittal
plane.

Comparing the results of the rotated femurs with those of the initial femur resulted
in maximum deviations of 0.05 mm (FAA-max), 0.04 mm (FAA-DP and FAA-
PP), 0.02◦ (FIR-A) and 0.06 mm (FIR-EP), which demonstrates that the feature
extraction procedure is indeed orientation-invariant.

Table 5.1: Performance parameters for the 50 full femur models.

Mean ± SD Range
T (sec) 20 ± 4 12 - 31
FMDA-FIT (mm) 4.00 ± 0.54 2.83 - 5.47
FAA-FIT (mm) 1.48 ± 0.24 0.96 - 2.05
FIR-FIT (mm) 1.18 ± 0.42 0.48 - 2.69

Table 5.2: Clinical parameters for the 50 full femur models.

Mean ± SD Range
FDP-FPP (mm) 448.87 ± 28.53 393.84 - 514.47
FAA-FDP (mm) 72.19 ± 6.74 57.35 - 86.07
FAA-FPP (mm) 87.45 ± 7.97 72.46 - 105.67
FMDA-FIR-COR (◦) 0.02 ± 0.94 -2.16 - 2.02
FMDA-FIR-SAG (◦) 3.77 ± 0.96 1.65 - 5.75
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Figure 5.7 shows the comparison between the full models and the reduced models
consisting of a distal, central and proximal part. The length of the outer parts is
fixed and equal to 150 mm. The length of the central part varies between 50 and
20 mm. It was found that for a central height of 10 mm, no hyperboloids are fitted
to this part. This is caused by the fact that the central part does not have a closed
cross section over at least 5 mm.
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Figure 5.7: Comparison of the analyses of the 50 full models and reduced models
consisting of three parts: effect of reducing the central part.

The reduction of the outer parts for a central height of 20 mm is depicted in Fig-
ure 5.8. The result for the outer parts of 110 mm shows a large increase for
the FAA-DP and FAA-PP. In this case, the maximum values for these distances
are 12.37 and 11.14 mm. Using a height of 120 mm gives the following results
(mean ± SD): 0.92 ± 0.34 mm (FAA-max), 0.32 ± 0.11 mm (FAA-mean), 0.38
± 0.34 mm (FAA-DP), 0.41 ± 0.45 mm (FAA-PP), 0.17 ± 0.16◦ (FIR-A), 0.29
± 0.28 mm(FIR-EP). The maximum values are 1.94 mm (FAA-max), 0.59 mm
(FAA-mean), 1.70 mm (FAA-DP), 2.77 mm (FAA-PP), 0.66◦ (FIR-A), 1.25 mm
(FIR-EP).

Finally, Figure 5.9 gives the comparison for the reduced models consisting of a
distal and proximal part, with lengths between 150 and 110 mm. The results for
the FAA-DP and FAA-PP are comparable to those of the models with a central part.
A large increase of the values is observed, however, for the 4 other parameters.
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Figure 5.8: Comparison of the analyses of the 50 full models and reduced models
consisting of three parts: effect of reducing the outer parts.

0.00

1.00

2.00

3.00

4.00

5.00

FAA-max (mm) FAA-mean (mm) FAA-DP (mm) FAA-PP (mm) FIR- A (°) FIR-EP (mm)

m
ea

n 
+ 

st
an

da
rd

 d
ev

ia
tio

n

150 140 130 120 110

Figure 5.9: Comparison of the analyses of the 50 full models and reduced models
consisting of two parts: effect of reducing the parts.
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5.1.4 Discussion

Conventional TKA instruments use an intramedullary rod to reference the medul-
lary canal and perform the distal femoral resection usually at a fixed amount of 5 to
6◦ of valgus to the distal FAA [24, 25]. This puts the femoral component approxi-
mately in the desired orthogonal alignment relative to the mechanical axis (FMA),
assuming that the FAMA is in the same normal range of valgus. However, anatom-
ical variations may alter the FAMA [24, 25] and consequently result in malalign-
ment of the FMA. Several studies have indeed shown that inaccurate femoral com-
ponent placement can result from anatomical variations, such as excessive femoral
bowing and capacious medullary canals [26, 27] and recommended to determine a
patient-specific distal resection angle on a preoperative long-leg radiograph.

In this study, the first step in the patient-specific process, which is the determina-
tion of the FAA and subsequently the FIR orientation and entry point, was auto-
mated. The feature extraction methods were developed for 3D models, e.g. recon-
structed from CT images, because there is an increased interest for preoperative
surgery planning using 3D imaging methods in orthopaedics. The automated pro-
cedure offers a fast and user independent way for extracting landmarks. As a lo-
cal optimisation routine is used for the geometric entity fitting, an initial estimate
should be provided for some of the reference parameters. This could be achieved
by orienting the femurs in a standardised way and using the resulting coordinate
system as an estimate for extracting the FMDA and FAA. The 95th percentiles of
the distances of the geometrical entity fittings show that the local optimum gives a
good result for the FMDA, FAA and FIR. A larger mean value of 4 mm is found
for the FMDA because the cylinder is a linear approximation of the curved middle
diaphysis.

The femur models were then reduced to study the effect of partially scanning the
patient’s leg. A large variation is observed for the femoral length and the distances
of the FAA endpoints to the most distal and proximal points of the femur (range
of 120.63, 28.72 and 33.21 mm, respectively). This should be kept in mind when
trying to find the acceptable scanning reduction. When fixed scanning heights are
used, an over- or underestimation may be made in some cases. However, a safe
zone that works for most of the cases should be determined, while the scanning
height could be adjusted for excessive short or long legs. The comparison between
the full models and reduced models consisting of a distal, central and proximal
part (Figures 5.7 and 5.8) indicates that the scanning heights can be reduced to
120, 20 and 120 mm, respectively, without a significant change in the results for
the reference parameters. Further reducing the central part to 10 mm causes the
FAA to interpolate directly between the outer parts, because no hyperboloids are
fitted centrally in this case. The large standard deviations and maximum values for
the FAA-DP and FAA-PP of the outer parts of 110 mm demonstrate that in this
case some outliers are present. For some femur models, too few hyperboloids are
fitted to the outer parts to obtain precise results. Good results for all parameters
are obtained with the outer heights of 120 mm and central height of 20 mm. This
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reduction corresponds to approximately 58 % of the mean length of the femurs.
The mean values for the deviation from the full femur models are smaller than
1 mm (FAA), 0.5 mm (FAA-DP and FAA-PP) and 0.2◦ and 0.3 mm (FIR). The
maximum values are smaller than 2 mm (FAA), 2.8 mm (FAA-DP and FAA-PP)
and 0.7◦ and 1.3 mm (FIR). Figure 5.9 shows that, except for the FAA endpoints,
omitting the central part from the model results in significantly larger deviations
from the full model. The inclusion of the central part allows to better capture
the curved nature of the diaphysis, which is reflected in the orthogonal distance
between the FAA curves and in the intramedullary rod parameters. The anterior
bow is a prominent feature of the femoral shaft, which is also demonstrated by the
FMDA-FIR-SAG angle of 3.77◦ ± 0.96◦. Although the FAA is usually straight in
the frontal plane, inward or outward bowing may, however, also be present. This
is demonstrated by the FMDA-FIR-COR angle, which has a mean value of 0.02◦

and a range of -2.16◦ to 2.02◦.

Using the automated techniques presented in this study, a preoperative analysis
of the intramedullary rod parameters could be accomplished, in minimal time and
without observer variability. However, some limitations of the current study should
be mentioned. The anatomical axis was defined as the medial axis of the diaph-
ysis in this study. For the extraction of the optimal intramedullary rod entry point,
however, it should be verified if this axis corresponds well to the medial axis of
the medullary canal. Also, a relatively short rod length was chosen. As larger rods
may inhibit a complete insertion because of the curved nature of the medullary
canal, it will be important to take into account the rod and canal width. Although
the feature extraction process is fully automated, manual processing of the CT data
is still needed to segment the femur and obtain the 3D models. This process can
be quite tedious, especially at the hip and knee joint, where the articular surfaces
of the bones may be connected in the CT scans. Furthermore, edge reduction and
smoothing operations are performed on the 3D models. It should therefore be in-
vestigated how these operations effect the results for the FAA and FIR. Finally, the
computed reference parameters should be evaluated by comparison with a refer-
ence parameter set obtained by manual analysis. Further work should also be done
to extract the FMA (and thus the hip and knee centres) to find a patient-specific
distal femoral resection angle.

It has been shown that computer navigation systems may improve the accuracy
of limb mechanical axis alignment and prosthetic component orientation [28]. As
these systems align the femoral component based on the FMA, there is no need for
determining the FAA. Navigation technology is used in few centres, however, and
the cost of most systems may limit its access for smaller, low-volume institutions
[29]. Moreover, to date no long-term studies have proven that navigation improves
postoperative functional kinematics, allows for a more rapid recovery, or decreases
complication rates [4]. Conventional instruments, such as intramedullary rods, are
still commonly used [30], and automated feature extraction techniques could offer
a valuable support to the surgeon and could possibly aid in improving the accuracy
of TKA performed with these instruments.
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5.1.5 Conclusions

An increased interest for preoperative surgery planning using 3D imaging meth-
ods is shown in orthopaedics. The automated extraction of anatomical reference
parameters could improve the speed and precision of these preoperative studies
and the accuracy of surgery. In this study, a new method for extracting the FAA
was developed and tested on 50 femur models. Moreover, the FAA extraction was
applied to conventional TKA, by computing the orientation and entry point of an
intramedullary alignment rod with a length of 200 mm. The same methods were
also used to study reduced models of the femur and it was shown that the reference
parameters can be precisely determined by partially scanning the patient’s thigh.
These computer aided techniques could eventually be used to perform a preoper-
ative planning of TKA and thus obtain a patient-specific distal femoral resection
angle and entry point for conventional TKA instruments.

5.2 Automatic analysis of femur alignment

5.2.1 Introduction

Correct alignment of the prosthesis components is a crucial factor for the success
of TKA [31, 32]. Postoperative malalignment has been associated with instabil-
ity, stiffness, loosening and patellar dislocation [33–35] and is typically defined
as a deviation of 3◦ or more from the targeted position [36, 37]. Several factors
may contribute to errors in prosthesis alignment, such as observer variability dur-
ing preoperative planning, difficulties in locating the reference axis during surgery
and improper positioning of surgical instruments. The first source of error, i.e. the
subjective perception of the operator during surgical planning, might be overcome
by using automatic methods to determine the alignment of the limbs and prosthe-
ses. Several techniques for automatic landmark extraction on 3D images of the
lower limbs have been presented, but only few studies on distal femoral alignment
have been published [18, 38]. This study aims at applying automatic methods to
extract the reference axes of the distal femur. In addition, the alignment of the
bone is studied by calculating relevant angular measurements. The mean values
for ten femurs are determined and compared to literature.

5.2.2 Materials and methods

5.2.2.1 Bone models

The algorithms were applied on CT images of 10 cadaveric femur specimens from
the Department of Experimental Anatomy of the Vrije Universiteit Brussel. The
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images were acquired using a 64-slice CT scanner (LightSpeed VCT, GE Health-
care, Milwaukee, WI) and have a 0.79 x 0.79 mm pixel size and 0.63 mm slice
increment. The femurs were segmented with the Mimics R© software (Materialise
NV, Leuven, Belgium) and 3D triangular surface meshes were created with the
gray value interpolation method and without applying smoothing or reduction.
The 3D models were then imported into pyFormex, reduced to 100000 edges and
smoothed with a low-pass filter of 20 iterations with scale factor 0.5.

5.2.2.2 Reference axes

Table 5.3 gives an overview of the reference axes that are determined in this study.
Several automatic landmark extraction methods are applied to deal with the differ-
ent types of landmark definitions (e.g. central point, extreme point along certain
anatomical direction or point of extreme curvature).

Table 5.3: Axis definitions.

Landmark 3D definition
Femoral anatomical transepicondylar axis Line joining the prominences of the lateral and medial

femoral epicondyles
Femoral central anatomical axis Medial line of the central 1/3th of the femur
Femoral cylindrical axis Medial line of two collinear best-fit cylinders to

the circular parts of the lateral and medial femoral
condyles

Femoral distal condylar axis Line joining the most distal points of the lateral and
medial femoral condyles

Femoral mechanical axis Line joining the centre of the femoral head and the
most anterior point of the femoral notch

Femoral posterior condylar axis Line joining the most posterior points of the lateral
and medial femoral condyles

Femoral trochlear AP axis Line joining the deepest point of the trochlear groove
with the most anterior point of the femoral notch

Axial alignment
As in the previous study, the landmark extraction process starts with estimating
the anatomical directions by computing the principal axes of inertia of the sur-
face mesh. Next, the central anatomical axis is determined as the longitudinal axis
of the best-fit elliptic cylinder to the central 1/3th of the femur. The mechanical
axis is defined as the line connecting the centre of the hip and the centre of the
knee. The femoral hip centre is extracted as the centre of the best-fit sphere to
the femoral head. Next, the femoral notch is identified. A series of sagittal in-
tersections through the intercondylar fossa is made and for each cross-section, the
point of maximum curvature lying on the notch is detected. This is illustrated in
Figure 5.10. The left part of the figure shows the curvature values in a sagittal
cross-section and the point of maximum curvature on the femoral notch (in black).
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The femoral notch points for the different cross-sections are displayed in the right
part of the figure. The femoral knee centre is then defined as the most anterior point
of the notch. Finally, the femur model is aligned along the mechanical axis and the
distal condylar axis is found by iteratively computing the most distal points on the
lateral and medial condyles and rotating the RL axis in the frontal plane parallel to
the distal condylar axis.

Figure 5.10: Extraction of the femoral notch: curvature analysis in sagittal cross-section
with notch point shown in black (left) and notch points for different cross-sections (right).

Rotational alignment
Similarly to the distal condylar axis, the posterior condylar axis is extracted by
aligning the model along the mechanical axis and iteratively computing the most
posterior points on the lateral and medial condyles and rotating the RL axis in the
horizontal plane parallel to the posterior condylar axis. Then, the cylindrical axis is
found as the longitudinal axis of two collinear best-fit cylinders to the circular parts
of the lateral and medial condyles. This is shown in Figure 5.11. The cylinders are
fit to the mesh vertices at the posterior condyles for which the angle between their
normal vector and the mechanical axis, projected in the sagittal plane, lies between
20◦ and 120◦ [39]. For each cylinder, a small strip of the posterior condyle is
selected along the RL axis. Finally, the transepicondylar and trochlear AP axes are
determined by projecting the 3D mesh of the femur onto the horizontal plane and
detecting the points of local maximum or minimum curvature (see chapter 3).

The following coordinate system is set up from the axes: the longitudinal axis is
parallel to the mechanical axis and the transverse axis is parallel to the posterior
condylar line in the horizontal plane. The origin is positioned at the centre of
gravity of the surface mesh. The extracted reference axes are then projected onto
the anatomical planes and relevant angles are calculated.
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Figure 5.11: Extraction of the femoral cylindrical axis: circular parts of the posterior
condyles (left) and their best-fit collinear cylinders (right).

5.2.3 Results

The axes for one of the femurs are displayed in Figure 5.12. The mean values and
standard deviations of the angular measurements are summarised in Table 5.4. It
should be noticed that for the distal condylar and trochlear AP lines, the perpen-
dicular to the reference axis is used. The anatomical axis is on average in 6.9◦

valgus to the mechanical axis and has a low SD. The average coronal angle be-
tween the mechanical and distal condylar axis is 3.4◦ valgus, with nine femurs in
valgus and one in varus alignment. In the sagittal plane, the central anatomical
axis is in 3.2◦ flexion to the mechanical axis. In the horizontal plane, all axes are
on average in external rotation to the posterior condylar line. A large SD is found
for the trochlear AP axis, which is internally rotated in three cases. The cylindrical
axis is closest to the posterior condylar line and has the lowest SD.

Figure 5.12: Computed reference axes (front, right and bottom view).
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Table 5.4: Angular measurements of alignment (positive values correspond to valgus,
flexion and external rotation).

Angle plane mean (◦) SD (◦)
Mechanical axis - central anatomical axis frontal 6.9 0.9
Mechanical axis - distal condylar axis frontal 3.4 2.9
Mechanical axis - central anatomical axis sagittal 3.2 1.9
Posterior condylar axis - anatomical transepicondylar axis horizontal 7.9 1.6
Posterior condylar axis - cylindrical axis horizontal 2.3 1.2
Posterior condylar axis - trochlear AP axis horizontal 3.3 5.3

5.2.4 Discussion

Several studies on alignment of the normal lower limbs have been published. Pa-
ley [40] reported normal coronal angles of 7◦±2◦ between the femoral mechanical
and anatomical axis. Also, the normal femoral distal condylar line is on average
oriented in 3◦ valgus to the femoral mechanical axis. The automatically computed
angles seem to correspond to these mean normal values. A review study on rota-
tional alignment was presented by Victor [41]. He reported that the surgical and
anatomical transepicondylar axis and the perpendicular to the trochlear AP axis are
on average 3◦, 5◦ and 4◦ externally rotated to the posterior condylar line. Also, the
greatest interindividual variability was observed for the trochlear AP axis. Mid-
dleton and Palmer [42] measured 50 cadaveric distal femurs and found that the
trochlear AP axis was on average perpendicular to the surgical transepicondylar
axis (91◦), but there was a large spread in the angles (SD of 4.7◦). Our mean angle
between the posterior condylar and trochlear AP axis and the large SD compared
to the other angles are thus in agreement with other studies. However, only 10 fe-
murs were studied and because of the large spread in the angles, the values should
be carefully interpreted. Moreover, the deepest point of the trochlear groove was
identified on a 2D horizontal view of the femur. By visualising the results, it was
found that the deepest point may shift mediolaterally if the femur is rotated around
the ML axis. The anatomical transepicondylar axis is 3◦ more externally rotated
to the posterior condylar line compared to literature. This might be a result of the
2D projection of the femur model onto the horizontal plane. It seems that a 3D
analysis should be preferred to find the bony prominences on the epicondyles. In
addition, the medial sulcus should be identified to determine the surgical transepi-
condylar axis. The angle between the anatomical transepicondylar and cylindrical
axis was measured by Eckhoff et al. [43]. They found an average difference of
2.3◦ (range 0.2◦ - 2.5◦) in the horizontal plane for 23 knees. Assuming that the
anatomical transepicondylar axis is 5◦ externally rotated to the posterior condylar
line, the mean angle between the cylindrical and posterior condylar axis would
be 2.7◦ and corresponds to our computed value. However, comparing the data to
mean values reported in literature only serves as a first evaluation of the results.
Further work should be done to assess the accuracy of the reference axes.
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5.3 General discussion and conclusions

It was shown in chapter 2 that multiple studies on automatic landmark localisa-
tion on the lower limbs have been presented. However, in many papers, a limited
amount of parameters is measured by using one or two feature extraction tech-
niques. In this chapter, it was shown that by applying different methods for feature
extraction, several geometrical parameters of the femur can be obtained. In the
first study, the 3D femoral anatomical axis was extracted and used to determine
the optimal intramedullary rod entry point. In addition, it was shown that precise
measurements could be obtained using a reduced scanning protocol. Including the
central part of the femur is required to correctly measure femoral bowing. In the
second study, various reference axes to study femoral alignment were measured.
Relevant angular measurements in the three anatomical planes were made and it
was shown that most measurements are in agreement with mean values reported
in literature. The automatic techniques can contribute to a faster and more precise
3D planning and evaluation of TKA.

The main advantage of the 3D analysis might be that the 3D relation between the
axes can be obtained and that the measurements can be projected in any plane. For
example, it has been shown that the flexion-extension axis of the knee (approxi-
mated by the cylindrical axis in this study) is not perpendicular to the traditional
sagittal plane, which means that it is difficult to measure using conventional 2D
images. Also, while the anatomical axis is usually straight in the frontal plane, in-
ward or outward bowing may occur. As the bowing direction may change when the
limb is internally or externally rotated, 2D images might be more prone to errors
in measuring the coronal angle between the mechanical and anatomical axis. The
main advantage of the automatic approach is that it eliminates observer variability.
In addition, several parameters, such as the curved anatomical axis and cylindrical
axis, can not be found by simply connecting two points lying on the bone, and are
hard to determine manually.

The main limitation of the current work is that the automatically determined mea-
surements were only compared to mean values found in literature. The accuracy
of the reference axes should be assessed to further validate the method. Also, the
medullary canal should be segmented to verify if the extracted medial axis of the
diaphysis corresponds well to the medial axis of the medullary canal and to de-
tect cases where the rod will impinge on the cortex. Finally, a 3D analysis of the
femoral trochlear groove and epicondyles should be performed.
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6
Conclusions and perspectives

In this thesis, a set of landmark extraction tools for automatic 3D analysis of virtual
bones was presented and applied on the skull and femur. This chapter gives an
overview of the main contributions of this work to the field of 3D landmarks and
offers some suggestions for further research.

6.1 Conclusions

The literature review on manual landmark localisation, presented in chapter 2,
demonstrates that intra- and interobserver variability can be a limiting factor for
obtaining correct measurements from 3D medical images. Differences between
landmarks and anatomical directions are found and seem to be consistent among
different studies. Landmarks located on relatively flat or widely curved anatomical
structures and short axes are more prone to observer variability. However, precise
measurements can also be obtained based on these points if the variations are small
in the relevant directions. Furthermore, the reliability of manual landmark localisa-
tion may depend on the experience of the operator and might be improved through
training and by using detailed landmark definitions and anatomical drawings. Fi-
nally, the reference frames proposed in literature are usually defined from the most
reliable landmarks or landmark directions. By summarising the results for a set of
commonly used skeletal cephalometric points it is found that 40 % of the mean 3D
intraobserver values are above 1.5 mm and that 52 % of the mean 3D interobserver
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values are greater than 2 mm. Some of the axes of the knee were found to be very
reliable, while other showed mean variations above 2◦. By reviewing the literature
on automatic landmark localisation, it is seen that fully automatic approaches to
process 3D multiplanar images are hard to develop. The methods can be grouped
into differential operators and deformable analytical, template and statistical shape
models. Compared to local differential operators, deformable models are more ro-
bust to image noise by including more a priori knowledge about the landmarks,
resulting in better values for the reproducibility. The automatic approaches seem
to reduce the time spent for manual intervention and improve the landmark lo-
calisation precision. However, the amount of work published on the skull and
lower limb bones is very limited. In contrast to multiplanar images, several stud-
ies on automatic analysis of 3D models of the lower limbs have been published.
The most commonly used methods are curvature analysis and analytical curve and
surface fitting. However, most papers describe only one or two techniques or ex-
tract only a limited amount of parameters. The most extensive work has been
performed by two research groups: one presented methods for automatically mea-
suring lower limb deformities and the other extracted several points and axes on the
femur and pelvis and showed that most of the parameters were relatively close to
the manual measurements (<2 mm and 2◦). However, a complete set of measure-
ments of femoral and tibial alignment has not yet been presented. In contrast to
the lower limbs, no automatic approaches for landmark localisation on the virtual
skull model have been proposed.

The mathematical background of the algorithms that were implemented and ap-
plied in this thesis was given in chapter 3. Different mesh operations were pre-
sented to process the 3D models. The simplification method proposed by Lind-
strom & Turk was applied to reduce the model size. Using Taubin’s λ|µ algorithm,
the models were smoothed to remove noise and useless details. The subdivision
technique of Dyn et al. and Zorin et al. was implemented to smoothly refine the
mesh. Finally, by measuring the distance between two triangulated surfaces it was
shown that the mesh operations can be performed without introducing large geo-
metric errors. Because of the many different types of landmark definitions found
in literature, the combination of multiple landmark extraction techniques is often
desired for a complete 3D analysis of the bone geometry. Therefore, different
methods were implemented and tested on the skull and femur. Convex-, concave-
as well as saddle-shaped structures can be processed to detect the extreme points
in predefined directions. Also, methods for curvature analysis of 3D curves and
surfaces were implemented. While the first method allows for extracting points of
local extreme curvature on a curve, the surface curvature values are more difficult
to process and to reduce to one particular point. Geometrical entity fitting could
be more robust to noise as it allows to approximate the anatomical structures with
several predefined shapes. Furthermore, the smallest or largest cross-section of the
mesh can be computed by searching for an optimal slicing plane. Another method
is to use the rotational inertia characteristics of the surface mesh to extract the prin-
cipal axes of the geometry. Finally, a 2D projection algorithm was implemented to
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create a 2D contour from the 3D surface mesh.

In chapter 4, a semi-automatic approach for landmark localisation on the 3D vir-
tual skull was presented. The method allows the user to select a ROI in which the
landmark is located and the exact position of the point is then determined auto-
matically using the extreme point technique. While the method was first evaluated
by assessing the intra- and interobserver variability for measurements performed
on one image of each skull, further research was done to improve the technique
and determine the intraobserver variability for measurements performed on differ-
ent images of the same skull. It was shown that the automatic approach allows
for precise landmark localisation. The results were compared to studies reporting
on manual landmark localisation using 3D images. Differences in precision be-
tween landmarks and anatomical directions were observed and were in agreement
with other studies. The mean 3D intraobserver variations are below 1.4 mm and
the maximum variations are below 2 mm for 11 of the 15 studied landmarks. A
major advantage of the automatic analysis might be that it is less prone to outlier
variations. Finally, a reliable reference frame for cephalometric analysis was pro-
posed. Overall, the proposed method is novel and allows for a more objective and
standardised 3D analysis of the skull. The automatic analysis can contribute to an
improved 3D surgical planning as well as evaluation of orthognathic surgery.

The femur was fully automatically analysed in chapter 5 using a variety of land-
mark extraction techniques. The 3D femoral anatomical axis was extracted from
a series of best-fit hyperboloids to the shaft and used to determine the optimal in-
tramedullary rod entry point. In addition, it was shown that precise measurements
could be obtained using a reduced scanning protocol. Including the central part of
the femur is required to correctly measure femoral bowing. Next, various refer-
ence axes to study femoral alignment were automatically determined by applying
the different feature extraction methods presented in chapter 3. Relevant angular
measurements in the three anatomical planes were made and it was shown that
most measurements are in agreement with mean values reported in literature. The
presented techniques form a basis for a more objective and standardised 3D anal-
ysis of femoral alignment. The automatic analysis can contribute to a faster and
more precise 3D planning and evaluation of TKA.

This thesis aimed at developing automatic approaches to extract reference points
and axes that could be used for orthognathic surgery and TKA. A novel semi-
automatic approach for landmark localisation on the virtual skull was proposed
and an extensive set of tools to measure femoral alignment was presented. Land-
mark definitions were adapted to include the three dimensions, mathematical de-
scriptions and reference frames were proposed and the methods were evaluated
using different techniques. The automatic methods save time for the surgeon and
allow for a more objective analysis of patient data.
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6.2 Future work

The main contribution of this thesis to the field of 3D landmarks is that several
techniques for automatic landmark localisation have been implemented and ap-
plied to the 3D virtual skull and femur. However, further work is needed to em-
ploy these methods for clinical applications. In this thesis, the main focus was on
orthognathic surgery and TKA. While several landmarks of the skull have been ex-
tracted, the semi-automatic procedure should be employed to detect the landmarks
on the jaws, teeth and face. Furthermore, reliable measurements for cephalomet-
ric analysis should be proposed based on these landmarks. Various reference axes
of the femur were automatically computed. However, relevant measurements for
planning and evaluation of surgery should be determined and the alignment of the
tibia and prosthesis components should be studied. Furthermore, the current pro-
cedures require a 3D model of the bony anatomy as input. Although CT imaging
allows to obtain high contrast images of the bone structures, which can be mainly
segmented using thresholding and region growing algorithms, some manual inter-
vention might be required. (Semi)-automatic approaches for segmentation could
be investigated to allow for a faster analysis of the patient data. Finally, further
validation of the results is required prior to clinical application.

Different methods were used to evaluate the results of the automatic analysis: mul-
tiple trials were performed by one or more operators, different images of the same
anatomical part were studied, images of the complete anatomy were compared to
images of part of the anatomy and mean values were compared to literature. How-
ever, the main limitation in the evaluation of the landmark extraction methods is
that the accuracy of the landmark positions was not assessed. While the semi-
automatic procedure for the skull improves the precision of landmark localisation
and the fully automatic procedure for the femur eliminates observer variability,
the trueness of the results should be obtained to further validate the methods. The
landmark positions should therefore be compared with measurements obtained on
dry bones. The objective of this validation step is twofold: assess the closeness of
agreement between the automatic methods and the clinical knowledge and assess
the closeness of agreement between the virtual 3D models and the true anatomical
structures. As an intermediate step, the (semi-)automatically obtained measure-
ments could thus be compared to the mean values of a set of manually obtained
measurements on the 3D models. A tool was already developed to manually iden-
tify landmarks on the 3D model, using point-picking as well as manual geometri-
cal entity fitting, which can be applied for future studies. Finally, the accuracy of
the imaging and the image processing procedure should be assessed by compari-
son with data obtained on dry bones or on highly accurate laser surface scanning
images.

Some suggestions for further research on the landmark extraction techniques can
also be made. As mentioned in chapter 4, the landmarks on the skull were deter-
mined by locally processing the anatomical regions and extracting a single extreme
point. It could be investigated if semi-global approaches, such as quadric surface
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fitting, could further improve the precision. Also, curvature analysis instead of pre-
defined directions might be employed to process ridge-like structures. One method
for estimating curvature values on the surface mesh was implemented and tested in
this thesis. However, other methods have been proposed in literature and it could
be interesting to test their robustness to noise to extract tip-like structures, such as
the femoral epicondyles. Furthermore, smoothing algorithms based on the normal
vectors of the mesh might be investigated, as they may better preserve small scale
features.

The bone models were analysed by mainly computing clinically relevant points
and axes that are commonly discussed in the literature. In future work, it would
also be interesting to define new landmarks and measurements, which could be
more accurately obtained using the automatic methods compared to the manual
analysis (e.g. using 3D geometrical objects). To be used in clinical practice, how-
ever, those landmarks should either be related to existing clinically relevant land-
marks or normal values should be established for the new variables.

The surgical procedures that are discussed in this thesis aim at achieving a proper
alignment of bones and prosthesis components and mainly deal with non-deformed
anatomical structures. The landmark extraction methods were therefore developed
and tested on such normal morphologies. However, it would be interesting to
apply the algorithms on deformed shapes to evaluate how well these cases can be
analysed using the current techniques. Moreover, it would be useful to develop
specific tools to analyse abnormal morphologies.

As this thesis provides a basis for landmark extraction from 3D models, the tools
could be customised for several other applications. The algorithms can be applied
to other human bones, such as the tibia, pelvis and spine. Many orthopaedic sur-
gical procedures rely on landmark-based measurements for preoperative planning,
surgical instrument positioning or implant design. Typical examples are arthro-
plasties, osteotomies and fracture treatments. As mentioned in chapter 3 and
demonstrated in chapters 4 and 5 for the skull and femur, however, a new strat-
egy needs to be developed for the (semi-)automatic analysis of each specific bone,
which includes orienting the model in a standardised way, selecting the anatomi-
cal structures on which the landmarks are located, extracting the positions of the
points and axes and deriving clinically relevant measurements. A fast analysis of
patient data can also be of interest to gain additional insights in different patho-
logical morphologies and to compare the results of different surgical procedures.
Data on joint kinematics could be analysed in a more standardised and objective
way by automatically computing coordinate systems. Moreover, other anatomical
tissues that contain distinct features could be analysed (e.g. the face). The methods
could also be applied outside the medical field, such as for forensic anthropometry
or morphometrics of other biological specimens.
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