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English summary

X-ray computed tomography (CT) and single photon emission computed
tomography (SPECT) are two medical imaging techniques used to visu-
alize anatomical information and functional processes in vivo, respec-
tively. CT imaging is based on the absorption or attenuation of X-rays
sent through a patient. The unattenuated X-rays are detected from dif-
ferent angles around the patient, and are used to calculate the patient’s
3D attenuation distribution using tomographic reconstruction. Because
X-ray attenuation depends on the elemental composition and density of
the tissue, CT imaging results in anatomical information of the patient.

SPECT imaging is used to gather functional information, by visual-
izing the spatial distribution of a radioactive tracer. This is based on
the tracer principle, which states that an atom in a molecule that takes
part in metabolism can be replaced by one of its radioactive isotopes.
The tracer will emit gamma photons because of radioactive decay. The
pathways involved in the metabolism can be tracked by detecting these
photons. The photons are measured from different angles around the
patient, after which the 3D spatial distribution of the tracer can be re-
constructed. Because the spatial tracer distribution depends on its use
in different metabolic pathways, SPECT imaging results in functional
information of the patient.

Both imaging modalities have also been miniaturized to enable their
use for small animal imaging (preclinical imaging). These systems use
a different geometrical design, mainly to increase the spatial resolution,
e.g. by using a large magnification in micro-CT systems, or by using
pinhole magnification in micro-SPECT systems.

Unfortunately, both modalities suffer from some limitations. Because
CT uses a large number of X-rays to achieve low-noise measurements,
the patient will receive a large radiation dose. The X-rays interact with
the living tissue, and can damage cell DNA or kill cells. Damaged cells
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may eventually grow into clinical cancer. It is therefore important to re-
duce the radiation dose to the minimal dose needed to achieve sufficient
image quality for a specific imaging task. This is also relevant to preclin-
ical imaging, where high-resolution scans necessitate relatively high-dose
imaging protocols, and where it is multiple scans are commonly acquired.

One of the challenges in SPECT is absolute quantification. With ab-
solute quantification, the activity concentration can be directly derived
from the reconstructed images instead of only providing a qualitative
view of the spatial tracer distribution. Such an accurate estimation of the
activity is useful to enable dose calculations in targeted therapy treat-
ment planning, to follow the longitudinal treatment of tumors, or to
measure the dose-response curve of an experimental drug preclinically.
Unfortunately, SPECT imaging suffers from patient-specific image de-
grading effects that influence the direction of the gamma rays (photon
scattering), and the amount of gamma rays detected (photon attenu-
ation). Both effects severely degrade the quantitative accuracy. Pre-
clinically, the much smaller size of laboratory animals will lead to less
attenuation and scattering than encountered in human patients, possibly
improving the quantitative accuracy compared to clinical SPECT.

Both imaging modalities use tomographic reconstruction to estimate
the 3D patient attenuation or 3D tracer distribution from measured data.
Thus, the specific reconstruction algorithm can have a potentially big
influence on the challenges of both modalities. This dissertation in-
vestigates the use of model-based iterative reconstruction in CT and
micro-SPECT/CT imaging to address both the X-ray radiation dose in
micro-CT, as well as absolute quantification in micro-SPECT/CT.

The X-ray dose was minimized for the specific task of murine vascular
imaging and segmentation. We investigated if in vivo micro-CT imaging
can be an accurate alternative for vascular corrosion casting, which is
the current gold standard to make 3D models of the aortic arch and side
branches. Therefore, a contrast-enhanced micro-CT study was done in
mice, to compare the in vivo obtained 3D models to the in vitro mod-
els obtained after casting. The in vivo models showed a 33% increase
in diameter compared to the in vitro models, which does not lead to
significantly different computational fluid dynamics values. This rela-
tively large vessel diameter increase was caused by shrinkage due to the
casting agent. Retrospective respiratory gating does not improve the ves-
sel delineation quality, but substantially increases the image noise and
streaking artifacts due to the limited angular sampling.
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In order to reach a sufficiently high image quality for segmentation
purposes, a radiation dose of 196 mGy per scan was used. This is higher
than the dose proven to lead to tumor growth inhibition in mice, and
can thus potentially influence experimental results. This means that the
radiation dose should be lowered if longitudinal studies are required.

We reduced the radiation dose by using less projection views in the
acquisition protocol. While this decreases the radiation dose linearly, the
angular under-sampling leads to image artifacts when the reconstruction
algorithm is not adapted for it. A regularized iterative reconstruction
technique is proposed, which minimizes the total variation (TV) of the
reconstructed image. The TV model helps to minimize the variation be-
tween neighboring image voxels, and thus reduces the streaking artifacts
and noise.

For the vascular segmentation task, an 8-fold reduction in radiation
dose was achieved with this reconstruction algorithm. This also results
in an 8-times faster scanning time. While the minimal radiation dose
possible is only determined for this task, the same type of analysis can
also be executed for other tasks (e.g. for trabecular bone analysis), in or-
der to achieve a minimal-dose protocol based on advanced reconstruction
techniques.

One issue noticed with the use of a TV model are the block-like imag-
ing artifacts. These were caused by the assumptions underlying the TV
model: TV regards the reconstructed images as approximately piecewise
constant. Its use can thus be questioned for medical imaging: medi-
cal images are not approximately piecewise constant, but will exhibit
texture. This information may be lost when TV minimization is used.

Therefore, we evaluated a regularized iterative reconstruction algo-
rithm novel to CT in which different regularizers can be tested. This
framework is applied to the shearlet-transformation, a multi-scale and
multidirectional transformation shown to have an essentially optimal
approximation error for images that contain edges. Although TV min-
imization outperformed the shearlet-based reconstruction algorithm on
untextured phantoms, the shearlet-based reconstruction reconstructed
realistic textures more similar to the reference texture in low-dose cases.
The limitations of such a shearlet-based reconstruction algorithm is that
it is unsuited for isotropic features. Although it is a promising technique,
more work will be needed to try and solve this limitation.

The opportunity of improving absolute quantification in micro-
SPECT/CT by using model-based iterative reconstruction was also eval-
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uated. Different correction techniques were implemented, in order to in-
clude photon attenuation, photon scatter, resolution recovery, detector
uniformity, geometrical sensitivity, and the partial volume effect. This
implementation was first validated in a NEMA phantom study with the
isotopes 99m

Tc and 111
In, on a multi-pinhole CZT-based micro-SPECT

system. A quantification error of ±10% was achieved for both isotopes.
Our study indicates that, for this system, the quantification error was
primarily influenced by attenuation correction. The photon scatter was
already effectively reduced by using photopeak windowing, due to the
excellent energy resolution (4.22±0.23%) encountered with a CZT de-
tector.

Finally, the quantification error was also directly determined in two
typical preclinical in vivo studies. One study uses [99mTc]DMSA, a
tracer that can be used to assess renal function and, preclinically, used to
quantify the tubular functioning after 90

Y therapy. As a second model a
murine model of human non-small cell lung carcinoma is chosen, imaged
with [111In]Octreotide. A quantification error of ±5% was achieved in
both studies. The attenuation map can also be acquired at 1/16th the
dose of the high-resolution CT data, as long as the same model-based
iterative reconstruction techniques are used as for the vascular segmen-
tation task. However, a high-resolution CT dataset still needs to be
acquired to correct for the partial volume effect.

This research was performed in the Medical Image and Signal Pro-
cessing (MEDISIP) research group. MEDISIP is a research group in the
Electronics and Information Systems (ELIS) department of the Faculty
of Engineering and Architecture (FEA) of Ghent University, Belgium.
MEDISIP also encompasses the Innovative Flemish In Vivo Imaging
Technology (INFINITY) preclinical imaging facility. The work presented
here resulted in 10 journal publications (4 as first author), 8 papers pub-
lished in the proceedings of international conferences with peer review
(4 as first author), and 21 conference abstracts without peer review (7
as first author).
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X-stralen computertomografie (CT) en single photon emission computer-
tomografie (SPECT) zijn twee medische beeldvormingstechnieken voor
respectievelijk anatomische informatie en functionele in vivo processen.
CT beeldvorming is gebaseerd op de absorptie of attenuatie van X-stralen
door een patiënt. De ongeattenueerde X-stralen worden gedetecteerd on-
der een aantal hoeken rondom de patiënt. Uit deze data wordt daarna
de 3D attenuatiedistributie van de patiënt berekend met een reconstruc-
tiealgoritme. Aangezien de attenuatie van de X-stralen afhankelijk is
van de elementcompositie en densiteit van weefsel, zal CT beeldvorming
resulteren in anatomische informatie over de patiënt.

SPECT beeldvorming wordt gebruikt om functionele informatie te
visualiseren op basis van de ruimtelijke verdeling van een radioactieve
speurstof. Dit is gebaseerd op het speurstofprincipe, het inzicht dat een
atoom van een molecule dat gebruikt wordt in het metabolisme vervan-
gen kan worden door één van zijn radioactieve isotopen. De speurstof
zal gammafotonen uitstralen vanwege radioactief verval. Door deze fo-
tonen te detectoren kunnen de reactiepaden in het metabolisme gevolgd
worden. De fotonen worden opgemeten uit verschillende projectiehoeken
rond de patiënt, en worden daarna tot een 3D ruimtelijke distributie van
de speurstof gereconstrueerd. Omdat de distributie van de speurstof af-
hankelijk is van het gevolgde reactiepad, resulteert SPECT beeldvorming
in functionele informatie over de patiënt.

Beide beeldvormingsmodaliteiten werden eveneens geminiaturiseerd,
om ze bruikbaar te maken voor het beeldvormen van kleine proefdieren
(preklinische beeldvorming). Deze systemen zijn gebaseerd op een ander
geometrisch ontwerp en andere componenten, voornamelijk gekozen om
het ruimtelijk scheidend vermogen te verbeteren. Bij micro-CT systemen
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wordt veelal vergroting gebruikt. In micro-SPECT wordt dit bekomen
door een pinholecollimator te gebruiken.

Jammer genoeg zijn er ook enkele limitaties verbonden aan beide mo-
daliteiten. Bij CT beeldvorming is een groot aantal X-stralen noodzake-
lijk om laag-ruizige metingen te verkrijgen van de attenuatie. Daardoor
krijgen de patiënten een grote stralingsdosis. De X-stralen zullen immers
reageren met het levende weefsel en kunnen daarbij het DNA van cellen
beschadigen, of de cellen zelfs doden. De beschadigde cellen kunnen later
uitgroeien tot kankercellen. Daarom is het van belang om de stralings-
dosis te verkleinen tot het absolute minimum nodig om een bepaalde
beeldvormingstaak uit te voeren. Dit is ook relevant voor preklinische
beeldvorming, aangezien daar een hoog scheidend vermogen noodzake-
lijk is, wat enkel mogelijk is onder hoge stralingsdosis. Daarnaast zijn er
ook vaak meerdere opnames nodig van hetzelfde dier om een studie op
te volgen.

Eén van de uitdagingen in SPECT beeldvorming is absolute kwantifi-
catie. Met absolute kwantificatie kan de concentratie aan radioactiviteit
onmiddellijk afgelezen worden op het beeld, in plaats van beelden te be-
komen met een meer kwalitatief idee over de ruimtelijke lokatie van de
speurstof. Zo’n accurate bepaling van de concentratie is bruikbaar bij
het berekenen van stralingsdosis bij therapeutische behandelingen, om
langdurige kankerbehandelingen beter op te volgen, of om de effectivi-
teit van een experimenteel geneesmiddel te bepalen op proefdieren. Er
bestaan echter beelddegraderende effecten die de kwantificatie beïnvloe-
den door het gevolgde fotonpad te veranderen (fotonverstrooiing), en
door het aantal gedetecteerde fotonen te verminderen (fotonattenuatie).
Beide degradaties zullen de precisie van de absolute kwantificatie ernstig
verminderen. In preklinische beeldvorming zullen de veel kleinere proef-
dieren voor minder fotonattenuatie en fotonverstrooiing zorgen vergele-
ken met humane SPECT, waardoor de kwantificatie misschien preciezer
werkt.

Beide modaliteiten gebruiken tomografische reconstructie om de 3D
attenuatiedistributie of 3D speurstofdistributie te bekomen uit de opge-
meten gegevens. Dit wil zeggen dat het specifiek gebruikte reconstruc-
tiealgoritme een grote invloed kan hebben op de uitdagingen van beide
modaliteiten. In dit proefschrift wordt daarom de invloed van model-
gebaseerde iteratieve reconstructie op de stralingsdosis in micro-CT en
op absolute kwantificatie in micro-SPECT/CT onderzocht.

We verminderen de stralingsdosis voor een specifieke taak: de beeld-
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vorming en segmentatie van de bloedvatenstructuur bij muizen. Daartoe
onderzochten we of in vivo micro-CT beeldvorming een accuraat alterna-
tief kan vormen voor vasculaire afgietsels, de huidige gouden standaard
om 3D modellen van de aortaboog en aftakkingen te maken. Daarom
werd een contrast-verhoogde micro-CT proef opgezet in muizen, waar-
bij de in vivo bekomen 3D modellen vergeleken werden met de in vitro
bekomen 3D modellen. De in vivo modellen vertoonden een 33% gro-
tere diameter vergeleken met de in vitro modellen, maar deze vergroting
veroorzaakte geen significant verschillende resultaten in numiereke stro-
mingsberekeningen. De verhoogde diameter werd ook mede veroorzaakt
door een inkrimping veroorzaakt door het afgietselproduct zelf. Retro-
spectief de data corrigeren voor ademhalingsbeweging van het proefdier
leverde geen betere aflijningskwaliteit op bij de bloedvaten, maar wel
een sterk verhoogd ruisniveau en streepartefacten. Dit werd veroorzaakt
doordat er te weinig projectiehoeken werden opgemeten.

Om voldoende beeldkwaliteit te bekomen voor segmentatie, werd een
stralingsdosis van 196 mGy gebruikt per opname. Dit is een hogere
dosis dan de dosis die tumorgroei kan vertragen in muizen, en kan dus
ook een invloed uitoefenen op experimentele resultaten. Dit wil zeggen
dat de stralingsdosis verlaagd moet worden indien longitudinale studies
noodzakelijk zijn.

We ontwikkelden daarom een methode waarbij de stralingsdosis ver-
minderd wordt door minder meethoeken te gebruiken in het opnamepro-
tocol. Dit zal de stralingsdosis rechtevenredig doen dalen, maar zal ook
streepartefacten veroorzaken in de beelden wanneer het reconstructieal-
goritme niet aangepast wordt. We stellen een geregulariseerd iteratief
reconstructiealgoritme voor, waarin de totale variatie (TV) geminimali-
seerd wordt. Dit model zal helpen om de variatie tussen naburige beeld-
elementen te verminderen, om zo de streepartefacten en beeldruis te
minimaliseren.

Dit algoritme liet toe om 8-maal minder stralingsdosis te bekomen
bij opnames bedoeld voor bloedvatensegmentatie. Dit heeft ook tot ge-
volg dat de opnamesnelheid 8-maal hoger ligt. Alhoewel de mogelijke
stralingsdosis enkel geoptimaliseerd werd voor de bloedvatensegmenta-
tietaak, kan dit type analyse ook gedaan worden voor andere taken (bv.
analyses op sponsachtig bot), om daar ook tot een optimaal opnamepro-
tocol te komen.

Tijdens deze evaluatie werd wel een probleem opgemerkt veroorzaakt
door het gebruik van het TV model. De beelden kunnen namelijk blokar-
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tefacten bevatten. TV veronderstelt dat de gereconstrueerde beelden bij
benadering stuksgewijs constant zijn. Het gebruik van TV moet dan
ook in vraag gesteld worden voor het gebruik in medische beeldvorming:
medische beelden zijn immers niet stuksgewijs constant, maar bevatten
ook textuurinformatie. Deze informatie kan verloren gaan wanneer de
TV geminimaliseerd wordt.

Daarom hebben we een ander geregulariseerd iteratief reconstructie-
algoritme onderzocht, dat toelaat om verschillende modellen te evalu-
eren. Dit raamwerk werd toegepast op de shearlet-transformatie, een
meerschalig- en meerrichtingstransformatie met een optimale benade-
ringsfout voor beelden die randen bevatten. Alhoewel de TV minimalisa-
tie beter presteerde dan shearlet-gebaseerde reconstructie op eenvoudige,
vlakke fantomen, bleek shearlet-gebaseerde reconstructie de bovenhand
te halen bij beelden met realistische texturen. Een beperking van het
shearlet-gebaseerde algoritme werd experimenteel aangetoond: shearlets
zijn niet geschikt voor richtingsonafhankelijke beelden. Alhoewel deze
techniek zeker beloftevol is, zal er toch nog verder onderzoek nodig zijn
om deze beperking op te lossen.

De mogelijkheid om met model-gebaseerde iteratieve reconstructieal-
goritmes de absolute kwantificatie in micro-SPECT/CT te verbeteren
werd ook onderzocht. Verschillende technieken werden geïmplementeerd
om te corrigeren voor fotonattenuatie, fotonverstrooiing, detectorunifor-
miteit, geometrische sensitiviteit, het partieelvolume-effect, en om de
resolutie te verbeteren. Deze implementatie werd eerst gevalideerd op
een NEMA fantoom voor de isotopen 99m

Tc en 111
In, opgenomen op

een CZT-gebaseerd micro-SPECT systeem met meerdere pinholes. Een
kwantificatiefout van ±10% werd bekomen voor beide isotopen. De re-
sultaten toonden ook aan dat, voor dit systeem, de kwantificatiefout
voornamelijk bepaald wordt door de correctie voor fotonattenuatie. De
invloed van de fotonverstrooiing wordt grotendeels verminderd door het
fotopiekvenster dat optimaal gekozen kan worden dankzij de uitstekende
energieresolutie (4.22±0.23%) van de CZT stralingsdetector.

Tot slot werd de kwantificatiefout ook rechtstreeks bepaald in twee
typische preklinische in vivo experimenten. Eén studie gebruikt
[99mTc]DMSA, een speurstof om de nierfunctie te bepalen, en prekli-
nisch ook gebruikt om het tubulaire functioneren te onderzoeken na
therapie met 90

Y. Het tweede model is een muizenmodel van humaan
niet-kleincellig longcarcinoom, met als speurstof [111In]Octreotide. Een
kwantificatiefout van ±5% werd bekomen voor beide studies. Daarnaast
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werd ook bepaald dat het fotonattenuatiebeeld opgemeten kan worden
aan 1/16de van de originele stralingsdosis dankzij het gebruik van model-
gebaseerde iteratieve beeldreconstructie zoals bij de segmentatietaak.
Een hoog-resolutie CT beeld zal echter nog steeds noodzakelijk zijn om
te kunnen corrigeren voor het partieelvolume-effect.

Dit onderzoek werd uitgevoerd in de Medical Image and Signal Pro-
cessing (MEDISIP) onderzoeksgroep. MEDISIP is een onderzoeksgroep
binnen de Electronica en Informatiesystemen (ELIS) vakgroep van de
Faculteit Ingenieurswetenschappen en Architectuur (FEA) van de Uni-
versiteit van Gent in België. MEDISIP omvat eveneens het Innovative
Flemish In Vivo Imaging Technology (INFINITY) preklinisch beeldvor-
mingslaboratorium. Het werk gepresenteerd in dit proefschrift leidde
tot 10 tijdschriftpublicaties (4 als eerste auteur), 8 werken gepubliceerd
in de proceedings van internationale wetenschappelijke conferenties met
collegiale toetsing (4 als eerste auteur), en 21 conferentieabstracts zonder
collegiale toetsing (7 als eerste auteur).





Chapter 1

Introduction

1.1 Problem statement

This dissertation is situated in the field of X-ray Computed Tomogra-
phy (CT) and Single Photon Emission Computed Tomography (SPECT)
imaging. In CT imaging, anatomical information is acquired by measur-
ing the attenuation of X-rays sent through a patient. The attenuation is
dependent on the elemental composition and density of the tissue. After
measuring the unattenuated X-rays with a detector, this information can
later be reconstructed into a cross-sectional view of the patient’s anatomy
or structure. In SPECT imaging, functional information is gathered from
the spatial distribution of a radioactive compound (tracer). The patient
is injected with a tracer, which will emit gamma-rays while decaying. Af-
ter measuring the gamma photons with a detector that rotates around
the patient, the data can be reconstructed into a cross-sectional view. In-
stead of containing anatomical information, in SPECT, the cross-sections
will contain functional information.

Both modalities are used in clinical practice for diagnostic applica-
tions. CT images are primarily used to image structural information,
such as bone traumas and structural changes to the lung parenchyma,
but also for brain hemorrhaging, brain and heart infarctions, or to di-
agnose abdominal diseases such as abdominal aortic aneurysms, renal
stones, or appendicitis. SPECT imaging is used to acquire functional
information. The reconstructed images can be used for cardiac imaging
to diagnose ischemic heart disease, for tumor imaging, infection imaging,
thyroid imaging, and to find bone abnormalities.

Closely related are the applications in preclinical (small animal) imag-
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ing. There, the same imaging modalities are used to accelerate the
transfer of laboratory discoveries into clinical practice. This transla-
tion is made possible by small animal studies (primarily on mice and
rats). Traditional investigative techniques use histology, microscopy and
organ sampling, inevitably requiring the animals to be sacrificed. With
miniaturized medical imaging devices, i.e. micro-CT or micro-SPECT
systems, the required data can be measured in vivo and thus also lon-
gitudinally. This increases the statistical power of the experiments, as
each animal can serve as its own control animal.

SPECT imaging is inevitably influenced by physical interactions such
as photon attenuation and photon scattering, which lead to image degra-
dation. Gamma photons can be involved in photoelectric interactions,
resulting in an underestimation of the true uptake value. The photons
may also diverge from their original path, leading to inaccurate spatial
information. The combination of both effects leads to non-quantitative
functional information. Dual-modality SPECT/CT imagers were later
developed to enable the acquisition of anatomical and functional infor-
mation at the same time. The reconstructed SPECT images can then be
viewed on top of anatomical landmarks obtained from the CT images and
the image degrading effects can be corrected by including the anatomical
information obtained from CT into the reconstruction algorithm. This
improves the quantitative accuracy of the functional information.

However, there remain some important limitations to CT and SPECT.
In CT, X-ray radiation dose will always be delivered to the patient.

This is important in both clinical as well as preclinical studies, where
patients are scanned a number of times to evaluate longitudinal pro-
gression. Reducing the radiation dose will lead to worse image quality,
decreasing the value of the CT images unless corrected for with advanced
reconstruction techniques.

In SPECT, absolute quantification is of major importance. Quantita-
tive data enables measuring the dose-response curve for an experimental
drug, or the evaluation of tumor regression or tumor recurrence after a
novel treatment. As long as not all image degrading effects are corrected
for, the data will only be semi-quantitative after a calibration step.

In this work, both the X-ray dose in CT and the absolute quantification
of SPECT will be handled. We show how sufficient image quality can
be obtained to segment the vascular tree from low-dose micro-CT, by
using regularized CT reconstruction. We then extend this approach to
other regularizers, to obtain a higher image quality near non-uniform
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tissue. Furthermore, we model the image degrading effects which have an
influence on SPECT quantification, and we obtain in vivo quantification
results using our iterative reconstruction approach.

1.2 Organization of this dissertation

This dissertation starts in Chapter 2 with a discussion of medical and
preclinical CT and SPECT imaging from a historical perspective. The
principles of CT and SPECT imaging are explained, with special atten-
tion to the components and techniques needed in the succeeding chap-
ters. Chapter 2 also encompasses the challenges seen in CT, SPECT,
and SPECT/CT both for clinical applications as well as in preclinical
usage.

In Chapter 3 in vivo CT imaging is used as an alternative to ex vivo
techniques in current preclinical vascular imaging. Although this micro-
CT approach is shown to deliver the same results as the ex vivo gold
standard, X-ray radiation dose now becomes an important challenge. We
will investigate a method to reduce the X-ray radiation dose in Chap-
ter 4, by reducing the number of projection views during the acquisition.
The resulting image artifacts will then be corrected for by using regu-
larized iterative reconstruction. Although this method leads to an 8-fold
decrease in radiation dose when the data is to be used only for image
segmentation, the image quality still suffers from some newly introduced
artifacts. Therefore, in Chapter 5, a framework will be designed in which
different regularization approaches can be tested, after which shearlets
will be used to improve the image quality for textured image features.

Chapter 6 details how absolute quantitative SPECT reconstruction
can be implemented on the GPU. A ray-based reconstruction approach
is used to model the image degrading effects directly in the forward
model. These correction factors are first discussed in more detail. This
is then followed by a phantom validation study on a multi-pinhole micro-
SPECT system for 99m

Tc and 111
In. These results are further extended

into two in vivo murine animal models in Chapter 7.
Finally, this thesis is concluded in Chapter 8 with a concise summary

of each chapter, together with an overall conclusion of the complete
dissertation.
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1.3 Key contributions

The research presented in this thesis has resulted in several scientific
contributions. The key contributions discussed in this work are:

• The application of TV-based regularized CT reconstruction for
low-dose CT reconstruction in vascular segmentation. This method
was chosen based on its high computational efficiency even in large
micro-CT datasets. Using this algorithm, the same segmentation
quality could be achieved at 1/8th of the original X-ray dose. Con-
tributions are published in Molecular Imaging and Biology and
PLOS One.

• A reconstruction framework based on a split-Bregman approach to
regularize CT reconstructions. This method allows any general reg-
ularizer to be used in an efficient general optimization method, and
has been used in this dissertation to compare shearlet-based reg-
ularization to total variation-based regularization. Contributions
are published in IEEE Transactions on Nuclear Science, the SPIE
Conference Proceedings and the Fully 3D Conference Proceedings.

• Combination of existing corrections for image degrading effects to
accomplish absolute in-vivo micro-SPECT quantification. This
method was implemented for a multi-pinhole micro-SPECT sys-
tem, and was validated in two mouse models for two different iso-
topes. Contributions are published in Molecular Imaging and the
IEEE NSS/MIC Conference Proceedings.

So far, this work resulted in 10 journal publications (of which 4 as
first author), 8 papers published in the proceedings of international con-
ferences with peer review (of which 4 as first author), and 21 papers
published in conference abstracts without peer review (of which 7 as
first author). A small selection of the key publications published during
this research is given below:

• Vandeghinste B, Van Holen R, Vanhove C, De Vos F, Vanden-
berghe S, Staelens S. Use of a ray-based reconstruction algorithm
to accurately quantify preclinical micro-SPECT images Molecular
Imaging 2014; accepted.

• Vandeghinste B, Goossens B, Van Holen R, Vanhove C, Pižurica
A, Vandenberghe S, Staelens S. Iterative CT reconstruction using
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shearlet-based regularization IEEE Transactions on Nuclear Sci-
ence 2013;60(5):3305-3317.

• Vandeghinste B, Vandenberghe S, Vanhove C, Staelens S, Van
Holen R. Low-dose micro-CT imaging for vascular segmenta-
tion and analysis using sparse-view acquisitions PLOS One
2013;8(7):e68449.

• Vandeghinste B, Goossens B, Van Holen R, Vanhove C, Pižurica
A, Vandenberghe S, Staelens S. Iterative CT reconstruction using
shearlet-based regularization Proc. of SPIE Medical Imaging 2012.

• Vandeghinste B, Vanhove C, De Beenhouwer J, Van Holen R, Van-
denberghe S, Staelens S. Absolute quantification in multi-pinhole
micro-SPECT for different isotopes Proc. of the 2011 Medical
Imaging Conference 2011;3720-3724.

• Vandeghinste B, Goossens B, De Beenhouwer J, Pižurica A, Philips
W, Vandenberghe S, Staelens S. Split-Bregman-based sparse-view
CT reconstruction Proc. International Conference on Fully 3D
Reconstruction 2011;431-434.

• Vandeghinste B, Trachet B, Renard M, Casteleyn C, Staelens S,
Loeys B, Segers P, Vandenberge S. Replacing vascular corrosion
casting by in vivo µCT imaging for building 3D cardiovascular
models in mice Molecular Imaging and Biology 2011;13(1):78-86.

The full list of publications can be found after the literature references.





Chapter 2

Background

This introductory chapter is used to explain the physical principles un-
derlying medical imaging, principles which are going to be used through-
out the remainder of this thesis. First, a broad overview of medical imag-
ing is given, followed by a detailed description of the different physical
effects encountered in planar (2D) X-ray and gamma-ray imaging. This
is followed by a detailed description of how X-rays and gamma-rays can
also be used for 3D imaging, in particular for X-ray computed tomogra-
phy (CT) and single photon emission computed tomography (SPECT).

CT imaging is detailed first, by discussing the hardware components,
reconstruction principles, image degrading effects and X-ray radiation
dose. In the third section, SPECT imaging is described in a similar way
as CT imaging, first discussing the general principles behind emission
tomography (ET) and image reconstruction, followed by a discussion
of image degrading effects encountered in SPECT. Both modalities are
concluded with a discussion on their remaining challenges, together with
attention to the specific issues encountered in preclinical imaging.

The last section of this chapter is dedicated to multimodal SPECT/CT
imaging. Challenges specific to SPECT/CT imaging will be reviewed,
both for clinical as well as preclinical SPECT/CT.
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2.1 Medical Imaging

2.1.1 Introduction

Medical imaging consists of a number of methods and techniques used to
aid diagnosis of disease or to plan disease treatment in patients. The dif-
ferent imaging modalities can be subdivided in two groups. Among one
group are X-ray radiography, CT, magnetic resonance imaging (MRI),
and ultrasound (US) imaging. These modalities are used mainly for
anatomical imaging. The other group contains the modalities used for
functional imaging, such as planar scintigraphy, SPECT and Positron
Emission Tomography (PET). Each of these modalities has its own ad-
vantages but also disadvantages. Therefore, patients are often imaged
using multiple modalities in order to combine the best of both worlds.

In CT imaging, X-rays are used to image the structural information
inside the patient’s body. An X-ray source rotates around the patient,
sending X-ray radiation to a detector on the other side of the patient.
Part of the X-rays will be absorbed by the patient tissues due to the
photoelectric effect. Thus, less photons will arrive at the detector than
originally emitted by the X-ray source. The ratio between the num-
ber of photons emitted and the number of photons detected is a mea-
sure of photon attenuation, which is related to the density of the tis-
sue and thus contains anatomical information. The X-ray attenuation
data obtained from different projection views around the patient can
be reconstructed into cross-sectional images containing the attenuation
coefficients of the patient at that position. The imaging principle, im-
portant hardware components, image degrading effects, reconstruction
algorithms and the challenges encountered in CT imaging are further
explained in Section 2.2.

In SPECT imaging, functional information is gathered from the spatial
distribution of a radioactive compound or tracer. This information is car-
ried by gamma (�) rays. The radioactive tracer is injected intravenously
into the patient and is used in metabolic pathways in the patient’s body.
Because of radioactive decay, �-rays will be emitted by the tracer. By
detecting the �-rays outside the patient, the spatial tracer distribution
can be mapped in 3D by a reconstruction algorithm. In SPECT, the
information recorded is thus related to functional processes of the body.
This will be further explored in Section 2.3.

Several other 3D medical imaging modalities are also commonly used
in clinics. Positron Emission Tomography (PET) is a second molecular
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imaging modality which uses an internal, injected source, like SPECT.
However, the radioactive tracer will emit positrons instead of �-photons.
The positrons will annihilate with an electron (the positron antiparticle)
to generate 2 back-to-back �-rays. Here, the recorded information is also
related to functional processes of the body, based on the detection of the
�-rays.

In Magnetic Resonance Imaging (MRI), a magnetic field aligns the
magnetic moments of ensembles of protons with the magnetic field di-
rection. The magnetization alignment can then be altered by a radio
frequent (RF) pulse excitation. When this RF pulse is turned off, the
protons will return to their original alignment. This results in a chang-
ing magnetic flux density, which induces a small current in receiver coils
around the patient. The RF signals serve as the information carrier, and
allow the localization of protons. Because proton density depends on the
tissue, anatomic information can be imaged. However, it is also possi-
ble to record functional information with MRI, because oxygen-poor and
oxygen-rich blood have a different magnetic susceptibility. These differ-
ences will induce small magnetic field distortions in the blood and the
surrounding extra-vascular area, which is reflected in the decay process
of water protons in these areas. This allows fMRI to also image brain
activity.

Finally, a last modality is ultrasound (US) imaging. Different from the
previously mentioned modalities, US does not use electromagnetic (EM)
but pressure waves as its information carrier. After these pulses are gen-
erated by a transducer or probe, the ultrasound waves will be reflected
mainly due to reflectivity changes at the edges in between different tis-
sue types. US imaging thus provides anatomical information. The US
transducer serves both as a source as well as the detector of these waves.

2.1.2 Preclinical arena

Apart from the use of medical imaging for clinical diagnostics and ther-
apy, those imaging modalities can also be used to accelerate the transfer
of laboratory discoveries into clinical practice. The growth of the phar-
maceutical and biotechnology industries and advances in genetic engi-
neering and molecular biology have led to an increased need for biolog-
ical studies on small animals, primarily mice and rats. Animal models
are now available for a wide variety of biological conditions. Transgenic
animals currently account for a sizable and still growing fraction of ani-
mal models used in biological research. The most recent report from the
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EU member states presents the use of around 11.5 million experimental
animals in 2011, of which 60.9% mice and 13.9% rats [1].

Traditional investigative techniques include histology and organ sam-
pling, which require the animals to be sacrificed. This precludes re-
searchers to investigate longitudinal effects in the same animal, e.g. to
measure the evolution of one parameter over time under influence of a
therapeutic intervention. This means subgroups of control and experi-
mental animals are needed, which in turn greatly increases the number
of animals needed. This does not comply with the ethical conduct for
animal experimentation.

To satisfy the needs for preclinical scanners, all clinically available
medical imaging devices have been miniaturized into small-animal spe-
cific scanners. The main advantage of these scanners is the increased
spatial resolution that can be achieved, e.g. by using large magnification
in micro-CT, or by using pinhole magnification in micro-SPECT. Micro-
PET, micro-MRI and micro-US systems have also been designed and
commercially available. The specifics of micro-CT and micro-SPECT
will be explained further in their respective Sections 2.2.7.3 and 2.3.6.

2.1.3 Physics

Although the information obtained in CT and SPECT is carried by
waves, the information itself is the result from interactions of these
waves with matter (in case of CT), or the origin of the waves (in case of
SPECT). Because of its importance for the rest of this dissertation, this
section will be used to explain the interaction mechanisms of �-rays and
X-rays with matter in more detail.

Figure 2.1 illustrates the different types of electromagnetic (EM) radi-
ation. The various types can be uniquely distinguished by their energy,
wavelength or frequency.

The energy E of a wave with wavelength � is related to its frequency
f by

E = hf =

hc

�

, (2.1)

with c the speed of light and Planck’s constant h = 6.62606957⇥ 10

�34

m2kg/s. EM waves are thus uniquely determined by energy, most often
identified as such in medical imaging. From now on, we will only refer to
X-rays and �-rays by referring to their specific energy in unit electron-
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Figure 2.1: The EM spectrum with the different energy bands grouped by
their commonly used names and imaging modality, a representation of their
wavelength, the frequency and photon energy.

volt (eV). Although �-rays typically have an energy above 100 keV, in the
medical community they are defined as rays originating from radioactive
decay. This means that there is no actual lower limit to their energy.

A property of EM waves that is very important for its use in medical
imaging, is the penetration depth. Depending on the photon energy,
some photons will penetrate tissue better than others. For photon en-
ergies in the band of X- and �-rays, higher energies generally allow for
deeper penetration. Photons with low energy and thus a shallow pene-
tration depth will not be able to travel through the object under study
and may be attenuated. On the other hand, highly-energetic photons
may fully penetrate the patient without interacting with the patient’s
body. In CT imaging, the goal is to measure the attenuation of the X-
rays by matter. Therefore, X-rays with an energy between 10 and 140
keV are commonly used. In SPECT, higher energy photons are gener-
ally used (up to 364 keV), so that the photons are attenuated as little as
possible, but can still be detected outside the patient.

The different interaction mechanisms are illustrated on Figure 2.2.
The two interaction mechanisms dominant in CT and SPECT imag-
ing are photoelectric absorption and Compton scattering, and will be
explained next. Although other photon interactions also exist (e.g. pair-
production), these will not be further elaborated on because they are not
relevant for the energies used in CT or SPECT imaging.

Photoelectric absorption
Photoelectric absorption, the resultant of the photoelectric effect1, oc-

1First explained by Albert Einstein in 1905, for which he received the Nobel Prize
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Figure 2.2: Illustration of the photoelectric effect and Compton scattering,
two possible interactions of electromagnetic waves with matter.

curs when an inner shell electron bound to an atom absorbs an incident
photon. The electron will absorb the photon, and if the energy of the
incident photon is high enough, this electron is liberated and ejected
from the atom. The photon ceases to exist, and the energy not needed
for electron liberation will contribute to the ejected electron’s kinetic
energy. The vacancy created by the ejected electron will be filled by
an outer-shell electron with higher energy (the Auger effect). This re-
sults in a release of energy either through photon emission (characteristic
radiation), or through ejection of another electron (Auger electron).

The end result of photoelectric absorption is thus a positive ion (the
atom with one electron removed), a photoelectron (the ejected electron),
and one or more photons with characteristic energies.

The probability of the photoelectric interaction P

�

is roughly inversely
proportional to the photon energy cubed:

P

�

/ E

�3
. (2.2)

Additionally, P

�

is also proportional to the cube of the atomic number
Z:

P

�

/ Z

3
. (2.3)

in Physics in 1921.
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Compton scattering
Scattering is a second way in which photons can interact with matter.
Most important is the Compton effect2. Here, the energy of an incident
photon is considerably higher than the binding energy of the electron.
The photon will strike the electron and free it from the atom. However,
instead of contributing all of its remaining energy to this photoelectron
(as with the photoelectric effect), the photon will not cease to exist and
will be deflected or scattered with partial loss of its initial energy.

The end result of the Compton effect is a positive ion (the atom with
one electron removed), a recoil electron, and a scattered photon. Al-
though the scattered photons may be deflected at any angle between
0 and 180�, low energy photons will have a larger probability of being
backscattered (an angle larger than 90�) than photons of higher energy.

After deflection, the scattered photon may interact with matter again
through any of the described interactions. The scattered photon retains
most of its energy through Compton scattering, and loses energy depend-
ing only on the scattering angle and the original photon energy. Each
step in a cascade of Compton scattering events will increase the proba-
bility of photoelectric absorption, because the photon lost some energy
(Eq. 2.2).

The probability of Compton scattering (P
✓

) is roughly proportional to
the photon energy E [2]:

P

✓

/ 1 + E

E

2

✓
2(1 + E)

1 + 2E

� log(1 + 2E)

E

◆
+

log(1 + 2E)

2E

� 1 + 3E

(1 + 2E)

2
.

(2.4)
A second form of scattering, but less important for medical imaging,

is Rayleigh scattering (also known as coherent scattering or elastic scat-
tering). Here, no energy is converted into another form, and ionization
does not occur. The incident photon simply induces vibrations in the
surrounding electrons, which will emit radiation at the same wavelength
as the incident photon.

Figure 2.3 plots the contributions of the different physical interactions
of photons with matter between 1 keV and 10

5 MeV. Only the part
between 10 and 300 keV is routinely used in CT and SPECT imaging
(illustrated by the gray band). The photoelectric effect contributes most
to the total attenuation below 30 keV in water and below 300 keV in

2After Arthur Holly Compton, who received the Nobel Prize in Physics in 1927
for its discovery.
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Figure 2.3: The contributions of different physical interactions with matter
to the total mass attenuation coefficient for water and for iodine.

iodine. Above those energies but below 10 MeV, Compton scatter is the
dominant effect.

Basics of X-ray imaging
In X-ray radiography and CT imaging, structural information is gathered
with X-rays by measuring the attenuation of X-ray photons through
matter. The total attenuation encountered by an X-ray beam will be
primarily caused by the photoelectric effect and Compton scattering,
due to the relatively low energies used in X-ray imaging (generally below
140 keV).

According to the Bouguer-Lambert-Beer Law, the intensity of a
monochromatic EM wave (and thus also X-rays and �-rays) passing
through material with absorption or attenuation coefficient µ (unit cm�1)
and thickness d (unit cm) will fall off exponentially as

I = I0e
�µd

. (2.5)

Here, I0 is the intensity of the photon beam before going through the
material or tissue. If I0 is known (e.g. by measuring the attenuation
of air), a measured value I can be directly related to the attenuation
caused by the tissue.

The photoelectric effect may seem to generate a lot of information
about the atoms involved, due to the proportionality to Z (Eq. 2.2) and
the emission of characteristic X-rays. However, the characteristic X-rays
produced by the photoelectric effect have an energy in the order of 500 eV
in tissue-like materials. These X-rays will not travel much further than
the dimension of a typical human cell [3]. The characteristic X-rays pro-
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duced in an object will thus be reabsorbed. The only useful information
thus stems from the absorption or attenuation of the photons.

Both Eq. 2.2 and Eq. 2.3 lead to an important insight. Heterogenous
tissue with small differences in atomic numbers may produce a large
probability difference of photoelectric interactions. Because the photo-
electric effect is also inversely proportional to the cube of the photon
energy, low-energy photons will be most important for low-contrast dif-
ferentiation in CT imaging.

The tissue contrast can also be enhanced by using contrast agents.
X-rays with an energy just below the binding energy of a shell electron
will have a much lower absorption probability than photons with an en-
ergy just above the binding energy. This effect is most prevalent with
K-shell electrons of metals, which have an especially convenient binding
energy because they are located close to the mean X-ray energy spec-
trum. Examples of useful metals for CT contrast agents are iodine (33.2
keV), barium (37.4 keV) or even gold (80.7 keV). The quoted energies
are referred to as the K-edge of that material. Figure 2.3 illustrates the
contribution of the K-edge of iodine to the total attenuation at an energy
above 33.2 keV. The 3 L-edges at 4.56, 4.85 and 5.19 keV are not useful
for CT imaging because of their very low energy.

Apart from an attenuating effect caused by photoelectric absorption
and Compton scattering, the X-rays may also be scattered and still be
detected outside the patient. Unfortunately, these scattered X-rays do
not give us much useful information about the patient, as the photon
will have changed its path and will have lost some of its energy. This
means that the attenuation along the path of this ray can not be de-
termined anymore. Scattered photons are thus unwanted in X-ray and
CT imaging. Consequently, it is important to minimize the impact of
Compton scattering.

CT imaging will be explored in more detail in Section 2.2.

Basics of �-ray imaging
In contrast to X-ray imaging, the goal of �-ray imaging is to localize
the injected radioactivity that emits the �-rays. Thus, it would be ideal
to not have any interactions inside the patient before the �-rays can
leave the patient body. Attenuation will decrease the amount of photons
detected outside the patient compared to the amount of photons really
emitted, and will result in higher noise.

Also �-rays will be influenced by Compton scattering. As mentioned
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above, Compton scattered photons can not be used to gather useful
information about the patient. This means scattered photons are equally
unwanted in SPECT as in CT imaging. Therefore, also in SPECT some
counter measures will be taken to limit the contribution of scattered
photons to the detected data.

Emission tomography and SPECT imaging will be explored in more
detail in Section 2.3.

2.2 Computed Tomography (CT)

2.2.1 Early History

The history of CT starts with the discovery of X-rays by Wilhelm Conrad
Röntgen, who accidentally generated the well-known first radiographic
image of his own hand in November 18953. The first diagnostic X-ray
examination was made 3 months later, to observe an ulna fracture in 14-
year old Eddie McCarthy [4] (Fig. 2.4a). In June 1896, X-rays were al-
ready being used to locate bullets in wounded soldiers. In parallel, Nikola
Tesla also investigated X-rays from 1894 onwards [5], inventing his own
vacuum tube along the way. He managed to make what he called shad-
owgraphs of the human foot in 1896 (Fig. 2.4b). Nikola Tesla, Thomas
Edison and William J. Morton each reported eye irritation from X-ray
experiments, postulating a first warning of X-ray radiation damage [5].

A fundamental limitation with conventional radiography is that it can
not be used to determine depth information, because it is a 2D projection
of a 3D object. This effect is called the superposition principle and
is visible on Fig. 2.4b, where the different mid-foot bones can not be
distinguished from each other because they are all projected onto the
same location onto the detector.

A recognition of this limitation lead to the use of multiple planar im-
ages, taken along different angles. Combining these different images
allows us to determine some depth information. In 1940, Gabriel Frank
was awarded a patent describing the ideas of tomography, where planar
projection images are acquired 360� around the patient. Takahashi de-
veloped the equipment to reconstruct the set of projection views (called
a sinogram) into a cross-sectional image of the patient, although they
did not yet get the reconstruction technique completely right.

3For which he was awarded the very first Nobel Prize in Physics in 1901.
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(a)

Superposition
of mid-foot bones

(b)

Figure 2.4: First radiographs. (a) Photograph of original plate of first di-
agnostic X-ray examination, showing an ulnar fracture (taken from [4]). (b)
Shadowgraph of a human foot in a shoe (Courtesy of the Tesla Museum, Bel-
grade, Serbia; document no. MNT, VI/II, 122 [5])

Experiments by Allan M. Cormack in 1963 and Godfrey N. Hounsfield
in 1967 lead to the first table-top CT scanner4 made at EMI, Ltd. in
England. The first prototype clinical CT scanner was installed in 1971,
and was used for the first time to image a cerebral cyst patient. In
1975, Hounsfield built the first whole-body scanner. Eventually, CT
scanners evolved in geometry through different generations, with the
third-generation CT still used in nearly all commercially available scan-
ners today. In 1982, the first micro-CT devices were built to investigate
the 3D distribution of mineral in bone at high resolution [6, 7], with the
first in vivo imagers available in the early 2000’s.

2.2.2 Imaging Principle

Comparable to X-ray radiography, CT imaging is used to study the pa-
tient anatomy, based on measurements of X-rays attenuation. However,
instead of using only one planar image, a series of planar images is ac-
quired from different angles around the patient, in order to later recon-
struct 3D information.

This acquisition process, called tomography, is illustrated in Fig. 2.5.

4Cormack and Hounsfield shared the 1979 Nobel Prize in Physiology and Medicine
for their pioneering work in CT.
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Figure 2.5: Illustration of the placing of CT scanner components.

An X-ray source – detector gantry rotates around the patient and emits
X-rays in a fan-shaped fashion (fan-beam). This beam is directed to-
wards an array of detectors, which convert the incident X-rays into elec-
trical signals. For each rotation angle a different planar X-ray image or
projection view is acquired, measuring the patient attenuation as seen
from this angle. Following the acquisition of thousands of planar projec-
tions over multiple angles, the complete set of measured data can then
be reconstructed into a set of 2D slices. These slices correspond to ax-
ial cross-sections through the patient. In this way, true 3D anatomical
information can be obtained, useful for diagnostic purposes.

Figure 2.6 shows the reconstructed data acquired with a CT scan of the
neck region after administration of a contrast agent. The reconstruction
process generates transverse slices, which can then be resliced to form
the sagittal or coronal slices, or even volume rendered with a color code
attached to the voxel values. Bone is generally represented brighter than
soft tissue to represent its higher attenuation value. There is only limited
contrast between muscle and fat tissue, because both tissue types have
similar attenuation values.
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Figure 2.6: CT images obtained from the neck region. Clockwise from
bottom-left: sagittal slice, transversal slice, coronal slice and volume ren-
dering. (Image obtained from http://commons.wikimedia.org/wiki/File:Ct-

workstation-neck.jpg, used under a Creative Commons Attribution-ShareAlike
license: http://creativecommons.org/licenses/by-sa/3.0/ )

2.2.3 Important Components

2.2.3.1 X-ray tube

Figure 2.7 depicts the X-ray tube, the source of the X-rays. The X-
rays are generated by bombarding a target with high-speed electrons.
These high-speed electrons are generated by heating a filament with a
large electrical current (on the order of 100 µA for micro-CT, and the
order of 100 mA for clinical CT). The heated filament will emit electrons
due to the thermionic effect. When a large potential is applied between
the filament (serving as cathode) and a dense target (the anode, usually
made from tungsten or molybdenum), the electrons will be accelerated
through the vacuum tube towards the target and will collide with it,
generating X-rays through 2 interaction processes.
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Figure 2.7: Inside workings of a Coolidge-type X-ray tube.

Unfortunately, 99% of the interactions do not actually result in X-rays
but in delta rays, which are transferred as heat. In this case, the incident
electron transfers its energy to electrons which are knocked out of their
atom shell, ionizing the target atom.

Fig. 2.8 illustrates the 2 processes. The first and most prominent X-
ray-generating interaction is bremsstrahlung. An incident electron will
approach the nucleus of an atom and will be attracted by its positive
charge. This attraction causes the electron to suddenly decelerate and
lose a significant amount of kinetic energy. Because of the principle of
energy conservation, a photon will be emitted with energy dependent on
how deep into the atomic coulomb field the electron travels. This type
of radiation will result in white radiation, covering the whole spectrum.
When a direct collision occurs between the incident electron and the
nucleus, the entire energy of the electron will appear as bremsstrahlung.
Only a small portion of X-rays will be generated this way due to the low
probability of a direct collision. This is the upper limit of X-ray energy
that can be generated with the X-ray tube.

The second interaction process results in characteristic radiation. The
electron does not pass by the nucleus, but collides with a shell electron.
If its energy is larger than the binding energy of that electron, the shell
electron will be ejected from its shell. Some energy will be transferred
from the incident electron to the struck electron, energy which will even-
tually dissipate as heat. When electrons from an outer shell move into



2.2 Computed Tomography (CT) 21

!"#$!!%

&"#$!'%

("#$!'%

'"#$!'%

)"#$!'%

*"#$!+%

*"#$!+%

*"#$!+%

&"#$!+%

&"#$!+%

0 10 20 30 40 50 60 70 80 90 100 110 

characteristic
radiation

brehmsstrahlung

brehmsstrahlung

Energy (keV)

no
rm

al
iz

ed
 o

ut
pu

t

brehmsstrahlung

filtered
by 0.1 mm Cu

high-energy electron high-energy electronhigh-energy electron

Figure 2.8: Illustration of electron interactions leading to a polyenergetic X-
ray spectrum. The broad spectrum is the result of brehmsstrahlung, with low-
energy X-rays which are easily filtered to pre-harden the beam. Characteristic
radiation leads to peaks at specific locations in the spectrum.

the vacancy created by the ejected electron, they will emit a photon of
characteristic energy. This energy is well-defined for each material, and
depends on the difference in binding energy of the different shells. This
type of radiation results in distinct peaks in the output spectrum.

Important to mention is the finite focal spot size of the tube. The
accelerated photoelectrons will hit the target in an area of finite size,
called the focal spot. This is mostly important in preclinical CT, where
the focal spot size can be a limiting factor for resolution.

In a Coolidge-type tube, the heat generated by these interactions is
dissipated by rotating the anode target continuously, distributing the
area of electron bombardment over time. In the Straton-type tube design
(developed by Siemens), the anode can be cooled directly by embedding
it in oil. This creates a powerful tube with a much smaller footprint, and
allowed the development of Dual-Energy CT (DECT) systems, as now
two tubes could fit inside one scanner.
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The latest tube research is focused on carbon nanotube (CNT) field
emission tubes. An electric field is used to extract electrons right off
the tip of a carbon nanotube (diameter a few nanometers), removing the
need for a heated filament. This allows much faster on/off-switching of
the X-ray tube than is currently possible, and may be ideal for small-
animal motion-gated imaging [8].

The bottom part of Fig. 2.8 shows the theoretical spectrum obtained
from a tungsten target with a potential of 100 kVp. Low-energy X-rays
are filtered by the exit window of the tube (usually made from beryllium)
together with additional filtration (e.g. with 0.1 mm of copper), which
further hardens the beam and removes the low-energy photons. These
photons would be attenuated the most by the patient, hence delivering
almost no information to the detector, though still delivering a high
percentage of the radiation dose. The specific choice of kVp depends on
the size of the patient (e.g. 120–140 kVp for human patients, 50–70 kVp
for small animals). The kVp is sometimes even modulated during the
scan to minimize the radiation dose for each projection view. This will
be further discussed in Section 2.2.7.1.

2.2.3.2 X-ray detector

The photons which passed through the patient are measured by an X-ray
detector. The X-rays are detected by interaction mechanisms (Sec. 2.1.3)
that convert the incident photon energy into a measurable quantity. Two
detector types exist, either directly converting X-rays into an electri-
cal signal, or with an additional conversion step (called indirect detec-
tion) [3]. Both methods are still in use in current state-of-the-art CT
scanners, and are shortly discussed next.

Indirect conversion detectors
In indirect detectors, incident X-rays undergo photoelectric or Comp-
ton interactions with a scintillator, and release photoelectrons or recoil
electrons. These electrons will move through the scintillator and will
form a large number of electron-hole pairs. The positive holes migrate
to activator sites and ionize them. When the moving electron encounters
such an ionized activator site, it will de-excite and cause the emission
of a photon with an energy of visible or UV light. Photons with these
wavelengths can be detected by a sensor, which will integrate the light
into an electrical signal only proportional to the deposited energy. This
integration implies that energy information of single interactions is lost.
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The most commonly used scintillators in CT are thallium-doped
cesium-iodide (CsI:Tl), cadmium tungstate (CdWO4), gadolinium oxy-
sulfide (Gd2O2S, also known as GOS or Gadox), and the proprietary
HiLightTM [9] (Y1.34Gd0.60O3:(Eu,Pr)0.06) and GemstoneTM [10]. These
scintillators can be combined with different light sensors such as charge-
coupled devices (CCD), complementary metal oxide semiconductors
(CMOS) or amorphous silicon (a-Si) [11] sensors.

Direct conversion detectors
In direct conversion detectors, electron-hole pairs created from an inci-
dent X-ray photon will cause a direct change in a high-voltage electric
field. Historically, the high-pressure inert gas (usually xenon) detectors
have been the most popular. The gas is ionized by incident X-rays, from
which the ions and electrons can be directly captured. The ionization
quantity is linearly proportional to the X-ray intensity.

More common nowadays are the semiconductor or solid-state variants,
usually made from cadmium telluride (CdTe), mercuric iodide (HgI),
amorphous selenium (a-Se), or a-Si attached to a thin-film transistor
(TFT) array.

Performance
Direct conversion detectors have the advantage over indirect detectors
because there is one less step in the chain between X-rays and charge.
This means that there is one less step to add noise [12], and that there
is minimal spread inside the detector. This results in a high spatial res-
olution and high-quality images. However, the spread can be reduced in
indirect conversion detectors by using columnar growth of the scintilla-
tor, common in e.g. CsI:Tl. Indirect detectors are also cheaper, as the
CCDs are a more mature technology.

The choice of detector type and material depends on the performance
demands for the specific CT tasks. Material choices will affect the detec-
tor stability over time, the detector blur which determines the achievable
image resolution, and the detective quantum efficiency (DQE), which re-
lates the statistical quality of the input signal to the statistical quality
of the signal output [13]. A DQE of 0.5 means that the detector requires
twice the irradiation dose to reach the same image quality as an ideal
detector with DQE 1.

The DQE is determined by a number of factors, such as the detector
material, the photon energy, and the physical thickness of the scintillator
in the direction of the incident ray, but also by the dark current, photon
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spread in the scintillator, decay time and afterglow. Thicker detectors
generally have a higher DQE due to the increased probability for photo-
electric absorption (stopping power), but may also lose resolution [14].
Detectors with a high dark current will have a lower DQE, which reduces
the signal to noise ratio at low exposure.

In general, gas detectors will have inferior DQE to solid-state-sensor
based systems [15], while solid-state-sensor based systems will exhibit
unwanted long decay times and afterglow, and may even be suscepti-
ble to radiation damage [15]. a-Se detectors have a high DQE but are
relatively unstable with regards to the exposure history of the detector,
giving rise to image artifacts if not accounted for. Indirect detectors gen-
erally have a worse resolution than direct detectors, as the scintillator
will introduce additional blurring. One example is using CsI:Tl instead
of GOS, a change which improves the DQE by a factor of 2 without any
resolution loss [13], thanks to its higher absorption efficiency and dif-
ference in conversion gain fluctuation in electron-hole pair creation (the
Swank factor). It is clear that there is no perfect choice of detector and
that this choice is highly task-dependent.

2.2.4 Measurement Process

In CT imaging, planar images (projection views) are recorded from differ-
ent angles around the patient with the ultimate goal of reconstructing the
3D attenuation distribution in the patient. For each projection view the
X-ray flux reaching the detector is recorded, after being attenuated by
the object. If the object is represented by different materials of thickness
d and attenuation µ (mass attenuation times density), the X-ray beam
intensity measured by the detector will follow the Bouguer-Lambert-Beer
law (Eq. 2.5):

I = I0e
�

R
L

µ(x)dx
, (2.6)

with straight line L the path followed by the X-ray.
The sinogram can be used in the reconstruction algorithm as is, or

after transforming I to log-attenuation
Z

L

µ(x)dx = log I0 � log I, (2.7)

with I0 the detected value from an acquisition without an object present
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(called a blank scan or air scan). This is a measure of the emitted number
of photons. This model is only valid for mono-energetic X-rays, which
are impossible to emit by a process based on brehmsstrahlung.

A more realistic model is one with an integration over the polyenergetic
spectrum E and the heterogenous object over the X-ray path:

I =

Z
E

max

0
I0(E)e

�
R
L

µ(x,E)dx
dE, (2.8)

with I0(E) = I

s

(E)⌘(E) the product of the emission spectrum and ⌘(E)

the quantum efficiency of the detector at energy E.
A problem with this realistic model is that I0(E) is unknown with

respect to E, as current CT detectors do not allow for energy dis-
crimination, but are energy-integrating detectors. This means onlyR
E

max

0 I0(E)dE is known, so that the log-attenuation can not be ac-
curately computed. The mismatch between the realistic model, and the
model commonly used in reconstruction (based on Eq. 2.6) will lead to
artifacts. These are discussed in the next section.

2.2.5 Image degrading effects

Before going into detail on how the cross-section slices are actually re-
constructed from the projection views, some common image degrading
effects should be explained. These effects will cause changes in the mea-
sured data, in turn leading to systematic discrepancies (commonly called
artifacts) between the reconstructed CT values and the true attenuation
coefficients µ of the patient [16].

2.2.5.1 Beam Hardening

Because the X-rays are produced in the X-ray tube mainly by
bremsstrahlung (Sec. 2.2.3.1), the X-ray beam is poly-energetic and not
mono-energetic. While the X-ray beam passes through the patient body,
it will become progressively harder : low-energy photons have a higher
probability of being attenuated than the higher-energy photons, due to
the energy-dependent photoelectric effect. This means that the exit X-
ray spectrum will be different from the spectrum leaving the X-ray tube,
and this difference is patient-specific. Unfortunately, CT detectors can
not measure in energy-discriminating mode, which means that the term
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(a) (b)

Figure 2.9: The effect of beam hardening on image quality. (a) Cupping
artifact in a uniform water phantom. (b) Streaks between dense objects.

I0(E) from Eq. (2.8) can not be measured in a blank scan without inte-
grating over E.

This discrepancy between the real acquisition model and what can ac-
tually be measured gives rise to two well-known artifacts. In the cupping
artifact the values in the center of the reconstructed image will have a
lower value than those at the edge of a homogenous object, because rays
through the center have been hardened more than rays going through
an off-center part. The second artifact is the appearance of dark bands
(also called streaks) between dense objects. The beam is hardened more
in one direction compared to the beam measured from a different angle.
This can be especially apparent in bony regions or when a contrast agent
is used. An example of both artifacts is given in Fig. 2.9.

Several methods have been proposed to minimize the effect of beam
hardening. One method involves using a filter between the X-ray tube
and the patient to pre-harden the beam, filtering out the low-energy
components before reaching the patient [17]. An added benefit is that
this method also reduces the X-ray dose to the patient. A drawback is
that the soft-tissue contrast will also decrease, because less low-energy
photons will be present in the spectrum.

A second commonly used correction method is the application of poly-
nomial correction on the measured data, with coefficients based on cal-
ibration scans. This is based on the correlation between the detected
attenuation value of water phantoms of different thicknesses, and the
X-ray path lengths these values were measured along. Values measured
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from longer paths will need to be corrected to reach the correct attenua-
tion value. Although such a technique reduces the beam hardening con-
siderably, its accuracy depends on the resemblance between the patient
and the calibration phantoms (the water phantoms of varying diameter),
which is not always good [3].

2.2.5.2 Photon Starvation

Because of the very high density and the high mass attenuation of some
materials (e.g. dense bone, contrast agent or metal), insufficient photons
may reach the detector after passing through areas containing these ma-
terials. This greatly increases the statistical uncertainty of the measured
data, and leads to significant streaking artifacts in the reconstructed im-
ages. This can be overcome by increasing the tube current, but this
would also increase the radiation dose given to the patient.

2.2.5.3 Photon Scattering

Whereas beam hardening and photon starvation are manifestations of
photoelectric absorption, photon scattering is a result mainly of Comp-
ton scattering in CT (Sec. 2.1.3). Because of the Compton effect, not
all X-rays will travel in a straight line from the focal spot to a detector
pixel, but may deviate from their path. The deflection angle of the scat-
tered photon is random within an angular distribution determined by
the photon energy (the Klein-Nishina distribution [18]). Unfortunately,
CT detectors can not discriminate between energies, which means no
information can be obtained from the scattered photons. When these
photons are combined with the primary, unscattered photons, the com-
posite signal will be a projection with reduced contrast due to the extra
background signal. This process is illustrated in Fig. 2.10a.

The ratio of scattered photons intensity to the primary photons in-
tensity is called the scatter-to-primary ratio (SPR). A 16 cm cylindrical
phantom (representing the human head) will result in an SPR of 1 in
clinical CT, increasing to 4 to 5 for a 32 cm cylindrical object (body) [19].
The SPR in cone-beam micro-CT systems is around 0.3 to 0.5 [20, 21].

In clinical CT, scattered radiation is physically stopped before reach-
ing the detector by a collimator or anti-scatter grid with septa focused at
the focal spot (Fig. 2.10b). Although the improvement of the contrast-
to-noise ratio (CNR) due to use of a grid has been proven for high-scatter
conditions, its usefulness is questionable for low-scatter conditions [19].
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Figure 2.10: The effect of photon scattering in CT.

The grid septa will stop both scattered photons as well as primary pho-
tons, possibly reducing the CNR when SPR is decreased [22]. Due to
the small pixel size used in micro-CT, it is difficult to manufacture a
scatter-grid for those systems.

Software correction schemes can also minimize the influence of scatter
on the image quality. Because the scattered signal is typically composed
of low frequencies, it can be estimated by extrapolating from only some
detector cells outside the primary X-ray beam [23, 24], or from Monte
Carlo simulations [25]. The scatter fraction can then be incorporated
into iterative reconstruction.

2.2.5.4 Aliasing

A different image deteriorating effect is caused by using a limited number
of projections or number of detector elements to sample the object. The
X-ray beam intensity incident on the detector has a continuous distribu-
tion, and is sampled discretely by detector pixels and projection views.
According to the Nyquist-Shannon sampling criterion, it is required that
the discrete samples are collected at a rate of at least twice the highest
spatial frequency contained in the continuous signal. This means that
the highest resolvable spatial frequency is assumed to be limited by the
physical size of the detector channel [3].

When the Nyquist-Shannon theorem is not fulfilled, aliasing streaks
will appear in the reconstructed images. One approach to combat alias-
ing artifacts is to apply a quarter-pixel offset to the detector. Two sam-
ples taken on either side of the object (gantry rotation of 180�) will then
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interleave each other, effectively doubling the sampling rate [26]. A dif-
ferent approach is to deliberately wobble or deflect the X-ray focal spot
to not achieve two identically sampled datasets on either side of the ob-
ject [27, 28]. Evidently, both techniques can also be combined to increase
the effective sampling rate even further.

The same principle also applies to the number of projection views. It
has been shown that a relationship exists between the sampling frequency
v, the frequency contents of the object, and the size R of the aliasing-
artifact-free zone. For fan-beam CT, the minimum number of projection
views N

min

over 360� needed to sample a maximum spatial frequency
v

M

present in a reconstructed image is [29]

N

min

=

4⇡Rv

M

1� sin

�
 
2

�
, (2.9)

with  the full fan-angle. For a size R = 16 cm and a fan-angle of
55�, a relatively low resolution of 1 line-pair per mm will already ne-
cessitate more than 3.700 projection views over 360�. Increasing the
spatial resolution to 5 line-pairs per mm (or 100 µm) leads to more than
18.000 projection views. It is obvious that, in practice, the view aliasing
guidelines are seldom strictly followed, and careful experiments must be
conducted to establish view-sampling requirements under (pre)clinical
conditions [3]. A clinical CT scanner typically acquires around 1000
views per gantry rotation of 0.3 seconds, which means 20.000 projection
views can be acquired during one breath-hold of 6 seconds, with an axial
FOV equal to the axial detector size.

Figure 2.11 illustrates the detrimental effect of view aliasing on image
quality. The data was acquired from a contrast-enhanced murine micro-
CT scan. Under-sampled data was reconstructed from 57 views taken
over 180

� and is shown next to quasi-noiseless data, obtained by recon-
structing 1800 projection views acquired over 180

�. The under-sampled
data exhibits radial lines emanating from bony structures, severely de-
grading the image quality.

2.2.6 Reconstruction

After the interaction of the X-rays with the patient body and subsequent
detection of the attenuated X-ray beam, one important step is left: the
set of measurements needs to be reconstructed into cross-sectional slices
representing the attenuation distribution inside the patient.
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1800 projection views 57 projection views

Figure 2.11: The effect of view aliasing. (Left) Reconstruction of 2048 pro-
jection views. (Right) Reconstruction of 32 projection views.

2.2.6.1 Simple Backprojection

The mathematical foundation used to reconstruct projection data into
cross-sections dates back to the work of Johann Radon in 1917 [30].
Radon proved that an object can be reconstructed exactly from an infi-
nite number of projections, when taken over 360� around the object.

In 2D, t he measurements can be mathematically represented by the
Radon transform, taking line integrals along straight lines L

r,✓

through
the object (Fig. 2.12):

p(r, ✓) = R{f(x)} =

Z

L

r,✓

f(x)|dx| (2.10)

where f(x) is the object under study, representing the attenuation of the
object under study at spatial location x, and each line L is parameterized
over the detection location r and the angle to the origin ✓.

There are several approaches to determine the unknown f(x) from the
scanner output p (reconstruction). The most simple method, although
mathematically incorrect, is backprojection:

f(x) = R⇤{p} =

Z
⇡

0
p(r, ✓)d✓. (2.11)

Each measurement p(r, ✓) is redistributed over an image by uniformly
adding each measurement to the locations along its corresponding line
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Figure 2.12: The Radon transformation and its resulting sinogram for the
first 180�.

L(r, ✓). As can be seen in Fig. 2.13, simple backprojection will only lead
to a blurred version of the original distribution f(x)

5. Based on this
observation, Filtered Backprojection was developed.

2.2.6.2 Filtered Backprojection

The blur can be compensated by filtering the projection data p in a pre-
processing step. This is most easily done in the Fourier domain, based on
the central slice theorem, which is illustrated in Fig. 2.14. This theorem
states that

The 1D Fourier transform of a parallel projection of an object
f(x) obtained at an angle ✓ equals one line in the 2D Fourier
transform of f(x) at the same angle ✓.

In other words, when a projection is taken along different lines L

r

for
a projection angle ✓, a 1D Fourier transform can be applied to obtain
one radial line in the Fourier domain of the object. If the entire Fourier
domain is filled (i.e. by collecting enough projections 8✓ 2 ]0, 2⇡]), the
object can be recovered by an inverse 2D Fourier transformation.

5The reason why Frank and Takahashi’s reconstructions did not work correctly in
1940 (see Sec. 2.2.1)



32 Background
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Figure 2.13: Illustration of the difference between simple backprojection and
filtered backprojection.
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Figure 2.14: Illustration of the central slice theorem.
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Fig. 2.15 illustrates the origin of the extra blur in Fourier space. As a
projection is equal to a line through the origin in the 2D Fourier space, it
will result in a radial sampling pattern. This means that the density of
samples near the center is a factor 1/r higher than at the outer regions,
with r the radial distance to the center.

Uniform sampling density can only be obtained if the Fourier trans-
form of each projection is multiplied by a ramp filter proportional to
this 1/r factor. If the radial lines are afterwards 1D inverse Fourier
transformed, one can obtain data pre-corrected for the blur, which does
allow for simple backprojection. This is the technique used in Filtered
Backprojection (FBP). Mathematically, a filter q is used:

f(x) = R⇤
(q ⇤R{f(x)}), (2.12)

whose Fourier transform is

q̂(!) =

���
!

2⇡

��� , (2.13)

and R⇤ is the back-projection operator (the adjoint of R). The convo-
lution of q with sinogram R{f(x)} is done per projection p(r, ✓).

The filter q can be further modified to have improved spectral charac-
teristics, e.g. by using a scaled version h:

ˆ

h(!) =

���
!

2⇡

��� ˆ⌦(!), (2.14)

with ˆ

⌦(!) a suitable spectral window (e.g. sinc filter, Shepp-Logan filter,
cosine filter, Parzen filter, a Hamming window, Hann window, ...). Dif-
ferent filters can change the quality of the reconstructed image in terms
of noise, resolution, contrast and other measures [31].

The central slice theorem also suggest the use of more direct Fourier
methods. If the full 2D frequency space is 2D inverse Fourier trans-
formed, the object is reconstructed directly. However, the inverse 2D
Fourier transform can only be applied to a Cartesian grid, necessitating
resampling the implicit polar grid into a Cartesian one. The accuracy of
the resulting reconstruction technique will depend heavily on the quality
of the interpolation method used, and may end up less accurate than
FBP.

Because FBP was originally defined for 2D objects measured by a
parallel-beam geometry, several extensions have been made to make FBP
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Polar sampling grid Cartesian grid
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Figure 2.15: Backprojection blur is caused by polar sampling pattern in
Fourier space. Inverse 2D Fourier transform requires a Cartesian grid, which
can be interpolated from the original polar sampling grid.

better applicable to current systems, e.g. for cone-beam CT [32, 33] and
for helical cone-beam CT [34]. For a fan-beam system, the fan-beam
data can be regridded to parallel-beam data. For cone-beam systems,
the Feldkamp-David-Kress (FDK) algorithm [32] is most commonly used,
which is a natural extension of FBP into 3D. Although it is only an
approximation, the resulting image quality is often acceptable if the cone
angle is not too large.

FBP remains the most commonly used image reconstruction method
in CT due to its combination of accuracy, speed of computation and sim-
plicity of implementation. It is an exact solution to the inverse Radon
transform if there is no noise, the data is complete, and the spatial res-
olution is uniform. Because it is a linear algorithm (two times higher
attenuation will lead to two times higher image intensity) its other prop-
erties such as resolution, noise and artefacts can be easily analytically
determined, and are thus well understood.

However, because FBP is an exact solution to the inverse Radon trans-
form, it implicitly assumes that the projections are line integrals of the
patient’s attenuation distribution. This entails that the line integrals
are not perturbed by the randomness of the Poisson counting process,
and are acquired with an infinitesimal detector pixel size and focal spot
size. Using a correct noise model becomes increasingly important when
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the tube-current is decreased to reduce the radiation dose. Secondly,
FBP reconstruction also starts with log-attenuated data, which assumes
non-zero photon detection. In low-dose cases, some detector pixels may
be zero, after which artificial values would need to be forced upon the
data. Finally, FBP does not take into account image degrading effects
such as beam hardening, photon starvation or scattering (Sec. 2.2.5), or
resolution-limiting factors such as the finite detector pixel size and the
finite focal spot size.

These simplifications were made with good reason (to make the math-
ematics more manageable). However, in the interest of image quality
and accuracy in real applications iterative reconstruction techniques were
later proposed, which allow more accurate modeling of the real imaging
physics.

2.2.6.3 Iterative reconstruction

Iterative reconstruction offers a solution to these problems. The main
advantage of iterative reconstruction methods is the ease with which
models of the effects named above can be incorporated. Unfortunately
this leads to computationally intensive algorithms, which are non-linear
and thus difficult to predict in terms of spatial and contrast resolution
performance. Most of the time extra parameters are used, which also
need to be optimized.

All iterative reconstruction methods can be subdivided into two broad
categories: algebraic reconstruction and statistical reconstruction, both
of which are discussed next.

Algebraic Iterative Reconstruction
The algebraic iterative reconstruction methods are a class of algorithms
used to solve linear systems numerically. As such, these techniques can
be used for CT reconstruction, but are also applicable to any linear
system of equations, e.g. 3D electron microscopy, crystallography, neural
networks and parallel computing [35–37].

In algebraic reconstruction, the acquisition of the spatial attenuation
distribution x is represented exactly by

y = Wx. (2.15)

Matrix W is the so-called system matrix of elements w

ij

, which relates
the contribution of every voxel j 2 J in x to every detector element i 2 I,
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with I the product of the number of detector pixels and the number of
detection angles. The sinogram as measured by the acquisition system
is represented by log-attenuated data y. While y is delivered by the
measurement system, it is the unknown x that needs to be reconstructed.
Instead of directly inverting W (which is impossible due to its size, it
not always being square, noise and ill-posedness), iterative estimation is
used to produce a sequence of vectors x(0), x(1), x(2), . . . , x(n) such that
this sequence converges to x.

Several methods have been proposed to solve Eq. (2.15) for x. The
most basic method is the Kaczmarz method, rediscovered by R. Gordon,
R. Bender and G. Herman in 1970, who aptly named it the Algebraic
Reconstruction Technique (ART).

In ART, an initial estimate x

(0)
= 0 is projected onto a hyperplane

defined by the line-integral equation for the first detector pixel, resulting
in a new solution x

(1). This new solution is then projected onto a second
hyperplane, defined by the line-integral equation for the second detector
pixel, resulting in x

(2). This process is repeated until convergence.
Mathematically, this is represented in vector notation by

x

(k+1)
= x

(k)
+ �

k

y

i

�w

i

x

(k)

w

i

w

i

w

i

, (2.16)

with i identifying a detector pixel, w

i

the line-integral equation w

i

=

(w

i1, wi2, wi3, . . . , wij

) and �
k

a relaxation parameter, which may be de-
pendent on iteration k. Intuitively, the current image estimate x

(k) is
forward projected and compared to the measured data. The error due to
mis-estimation is redistributed to the current estimate, bringing it closer
to the final solution.

Although ART has been shown to be superior to FBP in some ap-
plications, there are still some drawbacks associated with ART. Indeed,
in the case of noise, the equations w

i

will not necessarily intersect in
one point, which leads to the existence of many possible approximate
solutions. This may result in oscillating behavior of the sequence x

(k),
without converging to one solution. The contribution of noise can be
decreased by applying the relaxation parameter �

k

in a range of ]0, 1],
as long as the noise level is not too large.

In addition to ART, several other techniques have also been proposed.
In the Simultaneous Algebraic Reconstruction Technique (SART), in-
stead of working with one line-integral equation w

i

at a time, all line-
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integrals for one projection view angle are used before x

(k) is updated.
This changes the convergence behavior, leading to slower convergence
compared to ART, with the advantage of also leading to less noise-
sensitive behavior.

Going further along the same path, also the Simultaneous Iterative
Reconstruction Technique (SIRT) was proposed. The image x

(k) is then
only updated after taking all line-integrals of all detector pixels and
all projection view angles into account. This method has the slowest
convergence, and is the least sensitive to noisy data.

All three of these methods can be grouped by the ordered subset (OS)
idea [38]. Mathematically, the general formula becomes
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with j identifying a specific image voxel, and the summation range i 2 S

indicating the detector element contained in a subset of projections S.
ART fits in Eq. (2.17) by using as many subsets as there are detector
pixels, SART uses as many subsets as there are projection angles, while
SIRT uses no subsets.

Apart from working with an additive correction scheme, multiplicative
correction can also be applied, called the Multiplicative Algebraic Re-
construction Technique (MART) [35]. This method has the advantage of
inherently prohibiting the images x(k) to become negative as long as the
initial estimate x

(0)
> 0. However, MART is only rarely used in practice

due to its nonlinear and rather chaotic behavior [39].

Statistical Iterative Reconstruction
In the previous sections, the statistical nature of the measurements was
never taken into account while solving a set of linear equations. However,
the probabilistic nature of the X-ray interactions will lead to the mea-
surements deviating from the expected values. In algebraic reconstruc-
tions, the relaxation parameter can be used to decrease the contribution
of noise, as long as the noise level is not too large.

To achieve an image estimate that is more accurate, a statistical model
should be incorporated into the iterative reconstruction to take the ac-
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curacy of the measured data into account. Furthermore, a model of the
known statistical properties of the solution can also be added (prior in-
formation). The choice of statistical iterative reconstruction algorithm
depends on the specific assumptions made about the measured data,
which usually leads to a compromise between accuracy of the modeled
statistics and physics on one hand, and the tractability of the optimiza-
tion method and computational complexity on the other hand.

Several statistical reconstruction methods applicable to CT reconstruc-
tion exist. Only the image space reconstruction algorithm (ISRA), max-
imum likelihood for transmission tomography (MLTR) and the iterative
maximum-likelihood polychromatic algorithm for CT (IMPACT) will be
detailed further in this dissertation.

Image Space Reconstruction Algorithm (ISRA)
The ISRA was originally developed as a fast alternative to another statis-
tical iterative algorithm, the maximum likelihood for emission tomogra-
phy (MLEM) algorithm [40]. Whereas MLEM determines image updates
by comparing estimated data in the projection space, the ISRA finds a
new image estimate by comparing images and not projections. With-
erspoon and Muehllehner [40] did not provide information on how the
ISRA was derived apart from the ad hoc explanation of simply changing
the final update equation in MLEM. Numerous papers have since dis-
cussed the correspondence between MLEM and ISRA, in multiple ways.
We provide a short but simple derivation of ISRA in the following sec-
tion, based on [40–44]. Certain steps will be reused later, when MLTR is
derived for CT (Section 2.2.6.3), or when MLEM is derived for SPECT
reconstruction (Section 2.3.5.2).

If the noise on the log-attenuation measurements y is assumed to be
white Gaussian distributed, the ordinary least squares cost function can
be used to find the image estimate x̂:

x̂ = arg min

x�0

 (x) with  (x) = ky �Wxk22. (2.18)
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means it can be rewritten as [42]

 (x) =

IX

i=1

h

i

([Wx]

i

) with h

i

(f) , (y

i

� f)

2
. (2.20)

De Pierro [41] used a clever multiplicative trick to make the minimiza-
tion of Eq. (2.20) possible. Let ŷ
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Because h
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(f) is convex, we can apply Jensen’s inequality:
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This means that
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with �(x;x

(k)
) clearly a separable surrogate function.

Surrogate function � is easy to compute, easy to minimize and has a
fast convergence rate [42]. The new optimization problem is now
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The minimizer of �(x;x

(k)
) can be found by minimizing each argument



40 Background

separately:
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It can be minimized by setting its derivative equal to zero
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and solving:
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From Eq. (2.27b) it follows that
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the forward projected estimate for

detector pixel i.
Eq. (2.29) is the final update equation for the ISRA. ISRA converges

to a non-negative least squares solution if the initial image estimate
x

(0)
> 0 [41, 43, 44].

ISRA only requires one back projection of the data (the enumerator
of Eq. 2.29) and can then iterate by continuously forward and back pro-
jecting only the image estimate. The complexity, usually dictated by
the size of the projection data (projection views times detector pixels),
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is now determined by the much smaller size of the image space (number
of discretized voxels).

Because of its low computational complexity, we will use the ISRA as
a basis for Chapter 4.

Maximum Likelihood for Transmission Tomography (MLTR)
Whereas the ISRA is based on the assumption that the log-attenuated
data contains white Gaussian noise, others assume that the non-log-
attenuated CT measurements are Poisson distributed because the mea-
surements are the result of a counting process. Only in the case of large
flux, this distribution can also be approximated by a Gaussian distribu-
tion [45]. This assumption leads to a cost function based on maximizing
the likelihood that the reconstructed image estimate will result in the
measured CT data.

For a set of non-log-attenuated measurements y, one needs to find the
attenuation distribution µ that maximizes the conditional probability
P (µ|y). This can be calculated by applying the rule of Bayes:

P (µ|y) =

P (y|µ)P (µ)

P (y)

. (2.30)

P (y) can be neglected because it does not depend on µ. Additionally,
P (µ) contains the prior knowledge about the object, which we will in-
clude later. So,

max P (µ|y) = max P (y|µ). (2.31)

P (y|µ) can be factored to

P (y|µ) =
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|µ), (2.32)

because individual measurements in y are independent of each other
when there is no cross-talk between detector channels. Finding the max-
imum of Eq. (2.32) is equal to optimizing its logarithm

log P (y|µ) =
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|µ). (2.33)

The Poisson distribution y with mean or expected value ŷ is described
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by
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Thus, a measured value y

i

will only be dependent on the expected ŷ

i

,
which in turn only depends on the attenuation distribution µ. Eq. (2.34)
must be viewed with caution, since we are free to choose any representa-
tion for ŷ. It is only when the finite object representation is an adequate
representation of the data, in the sense that ŷ is a good approximation
to the true continuous-to-discrete system measurements, that P (y|µ)

is really the likelihood of µ [46]. The expected non-log-attenuated ŷ

i

per detector pixel i is calculated by applying, or forward projecting, a
discretized mono-energetic Bouguer-Lambert-Beer (see Eq. 2.5) forward
model to µ:
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where b

i

represents the unattenuated number of photon counts in detec-
tor pixel i (blank scan I0) and J represents the number of discretized
voxels.

Combining equations (2.33) and (2.34) reduces the problem of maxi-
mizing probability P (µ|y) to maximizing the log-likelihood function L,
given by
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The last term in Eq. (2.36b) can be removed because it remains con-
stant during optimization of L.

For the optimization of L, the same optimization transfer method can
be used as detailed above for the ISRA, with following outcome:
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The calculation of the separable surrogate stays the same as in Eq. (2.21–
2.26), and will not be repeated here. Maximizing the surrogate by taking
its derivative leads to the following equations:
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Unfortunately, Eq. (2.38b) is a transcendental equation and can not
be solved exactly [47]. It can be approximated numerically by using
a Newton-Raphson iteration [47]:
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Solving (2.39) results in the same update equation as proposed by Nuyts
et al. [45]:
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This algorithm is known as the MLTR algorithm [45, 48]. One of the rea-
sons why it works well for low-count measurements is because it never
takes the logarithm of the transmission data [42], whereas the meth-
ods in the previous sections used log-attenuated data. MLTR has been
shown to achieve a lower noise level at equal resolution compared to FBP
reconstruction [49].

The MLTR algorithm can be implemented efficiently to achieve a re-
construction speed half of SIRT, although it will have a little slower con-
vergence than SIRT and a much slower convergence than the ISRA [50].
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The choice of separable surrogate �(x;x

(k)
) is very important in this

regard. Surrogates useful for optimization transfer should be easy to
compute, easy to minimize and have a fast convergence. Unfortunately,
additive separable surrogates generally lead to very high curvature sur-
rogates, i.e. with very slow convergence rates [42]. An alternative to ad-
ditive separable surrogates are the paraboloidal surrogates, such as the
optimal separable paraboloidal surrogate (SPS) as derived by Erdoǧan
and Fessler for transmission tomography [51].

Iterative Maximum Likelihood Polychromatic Algorithm for
CT (IMPACT)
One problem with MLTR is that it still uses a forward model based on
the assumption that X-ray beams are mono-energetic, while in reality the
beam is poly-energetic. This discrepancy results in the beam-hardening
artifact and streaks near dense objects due to photon starvation.

In the derivation of IMPACT [2], the forward model used in MLTR
(Eq. 2.35) is replaced by a discretized polyenergetic forward model:

ŷ

i

=

KX

k=1

b

ik

exp

0

@�
JX

j=1

w

ij

µ

jk

1

A
, (2.42)

with k the energy bin index for K energy bins, µ

jk

the linear attenuation
coefficient of voxel j at photon energy E

k

, and b
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the unattenuated value
that would be detected at detector element i for energy k (
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I

ik

depends on knowledge of the source X-ray spectrum, which can be
estimated using freely-available simulators6 or can be calibrated by mea-
surements [52].

As the attenuation per voxel now also depends on the energy E

k

, this
leads to J ⇥ K unknowns instead of J , as could be solved originally
with MLTR. In De Man et al. [2], the authors proposed to approximate
µ(E) by a linear combination of the energy dependence of the photo-
electric effect and the energy dependence of Compton scatter (Eq. 2.2

6X-ray Toolbox of Siemens https://w9.siemens.com/cms/oemproducts/Home/X-
rayToolbox
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and 2.4). This reduces the number of unknowns to 2J : for each voxel
the contribution of the photoelectric effect and the contribution of the
Compton scatter basis functions need to be known. When it is assumed
that all naturally occurring elements have contributions which can be
pre-determined from attenuation values of known substances at a mono-
energetic energy, the number of unknowns can be reduced to just J

unknowns:
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Here, µ

j

represents the mono-energetic attenuation at a predefined en-
ergy (e.g. 70 keV), �

k

and ⇥
k

represent the energy dependence of the
photoelectric effect and Compton scatter, and � and ✓ are known func-
tions of µ

j

. Now only µ

j

needs to be estimated. For the full derivation
and update equations we refer the reader to De Man et al. [2].

The polyenergetic model was specifically added to minimize the effect
of beam hardening and to reduce streaks near metal objects. When De
Man et al. compared results obtained with IMPACT to traditional cor-
rection approaches, they found that the same level of beam hardening
reduction was obtained. However, image noise and other artifacts were
also reduced, illustrating the power of model-based iterative reconstruc-
tion [2].

Additional models
Just as IMPACT was an extension of MLTR towards a polyenergetic
forward model, the statistical reconstruction methods can also be further
extended to even more advanced forward models, e.g. to correct for the
finite focal spot diameter and photon scattering, and to include prior
knowledge about the scanned object. Including a prior model into the
log-likelihood leads to a different log-likelihood
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)� ŷ

i

)� V (µ), (2.45)

with V a potential function penalizing the log-likelihood value for some
property of image µ, e.g. penalizing a large difference between neighbor-
ing voxels. A good choice for potential V is the q-generalized Gaussian
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Markov random field (q-GGMRF), proposed by Thibault et al. [53]:

V (µ) =

1

p�

p

X

{j,k}2C

c

j,k

⇢ (µ

j

� µ

k

) , (2.46)

with � a scalar which determines the prior strength relative to the data
fitting term. The coefficients c

j,k

are direction weighting coefficients
chosen as the inverse distance between the center voxel and all elements
in neighborhood C (26 voxels in 3D) to normalize their contribution. The
calculation of ⇢ depends on the difference between neighboring voxels:
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. (2.47)

By changing parameters p and q, a Gaussian prior, approximate Huber
prior, generalized Gaussian MRF or q-generalized Gaussian MRF can
all be achieved. Parameter c determines the approximate threshold of
transition between low and high contrast regions, with a higher c pushing
the edge-preserving behavior towards larger �.

The new forward model now becomes:
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where the finite focal spot diameter is sub-sampled by S rays, and the
scatter detected in detector element i is represented by C

i

.

2.2.7 Challenges in CT imaging

2.2.7.1 Radiation dose

When X-rays interact with living tissue, part or all of their energy will be
deposited in the tissue through indirect creation of ion pairs. These ion
pairs cause interactions with chemical systems and have a detrimental
effect on the biological tissue. X-ray exposure describes the ability of
X-rays to ionize air and is measured in roentgen (R) or Air Kerma.
This term only quantifies the amount of ionization, but not the more
interesting amount of energy actually deposited in the tissue. The term
absorbed dose takes the absorbed energy into account, and is measured
in gray (Gy).
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Radiation dose will affect biological tissue in two ways: through
stochastic effects and through deterministic effects. The stochastic ef-
fects are the result of DNA mutations. Cells irradiated by a low dose
will try to repair the radiation damage. When the repair process is also
damaged, the cells can not perform their normal repair function but can
still replicate. Such cells are called pre-cancer cells. Under influence of
physical, chemical or viral causes, these pre-cancer cells can be differ-
entiated into cells which show minimal cancer characteristics. In turn,
these cells can grow into clinical cancer, which may spread throughout
the body by metastasis.

The stochastic effects described above can only occur in cases of low-
dose irradiation, with no minimum-dose requirement. On the other hand,
cells irradiated with a dose higher than a threshold will become non-
functional and will die, which means no further DNA replication can
occur. This effect is deterministic in nature, because it only happens
when the absorbed dose is higher than a certain threshold. This will
become more prevalent with increasing dose, up to the limit where all
cells have died.

Radiation dose influence The clinical symptoms of radiation dose
have been well tabulated for humans [54]: below 0.5 Gy there is generally
no clinical effect seen, while hair loss already starts at 3 Gy. The lethal
dose is described by the LD50/30, which is the absorbed dose that would
kill 50% of the population within 30 days. Humans have an LD50/30 of
2.5 to 4.5 Gy. Small animals have a higher LD50/30: 4.5 Gy for mice,
and 6 Gy for rats. Cockroaches have an LD50/30 of 50 Gy [54], thanks
to their much slower cell division cycle compared to vertebrates.

To quantify the total risk entailed by stochastic and deterministic ef-
fects combined, it is important to assess the whole-body exposure. In CT,
the exposure is highly nonuniform and often involves partial-body irra-
diation. Furthermore, each organ has a different sensitivity to absorbed
dose [3], largely depending on the rate of cell division. These factors are
taken into account in the effective dose, with unit sievert (Sv). It is the
sum of the absorbed dose per tissue, weighted by the radiation type and
the tissue type. The tissue-type weights are based on epidemiological
data in humans, and are not available for small animals. In other words,
there is no way to calculate effective dose for small animals, which is why
preclinical doses are still reported in Gy.

It is difficult to determine the actual influence of low-level radiation
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on the cancer incidence rate, because the baseline cancer rate is already
very high (42 out of 100 people will be diagnosed with cancer in their
lifetime), and the risk of developing cancer heavily fluctuates depending
on the individual life style and environmental effects [55]. Data gathered
from a cohort of Japanese atomic bomb survivors have shown that there
is a linear, dose dependent increase in excess cancers, with no minimum
threshold dose [56]. Others have reported that such data is too variable
to allow for a statistically significant conclusion [57], because it even
supports the idea that low doses might actually reduce cancer mortality
(radiation hormesis) [58].

Mathews et al. [59] have statistically analyzed the data of 10.9 million
people of which 680.000 were exposed to CT scans between the ages 0
to 19 and later showed cancer incidence. After accounting for age, sex,
and year of birth, an overall 24% greater cancer incidence was found in
the exposed people (average dose 4.5 mSv per scan) compared to the
unexposed people. This corresponds to an absolute excess incidence rate
of 9.38 per 100.000 person years at risk, or, for every 1000 people followed
in a 10 year period after a 4.5 mSv scan, one person will develop cancer
due to the irradiation. Cardis et al. [60] determined that a small excess
risk of cancer exists at an average individual cumulative dose of 19.4
mSv, measured in a cohort of nuclear workers from 16 countries.

Typical effective doses range between 7 and 43 mSv for diagnostic
CT scans, and between 1.3 and 4.5 mSv for low-dose CT scans used in
PET/CT and SPECT/CT [61]. To put this in perspective, the annual
whole-body effective dose due to natural background radiation is 3 to 6
mSv per year depending on the geographical location. The diagnostic
dose is thus higher than the 4.5 mSv per scan which already increased
the cancer incidence in the study by Mathews et al. [59]

In small animals, the rate of life shortening for mice has been estimated
at 7.2% Gy�1 for whole body exposure by Sato et al. [62]. Mole et
al. [63] have shown that a mouse can neutralize doses of 0.25–0.5 Gy per
day when exposed daily. Continued radiation exposure will damage this
recovery process.

X-ray dose reduction Because the dose-dependent cancer incidence
increase is clearly still under research, the as low as reasonably achiev-
able (ALARA) principle is generally advocated for all medical modalities
depending on ionizing radiation. However, reducing the dose is not easy
because an inevitable relationship between image spatial resolution �,
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signal-to-noise ratio (SNR) and dose D exists:

D / SNR2

�

4
. (2.49)

A high image spatial resolution can only be achieved by using magnifica-
tion together with a detector with small pixels. However, smaller pixels
detect less X-ray photons in the same integration time, with worse pho-
ton statistics as a result. According to Eq. (2.49), improving the spatial
resolution with factor 2 will lead to a reduction of the SNR by 4 if the
radiation dose is held constant, or will lead to a 16 times increase in ra-
diation dose if the SNR is held constant. It is impossible to lower X-ray
dose without having to compromise the image quality.

Several authors and vendors have proposed methods to reduce the
radiation dose in CT [64, 65]. Because the dose is dependent on the
tube-current-time product (mAs), a simple but effective method is to
reduce the tube current in function of patient thickness [66], instead
of using a fixed current for all protocols. Although this is a harmless
optimization in the case of overexposure, decreasing the intensity will
lead to worse photon statistics. This will lead to excessive image noise
when not properly accounted for in the reconstructions.

Likewise, also the total scanning time can be reduced by using less
projection views over 360� [67]. Every projection view in itself then still
receives sufficient photon statistics, but the data is undersampled in the
view direction. This can lead to severe aliasing artifacts, as previously
shown in Sec. 2.2.5.4. While this can not be solved by using a more
correct statistical model (the statistics have not changed), regularized
reconstruction can be of help here. This will be explained in more detail
in Chapter 4.

A second, less-obvious method is peak-voltage optimization: lower
peak voltage leads to more contrast, but tends to noisier images due
to the decreased penetration depth. A tradeoff must be made between
image noise and contrast enhancement, taking into account the patient
size. Peak-voltage changes have an exponential effect on radiation dose,
e.g. a reduction from 120 kVp to 100 kVp (-16.5%) can lead to a dose
reduction of almost 40% [68]. However, reducing the number of pene-
trating rays by decreasing the kVp will also have a detrimental effect on
image noise in larger patients.

Other techniques include the optimization of filtration (pre-hardening
the beam to decrease the amount of low-energy photons), the use of bow-
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tie filters to attenuate off-axis rays, and prospective motion gating (to
image during prescribed cardiac or respiratory phases only).

Because all these dose-reducing measures have a negative impact on
image quality, the dose reduction should be weighed against the possibly
worse diagnostic value of the images. Xia et al. [61] managed to reduce
the dose of CT for PET/CT from 15.9 mSv to only 2.7 mSv when a
diagnostic-quality CT image was not needed, but was only used to correct
for image degrading effects in PET imaging. However, they only changed
the scanner parameters (e.g. tube current, X-ray source filtration) within
the limits that still allowed for accurate CT FBP reconstruction.

Advances in statistical reconstruction techniques (see Section 2.2.6.3)
allow us to reduce the dose even further. Excellent image quality can
then be achieved at only 0.5 mSv for routine head CT scans, 0.09 mSv for
chest CT, and 0.6-0.8 mSv for routine abdomen and pelvis CT scans [69].

2.2.7.2 Quantitative CT

The main objective of quantitative CT or QCT is to measure tissue or
material properties in an absolute quantitative way. Due to the poly-
chromatic X-ray spectrum, the reconstructed image values will depend
on the material composition and density, but also on the system param-
eters, and even on materials surrounding the material of interest. The
goal of QCT is then to reconstruct image values only dependent on the
material properties. This means a full physical model is needed in the
reconstruction step, at the very least to remove beam-hardening from the
images, with additional correction methods to minimize the influence of
photon scatter.

Unfortunately, photon attenuation is a function of Z (through the pho-
toelectric effect, Eq. 2.2) as well as a function of density. This means
that two fundamentally different materials may have the same attenu-
ation coefficient at a certain photon energy E, even though their mass
attenuation coefficient is different. It will be impossible to differentiate
both materials with a conventional CT scan. Correct differentiation is
of utmost importance when contrast agents are administered, as iodine
may end up with the same image value as surrounding bone, or ureic
acid may be mistaken for calcium in gout studies [70].

A possible solution is to use the energy-dependence of attenuation
to our benefit, as is done by dual-energy CT (DECT), and going even
further, spectral CT imaging. With DECT, two CT datasets are acquired
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at 2 different peak energies, e.g. one at 80 kVp and one at 120 kVp. Two
different materials with the same attenuation coefficient at one energy
will have a different coefficient at another energy. The information from
both scans can thus be correlated to help in differentiating between the
different materials.

A standard processing method was published by Granton et al. [71].
Both datasets measured with energy spectra E1 and E2 are first recon-
structed separately. For every voxel, a system of three equations can
then be solved:

µ(E1) = f1µ1(E1) + f2µ2(E1) + f3µ3(E1) (2.50a)
µ(E2) = f1µ1(E2) + f2µ2(E2) + f3µ3(E2) (2.50b)

1 = f1 + f2 + f3. (2.50c)

These equations are based on 3 basis materials n = 1..3 with attenuation
value µ

n

. The coefficients f

n

represent the fraction of base material n

being represented in this voxel. With the additional assumption that
each voxel can contain a maximum of 3 basis materials (Eq. 2.50c) and
a non-negativity constraint on these fractions, this system of equations
can be solved for f1, f2 and f3. With such an approach, the basis mate-
rials are usually chosen as water, cortical bone and contrast agent [71],
although other possibilities certainly exist [72].

Several system geometries exist in which multi-energy data can be ac-
quired. The simplest method is dual-kVp, a technique for which one
single-energy scanner will suffice. Two scans are simply performed con-
secutively with a different energy spectrum. This method is prone to
motion artifacts because of patient movement in between the two ac-
quisitions. A different method is dual-source DECT, where two source-
detector pairs are attached to one gantry. Both pairs acquire their own,
unique CT dataset at the same time. This method does not suffer from
motion artifacts because both datasets are measured at exactly the same
time. A disadvantage is the space needed to place two source-detector
pairs on one gantry, leading to a smaller FOV for one source-detector
pair compared to the FOV of a single-source system [73]. Dual-energy
information is then only available for an inner part of larger patients. A
third method is kVp-switching [10], with an X-ray source rapidly switch-
ing between the two peak energies while rotating around the patient.
This has the disadvantage of not acquiring two identical projection views
with a different energy, but with an interleaved pattern of data. This
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means missing projection values will need to be interpolated to allow for
reconstruction.

Different from the methods above is enabling DECT by using a newer
detector design. With dual-layer detectors, the detector is subdivided
into two parts. The top part (which receives the incident X-ray photons
first) will measure the full X-ray spectrum, while also providing enough
attenuation to stop low-energy photons. Only the higher-energy X-rays
will reach a second detector located below the first one. In essence, the
incident spectrum has been measured by two bins, each with different
information about the spectrum.

A more advanced solution is by using photon-counting detectors in-
stead of energy-integrating detectors. The measured data can then be
energy-integrated into arbitrary bins of different energy intervals. These
bins can be used in existing dual-energy algorithms to help realize QCT.
There are also some additional advantages to using photon counting
detectors: electronic noise can be effectively rejected, there is no pulse-
height (Swank) noise and scattered photons can be rejected [74]. Fur-
thermore, optimal weightings can be applied to different energy bins to
increase the influence of lower-energy bins, which will increase the soft-
tissue contrast. Unfortunately, it is difficult to develop the electronics
needed to allow spectral measurements at the high photon flux delivered
by the X-ray tube.

While DECT has been in clinical use since 2005, spectral CT is still
under research and development to optimize the detector for the high
X-ray flux [75] and to optimize the reconstruction for the high statistical
noise per bin [76].

2.2.7.3 micro-CT

Spatial resolution
Current volumetric CT scanners have typical in-plane resolutions of 200
to 300 µm and a slice thicknesses of around 500 µm using high-dose ac-
quisition protocols (3 mSv per scan) [77]. Unfortunately, such spatial
resolution is not sufficient to investigate high-resolution structural infor-
mation. One example is the imaging of small animals with CT. Imaging
mice with an internal detail comparable to human CT scans requires
a system able to distinguish features smaller than 100 µm [78] in size,
because the volume of morphological structures and organs in mammals
is proportional to their weight [79]. This means clinical CT systems can
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not be used for small-animal imaging. Apart from preclinical imaging,
high-resolution images are also beneficial for human extremities imag-
ing, e.g. to scan the human wrist or human knee [80]. A final example
are dedicated breast CT systems, which obtain 3D images of the breast
in contrast to the conventional 2D images obtained with mammogra-
phy [81].

To accommodate to the demand for high-resolution in vivo CT im-
agers, several investigators have developed high-resolution imaging sys-
tems specifically designed for small animals, called micro-CT or µCT
systems [12, 82, 83]. These systems follow the same working principle
as clinical CT systems. A tube-detector gantry rotates around the anes-
thetized animal and acquires X-ray measurements from all angles, which
are later reconstructed into cross-sections of the small animal. The dif-
ference between clinical CT and micro-CT can be found in the geometry,
the choice of imaging components and the speed of rotation.

Magnification
The high spatial resolution is achieved by placing the X-ray tube close
to the object or animal and the detector further away, achieving magni-
fication factors of 1 to 6:

M =

FDD
FOD

, (2.51)

with FOD the focal spot-to-object distance, and FDD the distance be-
tween focal spot and detector.

A second, related, geometrical aspect is the larger relative axial FOV.
It is possible to acquire whole-body images of mice without requiring bed
translations, by using cone-beam detectors and by carefully choosing the
magnification. This removes the need for the special, difficult helical tra-
jectory scans as used in clinical CT. A disadvantage of cone-beam imagers
is the amount of photon scatter detected, which increases considerably
when more detector rows are available. Whereas in clinical CT physical
scatter grids are placed between the relatively large detector pixels to
stop scattered photons, this is very challenging in micro-CT due to the
much smaller pixel sizes. A sufficiently thick grid would block complete
pixels, and would reduce the CNR while decreasing the SPR [22].

The SPR for micro-CT ranges between 0.3 and 0.5 [20, 21]. There is a
large decrease in SPR compared to clinical systems due to the smaller ob-
ject and the relatively larger air gap between the object and the detector,
which means scattered photons may miss the detector entirely. On the
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other hand, there is a much larger axial coverage because true cone-beam
detectors are used instead of multi-row detectors, which leads to more
detections of axially scattered photons compared to clinical systems.

Component choice
In terms of components, a first critical component is the X-ray tube.
In order to resolve high-resolution structure in the object, the focal spot
size should be kept as small as possible. A focal spot diameter �f (mm),
under influence of magnification M , will lead to a spatial resolution cutoff
frequency ⌫

f

(lp/mm) [84]:

⌫

f

=

M

�f(M � 1)

. (2.52)

A larger magnification thus comes with a lower cutoff frequency, or
worse spatial resolution. A high-resolution micro-CT system can then
only be achieved with a sufficiently small focal spot size. Unfortunately,
because of the heating of the anode target in the X-ray tube, the maxi-
mum power P which can be used is approximately limited by [85]

P = 1.4(1000�f)

0.88
. (2.53)

A focal spot of 50 µm can only be reached with an X-ray tube power
no larger than 44 W. To reach a higher power, the focal spot diameter
would need to be increased. As the intensity of the X-ray beam is linearly
proportional to the the tube power, the focal spot size and maximum
power will limit the X-ray flux that can be delivered in a reasonable
time. Lower flux can be compensated for by increasing the exposure
time per projection angle, effectively determining the under-limit of the
total acquisition time.

In general, micro-CT X-ray tubes will run at lower peak voltages com-
pared to those used in clinical CT. In clinical CT, beams with a peak
energy of 75 to 140 keV are common. However, due to the smaller ob-
ject diameter in micro-CT, these high-energy photons will pass through
the animal without contributing much to the overall linear attenuation.
As explained in Sec. 2.1.3, soft-tissue contrast is dependent mainly on
the low-energy photons. This, together with the focal power limitation
leads to a more commonly used peak energy of 50 to 80 keV in micro-CT,
leading to an average energy of 20 to 40 keV, averaged over the polyener-
getic spectrum. This is around the optimum energy of 25 keV for mouse
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imaging and 30 keV for rat imaging [86].
A second critical component is the X-ray detector. The detector pixel

size �x will also influence the spatial resolution, as it leads to a spatial
resolution cutoff frequency ⌫

d

(lp/mm) [84]:

⌫

d

=

M

2�x

. (2.54)

Combining Eq. (2.52) and (2.54) allows the optimal focal spot size to
be determined, for a fixed detector pixel size and chosen magnification:

�f =

2�x

M � 1

. (2.55)

With a magnification of 2 and a detector pixel size of 50 µm, a 100
µm focal spot size should suffice so that nor the focal spot size nor
the detector pixel size would be the determining factor for an image
resolution of 20 lp/mm or 25 µm. At a magnification of 1.5, one can get
away with a focal spot size up to 200 µm to reach a spatial resolution of
15 lp/mm or 33 µm.

preclinical micro-CT
Apart from the general micro-CT issues described above, two separate
issues stem from the fact that live animals are used in in vivo preclini-
cal micro-CT imaging. The first issue is the use of contrast agents, e.g.
to visualize the cardiovascular system. Due to the fast renal clearance
rate in small animals, conventional clinical iodine contrast agents will
be cleared long before the slow (due to the limited tube current and
thus flux) micro-CT scanner is finished acquiring all projection views.
Small-animal-specific contrast agents have been designed to allow the
contrast agent to follow other pathways, e.g. by encapsulating iodine in
lipids [87], or by using nanoparticles stabilized by a polymer coating [88].
Both methods decrease the clearance rate by necessitating a first-pass
clearance in the liver, which is much slower than the kidneys. Unfor-
tunately, even these specific contrast agents have a high injected dose
volume, and may be toxic in the rather large volumes needed [89, 90].

Secondly, animals will move during the CT acquisition. While human
patients are routinely asked to do a breath-hold during the CT acquisi-
tion, the breathing pattern of small animals can not be controller easily,
unless through intubation and ventilation [91]. The heart beat rhythm
is also too fast (600 to 800 bpm in mice), which means every consecu-
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tive projection view will be acquired with the heart in a different phase
of motion. The problem of respiratory motion can be addressed with
retrospective respiratory gating [92], by measuring the respiratory phase
by analyzing the diaphragm position on the already-measured projection
data. It is also possible to measure the motion during acquisition with
pressure sensors and an electrocardiogram (ECG), before using this infor-
mation as prior-information in model-based iterative reconstruction [93].
However, this does not negate the fact that a fast X-ray tube and detec-
tor are still necessary to ’freeze’ the heart on each projection image in
order to minimize cardiac motion [94].

2.2.8 Applications

2.2.8.1 Clinical CT

The use of CT imaging has drastically increased in the last decade,
thanks to advances in resolution, image quality, and imaging speed. The
peak CT procedure volume in the United States was achieved in 2011,
with more than 85 million procedures per year. Especially the introduc-
tion of CT scanners with multiple axial pixel rows has been a big factor
in the beginning of the 21st century [95].

The most common CT procedure is abdominal and pelvic CT (32%,
numbers from [96]), used to help diagnose the cause of abdominal or
pelvic pain, and diseases of the internal organs, small bowel and colon,
e.g. appendicitis, abscesses, inflammatory bowel diseases, cancers of
abdominal organs, kidney and bladder stones, and abdominal aorta
aneurysms.

Second to abdominal and pelvic CT exams are the cranial CT scans
(28%), mainly to diagnose infarctions, hemorrhaging and bone trauma.
Chest CT is performed in 16% of the procedures, to evaluate injury to
the chest, when a tumor is suspected, or to look for fluid collections in
the lungs. Angiography and extremity imaging are only done in resp.
5% and 6% of the procedures.

These numbers acknowledge the fact that CT imaging is the workhorse
of medical imaging and every emergency room [97], often used as a first
step in diagnostic exams. This strengthens the need for the ALARA
principle, as CT exams can easily be overprescribed. Apart from di-
agnosis, these CT scans are also performed to guide procedures, plan
for surgery, to plan radiation treatment for tumors, or to monitor the
response to chemotherapy.
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2.2.8.2 Micro-CT

in vivo
The use of preclinical micro-CT is largely different from clinical use.
Preclinical CT is predominantly used together with emission tomogra-
phy modalities as an anatomical landmark, and to enhance the image
quality and the interpretation of the data with complementary infor-
mation about the attenuation. This will be discussed in more detail in
Chapter 2.4.

As the workhorse for the medical research industry, the first advances
in micro-CT technology were largely driven by imaging needs for the
evaluation of bone anatomy and density [98]. Here, the primary use case
is trabecular bone analysis, e.g. to evaluate bone changes in vivo in
osteoporotic mice [99, 100].

A second application domain is vascular imaging, mainly to study an-
giogenesis [101] and neovascularization [102] both in healthy and in dis-
eased conditions. One such example is comparing diabetic and healthy
mice with regards to growth and regression of vasculature after hindlimb
ischemia [103]. Therapeutic solutions can also be evaluated longitudi-
nally, e.g. to evaluate the influence of lung cancer therapy on the pul-
monary arteries in mice [104].

Apart from the use of micro-CT scanners for small-animal research,
the same scanner design ideas are also being used to build limb-specific
high-resolution CT scanners for human patients. One examples is the
development of and research on cone-beam CT for orthopedic imaging
of the wrist or knee [80].

ex vivo
Apart from in vivo imaging, micro-CT is also used for ex vivo imaging
due to its high achievable spatial resolution when the dose is increased.
With ex vivo imaging, the dose can often be increased to levels which
would not be supportable in in vivo studies, thus increasing the im-
age quality significantly. This has enabled the evolution of micro-CT
scanners into nano-CT scanners, able to reach spatial resolutions of 400
nm [105].

Mineralized tissue can be imaged as-is, e.g. to assess fracture heal-
ing [106, 107], or to evaluate preclinical models of joint disorders [108].
Non-mineralized tissue should be fixed with a casting agent before-
hand [109], after which the hardened cast can be scanned. Two examples
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are mouse brain imaging [110], or the imaging of lung cancer nodules in
rats [109]. After cast hardening, the remaining soft-tissue can also be
corroded, e.g. to image liver angiogenesis [111], or the murine arterial
system [112–114].

Apart from the more medically-oriented applications, micro-CT and
nano-CT can also be used for material research because its non-
destructive [115]. A good review of possible applications in geosciences
is given in Cnudde et al. [115]. In manufacturing, micro-CT can be used
to characterize microstructures in high-strength Al-alloys [116].
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2.3 Single Photon Emission Computed Tomog-
raphy (SPECT)

2.3.1 Early History

The goal of emission tomography (ET) imaging is to image functional
processes in living organisms with the help of radioactive molecules. ET
imaging is based on the tracer principle, described first by George Charles
de Hevesy7 in 1911, and used first in animals in 1924. The isotope tracer
principle states that

radioactive isotopes will participate in the physiological pro-
cesses of an organism in a manner indistinguishable from the
same nonradioactive isotope.

Because radioactive isotopes can be localized by detecting the ionizing
radiation emitted by the unstable atoms, the detected information can
be used to visualize important physiological processes in the body.

Research into radioactive isotope production systems (i.e. the cy-
clotron and later the synchrotron) increased in the 1930s, leading to a
wide range of radioactive tracers becoming available. As with the early
days of X-rays, the first planar ET images were quickly acquired. The
first organ studied for medical purposes was the thyroid, already known
in the early 1900s to have a high uptake of iodine, and thus also a high
uptake of radioactive isotopes of iodine.

By 1934, Fermi managed to produce 128
I by using a Po/Be neutron

source, soon after used for thyroid imaging studies. In 1937, Seaborg
used a cyclotron to generate 131

I with an 8-day half-life, which makes it
much more useful than the short-lived 128

I (half-life of 30 minutes), as the
tracer still needs transportation to the patient before image acquisitions
can start. Back then, ET imaging consisted of moving a Geiger-Müller
counter manually around the neck of the patient to record the number
of photons emitted from the thyroid gland.

Progress in nuclear medicine slowed during World War II. Afterwards,
due to the developments for the Manhattan Project, more cyclotron
and reactor sources became available. This enables the generation of
larger amounts of radioisotopes at lower costs. In 1949 the first planar
gamma-ray scanning device was developed using a calcium tungstate

7For which he received the Nobel Prize in Chemistry in 1943. He was also ap-
pointed International Franqui Professor at Ghent University in 1949-1950
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(CaWO4) scintillating detector. Two years later a commercial thallium-
doped sodium iodide (NaI(Tl))-based scanner became clinically used.
Finally, in 1957 the 99

Mo/99mTc generator was developed by Powell
Richards. From then on, tracers could be labeled closer to the scanners
and patients, which allowed smaller hospitals to use ET imaging. This is
considered the major breakthrough that made ET readily available in the
clinic. In 1957, Hal Anger invented the scintillation camera. Subsequent
developments led to the design of systems with rotating gamma cam-
eras, the first single photon emission computed tomography (SPECT)
systems.

The first SPECT systems emerged faster than CT imagers, because
the much lower data rates in emission tomography were more suitable
for the electronics available in the 1960s than the high data rate encoun-
tered from X-ray sources. The first dual-detector scanner was developed
in 1963 by David E. Kuhl and Roy Q. Edwards. By 1977 they had devel-
oped a more efficient scanning geometry, which later evolved in today’s
SPECT.

2.3.2 Imaging Principle

SPECT imaging is an in vivo imaging technique used to study functional
processes in patients. Based on the isotope tracer principle, a molecule
labelled with a radioactive isotope (radioisotope) is intravenously in-
jected into the patient. After a time delay, to maximize the tracer up-
take, the patient is imaged by a SPECT system. Fig. 2.16 illustrates
the different components of such a SPECT system. The tracer will ra-
dioactively decay by emitting �-photons in all directions. These photons
will pass through the patient body and are eventually detected outside
the body by a �-camera. Because there is no sense of directionality, the
�-rays must be physically collimated before interacting with the camera.
Data are acquired step-wise over 360� around the patient. The measured
data, also called the sinogram, can later be used to reconstruct a 3D dis-
tribution of the spatial location of the tracer and its reaction products
inside the patient body.

Figure 2.17 shows the reconstructed result of a human SPECT brain
scan. The data was acquired after injecting the patient with 99m

Tc-
labelled hexamethylpropyleneamine oxime (HMPAO), a compound that
can be used to detect altered regional cerebral perfusion after the patient
suffered a stroke. The 3D dataset is commonly visualized in a trans-
verse, sagittal and coronal plane. The image presented in Figure 2.17
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Figure 2.16: The components used in a SPECT system.

can be compared to Fig. 2.18, also the result of a brain SPECT scan.
However, for Fig. 2.18 123

I-labelled N-!-fluoropropyl-2�-carbomethoxy-
3�-(4-iodophenyl) nortropane (123I-ioflupane or 123

I-FP-CIT) was used,
commonly used in the diagnosis of Parkinson’s disease due to its high
binding affinity for presynaptic dopamine transporters (DAT). Fig. 2.18
shows clear uptake in the striatal region of the brain, the subcortical part
of the brain which contains a lot of dopamine receptors. Although both
figures show a human SPECT brain scan, the functional information
seen clearly depends on the compound that is used.

Figure 2.17: Transversal, sagittal and coronal plane of a brain SPECT study,
conducted with 99m

Tc-HMPAO.
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Figure 2.18: Transversal midbrain slice of a 123
I-FP-CIT scan, showing nor-

mal uptake in the striatal region of the human brain.

2.3.3 Important Components

2.3.3.1 Radionuclide

The specific choice of radioisotope is the divider of ET into two subdo-
mains: SPECT and Positron Emission Tomography (PET) imaging. For
SPECT imaging, the radioactive decay should be of a type that emits
�-rays, preferably with an energy between 30 to 300 keV. This allows the
�-rays to actually escape the patient body and not be attenuated too
much. At higher energies, absorption collimators would be more difficult
to manufacture. Several suitable radionuclides exist, of which 99m

Tc is
used in 80% of the SPECT procedures worldwide. Some commonly used
radioisotopes have been tabulated in Table 2.1. In PET imaging, the ra-
dionuclide instead emits positrons, which will undergo annihilation with
an electron. The annihilation process results in the emission of two back-
to-back �-photons with energy 511 keV. These can then be detected by
gamma cameras surrounding the patient.

The radioisotopes are produced by nuclear reactions, in which a stable
element is bombarded with neutrons (in a nuclear reactor) or protons
(in a cyclotron) to reach a higher atomic mass. This new element is
an unstable isotope of the original element. The isotope will decay,
typically by emitting alpha particles (two protons and two neutrons),
beta particles (electrons), gamma photons, or positrons, or through the
process of electron capture.

Some radionuclides (like 99m
Tc) are not a direct product from such an
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unstable isotope, but are made indirectly:

99
Mo! 99m

Tc + e

�
+ v̄

e

. (2.56)

In this case, the generator 99
Mo is first made from 98

Mo through neutron
activation in a high neutron flux reactor. Because the half-life of 99

Mo is
66 hours, it is more practical to move the whole generator to a hospital
instead of transporting an isotope with a much shorter half-life. The
short-lived 99m

Tc can then be extracted at a site close to the patient
and SPECT scanner.

The SI-derived unit of radioactivity is the becquerel (symbol Bq)8.
One Bq is defined as the activity of a quantity of radioactive material in
which one nucleus decays per second. The becquerel succeeded the curie,
the older unit which was measured based on the activity of 1 gram of
226

Ra. It was later determined that 1 mCi is equal to 37 MBq. Typical
injected doses highly depend on the expected uptake in the patient body
for the tracer. The recommended injection activity for a 123

I-Ioflupane
brain scan is 185 MBq, while the recommended activity for a 99m

Tc-MIBI
cardiac scan ranges between 370 and 1110 MBq.

2.3.3.2 Collimator

An essential part of every SPECT imaging system is the collimator.
To allow for reconstruction, knowing the position of the detector pixel
which measured an incident �-photon should suffice to determine the
path it followed. Thus, to remove ambiguity about the incident ray
angle it is important that each detector element can only be reached
by photons from only 1 direction. This was implicitly accomplished in
CT imaging, as the position of the X-ray tube is known for all projection
angles. The incident ray then follows the path connecting the X-ray tube
position to the detector pixel position if the X-ray was not scattered. In
SPECT imaging however, the radionuclide position is what needs to be
reconstructed, and is unknown.

In order to achieve directional information, a collimator is placed be-
tween the patient and the detector. It will perform mechanical colli-
mation by absorbing all �-rays which are not incident in the desired
direction onto the gamma camera underneath. The collimator is prefer-
ably made from a dense high-Z material (e.g. Pb, W, . . . ) which is

8Named after Henri Becquerel, who shared a Nobel Prize in 1903 with Marie Curie
for their discovery of radioactivity.
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parallel-beam collimator fan-beam collimator

focal point

pinhole collimator

point source

Figure 2.19: Illustration of a cross section through three types of collimators
commonly used in SPECT imaging.

perforated in one or more locations. Because the collimator shape is
known, all detected photons can be related to a line from detector pixel
to the perforation, extending into the object space.

Several possible collimator configurations exist, of which three are pre-
sented in Fig. 2.19. In a parallel-hole collimator, all channels are arranged
parallel to one another and are located perpendicular to the detector sur-
face. Incident rays normal to the detector will be able to pass in between
the septa to reach the detector. When the incident angle deviates too
much from the normal on the detector, the photon will have a high chance
of being absorbed by the collimator, depending on the collimator mate-
rial and septa thickness. The FOV of a parallel-hole collimator is equal
to the size of the detector (typically 40 ⇥ 50 cm in clinical systems),
which makes this type of collimator usable for general applications.

With a fan-beam collimator, all channels are aimed at one focal line.
A range of ray directions can now be detected when the rays originate
from a smaller FOV than with the parallel-hole detector. The focal
line can be located on the opposite side of the patient, in order to get
some magnification of the projection on the detector and an increased
sensitivity.

A third type of collimator is the pinhole collimator, which works just
like a box camera. The pinhole collimator is commonly made of a large
plate containing one or multiple holes. For each detected ray its direc-
tion is known because of the limited pinhole diameter. Other rays will
be stopped by the large collimator plate. The benefit of the pinhole col-
limator is its magnification property (the box camera uses minification).
If the object-to-pinhole distance is smaller than the pinhole-detector dis-
tance, the projection of the object will be enlarged on the detector. This
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forms the basis of many micro-SPECT systems, which use pinhole colli-
mation to make high-resolution images of small animals.

A major disadvantage of the pinhole collimator is its low geometrical
sensitivity at large distances, i.e. the ratio of detected photons to the
number of photons emitted by the radionuclide. For a round pinhole,
the geometrical sensitivity can be expressed as [117]

S =

g

2
cos

3
↵

16d

2
, (2.57)

with g the pinhole diameter, d the normal distance between the point of
emission and the pinhole center, and ↵ the angle between the normal on
the detector and the incident �-ray.

2.3.3.3 Detection

The detection of �-photons happens in a matter similar as the detection
of X-rays for CT imaging (Sec. 2.2.3.2). The main difference is that
SPECT detectors can measure the photon energy, which is not possible
with CT detectors due to the much higher photon flux encountered in
CT. The detectors can likewise be subdivided in the same two categories:
indirect detectors and direct detectors.

Indirect detection
The different components of an indirect detector are illustrated in
Fig. 2.20. In indirect detectors, an incident �-photon is converted into
a visible light pulse by a scintillation crystal, with a pulse intensity pro-
portional to the photon energy. Common scintillation crystal materials
in SPECT are thallium-activated sodium iodide (NaI:Tl) and thallium-
activated cesium iodide (CsI:Tl). The conversion of scintillation light
into an electric pulse is accomplished by a light detector (e.g. a pho-
tomultiplier tube (PMT), avalanche photodiode (APD), or silicon pho-
tomultiplier tube (SiPM)) which converts the scintillation photon into
an electron, then multiplies the electrons through several dynode stages.
This allows single incident photons to achieve a current high enough to
measure them as an electrical signal.

In the case of PMTs, which are generally much larger than the small
single scintillation crystals (which could serve as single pixels), one big
crystal is attached to several PMTs. Due to the light-spread in the
scintillator, multiple PMTs will receive light photons from an incident
�-ray. The location of the incident �-ray on the scintillator can then
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incident !-ray 
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Figure 2.20: Illustration of the gamma camera components.

be determined by weighting the known position of each PMT by the
strength of its signal into a mean position, a technique called Anger
logic. The sum of the charges collected by all PMTs is correlated to
the energy of the incident �-photon, which means that energy can be
discriminated. A light guide is often used to couple the scintillator to
the PMTs to spread the light on purpose, because sufficient light spread
is required for event positioning.

A major difference between the indirect SPECT and the indirect CT
detectors is the respective use of PMTs and CCDs/CMOS detectors as
photosensors coupled to the scintillator. This is mainly due to 3 dif-
ferences. Firstly, SPECT imaging requires energy discrimination, which
necessitates detectors with a good energy resolution, better than what
a CCD or CMOS can offer. Secondly, due to being energy-based, the
photosensor needs to be triggered per event instead of being continu-
ously sampling (integration). PMTs will respond to single events, while
CCDs or CMOSs do not. Finally, due to the geometrical sensitivity and
lower radioactivity used, the number of detected photons per second
will be much lower in SPECT than with CT, where a flux higher than
2⇥106 photons per mAs per second per pixel is commonly achieved. In
SPECT, the data rate is in the order of 10 to 50 photons per second per
pixel. Low-noise photosensors are thus necessary, which means CCDs
and CMOS detectors are not a good choice.

Direct detection
Solid-state detectors differ from the indirect detectors as they directly



68 Background

convert the incident �-photon into an electrical signal, without any inter-
mediate visible-light pulse generation. In the semi-conductor, each inci-
dent �-ray will generate electron-hole pairs. By applying a bias voltage
across the semiconductor, the holes and electrons will drift towards op-
posite sides, inducing a charge on those electrodes. A pixelated detector
can be obtained by attaching multiple anodes, each read out individually
by a different amplifier.

Direct detectors have superior energy resolution compared to indirect
detectors, because there is no signal loss from the extra conversion step.
Furthermore, per quantum of energy more electrons will be generated
than is possible with a PMT. This leads to improved photon statistics.

Different semiconductors are in use in SPECT systems, such as those
based on silicon (Si), germanium (Ge), cadmium telluride (CdTe), cad-
mium zinc telluride (CdZnTe) or mercury(II) iodide (HgI2), each with
its own specific properties. The most frequently used semiconductor de-
tector is CdZnTe, because of its high stopping power and its theoretical
energy resolution of 0.4% at 140 keV, which is beneficial to reduce pho-
ton scattering through windowing techniques. In practice, hole trapping
and readout noise will reduce the energy resolution to 1 to 5% at 140
keV.

2.3.4 Image degrading effects

Before going into detail into how 3D distributions of the radiotracers are
actually reconstructed from the measured sinogram, some common im-
age degrading effects should be explained. These effects will distort the
measured projection data, in turn leading to systematic discrepancies
between the reconstructed SPECT values and the true activity concen-
trations in the patient.

2.3.4.1 Attenuation and scattering

The most important image degrading effects in SPECT are caused by
the physical interactions of the emitted �-rays with the patient body. In
order for an emitted photon to be detected by the gamma camera, it must
escape the patient body. However, photons emitted from a radionuclide
may first be absorbed or scattered. This will result in

• photons that do not leave the body, due to attenuation. For the �-
ray energies used in SPECT, the attenuation will be caused mainly
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by photoelectric absorption and Compton scattering (see Fig. 2.3).
The attenuation factor (AF) magnitude depends on the energy E

of the �-photon and the attenuation coefficient µ (1/cm) of the
traversed tissue distance d:

AF = e

�
R
d

0 µ(E)dx
. (2.58)

Photon attenuation will result in a projection image with intensity
lower than the expected projection image.

• photons scattered in the body, with a resultant direction which
can still pass the collimator. These scattered photons will then
be detected, but with a lower energy due to the energy loss from
Compton scattering. This results in a projection image with in-
tensity higher than the ideal projection image, and ultimately a
reduced contrast in the reconstructed images.

Several techniques have been proposed to correct for attenuation and
scatter.

SPECT attenuation can be corrected directly incorporating known at-
tenuation values in the forward and back projector [118], or by using a
method known as Chang’s method [119]. Chang’s method will correct
post-reconstruction with a correction factor CF per voxel, which is cal-
culated as the reciprocal of the average attenuation of this voxel over all
projection paths:

CF =

1

1
M

MP
i=1

exp(�µL

✓

i

)

, (2.59)

with L

✓

i

the projection path for this voxel for angle ✓
i

, determined by
the number of projection paths M used.

Regardless of how the data is corrected, the attenuation values need
to be known. In stand-alone SPECT, this can be accomplished by mea-
suring the photon attenuation with a transmission source. A common
source is an encapsulated 153

Gd source, with a photopeak energy of 100
keV and a half-life of 270 days. This source is then placed outside the pa-
tient, after which the transmission of the emitted photons caused by the
patient can be measured. These transmission measurements can then
later be scaled to an attenuation map for different photopeak energies.
A second method, which only takes into account the average attenuation
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of the patient, is by approximating the tissue attenuation as equivalent
to that of water. However, this will miss-represent the attenuation of
internal but important structures such as the bones and lungs, leading
to under or over corrections [120].

Correcting for photon scattering is easier. The Compton effect will al-
ways result in a decrease of the photon energy. By measuring the incident
energy on the detector, and comparing this energy to the known emis-
sion spectrum of the radiotracer, scattered photons can be detected. The
scattered photons can then be discarded because they will have wrong
spatial information, as the direction and number of scattered events are
unknown. This technique is called photopeak windowing. After window-
ing, the contribution of the scattered photons to the photopeak window
can also be calculated. Due to the limited energy resolution of the gamma
camera, some scattered photons will have an energy inside the photopeak
window, and can not be discriminated from the primary �-rays. It has
been shown that the information from scatter windows around the main
energy peak can deliver an estimate of the scattered photons residing in
the photopeak window [121, 122], which can then be corrected for by
pre-correcting the measured sinogram [121] or by including the scatter
estimate in the reconstruction algorithm [123, 124].

If both attenuation and scatter are corrected for, it is important to
only use the attenuation factor without the contribution of incoherent
scattering to the attenuation as the scaling factor. Otherwise there would
be an overlapping correction factor applied in the scatter correction step,
which would overcorrect the reconstructed data.

2.3.4.2 Resolution model

Although physical collimation is already used to limit the direction of
incidence on the detector, some uncertainty about the incoming ray angle
still exists.

A first problem is the limited collimator resolution, illustrated in
Fig. 2.21 for the parallel-hole and pinhole collimator types. Parallel-hole
collimators have a certain hole-diameter and channel height, parame-
ters which determine the uncertainty and thus resolution that can be
achieved. In pinhole collimators, the pinhole has a finite diameter. In
both cases, the uncertainty will increase for points located further away
from the collimator.

A second issue is penetration through the collimator. The thickness
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parallel-beam collimator

R

pinhole collimator

R

Figure 2.21: Illustration of the uncertainty of incoming rays with parallel
hole and pinhole collimators.

and material of the collimator will determine its absorption properties,
i.e. the attenuation of photons of some energy. Some photons may
penetrate the collimator completely, a problem most apparent when a
high-energy radioisotope (e.g. 111

In) is used together with a collima-
tor designed for lower energy radionuclides (e.g. 99m

Tc). For pinhole
collimators, the diameter ’seen’ by the �-photon is actually larger than
the nominal pinhole diameter, because the thin knife-edge of the pinhole
may be penetrated by higher-energy photons [125].

A third limitation is the detector response. The conversion of �-rays
to visible light in indirect detectors will lead to an uncertainty between
the real incident �-ray location on the detector surface and the mea-
sured detection location. The same holds with direct detectors, due
to the electron-hole spread and possible charge sharing between pixels.
Furthermore, pixelated detectors can not discriminate at sub-pixel res-
olution. The photon spread can be modeled by a low-pass filter, which
is dependent on the attenuation of the detector material, the angle of
incidence of the �-ray, and the performance of the detector itself.

2.3.5 Reconstruction

2.3.5.1 Analytical Reconstruction

Iterative reconstruction is much more widespread in SPECT than in CT,
because the benefits are much larger in SPECT reconstruction. Whereas
iterative CT reconstruction was not considered at first due to its compu-
tational complexity, FBP was replaced with iterative reconstruction in
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SPECT from 1982 onwards [126, 127] because of the smaller data sizes
(due to smaller detectors with larger pixel sizes). The limits of analyti-
cal reconstruction were also reached faster in SPECT reconstruction: the
FBP model is only valid in the case of a perfect parallel-beam collimator
in the absence of photon scattering, attenuation, and penetration, and
with a very high number of detected counts. Furthermore, also a much
lower number of projection views is used (typically 60 projection views
instead more than 1000 for CT), which results in aliasing artifacts with
FBP. These unrealistic assumptions quickly lead to the conclusion that
the use of FBP in SPECT leads to poor reconstructions [128, 129]. Thus,
we will not further discuss the use of FBP for SPECT in this dissertation.

2.3.5.2 Iterative Reconstruction

Data measured in ET is Poisson distributed. However, unlike in CT
imaging, it can not be approximated by a Gaussian because of the much
lower detected count rate, due to the low specific activity injected in
the patient, the patient attenuation, and the low geometric and detector
efficiency. This means a Poisson model must be included in statistical
image reconstruction to achieve accurate reconstruction.

For a set of measurements y, the activity distribution x should be
found which maximizes the conditional probability P (x|y). This can be
calculated based on the rule of Bayes:

P (x|y) =

P (y|x)P (x)

P (y)

. (2.60)

As in the derivation of MLTR for CT reconstruction, P (y) can be dis-
carded with respect to the optimization, as it does not depend on x. P (x)

forms the prior knowledge about the image, e.g. information determined
by a transmission scan or a simultaneous CT scan (SPECT/CT).

When a flat prior distribution is used for P (x), only P (y|x) needs to
be calculated:

P (y|x) =

IY

i=1

P (y

i

|x), (2.61)

because individual measurements in y are independent of each other.
Finding the optimum of Eq. (2.61) involves calculating its derivative
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and solving for x. Instead, it is easier to find the optimum of its logarithm

log P (y|x) =

IX

i=1

log P (y

i

|x), (2.62)

because the derivative of a sum is often easier to compute: it is the
sum of the derivatives of each individual log-likelihood log P (y

i

|x). The
logarithm is a monotonically increasing function and will achieve its max-
imum value at the same points as the original function.

The counting of �-photons follows a Poisson distribution. The Poisson
distribution y with mean or expected value ŷ is described by

P (y|x) =

IY

i=1

P (y

i

|x) =

IY

i=1

ŷ

y

i

i

e

�ŷ

i

y

i

!

. (2.63)

Thus, a measured value y

i

will only be dependent on the expected ŷ

i

,
which in turn only depends on the activity distribution x. As in the
derivation of MLTR for CT reconstruction, Eq. (2.63) must be viewed
with caution, since we are free to choose any representation for ŷ. It is
only when the finite object representation is an adequate representation
of the data, in the sense that ŷ is a good approximation to the true
continuous-to-discrete system measurements, that P (y|x) is really the
likelihood of x [46]. In SPECT, the expected value is chosen as ŷ

i

=

[Wx]

i

.
This means that

log P (y

i

|x) = log P (y

i

|ŷ
i

). (2.64)

Maximizing probability P (x|y) can thus be reduced to maximizing the
log-likelihood L, given by

L =

IX

i=1

log

✓
ŷ

y

i

i

e

�ŷ

i

y

i

!

◆
(2.65a)

=

IX

i=1

(y

i

log(ŷ

i

)� ŷ

i

� log(y

i

!)) . (2.65b)

Several methods exist to maximize Eq. (2.65b). One way is to represent
the negative log-likelihood function comparable to how the ISRA was
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represented in Eq. (2.20), and use the same derivation using optimization
transfer:

 (x) =

IX

i=1

h

i

([Wx]

i

) with h

i

(f) , f + log(y

i

)� y

i

log(f). (2.66)

This means the calculation of the separable surrogate function �(x;x

(k)
)

stays the same (see Eq. 2.21–2.26), and will not be repeated here.
Solving the derivative of the surrogate:
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From which follows that
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which is the maximum-likelihood expectation-maximization (MLEM) al-
gorithm [127]. Intuitively, the current best image estimate x(k) is forward
projected, and compared to the measured data y by division. This error
ratio is backprojected into image-space and normalized before updating
the current estimate with it.

Useful properties of MLEM are its guaranteed convergence and that
the non-negativity constraint is automatically satisfied, as long as the
initial image x

(0) is chosen strictly positive.
Unfortunately, the choice of additively separable surrogate functions

leads to surrogates with a very high curvature, which leads to very slow
convergence rates [42]. More popular than MLEM is its block-iterative
extension, the ordered-subsets expectation-maximization (OSEM) algo-
rithm [38], due to its faster convergence. The update equation is then
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simply changed to
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with the summation range i 2 S indicating the detector elements con-
tained in subset S of the detector pixels I. OSEM has only been proven
to converge when the subset choice is balanced [130]. This is in contrast
to the guaranteed convergence of MLEM. Luckily, empirical evidence
shows that OSEM provides useful images more rapidly than MLEM.

A downside to MLEM, and by extension OSEM, is that, although
both algorithms converge to a solution, this solution may be a very noisy
solution. The reconstructed image at convergence is usually denoised by
smoothing the image data, or by stopping the reconstruction early, before
convergence is actually reached [131]. The image noise originates from
the fact that SPECT reconstruction is an ill-posed problem when no prior
knowledge is used. Some a priori knowledge about the object distribution
is needed, but is not contained in the ML model from Eq. (2.65b).

A-priori knowledge can be included by using maximum a-posteriori
(MAP) reconstruction [132, 133] on an extended log-likelihood. Instead
of maximizing P (y|x), MAP estimates x by maximizing P (x|y), which
is the conditional probability distribution of the image vector x given
the measurement vector y. The new problem becomes

ˆ

x = arg max

x�0
L(x) + log P (x). (2.71)

A solution to Eq. (2.71) can be found using the one-step-late (OSL)
approximation of Green [134]:
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. (2.72)

Parameter � can be interpreted as the relative strength of the prior
knowledge compared to the data fit. For � ! 0, the OSL algorithm
converges to MLEM (Eq. 2.69).

The energy function V (x) from Eq. (2.72) is used to model the prior
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knowledge P (x). As V is a function of x, knowledge of x can now be
used in the reconstruction, e.g. to reduce image noise, or to reduce
the partial volume effect (PVE) in micro-SPECT reconstructions [135].
Several choices have been published in literature, of which many are
based on quadratic functions. A formulation depending on the image
gradient (e.g. the q-generalized Gaussian Markov random field prior [53]
we used in CT reconstruction, see Eq. 2.46) is not as useful in SPECT
as in CT, because function edges will not be visible on the relatively
low-resolution SPECT images.

2.3.6 Small Animal SPECT

The demand for longitudinal small-animal data has driven the develop-
ment of miniaturized SPECT or micro-SPECT systems at the start of
the 21st century. Such systems should allow for much higher spatial res-
olution than their clinical counterparts in order to accurately represent
the small organs of laboratory animals.

First the spatial image resolution was increased by using pinhole col-
limators, which can project magnified data onto the detector. The mag-
nification factor of a pinhole depends on the ratio of object-pinhole and
pinhole-detector distance, which leads to system designs where the pin-
hole collimator is placed very close to the animal, while the detector is
further away. Because the FOV of a pinhole is also limited, with increas-
ing FOV further from the pinhole, a trade-off must be found between
the FOV and the magnification one wants to achieve. As mentioned in
Sec. 2.3.3.2, the use of a pinhole collimator will result in a low sensitivity,
because only one small entrance window is available.

The poor sensitivity can be overcome in 2 ways, which are not mutu-
ally exclusive. The first is by applying changes to the imaging protocol,
in order to improve the photon statistics. This can be achieved by in-
creasing the injected radioactivity dose, or by increasing the acquisition
time per projection view. However, an increase in radioactivity dose will
unnecessarily irradiate the animal, while increasing the scan time can
make the acquisitions unmanageably long.

A second proposal is to use multiple pinholes in a single collima-
tor [136–138]. This results in a linear increase in sensitivity, when indi-
vidual pinhole projections do not overlap on the detector. In the case
of overlap, also called multiplexing, an even higher sensitivity can be
achieved for the same detector area. However, ambiguity about the inci-
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dent angle of the �-rays in the overlapping area may lead to worse image
SNR after reconstruction [139, 140]. In cases of a large amount of over-
lap, the image uniformity has been shown to decrease, making uniform
cylinders appear smaller than their true size [141]. The multiplexing ar-
tifacts depend on the activity distribution, pinhole design, detector size
and imaging distance [141]. There is no consensus yet if multiplexing—to
trade image artifacts for an increase in sensitivity—is an overall benefit
or not.

An additional spatial resolution increase can be achieved by decreasing
the detector pixel size, especially when magnification is achieved through
the use of pinholes. Some recent systems therefore use direct-conversion
detectors, mostly based on CdZnTe, which can be segmented into pixels
of around 320 µm [142]. Smaller pixel sizes would lead to a too large
probability of charge-sharing between pixels [142]. These high-resolution
detectors have excellent energy resolution, which allows for improved
scatter correction and dual-isotope imaging (e.g. imaging 99m

Tc and 123
I

at the same time). Other micro-SPECT systems use position-sensitive
photomultiplier tubes (PSPMTs), which are PMTs with multiple anodes,
essentially pixelating the PMT output.

2.3.7 Challenges in SPECT imaging

2.3.7.1 Resolution-sensitivity tradeoff

The major challenge in SPECT imaging is the trade-off relationship be-
tween spatial resolution and sensitivity. As discussed before, the use of
a pinhole collimator to increase the spatial resolution through magnifi-
cation will inevitably lead to less sensitivity and a smaller FOV. Fur-
thermore, the sensitivity of pinhole collimators decreases with increasing
distance between the object and the pinhole aperture. Because of this
trade-off, most current SPECT scanner designs are optimized for spe-
cific applications, e.g. for cardiac imaging. Most general clinical systems
still use parallel-hole collimators, and are not substantially different from
those designed in the early 1980s [143]. Still, improvements in SPECT
resolution are effectively only limited by technological advances [144].

2.3.7.2 Absolute quantification

A second major challenge is in obtaining absolute quantitative data.
With absolute quantification, the activity concentration (in MBq/ml)
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can be directly derived from the reconstructed images. Such an accurate
estimation of the activity in each image voxel, and thus also each organ or
a tumor, is needed to enable dose calculations in targeted therapy treat-
ment planning, or to follow the treatment of tumors longitudinally [145].

Two criteria can be used to characterize the reconstructed estimated
activity: accuracy and precision [145]. While accuracy is a measure
of deviation from the true value, precision will measure the variability
about its mean value. Depending on the application, low accuracy may
be acceptable as long as the precision is high. A consistent bias can then
be calibrated by scanning a phantom of known activity, from which the
bias can be calculated.

Unfortunately, the image degrading effects described in Section 2.3.4
will lead to an inconsistent bias in SPECT [146]. The finite resolution
effects can be corrected by analytical estimation based on the known sys-
tem geometry, or by Monte Carlo simulation techniques. More important
is the correction of attenuation and scatter, which will be patient specific.
This means that one phantom acquisition can never be used to calculate
the bias for all patients. Current SPECT/CT systems (see Sec. 2.4) cor-
rect for attenuation by incorporating the reconstructed patient-specific
CT information inside the SPECT reconstruction [118]. Scatter can also
be corrected for, e.g. by using window correction techniques [121, 122].
Absolute SPECT quantification will be possible only when a consistent
bias is achieved at high precision.

2.3.7.3 Temporal resolution

The limited temporal resolution of SPECT is caused by the low sensitiv-
ity of SPECT, and is often overlooked. Biological processes will not stop
redistributing the radioactive compound while scanning, and will have
some influx and efflux of the tracer over time. Furthermore, in many
cases it is this change in the biodistribution of the radiopharmaceuticals
in the body that offers the most information about the underlying phys-
iological processes [144]. If the change in biodistribution is imaged by
a tomographic system, it is a necessity that every dynamic timespan is
recorded for all projection views to get enough data sampling. This im-
poses a very low maximal duration in which each projection view should
be acquired, because dynamic frames are commonly acquired over the
order of 1 minute. Ultimately, this results in low photon statistics per
view.



2.3 Single Photon Emission Computed Tomography (SPECT) 79

2.3.7.4 Small Animal SPECT imaging

Because of the importance of small-animal SPECT for pharmaceutic
research, absolute quantification is more sought after in micro-SPECT
compared to clinical SPECT. Multiple small-animal-specific applications
require absolute quantification, such as measuring the dose-response
curve for an experimental drug, monitoring tumor regression or recur-
rence for novel treatments, or to study changes in cerebral metabolism
after sensorimotor challenges [147].

As with clinical SPECT, physical effects will still be detrimental to
the quantitative accuracy. However, the much smaller size of laboratory
animals will lead to less attenuation and scattering, potentially improv-
ing the accuracy compared to clinical SPECT. The overestimation errors
resulting from the detection of scattered photons may even be offset by
the relatively large underestimation errors caused by photon attenua-
tion [148]. This raises the fundamental question: are attenuation and
scatter correction really necessary to achieve absolute quantitative small-
animal SPECT? [147]

A second issue, specific to small-animal imaging, is the much faster
metabolic rate, respiration rate and heart rate of laboratory animals
compared to human subjects. Tracer kinetic modeling provides the link
between the distribution of radioactivity in tissue over time, and the
relevant physiologic parameters associated with a particular organ or
disease state. This technique requires rapid arterial blood sampling, a
challenge in itself in small animals due to their small total blood vol-
ume, but also requires a fast dynamic SPECT scan to follow the rapidly
changing tracer distribution. Dynamic SPECT scans will lead to low
photon statistics per view. One possible solution may be to use sta-
tionary multi-pinhole SPECT systems [138, 149], which do not require
camera rotations during the acquisition. However, stationary systems
usually have the disadvantage of a limited FOV, which means they can
not be used for fast, dynamic whole body scans or even for scans of entire
organs.

2.3.8 Applications

2.3.8.1 Clinical SPECT

Numerous medical specialities use SPECT imaging to aid in the diag-
nosis of disease or to plan disease treatment in patients. In 2012, most
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SPECT scans were requested in oncology (44%), cardiology (18%) and
endocrinology (17%), followed by pulmonology (8%), nephrology (7%)
and neurology (4%) [150]. Common uses of different radioisotopes in
these domains were already tabulated earlier in Table 2.1.

A common procedure in oncology is the bone scan, usually with 99m
Tc-

labeled methyl diphosphonate (HMDP) as a tracer. MDP will mea-
sure aspects of bone metabolism or remodeling, as it is taken up by
osteoblast cells. It can therefore be used to identify osteoblastic lesions.
As a competitor to fluorodeoxyglucose (FDG) PET, MDP SPECT is for
example superior in detecting bone metastases in breast cancer [151].
A different example of a tracer used in oncology is 111

In-pentetreotide
(Octreoscan R�). It will concentrate in tumors containing a high den-
sity of somatostatin receptors, such as neuroendocrine tumors [152], or
medullary thyroid carcinoma [153].

In cardiology, considerable value is added by SPECT imaging, by com-
paring the blood perfusion at rest to the perfusion during exercise. To-
gether with cardiac PET, it is considered a safe, convenient and reliable
procedure to identify and risk-stratify patients with suspected coronary
artery disease [154] and to find out if a heart attack has occured, e.g. by
using 99m

Tc-sestamibi [155], 99m
Tc-tetrofosmin [156] or thallium-based

tracers [157].
Renal applications commonly use 99m

Tc-dimercaptosuccinic acid
(DMSA) and 99m

Tc-mercaptoacetyltriglycine (MAG3), which can eval-
uate kidney function [158, 159]. 99m

Tc-DMSA is for instance an im-
portant indicator of the tubular functioning after the patient received
radioimmuno-therapy with 90

Y to treat neuroendocrine malignant dis-
ease [160]. Damage caused by the renal excretion of the �-emitting 90

Y

can then be detected [161].
To localize infections, the current tracer of choice is 99m

Tc-
hexamethylpropyleneamine-oxime (HMPAO)-labelled autologous leuko-
cytes, although using 111

In-oxine-labelled leukocytes is also a possibil-
ity [162].

Finally, a last example is the use of brain SPECT imaging. It can
provide 3D perfusion and metabolic information about the brain tissue.
Brain perfusion SPECT is for example used in the diagnosis of demen-
tias, or for the presurgical detection of the epileptic focus in patients
with complex seizures refractory to medical treatment [163]. However,
PET has been shown to be more sensitive than SPECT for Alzheimer’s
Disease, with a greater predicting outcome as a result [164]. Although



2.3 Single Photon Emission Computed Tomography (SPECT) 81

the choice between PET and SPECT seems to favor PET for the diagno-
sis of dementia, few clinicians will have the choice between the two [164].
SPECT is still a credible alternative to FDG-PET, thanks to its higher
availability and lower cost [165].

Quantitative SPECT has its own, specific applications or potential
uses, with a typical example the personalized therapy for oncological
applications. Generally, the use of quantitative SPECT will allow the
monitoring of serial scans to assess disease progression or the response
to treatment, e.g. with 67

Ga in infections [166]. It can also enable
true personalized planning and treatment, by using an isotope to deliver
patient-specific targeting and plan patient-specific dosimetry, before us-
ing a monoclonal anitbody, peptide, receptor or radionuclide therapy to
treat the patient. One such example is to acquire SPECT images with
123

I to determine the patient-specific dose that will be delivered by 131
I

when it is used to ablate differentiated thyroid carcinoma with its beta
decay mode [167]. 131

I is not routinely used for imaging by itself because
of its poor properties for imaging with gamma cameras [168].

More specific applications can be found in myocardial perfusion, where
quantitative SPECT would allow the determination of regional myocar-
dial blood flow in mL.100 g�1.min�1 [169]. In 99m

Tc bone scan studies,
metabolic bone disease could be quantitatively measured [170]. A com-
prehensive review of applications benefiting from quantitative SPECT
can be found in Bailey et al. [166].

2.3.8.2 Micro-SPECT

The application of SPECT in preclinical models of diseases allows us
to non-invasively and longitudinally investigate dynamic biological pro-
cesses at a molecular and cellular level [171]. Unsurprisingly, micro-
SPECT is predominantly used to study disease progression and the bio-
logical effects of novel drug candidates on these models. It can also assist
in finding disease biomarkers, from which new pharmaceutical therapies
can be designed.

A large number of applications can be found in cardiovascular imaging,
e.g. to study myocardial function and the influence of several vascular
disorders. ECG-gated micro-SPECT studies can yield accurate measure-
ments of left ventricle volumes and ejection fractions in rats [172] and
mice [173], or they can be used to visualize necrotic tissue during my-
ocardial infarction, e.g. to evaluate the anti-necrotic effect for ischemic
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heart disease.
Another relevant cardiovascular application is the characterization of

the formation and prognosis of atherosclerotic plaques, for example by
using radiolabeled Annexin which targets apoptotic macrophages [174].
Here, a high spatial resolution is needed to image the small plaques in
the motile vessel.

A different application is the imaging of stem cells, to track the en-
graftment of transplanted cells by labeling the stem cells with e.g. 111

In-
oxyquinoline before transplanting the stem cells in rat models of myocar-
dial infarction [175].

For oncology, the basic biological process, tissue pharmacokinetics and
pharmacodynamic responses to treatment can be investigated in preclin-
ical models of human tumors. Here, the receptors that are overexpressed
in cancer cells can be imaged, e.g. by using 111

In-Octreotide to image the
somatostatin receptors overexpressed by some non-small lung cancer car-
cinomas. A different example is to find the reasons why 111

In-Capromab
suffers from poor delivery in prostate cancer [176].

In neuroimaging, preclinical models can be used to help in understand-
ing the pathophysiology of central nervous system disorders, such as neu-
rodegeneration, drug abuse, and testing therapeutic strategies. SPECT
has for example been applied to study Parkinson’s disease, by imaging
the presynaptic dopamine transporter (DAT) activity which regulates
the synaptic dopamine. This can be investigated with 123

I-FP-CIT as
a DAT radioligand in rat models [177], mice [178], or even the common
marmoset monkey [179].

Lastly, preclinical imaging has a key role in drug development [180].
Here, new drugs are radiolabeled and imaged with SPECT in order
to determine its distribution and pharmacokinetics, to determine drug
safety [181, 182], and to validate imaging biomarkers [180].

2.4 Hybrid SPECT/CT imaging

2.4.1 Principle of multi-modality imaging

Hybrid imaging is defined as the fusion of two or more imaging technolo-
gies into a single, new form of imaging [183]. Typically, the goal is to
achieve an imaging modality which is more powerful than the sum of its
components. The most interesting combination is one where molecular
processes can be viewed in vivo within a broader anatomical context.
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Several multi-modal combinations have been proposed to achieve this
synergy: SPECT/CT [184] and PET/CT [185] are the best known com-
binations. PET/MRI [186, 187] has recently become available, while
SPECT/MRI is still being developed [188].

In first reports, both modalities were combined by acquiring each
dataset on a completely different single-modality system. It was then
necessary to co-register both reconstructed images, in order to combine
the information into one image [189]. The first and simplest forms of
image registration used were rigid-body translations and rotations, as-
suming body parts did not move relative to each other while moving the
patient between both system. It was soon apparent that the situation
is more complicated. The geometrical relationship between anatomical
regions can be affected by the shape of the patient tables used in both
systems, the orientation of the body and limbs during each acquisition
procedure, as well as the respiratory state of the patient [190]. This is
a problem especially for functional imaging of the thorax or abdomen,
because there are no anatomical landmarks available in the FOV that
can be correlated with anatomic reference points [191]. More advanced
registration methods do exist, but in most cases this remains challeng-
ing [192], and these methods should be avoided.

In 1995, Blankespoor et al. merged the anatomical and the functional
imaging subsystems inside one single device to improve the correlation of
two image modalities, based on the work of Hasegawa et al. in the 1980s
and 1990s [193–195]. In this so-called dual-modality imaging device, the
patient is not removed from the scanner and both imaging modalities
are acquired sequentially by automatically moving the bed from one
part of the system to a second. In small-animal imaging, this technique
further evolved into true dual-modality systems, where both modalities
are located on the same gantry [83]. Now the animal does not need
to move between both, removing the need to register between two bed
positions.

It is important to note that multi-modality imaging is more than the
sum of its components. Correlations between functional information
and anatomical landmarks is only one benefit of multi-modality imag-
ing [196]. Firstly, it gives more confidence in diagnostics: there is an
increase in the sensitivity as well as the specificity of diagnostic find-
ings [197]. Uptake on a functional image will give more confidence that
a nodule seen on a CT image does have diagnostic value. Secondly,
there is a lot of information to be gained by imaging before and after
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therapy. Some nodules may still be visible post-therapy on anatomic im-
ages, though they may not be responding on a functional level, informing
us that the therapy is working.

2.4.2 Challenges in SPECT/CT

A first limitation of SPECT imaging is the attenuation of � photons.
Due to photoelectric absorption and Compton scattering, the attenua-
tion will lead to projection images with lower intensity than the expected
intensity. In Section 2.3.4 it was discussed how transmission-based mea-
surements may be used to measure the attenuation using a different �-
emitter [118] for single SPECT. In SPECT/CT the measured CT images
can be used, as they form a direct representation of the tissue attenua-
tion.

However, the CT-based attenuation values are measured by a polyen-
ergetic X-ray spectrum, with energy different from that of the monoener-
getic �-rays of the radioisotope used during the SPECT acquisition. This
means that the reconstructed attenuation values need to be rescaled to
match the radioisotope energy. Different scaling schemes have been pro-
posed [198], but these do not take into account the K-edge of contrast
media often used to visualize the vascular system on the CT images.
Furthermore, effects such as respiratory-induced misregistration of emis-
sion and transmission data, truncation artifacts due to FOV differences,
metallic implants, beam-hardening, and X-ray scatter need to be con-
sidered, as these will considerably influence the apparent CT values.
Inaccurate CT values will lead to inaccurate attenuation information,
which will under- or over-correct the SPECT data.

In small-animal SPECT/CT, issues with the co-registration between
SPECT and CT have been handled by placing the SPECT and CT sub-
systems on one single gantry, to reduce the need for bed translations,
which is a major source for animal movement. This is also possible
thanks to the common use of cone-beam detectors in micro-CT, which
does not need bed translations due to its large axial FOV.

The major challenge for preclinical SPECT/CT is how absolute quan-
titative SPECT data can be obtained, and what the general accuracy
will be of such methods. Not only is there the issue of attenuation and
scatter, this is also complicated by the low sensitivity of high-resolution
pinhole-based systems. Several correction schemes have been proposed
to correct for the image degrading effects, but it is still unclear what the
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achievable accuracy and precision is in vivo micro-SPECT/CT.

2.4.3 Applications

SPECT has become more and more used especially when combined with
CT [197], as it allows to solve some challenges of SPECT in a more
straight-forward way. Nevertheless, in 2012, SPECT/CT only accounted
for 19% of the total number of nuclear medicine scans, when PET scans
are not taken into account [150].

SPECT/CT lends itself to a wide variety of useful diagnostic appli-
cations. The role of SPECT/CT is continuously growing in oncology.
Research has demonstrated diagnostic accuracy improvements in a 131

I

scan of differentiated thyroid cancer, because cervical lymph node metas-
tases can now be better distinguished from residual thyroid tissue, lung
can be distinguished from mediastinal metastases and bone can be distin-
guished from soft tissue metastases [199, 200]. This resulted in an overall
21 to 73.9% increase in diagnostic accuracy, led to the modification of
therapeutic management and avoided unnecessary treatment [167].

In neuroendocrine tumors (NETs), dual-modality imaging is undoubt-
edly necessary. The primary tumor is usually small and may evade de-
tection on conventional CT imaging [201]. With functional imaging, e.g.
imaging of somatostatin receptors (SSR) subtypes 2 and 5 with 111

In-
Octreotide, a sensitivity of 80 to 100% can be achieved in localizing
NETs. At the same time, it helps identify patients who may benefit from
radiolabelled somatostatin analogue therapy [201]. When anatomical
data is used to exclude physiological tracer uptake from the SPECT data,
localization of uptake improved in five of eight patients [202] with NETs.
Other NETs can be imaged using 123

I or 131
I-labelled metaiodobenzyl-

guanidine (MIBG), with an improved identification of the physiological
tracer uptake in 74% of the cases [203].

SPECT/CT also has its benefits in non-oncological disorders, such as
benign bone diseases, to localize infection and inflammation, identify
gastroinestinal bleeding, pulmonary embolisms, coronary artery disease,
splenosis, and even neurodegenerative disorders [167].

2.5 Summary

In this introductory chapter, the background concepts of medical imaging
were explained. A broad overview of medical imaging was given, followed
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by a more detailed description of X-ray CT and SPECT in particular.
Both the CT and SPECT sections contained discussions on some im-

portant limitations encountered with those imaging modalities.
In CT, X-ray radiation dose is a major challenge. This is important in

both clinical as well as preclinical studies, where patients are scanned a
number of times to evaluate longitudinal progression. It is therefore im-
portant to reduce the radiation dose, without affecting the image quality.
Chapters 3, 4 and 5 discuss how reducing the number of projection views
can lead to an 8-fold decrease in radiation dose in micro-CT, by using
regularized iterative CT reconstruction.

In SPECT, the major challenge is absolute quantification. Quanti-
tative data enables measuring of dose-response curves for experimental
drugs, or the evaluation of tumor regression or tumor recurrence after
novel treatments. However, to achieve absolutely quantitative SPECT
data, all image degrading effects should be corrected for. Quantitative
SPECT reconstruction with such correction techniques is the topic of
Chapter 6 and Chapter 7.



Chapter 3

Replacing vascular corrosion

casting by in vivo CT

imaging to build 3D

cardiovascular models of mice

Before delving deeper into how the X-ray radiation dose can be de-
creased, we first need to define a specific task. This will allow us to
quantify the influence of low-dose acquisitions on the task outcome. In
this chapter we investigate if and how vascular corrosion casting, the
golden-standard to build 3D cardiovascular models of mice, can be re-
placed by in vivo contrast-enhanced micro-CT imaging. This would al-
low the use of micro-CT imaging for longitudinal research, beneficial for
the research into the progression of vascular diseases.

3.1 Introduction

Mouse models can provide valuable information about the development
and progression of cardiovascular pathologies within a reasonable time-
frame. Two such pathologies are the aortic aneurysms and aortic dissec-
tions. An aorta aneurysm can be described as an abnormal dilatation of
the aorta. Aortic dissection is the splitting of layers of the aortic wall,
giving rise to a secondary cavity, which results in very complex aortic
lesions. Both diseases might lead to a mechanical failure with rupture of
the aorta, most often leading to the immediate death of the patient. The
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incidence of aortic aneurysm is 10.4 per 10000 patient-years [204], i.e.,
in a group of 60 year old people 6.2% will have developed an aneurysm.

There are still unresolved issues with respect to aortic disease at the
level op pathophysiology and pathogenesis, its diagnose, and its treat-
ment. Previously, hemodynamic factors and blood flow patterns have
already been linked to the genesis and development of atherosclerotic
cardiovascular disease [205, 206] and to the growth and progression of
aneurysms [207]. The study of blood flow patterns inside the aorta is
often done using Computational Fluid Dynamics (CFD), both in ani-
mal and in human models, in an attempt to elucidate the role of these
biomechanical actors/stimuli in the early disease stages. An important
parameter in this respect is the tangential shear force exerted by blood
moving along the axis of flow (called wall shear stress or WSS). It would
be very useful if realistic CFD simulations could be performed on (geneti-
cally modified) animal models to investigate the development of the cited
cardiovascular pathologies over time. Such genetically modified mice can
be used to study abdominal aortic aneurysm formation [208, 209], but
also cerebral aneurysm formation [210], atherosclerosis [211–213], vascu-
lar remodeling [214], angiogenesis [215], or even specific genetic disorders
such as Marfan and Loeys-Dietz syndrome [216–220].

In order to perform CFD simulations, reliable 3D computer models of
the cardiovascular system are needed. Most studies that performed CFD
simulations in mouse models in the past created a geometrical model by
ex vivo micro-CT scanning of a plastic replica of the arterial system [112–
114] (Fig. 3.1), obtained by vascular corrosion casting [221]. This tech-
nique certainly results in high quality models [112]. However, it requires
sacrificing the animals and thus excludes follow-up studies, eliminating
the possiblity to gather longitudinal information of disease progression.
When the influence of the local hemodynamics on disease development
are investigated, follow-up experiments are definitely required in order
to compare the hemodynamic situation pre and post disease develop-
ment [222]. Alternative in vivo imaging techniques permitting scans of
the same animal at multiple time points are clearly indispensable.

In vivo imaging with micro-CT might be a good alternative to vascular
corrosion casting. Unfortunately, it still suffers from the challenges dis-
cussed in Section 2.2.7.3. A first challenge is the limited soft-tissue con-
trast in X-ray based techniques. Iodine-based contrast agents are used
in human studies to aid in the differentiation between the aorta and its
surrounding tissues, thanks to the K-edge effect (see Section 2.1.3). How-
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Figure 3.1: Plastic replica of the murine aortic arch with its branches (cour-
tesy of Bram Trachet).

ever, traditional contrast agents developed for human use cannot be used
preclinically. They are hydrophilic and have a low molecular weight, re-
sulting in fast blood elimination via the kidneys [89]. Combined with the
fact that micro-CT scanners typically have a total acquisition time of at
least 5 to 10 minutes, these agents are not useful for preclinical imaging.
Several contrast agents have been developed to combat this problem.
One agent is Fenestra VC-131 R� (Advanced Research Technologies Inc.,
Saint Laurent, Canada), specifically developed for cardiovascular imag-
ing in mice. It shows a slow uptake in the liver, enabling a sufficient time
period of contrast-enhanced imaging of the blood before the contrast is
cleared through the renal system.

The goal of the study presented in this chapter is to investigate whether
reliable and accurate 3D geometrical models of the murine aortic arch
can be constructed using in vivo micro-CT with such a novel contrast
agent. First the contrast agent, micro-CT protocol and vascular cor-
rosion casting technique will be explained in more depth. Then we will
compare geometrical models obtained from both techniques based on the
model diameters, bifurcation angles and geometrical shape of the model.
We will also conduct CFD simulations to investigate the actual influence
of possible changes. This will be followed by a description and discussion
of the obtained results, followed by a conclusion. The specific remarks
made in the discussion and conclusion will form the basis for Chapter 4.
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3.2 Study design

A total of nine 5 to 27 week-old wild-type mice were used in the exper-
iments, with body weights (BW) ranging from 14 to 35 g (Table 3.1).
The animals were anesthetized and scanned in vivo after administration
of the contrast agent. Subsequently they were casted via the abdominal
aorta with 2 ml of Batson’s No. 17 casting solution. The resulting plas-
tic replicas of the arterial system were scanned in vitro using micro-CT.
Both data sets were segmented and used to generate a 3D model, which
was then compared. All animal experiments were approved by the Ghent
University ethical committee (ECD 07/20).

3.3 In vivo micro-CT imaging

All mice were scanned in a trimodal FLEX Triumph-II cone beam CT
scanner (TriFoil Imaging, Northridge, CA, USA) with the following ac-
quisition parameters: 70 kVp tube voltage, 50 µm focal spot, 1184⇥1120

detector pixels of 100 µm pixel size (2x2 binning), 2048 projections over
360� total rotational angle and a 3.5 times magnification. The ideal tube
current was determined by increasing the current until the detector re-
sponse saturated during a blank scan. This current was determined at
180 µA for a 70 kVp tube voltage. The gantry was set to rotate contin-
uously, providing faster acquisition compared to step-and-shoot mode.

This parameter selection results in a 33.81 mm transverse field of view
(FOV), a theoretical spatial resolution of 46 µm and a total scanning time
of 8.53 minutes. The projections were reconstructed with a proprietary
implementation of the analytic FDK algorithm (Cobra EXXIM, EXXIM
Computing corp., Livermore, USA) to a 512x512x512 voxel matrix with
voxel pitch 50 µm.

3.3.1 In vivo: Fenestra VC-131

Fenestra VC-131 binds iodine particles (50 mg/ml) on lipids to ensure
hepatobiliary instead of renal clearance, leading to 4 hours of contrast-
enhanced visualization time. Previous research by Mukundan et al. [87]
have shown that Fenestra VC-131 induced no significant risk on renal
toxicity. However, anecdotal evidence has shown that some measures
are warranted to help prevent dehydration caused by the use of Fenestra
VC-131. The mice therefore received an intraperitoneal (IP) injection of
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100 µL physiological fluid one hour before the start of the experiment
to help the mice hydrating. Furthermore, because small animal feed can
contain minerals which cause slight metal artifacts on abdominal images,
all 9 animals were placed on a diet of cooked yam (sweet potato) 24 hours
before the experiment.

Fifteen minutes after the administration of the contrast agent through
the tail vein with a bolus injection, the animals were anesthetized with
an 8 µL/g IP injection of a mixture of 1.05 ml ketamine (Ketamine 1000,
CEVA Santé Animale, Brussel, Belgium), 0.3 ml xylazine (Xyl-M 2%,
VMD, Arendonk, Belgium) and 3.4 ml physiological fluid. The micro-
CT scans were acquired 10 minutes after inducing anesthesia, as optimal
contrast is achieved approximately 25 minutes after administering this
contrast agent [223]. The 25 minute total delay also reduced the proba-
bility of irregular animal motion due to spasms, which would otherwise
affect imaging quality. The mice were placed on a heated bed (30�C) to
prevent the body temperature decreasing during the scan.

To determine the minimal volume of contrast agent needed to obtain
sufficient contrast for segmentation purposes, we measured the contrast
increase for two volumes: 0.015 ml/g and 0.020 ml/g. Both concen-
trations were suggested by the contrast agent manufacturer [224]. The
mean image noise in a non-contrast baseline image was determined at
24.7 gray values. Administering 0.015 ml/g (Figures 3.2b and 3.2d) con-
trast lead to an increase of 118±2 gray values in the aortic arch, com-
pared to the baseline image (Figures 3.2a and 3.2c). With 0.020 ml/g,
a contrast increase of 175±3 was achieved. According to Rose [225] and
Burgess [226] a contrast increase of 5 times the background variation
should be achieved to allow for segmentation. This means 0.020 ml/g
leads to an unnecessary high contrast and a subsequent extra burden on
the cardiovascular system. We chose to use 0.015 ml/g for the remain-
der of this study based on these findings. This leads to contrast-to-noise
ratio (CNR) of 4.7.

3.3.2 Gating

As was discussed in Section 2.2.7.3, one of the challenges with small-
animal micro-CT is animal movement during acquisition. This result
in inconsistent data between projection views. Several methods exist
to minimize the effect of movement, ranging from adjusting the ac-
quisition protocol [8, 227], to retrospective data processing [228, 229],
to incorporating measured motion signals into the reconstruction algo-
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Figure 3.2: Coronal and transverse micro-CT slices showing the difference
between baseline (a and c) and contrast-enhanced imaging (b and d) after
administration of 0.015 ml/g Fenestra VC-131. This leads to an increase of
118±2 gray values in the aortic arch (arrow).

rithm [93, 230].
To investigate if gating would improve our image quality, we used a ret-

rospective respiratory gating method proposed by Ford et al. [228, 231].
This methods requires a region of interest (ROI) selection on the projec-
tion views containing both the diaphragm and the lungs of the animal
(Fig. 3.3). This allows us to compute the centre of mass (CM) in the
ROI per projection. Each projection can then be classified as in end-
expiration or end-inspiration phase according to the position of the CM.
After classification of all projections, end-expiration was found in 820
projections. These were reconstructed and compared to the ungated
reconstructions from the full 2048-view dataset. As reconstruction al-
gorithm an FDK implementation including non-uniform weighting was
used [232, 233], because the gated views are not uniformly spaced any-
more over 360�.
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Figure 3.3: Projection view with ROI (white rectangle) in which the centre
of mass can be calculated for retrospective respiratory gating.

A B

C D

Figure 3.4: Comparison between ungated slices (a and c) and retrospective
respiratory-gated slices (b and d) for mouse 5 (Table 3.1). All slices are shown
in the same window level and size. The gated images show better delineation
of the diaphragm and the ribs but no significant image quality increase in the
cardiovascular system.
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Figure 3.4 shows a comparison between ungated slices (Figures 3.4a
and 3.4c) and retrospective respiratory-gated slices (Figures 3.4b
and 3.4d) for mouse 5 (Table 3.1). All 4 slices are shown with the same
window level and size. The gated images show no improved delineation
of the cardiovascular system.

The increase in image noise and streaking artifacts due to the lower
angular sampling decreases the image quality more than it is improved
by improved delineation of different structures. Therefore we did not use
any respiratory gating in the remainder of this study.

3.4 In vitro vascular corrosion casting

For each of the 9 animals scanned in vivo, the goal was to make a corro-
sion cast 1 week after the CT acquisitions, to evaluate the animal health
due to the use of the contrast agent. When the health of the animal
did not permit waiting one week, the animal was euthanized and casted
as soon as possible to limit animal suffering. Batson’s No. 17 (Poly-
sciences, Inc., Warrington, USA) was used as casting agent [234]. This
agent causes little shrinkage, can still fill the smallest vessels and delivers
mechanically stable casts.

First, the mice were euthanized by an inhaled CO2 overdose. After
making an abdominal incision, the abdominal aorta was located. Special
care was taken to prevent rupture to vessels or organs, as this would
greatly reduce the quality of the cast. A catheter was then placed in
the abdominal aorta in retrograde direction and the arterial system was
perfused with a ready-made mixture of Batson’s No. 17. Complete
filling of the vascular system was indicated by the appearance of red
intravascular polymer shining through the skin of the toes and nose [235].
After the perfusion the cadaver was placed in a cold water bath to avoid
tissue damage that might occur during the exothermic curing process.

After waiting for 30 minutes, the preparation was placed in a bath
containing a macerating solution of 20% KOH at room temperature.
Three days later the left-over structure was removed from this bath, the
cast was cleaned in distilled water and dried. An example of the result
of this procedure is shown in Figure 3.5.

3D models were generated from each cast by using the same micro-CT
scanner as used in the in vivo experiments, with parameters: 2x2 binning,
2048 projections, 70 kVp (180 µA) and magnification factor 3. Each cast
was put in an acrylic tube to prevent the cast from moving during the
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Figure 3.5: The result of the vascular corrosion casting procedure. The lungs
and liver can be clearly identified, alongside the vascular system and some
bones. The plastic cylinders were used as an identification tag.

scan due to airflow, which leads to a slightly lower magnification to allow
the complete tube to be imaged in the FOV.

From the 9 mice, high-quality casts were obtained for only 4 animals:
mice 5, 6, 7 and 8 listed in Table 3.1. Casts from the other mice were
not filled completely and contained air bubbles, which made comparison
impossible. Two animals died and were quickly cast before the blood
would coagulate. Five out of 9 animals were sacrificed prematurely to
limit animal suffering when their health was found to be declining.

While dissecting the mice in preparation of the casting procedure, some
small effects were noticed: the liver was colored more white than usual,
some lymph nodes were opaque white and we noticed some mice had
cornea edema. We believe this to be caused by the contrast agent, which
is also colored opaque white.

3.5 Segmentation

Each CT dataset (both from the in vivo and the casting procedures)
was segmented manually in the Mimics (Materialise, Leuven, Belgium)
software package. For the in vivo datasets, each part of the aortic arch
(ascending aorta, aortic arch with its branches and the descending aorta)
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Cast (mm) In vivo (mm) Difference (%)

AA 1.08±0.18 1.43±0.13 34.91±21.03 *
BT 0.55±0.12 0.78±0.10 44.13±52.46
AoA 0.93±0.15 1.24±0.11 35.05±22.11 *
CCA 0.40±0.14 0.51±0.02 44.16±59.29
SA 0.45±0.10 0.62±0.07 44.40±53.53
DA 0.87±0.19 1.13±0.18 30.87±14.08 *

Table 3.2: Aortic arch diameters (mean ± SD). AA: ascending aorta. BT:
brachiocephalic trunk. AoA: aortic arch. CCA: common carotid artery. SA:
subclavian artery. DA: descending aorta. *: significant difference (p < 0.05)

was manually thresholded in a first segmentation step, using different
thresholds for each part. This allows a more accurate segmentation, as
every part has a distinct image value on the reconstructions. This is not
necessary for the casted datasets, thanks to the high contrast between
the cast and the surrounding air.

When the resulting segmentation was judged sufficiently accurate, a
3D geometric model was built according to this segmentation mask. This
3D model was smoothed in Mimics Remesher (Materialise, Leuven, Bel-
gium), to remove unphysiological bulges and dents while care was being
taken that no artificial shrinking of the model occurred. This resulted in
a sufficiently smooth and simple 3D model usable for CFD simulations.

3.6 Comparison

The actual comparison between both techniques was computed in 4 dif-
ferent ways: by aorta diameter, bifurcation angles, a 3D distance metric,
and by comparing the results of CFD simulations.

3.6.1 Aorta diameters

We determined the diameter of the 3D models on the 6 different locations
illustrated in Fig. 3.6: ascending aorta, descending aorta, left subclavian
artery, left common carotid artery, brachiocephalic trunk and the mid-
dle of the aortic arch between the left common carotid artery and the
brachiocephalic trunk. Each diameter was calculated as the mean over
a large area.
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Figure 3.6: Aortic arch anatomy and the locations of diameter measurements

The aorta diameters obtained from the 3D models generated from the
scanned casts and the in vivo images are listed in Table 3.2. The diam-
eters show a significant difference (Student’s t-test, p < 0.05) between
in vivo and cast models. Using Fenestra VC-131 this difference amounts
from 30% up to a 44% increase in diameter. The aortic arch diameters
(AA, AoA and DA) show an overall 33.61±17.67% difference, while the
three bifurcation diameters (BT, CCA and SA) exhibit a larger difference
of 44.24±49.65%. The large difference and variation on the bifurcation
diameters is caused by one dataset (mouse 7 in Table 3.1), where the
in vivo segmentation was on average 118% larger than the segmentation
of the cast. When the data obtained from mouse 7 is not taken into
account, the difference decreases from 44.24±49.65% to 16.54±16.28%.

Figures 3.7 and 3.8 respectively depict a regression plot and a Bland-
Altman plot obtained after pooling the aortic diameters. The Pearson
correlation coefficient equals 0.91 for the diameters (standard error of
the estimate (SEE) 0.12 mm), showing a good correlation between both
measurement methods. The Bland-Altman plot shows that the variation
does not depend on the diameter of the vessels. However, there is an
absolute systematic bias of 0.22 mm (p < 0.001).

3.6.2 Bifurcation angles

As second metric the bifurcation angles were considered. These were
measured in the plane of the bifurcation as the angle between the cen-
terline of the side branch and the centerline of the aortic arch. This
provides insight in the angle and resistance encountered by the blood
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Figure 3.7: Regression plot for the pooled aortic arch diameters. Diameter
SEE equals 0.125 mm.
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Cast (�) In vivo (�) Difference (%)

BT 136.24±6.70 127.37±5.58 -6.37±4.78
CCA 119.56±1.64 106.76±2.47 -10.58±6.39 *
SA 103.07±5.36 87.29±2.80 -14.32±13.75
AA–DA 27.98±4.88 34.79±2.63 31.52±28.30

Table 3.3: Bifurcation angles (mean ± SD). BT: brachiocephalic trunk. CCA:
common carotid artery. SA: subclavian artery. AA–DA: ascending aorta–
descending aorta. * : significant difference (p < 0.05)

flow in moving from the aortic arch to a side branch.
The bifurcation angle measurements are listed in Table 3.3. The angles

show a significant difference (p < 0.05) between the casts and the in vivo
models only for the common carotid artery angle.

Figures 3.9 and 3.10 respectively show a regression plot and a Bland-
Altman plot obtained after pooling the aortic angles. The Pearson corre-
lation coefficient equals 0.97 (SEE 11.13 degrees), showing a good correla-
tion between both methods. The Bland-Altman plot shows a significant
(p < 0.01) absolute systematic bias of 7.66�.
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Figure 3.9: Regression plot for the aortic arch angles. Angle SEE equals
11.13�.
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Figure 3.10: Bland-Altman plot for the aortic arch angles. Dashed lines are
the limits of agreement (average ± 1.96 standard deviation of the difference).

3.6.3 3D distance metric

As a third metric a general distance metric between co-registered voxels
on the models was used. First we co-registered every casting model with
the in vivo data from the same animal, and then we used a color code
dependent on the Euclidean distance between both 3D models.

Figure 3.11 compares the general geometry in 3 different view angles
of the 3D model built from mouse 6 using both modalities. Figure 3.12
shows the co-registered models from Fenestra and the casts colored with
a green-red coloring scheme. Blue was used to mark voxels with no
distance difference; red was used when the distance was maximal. These
colors were normalized and the different models can thus be compared.
These results show that the aortic arch geometry of both the 3D cast
and the 3D in vivo model are highly comparable. The descending aorta
region shows the highest difference, due to the descending aorta bending
away.

3.6.4 CFD simulations

Finally we performed CFD simulations on all 3D models to compare
the influence of the imaging techniques on the resulting computed WSS
levels. All CFD simulations were performed as described in the earlier
work of Trachet et al. [112]. In order to quantify the difference in WSS
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Figure 3.11: General geometry of a 3D model generated from the in vivo

dataset for mouse 6: cast model (a) and in vivo model (b).

Figure 3.12: Comparison between co-registered models from Fenestra VC-131
and the casts for mice 5 (a), 6 (b), 7 (c), and 8 (d). A green color code was
used to mark voxels with little distance; red was used when a large distance
was measured. All colors were normalized. The descending aorta region shows
the highest difference, due to the difference in AA–DA angles.
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Figure 3.13: Comparison of the time-averaged WSS distribution for mouse 6
for both a casting (left) and an in vivo model (right).

between the models, spatially averaged WSS (WSS
av

) was computed for
each time-averaged model as well as the 95% WSS value (WSS95%) as
an indicator of the highest WSS values.

Figure 3.13 plots the time-averaged WSS distribution for mouse 6 for
both a casting and an in vivo model. The distribution of time-averaged
WSS over the model surface is very similar: zones with high or low
absolute values occur in the same region for both models. However,
the in vivo models on average show lower absolute WSS values: the
spatially- and time-averaged WSS

av

is 8.20±0.79 Pa for in vivo models
and 10.52±2.52 Pa for the cast models, which is not a statistically sig-
nificant difference. The time-averaged 95% percentile WSS95% was also
not statistically significant different, with 16.55±1.60 Pa for the in vivo
models and 19.35±3.72 Pa for the cast models.

3.7 Discussion

In this chapter, a method was proposed to visualize the aortic arch and
its bifurcations using micro-CT, providing an alternative for vascular
corrosion casting. The resulting 3D geometry models from in vivo scans
are compared to models of vascular corrosion casts and are found to
be an accurate representation: although some sections of the in vivo
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model showed a significant difference to the casted model, no significant
difference was found for the CFD analysis.

Schambach et al. [236] have already used both a blood pool contrast
agent (Fenestra) and a bolus technique with a conventional contrast
agent (Imeron). Their setup was different from ours, with the probe (and
the animal) rotating on the anteroposterior axis. This results in a shorter
acquisition time, but also introduces movement artifacts and higher ra-
diation doses (due to the larger magnification). That study clearly shows
the need to address technical challenges still involved with in vivo micro-
CT imaging of the cardiovascular system in mice. Willekens et al. [223]
used Fenestra and eXIA 160 to enhance liver and spleen contrast in mice,
but did not study the effects on the arterial system or the difference be-
tween in vivo and ex vivo models.

The difference between in vivo and in vitro methods to obtain 3D
models of murine vasculature has not been studied extensively in litera-
ture. Kratky et al. [237] have demonstrated Batson’s No. 17 to induce
a shrinking factor of 16–20%, but did not compare in vitro with in vivo
models. Casteleyn et al. [238] showed that the morphology of 3D models
of the murine aortic arch (obtained using vascular corrosion casting) is
very similar to the one of the human aortic arch (obtained in vivo). An
alternative method to obtain 3D models of the murine arterial geometry
in vivo is MRI imaging. Moore et al. [239] compared this technique to
vascular corrosion casting and also found casts to have smaller diame-
ters and bifurcation angles. However, small animal MRI is an expensive
technique that is not widely available.

Our study shows that retrospective respiratory gating is not neces-
sary to get a high 3D model quality. The ribs and diaphragm are more
clearly delineated, but the difference was not noticeable in the aorta or
the aortic arch. Cardiac gating can be done prospectively, where the
electrocardiogram (ECG) is used to determine if a projection should be
acquired at that specific moment. This requires a very short integration
time on the detector, and an X-ray tube which can be switched on and
off in the order of milliseconds. Leaving the X-ray tube on for the du-
ration of the whole gated scan would deliver a radiation overdose to the
small animal. Such a fast-switching X-ray tube was unavailable to us.

In order to calculate the dose given to the mice, published data was
extrapolated. Carlson et al. [240] used the same micro-CT system and
measured the whole-body dose from a 80 kVp scan with 2⇥2 detector
binning and 1.3⇥ magnification at 1.1 mGy·mAs�1. This dose value



3.7 Discussion 105

should be corrected for our lower tube potential (70 kVp) and the greater
magnification used (3.5⇥).

A complex relationship exists between the radiation dose and a refer-
ence dose at different tube potentials [3]:

dose(x kVp)

dose(80 kVp)

=

⇣
x

80

⌘2.47
. (3.1)

According to Eq. (3.1), the dose at 70 kVp will be reduced by 28%
compared to the dose at 80 kVp.

Next, the extrapolation of the dose for a higher magnification stems
from the effective area of the body irradiated by the X-ray beam. This
area will grow larger by the ratio of both magnification settings (and not
the square of the ratio, because a higher magnification will also decrease
the area of irradiation along the axial axis). This means the dose should
also be corrected by factor 2.7 due to the higher magnification.

Together, both factors lead to a dose rate of 2.13 mGy·mAs�1, or a dose
of 0.196 Gy per scan, delivered only to the thorax. This dose does not
take the influence of the contrast agent on absorbed dose into account.
Because contrast agents cause extra absorption local in tissue, which has
also been proven to cause extra damage to lymphocytes compared to
irradiation when contrast media are absent [241].

It is difficult to determine the influence of this localized dose, because
no conversion factors exist for small animals (see Section 2.2.7). It is
already close to the upper limit of whole-body dose that can be neu-
tralized by a mouse per day (0.25–0.5 Gy according to [63]). Laforest
et al. [242] have shown that total doses of 0.180 Gy can already lead to
tumor growth inhibition in mice, a dose lower than the localized dose
delivered by the protocol used here.

For Fenestra VC-131 the minimal contrast dose needed to obtain suf-
ficient contrast was determined beforehand in a small proof of concept
study. A 0.015 ml/gram contrast dose induces a relatively high strain on
the animals, as this accounts for 25% extra blood volume. The effects
noticed in the liver, eyes and lymph nodes are with a high probability
caused by the use of Fenestra and the high contrast volume, leading to
the high mortality rate. We are now using a different contrast-agent:
eXIA 160 XL (Binitio Biomedical, Inc., Ottawa, Canada). eXIA 160 is
a blood pool contrast agent that contains 160 mg iodine/ml, a concen-
tration 3.2 times higher than in Fenestra VC-131, which leads to a much
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lower injected volume needed (7.5 µl/g). Preliminary results show that
the mortality is indeed much lower than when using Fenestra VC-131,
while preserving image quality.

When comparing the diameters (Table 3.2), a general difference of 30
to 44% was measured. However, the correlation plot in Figure 3.7 and
the Bland-Altman plot in Figure 3.8 show that the diameters of both
modalities are well correlated (r = 0.91). There is no bias for low or
high absolute values of the diameter, only a significant absolute system-
atic bias (0.22 mm) is present. In literature vascular corrosion casts have
been reported to shrink 16–20% [237]. One might hypothesize that our
casts have shrunk more, since the Batson’s solution was injected by free-
hand without manometric control of the injection pressure. However,
according to Hodde [243] this technique gives consistently better results
than injection with an injection apparatus. We therefore hypothesize
that the extra 10 to 20% difference can be attributed to the increase in
arterial pressure due to overfilling the animal during the in vivo scans,
given the high contrast volume administered. One should also keep in
mind that no true single value for the aortic diameter exists, since the
aorta is constantly expanding and relaxing. As we applied no cardiac
gating, we could not determine diastolic dimensions. It makes sense to
state that the diameters obtained in vivo will probably be more represen-
tative of the systolic state whereas in vitro (casting) diameters will be a
better estimate for the diastolic state. The true time-averaged diameter
is most probably a value in the middle between those two. Segmentation
errors also have to be taken into account, as the aortic arch is influenced
by cardiac motion and is thus blurred, leading to small errors in the
segmentation and the resulting 3D model.

When comparing the bifurcation angles (Table 3.3) the difference be-
tween in vivo and in vitro angles is much smaller compared to the differ-
ence in diameters, and is only significant for the common carotid artery.
This small difference indicates that the representation of morphologi-
cal characteristics of the arterial geometry does not differ much between
both imaging techniques. This can also be observed from the good color-
coded agreement between in vivo and in vitro models in Figure 3.12,
and from the correlation plot in Figure 3.9 and the Bland-Altman plot
in Figure 3.10. The angle between the ascending and descending aorta
(AA–DA in Table 3.3) is in good agreement with previously reported
measurements [238].

When comparing CFD results both spatially averaged WSS
av

and 95
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percentile WSS95% are insignificantly lower for in vivo models. According
to Poiseuille’s law theoretical WSS values (in an infinitely long straight
tube) are proportional to blood velocity and inversely proportional to
diameter. Since the in vivo models are larger in diameter than the cast
models but the same velocity is imposed at the inlet, it makes sense
that in vivo models result in lower shear stresses. This is an important
aspect that should be kept in mind when performing CFD simulations
of the blood flow in murine vasculature: even when exactly the same
measured velocity profile is imposed at the inlet of the model, results
can be different depending on the imaging technique used to build the
3D model. With the casting technique, diameters will be underestimated
and WSS will be overestimated. Using in vivo micro-CT, diameters will
be overestimated and WSS values will be underestimated.

Keeping these remarks in mind, our results have shown that contrast-
enhanced micro-CT visualization can be used to build 3D geometrical
models of the aortic arch and the aortic arch bifurcations. Because of the
high mortality due to the use of Fenestra VC-131, we now use eXIA 160
XL as a contrast agent. Both agents can be used to reconstruct reliable
3D models of the cardiovascular system.

3.8 Conclusion

In this chapter we have shown that it is possible to build reliable 3D
geometrical models of the cardiovascular system in mice using in vivo
micro-CT imaging. The in vivo models have significantly larger dimen-
sions than in vitro models based on the same geometry, though still
resulting in insignificantly lower WSS values. The total morphology and
bifurcation angles show only small differences, and the WSS distribution
over the model surface is also very similar. In vivo micro-CT imaging
thus provides a valuable alternative for vascular corrosion casting.

These results will be used as a basis for the next chapter. Although
the study presented here has shown in vivo imaging to be possible, pos-
sibilities for longitudinal scans have only been touched upon. The white-
colored liver, white lymph nodes, and cornea edema were attributed to
the contrast agent. The contrast agent toxicity and high injected volume
can explain why 7 out of 9 mice died prematurely or were euthanized
due to severely declining health. This was already addressed by choosing
novel contrast agents for more recent studies, agents which were unavail-
able at the time of this study. The important limiter is thus the relatively
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high radiation dose in micro-CT. Decreasing this dose is the topic of the
next chapter.



Chapter 4

Regularized CT

reconstruction for dose

reduction

In the previous chapter we have shown how in vivo imaging provides
the same information compared to the ex vivo alternative. Although we
obtained positive results, there is one important limitation: the radiation
dose is too high when multiple scans are acquired longitudinally.

In the current chapter, we will implement a method to reduce the X-
ray dose. This will be achieved by reducing the number of projection
views, which will proportionally decrease the radiation dose. The under-
sampling of the data will lead to image degrading effects, of which the
influence will be minimized by using a regularized iterative reconstruc-
tion algorithm. Because of the relevance for cardiovascular research in
mice, we will validate this approach on the data presented in the pre-
vious chapter and evaluate the influence of the regularization technique
on the segmentation quality.

4.1 Introduction

A major difficulty in longitudinal aneurysm studies is the total number of
scans needed to fully characterize the aneurysm formation process. Be-
cause the onset of aneurysm development is not known and varies greatly
per individual animal, even with animals of the same mouse model, daily
CT scans need to be taken to have images just before and just after the
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start of the formation. Secondly, there is a possibility of aneurysm dis-
section or rupture in a later stage, with the most important information
available only just before the dissection occurs. This information will
be lost because of the dissection, and cannot be gathered afterwards.
Acquiring scans daily over the course of weeks is necessary, but this will
result in a large total radiation dose.

The effects of radiation dose on human subjects were already discussed
previously in Section 2.2.7.1. Unfortunately, little is known about the
potential side effects of the radiation dose in small animals. The effects
of animal strain, age, radiation location and the many measurement pro-
tocols available result in a large number of combinations to study [244].
Nevertheless, Laforest et al. [242] have shown that total doses of 0.180
Gy can already lead to tumor growth inhibition in mice, a dose lower
than the single dose used in the previous chapter. Klinck et al. [244]
showed how weekly exposure to high resolution microCT reduces the tra-
becular bone volume 8 to 20% in skeletally immature BALB/cByJ and
C57BL/6J mice. Others have presented results to the contrary [245].
Nevertheless, using the lowest possible radiation would help remove any
doubt about negatively influenced results [246], as typical X-ray whole
body radiation doses from one 3D micro-CT scan ranges from 0.017 to
0.78 Gy [247], well in the range of the studies described above.

A second issue is the animal throughput. With daily scans, the
throughput needs to be maximized to efficiently plan these studies
amongst others in a preclinical lab. This necessitates fast acquisition
protocols and fast reconstruction algorithms.

A possible solution to achieve higher throughput and lower dose at the
same time is by reducing the number of projection views acquired during
the scan. The acquisition system can then rotate faster, which reduces
the dose-time-product proportionally. If a filtered back-projection (FBP)
type algorithm is used to reconstruct these datasets, the images will show
aliasing artifacts [248] (Section 2.2.5.4), because the view sampling in
few-view CT simply does not comply with the Nyquist-Shannon sampling
theorem. Even though iterative reconstruction algorithms allow for much
more accurate modeling of the acquisition system and physics, streaking
artifacts will not be completely eliminated. Angular undersampling is
a data sampling problem, which is not caused by a physical effect. A
different approach is needed to solve this.
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Figure 4.1: Image and image histogram, together with the gradient image
and its histogram. The number of coefficients needed to represent the gradient
is much smaller than the amount needed to represent the original image.

4.2 Compressed sensing

One of the techniques that have been extensively investigated to solve
the problem of limited data is regularized iterative reconstruction, orig-
inating in the field of compressed sensing (CS).

In a seminal paper, Candès et al. [249] have shown that an image or sig-
nal can be recovered from far fewer samples or measurements than with
traditional methods, i.e. when following the Shannon theorem. This
is made possible by relying on sparsity, the idea that the information
contained in an image may be much smaller than suggested by the im-
age size. CS exploits the fact that many natural signals are sparse in the
sense that they have a concise representation when expressed in a proper
basis [250]. Though this idea was originally developed for sparse inver-
sion of the discrete Fourier transform (DFT), Candès has also shown that
this theory can actually be applied to general linear systems as well [251].

The question is which proper basis should be selected to represent
medical images sparsely. A popular projection is the gradient operator,
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which (in 2D) is calculated as the finite difference per direction:

r
x

(x)(i, j) = x(i, j)� x(i� 1, j) (4.1a)
r

y

(x)(i, j) = x(i, j)� x(i, j � 1), (4.1b)

with i and j pixel indices in the image represented by x. Other possibil-
ities will be discussed in Chapter 5.

By applying the gradient operator to an image, we can obtain an edge
map representing horizontal and vertical edges. This is illustrated in
Figure 4.1, where the gradient image is shown as the sum of r

x

and
r

y

. The reconstructed image has coefficients spread out over the full
width of its histogram, concentrated in two distinct areas. When the
gradient operator is applied, the image is represented by only its edges.
The coefficients are now concentrated much more around what we will
call significant coefficients.

When under-sampled data is reconstructed, the system of equations
will have multiple equally-possible results. No choice can be made
amongst this set of images to determine which image is the best fit for
the measured data: the system of equations is underdetermined. This
is where the CS theory can be of help. The sparse transform can help
selecting that image out of this set which is the least complex, i.e. which
has the least number of significant coefficients.

A popular method which uses the gradient transformation inside CT
reconstruction is total variation (TV) minimization. The TV-norm of a
2D image is defined by the scalar

kxkTV =

X

i,j

q
|r

x

(x(i, j))|2 + |r
y

(x(i, j)|2, (4.2)

with r as defined above. Recovering the ideal image x from an under-
sampled set of measured data y can then be achieved by minimizing the
TV-norm while keeping the constraint of data fitting

ˆ

x = min

x

kxkTV subject to ky �Wxk22. (4.3)

TV minimization has been used before in few-view, limited angle recon-
struction [67, 248, 252–258], algorithm-enabled low dose imaging [259],
and CT image denoising or restoration [260, 261].

The aim of the study presented in this chapter is to investigate whether
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reliable and accurate 3D geometrical models of the murine aortic arch
can be reconstructed using few view in vivo micro-CT acquisitions. By
reducing the number of projection views, both the acquisition time and
the dose will decrease proportionally. With conventional reconstruction
methods this would introduce excessive artifacts and noise in the images.
We will reduce the noise and artifacts using TV minimization. The geo-
metrical models obtained from sparse-view acquisitions will be compared
to models obtained from full-view (high dose) acquisitions of the same
animals.

4.3 Reconstruction methods

We re-used the data of the 4 perfectly-casted mice from Chapter 3. No
additional animal experimental work was conducted. These datasets
were retrospectively subsampled to simulate dose reduction. Seven dis-
tinct datasets were generated from each 2048-view dataset, by removing
all but every n-th projection to obtain datasets with 2048/n uniformly
spaced projection views. In this way, datasets were obtained with 1024,
512, 256, 128, 64 and 32 views over 360 degrees. Based on the dose ex-
trapolation made in Chapter 3, these views correspond to nominal dose
levels of 98, 49, 24.5, 12.25, 6.13 and 3.06 mGy. The dataset with all
2048 projection views (nominal dose 196 mGy) will serve as a reference
dataset to these few-view datasets.

The 4 ⇥ 7 datasets were reconstructed using 3 different algorithms:
FDK, the image space reconstruction algorithm (ISRA, first discussed in
Section 2.2.6.3) and the ISRA with TV regularization (TV-ISRA).

The choice to use the ISRA is based on its fast reconstruction speed
for large datasets. The ISRA algorithm reads the measured data only
once from the hard drive, compared to once at every iteration for other
algorithms. When measured datasets are easily larger than 10 GiB per
scan, it is important to minimize the access to this data to increase the
reconstruction speed.

The implementation of ISRA is easy and straightforward, and is de-
picted as a flow-chart in Fig. 4.2: first the measured data y is back-
projected and stored. Next, the image x

(k) at current iteration k is
forward and back-projected, and the ratio of the back-projected data
and this image estimate is calculated. Finally, the error ratio is used to
multiplicatively update the current image.

This type of algorithm is ideal to reconstruct large preclinical datasets,
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Figure 4.2: Block diagram to show how data flows through ISRA (full lines)
and TV-ISRA (full + dotted)

as the large sinogram y is only used once to calculate the back-projection
of the measured data. From then on, only forward and backward pro-
jections are needed, without comparing to the measured data again in
sinogram space. This also means that one is not limited to working with
the original geometry that was used to measure the data y [40], because
the data is already backprojected into image space. A good choice for
the projection geometry used in the iterations could result in a further
decrease of computational time, e.g. by not using resolution recovery,
or by using multiresolution approaches [262]. We did not employ this
idea however, and used the exact same system matrix throughout the
algorithm.

The regularized reconstruction algorithm is implemented by adapting
the ISRA with a one-step-late (OSL) [132, 263, 264] modification to
incorporate the TV-norm. We based our modification on Lange [263] and
Defrise et al. [264], where TV-minimization was incorporated in emission
and transmission tomography algorithms. In such an implementation,
TV regularization acts as a penalty term, enforcing the sparse image
gradient by adding a penalty to cost function (2.18) proportional to the
TV norm (4.2):

x̂

�

= arg min

x>0

ky �Wxk22 + �U(x). (4.4)
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The TV-ISRA algorithm solves (4.4) with the iteration scheme
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U(x) the partial derivative of the energy function U [263, 265]:
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Here, j is the linear index of the voxel located at (k, m, n) in 3D-space.
The penalty term will force the reconstructed images towards being

uniform between edges, and is thus edge-preserving. Because of the
penalty subtraction the error ratio may become negative. After each
iteration, we set negative elements of x to 0. The degree of regularization
can be varied with one relaxation parameter � > 0. Because the energy
function U is derived before being used, a small positive number ✏ was
added to resolve the discontinuity at zero in the derivative of the TV-
norm.

The dashed lines in Fig. 4.2 represent the TV penalty added to the
ISRA. With an OSL algorithm, the TV-norm is always calculated on the
previous image iteration and is used to change the error ratio for the
next image iteration, hence the one-step-late name.

The implementation of the iterative algorithms was done on the GPU
in CUDA and C++. Figure 4.3 illustrates the forward and back projection
calculations as implemented with CUDA kernels. The forward projector
is implemented using a pixel-driven approach, by connecting a detector
pixel with the spatial location of the X-ray tube and sampling the image
along this ray at spacing �x, the isotropic voxel size. The sum of these
samples is added to the chosen detector element. Each 3D sample can
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Figure 4.3: Illustration of CUDA-based ray-tracing for CT (not to scale).

be easily fetched using the 3D texture interpolation facilities available in
CUDA. All detector elements are calculated in parallel.

The back projector uses a voxel-driven approach, by connecting a ray
from the X-ray tube to the center of an image voxel. The intersection of
this ray and the detector plane is then calculated. The value added to
the image voxel is the 2D interpolated value of the intersection location
on the detector. All image voxels are calculated in parallel. The 2D
intersection interpolation is implemented by using the CUDA 2D texture
interpolation facilities.

The finite size of the focal spot can be easily modeled with this ray-
tracing approach, e.g. by sampling the focal spot size diameter with
multiple starting points of the rays in an approach similar to 7-ray sub-
sampling of the finite pinhole size in SPECT [266]. The ray starting
points are chosen according to a Gaussian quadrature. This corresponds
to calculating a weighted average of 7 forward projections, each with
an X-ray emission point slightly offset from the others. Because of the
increased computational complexity and relatively little benefit if low
magnification is used, the finite size of the focal spot was not modeled
for this study. Furthermore, no ordered subset versions of the algorithms
were used, as convergence would not be guaranteed in that case [38, 267].

To compare the results obtained with ISRA and TV-ISRA with tra-
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ditional results, we will also reconstruct the data with the algorithm of
Feldkamp, Davis and Kress (FDK) [32] with a commercial implementa-
tion (Cobra EXXIM, EXXIM Computing corp., Livermore, USA). As
mentioned before, FDK does not employ any advanced modeling to re-
duce artifacts induced by inadequate view sampling.

All images were reconstructed to a 100 µm voxel matrix. The image
dimensions were determined per animal to always encompass the whole
body. All iterative algorithms were stopped at convergence, which we
defined as kx(k) � x

(k�1)k22 < 0.14. The value of 0.14 was empirically
determined, and leads to about 200 iterations for 2048-view data. For
TV-ISRA, the regularization parameter � was always set to 0.001. This
was selected empirically to provide a good regularization, without overly
smoothing.

4.4 Semi-Automatic 3D Segmentation

In the previous chapter, the segmentation was done manually in the
Mimics software package (Materialise, Leuven, Belgium). The aortic
arch was manually thresholded in a first segmentation step. When the
resulting mask was judged sufficiently accurate, a 3D geometric model
was built according to this mask. This 3D model was then smoothed
in Mimics Remesher (Materialise, Leuven, Belgium) to remove anatom-
ically impossible bulges and dents without shrinking the model. The
result of these operations was a 3D model sufficiently smooth and simple
to be useful in CFD simulations.

Since this manual thresholding approach could lead to subjective re-
sults, in this study we will use a semi-automatic method. To get an
objective quantitative measure, the first steps that would be executed
during manual segmentation were implemented in a semi-automatic fash-
ion. The semi-automatic segmentation results can then be compared to
each other. Although this method does not result in a perfectly seg-
mented aortic arch with inclusion of the carotid arteries and the abdom-
inal aorta, the segmentation result is still representative as a starting
point for further manual editing.

The first step is the definition of a volume of interest (VOI) inside the
aortic arch. The mean value v, standard deviation �, minimum v

min

and
maximum voxel values v

max

are then determined inside this VOI. Next,
simple thresholding is applied to segment the image with voxel values in
the interval [max(v

min

, v � 3�), min(v

max

, v + 3�)].
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Figure 4.4: Transversal and sagittal slices of each automatic segmentation
operation, going from the reconstructed dataset on the left to the final binary
image on the right.

To select the arterial tree the following three steps need to be applied
consecutively:

1. Because noisy voxels may wrongly associate with the arterial tree
in later steps, the segmentation is eroded by 1 pixel (a voxel is
replaced with the minimum value of its 26 3D neighbors).

2. Automatic region growing is started using the aortic arch VOI as
seed, which removes the voxels disconnected by the previous step.

3. The resulting mask is dilated by 1 pixel (voxel value is replaced with
the maximum value of the 26 3D neighbors), in order to regain the
volume that was removed by the erosion operation.

As a last operation, the segmentation is converted to a binary image
and the remaining holes are filled (binary OR operation of the voxel
value with its 26 neighbors). The result of each operation is depicted in
Fig. 4.4 for a full-view, high-dose dataset.

4.5 Analysis

4.5.1 Image Quality

Figures 4.5 and 4.6 depict the images obtained at different few-view lev-
els, corresponding to nominal whole-body dose levels of 196 mGy (Chap-
ter 3), 24.5 mGy, 12.25 mGy and 3.06 mGy. FDK and ISRA lead to
excessive image noise for lower number of views, reducing the visibility
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Figure 4.5: Transversal view of reconstructions for FDK (top row), ISRA
(middle row) and TV-ISRA (bottom row) for different amounts of projection
views. Full arrow points to the aortic arch. Dashed arrow points to the sternum.
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Figure 4.6: Coronal view of reconstructions for FDK (top row), ISRA (middle
row) and TV-ISRA (bottom row) for different amounts of projection views.
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of the aortic arch (full arrow in Fig. 4.5). While TV-ISRA reduces the
streak artifacts considerably when only 256 or 128 views are used, it
does not manage to sufficiently reduce the artifacts when only 32 views
are used. Furthermore, a small loss of spatial resolution can be noted in
all TV-ISRA reconstructions, compared to ISRA without regularization.
This is especially apparent by comparing the sternum in the top right on
the full-view datasets (dashed arrow in Fig. 4.5). On the other hand, the
coronal view in Fig. 4.6 shows that some vessels in the lung can still be
identified at 128-view TV-ISRA, while they are obscured by noise with
ISRA and FDK.

4.5.2 Quantitative comparison

To compare the 3 reconstruction techniques of each few-view dataset
more quantitatively, the full-view reconstruction was first automatically
segmented to obtain a reference segmentation mask. This segmented
model will serve as the gold standard segmentation. ISRA and TV-ISRA
will be compared to the ISRA reconstruction from the 2048-view dataset.
The FDK reconstructions are compared to the FDK reconstruction from
the 2048-view dataset.

All sparse-view segmentations were evaluated based on 3 values: the
amount of correctly classified voxels or true positives (TP), the amount of
not segmented voxels or false negatives (FN) (segmented on the full-view
but not on the few-view reconstruction), and the amount of additionally
segmented voxels or false positives (FP) (segmented on the few-view but
not on the full-view reconstruction).

Fig. 4.7 shows the classification accuracy when the amount of views is
reduced. The error bars represent the standard deviation of the mean
over the 4 mice. TV-ISRA manages correct classification with 2048 and
1024 view datasets, which also holds for ISRA when 1024 views are used.
Starting from 512 views on, a trend of overestimation (higher FP frac-
tion) occurs for ISRA and FDK. This trend is not seen with TV-ISRA,
which remains correct as long as more than 64 views are used. A small
underestimation is always present with TV-ISRA, not seen with ISRA
nor FDK. The FDK reconstruction already shows some overestimation at
1024 projection views, reducing the number of correctly classified voxels.

Fig. 4.8 and 4.9 compare the reconstructions and segmentations of
2048, 1024, 256, 128 and 32 views FDK, ISRA and TV-ISRA on one
transversal slice. The segmented image is color coded, showing white
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Figure 4.7: TP, FP and FN for each algorithm. Note that each plot has a
different scale, which is very small in the case of FN.
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Figure 4.8: Colour coded difference images of one transversal slice through
the aortic arch. Black is reference, white is TP, blue is FP, red is FN.

where there is correct classification (be it as background, or as part of
the arterial tree), blue when there is overestimation and red when there
is underestimation. The black segmentation mask is the reference mask
obtained from the high dose FDK reconstruction for all fewer-view FDK
reconstructions, or from the high dose ISRA reconstruction for all fewer-
view ISRA and TV-ISRA reconstructions.

The FDK reconstructions do not lead to an accurate segmentation,
even when 1024 views are available. The large shape disagreement be-
tween the 2048-view FDK and 2048-view ISRA reconstruction is due
to the much higher noise in the FDK reconstruction, even though the
maximum number of projection views was used.

Both iterative reconstruction methods manage to obtain an accurate
segmentation on the 2048 and 1024 view datasets. There is some dif-
ference, as ISRA tends to overestimate the segmentation volume (blue),
while TV-ISRA both overestimates some voxels while underestimating
others at the same time. When 256 views are used, ISRA tends to over-
estimate considerably, increasing the segmentation volume. TV-ISRA is
more accurate at 256 and 128 views, and overestimates more when the
number of views is further reduced (more blue). Finally, both iterative
methods fail segmentation at only 32 views.
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Figure 4.9: Color coded difference images of a transversal slice through the
heart. Black is reference, white is TP, blue is FP, red is FN.

4.5.3 Diameter and 3D distance

To compare the segmentations in more detail, the aorta diameters and
aorta positions were compared. First a centerline was fitted to the aorta
segmentation mask using the MedCAD module of Mimics. Because this
centerline cannot be calculated when the segmentation still includes parts
of the heart, all masks had to be manually edited to only retain the aorta.
This was done blinded for all datasets. The 2048-view ISRA dataset was
manually edited twice: once to serve as a reference centerline and once
as part of the blinded datasets. The difference between both centerlines
then allows us to investigate the error due to the manual adjustments.

Figure 4.10 illustrates the shape of the resulting aorta segmentation
next to its calculated centerline. No data of FDK reconstructions was in-
cluded in this part of the study, as that data was reconstructed with pro-
prietary software. Careful comparison between those proprietary FDK
reconstructions and our own iteratively reconstructed data showed sub-
voxel differences. This led to a considerable absolute centerline offset,
which does not represent changes due to sparse-viewing artifacts, but is
actually due to misregistration between both software packages.

For each 3D centerline control point, the closest point (in `2-norm
sense) on the reference centerline was searched. The error on the aortic
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Figure 4.10: Front, right and top view of the aorta segmentation mask and
the resulting centerline

diameter was then calculated by averaging the relative error between the
diameter d

ref

of the reference segmentation and the diameter d of the
segmentation in question over each pair of control points, indexed by p:

error =

1

N

NX

p=1

����
dref,p � d

p

dref,p

���� . (4.7)

Each individual diameter was calculated as the best-fit diameter, fit on
the plane orthogonal to the centerline going through the control point.
The offset between both centerlines was calculated by calculating the
average 3D Euclidean distance between this centerline and the reference
centerline for all pairs of control points.

Student’s t-test was used to test the results of different datasets for
significance to the error seen with 2048-view ISRA. As the 2048-view
ISRA results are segmented twice, this allows us to measure the error due
to manual editing to retain the aorta. A significant (p < 0.05) difference
with this error then signifies errors not caused by manual editing.

Table 4.1 contains the relative diameter errors compared to the refer-
ence centerline, which was calculated separately from 2048-view ISRA.
The error for 2048-view ISRA is the error caused by manually adjusting
the segmentation. Although the semi-automatically generated masks
correctly delineated the abdominal aorta, the delineation between the
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views ISRA TV-ISRA

2048 5.10±1.24% 7.22±1.19%
1024 6.56±2.32% 7.97±1.09%
512 13.66±3.37%* 7.59±1.94%
256 - 6.52±1.60%
128 - -
64 - -
32 - -

Table 4.1: Comparison of relative aorta diameter errors (mean error ± SD,
n = 4). * : Significance by comparing to 2048-view ISRA (p < 0.05). Manually
nonadjustable data denoted with -.

heart and descending aorta was not always that clear. This means that
the heart and descending aorta could not always be separated manually
without a doubt. These datasets were not included in the comparison.
Using 512 views with ISRA leads to a significantly larger diameter error
(p < 0.05) than for 2048-view ISRA. The mean aorta diameter seen on
the reference segmentations is 1.2 mm. The 13.7% error for 512-view
ISRA is thus equal to a difference of 164 µm. When TV is used to re-
duce the noise and image artifacts, the diameter errors do not change
significantly, even when only 256 views are used.

Table 4.2 details the centerline distance between the different methods.
Again, the distance for 2048-ISRA is the distance caused by manually-

ISRA TV-ISRA
views distance (mm) distance (mm)

2048 0.046±0.011 0.064±0.014
1024 0.054±0.009 0.075±0.022
512 0.059±0.002 0.070±0.014 *
256 - 0.065±0.008 *
128 - -
64 - -
32 - -

Table 4.2: 3D Euclidean distance between centerlines (mean ± SD, n = 4).
* : Significance by comparing to 2048-view ISRA (p < 0.05). Manually nonad-
justable data denoted with -.
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adjusting the segmentation to enable the centerline calculations. When
fewer views are used with ISRA, the centerline offset does not change
significantly. However, this does not hold for 512-view and 256-view
TV-ISRA, where a significant (p < 0.05) different distance can be found
compared to the distance expected from adjusting the segmentation man-
ually. The highest error can always be found at the top of the aortic arch,
where the centerline calculation is influenced by the carotid arteries.

4.5.4 Computational complexity

Fig. 4.11 plots the number of iterations needed to reach the stopping cri-
terion and the total reconstruction time (logarithmic scale) for both iter-
ative algorithms in function of the number of used projection views. As
a reference, the total time needed for FDK is also included in Fig. 4.11b.
Our implementation ran on one Intel Xeon E5620 core (2.4 Ghz) with
32 GB RAM memory, interfacing with one nVidia Tesla M2070 GPU.

The usage of TV regularization leads to a slow-down, doubling the
total reconstruction time needed at 2048 views for TV-ISRA compared
to ISRA. This is due to the overhead of calculating the TV per iteration.
When less than 256 views are used, this slow-down will be out-weighted
by the guaranteed and faster convergence of the algorithm, which means
much less iterations are needed to reach the stopping criterion. For TV-
ISRA, the number of iterations needed is independent of the number of
projection views and remains constant around 235 ± 13 iterations. At
128 projection views or less, TV-ISRA thus leads to a faster solution
compared to ISRA. At 128 views, the reconstruction time for TV-ISRA
is already half the time needed by ISRA.

4.6 Discussion

In this chapter, we used the segmentation accuracy as a metric to de-
termine if regularized CT can be used to segment the aortic arch and
connected vessels in few-view datasets. Based on the results presented,
we found that 256-view acquisitions can result in comparable segmen-
tations as full-view acquisitions, as long as TV regularization is used.
This results in an 8-fold reduction in X-ray dose, and an 8-fold shorter
acquisition, which leads to a considerable increase in throughput when
multiple studies need to be performed on the same day. Using fewer
views without using regularized image reconstruction will lead to errors
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Figure 4.11: Reconstruction iterations and total time needed to reach stop-
ping criterion.
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in the vessel diameters. Regularized reconstruction on the other hand
will keep the diameters at the correct size. Although a significant ge-
ometry displacement may occur, it is generally smaller than 0.075 mm,
which is smaller than the reconstructed voxel size.

FDK is currently used the most in preclinical practice due to its fast
reconstruction time and because it is commonly the only option offered
by the system vendor. However, this comes at a cost, as the segmen-
tation quality is already negatively influenced even at 1024 views. In
contrast, iterative reconstruction is much more robust to dose reduction.
Non-regularized ISRA already shows its benefits: it can lead to a 2-fold
decrease in dose compared to FDK, or even a 4-fold decrease if a small
change in diameter is acceptable.

Although the accuracy of TV-ISRA is very high for high-dose data,
both under and over estimation can be noticed around the aortic arch
(Fig. 4.8). This agrees with the diameter loss and the sub-voxel displace-
ment of the centerline. We hypothesize that this is due to resolution loss
at the edges. However, this effect was not a limiting factor for our task.

In this study, only a reduction of projection views was employed to
reduce the total image dose, as this is the only method retrospectively
available. However, other dose reduction methods exist in the clinic [65].
Of these clinical methods, reducing the tube current is the only viable
option in preclinical systems. The worse photon statistics will result in
an increase in image noise, without inducing the streaking artifacts as
encountered in sparse-viewing. We expect that using TV regularization
will also result in accurate segmentations for those data sets.

TV reconstruction is expected to be useful in many of today’s pre-
clinical studies for higher throughput and dose reduction. Examples are
bone imaging to assess bone density during fracture healing [106], bone
resorption, remodeling and regeneration [107], bone neoplasms [268],
and bone influenced by metabolic disorders such as osteoporosis [269].
Because of the piecewise constant nature of the bone and surrounding
tissue, these applications are very suited for TV based reconstruction.
Additionally, these studies primarily require high-resolution micro-CT
imaging and thus a high X-ray dose, making them a good candidate
for dose reduction. Other applications may include preclinical PET/CT
and SPECT/CT studies, which utilize the CT information for atten-
uation correction [118], partial volume (PVE) correction [135], and as
an anatomical landmark (VOI selection). Currently the same CT im-
age is used as input for these 3 methods. Especially attenuation cor-
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Figure 4.12: Jagged body-contour edge with TV-based reconstruction.

rection would be a good candidate for ultra-low-dose micro-CT scans.
Although applying TV regularization on 32-view data leads to an inac-
curate segmentation of the vessels, it does manage to obtain some visual
quality (Fig. 4.5 and 4.6). Such images might still be useful for attenu-
ation correction in small animals. These low-dose acquisitions could be
co-registered with one higher dose acquisition to generate all necessary
information in longitudinal studies.

4.7 Conclusion

In this chapter we determined the minimum number of projection views
needed to accurately segment the aortic arch and its connected vessels.
We found that the same segmentation quality can be obtained as with a
high number of views when TV-ISRA is used with a minimum of 256 pro-
jection views. Because a decrease in projection views linearly decreases
the X-ray dose, an 8 times decrease in X-ray dose and acquisition time
can be achieved. For the system used here, this corresponds to a dose of
24.5 mGy per thorax scan, or a dose rate of 0.27 mGy·mAs�1.

We have now solved one of the challenges concerning in vivo micro-
CT imaging: the longitudinal accumulation of dose. We successfully
decreased the dose as low as possible without influence for this specific
task. The analysis done in this chapter can easily be repeated for other
tasks as well (e.g. for trabecular bone analysis [108]) to determine the
influence of a lowered dose on the specific task.

Although the reconstructed images were of sufficient image quality for
the task chosen here, the image quality in itself was not that good visu-
ally. Figure 4.12 contains a zoomed image of a TV-ISRA reconstruction



4.7 Conclusion 131

for only 128 projection views. The body contour of the mouse looks
aliased instead of being smoothly curved. When TV-regularization is
used, we use the gradient operator to present the image in a sparse do-
main, where only a few significant coefficients are needed to represent
the image. This is based on an assumption of what images look like
(the image model): images contain uniform areas separated by edges. In
other words, TV-regularization uses a piecewise-constant image model.

However, we believe this image model is suboptimal in the case of
medical images. The next chapter will explore this image model in more
detail, and we will try to find an improved sparsifying transformation
which corresponds to more realistic image models.





Chapter 5

Improving regularized CT

reconstruction

In the previous chapter we used total variation (TV)-based regularization
to reduce sparse-view artifacts in low-dose CT reconstruction. For the
specific task of aortic arch segmentation, we were able to reduce the total
radiation dose per scan by a factor of 8 with no influence on the final 3D
model. With unregularized iterative reconstruction, the dose could only
be halved. Such results were deemed impossible in the past, mainly due
to the artifact-ridden analytically reconstructed images.

Although a significant dose reduction was achieved, the images show
block-like artifacts, which may hamper the use of TV-based regulariza-
tion in other tasks. In the specific task of vascular segmentation, these
artifacts only influenced the final model diameter by a small amount.
However, in cases where the image quality is a more prominent factor,
i.e. clinical diagnostics, these artifacts should be resolved.

In this chapter, we will further explore the image model behind TV-
minimization, and how it does not fully comply with realistic medical
data. We will propose regularization based on a different, improved im-
age model. In order to accomplish reconstruction with such a different
regularizer, we will develop a new framework for regularized CT recon-
struction in which all kinds of regularizers fit. This framework will be
validated by using the shearlet transformation as a sparsifying transform,
in theory enabling us to achieve an improved image quality.
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5.1 Introduction

TV minimization or regularization is not only used in CT reconstruc-
tion, but it is one of the techniques that have been extensively investi-
gated in the context of image denoising. Pioneered by Rudin et al. in
1992 [270], it quickly became used in the image processing community
in the context of image recovery or image denoising [260, 261, 271–273],
segmentation [274], zooming and superresolution [275], colour enhance-
ment [276], image fusion [277], video processing [278], inpainting [279]
and image decomposition into cartoon and texture [280]. In the context
of compressed sensing (CS) in CT reconstruction, TV minimization has
been used for few-view, limited-angle CT reconstruction [248, 252–255],
while the image denoising approaches can of course also be applied post
reconstruction to CT images.

All the CS approaches take advantage of the idea that there is a natu-
ral redundancy present in images. Images can be conceptualized as being
the sum of edges, uniform intensities, a repeated structure of fine-scale
patterns (texture) and a noise component [280, 281]. For image denois-
ing, it is beneficial if some representation exists that separates the noise
from the other structural components.

Decomposing an image into a structural component and noise is only
possible if the noise-free image can be approximated with a small num-
ber of significant coefficients in that representation. In that case the
representation is called a sparse representation. The noise should then
be non-sparse in that same representation. Let us take the gradient op-
erator as an example of a sparsifying transformation, as illustrated in
Fig. 5.1. The gradient of the noiseless reconstructed image has a very
sparse histogram, with a small amount of significant coefficients. If the
same image is noisy, the number of significant coefficients increases and
its representation becomes less sparse.

Methods using the gradient transformation as sparsifying transform
are best suited for piece-wise constant images, such as images of sim-
ple geometric shapes with flat intensity. Some authors have managed to
reconstruct such a simple phantom (e.g. Shepp-Logan phantom [282],
left on Fig. 5.2) exactly from only 22 projections [248, 249, 254], which
is impressive and promising for dose-reduction applications in CT, if
not for the unrealistically simple phantom. When the unrealistic phan-
tom is replaced by a phantom specifically crafted for this purpose, TV
minimization can not be used to reconstruct an image from 82 realistic



5.1 Introduction 135

noiseless with noise

re
co

ns
tru

ct
io

n
hi

st
og

ra
m

hi
st

og
ra

m
gr

ad
ie

nt

Figure 5.1: Illustration of the effect of image noise on the gradient histogram.
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More complex phantomSimple phantom Realistic lung texture

Figure 5.2: Left: Shepp-Logan phantom [282], which only requires 22 projec-
tion views to reconstruct completely. Middle: More complex phantom, as used
in [252, 283]. Right: Addition of realistic lung texture to the XCAT phan-
tom [284, 289] (Window [-900 0] HU). (Complex phantom courtesy of Gabor
T. Herman, lung texture image courtesy of Jason Bond.)

projections anymore [252, 283]. This was achieved by adding a tumor
into the brain which is invisible for those 82 projection views because of
ghosting. Unsampled data can never be reconstructed. This means that
the minimum sampling rate will depend on the object as well.

When the phantoms or images become even more complex, i.e. images
that contain complex textures and gradual intensity transitions like high-
resolution lung CT images (e.g. right image on Fig. 5.2, from [284]),
TV based methods often produce cartoon-like approximations. Tang et
al. [285] have shown that at least 100 projections views are necessary
when realistic human anatomy is present. The same holds for micro-
CT [286] as well as for MRI [287, 288].

The discrepancy between results obtained from simple phantoms and
from realistic data reflects the fact that most natural images are actually
not of bounded variation (BV) [290, 291], the search space in which
TV minimization operates. Only the edge component can generally be
expected to be of BV [290]. While TV minimization keeps the noise
component small, the texture component is often eliminated due to the
staircasing effect [271, 292–294]. Unfortunately, high-resolution medical
images are not of bounded variation either [252, 290]. This makes the TV
regularizer less suited for medical images from a mathematical point of
view. Consequently, it would be beneficial to investigate regularizers that
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offer a better sparse representation of medical images than the gradient
operator.

Several alternatives have already been suggested in literature. One
possibility is the use of the wavelet transformation. This transformation
provides a decomposition of a signal over dilated and translated versions
of a fixed waveform, called the mother wavelet. It allows the regulariza-
tion to adapt to the image content at different resolution scales. While
TV minimization might destroy soft edges, these would usually be re-
constructed better using wavelets. The wavelet coefficients evolve across
the scales at a rate that depends on the local regularity of the signal
(e.g. depending on edge smoothness). Hence, even very ’weak’ edges
produce a significant response at a certain scale. In this way, the wavelet
coefficients give valuable information about an edge, information which
the discrete gradient operator lacks.

The Haar wavelet, the simplest possible wavelet, has already been in-
vestigated for regularized CT reconstruction by Garduño et al. [283].
They found that reconstructions with a sparse Haar transform are not
more effective from the medical diagnostic point of view than reconstruc-
tions that have a small TV value. The authors did not explain this result.
Thus, the search for an objective function that provides diagnostically
efficacious reconstruction from a limited number of CT projections re-
mains open [283].

Haar wavelets have been shown to be optimal for piecewise constant
images and are very similar to TV in this regard. Steidl et al. [295]
have proven that for 1-D signals, Haar wavelet shrinkage is equivalent
to a single step of space-discrete TV diffusion or regularization of two
pixel-pairs, when applied to one single scale only. To our knowledge
the higher-dimensional case has not been proven yet, since it cannot be
treated as a straightforward generalization of 1-D ideas [295]. The near
equivalence of the Haar-based regularization to the TV regularization
in 1-D might explain why Haar-based regularization did not outperform
TV regularization.

Furthermore, it is known that the wavelet transform in general has
poor directional selectivity. The discrete wavelet transform is often
computed by using basis functions that are the tensor product of one-
dimensional wavelets and one-dimensional scaling functions. This con-
struction of wavelets will produce a checkerboard pattern simultaneously
oriented along several directions [296], also known as the checkerboard
problem. This approach can deal with point-wise singularities (such as
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point sources), but does not allow to make a distinction between features
at +45

� and �45

�. As a result, many nonzero wavelet coefficients may
be needed to represent a line singularity at an arbitrary orientation.

The poor orientation selectivity of the wavelet transformation led to
the development of a number of multiresolution geometrical transforma-
tions with typically a very high number of analysis orientations, such as
ridgelets [297, 298] and curvelets [299, 300]. The ridgelet transform is
well suited for representing discontinuities along straight lines (ridges),
in contrast to the curvelet transform, which can even represent disconti-
nuities along curves with bounded curvatures.

A recent development is the shearlet transform [301]. This non-
isotropic version of the wavelet transform is comparable to curvelets,
as it also performs multiscale and multidirectional analysis, and both
transformations can represent curve-like singularities in images. Guo
et al. [302] have shown that the asymptotic decay rate of the shearlet
transform, for fine scales, can be used to signal both the location and
the orientation of the edges of an image and that the coefficients of large
magnitude will correspond to edges. Furthermore, the decay rate across
scales can be used to distinguish between noise spikes and edges [303], a
property also holding for wavelet coefficients.

There are a number of advantages in using shearlets in imaging [304,
305]. The primary advantage for our use case is that shearlets allow
for a lower redundant sparse tight frame representation than other re-
lated multiresolution representations (e.g. ridgelets, curvelets, dual-tree
complex wavelets [306], . . . ), while still offering shift invariance and a
directional analysis. Basically, the number of transform coefficients is
not much larger than the number of pixels in the original image, and no
artifacts are introduced when shearlet coefficients are adjusted. The di-
rectional analysis allows the shearlet basis functions to align with X-ray
noise streaks in the reconstructed images, which allows these streaks to
be approximated with less significant coefficients.

A second advantage is the multi-resolution approach: the shearlet rep-
resentation can be used to decompose the image space L

2
(R2

) into a
sequence of spaces, associated to a hierarchy of scales [307, 308]. While
edges are quantified in the space of bounded variation BV (R2

), other
relevant features such as homogenous regions, texture, and other oscilla-
tory patterns will belong to spaces in-between the smaller BV (R2

) and
the larger L

2
(R2

) [308]. By setting shearlet coefficients below a certain
threshold to zero, image features present above a certain scale can be
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extracted [307].
Both properties are useful when we will apply soft thresholding (soft

shrinkage) later on in Section 5.2.4. A third property is that shearlets
take edges into account in a multitude of directions, decomposed into
a hierarchy of scales. This allows the detection of soft edges. Lastly,
our goal is to use a transformation with the best approximation (com-
paction) properties. In higher dimensions, shearlets are a better candi-
date for this than wavelets or TV, as shearlets have an essentially optimal
approximation error for images that contain edges (images that are C

2

(i.e. twice continuously differentiable) apart from discontinuities along
C

2 curves) [301].
Shearlets are very similar to curvelets, as both perform a multiscale and

multidirectional analysis. In fact, both transforms have optimal sparsity
for images which have discontinuities (edges) along a C

2 curve [301, 309].
However, some important differences remain [305]. Shearlets are gener-
ated by applying a family of operators to a single function, contrary
to curvelet basis functions. This makes the discrete implementation of
curvelets very challenging. Two methods were suggested by Candès et
al. [299] to make the implementation easier. In a first method, alias-
ing is deliberately introduced through wrapping. In a second method,
the nonequispaced fast Fourier transform (NFFT) is used. The inverse
NFFT should then be computed with a conjugate gradient type algo-
rithm, utilizing one NFFT and one adjoint NFFT per iteration [310].
This makes the calculations less efficient.

A second difference with curvelets is that shearlets are associated to
a multiresolution analysis, while curvelets are not. Thirdly, in the con-
struction of the shearlet tight frame, the number of orientations doubles
at every scale, while for curvelets, this number doubles every other scale.
A final difference, and very important one, is that shearlets allow for a
much less redundant sparse tight frame representation than curvelets,
while still offering shift invariance [304]. These properties make the
shearlet transform an attractive candidate for image representation [304].

In this chapter, we will investigate if shearlets can be used in regular-
ized CT reconstruction, and if they show any of the previously mentioned
benefits compared to TV regularization. This is based on the results of
shearlet-based denoising in image processing [305, 307], in magnetic res-
onance imaging (MRI) reconstruction [311] and preliminary numerical
results we published previously [312]. Previously, Colonna et al. [313]
have used the shearlet representation to invert the Radon transform di-
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rectly. Their approach is not directly applicable to sparse viewing. We
propose to use a recently proposed efficient solver, based on an aug-
mented Lagrangian (or split-Bregman) approach [314, 315], as an alter-
native method for sparse-view CT reconstruction. Split-Bregman meth-
ods have also been found to be successful in other applications, such as
MRI image reconstruction [311]. This very general method allows the
incorporation of extra regularization terms quite easily.

5.2 The split-Bregman based CT reconstruction
method

5.2.1 Imaging model

As was discussed in Section 2.2.6.3, in a noise free case, the projection
data y can be exactly modeled by a discrete approximation of the imag-
ing process y = Wx, with W the system matrix modeling the X-ray
transformation and x the reconstructed image.

In a noiseless or white Gaussian noise case, solving for the unknown
image x can be accomplished by minimizing the least-squares cost func-
tion:

 (x) = ky �Wxk22. (5.1)

The optimal solution x̂ that minimizes (5.1) is given by the pseudoin-
verse of W. Unfortunately, this pseudoinverse is too complicated to
compute directly in practical CT imaging. Therefore, in Section 2.2.6.3,
we discussed how the image space reconstruction algorithm (ISRA) can
be used to minimize a least-squares cost under the assumption of white
Gaussian distributed data. On the other hand, when the measured data
is assumed to be noiseless, algebraic techniques such as SIRT can also be
used [316, 317]. Both the statistical and the algebraic solution will lead
to the same solution x̂ as would be obtained if the pseudoinverse would
be calculated directly.

Others propose to model the photon noise in projection space by an
additive approximation y ⇡Wx + n, with n given by a Gaussian Ran-
dom Field [304, 318]. Because the noise is zero-mean by approximation,
data fitting function (5.1) is still applicable.

In order to reduce the radiation dose, we want to reduce the number of
acquired projection views (sparse-viewing), i.e. we reduce the number of
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equations determined by W and y. Unfortunately, minimizing (5.1) for
x is difficult in the case of sparse-view systems. This makes the problem
very ill-posed.

Therefore, we define a new cost criterium  (x) which models non-
white Gaussian noise. We also add a regularization term �(x), which
will provide prior information about the statistics of possible solutions:

ˆ

x = arg min

x

|�(x)|1 subject to kC�1
(y �Wx)k22  ✏. (5.2)

Here, ✏ acts as an upper bound on the uncertainty about the measure-
ments y, � is a linear sparsifying transformation and C is applied to
pre-whiten non-white Gaussian distributed data. The `1-norm is crucial
to the whole approach of regularization with sparsifying transforms [287].
Its use will lead to suppression of many small coefficients in favor of a
few large coefficients, which is exactly what we want to achieve in order
to find that one good image amongst the set of images that fit to the
measured data.

Because the `1-norm has a discontinuity at the origin, it is not dif-
ferentiable and more difficult to solve. Therefore, Eq. (5.2) should be
converted to an unconstrained problem [315]:

ˆ

x = arg min

x

|�(x)|1 + �kC�1
(y �Wx)k22, (5.3)

with � a constant. In words, among all solutions which are closest (in the
weighted least-squares sense) to the acquired data, equation (5.3) finds
a solution which is sparse in the `1-sense in the domain of the transform
�.

Matrix C is in first instance applied to pre-whiten the data, i.e. to
weight the errors corresponding to projections with high attenuation
(low values of y) [319]. These detected values will contain more noise
than values projected through less dense material, and will thus have a
lower signal-to-noise ratio (SNR). Therefore, the projected values should
be weighted according to their variance, which is equal to the mean
projection value under the assumption of poisson noise:

C = diag (c0, c1, . . . , cI) with c

i

= e

�E[y
i

]
. (5.4)

We can use the projection value itself as an estimate for the expected
value E [y

i

].
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Next to simple exponential weighing, C can also be used to model the
detector acquisition system. Different effects can be taken into account
in a diagonal matrix, such as gain per detector pixel, thermal stability,
dark current drifts and linearity [3]. These effects can be modeled by
multiplying c

i

with appropriately measured air scans. Signal crosstalk
can be modeled with off-diagonal covariance entries [320], as well as
afterglow and primary speed. In that case, C serves as a pre-whitener
for this system, de-correlating the noise.

5.2.2 Overview of the split-Bregman framework

There is a vast amount of literature available on how to solve equations
such as (5.3) in general, and in particular adapted for CT reconstruction.
It is a penalized weighted least squares cost function (PWLS), but in a
non-quadratic form. This means no closed-form solution exists for the
minimizer [42].

In the majority of cases a comparable cost function is solved through
a heuristical method, alternating the optimization of the data fitting
constraint with the sparsity constraint [248, 253, 255, 321, 322].

We use a different approach, by using the split-Bregman frame-
work [315] (also known as the split-augmented Lagrangian). This is very
similar to work done in iterative thresholding [323, 324], with the ben-
efits of having a relatively low memory footprint [315], simple and fast
iteration steps, and that the technique is generally easy to implement,
even for complex problems.

According to Goldstein and Osher [315], the generalized constrained
optimization problem

arg min

x

J(x) s.t. y = Wx (5.5)

with J a convex energy functional, can be solved by iterating over

x

(k+1)
= arg min

x

J(x) +

�

2

kWx� b

(k)k22 (5.6a)

b

(k+1)
= b

(k)
+ y �Wx

(k)
. (5.6b)

The iterates x

(k) will get arbitrarily close to a solution of the original
constrained problem x̂ (5.5).
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Equations (5.6a) and (5.6b) can be applied to cost function (5.3) to-
gether with variable splitting. This ultimately leads to the following
three update equations [315, 325]:

x

(k+1)
= arg min

x

�

2

kC�1
(y �Wx)k22 +

µ

2

kd(k) � �(x)� b

(k)k22 (5.7a)

d

(k+1)
= arg min

d

|d|1 +

µ

2

kd� �
⇣
x

(k+1)
⌘
� b

(k)k22 (5.7b)

b

(k+1)
= b

(k)
+

⇣
�

⇣
x

(k+1)
⌘
� d

(k+1)
⌘

. (5.7c)

The `1- and `2-norm from the regularized quadratic problem (5.3)
are now split into different minimization problems: a sequence of un-
constrained optimization problems and one Bregman update step. Eq.
(5.7c) is trivial to solve. Eq. (5.7b) is easy to solve with soft-shrinking
even though it is a combination of an `1- and an `2-norm, because there
is no coupling between elements of d. Finally, Eq. (5.7a) only needs
to be solved for x

(k+1) approximately. Even then, the algorithm still
converges [315].

We have introduced two new variables which elicit further explanation:
� and µ.

• Parameter � was added by converting the constrained optimization
problem into an unconstrained one. In this context, it can be
interpreted as the contribution of the regularization to the total
cost. The lower its value, the lower the importance of the data
fitting term, which amounts to more regularization (denoising).

• The ratio µ/� determines the convergence speed. If µ is set to 0 and
� to 1, no regularization is performed and a conventional weighted
least-squares solution is obtained, minimizing cost function (5.1).
Goldstein et al. [315] have empirically found that a ratio of 2.0 de-
livers a good convergence speed. We will experimentally determine
good parameters for our study further on in Section 5.5.2.

5.2.3 Regularization terms

In the previous sections � was intentionally left unspecified, to obtain a
general framework useful for different regularization terms. Indeed, no
assumptions have been made apart from convexity. The purpose of this
study is to investigate if using the discrete shearlet transformation as a
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regularization term is superior to isotropic TV minimization. Isotropic
TV was chosen as this is what is most widely used in medical imaging.

5.2.3.1 Isotropic Total Variation

For TV minimization the discrete gradient operator r is used as �. In
2D, J(x) becomes:

J(x) =

Xq
(r

x

(x))

2
+ (r

y

(x))

2
. (5.8)

The minimization problem can then be solved by setting d

x

= r
x

(x)

and d

y

= r
y

(x) [315]. Despite the fact that d

x

and d

y

can not be
decoupled, the problem can still be solved using a generalized shrinkage
formula [315, 326].

Equations (5.7a–5.7c) become:

x

(k+1)
= arg min

x

�

2

kC�1
(y �Wx)k22 (5.9a)

+

µ

2

kd(k)
x

�r
x

(x)� b

(k)
x

k22
+

µ

2

kd(k)
y

�r
y

(x)� b

(k)
y

k22

s

(k+1)
=

q
|r

x

�
x

(k+1)
�

+ b

(k)
x

|2 + |r
y

�
x

(k+1)
�

+ b

(k)
y

|2 (5.9b)

d

(k+1)
{x,y} = max

⇣
s

(k+1) � 1/µ, 0

⌘ r{x,y}
�
x

(k+1)
�

+ b

(k)
{x,y}

s

(k+1)
(5.9c)

b

(k+1)
{x,y} = b

(k)
{x,y} +

⇣
r{x,y}

⇣
x

(k+1)
⌘
� d

(k+1)
{x,y}

⌘
. (5.9d)

The discrete gradient operator r{x,y}(x) is defined as:

r
x

(x)(i, j) = x(i, j)� x(i� 1, j) (5.10a)
r

y

(x)(i, j) = x(i, j)� x(i, j � 1), (5.10b)

with wrapping of the values at the edges of the image volume.

5.2.3.2 Discrete shearlet transformation

The main mathematical ideas of the discrete shearlet transformation
(DST) are reiterated here for completeness. For more detail, the reader
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is referred to the literature [301, 305, 327, 328].
Let  

j,k,l

(x) denote the shearlet basis functions (or in the remain-
der simply called shearlets), then the continuous shearlet transformation
(CST) of an image f(x) 2 L2(R

2
) is defined by [302, 329]:

[SH
 

f ](j, k, l) =

Z

R2
f(x) 

j,k,l

(l� x)dx = hf, 

j,k,l

i (5.11)

where j 2 R, k 2 R and l 2 R2 denote the scale, orientation and the
spatial location, respectively. Shearlets are formed by dilating, shearing
and translating a mother shearlet function  2 L2(R

2
), as follows:

 

j,k,l

(x) = |detA|j/2 
⇣
B

k

A

j

x� l

⌘
(5.12)

where A and B are invertible 2⇥ 2 matrices, with detB = 1.

For shearlet analysis, the transformation matrices A =

✓
a 0

0

p
a

◆
and

B =

✓
1 s

0 1

◆
are used. A is an anisotropic scaling matrix with scaling

factor a > 0 and B is a geometric shear matrix with parameter s 2 R.
The shearlet mother function  is a composite wavelet that satisfies

appropriate admissibility conditions [302]. It is defined in the Fourier
transform domain by  (!) =  1 (!

x

) 2

⇣
!

y

!

x

⌘
, with ! = [!

x

!

y

],  1(!x

)

the Fourier transform of a wavelet function and  2(!y

) a compactly
supported bump function  2(!y

) = 0, !

y

/2 [�1, 1].
Any f 2 L2(R

2
) can be recovered via the reproducing formula:

f =

X

j,k,l

hf, 

j,k,l

i 
j,k,l

. (5.13)

The DST was implemented as proposed by Goossens et al. [330–332],
which leads to a very low redundancy factor and a relatively short com-
putation time compared to other implementations. We implement � as
the forward shearlet transformation (Eq. 5.11) and its adjoint �† as the
inverse shearlet transformation (Eq. 5.13).

The Meyer wavelet is used as mother wavelet  1(!x

) for the shearlet
transformation. This mother wavelet is an appealing choice due to its
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Figure 5.3: Plot showing shearlets for different values of the parameter ↵.
The shearlets become more elongated with decreasing ↵ values.

excellent localization properties in both time and frequency and also
because the filters are defined directly in the frequency domain [330, 333].
The angular filter used is given by:

 2(!) =

8
>>>>>><

>>>>>>:

0 ! < �1+↵
2

sin

�
⇡

2 v

�
↵+2!+1

2↵
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1
2
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2

1 |!| <

1�↵
2

cos

�
⇡

2 v

�
↵+2!�1

2↵

�� ��
! � 1

2

��  ↵

2

0 else

(5.14)

The choice of ↵ 2 ⇥0,

1
2

⇤
here is important, it is a constant parameter

that determines the bandwidth of the angular filters (see Fig. 5.3). The
choice of ↵ also has an influence on the redundancy factor of the DST.

Figure 5.4 shows all subbands of the shearlet transformation using 3
scales with 4 directions per scale, applied to measured plastimouse data
(see Section 5.3.2). For an input image of 512⇥512 voxels, this leads to
subbands with respective sizes 16⇥ 16, 64⇥ 64, 256⇥ 256 and 512⇥ 512

coefficients.

5.2.4 CT reconstruction algorithm

The performance of the split-Bregman method is largely dependent on
the subproblem solvers for Eq. (5.7a) and Eq. (5.7b), because Eq. (5.7c)
is trivial to solve. To find a solution to Eq. (5.7a), we need to find the
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scale 3 (16x16)

input image (512x512)

scale 2 (64x64)

scale 1 (256x256) scale 0 (512x512)

Figure 5.4: Example of shearlet transformation coefficients, using 3 subbands
with 4 directions per subband and ↵ = 1/2, applied to measured plastimouse
data. All coefficient images show the magnitude of the coefficients (white equals
a high magnitude, black equals zero. Magnitude normalized per subband).
Images are for illustrative purposes and not to scale.

roots of its derivative:

W

|
C

�1
(y �Wx) +

µ

�

�

|
⇣
d

(k) � �(x)� b

(k)
⌘

= 0. (5.15)

Eq. (5.15) can be rewritten as

⇣
W

|
C

�1
W +

µ

�

�

|
�

⌘
x = W

|
C

�1
y +

µ

�

�

|
⇣
d

(k) � b

(k)
⌘

(5.16)

Remember that W is the forward projector and � is the forward spar-
sifying operator. We now also need W

|, the back projector, and �|, the
backward sparsifying operator.

When shearlets are used, �|
� = I, because of the property that

shearlets form a tight frame [305, 331]. However, in CT reconstruc-
tions W|

C

�1
W will usually not be equal to I. C may have off-diagonal

elements due to modeling of e.g. detector element crosstalk or afterglow,
and W is not always square. Furthermore, applying W

| (direct back-
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projection) after W will result in a blur proportional to 1/r with r the
distance from the source, as seen in Section 2.2.6.1. Thus for shearlets,
Eq. (5.16) can not be easily solved through inversion.

The same property holds when TV is used. For isotropic TV, Eq. (5.16)
becomes:

⇣
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(5.17)

and r|
x

r
x

+ r|
y

r
y

6= I. Because of these issues for both shearlets
and TV, we select the conjugate gradient (CG) method [334] to find a
general solution for Eq. (5.16).

In Eq. (5.7b), there is no coupling between elements of d. The optimal
value of d can then be computed using the point-wise soft shrinkage
operator:

d

(k+1)
i

= softshrink

✓
[� (x)]

i

+ b

(k)
i

,

1

µ

◆
, (5.18)

with

softshrink(x, �) =

x

|x| max (|x|� �, 0) . (5.19)

Here x is one coefficient and � is the shrinkage threshold. Shrinkage
is an extremely fast operation because it requires only a few operations
per element of d and can easily be parallelized.

When shearlets are used as the sparsifying operator, all calculations in-
volving element-wise operations (such as soft-shrinkage or the Bregman
update step) need to be executed per element per scale per direction,
because it is a multi-resolution transformation. It was empirically found
that the soft-shrinkage is best applied using an energy dependent thresh-
old, by multiplying the threshold value µ

�1 by the energy of the subband
filter where the threshold is being applied. This energy is calculated by
applying the radial filters of the shearlet transformation to a Dirac delta
function and calculating the squared `2-norm of the resulting shearlet
coefficients per scale. This energy will be the highest for the highest
resolution scales, and lowest for the low-resolution scale.

The pseudocode of the split-Bregman algorithm for CT reconstruction
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can be found in Appendix A. Lines 1-9 correspond to the pre-calculation
of the energy dependent thresholding in the case of shearlet-based regu-
larization, and are not needed for the isotropic TV implementation.

5.3 Data acquisition

5.3.1 Data simulation

We will use 2 different phantoms, both depicted on Figure 5.5, to measure
the performance and properties of the proposed algorithms. The first
phantom consists of a 4 cm diameter phantom, containing two gradients.
Both gradients are 1 cm wide, ranging from contrast �85% to 0%. This
allows us to evaluate the difference of using TV regularization to that of
SH regularization for a smooth, non-piecewise constant object.

The second phantom is the clock phantom used by Evans et al. [335],
scaled down to small-animal size. It consists of a 4 cm diameter water
background, modeled after the attenuation of water at an energy of 60
keV. The phantom contains 8 inserts, each with a different contrast.
Each insert is located 1.1 cm from the phantom center, with a diameter
of 0.4 cm. This phantom will be used to determine the optimal choice of
µ

�

and the effect of contrast magnitude on the noise-resolution tradeoff.
All phantom data is simulated by forward projecting an oversampled

phantom using the geometry of the micro-CT scanner used for the real
measurements (Sec. 5.3.2). This allows us to use the same reconstruction
settings for all datasets. We simulate fan-beam data over 512 uniformly
spaced angles over 2⇡. The detector consists of 592 elements with a pixel
pitch of 0.2 mm. The distance between tube and detector is set to 300.33
mm and the radius of rotation 113.39 mm, resulting in a zoom factor of
3. The detector is offset by 9.69 pixels. After forward projecting the
phantom, photon noise is introduced corresponding to 2 ⇥ 10

5 photons
per pixel. To investigate the influence of angular undersampling (fewer-
view reconstruction), this sinogram is reduced to only 128 projection
views, by uniformly selecting every 4th projection view. This would
reduce the total X-ray dose by a factor of 4.

5.3.2 Measured data

To evaluate the performance on real data and for realistically textured
objects, one realistic preclinical phantom is also imaged. The plastimouse
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phantom (Frank Verhaegen1, Maastro Clinic, the Netherlands) is made
by plastinating a mouse [336]. A high-dose reconstructed image is shown
in Figure 5.5. This ensures that no movement will occur while scanning
over long time periods. Although the image contrast obtained with this
technique is not realistic because all bodily fluids have been replaced
by equally-dense plastic, the textures remain intact. This allows for in
depth evaluation of the proposed reconstruction methods.

A Triumph-II CT scanner (TriFoil Imaging, Northridge, CA, USA) is
used to acquire all data. It consists of a 2368⇥2240 pixel detector with
pixel pitch 0.050 mm. A zoom of 3⇥ leads to a field of view (FOV) of 42
mm. The tube voltage is set to 75 kVp, with a tube current of 240 µA,
a detector exposure time of 700 ms and a focal spot size of 50 µm. The
plastimouse is scanned 33 times in the same position, each time using
1024 angles over 2⇡. This corresponds to a total radiation dose of 12.3
Gy. As the reconstruction algorithms were only implemented for fan-
beam data, only the central detector row is retained from the measured
cone-beam data to give fan-beam data without the need for rebinning.
This fan-beam dataset is then subsampled to 592 detector pixels (pitch
0.2 mm), and 512 angles by uniformly selecting every 2nd projection
view.

Three datasets are generated from the acquisition data. The first is
a reference and quasi-noiseless sinogram, generated by averaging all 33
fan-beam sinograms. The second is a noisy sinogram, made by selecting
only one sinogram of the 33 measured ones. The last dataset is fewer-
view data, generated by reducing the reference sinogram to 128 views,
keeping every 4th sinogram row. Both the reconstructions of the noisy
sinogram and the fewer-view sinogram can then be compared to the
reference reconstruction obtained from the quasi-noiseless sinogram.

5.4 Data reconstruction and analysis

All datasets are reconstructed using SIRT, split-Bregman using isotropic
TV (SpBR-TV) and split-Bregman using shearlets (SpBR-SH). A recon-
struction pixel grid of 512

2 with pixel pitch of 0.080 mm is chosen, to
include the full phantom in the FOV.

The pseudocode to SpBR found in the Appendix was implemented in
C++, using the 2D distance driven algorithm [337] as forward and back

1Frank.Verhaegen@maastro.nl
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contrast phantomgradient phantom plastimouse reconstruction

-85%

+30%

-7% -15%

+285%

-30%

+7%+15%

Figure 5.5: Reference image of the three datasets used. Left: gradient phan-
tom. Middle: contrast phantom. Right: measured plastimouse reconstruction.
Dashed square: ROI used for texture analysis (Section 5.5.4).

projector. The number of CG iterations used in the inner loop was always
set to 30. We use C = diag{c

i

} with c

i

= e

�y

i , using y

i

as an estimator
for the mean number of photons detected in detector pixel i [319], even
when the ground-truth is available from the simulations. In the case
of shearlet-based regularization, four subbands are used with 8 analysis
directions each. Parameter ↵ is always set to 1

2 . The energy dependent
thresholding was implemented by multiplying 1

µ

(� in Eq. 5.19) with the
energy of the subband where the threshold is being applied (see the last
paragraph of Section 5.2.3.2).

5.5 Performance analysis

5.5.1 Gradient phantom

Figure 5.6 shows a zoomed in part of the the reconstructions of the gra-
dient phantom using SIRT, SpBR-TV and SpBR-SH, compared to the
reference phantom. Both SpBR-TV and SpBR-SH are shown at matched
noise (1.5%), while SIRT is shown at convergence (800 iterations). Both
methods correctly reconstruct both the spherical gradient as well as the
wedge gradient. On the wedge gradient (bottom rows), it can be noticed
that TV-based reconstruction does not follow a smooth line along the
gradient, and follows the straight edge too fast. This is a sign of slightly
lower resolution for the chosen parameter settings. The shearlet-based
reconstruction follows the gradient more smoothly, but exhibits oscillat-
ing effects around sudden intensity changes. This is also visible in the
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TV SHSIRTreference

Figure 5.6: Reconstructions of gradient phantom. TV and SH are matched by
noise, SIRT shown at convergence. Top rows: zoomed in on spherical gradient.
Middle row: profiles through wedge gradient. Red line is the reference phantom.

image itself, where vertical lines are present around the hard edge.

5.5.2 Convergence analysis

The optimal convergence parameters are determined by holding the cost
function constant (i.e. constant �), after which the iteration at con-
vergence is determined for different values of convergence rate µ

�

. In a
second step, the convergence rate is held constant, while determining
the iteration at convergence for different cost functions, determined by
varying �. We define convergence as

��
x

(1) � x

(k)
��2
2

< 10

�4. x

(1) is
approximated by the reconstructed image at iteration 80.

The convergence of SpBR-TV and SpBR-SH is plotted in Fig. 5.7a. For
SpBR-TV, a convergence rate of 3 is optimal, resulting in convergence
in only 10 iterations. The convergence becomes worse with a rate lower
or higher than this optimum. For SpBR-SH, the optimum is a lower
bound on µ/�. All values larger than µ/� = 9 lead to convergence in 10
iterations.

Based on these results, the optimal µ/� of 3 was chosen for SpBR-TV
reconstruction, and µ/� = 10 for SpBR-SH. We can now investigate the
number of iterations needed for different cost functions. Fig. 5.7b shows
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Figure 5.7: Convergence analysis for (a) fixed cost function and (b) fixed
convergence rate.

that the number of iterations needed can be estimated, as long as the
regularization is not too greatly enforced (large �). For � values smaller
than 100 in the case of SpBR-TV, and smaller than 60 in the case of
SpBR-SH, more and more iterations are needed to reach the level of
convergence needed. Although the optimal parameters can be selected
to ensure convergence in less than 10 iterations, in any case we will
reconstruct all datasets in the next subsections with 30 SpBR iterations.
This will ensure convergence regardless of the � parameter selected. The
convergence rate for the following experiments was set to the optimal
µ/� = 3 for SpBR-TV and µ/� = 10 for SpBR-SH.

5.5.3 Noise-resolution tradeoff

The effect of contrast magnitude on the noise-resolution tradeoff for
SIRT, SpBRTV and SpBRSH are determined by using a method pro-
posed by Evans et al. [335]. Because the proposed algorithms are non-
linear, both noise and resolution need to be evaluated locally. For each
contrast value, noise is determined by a circular region around the con-
trast insert. The resolution is determined by the Edge Spread Function
(ESF) of the insert edge. A parameterized ESF model is then fitted to
this profile [338], after which this analytical model can be differentiated
to generate a Line Spread Function (LSF). By using an analytical model
for the ESF, the influence of limited sampling and noise on the LSF cal-
culation is reduced. The LSF is then Fourier transformed to generate the
Modulation Transfer Function (MTF). Because the MTF is a function
and not a single metric, Evans et al. [335] represent the MTF by the
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value A10:

A10 =

1

10

Z 10 lp/mm

0
MTF (f) df. (5.20)

A10 is normalized to 10, as this is the area under an ideal MTF curve
that has amplitude 1.0 for all spatial frequencies. The higher A10, the
higher the resolution.

Figures 5.8 and 5.9 plot the noise-resolution tradeoff, for different con-
trast magnitudes. Each data point was gathered by reconstructing with
varying �, with lower � leading to less noise. The full-view dataset is
the contrast phantom with all 512 views, while the fewer-view dataset is
the contrast phantom with just 128 views. For higher-noise data points
the ESF model fitting becomes difficult, leading to the erratic behavior.
However, the general trend of each curve is still visible.

Three observations can be made. First, generally all SpBR-SH curves
are positioned above and left of the SpBR-TV curves reconstructed from
the same dataset. Thus, the noise is higher for equal resolution when
shearlets are used instead of TV. For some noise level, the lowest resolu-
tion is always reached by the SpBR-SH reconstruction method on few-
view data (Fig. 5.9). Both methods outperform SIRT reconstruction,
especially on fewer-view data. A little better resolution can be found
with SpBR-SH compared to SpBR-TV for fewer-view data for the ±7%

contrast inserts. A zoom on the �7% insert reconstructed from fewer-
view data is provided in Fig. 5.10. At matched resolution of A10 = 0.6,
little noise is seen for TV, while some patchy structures are visible on
the insert edge. For SH, some wavy lines are present that will lead to
higher noise measurements, though the insert is visually rounder. At
maximum resolution (SIRT A10 = 0.91, SpBR-TV A10 = 0.88, SpBR-
SH A10 = 0.96) the insert is still visibly rounder for SH, though the wavy
lines are even more visible now.

A second observation is the difference between both SpBR methods,
which becomes more and more clear for lower contrast magnitudes. At
low contrast (±7%) more noise is measured at equal resolution for SpBR-
SH compared to SpBR-TV. This effect is less visible for ±30% contrast,
where at lower resolution both methods obtain the same noise level. Only
at higher resolution a separation between the two methods occurs.

The third and final observation can be made after comparing the re-
sults of the full-view dataset (Fig. 5.8) to the results obtained from the
fewer-view dataset (Fig. 5.9). These make it clear that a higher resolu-
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Figure 5.8: Influence of contrast magnitude on noise-resolution tradeoff for
the full-view, noisy dataset. Dashed line: SIRT. Full line: SpBR-TV. Dotted
line: SpBR-SH. At equal resolution, noise is higher with SpBR-SH than with
SpBR-TV, especially for the ±7% contrast insert.
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Figure 5.9: Influence of contrast magnitude on noise-resolution tradeoff for
the fewer-view, noiseless dataset. Dashed line: SIRT. Full line: SpBR-TV.
Dotted line: SpBR-SH. At equal resolution, noise is higher with SpBR-SH
than with SpBR-TV, especially for the ±7% contrast insert.
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SIRT

matched
resolution

maximum
resolution

TV SH

Figure 5.10: �7% contrast insert from the few-view dataset reconstructed
with SIRT, SpBR-TV and SpBR-SH at matched resolution (A10 = 0.6) and at
maximum resolution. Window [0.18 0.23] cm�1.

tion can be achieved at the same noise level for full-view datasets. When
fewer-view data are used, the resolution drops. This is true for all three
the methods.

5.5.4 Texture analysis

The influence of SpBR-TV and SpBR-SH on textures is measured on
the measured plastimouse data using the gray level co-occurrence matrix
(GLCM) [339], which is defined by:

C�x,�y

(i, j) =

nX

p=1

mX

q=1

(
1, if I(p, q) = i and I(p +�x, q +�y) = j

0, otherwise
(5.21)

with i and j image intensity values, p and q voxel indices in image I and
(�x,�y) an offset determined by the directional analysis (e.g. (1, 1) for
45

�).
The GLCM is calculated on a region of interest (ROI) encompassing

the stomach contents (dashed square in Fig. 5.5). It allows us to extract
second order statistical texture features.

For this evaluation study, we compare 4 metrics which can be measured
on the GLCM: contrast, correlation, energy and homogeneity.

• Contrast is a measure of the intensity contrast between a pixel and
its neighbor over the whole image, with 0 the contrast value of a
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constant image.

contrast =

X

i,j

|i� j|2C(i, j) (5.22)

• Correlation is a measure of how correlated a pixel is to its neighbor
over the whole image.

correlation =

X

i,j

(i� µi)(j � µj)C(i, j)

�

i

�

j

(5.23)

• The energy returns the sum of squared elements in the GLCM. A
GLCM with a low number of high-value elements will have a higher
energy than a GLCM with a high number of low-value elements.
A constant image will have an energy of 1.

energy =

X

i,j

C(i, j)

2 (5.24)

• Finally, the homogeneity represents the closeness of the distribu-
tion of elements in the GLCM to the GLCM diagonal.

homogeneity =

X

i,j

C(i, j)

1 + |i� j| (5.25)

For each reconstructed image, the stomach ROI is cropped and quan-
tized to 32 levels. The GLCM is then calculated for the 0�, 45�, 90� and
135� neighbors using the functionality provided by MATLAB (MATLAB
7.11.0, The Mathworks Inc., Natick, MA). As a final aggregate texture
metric, the 4 texture properties are combined to calculate the Euclidean
distance to the texture metric calculated on the reference texture. All 4
properties are normalized so to give equal weight to each property inside
the distance function.

Figure 5.11 plots the 4 texture metrics which were determined from the
GLCM. Each plot represents one texture metric, and contains the results
for SpBR-TV (full line) and SpBR-SH (dotted line) for both the noisy
dataset (black) as well as the fewer-view dataset (gray) (Section 5.3.2).
The value obtained for the averaged plastimouse dataset with all views
is pictured by the dashed line, which serves as a reference property value.
The bottom row contains two plots that represent the Euclidean distance
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Figure 5.11: Contrast, correlation, energy and homogeneity as measured
from the GLCM. Full line: SpBR-TV. Dotted line: SpBR-SH. Dashed line:
reference value obtained from full-view noiseless SIRT reconstruction. Black:
noisy dataset. Gray: fewer-view dataset.
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of the 4 selected properties to the reference reconstruction. Different
data point were gathered by reconstructing with varying � in the case
of SpBR-methods, where for SIRT this is done by varying the number
of iterations. The noise is measured in the ROI depicted by the dashed
ellipse in Fig. 5.12.

Here, shearlet-regularized reconstruction outperforms TV-based recon-
struction, for both the noisy as well as the fewer-view dataset. TV is
always closer to the reference than SH on the contrast metric. Based on
correlation, both methods perform similarly independent of the dataset,
though the same correlation value is reached at higher noise for SpBR-SH
compared to SpBR-TV. A large difference can be found for the energy
property. Here, while SH estimates the energy correctly, TV regulariza-
tion removes the structure completely and replaces it by homogeneous
patches. This results in a very high energy, which results in a high dis-
tance to the reference texture. The same is visible to a lesser extent on
the homogeneity property.

Comparing both distance plots in the lowest row of Fig. 5.11, the
distance for the noisy dataset has a clear optimum for the shearlet re-
construction. For noisy data, the texture obtained with shearlet-based
reconstruction is closer to the reference than obtained with conventional
SIRT reconstruction, at lower noise. With fewer-view data, SpBR-SH
outperforms SIRT. When more regularization is applied, the distance to
the reference reconstruction increases, and this leads to a worse texture
than when normal SIRT is used. However, these low-noise SIRT recon-
structions are generated with only a few iterations, which means the
corresponding resolution will be far worse than the converged SpBR-SH
reconstructions.

Figure 5.12 shows reconstructions of the plastimouse for the noisy
dataset, comparing to the reference SIRT reconstruction generated from
the 33⇥ averaged sinogram. The SIRT, SpBR-TV and SpBR-SH re-
constructions were selected with an equal noise level (12%) by exper-
imentally selecting the correct � value which gives this noise level at
convergence for SpBR-methods, and the early-stopping of SIRT when
this noise level was reached. Only SpBR-SH can accurately reconstruct
the small diagonal stripes seen in the left kidney (full arrow). SpBR-TV
exhibits patchiness which is especially visible on object edges, and in the
darker region on the right of the image (dashed arrow). Edges are more
smoothly reconstructed when SpBR-SH is used. However, the darker
region shows some wavy artifacts when shearlets are used, compared to
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ref. SIRT

TV SH

Figure 5.12: Reconstructions for the noisy dataset. Reconstruction images
matched on noise, measured in a ROI (dashed ellipse) on the liver.

the blocky structures encountered in the TV-based reconstruction.
The fewer-view dataset reconstructions are shown in Figure 5.13,

matched to 10% noise in the liver ROI. Both SpBR-TV and SpBR-SH
have problems with reducing the noise in this dataset while keeping the
texture of the stomach intact. Both methods still show a lot of aliasing
artifacts, caused by the 4-fold undersampling of the data. For SpBR-SH,
the aliasing streaks have been sharpened in some places, while they have
been minimized in others. Small spots (full arrow) are better visible
on the TV-regularized reconstruction than with SpBR-SH, where it has
been smoothed away. Figure 5.14 zooms in on the upper part of the
stomach. SpBR-TV optimized the air cavity above the stomach (arrow)
into a square shaped cavity. The SpBR-SH image shows an improved
reconstruction of the radial lines (arrow).
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ref. SIRT

TV SH

Figure 5.13: Reconstructions for the fewer-view dataset. Reconstruction
images matched on noise, measured in a ROI (dashed ellipse) on the liver.

reference SIRT TV SH

Figure 5.14: Zoom of reconstructions from Fig. 5.13.
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5.6 Discussion

Replacing TV by shearlets for regularized reconstruction is promising for
iterative CT imaging in theory. We have shown that shearlets do not
lead to the piecewise-constant behavior as seen with TV, but instead
may lead to wavy artifacts, which can be equally unwanted in medical
diagnostics.

The noise-resolution tradeoff shows that SpBR-SH leads to higher noise
at the same resolution as obtained with SpBR-TV. However, this could
be due to the Gibbs effect also noticed in Fig. 5.6. These wavy oscillations
will be included in the noise measurements, leading to a bias in the
tradeoff curves. These wavy lines are also visible on Fig. 5.10 and on the
real data presented in Fig. 5.12 and Fig. 5.13. They replace the patchy
artefacts of TV regularization.

Unfortunately, it is very difficult to quantitatively evaluate the added
usefulness from the medical diagnostic point of view, as a ground-truth
reference image will always be needed. The most-used phantom in CT re-
construction evaluation is the Shepp-Logan phantom, defined by adding
10 uniformly-filled ellipses [282]. This makes it inherently piecewise con-
stant. More realistic simulators and phantoms exist, but will always
exhibit piecewise constant behavior due to the segmentation needed to
transform measured patient data into phantom data. This biasses the
results towards TV. Promising is the work done by Bond et al. [284], who
have developed a version of the XCAT phantom [289] with realistic lung
texture. However, it still needs to be expanded into 3D texture. In our
study presented here, we used a high-resolution, realistically textured,
plastinated mouse, so that the dataset would not be biased towards TV.

Although the texture analysis on preclinical images improved the out-
look for shearlet-based regularization, it is clear that there are still some
issues. Although the shearlet transform, like the curvelet transform, is
suited for structures representing sharp and elongated structures, e.g.
edges, it is unsuited for spherical-like sources (the point in the stomach
on Fig. 5.13 has been reconstructed less accurately in SpBR-SH, while
the radial lines in Fig. 5.14 are reconstructed more accurately with SpBR-
SH). This is a common issue with a lot of multi-resolution techniques, as
when they represent isotropic features well, they are far from optimal for
analyzing anisotropic objects [340]. This was the main idea behind the
development of other constructions, such as the curvelet transform [341].
It could thus be beneficial to combine the shearlet transformation with
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an isotropic wavelet transform. The sensitivity of each transform to a
particular shape would possibly make it a very strong discriminating
tool. However, the weights of the transformations in this combination
will depend on the specific study.

Although the methods presented here have been applied to fan-beam
data, the techniques can certainly be carried over to 3D cone-beam data
with no further adjustments. Indeed, no assumptions have been made
about the scanner geometry in the derivation of the algorithms, and the
optimization algorithms used can be applied irrespectively from dimen-
sionality. Although the shearlet methodology can be extended to 3D
directly [342], it will suffer from large computational complexity due to
the use of multiple 3D FFTs and subsequent frequency domain filtering
(which has to be repeated for every iteration of the split-Bregman algo-
rithm). A possible alternative is a special 3D shearlet design based on
separable filters in the spatial domain. This is a topic of ongoing research.
Even then, there is still room to improve the existing algorithm, by using
preconditioned CG [343]. This would improve the reconstruction time
by reducing the number of CG iterations needed.

Future work could include the application of these developed tech-
niques to different datasets together with numerical observer studies,
e.g. the channelized Hotelling observer [344, 345], to compare different
regularization strategies from the medical diagnostic point of view.

5.7 Conclusion

In this chapter we have presented a framework to perform regularized
iterative CT reconstruction based on the split-Bregman technique. The
split-Bregman approach allows us to combine using shearlet regulariza-
tion as an alternative for TV minimization. The use of shearlets for
regularization leads to different artifacts than in the case of TV, because
shearlets model the structures contained in the image using a differ-
ent (non-piecewise constant) image model. Based on a noise-resolution
tradeoff study, TV minimization outperforms shearlet-based reconstruc-
tion. However, on acquired data with realistic textures, shearlets re-
construct textures more similar to the reference texture than when TV
is used. The piecewise constant artifacts are gone, but are replaced by
wave-like structures.



Chapter 6

Quantitative reconstruction

of multiple isotopes for

micro-SPECT/CT

6.1 Introduction

Single Photon Emission Computed Tomography (SPECT) is an in vivo
imaging technique used to visualize functional information with radioac-
tive tracers. In Section 2.3, a detailed description of SPECT was already
given, first discussing the general principles behind emission tomography
and tomographic reconstruction, followed by a discussion of the image
degrading effects and the remaining challenges. Section 2.3.6 contains
a discussion on the use of SPECT for small animal imaging. Preclini-
cal or micro-SPECT is especially useful to gain information about drug
biodistribution in animals, important for early phase development of
drugs [346]. Historically, the pharmacokinetic information was usually
obtained with ex vivo approaches on cohorts, e.g. by measuring the ra-
diolabel biodistribution in organs in a well counter, or by measuring the
accumulation of the radiolabel in tissue with an ex vivo autoradiograph
on brain slices. When follow-up studies are required, e.g. to investi-
gate the longitudinal effect of a new drug, a large number of animals
are needed to minimize the variability in such an experimental ex vivo
design.

One of the remaining challenges in SPECT imaging (see also Sec-
tion 2.3.7) is absolute quantification. The goal of absolutely quanti-
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tative SPECT is to provide reconstructed images in which each voxel
value in the image represents the absolute activity concentration in the
corresponding region in the patient or animal [347]. In preclinical re-
search, animals could then serve as their own control during longitudi-
nal studies [346], thereby decreasing the experimental variability. The
quantitative results can be used to estimate radioligand-specific binding
kinetics, receptor density or other relevant biochemical parameters [348],
ultimately leading to faster drug development [349]. In clinical SPECT,
absolute quantitative data can increase the accuracy of organ dosimetry,
useful for targeted radionuclide therapy [350].

To achieve absolute quantification in SPECT, the effect of several im-
age degrading factors need to be minimized (Section 2.3.4). These effects
are caused by attenuation, scattering and system imperfections [146],
which can all be compensated for within an iterative reconstruction
framework [351]. One approach is to measure the system response (each
element w

ij

from Eq. 2.69) on a grid of discrete locations in the field
of view (FOV) [352]. Such system response measurements combine geo-
metric response together with more complex effects such as detector vari-
ability and collimator imperfections. Although they are easy to measure
in completely stationary systems, it is more difficult in rotating systems
due to imperfect mechanical motion [353]. Furthermore, photon scatter
can not be taken into account. A different approach is to directly in-
corporate the physical processes leading to these effects (e.g. detector
response, limited pinhole diameter, sensitivity) into ray-driven recon-
struction [354–356].

Table 6.1 gives an overview of the current status of absolute quan-
tification in preclinical SPECT. Seven recent papers [135, 346, 357–361]
compare ground-truth measurements to micro-SPECT results. Wu et
al. [358, 359] achieved a quantification error of 2% to 4.8% for 99m

Tc,
and 3.7% to 9% for 111

In using system matrix measurements in their
reconstruction. With direct modeling, an error of less than 10% was
calculated regardless of the radioisotope used [135, 357, 360, 361]. Lee
et al. [361] studied the errors obtained from a parallel-hole setup and
achieved low errors for 99m

Tc (< 2%). However, uncorrected FBP was
used to reconstruct their emission data.

Only three studies compared in vivo to ex vivo data [346, 357, 360].
Unfortunately, the data reported in those publications also lacks in some
aspects. In Vanhove et al. [357], a clinical dual-head system was used,
retrofitted with a pinhole collimator. Direct modeling of attenuation and
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scatter reduced the quantitative error to -7.9±10.4%. No PVE correc-
tion was applied, and no data are available for other isotopes. In Cheng
et al. [346], the iterative reconstruction method was stopped well before
convergence at only 24 MLEM iterations, and no results were shown for
99m

Tc. Lastly, Finucane et al. [360] have used uncorrected reconstruc-
tions.

The aim of the current chapter as well as Chapter 7 is to demonstrate
the feasibility of in vivo absolute quantitative micro-SPECT, using di-
rect ray-based corrections for 99m

Tc and 111
In. Such an approach alle-

viates the need to measure the system matrix for each isotope. Both
isotopes encompass a range of photopeaks that serve as a good testing
ground (140.5, 171.3 and 245.4 keV). We will report quantification errors
from a standard, commercially-available micro-SPECT/CT system with
a multi-pinhole collimator. In the current chapter we validate the iter-
ative reconstruction against a phantom study. Chapter 7 then contains
the in vivo validation.

6.2 Correction Methods

6.2.1 System calibrations

All data were acquired on the trimodal FLEX Triumph-II system (TriFoil
Imaging, Northridge, CA, USA). The SPECT subsystem (also sold sep-
arately as the X-SPECT) consists of one 80-by-80-pixel CdZnTe (CZT)
detector head and can be equipped with a multi-pinhole collimator. The
detector is 5 mm thick and consists of 25 CZT modules of 16⇥16 pixels,
with each pixel having a pitch of 1.6 mm (2.25 mm2 active area). A
5-pinhole collimator with 1.0 mm diameters was positioned 75 mm from
the detector, and 55 mm from the axis of rotation, leading to a FOV
of 68 mm per pinhole. Fig. 6.1b depicts the amount of overlap on the
detector caused by each pinhole. The color codes represent the amount
of multiplexing, ranging from no multiplexing (blue) to a central area
seen by all 5 pinholes (red).

To have full flexibility after each acquisition, we acquired all data in the
list-mode file format. This allows us to use our own software, without
having to use software included with the commercial system. In the
list-mode file format, each detected photon is stored sequentially, with
meta-data representing the detected pixel location, current acquisition
time, and a detection channel number (quantized photon energy). The
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Figure 6.1: (a) The bottom of the multi-pinhole collimator (b) Illustration of
the overlap of individual pinhole projections on the detector, color coded and
annotated with the number of overlapping pinholes in each region.

list-mode output was converted into a sinogram by counting the detected
events per pixel. Each detected event was decay corrected to the start
of the SPECT acquisition.

Energy calibration Each detected channel number was converted to
photon energy by applying a quadratic calibration equation to correct
for gain and offset. The gain and offset were determined per detector
module (16⇥ 16 pixels) by least squares fitting channel numbers to the
known photopeak energies of the radioisotopes 125

I (27.472 keV), 99m
Tc

(140.511 keV), 123
I (158.97 keV) and 111

In (171.30 and 245.39 keV). The
required raw data was acquired from low-count point sources placed one
meter away from the uncollimated detector.

The final calibration equations are plotted in Figure 6.2 for all 25
modules present in 1 CZT detector. There is a clear non-linear gain
on the channel number (especially for channel numbers above 1500),
together with a baseline offset for the number of dark counts. We also
note a substantially different gain depending on the submodule. The
non-linear gain models the charge loss per pixel caused by charge sharing.
Charge sharing is proportional to the photon energy, as the electron cloud
diameter in each CZT pixel will quadratically increase for higher photon
energies [362]. This means that the current pulse may be spread over
multiple adjacent pixels, which results in a lower charge measurement
for the current pixel. This leads to a lower recorded energy.

Representing each calibrated value with its mean and standard de-
viation over the 25 modules, the average calibration equation is equal
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Figure 6.2: Quadratic calibration relationship between detector channel num-
ber and photon energy for each module. The non-linear gain is needed to
compensate losses due to charge sharing. The baseline offset is caused by the
number of dark counts. Each line represents the calibration equation for one
module.

to

E = (1.51±0.14)⇥10

�5⇥C

2
+(0.07±0.003)⇥C +(9.69±1.00), (6.1)

with E the photon energy in keV and C the measured channel number.
Each module is corrected with its own individual calibration equation.

After applying the calibration equation to each detected event, the
energy resolution can be measured. The energy resolution is measured
per submodule, by fitting a Gaussian to the photopeaks acquired from
the point sources. To calculate the resolution of the 171 keV peak from
111

In, the down scatter from the 245 keV peak is subtracted first. The
down scatter was estimated by measuring the average number of photons
between 187 and 215 keV.

Figure 6.3 plots the energy resolution per submodule. For the high-
energy peak of 111

In, one submodule has a much worse resolution than
the other submodules. The final energy resolutions are tabulated in
Table 6.2. The resolution for 99m

Tc of 4.3± 0.26% is significantly better
(one-sample t-test, p < 0.01) than what was reported by Wagenaar et
al. [363], who reached a 4.6% resolution at 140.5 keV for this type of
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Figure 6.3: Plot of energy resolution per submodule for 125
I, 99m

Tc, 123
I, and

both peaks of 111
In.

detector. Finally, Fig. 6.4 plots the spectra averaged over all detector
pixels of all modules after applying the correct calibration equations per
module.

Geometric calibration The SPECT system geometry is further
characterized by a multi-pinhole calibration method using three point
sources [364–366]. This method is based on an analytical model of the
projection of a point source through a pinhole collimator onto a detector.

Peak energy Resolution (%)
(keV) (mean±stdev)

125
I 27.5 17.15±1.51

99m
Tc 140.5 4.30±0.26

123
I 159.0 4.40±0.30

111
In 171.3 4.28±0.31

245.4 3.90±1.38

Table 6.2: Measured CZT energy resolution.
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Figure 6.4: Measured spectra of 99m
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In with the CZT detector after
per-pixel offset and gain calibration.

By parameterizing the analytical model with 5 geometrical parameters
and 2 offset parameters per pinhole, the pinhole geometry can be esti-
mated as long as three point sources are used, with a known distance
between the point sources. The geometric parameters can be further
refined by modeling the non-circular orbit of the detector [367].

6.2.2 Iterative SPECT reconstruction including correc-
tions

6.2.2.1 Reconstruction algorithm

The one step late – ordered subset expectation maximization (OSL–
OSEM) algorithm first discussed in Section 2.3.5.2 was implemented
in C++ and CUDA. The OSL modification as proposed by Green [132]
is used to incorporate image denoising into the OSEM reconstruction.
The image denoising is weighted depending on each voxel belonging to
edges or not [135], such that volumes are not smoothed across anatomical
boundaries.

All reconstructions ran for 50 iterations with 8 subsets [368] per it-
eration, reconstructing 1203 0.5 mm x 0.5 mm x 0.5 mm voxels. For
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Figure 6.5: Illustration of CUDA-based ray-tracing for pinhole SPECT (not
to scale).

radioisotopes that emit photons in multiple photopeaks (e.g. 111
In), each

photopeak was reconstructed separately after which the reconstructions
were summed.

Figure 6.5 illustrates the forward and back projection calculations as
implemented in CUDA, similar to how this was implemented in the CT
reconstruction in Section 4.3. In the forward projector, the center of each
detector element is connected with a ray to the pinhole position. This
ray is then traced through the image space, calculating 3D interpolated
sample values at spacing �x, the isotropic voxel size. The sum of these
samples is added to the chosen detector element. All detector elements
are calculated in parallel, and the 3D interpolation is implemented by us-
ing the CUDA 3D texture interpolation facilities. The forward projector
is thus written as

ŷ

(k)
i

=

X

s2R(✓)

x

(k)
s

, (6.2)

with s a 3D-interpolated sample along the ray R with its direction ✓

determined by the position of the pinhole and the detector pixel i.
The back projection is implemented by selecting the center of each

image space voxel, and connecting it with a ray to the pinhole position.
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The intersection of this ray and the detector plane is then calculated.
The value added to the image voxel is the 2D interpolated value of the
intersection location on the detector. All image voxels are calculated in
parallel. The 2D intersection interpolation is implemented by using the
CUDA 2D texture interpolation facilities.

6.2.2.2 Resolution recovery

Because the pinhole would be represented by an infinitesimal point using
these techniques, we use a 7-ray technique to model the finite pinhole
diameter by a Gaussian quadrature [266, 355]. This corresponds to cal-
culating a weighted average of 7 forward or back projections, each with
a pinhole location slightly offset from the others. The 7 rays intersect
the circular pinhole opening in a polar point grid, defined on concentric
circles. The weight of each ray is chosen proportional to the fraction of
the total pinhole area subsampled by that ray.

A similar technique can also be used to model the finite detector pixel
size, in order to decrease the spacing between rays going to neighboring
detector pixels. With NaI detectors a two-dimensional Gaussian filter is
commonly used to model the intrinsic detector resolution caused by the
photon spread in the scintillator. Here, the contribution of each detector
pixel is calculated as the average value over 3⇥ 3 subsamples per pixel.

Combining both models results in a recovery of resolution during re-
construction. In this way, the contribution to one detector pixel is sam-
pled by 63 rays to achieve a higher resolution in the forward and back
projectors. The forward projection estimate is written as

ŷ
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9X
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X

s2R
p,d

(✓)

x

(k)
s

, (6.3)

with d the detector subsample and r

p

the weight for pinhole subsample
p. The ray R is now also parameterized by the specific position of the
pinhole and detector subsamples. More subsamples can also be used
to further increase the resolution (e.g. 21 [369] or even 2280 pinhole
rays [266]), at the expense of computational speed.
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Figure 6.6: Illustration of CZT detector uniformity for three different photo-
peak energies.

6.2.2.3 Detector uniformity

One of the disadvantages of CZT detectors is its non-uniform response.
This is caused by the techniques used to grow CdZnTe crystals [370, 371].

To correct for detector non-uniformities, the response is first measured
with a low-count point source placed before an uncollimated detector.
The response at 141, 171 and 245 keV is shown in Fig. 6.6. All three
uniformity maps show the same general uniformity defects: the pixels on
edges of CZT modules have a response different from the pixels located
more centrally. The response at 141 keV and 171 keV is similar, while
some very small differences can be seen at 245 keV. These maps clearly
show that detector uniformity is not energy dependent and is thus caused
by structural inhomogeneities.

The detector uniformity maps are incorporated in the forward pro-
jection algorithm as a correction factor. The forward projector then
becomes

ŷ

(k)
i

= U

i

1

9

9X

d=1

7X

p=1

r

p

X

s2R
p,d

(✓)

x

(k)
s

, (6.4)

with U

i

the uniformity response for pixel i. It is also applied before
back projecting, by multiplying the estimation error with U

i

before back
projecting.
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6.2.2.4 Scatter correction

The first step in scatter correction is scatter estimation: estimating the
amount of photon scatter measured by each detector pixel. This is tra-
ditionally accomplished by using windowing techniques [121, 372, 373],
where the scatter level included in a photopeak is estimated from one or
more windows adjacent to the photopeak. A different method is based
on scatter estimations from Monte Carlo (MC) techniques [374, 375].
Unfortunately, MC methods are computationally intensive and require
the patient’s attenuation map to be segmented in biological tissues.

After obtaining a scatter estimate, it can be used to minimize the in-
fluence of the photon scatter. A good review of published correction
techniques has been published by Hutton et al. [376]. The scatter cor-
rection schemes can generally be grouped in 2 subgroups. The first
subgroup is scatter subtraction, where the estimated scatter level is sub-
tracted from the measured data before reconstructing. The disadvantage
to this is noise amplification, due to the noisy nature of the scatter es-
timate. This can be reduced by filtering the scatter estimate map. If
wider scatter windows are selected to reduce the noise, the bias will in-
crease. Subtracting the scatter from the measured data also negates the
assumption that measured photon counts are Poisson distributed, which
is the assumption on which the reconstruction algorithm is based (see
Section 2.3.5.2). Therefore, we use a correction method belonging to the
second subgroup.

The second subgroup includes the scatter estimate directly into the
reconstruction. This can be accomplished by adding the scatter in the
forward projection step [124]:
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, (6.5)

where C

i

is the scatter estimate in detector pixel i and ↵ is a scaling
factor.

For the CZT-based system used in this Chapter, we chose to use a
window-based estimation technique together with adding the scatter es-
timate into the reconstruction. Window-based estimation was used be-
cause of the excellent energy resolution obtained with the CZT detector.

The asymmetric photopeaks of the CZT detector need to be taken
into account when defining the windows for the scatter estimation. The
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Figure 6.7: Illustration of CZT photopeak asymmetry because of low-energy
tailing.

asymmetric peaks are caused by three properties characteristic for pixe-
lated CZT [377]. Firstly, the detector pixels have boundaries where the
signal collection is weaker than at the pixel center. Secondly, there is a
dependence of the generated signal on the depth-of-interaction, due to
hole trapping. Finally, the finite size of the signal contact results in an
induced signal that depends more on the relatively slow hole drift for
signals generated by events closer to the anode than for events further
away. Combined, these effects create a tail of low-energy events [377].
More photons will be pushed into lower energy channels or even outside
of the photopeak window, than will be pulled into higher energy channels
or inside the photopeak window [378]. Figure 6.7 shows the photopeak
asymmetry by comparing the measured photopeak data of the 245 keV
photopeak of 111

In to a Gaussian fit.
Because of this asymmetry, the scatter estimation windows were se-

lected based on the calibrated spectra (Fig. 6.4). The photon scatter
was measured during list mode conversion, using the Dual Energy Win-
dow (DEW) [372] and the Five Energy Window (FEW) method [373] for
99m

Tc and 111
In, respectively. The final window selection is tabulated

in Table 6.3 for the radioisotopes used in our validation study.
The resulting scatter map is very noisy. Therefore, a filter (e.g. a

Butterworth filter) is usually applied to smooth the low-frequency nature
of the scatter fraction [379]. Instead, we used a median filter with a 2-
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Peak window(s) Scatter window(s) Technique
(keV) (keV)

99m
Tc 128–150 126–129 DEW [372]

111
In 164–182; 238–256 160–168; 180–200; 236–239 FEW [373]

Table 6.3: Specific technique and scatter windows used for 99m
Tc and 111

In.

pixel radius to reduce the noise [357]. This filter is edge-preserving and
will not move data across pinhole boundaries in multiplexing systems.

6.2.2.5 Sensitivity correction

Each value sampled on a ray through the image space should be corrected
for a distance and angle dependent factor. Furthermore, the pinhole
collimator is not a perfect absorber. Because of its shape, the pinhole
will have a very thin edge (knife edge), where some penetration may
occur. Therefore it is important to take an enlarged pinhole diameter into
account, in function of the angle of incidence and the photon energy [125,
355].

The effective pinhole diameter is equal to [125]:
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✓
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with d the nominal pinhole diameter, ↵ the full acceptance angle of the
pinhole and µ

pin

the linear attenuation coefficient of the pinhole material
for the radioisotope under consideration.

Conventionally, the effective pinhole diameter is used in an analytical
sensitivity formula:

S

pin,1(✓) =

d

2
s

cos

3
✓

16h

2
, (6.7)

with h the perpendicular distance of the collimator to the point source
and ✓ the incidence angle measured from the plane of the pinhole (✓pin
in Fig. 6.8) [117, 355, 380].

However, this formula is not correct in the case of a ray-driven forward
projector. The number of rays drawn through a voxel at distance h from
the pinhole will be inversely proportional to the square of this distance.
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Figure 6.8: Cross section of a pinhole collimator for a point source above
the pinhole aperture (not to scale). f is the perpendicular collimator-detector
distance, h is the perpendicular collimator-point source distance. ✓pin is the
incidence angle measured from the plane of the pinhole. ↵ is the full acceptance
angle. µ is the linear attenuation coefficient of the pinhole material for the
photon energy of the point source.

This means that there is an already inherent correction for the 1/h

2

factor by using ray-tracing. Additionally, if the number of rays should
be constant through the pinhole at different focal lengths f , then the
sensitivity should be inversely proportional to the square of f . These
two properties lead to a slightly different sensitivity formula:

S

pin,2(✓) =

d

2
s

cos

3
✓

16f

2
. (6.8)

A basic model of detector efficiency or sensitivity is implemented by
attenuating the incoming ray with a factor dependent on the incidence
angle and the attenuation of CZT for the isotope used [381]:

S

det

(✓) = 1� exp

✓
�µ

det

t

det

cos ✓

◆
, (6.9)

with µ

det

the linear attenuation coefficient of the detector and t

det

the
detector thickness.

For each ray sample measured in the image by the forward projector,
its value is multiplied by S

pin,2(✓pin)⇥ S

det

(✓det). In the back projector
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we need the original sensitivity formula S

pin,1(✓pin), as the back projector
has no inherent weighting for 1/h

2 included.

6.2.2.6 Attenuation correction

Photon attenuation is calculated based on the CT data, acquired before-
hand with the micro-CT subsystem of the FLEX Triumph-II scanner.
The CT subsystem is mounted in the same gantry as the SPECT sub-
system, leading to optimal co-registration between both modalities. All
CT images were acquired on a 2368⇥2240 pixel detector (pitch 50 µm)
using 512 projection views acquired over 2⇡. A peak voltage of 75 kVp,
exposure time of 345 ms and tube current of 510 µA were chosen, with
a 2-fold magnification, leading to a FOV of 59.2 x 56 mm. The total ac-
quisition time was 13 minutes per CT scan. The dose is approximately
130 mGy per scan.

All CT datasets were reconstructed using the Maximum Likelihood for
Transmission Tomography (MLTR) [45] algorithm (see Section 2.2.6.3)
in a voxel matrix with isotropic voxel pitch 100 µm, leading to an image
with 592 ⇥ 592 ⇥ 560 voxels. MLTR was implemented in CUDA, with
the same ray-driven core as the SPECT reconstruction.

After reconstruction, all voxel values are bilinearly scaled [198] to lin-
ear attenuation values. When scatter correction is also applied, we use
narrow-beam attenuation values, which is the attenuation determined in
the ideal situation (no scatter present). This is different from broad-
beam attenuation, which takes into account that scattered photons will
also contribute to the total measured counts per pixel. In case of non-
ideal situations, this means that there will be less loss of photons than
predicted from the idealized narrow-beam values [376]. For water, an at-
tenuation of 0.15 cm�1 at 140 keV is thus used instead of of broad-beam
value 0.12 cm�1 [382]. If photon scatter is not corrected for separately,
the broad-beam attenuation value should be used.

To use the attenuation values as a correction factor for SPECT re-
construction, the high-resolution attenuation map is first loaded as a 3D
CUDA texture. During SPECT ray-tracing, each ray is sampled starting
nearest to the pinhole. The projection value ŷ

i

for detector pixel i can
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thus be approximated by

ŷ
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from current emission estimate x(k), for all samples s in the set of samples
spaced �x along the ray R

p,d

(✓), and k representing all the samples
between the pinhole and current sample position s.

6.2.2.7 Partial volume effect correction

The partial volume effect (PVE) is a displacement of the signal from
small structures under influence of discretization and the limited spatial
resolution of the imaging system [383]. Any structure smaller than 2.5
times the system resolution will be PV affected. For a point source, the
reconstructed voxel may be uniformly filled with activity, even though
the source has a volume much lower than the volume of 1 voxel. In other
words, the reconstructed number of counts in one voxel does not always
reflect the true concentration of activity per volume [384]. Additionally,
spillover into surrounding tissue may also occur [346, 385], which will
lead to an underestimation of the signal amplitude in order to conserve
the total activity.

One way to decrease the PVE is by improving the system spatial resolu-
tion. We already do this by using resolution recovery with pinhole diam-
eter subsampling and detector pixel subsampling (see earlier). Although
resolution recovery increases the image spatial resolution and thus re-
duces the PVE, it will lead to Gibbs ringing and overshoots for small
objects. These image degrading effects can be minimized by smoothing
the affected image. However, smoothing will also cause spill-over of ac-
tivity into functionally unrelated surrounding tissue. It would be better
to use adaptive smoothing, taking into account the edges of the different
functional regions in the patient’s body.

We use a correction technique which incorporates known anatomical
information in the reconstruction with a Bayesian prior [135]. This is
accomplished by first thresholding the gradient of the CT image [386],
after which the voxels neighboring to edges are located [135]. Those
neighbors are the areas wherein spillover may occur with conventional
smoothing. After normalization, this image is a probability map, with
each voxel value �

k

2 [0, 1] representing the probability that voxel k
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contains a significant CT boundary.
The weights �

k

are used in a Bayesian prior, to allow for quadratic
smoothing in edge-less (uniform) areas, while areas with danger of
spillover are left unsmoothed. The penalty has the form:

V (x

j

) =

X

k2N(j)

(1� �
k

)(x

j

� x

k

)

2
, (6.11)

with N(j) the set of 26 3D neighbors of voxel j. This penalty is used in
the OSL-OSEM update equation (Eq. 2.72). The regularization factor �
determines the magnitude of smoothing applied and was set empirically.

6.2.2.8 Quantitative calibration

After reconstructing all SPECT data, one last calibration is needed to
relate the reconstructed count density to the actual radioactivity concen-
tration (MBq/ml). This was accomplished by scanning a small amount
of known activity A with the exact same protocol used during the other
scans. The scaling factor SF can then be calculated by dividing the
known activity of the calibration point by the volume V per voxel times
the total number of reconstructed counts [357, 359]:

SF =

A

V ⇥
JP

j=1
x

j

. (6.12)

By multiplying a reconstructed image with this scaling factor, an image
with unit MBq/ml per voxel is obtained.

The calibration point source was reconstructed without corrections, as
attenuation and scatter are assumed to be negligible due to the small
volume size of the point source. The PVE will have no effect here,
because PVE does not influence the total number of counts, but only
the measured activity counted in a limited volume.

For radioisotopes that emit photons in multiple photopeaks (e.g.
111

In), each photopeak is first reconstructed separately with all possi-
ble correction factors enabled. After summing the final reconstructed
images into one single image, it is multiplied by the scaling factor de-
termined from the summed reconstructions of the calibration vial. As
the scaling factor is determined from the total number of reconstructed
counts the isotope branching fraction is implicitly accounted for.
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Figure 6.9: Technical specifications for the micro-SPECT quantification
phantom (units mm).

6.2.3 Validation

The phantom design for the validation study is based on the image qual-
ity phantom described in the National Electrical Manufacturers Associ-
ation (NEMA) NU 4-2008 specifications [387]. The phantom dimensions
are illustrated on Fig. 6.9. This phantom was 3D printed at Shapeways
(Shapeways NL, Eindhoven, The Netherlands) in the ’transparent detail
plastic’ material at a printing resolution of ±0.1 mm.

Two experiments were conducted to evaluate the quantitative accuracy
for the isotopes 99m

Tc and 111
In. The largest compartment was filled

with a low background activity (ratio 1:1); the two smaller compartments
with an 8:1 and 2:1 ratio. To allow delineation of all three compartments
for the Bayesian prior, 0.375 ml iodine-based contrast agent (Visipaque
320 mg I/ml, GE Healthcare) was added to the 8:1 compartment, the
2:1 compartment received 0.750 ml contrast agent, and no contrast was
added to the 1:1 background compartment.

The radioisotope was diluted with distilled water (dH2O) in a sepa-
rate vial while weighing on a calibrated scale (accuracy 0.1 mg) to obtain
the correct concentrations. After measuring the activity in the vial with
the gamma counter, iodine contrast was added to this vial by pipetting
the correct volume. If done beforehand, the iodine would attenuate the
ground-truth gamma counter measurements. Part of the contained vol-
ume was then used to fill the corresponding phantom compartment. The
final activity concentrations can be found in Table 6.4.

The technical specifications of the 3 compartments were used to select
volumes of interest (VOIs). These VOIs were shortened axially to exclude
air bubbles. This resulted in 2 cylindrical volumes of diameter 8 mm
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Isotope 1:1 2:1 8:1 Point source
(MBq/ml) (MBq/ml) (MBq/ml) (MBq)

99m
Tc 2.84 6.03 21.05 10.61

111
In 2.95 4.51 18.38 4.31

Table 6.4: Activity concentrations as determined from the dose calibrator, for
the NEMA phantom compartments and for the quantitative calibration vial.

and height 5 mm for the 8:1 and 2:1 compartments, and one cylindrical
volume of diameter 30 mm and height 10 mm for the 1:1 compartment.
The quantitative analysis consists of measuring the mean activity in each
compartment and comparing this to the known value from Table 6.4.

Our software will also be compared to the software provided by the
vendor. Their software is based on an OSEM implementation. The data
are pre-corrected for radioactive decay. The photopeak window width
was always set to 10% of the photopeak energy. The OSEM reconstruc-
tion algorithm was used, and was set to 10 iterations and 8 subsets, with
a voxel size of 0.5 mm.

6.3 Results

In order to make the use of different techniques more clear, we refer to
uncorrected data as the data only corrected for decay, geometrical sen-
sitivity, and quantitative calibration. All data are always corrected for
decay, geometrical sensitivity, resolution, PVE, and quantitative calibra-
tion, with additionally attenuation correction and/or scatter correction.
The vendor-reconstructed data is only corrected for decay and geomet-
rical sensitivity.

Figure 6.10 shows a transaxial and coronal slice through the recon-
structed SPECT image obtained after applying all corrections for both
isotopes. The inner chambers are delineated more clearly with 99m

Tc

compared to 111
In, although both images have the same outer edge qual-

ity. This could be due to the penetration, which will be significantly
higher for 111

In because of the higher photon energy. Furthermore, 111
In

is known to stick to plastic, and is sometimes even absorbed into the
plastic walls of phantoms [388]. This could be a cause of the reduced
uniformity for 111

In in the 2:1 vial, compared to 99m
Tc.

Figure 6.11 correlates the activity concentrations measured on the re-
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Figure 6.10: Reconstructed images of the NEMA phantom for (A) 99m
Tc

and (B) 111
In. The cylindrical VOIs used in the evaluation are depicted by a

dashed white line.

constructed images to the activity concentrations measured in the dose
calibrator. The uncorrected data and the fully corrected data were fit
with a full and a dashed trend line respectively. A full grey-colored trend
line is fitted to the data from the images reconstructed with the vendor
software.

As can be seen from Figure 6.11, attenuation correction has the largest
influence on the quantitative accuracy. When all corrections were ap-
plied, except for scatter correction, the errors1 decrease on average from
-2.78±2.62 MBq/ml to -0.30±0.25 MBq/ml for 99m

Tc, from -1.91±1.23
MBq/ml to 0.80±1.66 MBq/ml for the low-energy peak of 111

In, and
from -1.48±1.58 MBq/ml to 0.53±0.58 MBq/ml for the high-energy peak
of 111

In. Combining both peaks leads to a decrease from -1.77±1.34
MBq/ml to 0.72±1.30 MBq/ml for 111

In, a small overcorrection. When
all corrections are applied, including scatter correction, the quantifica-
tion errors decrease from -2.78±2.62 MBq/ml to -0.88±0.85 MBq/ml
for 99m

Tc, from -1.91±1.23 MBq/ml to 0.02±1.04 MBq/ml for the
low-energy peak of 111

In and from -1.48±1.58 MBq/ml to -0.08±0.51
MBq/ml for the high-energy peak of 111

In. Combining both peaks de-
creases the error from -1.77±1.34 MBq/ml to only -0.01±0.79 MBq/ml.

Although these errors are low on average, a one-sample t-test of each
vial to the known reference value shows that each reconstructed vial
value is significantly different (p < 0.01) from the reference data. The
quantification errors for the separate vials are included in the summa-
rized results in Table 6.5. Generally a small under-correction is found for
99m

Tc, while the data for 111
In show a small overcorrection. For 111

In,

1mean ± standard deviation per VOI
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(a) 99mTc

(b) 111In - 171 keV + 245 keV

(c) 111In - 171 keV

(d) 111In - 245 keV

Figure 6.11: Correlation between reconstructed and the ground-truth values.
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the largest error can always be found in the 1:1 background region.

6.4 Discussion

Our study shows that a quantification error of ±10% is achievable with
99m

Tc for activity concentrations between 2.84 and 21.05 MBq/ml, by
using model-based iterative reconstruction. The same error is achieved
for 111

In between 4.51 and 18.38 MBq/ml. However, the lowest activity
vial (2.95 MBq/ml) still remains with an undercorrection of 31±11% or
0.92±0.33 MBq/ml. The low-energy peak undercorrected by 39±13%,
whereas the high-energy peak undercorrected by 13±15%. According
to these measurements, it would be better to use only the data of the
high-energy window for 111

In instead of a combination of both energy
windows.

These low quantification errors were achieved by correcting for the
image degrading effects. When our model-based iterative reconstruction
was used without any correction mechanisms, the same quantification
error was achieved as with the vendor-provided reconstruction software.
The noise was higher in the uncorrected vendor-provided reconstructions
than obtained with our own software.

The results indicate that a decrease in quantification error is primarily
influenced by attenuation correction. The influence of scatter correc-
tion is much smaller. Because we use a pixelated CZT detector, little
scattered photons will be included in the photopeak window (due to the
CZT-tail), at the expense of a lower amount of primary photons. The
statistical noise will thus increase. This agrees with the findings of Chen
et al. [389], who concluded that narrowing the energy windows is an ef-
fective way to correct for scatter in 99m

Tc and 111
In studies, provided

sufficient energy resolution is available. It should be stressed that the
influence of scatter correction will increase in importance when other de-
tectors are used (e.g. NaI with a worse energy resolution), but will remain
less important than attenuation correction in small animal SPECT [351].
This is also in agreement with the findings of Lee et al. [361], who deter-
mined that attenuation is the prime factor to consider for this CZT-based
system.
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6.5 Conclusion

In this chapter, we demonstrated how absolute quantitative micro-
SPECT can be achieved with ray-based iterative reconstruction. The
most important image degrading effects—attenuation, scatter and the
PVE—were corrected with specific solutions in an OSL-OSEM algo-
rithm. The implementation was validated using a NEMA phantom, by
comparing image-based absolute quantification values to the known ac-
tivity concentrations. A good agreement was found, leading to an error
around ±10% for 99m

Tc and 111
In-High.

Even though we have shown that absolute quantification in phantoms
can be achieved in micro-SPECT using these correction techniques, the
question remains whether this will also work for in vivo data. Such
validation is the subject of the next Chapter.





Chapter 7

Validation of quantitative

micro-SPECT/CT

reconstruction in vivo

In the previous chapter, we validated our ray-based micro-SPECT recon-
struction software that includes correction factors for the different image
degrading effects. In this chapter, the in vivo quantification accuracy
is determined for the same isotopes, in two different tracers: 99m

Tc-
dimercaptosuccinic acid ([99mTc]DMSA) and [111In]Octreotide.

[99mTc]DMSA is used to assess the renal function [158, 159] and, pre-
clinically, mostly used as an indicator of tubular functioning after 90

Y

therapy [160]. A system spatial resolution better than 1 mm is needed
to delineate the functional renal cortex in mice [390], necessitating PVE
correction and CT contrast agent to accurately delineate the kidneys.

The second tracer, [111In]Octreotide, is a radioactively labeled oc-
tapeptide that pharmacologically mimics natural somatostatin. It is
internalized in neuroendocrine tumors expressing somatostatin receptor
type 2 (SSTR2) (and to a lesser extent SSTR3 and SSTR5) [391].

7.1 Blood-pool activity correction

Apart from the correction factors already included in the iterative recon-
struction software (see the previous chapter), an extra correction factor
is needed when working with live animals. At early time points, the
tracer will still reside in the blood circulation [346]. This means that
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some activity will be measured in a VOI that may not be fully represen-
tative of the activity taken up by the tissue of interest. This is especially
true for tracers with slow pharmacokinetics.

It is therefore important to correct for the blood pool activity. This can
generally be done in two steps. The first step is measuring the activity
in the blood pool itself, through a cardiac puncture (ex vivo), with a
gamma-counting blood sampler (in vivo), or estimated from the images
themselves [392]. Once the activity is known, the reconstructed image
data are corrected by subtracting the absolute organ activity by the
blood concentration (MBq/ml) times the vascular volume fraction (VVF,
unit ml/g) times the organ weight (g). The VVF represents the blood
volume per gram of organ tissue, and can be gathered from literature.

7.2 In vivo small animal imaging

The absolute quantification error in realistic pre-clinical experiments is
determined with two in vivo studies. The Ghent University ethical com-
mittee approved all animal experiments (ECD 12/53).

All in vivo measurements are acquired on the same micro-SPECT/CT
scanner as in Chapter 6. The geometrical sensitivity will be very low
because only 1 camera head is installed instead of the possible 4 cam-
eras. Combined with low biological uptake in typical preclinical studies
(typically only 1 to 10% ID/g), it is necessary to increase the number
of detected counts. In this study we double the acquisition time per
view as well as doubling the injected dose. This lead to a 4-fold increase
in collected data, as if the system would have 4 heads. This results in
a SPECT acquisition protocol using 64 views over a 360 degrees total
rotational angle, with an exposure of 2 minutes per projection view. All
data are acquired for one bed position.

7.2.1 [99mTc]DMSA

BALB/c mice were selected with weight 26±1 g and age 11±1 wk
(n=6). Anesthesia was induced using 4% isoflurane, for maintenance
of the anesthesia the concentration was set at 1.7%. All mice were
injected in the lateral tail vein with 78±3 MBq [99mTc]DMSA (Tech-
neScan DMSA R�, Mallinckrodt Medical BV, Petten, The Netherlands).
We aimed for a synchronous start of the SPECT scan 4.5 hours post-
injection to maximize the uptake of the DMSA in the kidneys [390].
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To visualize the kidneys on the CT images, 1 hour before the SPECT
scan an iodine-based contrast agent (VisicoverTMExiTronTMV, Miltenyi
Biotec, Bergisch-Gladbach, Germany) was injected into the lateral tail
vein (4 µl/g). A pilot test had shown that such a protocol results in
a maximal contrast increase in the kidneys between 30 and 60 minutes
post-injection. Therefore, the micro-CT scan was started 30 minutes
after administering the contrast agent. The 128-minute SPECT acquisi-
tion was started after the micro-CT scan finished.

Immediately following the SPECT scan, the animals were euthanized
by cervical dislocation and a blood sample was taken by cardiac punc-
ture. Both kidneys were dissected, rinsed with physiological saline, dried,
and weighed. Kidney weight was converted into volume by assuming a
1.05 g/ml density [393]. All samples were measured in a NaI(Tl) well-
type gamma counter, calibrated with activity measured in the same dose
calibrator as used for the in vivo experiment. The kidney VOIs were de-
termined by thresholding the kidneys on the reconstructed CT images.
The blood-pool activity correction was applied with a VVF chosen at
0.27 ml/g kidney weight [393], with the kidney weight determined from
the VOI volume.

7.2.2 [111In]Octreotide

A human non-small cell lung carcinoma (NCI-H727) was chosen as a
neuroendocrine tumor model. CD-1 nude mice (n=10) (Charles River,
France) were injected subcutaneously with 5⇥10

6 cells in the right hind
leg. The animals without a palpable tumor were euthanized 3 weeks
after inoculation. All remaining mice (n=6, age 13±1 wk, weight 27±2
g) were shortly anesthetized for injection of 31±1 MBq [111In]Octreotide
(OctreoscanTM, Covidien Belgium, Mechelen, Belgium) via the lateral
tail vein. The micro-CT scan was started 23 hours post-injection, af-
ter which the 128-minute micro-SPECT scan was started [394]. The
anesthesia was induced with 4% isoflurane, and maintained with the
concentration set at 1.7%.

Immediately following the SPECT scan, the animals were euthanized
by cervical dislocation, and a blood sample was taken by cardiac punc-
ture. The tumor was excised from the thigh and rinsed in physiological
saline, dried, and weighed. Tumor weight was converted into volume as-
suming a 1 g/ml density [395]. All samples were measured in a calibrated
NaI(Tl) well-type gamma counter.
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The CT image was used to delineate the boundaries of each tumor. The
total activity and volume inside the VOI were measured. Because the
VVF is unknown for these tumors, we used a value of 5.2% ml/g tumor
tissue as determined by Bremer et al. [396] for fibrosarcoma implanted
in the gluteal region in mice.

7.3 Data Analysis

As in the previous chapter, all data are analyzed by comparing fully
corrected data to the vendor’s software and to our uncorrected data.
Uncorrected data refers to data only corrected for decay, geometrical
sensitivity and quantitative calibration. The corrected data is corrected
for (1) decay, (2) geometrical sensitivity, (3) resolution, (4) PVE, (5)
quantitative calibration, (6) blood-pool activity, (7) photon attenuation
and (8) photon scatter, unless stated otherwise.

All VOIs were analyzed using the open-source AMIDE software pack-
age (version 1.0.4). Quantification errors were calculated per VOI, and
then averaged. The paired t-test is used to quantify significant dif-
ferences between the quantification from reconstructed data and the
known ground-truth values. Furthermore, a Bland-Altman analysis is
conducted to further evaluate the agreement between reconstructed val-
ues and ground-truth values.

7.4 Results

Figures 7.1 shows example reconstructions of the reconstructed in vivo
data. Because of the difference in injected dose and tracer speci-
ficity, the background activity is much more of a confounding factor
for [111In]Octreotide (Fig. 7.1b) than with [99mTc]DMSA (Fig. 7.1a).

Table 7.1 shows the average absolute errors and average relative errors
for both studies. For [111In]Octreotide, the separate quantification of
each photopeak (low = 171 keV, high = 245 keV) is also included. Only
10 data points are available for [99mTc]DMSA (instead of 12 kidneys
harvested from 6 mice), as one acquisition failed due to the animal waking
up during the SPECT scan.

The average activity reduction due to the VVF is 0.068±0.026
MBq for the [99mTc]DMSA kidneys, and 0.004±0.003 MBq for the
[111In]Octreotide tumors. A paired t-test indicates that there is no
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0 MBq/ml

20 MBq/ml

(a) For [99mTc]DMSA. The kidneys can be delineated on the micro-CT image thanks
to the contrast agent.

0.5 MBq/ml

0 MBq/ml

(b) For [111In]Octreotide. The tumor VOI is shown with a yellow line on the micro-CT
image.

Figure 7.1: Images of reconstructed in vivo micro-SPECT/CT data.



196 Validating quantitative micro-SPECT/CT reconstruction in vivo

R
eference

V
endor

E
rror

U
ncorrected

E
rror

C
orrected

E
rror

Tracer
M

B
q/m

l
M

B
q/m

l
R

elative
M

B
q/m

l
R

elative
M

B
q/m

l
R

elative

[ 9
9
m

T
c]D

M
SA

8.42±
2.77

-1.12±
0.37

-13.6±
3.1%

-1.31±
0.33

-16.2±
2.8%

0.03±
0.20

0.3±
2.1%

[ 1
1
1
I
n]O

ctreotide
0.35±

0.09
-0.09±

0.13
-22.4±

29.0%
-0.06±

0.01
-16.7±

10.1%
-0.01±

0.04
-2.2±

10.6%
Low

-
-

-0.08±
0.05

-22.7±
11.4%

-0.03±
0.05

-8.1±
11.8%

H
igh

-
-

0.01±
0.02

3.8±
8.6%

0.06±
0.01

18.8±
8.5%

T
able

7.1:
Sum

m
ary

of
quantitative

errors
obtained

from
in

vivo
studies

w
ith

the
vendor-provided

softw
are,

w
ith

our
ow

n
softw

are
before

corrections,and
after

applying
allcorrections

([ 9
9
m

T
c]D

M
SA

:n=
10;[ 1

1
1
I
n]O

ctreotide:
n=

6).



7.4 Results 197

(a) [99mTc]DMSA

(b) [111In]Octreotide

Figure 7.2: Quantification error for in vivo studies. Diagonal is the ground
truth.



198 Validating quantitative micro-SPECT/CT reconstruction in vivo

significant difference between the reference data and the fully cor-
rected data, whether the VVF is used or not. However, applying
the VVF significantly (p < 0.01) decreases the quantification error for
[99mTc]DMSA from -0.038±0.198 MBq/ml to 0.030±0.201 MBq/ml.
For [111In]Octreotide, a significant (p < 0.05) increase of -0.008±0.040
MBq/ml to -0.012±0.038 MBq/ml was found.

Figure 7.2 correlates the measured activity concentration to the ref-
erence ex vivo activity concentration. For [99mTc]DMSA (Fig. 7.2a),
there is a significant difference (paired t-test, p < 0.01) comparing un-
corrected data to the reference data, while the difference between fully
corrected data and the same reference data is not significant (p = 0.64).
Also for [111In]Octreotide (Fig. 7.2b), a paired t-test on the summed two-
peak reconstruction shows a significant difference (p < 0.05) between the
uncorrected and reference data, while there is no significant difference
(p = 0.113) between the fully corrected and the reference data.

In both studies the goodness of fit improves by applying all corrections,
but is still worse for 111

In (R2 = 0.778 and 0.823) than for 99m
Tc data

(R2 = 0.991 and 0.995).
A Bland-Altman analysis is presented in Fig. 7.3. A one-sample t-

test to zero mean difference indicates a significant absolute systematic
error for the difference between the uncorrected data and the reference
data, and this for both isotopes (99mTc: p < 0.01; 111

In: p < 0.05).
The systematic error is relatively lower for 99m

Tc than with 111
In. No

significant absolute systematic bias is found for fully corrected data.
These results indicate a better agreement between the reference and the
fully corrected data than between the reference and the uncorrected data.

7.5 Influence of low-dose CT

The influence of low-dose CT on quantitative SPECT was also analyzed.
The full-dose CT acquisitions (512-view) are reconstructed with MLTR,
while 64-view (1/8th dose) and 32-view (1/16th) data is reconstructed
with ISRA-TV. The same implementation of ISRA-TV is used as first
implemented for Chapter 4.

Figure 7.4 shows the reconstructed CT dataset for one mouse with the
full dose, a dose reduction of factor 8, and a dose reduction of factor
16. Comparing these attenuation maps with a 5 ⇥ 5 ⇥ 5 mm3 VOI in
the soft-tissue shows no significant difference between the three meth-
ods. The 1/8th dose differs 0.4% from the full-dose reconstruction, while
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Figure 7.3: Bland-Altman plots comparing (left) reference activity concen-
tration to uncorrected reconstructed data and (right) reference activity con-
centration to corrected reconstructed data. Both uncorrected datasets show a
significant absolute systematic error, the corrected datasets do not.

the 1/16th dose differs 0.5%. When these low-dose attenuation maps
are used in the SPECT reconstruction, the quantification error changes
by 0.16±0.28% for the 1/8th dose, while for the 1/16th dose the error
changes by 0.64±0.92%. The spatial distribution of the quantification
error change is depicted on Figure 7.5. The largest relative changes are
located in the areas of lowest activity (e.g. the 2.5% change just above
and below the kidneys), while the lowest changes are located in the kid-
neys (e.g. less than 0.2% change).

This shows that attenuation maps obtained from low-dose CT can
successfully be used for absolute SPECT quantification. Unfortunately,
the acquired CT data are not only used to determine the attenuation
factors. The reconstructed image is also used as a starting point for the
PVE correction, where the organ edges are determined before penalizing
the quadratic smoothing step (see Section 6.2.2.7). This will not be
possible on data acquired at 1/16th of the original dose, due to the
decreased image quality.
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MLTR - full dose ISRA-TV - 1/8th dose ISRA-TV - 1/16th dose

Figure 7.4: Comparison of different low-dose CT attenuation maps to the
full-dose map, reconstructed from 512 projection views.

7.6 Discussion

The in vivo results indicate that an in vivo quantification error of less
than 5% is achievable with 99m

Tc and 111
In. This was achieved with

model-based iterative SPECT reconstruction on a standard commercially
available multi-pinhole micro-SPECT scanner. When ISRA-TV is used
to reconstruct the CT data, an acquisition of only 64 projection views
will suffice for attenuation correction and for PVE correction.

The in vivo quantification error is smaller than the quantification ob-
tained with the phantoms in Chapter 6, which is counter-intuitive. Com-
paring the average in vivo error to the error in the vial of the phantom
with similar activity concentration indicates a significant difference for
111

In (p < 0.01). The large error in the phantom was caused by an un-
dercorrection in the lowest activity vial for the low-energy photopeak of
111

In.
Although the presented results are promising for routine usage of ab-

solute quantification in in vivo micro-SPECT imaging, some issues were
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SPECT with 
high-dose CT

2%

0%

1/8th dose
relative difference

1/16th dose

2.5%
< 0.2%

Figure 7.5: Comparison between the SPECT activity after attenuation cor-
rection from a high-dose CT acquisition, and the activity after correcting for
attenuation measured from lower-dose CT acquisitions.

noticed during the experimental work. First, the importance of blood
volume correction is not as clear as reported in [346]. Applying blood
volume correction significantly changes the absolute quantification val-
ues. For [99mTc]DMSA, this leads to a lower quantification error, while
for [111In]Octreotide, the quantification error increases. This could be
due to a misestimated blood volume for the H727 tumors. Although
we measured the blood activity concentration by a heart puncture, a
gamma-counting blood sampler can also be used. This was unavailable
to us at the time. Little data of the VVF of different tissues are available,
which makes this correction difficult in practice. One possible solution
would be to directly measure the VVF using e.g. in vivo MRI [396, 397].
Using in vivo VVF measurements would also allow us to account for
intraspecies differences.

An important limitation of the DMSA study is the delineation of the
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renal cortex. The complete kidney was delineated and compared to the
dissected complete kidney, instead of quantifying only the renal cortex.
This was done because the renal cortex is still difficult to delineate on
contrast-enhanced CT, and because the cortex is also difficult to separate
from the medulla during dissection. However, edge-preserving smooth-
ing is still necessary to limit the overspill of activity in non-renal tissue.
These high-resolution details form the limiting factor for using low-dose
CT as a prior image. Whereas attenuation correction will perform iden-
tical in the case of only 32 views, it will be difficult to reconstruct the
renal cortex accurately on those images.

A second issue is the low system sensitivity in pinhole SPECT, which
is combined with low biological uptake in typical preclinical studies. The
H727 cell line used in the [111In]Octreotide study showed an uptake of
only 1.4±0.5% ID/g, resulting in an activity of only 151±40 kBq per
tumor during the SPECT acquisition. Our results indicate that in vivo
quantification is still possible at such a low activity, which is more than
an order of magnitude lower than the activity reported by Finucane et
al. [360], when normalized to the low sensitivity of our system [141]. This
could be alleviated by injecting a higher dose. Unfortunately, increasing
the activity is not always possible due to specific tracer kinetics in some
tracers. In cases of irreversible binding, increasing the dose would not
increase the uptake ratio due to receptor saturation. Furthermore, the
irradiation dose should also be taken into account. Hoppin et al. [398]
estimate that 111

In and 99m
Tc will deliver a dose of 76.76 mGy/MBq

and 4.59 mGy/MBq respectively, assuming a 72 h biological half-life.
For the current study, this results in an average total dose of 2.38 Gy
due to [111In]Octreotide, while [99mTc]DMSA will result in a 358 mGy
dose. [111In]Octreotide will also irradiate nearby tissue (0.02 to 500 µm)
with Auger and internal conversion electrons [399, 400]. Therefore, the
injected dose should be kept as low as possible, not only for micro-CT
but also for micro-SPECT.

Some system design ideas allow for pinhole systems with increased sen-
sitivity. One of the options is the use of multiplexing pinhole collimators,
as is already used in the X-SPECT system used in this and the previous
Chapters. Several research groups have shown that multiplexing leads to
image artifacts such as image non-uniformities and ghost activity, due to
the ambiguity of the projected data in overlapping regions [139–141, 401–
403]. A uniform phantom scanned with the X-SPECT system has already
been shown to exhibit some non-uniformities (Fig. 8 in Ref. [141]) when
a multi-pinhole collimator is used. However, the extent of multiplexing
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artefacts is dependent on the activity distribution and the geometrical
system design [140]. A similar non-uniformity was noticed in the uni-
form part of the phantom study (Fig. 6.10). This may influence the
quantification error when only a small VOI is analyzed.

7.7 Conclusion

We have shown that absolute in vivo quantification is possible in micro-
SPECT using direct modeling in iterative reconstruction, without the
need for explicit measurements of the system matrix. An absolute in
vivo quantification error smaller than 5% was achieved for two typical
tracers.





Chapter 8

Concluding remarks

In this final chapter, a general overview is given about the work presented
in the preceding chapters. The results from each individual chapter will
be concisely summarized together with the limitations, novelties and
future work, and the respective conclusions that can be drawn. Finally,
an overall conclusion will be presented to conclude this dissertation.

8.1 Summary

The purpose of this dissertation was to investigate the use of improved
iterative reconstruction in CT and micro-SPECT/CT imaging to address
two challenges: (i) the X-ray radiation dose and (ii) absolute quantifi-
cation in micro-SPECT/CT. To achieve a dose reduction in CT, our
approach consisted of reducing the number of projection views per ac-
quisition. Although this linearly decreases the dose and acquisition time,
such angular undersampling will introduce aliasing artifacts into the re-
constructed images. The aliasing artifacts were minimized by applying
regularized reconstruction techniques. This approach was first applied to
in vivo vascular imaging in mice using the ISRA-TV algorithm. However,
due to the image model imposed by the TV regularizer, some new image
artifacts were introduced. Therefore, a general framework for regularized
CT reconstruction was implemented, where a general regularizer could
be included. A method, novel for CT, was developed using shearlet-based
regularization. For the second challenge, we investigated if model-based
iterative reconstruction enables truly quantitative SPECT reconstruc-
tion, and we determined the accuracy and precision of this method both
on phantoms and on in vivo animal studies.
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This dissertation started in Chapter 2 with a historical overview of
medical and molecular imaging. A thorough introduction was given into
the CT and SPECT modalities, with special attention to the challenges
in CT and SPECT, mainly concerning the X-ray dose and absolute quan-
tification in SPECT. These challenges were further discussed in the spe-
cific case of small-animal CT and SPECT, as those miniaturized systems
significantly differ from their clinical counterparts.

Chapters 3, 4 and 5 address the radiation-dose challenge of CT. First,
in Chapter 3 we determined if and how in vivo preclinical imaging can
replace ex vivo measurements, allowing for longitudinal research. The
golden standard involves vascular corrosion casting followed by ex vivo
micro-CT scans to generate a 3D model of the cast. We investigated
if this can be replaced by in vivo micro-CT scanning. We showed that
enough contrast can be obtained in the vascular system to enable ac-
curate segmentation with an iodine-based contrast-agent. The in vivo
models were significantly larger than the in vitro models, but did not
lead to significantly different wall shear stress values. Unfortunately,
when retrospective respiratory gating was applied to remove motion ar-
tifacts, the delineation quality did not increase. There was a substantial
increase in image noise, caused by the limited angular sampling.

Even though the data presented shows that in vivo imaging is possible,
longitudinal scans remain challenging. First of all, the contrast agent
possibly attributed to the high mortality in the mice, due to the contrast
agent toxicity and the relatively high injected volume. We currently use
a different contrast agent for these studies, which does not show these
effects. A second problem is the radiation dose, calculated at 196 mGy
per scan. This is for instance higher than the total dose of 180 mGy
proven to lead to tumor growth inhibition, and thus needs to be lowered
to enable longitudinal imaging studies.

In Chapter 4, we determined how iterative reconstruction can be used
to reduce the imaging dose. The dose was lowered by decreasing the num-
ber of projection views acquired during the CT acquisition. Whereas this
introduces substantial image noise and image artifacts when traditional
reconstruction techniques are used (analytical or simple iterative), us-
ing regularized reconstruction leads to images that can be segmented.
We found that TV-based regularization was very useful here, as images
reconstructed with TV minimization showed good image quality with
much less streaking artifacts than when no regularization is applied (i.e.
with FBP). This allowed us to achieve an 8-fold reduction in dose and
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8-times acquisition speed-up, if the images were to be used only for seg-
mentation and not for diagnostics. The same type of analysis can also
be done for other tasks (e.g. for trabecular bone analysis), in order to
determine the minimal dose when advanced reconstruction techniques
are used.

Unfortunately, the image quality is insufficient for diagnostic tasks,
because of small block-like artifacts (staircasing). These are caused by
the underlying image model imposed by TV regularization, of which its
use can certainly be questioned in medical imaging: medical images are
not approximately piecewise constant, but exhibit texture. With TV
regularization, some image features important to diagnostics might be
removed.

Realizing TV-based regularization is not ideal; in Chapter 5 a different
regularizer was proposed for CT. This chapter was started by working
on a very general framework for CT regularized reconstruction based on
the split-Bregman technique, in order to embed any possible regular-
izer into iterative CT reconstruction. This framework was later applied
to the shearlet-transformation, a multiscale and multidirectional trans-
formation shown to be optimal for 2D piecewise smooth surfaces with
discontinuities along C

2 edges.
The shearlet-based reconstruction was validated on three different

phantoms: a smooth-gradient phantom to determine the influence of
staircasing, a contrast phantom to determine the effect of contrast mag-
nitude on the noise-resolution tradeoff, and an ex vivo acquired ultra-
high-dose dataset of a plastinated mouse to determine its influence on
texture. These three phantoms allowed us to evaluate the regularization
without using a phantom biased for the TV model.

Based on the noise-resolution tradeoff study, TV minimization outper-
formed shearlet-based reconstruction. However, on acquired data with
realistic image texture, shearlets reconstructed the textures more similar
to the reference texture of the ultra-high-dose dataset. We found some
important limitations of using shearlets in CT reconstruction. Although
the shearlet-transform was suited for structures representing sharp and
elongated structures (edges), it was unsuited for spherical-like sources.
This is a limitation similar to those found with other multi-resolution
techniques: when they represent isotropic features well, they are far from
optimal for analyzing anisotropic objects. We therefore suggest that the
shearlet-based approach should be combined with an isotropic wavelet
transform. The sensitivity of each transform to a particular shape in the
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multiresolutional analysis would possibly make it a very strong discrim-
inating tool. Future work could thus include the combination of both
transforms in one algorithm, and the application of these developed tech-
niques to different datasets with numerical observer studies.

In micro-SPECT/CT, Chapter 2 indicated that one of the major chal-
lenges is quantitative SPECT. With absolute quantification, the activity
concentration can be directly derived from the reconstructed images.
This is needed e.g. to enable dose calculations in targeted therapy treat-
ment planning, to follow the treatment of tumors longitudinally, to mea-
sure the dose-response for an experimental drug. Physical effects will be
detrimental to the quantitative accuracy.

Chapter 6 was used to determine the absolute quantification accuracy
in micro-SPECT imaging. Several methods were proposed in the past to
correct for each individual image degrading effect, but were never used
together and tested for accuracy and precision in an in vivo 111

In appli-
cation. After describing the necessary system calibrations, we show how
an efficient model-based iterative reconstruction algorithm can be imple-
mented on the GPU for micro-SPECT reconstruction. Detector unifor-
mity, geometric sensitivity, resolution recovery, photon scatter, photon
attenuation and PVE correction were included into an OSL-OSEM algo-
rithm, which was calibrated to absolute activity values using a calibration
vial.

The implementation was validated on a multi-modal micro-
SPECT/CT system, using a CZT detector with energy resolution
4.22±0.23%, on 3D-printed NEMA phantoms for 99m

Tc and 111
In. Using

phantoms in this step allowed us to optimize and validate the reconstruc-
tion software, because the ground-truth values were known. In order to
be able to define the 3 phantom compartments on the CT for the PVE
correction, 2 compartments were filled with iodine-based contrast agent.
Comparing the measured activity to the known activity, the accuracy
error decreased to a quantification error of ±10% for 99m

Tc and 111
In.

Only the lowest activity vial was undercorrected for 111
In, due to the con-

tribution of the 39±13% undercorrection for the low-energy photopeak.
The quantification errors indicate that a decrease in error is primarily
caused by the attenuation correction. The influence of photon scatter
was effectively minimized by photopeak windowing, made possible by
the excellent energy resolution of the CZT detector.

Finally in Chapter 7 the absolute quantification error was measured
in vivo using the improved reconstruction from chapter 6. Additional
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blood-pool activity correction was therefore implemented. The first
mouse model used is one of tubular functioning after PRRT therapy
with 90

Y, measured by [99mTc]DMSA. An iodine-based contrast agent
was additionally used to enable the delineation of the renal cortex on the
micro-CT images. The second mouse model is one of human non-small
cell lung carcinoma (cell line H727). As imaging agent the radioactively
labeled [111In]Octreotide was used, an octapeptide that pharmacologi-
cally mimics natural somatostatin. Because the H727 tumor expresses
somatostatin receptor type 2, 3 and 5, [111In]Octreotide is a good match
for H727 studies.

For each model, a strict imaging protocol was followed, after which the
relevant organs were prelevated and measured in a gamma-counter. The
value obtained from the reconstructed images was then compared to this
ground-truth value. Our in vivo results indicate that a quantification
error of less than 5% can be achieved with both 99m

Tc and 111
In on this

micro-SPECT system, by using a model-based iterative reconstruction
algorithm. This in vivo error is lower than the errors determined for
the phantoms, which is counter intuitive. However, only a significant
difference was found when comparing to the lowest activity vial for 111

In,
where the error was caused by an undercorrection for the low-energy
photopeak. A proof of concept study was done to determine if low-dose
CT measurements can be used as an attenuation map for the SPECT
reconstruction. This was possible at 1/16th the original dose. However,
at least 64 views are needed to enable the delineation of organs for PVE
correction.

Some issues were encountered, which will be solved in future work.
Firstly, applying blood-pool activity correction significantly changes the
absolute quantification error. Because little VVF data of different tissues
is available in literature, it is difficult to use this correction in practice. A
possible solution may be to directly measure the VVF with e.g. in vivo
MRI, which would also allow us to account for intraspecies differences.
However, an MRI is currently still a very expensive alternative to CT and
will therefore not be available for every research lab. Secondly, there is
the low system sensitivity with pinhole SPECT, combined with the typ-
ically low biological uptake for preclinical studies. We had to increase
the injected dose and total acquisition time to achieve an activity mea-
surable on our micro-SPECT system. This will however not be possible
for all tracers due to specific tracer kinetics and due to the irradiation
dose delivered by the tracer. Therefore, the system should be adapted
to increase the geometrical sensitivity (e.g. with more pinholes), and/or
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by using a more advanced reconstruction algorithm than OSL-OSEM.

8.2 Final conclusion

Model-based iterative reconstruction techniques can help to solve some
challenges still faced currently in micro-CT and in micro-SPECT/CT
imaging.

Regularized iterative CT reconstruction was shown to reduce the mini-
mum X-ray dose necessary and increases the imaging throughput consid-
erably, as long as an appropriate regularizer is found for medical images.
A possible choice is the shearlet transform, which shows an improve-
ment for textured tissue, but results in different artifacts than when TV
is used. TV regularization still has its merit when texture should not
remain intact, e.g. for segmentation tasks.

Model-based iterative reconstruction also enables in vivo absolute
quantitative micro-SPECT/CT imaging, thus removing the need for ex-
plicit measurements of the system matrix. An absolute in vivo quan-
tification error smaller than 5% was achieved for two typical tracers in
mouse models.



“I may not have gone where I intended to go, but I think I have ended
up where I needed to be.”
Douglas Adams
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Appendix A

Split-Bregman pseudocode

The following algorithm shows the pseudocode of the split-Bregman al-
gorithm for regularized CT reconstruction.
Require: d 0,b 0, C diag(e�y

i), µ, �.
Ensure: image x.
1: if � = Shearlet-transform then
2: u = �(1)

3: for s = 0! scales(u) do
4: for i = 0! size(u[s]) do

5: E[s][i] =

qP
size(u[s])
j=0 u[s][j]

2

6: end for
7: end for
8: else
9: E = 1

10: end if
11: for 0! iterations do
12: r W

†
(C

�1
y) + (µ/�)�

†
(d� b)

13: p r

14: new_err  r

0 ⇤ r
15: for 0! cg_iterations do
16: err  new_err

17: M W

†
(C

�1
W(p)) + (µ/�)�

†
(�(p))

18: ↵ err/(p

0 ⇤M)

19: x x + ↵p

20: r r� ↵M
21: new_err  r

0 ⇤ r
22: �  new_err/err
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23: p r + �p

24: end for
25: S = �(x)

26: k = S + b

27: for i = 0! size(k) do
28: d[i] sign (k[i]) ⇤max(|k[i]|�E[i]/µ, 0)

29: end for
30: b b + (S� d)

31: end for
32: return x
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