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Samenvatting

Magnetische-resonantiebeeldvorming (MRI) is een gesofisticeerde me-
dische beeldvormingstechniek die gebruik maakt van de grote hoeveel-
heid watermoleculen in ons lichaam en deze opmeet met behulp van
radiogolven en het sterke magneetveld van een MRI-scanner. Een
belangrijk voordeel van MRI is dat de patiënt hierbij niet blootge-
steld wordt aan radioactieve straling zoals dit het geval is bij klassieke
röntgendiagnostiek en computertomografie (CT). Door het grote con-
trastbereik van MRI in zacht weefsel wordt bovendien een gedetail-
leerde visualisatie mogelijk van de hersenen, het ruggenmerg, andere
inwendige organen en tumoren.

Een sterk in belang groeiende tak van MRI is diffusiegewogen
magnetische resonantie beeldvorming (DW-MRI). Het contrast in
MR-diffusiebeelden is afkomstig van de willekeurige beweging of mo-
leculaire zelfdiffusie van de watermoleculen in weefsel. Deze diffusie
zorgt voor een verval van de opgemeten magnetisatie. Het totale ef-
fect dat geobserveerd wordt in voxels van diffusiebeelden reflecteert
de (statistische) distributie van de verplaatsing van de watermolecu-
len in deze voxels. Deze beelden kunnen unieke biologisch en klinisch
relevante informatie onthullen over de microstructuur van weefsels.
Zo wordt bijvoorbeeld in hersenregio’s die aangetast zijn door een
acuut herseninfarct een verlaagde diffusieactiviteit waargenomen.

Omdat de mobiliteit van de watermoleculen niet noodzakelijk de-
zelfde is in alle richtingen, wordt het ook mogelijk om met DW-MRI
anisotropie in weefsels te detecteren. Een interessant voorbeeld van
diffusie anisotropie vindt plaats in de witte hersenstof die bestaat
uit parallel gegroepeerde zenuwbundels of axonen. Deze axonen be-
staan uit membranen en myelinewanden die obstakels vormen voor
de willekeurige beweging van de watermoleculen. Hierdoor bewegen
de watermoleculen makkelijker langsheen de vezelrichting dan dwars
op de vezelrichting. Met DW-MRI en vezeltractografie worden de
axonen van de hersenen in kaart gebracht. Dit maakt onderzoek mo-
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gelijk naar de werking van het zenuwstelsel en zenuwaandoeningen in
de hersenen zoals multiple sclerose (MS) en Alzheimer.

Hoewel de eerste klinische toepassingen van DW-MRI al dateren
van 1986, zijn er nog steeds problemen met de validatie, kwantifice-
ring en interpretatie van DW-MRI data. De meetprocedure is volledig
niet invasief, wat enerzijds voordelig is voor de patiënt, maar ander-
zijds de kwaliteitscontrole en verbetering van de techniek aanzienlijk
bemoeilijkt. Er is nood aan een fysisch diffusiefantoom dat kan dienen
als gouden standaard voor de kwantitatieve validatie van DW-MRI in
klinische toepassingen. Fantomen met een gekende structuur zijn ook
gewenst voor het ontwikkelen en testen van vezeltractografie algorit-
men. Bovendien is de oorzaak van het opgemeten diffusiesignaal in de
witte hersenstof niet volledig gekend en is het nog steeds onduidelijk
wat de specifieke bijdragen zijn van de verschillende compartimenten
(diffusie in de extracellulaire en intracellulaire ruimte en uitwisseling
tussen deze). Een gekend fysisch of gesimuleerd diffusiefantoom is
ook nuttig om hierin meer inzicht te verwerven.

In deze doctoraatsverhandeling worden zowel fysische fantomen
als computersimulaties besproken voor de validatie en interpretatie
van DW-MRI data.

Fysische fantomen worden onderverdeeld in isotrope fantomen
(zoals vloeistoffen) en anisotrope fantomen. Vloeistoffen zoals water
hebben een nauwkeurig gekende diffusiecoëfficiënt en worden veel-
vuldig gebruikt om diffusiemeetsequenties te testen en gerelateerde
artefacten te beoordelen. Anisotrope fantomen zijn essentieel voor
de evaluatie van kwantitatieve anisotropieparameters zoals de diffu-
sie tensor (DT), de fractionele anisotropie (FA), en om de variabiliteit
van deze grootheden te analyseren tussen verschillende MR-scanners.
Zowel biologische fantomen (planten en gedisecteerd ruggenmerg) als
synthetische fantomen worden gebruikt voor de validatie van DW-
MRI.

Anisotrope vezelfantomen werden ontwikkeld omdat deze een goed
gekende en reproduceerbare structuur bezitten en er complexe geome-
triën mee kunnen gemaakt worden zoals bochten en kruisende vezels.
Een vezelfantoom bestaat essentieel uit parallele synthetische vezels
die in water worden geplaatst. Door het gebruik van een krimpkous
rondom de vezels wordt een homogene, dicht gepakte vezelbundel
geproduceerd.

Een vergelijkende studie tussen verschillende vezelmaterialen (car-
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bon, nylon, DyneemaR© en glasvezel) werd uitgevoerd om te onderzoe-
ken hoe de vezelafmetingen en materiaaleigenschappen van de vezels
de MR diffusiemeting bëınvloeden. Enerzijds bepalen de vezeldicht-
heid en vezeldiameter de diffusie eigenschappen zoals de FA in de
beelden. Anderzijds wordt de signaal-ruis verhouding voornamelijk
bepaald door het effect van de oppervlakterelaxatie en magnetische
susceptibiliteit op de T2-relaxatietijd. De meest geschikte vezelfan-
tomen blijken dichtgepakte vezelbundels te zijn, gemaakt van een
hydrofoob vezelmateriaal met een magnetische susceptibiliteit dicht
bij deze van water. DyneemaR© bezit de meest geschikte vezeleigen-
schappen om te dienen als diffusiefantoom en werd dan ook verder
gebruikt in dit werk.

De diffusie in de DyneemaR© vezelbundels is opgemeten met DW-
MRI en bulk MR diffusiemetingen. De diffusie in de interstitiële
ruimte tussen de vezels is gesimuleerd met Monte Carlo (MC) simula-
ties om deze metingen kwantitatief te evalueren. De tijdsafhankelijke
diffusiecoëficiënt en kurtosis werden gesimuleerd door diffunderende
watermolecules in geometriën bestaande uit parallelle cylinders ge-
pakt volgens variërende geometrieën en met variërende dichtheid. De
MC simulaties bevestigen de accuraatheid en nauwkeurigheid van be-
staande analytische modellen voor geordende pakkingsgeometrieën.
De simulaties in de random pakkingsgeometrieën tonen een hogere FA
en een langere diffusietransitietijd tussen de korte en lange diffusieli-
miet in vergelijking met geordende pakkingsgeometrieën. Een goede
overeenkomst werd gevonden tussen de experimenteel bepaalde diffu-
siecoëfficiënt van een vezelfantoom met een bepaalde pakkingsdicht-
heid en de gesimuleerde diffusiecoëfficiënt in de random pakkingsge-
ometrie met overeenkomstige pakkingsdichtheid. De vezelfantomen
zijn dus geschikt voor de kwantitatieve validatie van DW-MRI op
klinische MRI-scanners.

Het nut van de vezelfantomen voor het ontwikkelen, testen en
optimaliseren van MR diffusiesequenties en de evaluatie van beeldar-
tefacten is gëıllustreerd in dit werk. Door de flexibiliteit van de fan-
tomen kan een anthropomorf hoofdfantoom gemaakt worden dat de
belangrijkste vezelbundels in de witte hersenstof bevat. Een fan-
toom met kruisende vezels werd eveneens gefabriceerd, waarmee ve-
zeltractografie-algoritmen getest kunnen worden.

De MC simulaties zijn vervolgens uitgevoerd in een geometrie be-
staande uit intra- en extracellulaire compartimenten zoals in de witte
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hersenstof. De simulaties werden uitgebreid om het DW-MRI signaal
zelf te simuleren en ook uitwisseling van watermoleculen tussen beide
compartimenten toe te laten. De geldigheid van het bi-exponentieel
model en de cumulant expansievorm, beide modellen voor het DW-
MRI signaal in de witte hersenstof, werd onderzocht als functie van
het beschouwde b-interval en als functie van toenemende uitwisseling
tussen de compartimenten.

Hoewel een bi-exponentiele functie de data goed lijkt te beschrij-
ven, hangen de waarden van de gefitte diffusiecoëfficiënt en kurto-
sis sterk af van het beschouwde b-interval. Bovendien is het bi-
exponentieel model, dat gebaseerd is op diffusie in de intra- en extra-
cellulaire ruimte van de witte hersenstof, niet eenduidig interpretabel
in het geval van uitwisseling tussen deze ruimtes.

De cumulant expansievorm vormt een alternatief voor het bi-
exponentieel model. De diffusiecoëfficiënt en kurtosis kunnen accu-
raat worden gefit wanneer de hoge orde termen van de cumulant ex-
pansievorm worden meegefit. De kurtosis lijkt een nuttige parameter
te zijn om de uitwisseling te meten tussen de intra- en extracellulaire
ruimtes van de witte hersenstof. Het fitten van de kurtosis aan het
DW-MRI signaal is nuttig om de geobserveerde veranderingen in cel-
permeabiliteit te koppelen aan pathologische veranderingen in de cel
zoals waargenomen bij infarcten en tumoren.

Het hier voorgestelde onderzoek is uitgevoerd binnen de onder-
zoeksgroep MEDISIP (Medical Imaging and Signal Processing group),
deel van de vakgroep ELIS (Electronics and Information Systems) en
IBiTech (Institute for Biomedical Technology), Universiteit Gent. De
MRI metingen werden uitgevoerd in samenwerking met de MR afde-
ling en GIfMI (Ghent Institute for Functional and Metabolic Imaging
of the brain) van het Gents universitair ziekenhuis. De bulk MR dif-
fusiemetingen en de fabricatie van de fantomen werden uitgevoerd in
samenwerking met de onderzoeksgroep QMRI (Laboratory for quan-
titative and molecular NMR imaging), vakgroep Radiotherapie van
het Gents universitair ziekenhuis. Dit werk resulteerde in 4 publi-
caties in internationale tijdschriften en verschillende abstracten en
proceedings op nationale (7) en internationale conferenties (19).



Summary

Magnetic resonance imaging or MRI is a powerful medical imaging
technique. This non-invasive technique utilizes a strong static mag-
netic field and radio frequent electromagnetic waves to align the mag-
netic dipole moments of water molecules in the body. Images are cre-
ated based on the local density of water molecules and their mutual
interactions. MRI provides great contrast between soft tissues and
is generally regarded to be a safe imaging method since no ionizing
radiation is used.

An important modality of MRI is diffusion weighted MRI (DW-
MRI), which provides unique biologically and clinically relevant in-
formation of water in tissues that is not available from other imaging
modalities. The overall effect observed in a diffusion weighted MRI
image voxel reflects, on a statistical basis, the displacement distri-
bution of water molecules which are present in that voxel. During
their random diffusion driven displacement, molecules probe tissue
structure at a microscopic scale. As diffusion is a three-dimensional
process, the molecular mobility is not necessarily equal in all direc-
tions, which enables the detection of tissue anisotropy.

An interesting application is the diffusion anisotropy in brain
white matter (WM) originating from its specific organization in bun-
dles of more or less myelinated axonal fibres running in parallel. As-
suming that the direction of the fastest diffusion indicates the overall
orientation of the fibres, DW-MRI provides a way to map the spatial
orientation of the white matter tracks in the brain. Fibre tracto-
graphy algorithms are used to reconstruct and visualize the neural
fibre tracts in the WM. DW-MRI is also useful in the diagnosis of
stroke and to investigate white matter pathologies such as Alzheimer
disease, multiple sclerosis (MS) and brain tumours.

Despite the fact that the first clinical applications of DW-MRI
were presented in 1986, problems with validation, quantification and
interpretation of the DW-MRI data still persist. A hardware diffusion
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phantom serving as a gold standard for the quantitative validation
of DW-MRI is crucial for clinical purposes but still not available. In
addition, phantoms with a well-known anisotropic structure would be
useful to develop and test fibre tractography algorithms. Moreover,
the origin of the DW-MRI signal in WM is not completely understood
and the contributions of the different compartments (diffusion in the
intra-, extracellular space and exchange between the intra-, extracel-
lular compartment) are elusive. A well-known physical or simulated
phantom would be useful to gain more insight in this matter.

In this Ph.D. dissertation, both hardware and software diffusion
phantoms are presented for the validation and interpretation of DW-
MRI data.

Hardware diffusion phantoms can be classified into isotropic and
anisotropic phantoms. Isotropic phantoms contain liquids such as
water. They are widely used to test diffusion sequences and to eval-
uate related imaging artefacts. Anisotropic phantoms are essential
in order to evaluate quantitatively measured parameters expressing
the anisotropy such as the diffusion tensor and the fractional aniso-
tropy (FA). They are also useful in analysing the variability of differ-
ent MR-scanners in terms of anisotropy and fibre orientation. Both
biological diffusion phantoms (plants and excised spinal cord) and
synthetic diffusion phantoms are used for the validation of DW-MRI.

We focus here on the development of anisotropic fibre phantoms
because on the one hand, they have a well-known and reproducible
structure and on the other hand they can be used to imitate complex
geometries such as curved fibres and fibre crossings. A fibre phantom
bundle consists of parallel fibres placed in water and surrounded by
a shrinking tube to pack the fibres densely.

In order to investigate how the different fibre material proper-
ties, size of the fibres and packing density influence the outcome of
the DW-MRI experiment, fibre bundles are created with varying fi-
bre density and made of different fibre materials (carbon fibre, nylon
fibre, DyneemaR© and fibreglass). The fibre density and fibre diam-
eter are the two major factors determining the diffusion properties
such as the FA, while the SNR is mainly determined by the surface
relaxation and the magnetic susceptibility of the fibre. The most
appropriate fibres to manufacture diffusion phantoms turn out to be
densely packed fibre bundles made from a hydrophobic material with
a magnetic susceptibility close to water. Of the tested fibre materi-
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als, DyneemaR© fibres show to have the best fibre characteristics for
making diffusion phantoms and are used further in this work.

The diffusion in the DyneemaR© fibre bundles is measured using
DW-MRI and bulk NMR diffusion measurements. The measured
diffusion properties are compared to simulations. The diffusion coef-
ficient and kurtosis in the interstitial space between fibres is modelled
using Monte Carlo (MC) simulations of random walkers. The time-
dependent apparent diffusion coefficient and kurtosis are simulated
in geometries of parallel fibres with varying packing geometries and
packing densities. The MC simulations confirm the accuracy and va-
lidity of the existing analytical models for ordered packing geometries.
The simulations in the random packed fibre geometries show a higher
FA and a longer diffusion transition time between the short and long-
time diffusion limit in comparison with ordered packing geometries.
Based on the correspondence between simulations and experimental
measurements, the fibre phantoms are shown to be useful for the
quantitative validation of DW-MRI on clinical MRI-scanners.

Next, the MC simulations are elaborated in a geometry with intra-
and extracellular compartments imitating the WM. The simulations
are extended to simulate the DW-MRI signal and exchange is enabled
between the different compartments. The bi-exponential model and
the cumulant expansion form are evaluated as models for the DW-
MRI signal in WM. The validity of these models is investigated by
evaluation of the models as a function of the considered b-interval
and considering the effect of exchange.

The simulated DW-MRI signal shows to be rather pseudo-bi-
exponential because there is a strong dependence on the diffusion
time and considered b-interval. Moreover, when assuming that a bi-
exponential function models the diffusion in two compartments, i.e.
the intra- and extracellular space, this model is not straightforward
interpretable in case of exchange between those compartments. The
cumulant expansion form is proposed as an alternative. The diffu-
sion coefficient and kurtosis can be accurately fitted when including
higher order terms in the cumulant expansion form. The kurtosis
appears to be a useful parameter to measure the exchange between
the intra- and extracellular compartments. It could be potentially
useful to correlate the kurtosis with the observed changes in cell per-
meability to cell pathological changes such as during stroke and in
malignant tumours.



j Summary

Finally, some potential applications of DyneemaR© fibre phantoms
for the validation of DW-MRI are demonstrated as well in this work.
As they have a well-known structure and anisotropy, they show to
be suitable for sequence design, optimisation and the evaluation of
imaging artefacts. Thanks to the flexibility and the variety of the
shrinking tubes, an anthropomorphic head phantom containing the
major WM in vivo fibre tracts can be created. In addition, a crossing
fibre phantom is manufactured to test and evaluate fibre tractography
algorithms.

The research presented here was conducted at the Medical Imag-
ing and Signal Processing group (MEDISIP) research group, part of
the Institute Biomedical Technology and the Electronics and Infor-
mation Systems (ELIS) department of Ghent University. The MRI
measurements were performed in collaboration with the MR depart-
ment and the Ghent Institute for Functional and Metabolic Imaging
of the brain (GIfMI) of the Ghent University hospital. The fabrica-
tion of the phantoms and the bulk MR measurements were performed
in collaboration with laboratory for Quantitative and Molecular NMR
Imaging (QMRI) of the Ghent University hospital. Our work resulted
in 4 papers in international journals and several abstracts and pro-
ceedings at national (7) and international (19) conferences.
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Introduction

1.1 Introduction

Nuclear magnetic resonance is the phenomenon that arises when an
object -or a patient- is exposed to a strong magnetic field. An impor-
tant application of nuclear magnetic resonance is magnetic resonance
imaging (MRI), a powerful imaging technique primarily used to pro-
duce high quality medical images. Within this technique, diffusion
weighted MRI (DW-MRI) is taking an increasingly important place.
DW-MRI is a non-invasive imaging method that can measure the
random motion of water molecules in all directions. In tissues con-
taining a large number of fibres, such as skeletal muscles and brain
white matter, water tends to diffuse along the direction of those fi-
bres. This way, DW-MRI is a footprint of the organization in space
of tissue microstructural components.

An interesting application in this domain is the study of the hu-
man nerve system. The brain white matter consists of bundles of
myelinated axonal fibres running in parallel, which are responsible
for the conduction of neural signals. Diffusion anisotropy is present
because the diffusion in the direction parallel to the fibres is faster
than in the perpendicular direction. Assuming that the direction of
the fastest diffusion is determined by the overall orientation of fibres,
DW-MRI provides a method to display the orientation of white mat-
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ter tracts. The measurement of the diffusion signal and fibre tracking
algorithms enable the visualization of the three-dimensional structure
of brain white matter tracts. The insight in the anatomy of neural
networks is of great interest for the understanding of normal and
pathological brain structure which affects brain function.

Although DW-MRI is becoming a mature MRI method, the vali-
dation of this in vivo technique is still an issue that needs to be solved
before implementation in the clinic.

A gold standard for the quantitative validation of DW-MRI is
crucial for clinical purposes but is still not available. For the deter-
mination of the accuracy and precision and the evaluation of arte-
facts in a DW-MRI experiment, a phantom is required which has a
well-known structure and diffusion behaviour similar to that in brain
white matter. The use of phantoms with a well-known connectivity
and anisotropy would also be useful for testing fibre tracking algo-
rithms. Moreover, the origin of the DW-MRI signal in brain white
matter is not completely understood. Several models exist, based on
specific assumptions about the diffusion in the complex geometry of
brain white matter. Validation of those models is also necessary.

This PhD dissertation proposes several methods for the valida-
tion of DW-MRI. The research presented here was conducted at the
MEDISIP research group, part of the ELIS department of Ghent
University. The MRI measurements were performed in collaboration
with the MR department and the GIfMI of the Ghent University
hospital. The fabrication of the phantoms and the bulk MR mea-
surements were performed in collaboration with QMRI of the Ghent
University hospital.

This research was funded by a Ph.D. grant of the Institute for the
Promotion of Innovation through Science and Technology in Flanders
(IWT-Vlaanderen) and by Ghent University by a specialisation schol-
arship (BOF). This work was also supported by an IUAP grant of
the federal government of Belgium.

Our work resulted in 4 papers in international journals and sev-
eral abstracts and proceedings at national (7) and international (19)
conferences. A list of all publications that were published during the
course of this research can be found at the end.
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1.2 Outline

In chapter 2, the principles of nuclear magnetic resonance (NMR)
and magnetic resonance imaging (MRI) are briefly introduced. The

basics of MRI pulse sequence design, ~k-space trajectory design and
artefact reduction are mentioned. It is impossible to treat all these
topics in depth in this work. The reader is referred to more special-
ized literature for further reading. The MR application of interest
to this work is DW-MRI. A basic grounding of DW-MRI is also pro-
vided to support the material that is discussed in the later chapters.
A brief description of the diffusion process and the origin of the dif-
fusion signal in WM is given. Mathematical diffusion models are also
presented, along with methods to visualize the dominant diffusion
direction in brain white matter. Finally, we look at the clinical uses
of DW-MRI and illustrate fibre tractography.

The following chapters report on the original contributions of this
work. Several methods for the validation of DW-MRI are proposed:
on the one hand by the use of hardware diffusion phantoms and on
the other hand by the use of software diffusion phantoms based on
analytical models and on Monte Carlo (MC) simulations of random
walkers.

In chapter 3, an overview of the different kinds of diffusion hard-
ware phantoms is given. The advantages and disadvantages for each
phantom type are discussed. Further, we focus on the design of aniso-
tropic diffusion fibre phantoms. The optimal manufacturing process
for diffusion fibre phantoms is presented. Several fibre phantom ma-
terials are compared with respect to their performance in terms of
signal-to-noise ratio (SNR) and diffusion properties.

Chapter 4 describes how the diffusion process in the anisotropic
fibre phantoms is quantitatively validated. The diffusion in the an-
isotropic fibre phantoms is modelled by MC simulations of random
walkers. An accurate description of the phantom geometry is pro-
vided. The time-dependence of the diffusion process and the effect
of the fibre packing geometry and fibre material are discussed. The
diffusion parameters extracted from the simulations are used to eval-
uate the MRI and bulk MR experiments of the diffusion in the fibre
phantoms quantitatively. A fibre phantom can be considered as a
two-dimensional (2D) porous medium. The MC simulations of ran-
dom walk and the experimental results are used for the validation of
the analytical models for ordered porous media.

Chapter 5 describes the applicability of the MC simulations of
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random walkers for the validation of diffusion models in WM. Sim-
ulations are performed for a geometry including the main parts of
the WM structure. The simulations are extended to simulate the
raw DW-MRI signal. In addition, exchange between the different
compartments has been studied. The bi-exponential model and the
cumulant expansion form are both models for the DW-MRI signal
in WM. Both models are studied as a function of the considered b-
interval and by investigating the effect of exchange.

Chapter 6 presents some potential applications of the developed
anisotropic fibre phantoms. They are used as test objects for sequence
design and the evaluation of imaging artefacts. As the fibre bundles
are mechanically very flexible, they can be used to create an anthro-
pomorphic head phantom. In addition, a crossing fibre phantom is
presented that can be used to validate fibre tractography algorithms.

Chapter 7 is the final chapter summarizing the main contributions
of this work. Some aspects for future study are mentioned as well.



2
Diffusion Weighted MRI in Brain

White Matter

2.1 Introduction

Magnetic resonance imaging (MRI) is a powerful medical imaging
technique that enables the visualization of structure and function
in vivo because of large contrast within soft tissue. An additional
advantage is that non-ionizing radiation is used to acquire an MR-
image. Diffusion weighted magnetic resonance imaging (DW-MRI)
is a growing application within the field of MRI. A correct under-
standing of DW-MRI requires first of all a basic knowledge of MRI.
Therefore, this chapter explains the principles of nuclear magnetic
resonance (NMR) and image formation in a nutshell. Also, the ba-

sics of pulse sequence design, ~k-space trajectory design and artefact
reduction, all substantial research fields on their own, are mentioned
very briefly here. For more in-depth information on these topics we
refer to literature [1–4].

Once we have explained the theory of self-diffusion and the origin
of the diffusion signal in the brain, we introduce the concepts of
diffusion weighted magnetic resonance imaging (DW-MRI) concisely.
The concept of the diffusion tensor and methods to characterize and
visualize the dominant direction of diffusion are introduced whereby
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Nucleus Spin quantum number I
1H 1/2
13C 1/2
19F 1/2
31P 1/2

23Na 3/2

Table 2.1: Spin quantum numbers for some nuclei.

we also discuss more refined models to describe the diffusion weighted
signal. Finally, some clinical applications are addressed and fibre
tractography is illustrated.

2.2 Basic principles of magnetic resonance imag-

ing

2.2.1 Short historical overview

The property of NMR was first described by Rabi in 1938. In 1946,
Purcell [5] and Bloch [6] showed NMR in fluids, work for which they
received the Nobel prize in Physics in 1952. Since then, NMR has
become a powerful tool for the chemical and structural analysis of
substances. In 1973, Lauterbur [7] and Mansfield [8] used the prin-
ciples of NMR to produce non invasive images of the body. For this
work, they were both awarded with the Nobel prize in Medicine and
Physiology in 2003. Since the seventies, MRI has been applied in
many biomedical, chemical and engineering applications.

2.2.2 Spin physics

The spin and magnetic moment of protons

The atomic nucleus, consisting of neutrons and protons, has the quan-
tum mechanical property of a spin angular momentum ~L. Atomic
nuclei with an odd number of neutrons or protons also possess a
magnetic dipole moment ~µ which is related to the spin angular mo-
mentum ~L by:

~µ = γ~L,

with γ the gyromagnetic ratio of the considered nucleus.
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The spin angular momentum ~L is characterized by the spin quan-
tum number I, an intrinsic property of the nucleus (see table 2.1). To
exhibit the property of magnetic resonance, the nucleus must have a
non-zero value of I, which is the case when the number of neutrons
or protons in the considered nucleus is odd. For the majority of clin-
ical MR-exams, and also for this thesis work, the proton (1H) is the
nucleus of interest, because of its high natural abundance under the
form of H2O in the human body. However, other nuclei such as 19F,
13C, 23Na and 31P can also be studied with NMR.

According to quantum mechanics, the intrinsic angular spin mo-
mentum ~L of a proton is quantized, which means that its measure-
ment along the z-axis can only result in two values, ±~

2 , where ~

is the Dirac constant. Consequently, when measuring the magnetic
moment ~µ along the z-axis, only two components are possible. This
phenomenon comes to expression when the protons are placed in a
magnetic field. The potential energy of a proton with a magnetic
moment ~µ in a magnetic field ~B0 is then:

E = ~µ. ~B0 =

{

−1
2γ~B0 spin down

+1
2γ~B0 spin up.

This phenomenon is called the Zeeman splitting and is shown as
an energy level diagram in figure 2.1. The two energy levels are
commonly referred to as “spin-up” and “spin-down” with the spin-
down state having higher energy than the spin-up state. Transitions
between the two levels can be induced by absorption or emission of
a photon of frequency νL such that:

Efoton = hνL = ∆E = γB0~

νL =
γ

2π
B0,

where h is the Planck constant and νL is called the Larmor frequency.
Replacing the frequency by the angular frequency gives the Larmor
equation which underpins NMR:

ωL = γB0. (2.1)

In an external magnetic field, the spins of all protons together
result in a net magnetic momentum with the population of spins
distributed amongst the two energy levels according to the Boltzmann
statistics:

N ↓
N ↑ = e

−∆E
kT = e

−γ~B0
kT , (2.2)
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Ephoton = ~γB
~B

~B

E

E1E1

E2E2

Figure 2.1: Illustration of the Zeeman effect for a proton spin in an external
magnetic field ~B. A proton spin can be excited to a higher energy level by
absorption of a photon with the Larmor frequency.

where k is the Boltzmann’s constant, T the absolute temperature and
N ↓, N ↑ the spin populations in the spin-down and spin-up state re-
spectively. In a magnetic field of 3T and at normal body temperature
(310K), the fractional excess of protons at the low energy level is only
about 10−5. Nevertheless, this small difference is significant, and is
measurable on a macroscopic scale as an isochromat. An isochromat
is a physical construct containing a large population of spins within
a very small region of space. Isochromats are small enough that mi-
croscopic field inhomogeneities have spatial dimensions much larger
than the isochromat dimension. They are much smaller than a voxel
1.

The bulk magnetisation of an isochromat ~M is now:

~M = χ~B0 ≈ N
γ2

~
2B0

4kT
, (2.3)

where N is the number of spins in the isochromat. The factor χ links
the magnetisation of the isochromat with the static field strength and
is called the magnetic susceptibility. The magnetic susceptibility is
usually expressed in parts per million (ppm). Being able to treat the
behaviour of all spins in the system in terms of a net magnetisation
vector ~M allows a classical description of NMR, which gives a more
feasible picture of the NMR experiment.

Spin relaxation - Bloch equations

When the spin magnetisation vector ~M is placed in a magnetic field
~B0, ~M will experience a torque. The equation of motion for ~M is

1A voxel (a combination of the words volumetric and pixel) is a volume element,
representing a value on a regular grid in three dimensional space.
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~B0 z

(a)

~B0

~B1 ω0

~M

x
y

z

(b)

Figure 2.2: (a) A proton precesses in a magnetic field ~B0 similar to the
movement of a top in the earth gravitational field. (b) The magnetic moment
~M precesses under the influence of a longitudinal field ~B0 and a transversal
field ~B1

then:
d ~M

dt
= γ ~M × ~B0. (2.4)

If ~B0 is a static magnetic field along the z-axis, equation (2.4)
becomes:

dMx

dt
= γMyB0

dMy

dt
= −γMxB0

dMz

dt
= 0,

which results in the following solutions:

Mx(t) = Mx(0) cos(ω0t) + My(0) sin(ω0t)

My(t) = −Mx(0) sin(ω0t) + My(0) cos(ω0t)

Mz(t) = Mz(0),

with ω0 = γB0. The x-, y- and z-directions are indicated on figure
2.2. These equations describe the precession of the magnetisation
vector around the z-axis as shown in figure 2.2(a). This precession
is similar to that of a spinning gyroscope when placed in the earth’s
gravitational field. The angular frequency of the precession is the
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Larmor frequency ωL as described above in equation (2.1), showing
how the classical and quantum mechanical description coincide.

Subsequently, when a time varying field ~B1 perpendicularly to
~B0 and oscillating at ωL is superimposed, the solution of equation
(2.4) results in a magnetisation ~M which precesses simultaneously

about ~B0 at ω0 and ~B1 at ω1 = γB1, as shown in figure 2.2. In
fact, applying a ~B1-field has the effect of rotating the magnetisation
vector at an angular frequency ω1 about an axis perpendicular to ~B0,
which rotates itself at an angular frequency ω0 about ~B0. This is
the effect of applying an RF pulse to an isochromat. If the duration
of the RF pulse is t, then the magnetisation will rotate by an angle
Φ = γB1t. In a typical NMR experiment, a 90◦-pulse is applied so
that Φ is 90◦ and the magnetisation is flipped into the transverse
plane (perpendicular to ~B0).

The movement of an isochromat in a sample consisting of many
protons is not completely described by equation (2.4). An excited
isochromat will not precess indefinitely at a fixed angle from the lon-
gitudinal direction but its magnetisation will gradually return to an
equilibrium state with the magnetisation aligned along the main mag-
netic field. This relaxation is caused by a combination of processes.
Some of the excitation energy will be spontaneously transferred to
the environment as heat. This results in an exponential decay pro-
cess known as the spin-lattice relaxation and characterized by the
spin-lattice or longitudinal relaxation time T1. Evolution of the z-
component of the magnetisation is described by:

dMz

dt
= −Mz − M0

T1
, (2.5)

where M0 is the initial magnetisation at the start M(t = 0).
The spins however do not only exchange energy with the sur-

rounding lattice, but also among themselves, which causes a varia-
tion in the precession rate between each other. This in turn results
in dephasing of the spin states which is a faster process than the
spin-lattice relaxation and is characterized by the spin-spin relax-
ation time, T2. The evolution of the transverse magnetisation can be
described by:

dMx,y

dt
= −Mx,y

T2
. (2.6)

Equations (2.5) and (2.6), when combined with the equation of mo-
tion (2.4), are collectively known as the Bloch equations for nuclear
induction [6].
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Solving the Bloch equations for a magnetisation vector after ap-
plying a 90◦-pulse gives now:

Mx(t) = M0 sin(ω0t)e
− t

T2

My(t) = M0 cos(ω0t)e
− t

T2

Mz(t) = M0

[

1 − e
− t

T1

]

.

The transverse magnetisation components will describe an inward

spiral movement with an exponentially decreasing radius M0e
− t

T2 and
with an angular frequency equal to the Larmor frequency at the static
magnetic field ~B0.

Spin relaxation times

Different physical processes are responsible for the relaxation of the
magnetisation ~M in the presence of a static magnetic field ~B0 [9].
The longitudinal relaxation time T1 involves redistributing the popu-
lations of nuclear spin states in order to reach the thermal equilibrium
distribution described by equation (2.2). The nuclear spins exchange
energy with their surroundings, the lattice, by several interaction
mechanisms. Hence, T1-relaxation is also known as spin-lattice re-
laxation. T1-relaxation rates are strongly dependent on the magnetic
field strength B0.

T2-relaxation corresponds to a decoherence of the transverse mag-
netisation. Random fluctuations of the local magnetic field lead to
random variations of the immediate Larmor frequencies of the dif-
ferent spins. As a result, the initial phase coherence of the spins is
lost and the transverse magnetisation vanishes. T2-relaxation is often
called spin-spin relaxation because it involves only the phases of other
spins. T2-relaxation rates are less dependent on the field strength B0

than T1-relaxation rates. The T1-relaxation rate of spins in a given
sample is always slower than the T2-relaxation rate.

If an electrically conducting coil is placed around the subject in
the transverse plane, the rotating transverse magnetisation compo-
nent will induce a voltage in the coil whose amplitude decays ex-
ponentially due to relaxation. This phenomenon, known as the free
induction decay (FID), forms the signal for an NMR experiment and
is illustrated in figure 2.3. It should be noted that in a sample, there
are microscopic magnetic field inhomogeneities in each imaging voxel,
which contains many isochromats. As a result, the relaxation decay
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RF

90◦

FID

signal

T ∗
2

t

t

Figure 2.3: A 90◦-pulse induces a free induction decay (FID) signal.

after a 90◦-pulse will actually be faster than by T2 relaxation only.
The corresponding relaxation time is T ∗

2 .
In the next chapters, porous media are described consisting of an

impermeable matrix filled with an MR-visible solvent. The observed
T2-relaxation time of the solvent molecules in a porous medium may
be shorter in comparison to solvent molecules in bulk due to sur-
face relaxation [10]. At the surface interface, a rapid exchange takes
place between solvent molecules constrained or bound to the inter-
face with a short T2-relaxation time and free solvent molecules in the
bulk with a longer time. Although there are solvent molecules with
different relaxation times in the system, a single exponential mag-
netisation decay is observed described by a dynamically averaged
T2-relaxation rate. The higher the interaction between the interface
and the solvent, the shorter the observed T2-relaxation rate. The
effect of surface relaxation on the T2-relaxation rate and diffusion is
studied in more detail in this work and described in chapter 3 and
chapter 4 respectively.

Spin Echo

The relaxation times T1 and T2, together with the proton density, are
very important in MRI, as they have the greatest effect in determin-
ing contrast. T1 and T2 are not invariant throughout the brain [11].
Moreover, there are systematic differences in these parameters be-
tween healthy and pathological tissue. It is thus advisable from a
clinical point of view to acquire MR-images with a contrast depend-
ing on these relaxation parameters. In NMR and MRI, this contrast
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signal
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t
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Figure 2.4: A spin-echo sequence uses a 90◦-pulse and a 180◦-pulse to form
an echo.

is obtained by the design of pulse sequences consisting of a repetitive
train of RF-pulses.

A pulse sequence for weighting the signal by the T2-value, known
as the spin-echo [12], consists of a pulse inducing a flip angle of 90◦,
followed after a time TE/2 by 180◦-pulse. A schematic overview of
a spin-echo is presented in figure 2.4. By the 90◦-pulse, the spins are
flipped in the transverse plane and start to dephase for a time TE/2,
after which the magnetisation is flipped by the 180◦-pulse. The spins
are now rephasing and get in phase with one another after another
time period of TE/2 and produce a measurable signal S at the echo
time, TE, according to:

Mxy(TE) = M0e
−TE

T2 . (2.7)

The T2 constant can be determined by use of a multiple spin-echo
sequence, in which the 180◦-pulse is repeated for several TE-values.
The repetition time TR between successive 90◦-pulses is taken long
enough so that the longitudinal magnetisation can recover fully. In
this way, the effect of T1 is eliminated and M0 depends only on the
number of protons.
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2.2.3 Image formation

Gradient encoding and the Fourier transformation

In order to make the move from NMR to MRI, spatial encoding of
the NMR signal is required. Spatial information can be encoded
in the signal by applying magnetic field imaging gradients ~G. A
magnetic field gradient is in fact a spatially dependent magnetic field
and is superimposed on the constant static magnetic field ~B0 (as
illustrated in figure 2.5). The magnitude of these gradients is small

in comparison to that of the static field ~B0 but they are large enough
to induce variations in the angular Larmor frequency at which the
local magnetisation vectors precess. A gradient with magnitude and
orientation described by a vector ~G will produce a local frequency
shift, relative to the Larmor frequency, described by

∆ω(~r) = ω(~r) − ωL = γ ~G.~r = γ(Gxrx + Gyry + Gzrz), (2.8)

where ~r = (rx, ry, rz) represents the location in the brain.
Hence, by applying magnetic gradients, the angular frequency

at which the local magnetisation vectors precess becomes spatially
dependent, which means they are all encoded by a specific frequency
and phase determined by the local field strength. The phase of a
local magnetisation vector by a gradient ~G can be characterized by

~k =
1

2π
γ

∫ τ

0

~G(t)dt. (2.9)

It is assumed that the magnetisation vector is determined only
by the number of protons. The total signal S of the whole object is
then given by:

S(~k) =

∫

V
ρ(~r)ei2π~k.~rd~r, (2.10)

where the scalar field ρ(~r) represents the proton density, i.e. the num-
ber of spins per unit volume at each location of the brain. The proton
density is proportional to the initial magnetisation ~M as we saw in
equation (2.3). Equation (2.10) describes a Fourier relationship be-
tween the proton density and the measured signal in the presence
of the magnetic field gradients. This is a fundamental relationship
in MRI. When the signal is sampled at a number of locations in ~k-
space, we can recover the local proton density using a discrete Fourier
transform (DFT). In more general terms, the local signal M not only
depend on the proton density, but also on the T1- and T2-relaxation
times. The principle of MRI is illustrated in figure 2.5.
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Figure 2.5: Illustration of the working of MRI. After excitation of the subject, a magnetic gradient field is applied by which
the angular frequency of the spins become spatially dependent. The detected RF signal emitted from the subject consist of
several frequencies and can be converted by a Fourier transform into an image. This is illustrated in one dimension at the
right side of the figure. To obtain a 2D (3D) image, magnetic gradients are applied in 2 (3) orthogonal directions.
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Figure 2.6: (a) Cartesian sampling scheme. (b) Spiral sampling scheme.

Trajectory design

A ~k-space trajectory is outlined by applying a time-dependent mag-
netic gradient ~G(t), defined by the derivative of equation (2.9):

~G(t) =
2π

γ

d~k(t)

dt
. (2.11)

There are many possible schemes for traversing ~k-space, each scheme
having its own advantages and disadvantages. For diffusion imaging,
fast sequences are required to reduce scan time and eliminate motion
artefacts. Two fast sampling schemes used in diffusion imaging are
presented in figure 2.6.

The standard fast imaging technique is diffusion enhanced echo-
planar imaging (EPI), by which the k-space is sampled in a meander-
ing trajectory (see figure 2.6(a)) [8]. EPI is widely available and has
a relative easy reconstruction algorithm (DFT). On the other hand,
imperfections in the hardware and eddy currents may cause image
artefacts.

As an alternative, a spiral scanning scheme is proposed as one
of the most efficient sampling schemes (see figure 2.6(b)) [13]. The
very smooth trajectory of a spiral sequence does not place such high
demands on the hardware of an MR-scanner. Moreover, spiral se-
quences are relatively insensitive to motion artefacts because of the
gradient nulling property [4] of the time integral of the measured
signal.
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2.2.4 Image artefacts

Artefacts in NMR consist of deviations in an image containing er-
roneous information. MR images are vulnerable for several kinds of
artefacts. We describe here the three most significant artefacts for
diffusion MRI.

Most subjects (except phantoms) may move during the MR-scan.
For brain imaging, even in the case of no bulk motion, there will
be still localised movement present due to eye motion, swallowing
and dilation and contraction of the carotid arteries. The ventricles,
which are full of fluid, exhibit pulsatile movement. Motion during
the MR-scan causes inconsistencies in the read-out data, resulting in
image blurring and ghosting. Ghosting is the appearance of signal
not corresponding to the scanned object. By using a sequence that
acquires the images very quickly, motion artefacts can be significantly
reduced. Single shot sequences such as Cartesian and spiral EPI that
sample the ~k-space at once are therefore most often used in diffusion
MRI. Besides this, gating, where each slice is collected at the same
point in the cardiac cycle, is also advisable [14].

Whereas EPI is less sensitive to motion in comparison to standard
SE sequences, it is considerably more sensitive to artefacts due to
eddy currents and susceptibility effects. Both artefacts are described
here shortly.

Eddy currents are caused by high magnetic fields that switch
rapidly in time. According to Lenz’s law, electric current loops will
be induced that counteract the applied magnetic field. Eddy currents
bias the phase encoding in ~k-space and result in magnification, trans-
lation, and shearing of the image. A method to significantly reduce
this effect is by using a twice-refocused spin echo (TRSE) sequence,
which is discussed further (section 2.4.1).

Strong susceptibility related artefacts may appear in the brain
at transitions between regions with different magnetic susceptibility
such as air and soft tissue. At those boundaries, the magnetic field is
locally distorted and inhomogeneous. Signals coming from a voxel in
an inhomogeneous region will be considered to originate from another
spatial position resulting in signal drop-out in some areas and piling
up in others. An example of susceptibility artefacts in a diffusion
image is shown in figure 2.7, where a significant signal drop-out in the
regions near the sinuses can be seen. Severe susceptibility artefacts
can also be noticed when the subject contains small pieces of metal
near the head such as a brace or glasses.
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(a) (b)

*

##

*

(c)

Figure 2.7: Example of a susceptibility related artefact: (a) T2 SE image
as a reference. (b) Diffusion MR image. (c) The T2-image of (a) with the
diffusion image of (b) as overlay. The diffusion image is colour encoded
ranging from red to yellow according to increased signal intensity. Artefacts
are noticed around the sphenoid sinus (indicated by a *-sign) and petrous
bone (indicated by a #-sign). There is considerable signal drop out in the
anterior medial temporal lobes and the anterior temporal pole. Signal pile
up is evident at the edges of the artefacts (abnormal higher signal intensity).
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Figure 2.8: Illustration of a single realization of Brownian motion.

2.3 The diffusion process

2.3.1 Self diffusion of water molecules

Brownian motion

Water molecules at a temperature greater than absolute zero (0K)
are in constant motion and collide with one another. The greater the
kinetic energy, the faster the movement. With each collision, a water
molecule experiences a random displacement. As a result, a group of
molecules that start at the same location will be spread out over time.
This random motion also leads to microscopic motion of suspended
particles and was observed by Brown in 1828 for grains of pollen in
water and is referred to as “Brownian motion” [15]. A theory that
explained the observations by Brown was developed by Einstein in
1905 [16] who presented the theory as an indirect confirmation of the
existence of molecules. An illustration of the Brownian motion is
shown in figure 2.8.

Molecular self-diffusion can be described as a random walk of
molecules with a very complex distribution of step sizes and directions
on a molecular scale. In case of isotropic diffusion in a homogeneous
medium, the different steps are independent. Following the central
limit theorem, the distribution of distances travelled by the molecules
after many elementary steps is Gaussian. For a one-dimensional sys-
tem whose properties depend on a coordinate x, the probability that
a given molecule has travelled from x0 over a distance x during a
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Figure 2.9: Probability density function for increasing diffusion times in
case of one-dimensional diffusion. D was taken 10−9 m2/s, which is similar
to the mean diffusion coefficient in brain white matter.

time period ∆ is given by

P (x|x0,∆) =
1√

4πD∆
e−

(x−x0)2

4πD∆ , (2.12)

where D is the diffusion coefficient. Figure 2.9 illustrates the evolu-
tion of the probability displacement function P (x|x0,∆) for increas-
ing diffusion time ∆. This function, also called the probability dis-
placement function (PDF), is a Gaussian function with a mean value
of x0 and a variance proportional to the time:

σ2 =
〈

(x − x0)
2
〉

= 2D∆. (2.13)

The proportionality constant defines the diffusion coefficient D. The
general case is given by the well-known Einstein equation:

r2
rms =

〈

(~r − ~r0)
2
〉

= 2ndD∆, (2.14)

with nd the spatial dimension.

Restricted diffusion

The diffusion of water molecules in heterogeneous media is in general
not isotropic. This is illustrated in figure 2.10 for particles diffusion
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free restriction

r2
rms < 6D∆

r2
rms ≈ 6D∆

r2
rms >> 6D∆

Figure 2.10: Illustration of restricted diffusion. Depending on the diffu-
sion time ∆, particles will sense restriction and the diffusion becomes more
preferable in one direction than another.

in the presence of two walls. For short diffusion times, most particles
will not sense restriction and can still diffuse freely. For increasing
diffusion time however, particles encounter the wall and the diffusion
gets more restricted in one direction than another. The diffusion
becomes time and direction dependent or anisotropic. The time-
dependency of the diffusion coefficient is elaborated in detail further
in this work (see section 4.2).

Diffusion anisotropy

When assuming that the particles satisfy a Gaussian displacement
distribution, Einstein’s equation (2.14) can be generalized to allow
for directional dependency. The Gaussian displacement distribution
at time ∆ can then be described by a covariance matrix:

D =
1

6∆
〈(~r − ~r0).(~r − ~r0)

T 〉 =





Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz



 . (2.15)

A covariance matrix is positive definite and symmetric. The diffusion
coefficients spanning up the matrix D are the components of a three-
dimensional diffusion tensor, relative to the chosen orthonormal basis
set, (~ux,~uy,~uz). The special case of isotropic diffusion corresponds
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Figure 2.11: The kurtosis is a measure of the sharpness of a function and
is demonstrated here for functions with varying kurtosis values. The plain
curve represents a Gaussian curve, the dotted curves are leptokurtic (K>0)
or platykurtic (K<0).

then with:

Dxx = Dyy = Dzz = D Dxy = Dxz = Dyz = 0.

Diffusion kurtosis

In case of restricted diffusion, the diffusion profile is in general not
characterized any more by a Gaussian displacement profile. The ex-
cess diffusion kurtosis K is a metric which quantifies the deviation
from a Gaussian PDF and is defined by:

K =

〈

(~r − ~r0)
4
〉

〈

(~r − ~r0)
2
〉2 − 3. (2.16)

The excess diffusion kurtosis, also called “diffusion kurtosis”, is a
measure for the sharpness or pointedness of the PDF as illustrated
in figure 2.11. A Gaussian PDF has a zero kurtosis and is called
mesokurtic. A PDF with positive kurtosis is called leptokurtic. This
distribution has a more acute peak and fat tails, meaning that the
probabilities of values near the centre or extreme values are higher
than in comparison to a Gaussian distribution. A PDF with negative
kurtosis is platykurtic. This distribution has a more rounded peak
and wider shoulders meaning that there is a lower probability than a
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Figure 2.12: Illustration of anomalous diffusion. The plain curve represents
normal diffusion when r2

rms is linearly proportional to the time and dw in
equation (2.17) equals 2. The dotted curves show anomalous diffusion (dw

6= 2): subdiffusion appears when dw > 2, superdiffusion appears when dw <
2.

Gaussian distribution for values near the centre or for extreme values.
Distributions over a confined interval are always platykurtic.

Anomalous diffusion

In normal diffusion, the mean-square displacement r2
rms of a diffusing

particle is linearly proportional to the time as given by the Einstein
equation (2.14). However, in disordered media and systems exhibiting
fractal behaviour, the diffusion is anomalous. In that case, r2

rms is
proportional to a fractional power of time less than one,

r2
rms ∝ ∆2/dw , (2.17)

where dw is the walk (or path or trail) dimension [17], also called
the anomalous diffusion coefficient [18]. Normal diffusion appears
if dw = 2, whereas in the case when dw > 2, the distances travelled
by the diffusing particles have a slower-than-linear time dependence.
This kind of a process is called subdiffusion. The opposite case (dw

< 2) corresponds to a faster-than-normal diffusion which is called
superdiffusion. Anomalous diffusion is illustrated in figure 2.12. Var-
ious systems that give rise to these different behaviours are described
in [19]. The theory of anomalous diffusion is used in section 4.2 to
describe the time-dependency of the diffusion process.
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Figure 2.13: The structure of a neuron.

2.3.2 Diffusion in brain white matter

Fibre architecture of the brain white matter

The human nerve system is composed of billions of neurons, which
are electrically excitable cells that process and transmit information.
The structure of a neuron is shown in figure 2.13: it consists of a cell
body or soma, a dentritic tree, and an axon. The dendrites receive
input from other neurons at the synapse. The axons are in fact the
transmission lines of the neural signal.

Axons transmit the impulses received at the dendrites and cell
body away and can extend many times the soma in length. They con-
sist of microtubuli and microfilaments and are wrapped by sheaths of
fatty myelinated Schwann cells in the peripheral nerve system (PNS)
(see figure 2.13) and oligodendrocytes in the central nerve system
(CNS) [20]. These myelin sheaths serve as the insulator for the proper
transmission of the electrical impulses along the axon. When myelin
degrades, conduction of signals along the nerve can be impaired or
lost. This is the case with certain neurodegenerative disorders such
as multiple sclerosis (MS).

An example of a myelinated axon is shown in figure 2.14. The
axon diameter in the CNS is typically about 1 µm but can increase
up to 10 µm depending on the degree of myelinization [21].
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500 nm

Figure 2.14: A myelinated axon.

Axons for their part are bundled together in fibre tracts or fasci-
culi. The human brain is organized in such a way that the cell body
and dendrites are mainly situated at the cerebral cortex, which is the
curved surface of the brain. Axonal bundles form the connections be-
tween the different functional regions in the cortex. The white matter
of the brain is formed by those myelinated fibre bundles, that produce
a high intensity in T1-weighted MR images. Figure 2.15 shows dis-
sected white matter of the brain. Several fibre bundle directions can
be distinguished: fibres connecting the frontal part with the lateral
part, connections between the left and right hemisphere (the corpus
callosum) and fibre tracts starting from the basis pedunculi and fan-
ning out to the outer parts of the cerebral cortex (corona radiata).
The corpus callosum is also indicated on a coronal T1-weighted MR
image of the brain (see figure 2.16).

Macro structure of the brain

Figure 2.16 shows a coronal T1-weighted MR image of the brain on
which the WM and grey matter (GM) are indicated. The brain cortex
is known as GM. Besides the GM and WM, there are also cavities in
the inner part of the brain filled with cerebrospinal fluid (CSF), the
ventricles. CSF and also the cortex, consisting of randomly oriented
dendrites, both exhibit isotropic diffusion behaviour [22], whereas the
diffusion in WM shows to be anisotropic. In this study, we will mainly
focus on diffusion in the WM. Figure 2.17 shows a schematic image
and photograph of the brain where the main anatomic regions such
as the corpus callosum are indicated.
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Figure 2.15: Dissected white matter. The nerve fibres are clearly visible and
run in several directions.

Grey Matter

White Matter

Corpus
Callosum

Ventricle

Figure 2.16: T1-weighted MR image of a coronal section through the brain.
grey matter and white matter are indicated, as well as the ventricles. The
corpus callosum forms the bridge between the right and left hemisphere.
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Figure 2.17: (a) Schematic image of a midsagittal section of the right hemi-
sphere of the human brain showing the anatomy in Latin. (b) Corresponding
photographic image.
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Figure 2.18: Illustration of the three contributions to the diffusion signal
in WM: intracellular diffusion, extracellular diffusion and exchange between
intracellular and extracellular space.

Origin of the diffusion signal in WM

The diffusion signal observed in WM is highly anisotropic [23–26].
The diffusivity measured in the longitudinal direction along the ax-
ons is up to five times higher than the diffusivity measured in the
transverse direction [27]. The exact micro structural features that
underlie the measured anisotropy remained matter of debate until
now. Postulated sources of anisotropy include both intracellular and
extracellular structures: axonal membranes, myelin sheaths and mi-
crotubules [28].

The axons in the WM are very densely packed. The measured
volume fractions for the intra- and extracellular fractions are about
0.8 and 0.2 [29]. Studies performed by Beaulieu [27] suggest that
anisotropic water diffusion in neural fibres is mainly due to the dense
packing of axons and their inherent axonal membranes that hinder
the diffusion water diffusion significantly perpendicular to the axis of
the fibres relative to the preferential parallel direction. The presence
of a myelin sheath surrounding the axons may enhance the anisotropy
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in the order of 30%.
The three components contributing to the diffusion process inside

the WM are illustrated in figure 2.18. On the one hand, intracellu-
lar water molecules may be restricted inside closed spaces such as
inside the axons of the WM. On the other hand, water molecules in
the extracellular parts might also contribute to the anisotropy effect.
Exchange between the intra- and extracellular part may change the
diffusion profile as well.

The apparent diffusion coefficient (ADC) in brain white matter as
measured with MR ranges between 0.35×10−3 mm2/s and 1.2×10−3

mm2/s [24] which is three to ten times smaller than the diffusion
coefficient of free water at 37◦ (which is 3.28×10−3 mm2/s [30]).

The diffusion in the intracellular space has been assumed to be
restricted, meaning that for long diffusion times, the diffusion co-
efficient becomes zero. Restriction of real intra-axonal metabolites,
such as N-acetylasparate, has been observed [31] but not for water
molecules in brain white matter.

The diffusion in the extracellular space is considered to be hin-
dered because the fibres form obstacles for the water molecules they
have to travel around (see figure 2.18). For long diffusion times, the
water displacement profile will become Gaussian and can be charac-
terized by a tortuosity (described further in chapter 4). The tortu-
osity has been measured in the extracellular space with ionophoretic
point sources [32], but not yet for water molecules.

The overall low diffusivity of water in cells could not be fully
explained by restriction and compartmentization effects in combina-
tion with hindered diffusion, and the exact role of the white matter
structures involved (water fractions, membranes, myelin, etc...) is
still elusive [33]. The correct assignment of water diffusion patterns
to the underlying tissue micro structure remains thus a challenging
task.
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2.4 Diffusion magnetic resonance imaging

2.4.1 Diffusion weighted sequences

General Theory

The effect of diffusion on the NMR signal was first noticed by Hahn in
1950 [12], Carr and Purcell in 1954 [34], and Woessner in 1961 [35,36].
Torrey presented a generalized version of the Bloch equations in 1956
which incorporated elements of molecular diffusion:

d ~M

dt
= γ ~M × ~B0 +







Mx

T2
My

T2
M0−Mz

T1






+ D∇2 ~M. (2.18)

While the first two terms of equation (2.18) come from the orig-
inal Bloch equation as described in section 2.2.2, the third term ac-
counting for molecular diffusion was added by Torrey. The complete
equation (2.18) is called the Bloch-Torrey equation. The solution for
magnetization in the transverse plane Mxy in a spin echo experiment
after a 180◦-pulse at time TE is given by:

Mxy = M0e
−TE

T2 e−bD. (2.19)

This is the solution for a spin-echo sequence (equation (2.7)) multi-
plied with an extra attenuation factor e−bD where b, given by:

b = γ2

∫ TE

0

(∫ t

0
G(t′)dt′

)2

dt, (2.20)

describes the diffusion sensitizing gradient amplitudes and timing.

Stejskal-Tanner sequence

While all MRI pulse sequences are to some extent sensitive to molecu-
lar motion and diffusion, the specific use of balanced bipolar gradients
for the measurement of diffusion was developed by Stejskal and Tan-
ner [37]. Starting from a standard spin-echo sequence as described
in section 2.2.2, a symmetric pair of diffusion weighted gradients is
added to either side of the refocussing 180◦ pulse as shown in figure
2.19. The first of these gradients will offset the phase of the spins
by an amount that depends on their location, and the second will
provide equal and opposite (due to the 180◦-pulse) rephasing if the
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spins have not moved during the diffusion time ∆, which is the time
between the application of the two gradients. As the spins move ran-
domly due to diffusion, the isochromats will dephase. The further
the spins have diffused during the diffusion time ∆, the less perfect
the rephasing and the smaller the amplitude of the final signal will
be. More diffusion is thus indicated by a more attenuated signal. It
should be noted here that the measured attenuation due to motion
differs from the effect of coherent motion or flow because the latter
will produce a phase shift in the spin isochromats without attenuating
the signal as random motion does [38].

The diffusion coefficient along the direction of the applied diffu-
sion gradients can be measured by comparing the MRI signal with
and without diffusion-weighting gradients:

S(b) = M0e
− t

T2 e−bD (2.21)

S(0) = M0e
− t

T2 (2.22)

ln

(

S(b)

S(0)

)

= −bD, (2.23)

where b can be calculated using (2.20):

b = γ2δ2(∆ − δ

3
)G2. (2.24)

The b-factor incorporates the relevant characteristics of the diffu-
sion gradients, i.e. the gradient amplitude G, the duration δ and the
(diffusion) time-interval ∆ between the two diffusion gradients. The
b-factor is also known as the diffusion weighting factor.

The relation between signal attenuation and the diffusion coeffi-
cient as derived by Stejskal and Tanner (2.23) makes the assumption
that the diffusion has a Gaussian diffusion profile. This equation is
only valid under the assumption that δ << ∆ such that the effect of
diffusion during the application of the diffusion gradients is negligi-
ble [39]. Also, it is assumed that dephasing due to the application of
imaging gradients can be neglected.

Other pulsed field gradient sequences

Instead of one unipolar gradient set in combination with a single
refocussing RF pulse, as proposed by Stejskal and Tanner, many SE
diffusion sequence variants can be created using multiple refocussing
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Figure 2.19: Pulse sequence diagram for a diffusion-weighted spin-echo se-
quence. Two diffusion gradients are applied at each side of the 180◦-pulse
during a time δ. The first diffusion gradient causes a position dependent de-
phasing of the spins. In case of no motion, the second gradient will rephase
the spins, while in case of diffusion, the rephasing will not be complete re-
sulting in signal attenuation.
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pulses and several sets of bipolar gradients. The general term for this
type of sequences is pulsed field gradient spin echo (PFGSE).

Using more than one refocussing pulse permits variable intervals
between the pulses, requiring only that the dephasing and rephasing
times sum up equally at the time of the echo. The twice-refocused spin
echo (TRSE) sequence [40] utilizes this freedom to reduce the effect
of eddy currents at the read-out. The diffusion gradients in diffusion
sequences typically push the hardware of the MR-scanner to the limit,
resulting in eddy currents and image distortion artefacts (as shown
in section 2.2.4). The Stejskal-Tanner sequence is extended with an
extra 180◦-pulse and an extra set of bipolar gradients (see figure
2.20(a)). By adjusting the timings of the diffusion gradients, the eddy
currents with a single exponential decay constant can be nulled, and
eddy currents with similar decay constants can be greatly reduced.
The TRSE sequence is often used to perform diffusion imaging in
clinical settings and is used in this work for all measurements on
clinical MR scanners.

In materials science, several pulsed field gradient (PFG) sequences
are proposed to reduce the effect of internal gradients caused by local
differences in magnetic susceptibility. The local differences in mag-
netic susceptibility produce field inhomogeneities and bias the dif-
fusion experiment since additional dephasing is caused by magnetic
field inhomogeneity (illustrated in 2.2.4). An overview of sequences
to filter out the effect of internal gradients is presented in [41].

A PFGSE-sequence is only applicable if the diffusion time ∆ ≤ T2,
otherwise the signal attenuation is dominated by transverse relax-
ation (see equation (2.19)). The PFG stimulated echo (STE) (figure
2.20(b)) is proposed in order to measure the diffusion for long dif-
fusion times [42]. In this sequence, the 90◦- and 180◦-pulse of the
Stejskal-Tanner sequence are replaced by three 90◦-pulses. The first
echo appears after the second 90◦-pulse, with an amplitude of only
half that of a spin echo of a PFGSE sequence. The other half of the
magnetisation is flipped in the longitudinal direction and undergoes
T1-relaxation during τ . The third 90◦-pulse flips the magnetisation
again in the transverse plane and produces a diffusion weighted stim-
ulated spin-echo. As this echo is mainly dominated by T1-decay and
T1 is larger than T2, this sequence is the most suitable for measuring
diffusion at long diffusion times.
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Figure 2.20: Sequence diagrams of PFG sequences. (a) A twice refocused
spin echo (TRSE) sequence to reduce the effect of eddy currents at read-out
time. (b) A stimulated echo sequence (STE) to measure the diffusion at long
diffusion times.
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(a) DWI (b) DWI (c) DWI

(d) ADC (e) ADC (f) ADC

Figure 2.21: Diffusion weighted images (DWI’s) (a,b,c) and corresponding
apparent diffusion coefficient (ADC) maps (d,e,f) of a fibre bundle phantom
oriented in the in-plane direction. The fibre bundle is indicated by an arrow
and the direction of the applied gradient is shown at the right bottom of each
subfigure.

2.4.2 Diffusion tensor imaging

Diffusion weighted images and ADC maps

The diffusion coefficient can be measured in a given direction by
two measurements according to equation (2.23), one with diffusion
weighting and one without diffusion weighting. However, the dif-
fusion coefficient measured in biological tissue will depend on the
direction, the diffusion time and gradient amplitude. It is thus more
appropriate for biological applications to talk about the apparent dif-
fusion coefficient (ADC) for a given direction and diffusion time and
weighting. The ADC as a global parameter reflecting the diffusion
properties of tissue was introduced by Le Bihan in 1986 [22].

Examples of diffusion weighted images (DWI’s) and the corre-
sponding ADC-maps of an anisotropic diffusion phantom directed
in the in-plane direction are shown in figures 2.21(a-c) and figures
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2.21(d-f) respectively for varying gradient directions. When the dif-
fusion gradients are in the same direction as the fibre bundle, the
diffusion is not restricted and the signal is more attenuated than
when the gradients are perpendicular to the fibre direction where the
diffusion is restricted. In contrast to a DWI, a higher signal intensity
in an ADC-map denotes high diffusion and thus less restriction.

In vivo examples of DW images in white matter are shown in
figure 2.23.

Diffusion tensor

Since biological tissue such as WM is anisotropic, the diffusion can
not be described accurately by a single scalar. As shown in equation
(2.15), the ADC can be generalized to an apparent diffusion tensor
or diffusion tensor (DT). The extension of the principles described
above to diffusion tensor imaging (DTI) was described by Basser in
1994 [43]. DW-MRI is preformed with diffusion gradients in different
directions. For a gradient applied in a direction ~vi, equation (2.23)
and equation (2.24) become now:

ln

(

Si(b)

S(0)

)

= −γ2δ2(∆ − δ

3
)G2~vT

i D~vi = −b~vT
i D~vi (2.25)

Usually the magnitude of the diffusion gradients in a diffusion weighted
sequence are chosen to be identical for all directions. If not, G2~vT

i D~vi

in equation (2.25) should be replaced by ~GT
i D~Gi.

The ADCi measured along the direction corresponding to ~vi has
the following relation to the diffusion tensor D:

ADCi = ~vT
i D~vi. (2.26)

To derive the complete diffusion tensor, DW-MRI should be per-
formed in several directions ~vi. Equation (2.25) represents a system
of linear equations that can be solved for the six independent compo-
nents of the tensor D given values of S(b) in at least six non-collinear
directions in addition to the T2-weighted signal S(0). However, since
the diffusion weighted (DW) images are noisy and may be distorted
by eddy currents and motion, it is common in practice to perform
DW-MRI in more than six different gradient directions and then fit
the tensor statistically using multivariate linear regression [44,45].

The diffusion tensor can be obtained in every voxel from a set
of DW images. Once the apparent diffusion tensor D has been es-
timated, it is always possible to transform D for every voxel into
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(a) (b) (c)

Figure 2.22: Ellipsoids representing the diffusion tensor. (a) Isotropic (b)
Oblate (c) Prolate diffusion profiles.

another tensor D’ with off-diagonal elements equal to zero and diag-
onal elements reflecting the intrinsic diffusion properties of the voxel,
independent of the coordinate system in which they were measured.
This can be achieved by diagonalisation of D as D is symmetric and
positive definite which means it has real eigenvalues:

D = EΛE−1, (2.27)

where

E =
[

~e1 ~e2 ~e3

]

and Λ =





λ1 0 0
0 λ2 0
0 0 λ3



 . (2.28)

~e1, ~e2, ~e3 are the three eigenvectors of D, which are orthonormal vec-
tors representing three unique directions along which the molecular
displacement are uncorrelated. λ1, λ2 and λ3 are the corresponding
ADC values or the eigenvalues of D. For each DT, the combination
of eigenvectors and eigenvalues is unique and reflects the microscopic
diffusion properties of the sample under investigation [11]. The coor-
dinate system of the eigenvectors (~e1, ~e2, ~e3) is chosen by convention
such that the largest eigenvalue is λ1, corresponding to ~e1 and the
smallest is λ3 corresponding to ~e3 [46].
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Visualization of the diffusion tensor

The general shape of the diffusion tensor is usually visualized by an
ellipsoid2. The axes of the ellipsoid coincide with the eigenvectors
and the corresponding eigenvalues are taken as radii. The ellipsoid
represents an iso-probability surface corresponding to the diffusion
tensor and is illustrated in figure 2.22. The case of isotropic diffusion
(λ1 = λ2 = λ3) is represented by a sphere, while oblate diffusion
(λ1 ≈ λ2 > λ3) appears to be disc-shaped and prolate diffusion (λ1 >
λ2 ≈ λ3) to be cigar-shaped.

Examples of diffusion ellipsoids are shown in figure 2.23(e) for an
in vivo data set of the brain white matter.

Scalar rotationally invariant measures derived from the dif-
fusion tensor

The average magnitude of the diffusion along the three eigenvectors
can be calculated by taking the trace of the tensor matrix or the sum
of eigenvalues. This quantity is called mean diffusivity (MD):

MD = 〈D〉 =
λ1 + λ2 + λ3

3
=

Tr(D)

3
. (2.29)

The MD characterizes the overall mean-squared displacement of the
water molecules. Maps of MD or trace of the human adult brain tissue
do not typically show a great deal of image contrast, indicating that
the average diffusion property of each voxel is relatively uniform both
in GM and WM.

Measures to describe the anisotropy and discriminate for instance
between GM and WM are essential but there is no single obvious
way to index anisotropy. Three scalar measures have been proposed:
fractional anisotropy (FA), relative anisotropy (RA) and the volume
ratio (VR) corresponding with the following definitions [47,48]:

FA =

√

3

2

√

(λ1 − 〈D〉)2 + (λ2 − 〈D〉)2 + (λ3 − 〈D〉)2
(λ2

1 + λ2
2 + λ2

3)
,(2.30)

RA =

√

1

3

√

(λ1 − 〈D〉)2 + (λ2 − 〈D〉)2 + (λ3 − 〈D〉)2
〈D〉 ,(2.31)

V R =
λ1λ2λ3

〈D〉3
. (2.32)

2The equation of a standard ellipsoid body in an xyz-Cartesian coordinate
system is x

a

2 + y

b

2 + z
c

2
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A VR of 1 represents isotropic diffusion, whereas FA and RA are

zero in that case. FA is 1 and RA is
√

2
3 in case of cylindrically

symmetric anisotropy (i.e. λ1 >> λ2) while VR equals zero in the
case of oblate or prolate diffusion profiles. Among them, the FA gives
the highest SNR [49] and is by far the most commonly used. Other
scalar measures for expressing the diffusion profiles and preferred
directions are listed in [50].

An FA-map of a slice through the brain is shown in figure 2.23(d).
A colour code is used to visualize the direction of the diffusion ten-
sor: red stands for the left-right direction, green for the top-bottom
direction and blue for the in-plane direction. The direction of the
diffusion can also be derived from the DWI’s in those 3 directions
(figures 2.23(a), 2.23(b), 2.23(c)). For instance, when a gradient is
applied in the left-right direction, the corpus callosum (also indicated
on figure 2.17 and 2.16) is hypointense on the DW-MRI while it is
hyperintensive on the DWI’s when the gradients are applied in the
bottom-top direction and the in-plane direction.

An extensive list of the typical range of DT parameters found in
the human brain in vivo is given by Pierpaoli et al in [51]. Values
of FA in white matter are typically of the order of 0.7 (e.g. 0.69 ±
0.03 in the optic radiation [11]) while the grey matter has very low
FA values.

Sequence parameter optimization

The precision of the ADC depends on the b-factor due to the presence
of noise in the images. Taking a too low b-factor for estimating the
ADC will give a small signal attenuation resulting in a low precision
of the estimation. On the other hand, taking a too high b-factor
may result in such a high attenuation that the signal is lower than
the noise. It has been found that the product (bADC) should be
0.85 corresponding with a signal attenuation of 43% with respect to
S(0) [52]. As the ADC depends on the direction in WM, a fixed trade-
off b-factor is normally used for all diffusion gradient directions, e.g.
b = 1000 s/mm2.

The choice of the diffusion gradient scheme for DTI has been opti-
mized in terms of signal-to-noise [49,53–55]. To obtain a robust tensor
estimation, DW-MRI should be performed in at least 20 isotropically
distributed directions. The gradient directions are commonly chosen
such that they coincide with the vertices of an icosahedron [55] or by
minimizing the electrostatic repulsion force when the gradients are
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(a) (b) (c)

(d) (e)

Figure 2.23: (a), (b), (c) DWI’s. The direction of the applied gradient is
colour-encoded and shown at the right bottom of each subfigure. (d) corre-
sponding colour encoded FA map (e) Examples of diffusion ellipsoids repre-
senting the diffusion tensor.
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treated as point charges [55,56].

2.4.3 New techniques for characterizing diffusion- be-

yond the diffusion tensor.

The diffusion tensor model makes the assumption that the diffusion
at the scale of a voxel is Gaussian, which allows us to use the gener-
alised Einstein equation and the covariance matrix given by equation
(2.15) as an appropriate model. However, this assumption, as we will
see later in chapter 4 and 5, is not appropriate. Recent advances
in MR gradient hardware have allowed high b-value diffusion imag-
ing, revealing non-mono-exponential signal attenuation in brain white
matter [57–60]. Moreover, the Gaussian diffusion model also fails in
voxels containing fibre tracts in multiple directions. Due to these
findings, the exponential model to describe the signal attenuation
needs to be reconsidered. Different approaches are described below:
the two-compartment model (section 2.4.3.1) and the cumulant ex-
pansion form (section 2.4.3.2) are alternative models to explain the
non-exponential signal decay at high b-values while the q-space ap-
proach and derived HARDI models (section 2.4.3.3) are techniques
mainly used to described the diffusion signal in voxels containing
multiple diffusion directions.

2.4.3.1 Two-compartment model

Numerous studies [57,58] suggest that the DW-MRI signal S in brain
white matter can be described by a bi-exponential model, i.e. a
weighted sum of two exponential functions, corresponding to two wa-
ter diffusion pools in slow exchange, with a slow and a fast diffusion
coefficient [57,58]:

S(b)

S(0)
= αe−bADCslow + (1 − α)e−bADCfast , (2.33)

where ADCslow and ADCfast are the ADC’s of the slow and fast
diffusion pools, respectively, and α and (1-α) the corresponding pop-
ulation fractions.

Although it was suggested that these two pools would correspond
with the intra- and extracellular water pools, the derived fractions do
not agree with the corresponding intra- and extracellular fractions
[33]. In addition, these compartments have not been histologically
identified [61].



42 Diffusion Weighted MRI in Brain White Matter

2.4.3.2 Cumulant expansion form

A model independent description for S has been investigated where
the logarithm of S is fitted as a power series in b [62]:

ln

(

S(b)

S(0)

)

= C1.b + C2.b
2 + b3 + . . . . (2.34)

This formula describes the cumulant expansion of ln(S) in powers
of the applied gradients. The coefficients of the first and second
order yield the apparent diffusion coefficient ADC and the apparent
diffusion kurtosis ADK (see equation (2.16)):

C1 = −ADC, (2.35)

C2 =
1

6
ADK.ADC2. (2.36)

The termination of the series in equation (2.34) after the Nth order
term is called the bN cumulant expansion form. The usefulness of the
cumulant expansion form depends on its convergence. This can be
characterized by the convergence radius bc [63]. For b < bc, termina-
tion of the series after the Nth-order provides good approximation of
the real signal attenuation.

2.4.3.3 q-space

The q-space approach, originally introduced by Callaghan in [64] and
Cory and Garroway [65], also assumes no specific model of water
diffusion. Callaghan introduced the q-vector ~q as:

~q =
γδ

2π
~G, (2.37)

where ~G is the vector corresponding to the direction and magnitude
of the diffusion gradient. ~q is analogous to the vector ~k in equation
(2.9) which is at the basis of the MRI theory. If the diffusion gradients
in a Stejskal-Tanner sequence are infinitely narrow (δ → 0 in figure
2.19), the signal attenuation ratio of the experiment is given by:

S(~q,∆)

S(0)
=

∫

P (~r,∆)e−i2π~q.~rd~r, (2.38)

where P (~r, t) is the conditional probability that a molecule (initially
at the origin) is displaced over ~r in a time t (cf. equation (2.12)). By
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taking the inverse Fourier transform, the probability density function
can be recovered:

P (~r,∆) =
1

S(0)

∫

S(~q,∆)ei2π~q.~rd~q. (2.39)

By sampling the signal attenuation S(~q,∆) for a series of locations
in ~q-space, the measured profile can be directly related to molecular
displacements due to incoherent random motion without assuming
Gaussian behaviour. When integrating the PDF over a radial direc-
tion, the orientation distribution function (ODF) is obtained, which
is related to the fibre directions in a voxel. The fibre ODF can be ob-
tained using a spherical deconvolution [66]. As the fibre ODF gives in
fact the distribution of the fibre orientation present in a voxel, spher-
ical deconvolution is useful in the field of tractography [67]. This will
be illustrated further in section 6.4.

Usually ~q-space is sampled by incrementing the gradient strength
and changing its direction such that several spherical shells are ac-
quired in ~k-space. This acquisition method is known as the high an-
gular resolution diffusion imaging (HARDI) technique [68–70]. In the
case of Q-ball imaging, only one spherical shell is sampled, which re-
duces the scan time [71]. The measurement of the small displacements
to acquire the PDF requires very high diffusion gradient strength to
satisfy the narrow pulse assumption δ → 0 . Whereas the advantage
of the ~q-space approach is its model-free estimation, the major draw-
backs of the technique are the technical requirements and the long
scanning time. The gradients available on whole-body scanners are
not strong enough to sample appropriately the whole q-space.

2.4.3.4 Stretched-exponential form

A stretched-exponential model is proposed by Bennett et al to [72]:

S(b)

S(0)
= e−(bDDC)s

, (2.40)

where s is the stretching parameter and DDC stands for distributed
diffusion coefficient. This model assumes the signal attenuation to
arise from a collection of uncoupled exponential decay processes. Hall
et al [73] also used this form to link the signal decay to anomalous
diffusion (see section 2.3.1) by relating s to the walk dimension as
s = 2/dw. The stretched-exponential form is mentioned for the sake
of completeness here and is not used further in this work.
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2.5 Examples of clinical applications of diffu-

sion MRI

The first clinical potential of DW-MRI was demonstrated by Le Bihan
et al in 1986 [22] who showed that the ADC in brain tumours is
significantly reduced in comparison to normal brain tissue. They
also demonstrated that the ADC increases in oedema in comparison
to normal tissue and that the ADC in grey matter is higher than in
white matter. The fact that water ADC is significantly decreased in
malignant tissue [33] makes whole body diffusion MRI [74] a potential
alternative approach to fluoro-deoxyglucose (FDG)-PET [75].

The most firmly established clinical application of diffusion MRI
is the early detection of ischaemic stroke [11]. Using DW-MRI, is-
chaemic stroke in the early phase can be detected with a higher sen-
sitivity and specificity than CT and conventional MRI. Examples are
shown in figures 2.24 and 2.25. The diagnostic power of DW-MRI is
mainly based on its capacity to differentiate between cytotoxic and
vasogenic oedema. Nowadays, diffusion MRI is clinically used for
detecting patients with acute ischaemic stroke [76]. The observed
reduction of the ADC in cerebral fluid is explained by membrane
depolarization and related cell swelling in ischaemia [77]. When as-
suming that the diffusion in the intracellular space is more restricted
than in the extracellular space, a net transport of water from the
extracellular space into the intracellular space causes a decrease in
the ADC [77].

The ADC and diffusion anisotropy measures change dramatically
during development, reflecting underlying changes in tissue water
content and cytoarchitecture. Those DTI parameters also change
in response to brain injury such that DW-MRI offer the possibility
of detecting injury earlier than conventional imaging methods [78].
Also the effect of ageing can be studied with DW-MRI. In contrast
to the white matter maturation process, investigators have observed
significant declines in the white matter ordering in normal as well as
abnormal ageing [79].

DW-MRI also enabled the investigation of the effect of disease on
the white matter by studying diffusion anisotropy parameters. Var-
ious low level pathological processes such as oedema, neurotoxicity
and inflammatory events may have an impact on the measured dif-
fusion parameters. Several types of diseases such as MS, Alzheimer’s
disease, amyotrophic lateral sclerosis and neuropsychiatric disorders
are current research topics for DW-MRI [80,81].
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(a) T2 (b) DWI

Figure 2.24: Images taken from a patient with ischaemic stroke in the early
phase. T2-weighted image is normal in the lesion region, but the averaged
DWI shows significantly reduced diffusion compared with the equivalent re-
gion in the right periventricular lobe.

(a) T2 (b) FLAIR (c) DWI

(d) CT (e) follow-up CT

Figure 2.25: MR images of a patient with ischaemic stroke. Diffusion
weighted (DW) and fluid-attenuated inversion recovery (FLAIR) images
are typically used to establish the diagnosis of acute ischaemic stroke. The
FLAIR image is T2-weighted with the signal of the cerebrospinal fluid (CSF)
attenuated. At the early phase, the lesion in the right cerebellar hemisphere
is only visible on the averaged DWI. A follow-up scan on CT the following
day shows a slightly hypodense lesion.
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2.6 Fibre tractography

The local white matter orientation provided indirectly by DW-MRI
can be used to reconstruct the pathways of major white matter fibre
tracts through the brain. This reconstruction process is known as
fibre tracking, or fibre tractography. Two examples of fibre tracto-
graphy are shown in figures 2.26(b) and 2.26(a). The corticospinal
tract is formed by all the axons travelling from the cerebral cortex of
the brain to the spinal cord. The corpus callosum connects the left
and right hemispheres of the brain. More examples of fibre tracts can
be found in [82].

A considerable number of tractography algorithms have been de-
veloped which vary in the way they deal with noise and how they
model the original DW-MRI data and represent the reconstructed
tract. Also non-tensor models for diffusion have been applied to
overcome some of the shortcomings of tensor imaging. For a de-
tailed overview of tractography and other algorithms to probe brain
connectivity, we refer to some recent PhD theses covering these sub-
jects [83,84].

Validation

Fibre tractography can provide macroscopic neuroanatomical infor-
mation of the white matter structure. Specifically, it can parcel-
late the white matter into several fasciculi containing fibres running
largely in the same orientation. As the current resolution of DTI is
a voxel size of about 2 mm3, it is presently not possible to resolve
white matter tracts into individual axons whose diameter is typically
less than 10 µm. Moreover, there are still some unsolved issues such
as revealing crossing fibres present within one voxel, especially in the
presence of noise and low angular resolution. Also crossing fibre bun-
dles and “kissing fibre” bundles [85] are indistinguishable from a fibre
tracking point of view. It has become undeniable that validation is
of central importance for the development of tractography [86].

Validation has been performed on post mortem tissue and with
animal models using tract-tracing methods based on chemical trac-
ers [86]. The results in these studies often have high uncertainties
due to noise and subject motion. Software phantoms may overcome
these issues. For the validation of fibre tractography, a mathemat-
ical framework for simulating DTI data is proposed by Leemans et
al [87], based on the physical properties of the WM fibre bundles.
Such synthetic data sets are useful for testing new tractography al-
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(a) corpus callosum

(b) corticospinal tract

Figure 2.26: Tractography result of the corpus callosum (a) and the corti-
cospinal tract (b). H = head, P = posterior, R =right, L = left.
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gorithms but as they are mostly based on the tensor assumption of
a Gaussian diffusion profile, they will fail for the particular cases of
crossing fibres. Probably the ideal validation study may require a
physical hardware phantom with well-known structure and diffusion
behaviour in which uncertainties as the effect of motion and partial
volume effects can be removed [86].

2.7 Conclusion

For a good understanding of the following chapters, the basic princi-
ples of DW-MRI are explained.

We have shown how the magnetisation of atomic nuclei gives
rise to a macroscopically measurable NMR signal. The NMR phe-
nomenon can create an image with a desired image contrast. Atten-
tion was also paid to fast imaging sequences suitable for DW-MRI
such as standard EPI and spiral EPI and the related image artefacts.

The physical process of self-diffusion as a random walk was dis-
cussed whereby the difference between free diffusion with a Gaussian
displacement profile and restricted diffusion was explained. The dif-
fusion of water molecules in brain white matter appears anisotropic,
the specific causes and the role of the micro structure remain still
unclear.

Consequently, the method of DW-MRI was explained by which
the random motion can be indirectly measured with MRI and guide-
lines were provided on how to perform DW-MRI in practice. The
diffusion tensor concept, based on a Gaussian diffusion profile, can
be used to visualize the white matter anisotropy. A number of scalar
indices to describe the shape of the diffusion tensor were introduced,
including the widely used fractional anisotropy. As the diffusion ten-
sor model fails at high b values and in voxels containing multiple fibre
directions, some alternative models were introduced.

The potential applications of DW-MRI in clinic are innumerable,
including examination of stroke, tumours, ageing and white matter
diseases. The anisotropy of white matter enables also the recon-
struction of the neural fibre tracts. For fibre tractography, but also
for diffusion sequence design, system calibration and the study of
diffusion models, an anisotropic diffusion fibre phantom with a well-
known structure and diffusion properties is an essential tool for the
validation and further optimization of DW-MRI. The design of such
a phantom is the topic of the next chapters.
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Design of anisotropic diffusion

hardware fibre phantoms

3.1 Introduction

A gold standard for the validation of DW-MRI is crucial for clinical
purposes. Physical hardware diffusion phantoms with a well defined
structure, composition and architectural organization are required
for the development of an accurate quality assessment protocol for
DW-MRI on clinical MR-scanners and for the validation of diffusion
models and tractography methods.

This chapter presents an overview of the different kind of hard-
ware diffusion phantoms. The advantages as well as the disadvantages
are mentioned for each phantom type (see section 3.2). Non-biological
anisotropic diffusion fibre phantoms are investigated in more detail
since they are the best candidate for quantitative validation of DW-
MRI. Section 3.3 describes the manufacturing process of anisotropic
fibre phantoms. In section 3.4 and following, several fibres are com-
pared with respect to the fibre material and phantom size in terms
of their diffusion properties and SNR.



50 Chapter 3

3.2 Overview of hardware diffusion phantoms

3.2.1 Isotropic diffusion phantoms

Liquids exhibit isotropic diffusion and can be characterized with a
well established diffusion constant. Isotropic liquids are used as a
standard because they are well-defined, stable, readily available and
require only a minimum of on-site laboratory work. The proposed
liquids have preferably one frequency peak in the nuclear magnetic
resonance spectrum.

Water has been widely used as a test liquid e.g. to calibrate and
correct for eddy current induced artefacts in DW-MRI [88, 89] or to
investigate the noise immunity characteristics of diffusion parameters
[90]. However, using water has some drawbacks such as a rather
high diffusion coefficient (DC) at room temperature (2.0×10−9 m2/s
at 20◦C) in comparison with the DC found in normal brain (0.3-
1.0×10−9 m2/s) [51]. Moreover, the water must be doped to bring
its T2-relaxation time down to in vivo values and its relatively low
viscosity can cause artefacts due to bulk motion.

Aqueous solutions of sucrose and agar gel have been used in [91]
to design a test-object that simulates the diffusion and T2 contrast
differences between normal grey matter and areas of acute ischaemia.
The presence of low agar concentrations in water reduces T2 while
the presence of sucrose at high concentration (400 g/l), both reduces
the DC and T2. Water doped with CuSO4 and water doped with
sucrose have been used in quality assurance protocols to assess the
accuracy and precision of the ADC measurements in terms of SNR,
signal reproducibility and differences between nominal and effective
diffusion gradients [92].

Also several organic liquids have been proposed as suitable ma-
terials for use in isotropic test objects for quantitative diffusion mea-
surements. Cyclic and linear alkanes are proposed in [30] for the
measurement of the ADC or the DT because their DC, T1 and T2

are in the same range as those observed in white matter and they
have a higher viscosity than water. DC’s of water and other molecu-
lar liquids for quantitative calibration of DW-MRI in function of the
temperature are listed in [93].

3.2.2 Anisotropic hardware diffusion phantoms

Anisotropic diffusion phantoms with a well-known structure and an-
isotropy become essential in order to evaluate quantitatively mea-
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sured diffusion parameters expressing the anisotropy such as the DT,
FA and to analyse the variability of different MR-scanners in terms
of anisotropy and fibre orientation. They are also preferable while
developing and testing new diffusion weighted sequences on clinical
MR-scanners. Both biological phantoms and synthetic phantoms are
used for the validation of DW-MRI.

3.2.2.1 Biological phantoms

Plants

Plants and fruits are widely available and often used as test-objects
when performing DW-MRI [94]. Carrot is used for b-matrix cor-
rection [95], celery is used to evaluate the effect of inhomogeneous
susceptibility samples on DW-MRI [96,97] and asparagus [98] is ap-
plied to test new diffusion sequences [99] and as an illustrative model
for restricted diffusion [100].

Monocotyl plants or monocots are most suitable as an illustra-
tive model system for anisotropic diffusion since they demonstrate
isotropic diffusion in the parenchyma and anisotropic water diffusion
in the vascular bundles, consisting of the phloem and xylem. Ex-
amples of monocots such as celery (Apium graveolens) [96, 97] and
asparagus (Asparagus officinalis) [98–100] are described in the liter-
ature for usage as diffusion phantoms.

Asparagus is described here as an example. Figure 3.1 shows a
microscopic image of a cross-section through the inner part of the
asparagus, composed of parenchyma in which vascular bundles are
embedded. There is an increase in size of the vascular bundles to-
wards the centre of the stem. Figure 3.2 shows a close-up of a vascular
bundle. The diffusion of water is anisotropic in the xylem while the
diffusion is isotropic elsewhere in the parenchyma and in the phloem.
DW-MRI and fibre tracking was performed on the asparagus. The
resulting fibre tracts are shown in figure 3.3. The FA was on average
0.15± 0.05.

The degree of anisotropy of diffusion in vegetables and plant stems
is in general rather low and the presence of air may cause susceptibil-
ity artefacts. Therefore they are not useful as calibration phantoms.
An additional drawback is their limited preservability because of sea-
son availability and dependence on storage and delivery conditions.
They are also proposed as a model to test new diffusion models such
as kurtosis imaging [100]. However, several physiological aspects such
as the exchange of water trough the vessel walls are not very well-
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100 µm

Figure 3.1: A microscopic image of a cross-section through the asparagus.
The vascular bundles are indicated with ellipses.

100 µmXylem Phloem

Figure 3.2: Close-up of a vascular bundle. Cells with a large diameter form
the xylem, which are in fact long tubular vessels with a thick wall. The
smaller cells form the phloem, which are either tubular and filled with air
or spherical and containing water.
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Figure 3.3: Fibre tracking results of an asparagus

known, which makes them cumbersome to use for validation of new
diffusion models and imaging techniques.

Biological tissue

Besides plants, biological phantoms made of excised nerve tissue can
be useful as test-object. Biological phantoms made of excised pig
and spinal cord are described in the literature for testing new DTI
sequences [97,101] and to develop new fibre tracking algorithms [102].
They are also used to validate diffusion models in brain white matter
such as the CHARMED model [103] or spherical harmonics [104] and
to verify new tissue segmentation and classification methods with
DTI [105].

Biological phantoms are useful as test object and for validation
of diffusion models because their structure is similar to the in vivo
situation. On the other hand, the biological tissue is not widely avail-
able and the preparation requires specialized knowledge. Their exact
structure remains in general unclear and they are not suitable for
calibration purposes due to their limited storage time and lack of
stability. Moreover, they can not be applied to create more com-
plex structures similar to the WM geometry such as fibre crossings
and curved fibres. Synthetic anisotropic hardware diffusion phantoms
have been proposed recently to overcome these issues.
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3.2.2.2 Synthetic phantoms

Several non-biological anisotropic hardware diffusion phantoms have
been proposed in the literature recently. Two different kind of phan-
toms can be classified: capillary phantoms and fibre phantoms. There
is a large variety in the size and type of the used materials. All
the described phantoms are intended for the validation and qual-
ity assessment of DW-MRI, fibre tractography and Q-ball imaging
on clinical MR scanners. The considered capillaries were made of
glass [106] and plastic [106–110] whereby the diameter varied from
20 µm up to 80 µm. Diverse fibre materials were used for the manufac-
turing of fibre phantoms such as hemp, linen [111], polyamide [112],
polyester [113], polyethylene [114–116] and rayon [117]. Diameters
ranged from 10 µm up to 340 µm.

In the next sections, we will focus on the manufacturing of fibre
phantoms and describe in more detail how the different material prop-
erties and size of the phantom influence the outcome of the DW-MRI
experiment.

3.3 Manufacturing process of anisotropic dif-

fusion fibre phantoms

All the constructed fibre phantoms consisted of straight bundles of
parallel unwounded fibre filaments immersed in water. The fibres in
the water were surrounded by a flexible poly-olefin low-temperature
shrinking tube (Versafit, Tyco Electronics, Raychem). Subsequently,
the water was heated to 90◦C for at least 600 s so that the shrinking
tube shrinked and a homogeneously, densely packed fibre bundle was
created, as shown in Fig. 3.4.

To reduce the effect of susceptibility differences caused by air
bubbles, the whole fabrication process was performed under water.
Remaining small air bubbles attached to the fibres and the shrinking
tubes were removed by squeezing and repetitively placing the bundles
in a vacuum chamber and subsequently in an ultrasonic bath. More
efforts were required for hydrophobic materials such as DyneemaR©

fibre bundles to get rid of the air bubbles. The presence of air bub-
bles inside the fibre bundles was evaluated by acquiring a gradient
echo B0-field map using a phase encoding sequence (TE1 = 10 ms,
TE2 = 12 ms) [118]. Almost no susceptibility artefacts due to the
presence of air were noticed on the field map.
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2 mm

(a) Transversal view

(b) Longitudinal view

Figure 3.4: Photographs of a fibre bundle with the shrinking tube partially
removed: (a) transversal, (b) longitudinal view
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Figure 3.5: System to wind the fibre filaments automatically and meanwhile
count the number of filaments.

For each fibre phantom, the fibre filaments were wound and count-
ed automatically (see figure 3.5). Fibre bundles with a varying fibre
density (FD) were obtained by using various numbers of fibre fila-
ments. The shrinking tube was left to shrink to a diameter of 9.5
mm. The fibre bundles were fixed to a PMMA plate and placed in
a cylindrical container (see figure 3.6) to reduce the effect of motion
during the magnetic resonance (MR)-measurements.

DW-MRI and tractography are performed as described further in
section 3.4.2. An example of the colour coded cuboids of the FA in a
DyneemaR© fibre phantom is shown in figure 3.7(a). The correspond-
ing fibre tracking result is shown in figure 3.7(b), demonstrating a
good agreement between the actual fibre direction and the direction
of the reconstructed fibres. FA was on average 0.3 with a standard
deviation of 0.04.

The reproducibility of the manufacturing process and the homo-
geneity of the fibre phantoms was investigated by manufacturing 14
fibre bundles made of DyneemaR© fibre material including exactly
the same number of fibre filaments. The fibre bundles were manu-
factured in separate groups consisting each of 3 or 4 fibre bundles.
The proton density fraction (PD) may serve as a measure for the
FD with FD defined as 1-PD. The measured PD of different fibre
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Figure 3.6: Photograph of the cylinder phantom with fibre phantoms placed
inside

phantoms was on average 0.45. Figure 3.8 (a) shows the variation
in the mean PD-values and corresponding standard deviation for all
the fibre phantoms. The ROI’s contained 386± 53 voxels. The fi-
bre phantoms are reproducible within 10 %. The measured mean PD
and corresponding standard deviations are shown in figure 3.9 (b) for
the different slices in one fibre phantom. ROI’s contained 770 voxels.
The variation of PD within one fibre phantom was also 10 %.

Figure 3.8 and figure 3.9 demonstrate that anisotropic synthetic
fibre phantoms can be manufactured in a reproducible way using
shrinking tubes which pack the fibres densely and homogeneously
together. During the whole process, special care should be taken to
get rid of air bubbles inside the fibre phantoms, especially when using
hydrophobic fibre materials such as DyneemaR©.
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(a)

(b)

Figure 3.7: (a) A colour-encoded FA-map of a slice through a Dyneema R©

fibre phantom. For each voxel, the principal eigenvector is rendered as a
cuboid. (b) Fibre tracts after DTI of a fibre phantom
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Fibre phantoms
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Figure 3.8: PD measurements in different fibre bundles containing equal
number of Dyneema R© fibres showing the reproducibility of the manufactur-
ings process. The error bars indicate the standard deviation of the measured
PD in each fibre phantom.
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Figure 3.9: PD measured in different slices in one fibre bundle illustrating
the homogeneity of one fibre phantom. The error bars indicate the standard
deviation of the measured PD in each slice.
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3.4 Comparison of fibre materials

When fabricating anisotropic diffusion fibre phantoms, a crucial ques-
tion is how the different material properties and size of the phantoms
influence the outcome of the DW-MRI experiment. Besides diffusion
properties such as FA, also SNR is considered. Equation (2.19) which
describes the signal decay in case of diffusion, shows an exponential
decay determined by T2 and an initial magnetisation determined by
the PD. Both parameters affect the SNR of the measurement.

The diffusion properties of several potential synthetic fibre mate-
rials are compared. The effect of the fibre radius and fibre density on
the FA is evaluated. The role of surface relaxation on the FA, as well
as on the measured T2-relaxation time is investigated. Differences in
magnetic susceptibility between fibres and water may bias the out-
come of the DW-MRI experiment and reduce the T2-time. This effect
has been studied as well.

3.4.1 Tested fibre materials

Four potential fibre materials for constructing fibre phantoms are
studied. Fibre filaments with varying diameter were chosen to eval-
uate the effect of the fibre radius:

• DyneemaR© (Dyneema SK75 1760 dTex, DSM) is a high strength,
lightweight high performance fibre made from Ultra High Molec-
ular Weight Polyethylene (UHMWPE). The fibre is chemically
inert to water, ultra hydrophobic and impermeable to water.

• Nylon (DuPont Tynex R© 612 Nylon Filament, Dupont Fila-
ments) is a polyamide fibre produced by a condensation reaction
of dodecanedioic acid and hexamethylene diamine. This nylon
fibre absorbs small quantities of water.

• Fibreglass (Owens-Corning) are extremely fine fibres made of
glass. Fibreglass is hydrophilic.

• Carbon fibre is a material consisting of long thin sheets of
graphite-like carbon, packed to form a fibre. Carbon fibre is
hydrophilic.

Scanning electron microscope (SEM) images were made of the
DyneemaR©, Fibreglass and carbon fibre to measure its radius (see
figure 3.10). The radius of the nylon fibre, 32µm with a tolerance al-
lowance for variation of ±2.5 µm, was provided by the manufacturer.
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16.08 μm

(a) Dyneema

8.04 μm

(b) Carbon

7.01 μm

(c) Glass

Figure 3.10: SEM images of the different types of tested fibre materials: (a)
Dyneema R©, (b) Carbon, (c) Fibreglass
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Figure 3.11: The coordinates (r, φ) to describe the position ~r relative to a

cylinder. An external magnetic field ~B0 is applied that makes an angle θ
with the longitudinal axis of the cylinder.

In order to evaluate the effect of the fibre density, 5 carbon fibre
phantoms, 6 fibreglass phantoms, 12 nylon phantoms and 8 DyneemaR©

phantoms were manufactured containing varying numbers of wires as
described in section 3.3.

3.4.2 MR-measurements

Measurements were performed at 20◦C on a Siemens Trio scanner
(3T, Erlangen, Germany) equipped with an 8-element head coil. Mea-
sured parameters were PD, T2 and FA.

Susceptibility induced magnetic field inhomogeneity

Differences in magnetic susceptibility between fibres and water may
induce internal gradients when placing the fibre phantom in an exter-
nal magnetic field ~B0. As the radius rfibre of the fibres is extremely
small in comparison to the length of the fibres, they can be con-
sidered as infinite cylinders with a susceptibility χ. When a static
external magnetic field ~B0 is applied in a medium consisting of one
long cylinder, the magnetic field deviation, ∆B = ( ~B − ~B0). ~B0, in
a point ~r around the cylinder can be approximated in the limit of a
small susceptibility difference between water and cylinder, ∆χ <<
1 [2]:

∆B ≈ ∆χ

2
B0sin

2(θ)
(rfibre

r

)2
cos(2φ), (3.1)
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Figure 3.12: The MR signal intensity of test tubes containing varying solu-
tions of water and deuteriumoxide was measured showing a linear relation-
ship between signal intensity and proton fraction.

with the position of ~r determined by the coordinates r and φ as
shown in figure 3.11 and θ the angle between ~B0 and the axis of
the long cylinder. It is clear that in case of parallel alignment of all
the fibres with ~B0, all normal field components of all magnetic field
vectors vanish and the field outside the cylinders is equal to B0. By
increasing the angle θ, a spatial dependent offset in the magnetic field
∆B is induced resulting in increasing local field inhomogeneities.

Proton density and T2-measurements

T2- and proton density (PD) measurements were performed using
a multiple spin-echo sequence. The PD and T2 were obtained by
fitting M0 and T2 to the T2-decay function (equation (2.7)) using a
Levenberg-Marquardt algorithm in Matlab. Test tubes containing
a mixture of water (H2O) and heavy water (D2O) were used as a
concentration standard. Deuterium has a different magnetic moment
than hydrogen and therefore does not contribute to the NMR signal
at the hydrogen resonance frequency. Figure 3.12 proofs the linear
relationship between signal intensity and proton density.

The PD of the fibre phantoms was calculated as the signal M0 in
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a region of interest (ROI) of the phantom over M0 in a neighbour-
ing ROI containing water. This way, local variations in the signal
intensity due to B1 inhomogeneities were minimized.

T2- and PD measurements were performed with a multiple spin-
echo sequence with a TR of 10 s and a receiver band width (BW) of
130 Hz/pixel. Image series with 32 contrasts were obtained with an
inter-echo time spacing ∆TE varying between 7ms and 40 ms to en-
able a robust fit of the T2 decay function in a wide range of T2-values
(0.1 s up to 1.8 s). The resolution was 0.9 mm× 0.9 mm× 2mm.

Estimation of the surface relaxivity

There exists a relationship between T2 and pore size, i.e. the volume-
to-surface ratio (V/S), in a water-wet pore system, well-known from
NMR measurements in well logging [119]. The surface relaxivity ρ
is the proportionality constant between T2 and pore size in a water-
wet pore system. When the pores between the fibres are completely
water-saturated, the T2 relaxation rate or R2 will be described as
[120,121]:

R2fibre =
1

T2fibre
=

1

T2water
+ ρ

S

V
+ R2IG, (3.2)

with T2water the T2 of water in bulk and T2fibre, R2fibre the T2, R2

of water between the fibres in the phantoms. . An additional decay
R2IG can be observed in case of internal field gradients caused by
susceptibility differences between water and fibre material.

For fibre phantoms, modelled as long cylinders, the surface-to-
volume ratio S

V equals

S

V
=

2

rfibre

1 − PD

PD
. (3.3)

In the case of parallel alignment of the fibres with the B0-field,
the influence of field inhomogeneities caused by local variations of
the susceptibility is minimized as the term R2IG in equation (3.2)
can be neglected. For each fibre material, the measured PD-values
and radius were used to calculate the surface-to-volume ratios us-
ing equation (3.3). The surface relaxivity ρ of each fibre material is
derived by fitting the measured T2 and derived S

V to equation (3.2)
using a Levenberg-Marquardt algorithm.
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fibre radius surface relaxivity

Dyneema 8.5± 1.3µm 0.13 µm/s
Nylon 32± 2.5 µm 4.6 µm/s

Carbon fibre 4± 0.1 µm immeasurable
Fibreglass 3.5± 0.1 µm 7.7 µm/s

Table 3.1: Radius (mean value and standard deviation) and estimated sur-
face relaxivity of the fibres investigated in this study.

FA measurements

DW-MRI was performed in 30 directions with an EPI DW SE se-
quence with a BW of 1715 Hz/pixel. A total of 30 slices were acquired
in a TR of 6.6 s and with an effective TE of 110 ms. To minimize the
influence of eddy currents, a TRSE diffusion preparation [40] was
used with b-factors of 0 and 1000 s/mm2. Based on the scanning
protocol, the actual diffusion time ∆ was estimated to be 50 ms. The
resolution was 2mm× 2mm× 2 mm.

The diffusion weighted images were used to estimate the DT’s by
linear regression [43]. The dependency of fibre direction on the DC
was determined. Fibre tractography was performed using an adaptive
fourth order Runge-Kutta integration algorithm [85].

Evaluation of the effect of susceptibility differences

The PD, T2 and FA measurements were performed for varying angles
between the fibre bundle and B0-field (0◦, 15◦, 30◦, 45◦, 60◦, 75◦ and
90◦) to investigate the effect of increasing field gradients. Increasing
the angle between fibres and B0-field will increase the contribution of
local field inhomogeneities of the magnetic susceptibility as illustrated
in equation (3.1). The increase in the R2 relaxation rate by internal
field gradients with respect to the R2 in case of parallel alignment of
the fibres with the B0-field, R2IG in equation (3.2), was measured for
each angle. R2IG was derived as a measure of the effect on T2 due to
susceptibility differences between fibre material and water.

To evaluate the effect of internal gradients on the diffusion prop-
erties, FA-values were measured for both parallel and perpendicular
alignment of the fibres with the B0-field.
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Figure 3.13: Demonstration of the dependency of the measured FA-values
on fibre density and fibre radius for each fibre material.

3.5 Results

The radii (mean value and standard deviation) of the fibre materials,
as measured with SEM, are presented in table 3.1.

FA, PD and T2 measurements were performed on the four tested
fibre materials. The results are presented below. However, results of
the phantoms made of carbon fibre are not described since the signal
in these phantoms was too low to be measured with MRI, even at
short echo times (TE≥ 8ms).

FA measurements

In figure 3.13, FA is plotted as a function of the measured fibre den-
sity. The error bars of the experimental data show the standard
deviation of the FA and FD in pixels of the chosen ROI’s within the
fibre phantoms. The ROI’s were determined by the reconstructed fi-
bre bundle using fibre tractography through each fibre phantom and
contained 270± 103 voxels. For each fibre material, FA increases with
increasing FD. When comparing the FA-values for equal FD, nylon
fibre phantoms were found to have a lower FA than fibreglass and
DyneemaR©.



Design of diffusion fibre phantoms 67

Fibreglass

Dyneema

Nylon

Fibre Density (FD)

R
2
fi
b
re

[1
/s

]
10

0.2 0.4 0.6 0.80

0

1

2

3

4

5

6

7

8

9

(a)

Fibreglass

Dyneema
Nylon

linear fit Fibreglass
linear fit Dyneema
linear fit Nylon

S/V [106/m]

R
2
fi
b
re

-
1

T
2
w
a
te

r
[1

/s
]

10

0.2 0.4 0.6 0.8 10
0

1

2

3

4

5

6

7

8

9

(b)

Figure 3.14: Evaluation of the effect of the surface relaxation by comparison
of R2 for the three tested fibre materials. (a) the change in R2 is dependent
on the fibre density due to different surface relaxivity. (b) R2fibre-

1

T2water

as a function of the surface to volume ratio (S/V). The surface relaxivity ρ
is determined as the slope. T2water was measured to be 0.5 s.
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Evaluation of the effect of surface relaxation on the T2 mea-
surements

The effect of surface relaxation is demonstrated in figure 3.14. Fig-
ure 3.14 (a) shows the measured T2-relaxation rates, R2, for the dif-
ferent materials with the fibre phantoms aligned parallel to B0. The
error bars show the standard deviation within the chosen ROI’s (con-
taining 354± 113 voxels). Due to surface relaxation, R2 increases for
increasing fibre density, but the change in R2 is different for each
fibre material. Values for the surface relaxivity ρ were estimated by
fitting equation (2.7) to the R2 versus S/V curve (figure 3.14 (b)) and
are presented in table 3.1.

The effect of surface relaxation on the R2 is also plotted in fig-
ure 3.15 by combining equations (3.2) and (3.3). Figure 3.15 (a) shows
the increase in R2 as a function of the fibre density and surface relax-
ivity for fibre phantoms with a fibre radius of 2µm. R2 increases for
increasing fibre density and surface relaxivity. The effect of the fibre
radius on the increase of R2 due to surface relaxation is illustrated
in figure 3.15 (b) for a fibre surface relaxivity of 3µm/s. The increase
in R2 is inversely proportional to the fibre radius for a given fibre
density and surface relaxivity.

Evaluation of the effect of susceptibility differences.

The effect of local variations in the magnetic susceptibility on the
MR-measurement is demonstrated in figure 3.16.

Figure 3.16 (a) shows the increase in R2 for increasing angle be-

tween the fibre phantoms and ~B0. The effect of susceptibility differ-
ences on T2-relaxation is illustrated here for fibre phantoms of the
three materials with a fibre density of about 30 %.

The FA-values plotted in figure 3.13 were measured with the fibres
aligned parallel to ~B0. When the fibre phantoms were not aligned
parallel to ~B0, diffusion measurements could not be performed for the
phantoms made of fibreglass because of the low signal which results
from a short T2-relaxation time (≤ 100 ms). The measured FA-values
for the DyneemaR© and nylon fibre phantoms in the case of parallel
alignment are plotted against the case of perpendicular alignment in
figure 3.16 (b), illustrating the negligible effect of field inhomogeneity
caused by magnetic susceptibility differences.
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Figure 3.15: The effect of surface relaxation on the R2. (a) Increase in the
R2-relaxation rate as a function of the fibre surface relaxivity and the fibre
density (with a fibre radius of 2µm). (b) Increase in the R2-relaxation rate
for a fibre surface relaxivity of 3µm/s as a function of the fibre density and
the fibre diameter.
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Figure 3.16: Evaluation of the effect of local field inhomogeneity caused
by magnetic susceptibility differences between fibre and water. (a)Change
in R2 as a function of the angle between the fibres and B0 for three of
the tested fibre materials. The increase in R2 when changing the angle
between the fibres and B0 depends on the magnetic susceptibility of each
fibre material and is shown here for phantoms with a fibre density of 30%.
(b) Measured FA-values for the Dyneema R© and nylon fibre phantoms in the
case of parallel alignment versus perpendicular alignment. The solid line
denotes the bisector of the first quadrant.
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3.6 Discussion

3.6.1 SNR considerations

The SNR of the fibre phantoms is determined by the PD and the
T2-relaxation time of the fibre phantoms. The PD in the fibre phan-
toms is rather low in comparison to BWM since plain fibres were
used for the phantoms whereas the signal in DWI in BWM origi-
nates from the water in both the intra- and extracellular space. The
loss in signal due to the lower PD can be compensated by choosing
a fluid and fibre material with long T2 in comparison to BWM. As
an example: PD of the water in the intra- and extracellular space is
about 65% with a T2 of about 85 ms [11]. To obtain the same signal
intensity in fibre phantoms with a PD of 30% at a TE of 100 ms the
T2 of the fibre phantoms should be chosen around 270 ms according
to equation (2.7). However, several other factors may affect the T2-
relaxation time in the fibre phantoms such as surface relaxation and
susceptibility differences between the fibre and the water.

Surface relaxation

Figure 3.15 clearly demonstrates the strong effect of surface relaxation
on R2 especially for high fibre densities and small fibre radii. As the
T2-value of free water is around 2.5 s at 3T, an appropriate T2 of
minimum 270 ms can be obtained if the increase in R2 due to surface
relaxation is less than 3.3 s−1. The experimental results of figure 3.14
and equations (3.2) and (3.3), illustrated in figure 3.15, both prove
that for fibre phantoms with a high fibre density and small radius
such a small increase in R2 is only feasible for fibre materials with a
very low surface relaxivity value.

The surface relaxivity values for three of the tested fibres could be
derived by fitting equation (3.2) to the measured data (see figure 3.14)
showing that DyneemaR© has a very low surface relaxivity, while nylon
and fibreglass have higher relaxivities (see table 3.1).

The surface relaxivity is a measure for the interactions between
fluid and fibre surface: the stronger the interaction, the higher the
surface relaxation. Another parameter reflecting the intermolecular
interactions between liquid and solid surface is the degree of wetting,
which depends on the interface energy (or corresponding surface ten-
sions) involved such that the total energy is minimized. The degree
of wetting or wettability is described by the contact angle, i.e. the
angle at which the liquid-vapour interface meets the solid-liquid in-
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Figure 3.17: The contact angle of a liquid droplet wetted to a rigid solid
surface. γ is the surface energy between the two indicated phases (l=liquid,
s=solid, g=gas)

terface (see figure 3.17). In case of hydrophilic materials, the wetting
is favourable and the contact angle will be low (< 90◦) so that the
fluid will spread to cover a larger area of the surface. In the opposite
case of hydrophobic surfaces, the water droplets rest on the surface
without actually wetting and the contact angle will be larger than
90◦.

NMR surface relaxation is related to the wettability of a surface
for a given liquid [122]. The derived surface relaxivities for the three
tested fibre materials are related to the contact angles between fibres.
Nylon, fibreglass and carbon are all hydrophilic materials, with low
contact angles of 64◦ [123], 37◦ [124] and 45◦ [125], while DyneemaR©

is highly hydrophobic resulting in a contact angle > 90◦. Since hy-
drophobic materials have low surface relaxation, hydrophobic fibres
seem most suitable for the fabrication of anisotropic diffusion phan-
toms.

Local variations in magnetic susceptibility

Another important fibre parameter which influences T2 is the mag-
netic susceptibility difference between the fibre material and the wa-
ter causing inhomogeneous magnetic fields. The total magnetic mo-
ment of spins decays faster due to the diffusion in an inhomogeneous
magnetic field. The effect of the diffusion on the transverse relaxation
time T2 also depends on the echo time spacing [126].

In the case of perfect parallel alignment of the fibres with the
B0-field, there is no offset of the magnetic field and the field is homo-
geneous everywhere. When increasing the angle between the fibres
and the B0-field, an inhomogeneous magnetic field results whereby
the inhomogeneity increases with increasing angle up to 90◦. This
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results in a larger R2 as shown in figure 3.16 (a).

The effect of different magnetic susceptibilities for different fibre
materials is illustrated in figure 3.16 (a). Magnetic susceptibility val-
ues found in the literature are -9.02 ppm for water at 20◦C, -16.3 ppm
for glass and -204 ppm for carbon [127]. The magnetic susceptibility
of DyneemaR© is estimated about -10 ppm [128]. Susceptibility values
are found for nylon fibres in [129] where, depending on the crystalline
ratio, the susceptibility varies between -3 ppm and -6 ppm parallel and
-7 ppm and -10 ppm perpendicular to the fibre. The results shown in
figure 3.16 (a) are semi-quantitatively supported by the susceptibility
values reported in the literature. In addition to a high surface re-
laxivity, the fact that the water in the carbon fibre phantoms was
not visible might also be caused by the very large difference in sus-
ceptibility between carbon and water. The second largest magnetic
susceptibility difference was for fibreglass which results in the largest
R2 increase in comparison to nylon and DyneemaR©.

Quantitative correlation of the theoretical magnetic susceptibil-
ity effect with the observed R2 increase is compromised for the nylon
and DyneemaR© fibre phantoms because no information is found on
the anisotropy of susceptibility for DyneemaR© and it is not straight-
forward to measure because of the small size of the fibres. However,
most crystalline fibres are anisotropic and will behave more diamag-
netic when placed perpendicular than parallel with the magnetic field.
Since for parallel alignment, the susceptibility of DyneemaR© is esti-
mated to be more diamagnetic and nylon to be less diamagnetic than
water, the difference in magnetic susceptibility can be assumed to
increase for DyneemaR© and decrease for nylon fibre phantoms with
increasing angle between fibres and ~B0. This might explain the higher
increase in R2 for DyneemaR© as compared to nylon.

It is concluded that polymer fibres appear to be the most appro-
priate candidates to make diffusion phantoms in terms of magnetic
susceptibility effects. As polymer fibres may have an anisotropic mi-
cro structure, it is always advisable to perform T2-measurements for
different angles between fibre and B0-field to check the anisotropy
of the susceptibility. When the fibre susceptibility is isotropic but
has a significantly larger magnetic susceptibility than water, the wa-
ter can be doped with paramagnetic contrast agents to match the
susceptibility between fibre and water [130]. In the case of a lower
susceptibility of the fibres in comparison with water, the water may
also be replaced by another liquid with a closer susceptibility. A list
of susceptibility values for organic liquids can be found in [131]. How-
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ever, the requirement of using a hydrophobe material will be replaced
then by the requirement of using a lypophobe material that should
be investigated as well.

3.6.2 Optimization of the FA

Effect fibre radius and fibre density

Fibre phantoms with high FA are preferred since the white matter
values of FA are typically of the order of 0.7 (see chapter 2). The
degree of diffusion anisotropy is mainly determined by the FD and
the fibre radius. As shown in figure 3.13, the highest FA-values were
measured for fibres with a high FD and a small fibre radius.

When comparing fibre phantoms of different materials with simi-
lar FD, FA is higher for fibreglass and DyneemaR© than for nylon fibre
phantoms due to the smaller fibre radius.There is a time-dependency
of the diffusion process which is related to the fibre diameter and the
diffusion time, typically around 50 ms in DW-MRI. The next chapter
will discuss in more detail the time-dependent diffusion properties
using Monte Carlo simulations of random walk whereby the effect of
fibre radius, fibre density and surface relaxation on the FA will be
evaluated quantitatively.

Local variations in magnetic susceptibility

In the ideal case of a homogeneous B0-field, the molecules only see
the applied diffusion gradients. However, local differences in mag-
netic susceptibility in the fibre phantom induce additional internal
gradients. The internal gradients can cause undesirable dephasing
and rephasing and can compromise the accurate determination of
diffusion.

The experimental measured FA-values in figure 3.16 (b) showed no
significant difference between the FA-measurements performed with
the fibres either parallel or perpendicular to ~B0. The effect of mag-
netic susceptibility differences between water and fibre on measured
FA seems rather small in contrast to the large effect of magnetic
susceptibility differences on the T2-time. The major cause of an in-
accurate diffusion measurement will be the noise caused by the short
T2 decay time in case of local magnetic susceptibility inhomogeneity.
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3.7 Conclusion and original contributions

This chapter started with a classification of hardware diffusion phan-
toms. Isotropic liquids have a well-known diffusion coefficient and can
be used in quality protocols assessing the accuracy and precision of
the ADC. In order to evaluate anisotropic diffusion parameters such
as the FA and fibre orientation, anisotropic fibre phantoms become
indispensable. Among plants, monocots exhibit anisotropic diffusion
and especially the asparagus may serve as a useful test object during
sequence design. Biological phantoms made of excised spinal cord are
interesting to test diffusion models because they come close to the in
vivo situation. However, biological phantoms fail for calibration pur-
poses because of their limited storage time and the fact that their
exact structure often remains unclear. Synthetic anisotropic fibre
phantoms are proposed recently to overcome these issues. Moreover,
they can be used to create complex geometries such as curved fibres
and fibre crossings.

Anisotropic fibre phantoms are suitable and reproducible test ob-
jects that can be useful for the validation of DW-MRI on clinical
MR-scanners. The fibre density and fibre diameter are two impor-
tant factors that determine the diffusion properties such as FA, while
the SNR is determined by the surface relaxation and the magnetic
susceptibility through their effect on the T2 relaxation. The most
appropriate fibre bundles to mimic diffusion measurements in brain
white matter are densely packed fibres made from a hydrophobic ma-
terial with a magnetic susceptibility close to water.

With respect to SNR from the four materials discussed in this
chapter, DyneemaR© is found to give the best performance because of
its lowest surface relaxation. When placing the fibres perpendicular
to the B0-field, nylon fibre phantoms produce the best SNR because
the magnetic susceptibility of nylon is closest to water. DyneemaR©

and fibreglass have the highest FA-values because of their small fibre
radius. Overall for the tested materials, DyneemaR© is the most suited
fibre material for testing DW-MRI because of the combination of a
high FA and a reasonable SNR. In the next chapter, we use this fibre
to validate the diffusion within the fibre phantoms quantitatively.

In order to create more realistic phantoms imitating the diffusion
in both intra- and extracellular space of BWM, one might consider the
use of capillaries. The same criteria about fibre surface relaxivity and
susceptibility influencing the T2 as described above for plain fibres are
valid when choosing appropriate fibre materials in this case. The ideal



76 Chapter 3

fibre would be hollow with a small fibre diameter (< 10 µm) and a
magnetic susceptibility close to water (-9 ppm). To our knowledge,
there are no such capillaries available at the moment.



4
Simulation and experimental

verification of the diffusion in the

interstitial space of a fibre phantom

4.1 Introduction

In the previous chapter, we have demonstrated that anisotropic fibre
phantoms show to be useful test objects for the validation of DW-
MRI. However, an accurate description of the phantom geometry
and also of the diffusion behaviour is essential to use them as the
ground-truth for the quantitative validation of diffusion parameters.
In this chapter, we analyse in detail the diffusion process inside the
anisotropic fibre phantoms.

To enable quantitative evaluation of the measurements, the dif-
fusion is modelled in the interstitial space of the fibre phantom by
Monte Carlo (MC) simulations of random walkers. In addition, the
diffusion profile and excess kurtosis are extracted. The influence of
the fibre packing density and ordered versus random packing geom-
etry on the diffusion behaviour is examined in a regime extending
from the short-time to the long-time diffusion limit. Also the effect
of surface relaxation is addressed.

The anisotropic fibre phantoms constructed in this work can be
regarded as 2D porous media. Simulation results can be compared
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with the analytical equations derived for diffusion in porous media.
The validation of these theoretical models has already been demon-
strated for porous media in three dimensions with random packed
beads [132, 133] and various types of porous rocks [134, 135]. In this
chapter we compare the simulation and experimental results with
the analytical models for diffusion within porous media in two di-
mensions.

4.2 Theory of diffusion in porous media

A porous medium is an impermeable matrix permeated by an inter-
connected network of pores filled with an MR-visible fluid. Porous
media are found in nature, e.g. rocks, soils and biological tissue such
as bone, but also in man-made materials such as foams and ceram-
ics. The properties of porous media have been studied for several
applications such as petroleum engineering, geophysics, well logging,
material science and biophysics.

The fibre phantoms in this study can be considered as two di-
mensional porous media with a matrix consisting of an infinite pack
of cylinders. The developed theory for diffusion in porous media can
thus be applied to model the diffusion inside the fibre phantoms.
The time-dependent properties of the ADC are reasonably well un-
derstood in porous media [133,135–140].

Three different regimes in the time-dependent ADC(∆) can be
distinguished: a short-time diffusion regime, a long-time diffusion
limit and a transition region in between. These regimes also depend
on the diffusion direction. Each time region will be described in more
detail.

4.2.1 Short-time diffusion regime

In the case of diffusion in a short-time, the mean diffusion length
ld =

√
D0∆ remains smaller than the typical pore size so that only

the molecules located in a layer with a thickness of the order ld can
sense the presence of the surface [132, 136, 137]. This implies that
the diffusion behaviour is determined by the surface-to-volume ratio
S/V (see figure 4.1). For fibre phantoms, modelled as infinitely long
cylinders, the ADC in the direction perpendicular to the infinitely
long cylinders decays in the short-time diffusion regime according to
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fibre

fibre water

ld

Figure 4.1: Illustration of the dependency of the diffusion coefficient on√
D0∆: at short diffusion times, only water molecules in a surface layer

with a thickness equal to ld =
√

D0∆ are sensitive to the restriction created
by the fibre walls. This water fraction equals S

V

√
D0∆.

the following formula:

ADC(∆)

D0
= 1 − 2

3
√

π

S

V

√

D0∆ + O(D0∆), (4.1)

with D0 the diffusion coefficient in a free medium and O(D0∆) the

rest term including the higher order terms proportional to
√

D0∆
2
,√

D0∆
3
, . . . .

As S/V depends on the fibre density and fibre radius according
to equation (3.3), the diffusion in the short-time regime becomes de-
pendent on both parameters.

Surface relaxation

The term proportional to
√

D0∆ in equation (4.1) is not affected by
surface relaxation [137]. But when the diffusion time is increased,
the higher order terms in

√
D0∆ start to play a role. For smooth

interfaces, the term proportional to D0∆ is the following [137]:

−1

8
H

S

V
+

1

4

ρS

D0V
, (4.2)
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where H is the mean curvature averaged over the surface, which in
the case for fibre phantoms equals:

H = 〈 1

rfibre
〉. (4.3)

According to equation (4.2), the term proportional to D0∆ causes
an increase in the ADC(∆) only when ρ is large enough. The ADC
is relatively insensitive to surface relaxation at short diffusion times
and can thus be neglected in most cases [137].

4.2.2 Long-time diffusion limit

In the other extreme limiting case of long diffusion times, the molecules
can travel distances much longer than the pore size and thus probe
the connectivity of the pore space. When ignoring the relaxation of
molecules at the surface, the diffusion profile can be considered to be
pseudo-Gaussian and the diffusion coefficient becomes independent of
the diffusion time ∆ and is expressed as a function of the tortuosity
parameter Λ [132] according to:

ADC(∆ → ∞)

D0
=

1

Λ
+

µ1

∆
+

µ2

∆3/2
, (4.4)

where µ1 and µ2 are constants depending on the details of the geom-
etry.

The tortuosity Λ is a property of the medium, i.e., the geometry
and the connectivity of the pores. In general, its relation to the
medium is not very clear.

The role of tortuosity in transport processes

Through the tortuosity, the diffusion coefficient is strongly related to
many transport mechanisms confined in porous media such as the
permeability, the electrical conductivity, the heat conductivity and
the velocity of sound [132]. For a given pore geometry made of an
insulating rigid homogeneous porous matrix containing a conducting
fluid, the problem of electrical conductivity is equivalent to that of
the diffusivity in this medium. An analogous problem is also that of
the hydrodynamics of an ideal fluid moving in the same pore space, in
the long-wavelength (incompressible fluid) limit [141]. Brown [141],
Johnson et al [142] and Sen et al [143] noticed the fact that the micro-
scopic and differential equations and boundary conditions governing
the transport processes are identical in all those cases.
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Electrical Conduction Diffusion

~je = −σ0∇Φ microscopic equation ~jd = −D0∇c
∇2φ = 0 differential equation ∇2c = 0
~je.~nw = 0 boundary equation ~jd.~nw = 0

~Ie =
[

∫∫

(~je.~n)dA
]

~n definition ~Id =
[

∫∫

(~jd.~n)dA
]

~n

~Ie = −A
F σ0〈∇Φ〉 macroscopic solution ~Id = −A

F D0〈∇c〉

Table 4.1: Equivalence between the problem of electrical conductivity of a
nonconducting porous matrix containing a conducting pore material and that
of the diffusivity in this medium. All quantities have their usual meanings; ~je

is the electrical flux density and ~jd diffusion flux, Φ the electrical potential, c
the concentration, ~nw is a unit vector normal to the pore-matrix interface, ~n
is a unit vector normal to a flat surface of area A over which the integration
is performed. ~Ie represents the electrical current and ~Id the diffusion flow
rate trough an area A. The fact that both problems are described by the
same equations and boundary conditions yields equations (4.5) and (4.6) of
the text. More details are given in [141,142].

A summary of this proof is given in table 4.1 for the problem
of electrical conductance and diffusion. The quantity F , defined by
the last entries in table 4.1 is a scalar for statistically homogeneous,
isotropic samples. Inasmuch as the two problems are equivalent, the
same value of F applies for the two problems for a given sample. Sen
et al [143] have shown, in effect that

ADC(∆ → ∞)

D0
=

1

Λ
= Fφ, (4.5)

σ

σ0
= F, (4.6)

where φ is the porosity of the medium. These equations hold only of
the matrix material is nonconducting and there is no interfacial sur-
face relaxivity. The extra factor of φ for D in equation (4.5) comes
from the fact that concentration enters into a transport problem in-
volving diffusion [142] and not one involving electrical conduction.

From equations (4.5) and (4.6), we derive the following relation
between the tortuosity and electrical conductivity of a given porous
medium:

1

Λ
=

σ

σ0
φ. (4.7)
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Following descriptions for the tortuosity Λ are adopted from the-
ories describing electrical conductivity:

• Archie’s law

Archie’s law [144] was originally derived for impedance mea-
surements and adapted for diffusion in porous media [138,145].
This law suggests a correlation of Λ with the porosity φ, i.e.,
the fraction of the interstitial space (1-FD) with FD the fibre
density, according to

Λ = φ−β . (4.8)

β depends on the packing geometry and usually lies in the range
1/2 to 2/3 [145]. For random spheres, β equals 1/2 [132, 133,
139,146].

• Maxwell-Garnett formulas

The transport properties between cylinders were discussed in
[147] where the method used by Lord Raleigh is elaborated for
square and hexagonal packings of cylinders, resulting in specific
Maxwell-Garnett formulas. Also, the Maxwell-Garnett formu-
las for the tortuosity derived in [143] for hollow cylinders with
a given thickness can be simplified to the situation for filled
cylinders (with no water molecules inside the cylinders).

When using polar coordinates the electrical potential Φ in each
point can be expanded in a series of cos-terms. The unknown
coefficients in this series are obtained by taking into account
the boundary conditions and truncation of the series. To the
lowest order in the multipolar expansion, the Maxwell-Garnett
formula results in an equation for the tortuosity for both hexag-
onal and square packed cylinders:

1

Λ
=

1

2 − FD
. (4.9)

When taking into account higher order terms, some coefficients
are omitted depending on the specific geometry of the ordered
packing. For hexagonal packed cylinders, the analytical ex-
pression for σ is derived in [147] when truncating the Maxwell-
Garnett to the fourth order, which results in the following tor-
tuosity:
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[

1

Λ

]

H

=
1 − 2FD

(

1 + FD − 0.075422FD6

1−1.060283FD12 − 0.000076FD12
)−1

1 − FD
.

(4.10)

An analogous derivation for square packed cylinders when trun-
cating the Maxwell-Garnett formula to the third order [147]
gives then the following tortuosity:

[

1

Λ

]

S

=
1 − 2FD

(

1 + FD − 0.305827FD4

1−1.402958FD8 − 0.013362FD8
)−1

1 − FD
.

(4.11)

In the next section 4.3, we describe how MC random walk simu-
lations can be used to derive ADC(∆) in porous media with ordered
and random 2D fibre geometries. In particular, the correspondence
with Archie’s law and the Maxwell-Garnett formulas in the long-time
diffusion limit is investigated.

Surface relaxation

Due to surface relaxation, water molecules get absorbed at the pore-
fibre surface resulting in loss of magnetisation. While the diffusion is
relatively insensitive to surface relaxation in the short-time, its effect
increases with ∆ since more water molecules get absorbed. The ab-
sorption of water is caused by the enhanced surface relaxation due to
a high interaction between the fluid and fibre material as explained in
section 3.6 of the previous chapter. As the measured diffusion coeffi-
cient with MRI is an average based on the remaining magnetisation,
surface relaxation may alter the diffusion coefficient in the long term.

The effect of surface relaxation in porous media in the long term
is studied in [148] for ordered and disordered sphere packing geome-
tries. In porous media containing ”‘dead-end”’ channels, it is shown
that the effective diffusion coefficient due to surface relaxation may
be larger than the diffusion coefficient in case of no surface relax-
ation. However, in most systems, including the cylinder packings
considered here, the opposite trend can be expected. The surface
relaxation limits the diffusion in systems containing relatively large
pores connected by narrow throats since the magnetisation of water
molecules diffusing in those narrow channels is efficiently eliminated
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because of surface relaxation. A decrease of the ADC(ρ) is expected
to be linear with ρ according to the formula:

ADC(ρ) = ADC(0)

[

1 − ρL

ADC(0)

]

, (4.12)

with L a typical length scale. L increases with decreasing porosity φ
or with increasing fibre density FD.

4.2.3 Transition between short-time diffusion regime

and long-time diffusion limit

Padé interpolation

A general analytical equation for ADC(∆) does not exist. However,
one can interpolate between the short- and long-time equations, (4.1)
and (4.4), for the ADC(∆) using a Padé-approximant description. A
Padé approximant is the best approximation of a function f(x) by a
rational function R(x) of given order (m,n):

R(x) =
p0 + p1x + p2x

2 + . . . + pmxm

1 + q1x + q2x2 + . . . + qnxn
. (4.13)

Using a two-point Padé approximant, one can interpolate the follow-
ing function between the short- and long-time diffusion limit:

ADC(
√

D0∆)

D0
,

by fulfilling the following conditions in the two points ∆ = 0 and
∆ → ∞:

R(0) = 1,

R′(0) = − 2

3
√

π

S

V
,

R(∞) =
1

Λ
.

The simulation results summarized in section 4.3.2 reveal that the
transition of the ADC from the short-time to the long-time diffusion
limit depends both on the packing geometry and packing density.
When a Padé approximation consisting of the ratio of two first-order
polynomials is considered, the different time-dependencies between
different geometries can not be incorporated in the approximation.
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The following equation, based on a two-point Padé approximation
of the second order, has been widely used to interpolate between the
short-time and the long-time limit [132,133,140]:

ADC(∆)

D0
= 1 − (1 − 1

Λ
)

2
3
√

π
S
V

√
D0∆ + (1 − 1

Λ)D0∆
D0θ

(1 − 1
Λ) + 2

3
√

π
S
V

√
D0∆ + (1 − 1

Λ)D0∆
D0θ

,

(4.14)
with θ a time constant defined by the Padé length (

√
D0θ). The Padé

length is the length scale during which the diffusion process of a par-
ticle converts from the short diffusion time limit to the long diffusion
time limit.

Anomalous diffusion

The diffusion in disordered media is anomalous as described in sec-
tion 2.3.1 of chapter 2, meaning that the mean-square displacement
r2
rms is not linear proportional to the diffusion time. At short and

intermediate diffusion time, a porous medium can be considered as
a disordered medium with anomalous diffusion behaviour. At very
short times, the diffusion is not restricted and thus normal. Also at
long diffusion times, a porous medium can be regarded as an homoge-
neous medium with normal diffusion behaviour. Hence, the diffusion
in porous media is normal in the very short- and long-time diffusion
limit and can be considered anomalous for the transition period be-
tween those limits. The crossover time is then the diffusion time at
which the crossover from anomalous to normal diffusion occurs [18].

In the next section, we investigate with MC random walk simula-
tions the time-dependency of the diffusion coefficient, in particular in
the intermediate diffusion time. The validity of the Padé approximant
and the description of anomalous diffusion are investigated using the
simulation results.
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start end

L=
√

6D0t

Figure 4.2: Illustration of the random walk in 3D. During each time step t,
a particle moves over a distance L according to the Einstein equation.

4.3 Random walk simulations of the diffusion

in the interstitial space

4.3.1 Methods

The random displacement of water molecules in synthetic fibre phan-
toms is simulated by a three-dimensional MC simulation of random
walkers.

For each simulation, particles were initially randomly spread in
a square plane of 1 mm × 1 mm, which was oriented transverse with
respect to the fibre direction in a packing of infinitely long parallel
aligned impermeable rigid cylinders. The trajectory of one spin par-
ticle was generated by moving the particle during each time step t
over a distance of L in a randomly chosen direction with L according
to the Einstein equation (2.14):

L =
√

6D0t, (4.15)

where D0 is the diffusion coefficient of water in a unrestricted medium.
The random direction was selected using spherical coordinates by
choosing the radial coordinate r, the azimuthal angle θ and the polar
angle φ according to:

r =
√

6D0t,

θ = 2πu,
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φ = arccos(1 − 2v),

with u and v numbers generated randomly between 0 and 1 according
to a uniform probability distribution.

At the cylinder boundaries, water molecules were elastically re-
flected. Multiple reflections of the water molecules between multiple
cylinders were enabled. Figure 4.2 illustrates the random walk pro-
cess.

In the direction along the cylinders, the particles can travel in-
finitely long. In the transverse direction, random walkers that reach
the border of the 1 mm× 1 mm square, re-enter again at the opposite
side of the square. The packed cylinders are distributed in the square
such that a continuous geometry is obtained when the square is re-
peated periodically in both orthogonal directions. For each random
walker, the number of times that it leaves and enters the square at
each side is recorded so that for a given diffusion time ∆, the total
travelled distance is calculated correctly. The first and higher-order
moments of the total travelled distance in the x-, y- and z- directions
are used to calculate the apparent diffusion coefficient ADC and the
apparent diffusion kurtosis ADK according to the corresponding def-
initions, equations (2.14) and (2.16), as:

ADC(∆) =
1

2∆

〈

(→
n .

→
s
)2

〉

, (4.16)

ADK(∆) =

〈

(→
n .

→
s
)4

〉

〈

(→
n .

→
s
)2

〉2 − 3, (4.17)

where
→
s is the net displacement of a particle during a diffusion time

∆ and ~n is the considered direction.

Diffusion tensor and fractional anisotropy

In the case of a packing geometry of infinitely long parallel packed
cylinders, we expect that the principal frame of reference of the dif-
fusion tensor coincides with the axes of a coordinate system cho-
sen according to the three orthogonal directions x, y and z with the
z-direction parallel to the cylinders. This hypothesis is confirmed
in [103, 143] and experimentally verified by the simulation results,
which proves that the diffusive motion parallel and perpendicular to
the cylinders are statistically independent. Moreover, it is found that
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the diffusion coefficient is the same in all directions perpendicular to
the cylinders.

The apparent diffusion coefficients in the x, y and z-direction are
thus the eigenvalues of the diffusion tensor. The DT is then given by:

DT =





ADCZ 0 0
0 ADCX 0
0 0 ADCY



 . (4.18)

The FA, equation (2.30), is thus described by:

FA =

√

(ADCZ − ADCX)2 + (ADCZ − ADCY )2 + (ADCX − ADCY )2

√
2
√

ADC2
Z + ADC2

X + ADC2
Y

.

(4.19)

Surface relaxation

The effect of surface relaxation was incorporated in the MC simu-
lation of random walk. In the case of no surface relaxation (ρ = 0),
there is complete elastic reflection at the cylindrical surface of the
fibre. For ρ 6=0, if a water molecule hits the surface during the ran-
dom walk, its magnetisation is destroyed with a probability γ per
unit time step t. By destroying its magnetisation, the specific wa-
ter molecule becomes MR invisible and does not contribute to the
calculation of the diffusion parameters. In [148, 149], the following
equation between γ and ρ is presented for the case of weak surface
relaxation (γ¡¡1):

ρ =
ǫ

6t
γ. (4.20)

Taking into account the relation between the step length L and
timestep t described by equation (4.15) results in the following re-
lation between γ and ρ:

ρ =

√

D0

6t
γ. (4.21)

Accuracy and precision

The accuracy and precision of the simulated diffusion coefficient and
kurtosis are assessed by considering the simulated ADC and ADK in
the z-direction. Since the diffusion is not restricted in this direction,
the diffusion coefficient should equal the diffusion coefficient in a free
medium D0 and the kurtosis should be zero.
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For a simulation in a given fibre packing geometry, the average µ
and the standard deviation std of the ADCZ and ADKZ were calcu-
lated over the simulated time-interval. The accuracy and precision
of the simulation of the ADC were evaluated by considering the fol-
lowing parameters:

accuracy =
µ(ADC) − D0

D0
, (4.22)

precision =
std(ADC)

µ(ADC)
. (4.23)

Similar parameters were derived for the accuracy and precision of
the simulation of the ADK:

accuracy = µ(ADK), (4.24)

precision = std(ADK). (4.25)

• Precision

The number of simulated particles determines the precision of
the simulated results.

In the case of no surface relaxation (ρ = 0), simulations were
performed for 100,000 random walkers. In the case of surface
relaxation (ρ 6= 0), the number of random walkers decreases
with increasing time, which will influence the precision of the
simulation. The decrease of number of random walkers depends
on the surface-to-volume ratio S/V determined by the fibre
density and fibre radius according to equation (3.3). For each
ρ, fibre density and fibre radius, the initial number of particles
was determined so that still 50,000 particles were retained at
the final diffusion time ∆.

• Accuracy

The accuracy of the simulation is mainly determined by the
step length of the random walk simulations.

The effect of decreasing step length was simulated for random
packing geometries of cylinders with a diameter of 20 µm with
different fibre densities. The number of random walkers was
50.000. The results are shown in figure 4.3. Decreasing the
step length in the simulations results in a slight increase of the
diffusion coefficient (and a decrease of the kurtosis) for high
fibre densities. E.g., for a step length of 1.6 µm, the simulated
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Figure 4.3: Simulation results of the apparent diffusion coefficient in the x-
direction for randomly packed cylinder geometries with a diameter of 20 µm
and different fibre densities for varying step length (4µm, 2.8 µm, 2µm,
1.4 µm, 1µm, 0.7 µm, 0.5 µm.)

ADCX and ADKX differ in average 0.5 % and 5 % or less from
the ADCX and ADKX simulated with the smallest step length
of 0.5 µm.

The time step t of further simulations was chosen so that the
corresponding step length

√
6D0t was smaller than rfibre

10 . Using
this step length results in accurate simulation results without
unnecessary prolonging the simulation time given the fact that
the simulation time increases quadratically with decreasing step
length.

Performed simulations

All simulations were performed for a phantom temperature of 20◦C
(D0 = 2.023 × 10−3 mm2/s [30]).

1. Simulation of the time-dependent ADC

Simulation of ADC(∆) to verify the theory for diffusion in
porous media, as described in section 4.2. In addition, these
simulations were used to validate the diffusion measurements
in the fibre bundles as described further in section 4.4.
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Figure 4.4: The different types of fibre packing geometries and the corre-
sponding coordinate axes used in the MC simulations: (a) hexagonal, (b)
square, (c) random.

2. Simulation of the time-dependent ADK

These simulations were also used to validate the diffusion mea-
surements in the fibre bundles (see further in section 4.4).

For the study of both the ADC and ADK, simulations were per-
formed in fibre packing geometries of parallel aligned cylinders
with a diameter of 20 µm and for a free diffusion length ld of
50 µm, corresponding to a ∆ of 1.3 s. Following aspects were
investigated:

• Effect of the fibre geometry

Ordered (hexagonal, square) and random packing geome-
tries of parallel aligned cylinders were studied (see fig-
ure 4.4).

• Effect of the variation of the fibre radius

The effect of variations of the fibre radius within one pack-
ing was investigated by generating random packing geome-
tries containing cylinders with a fixed diameter of 20 µm
and comparing these simulation results with those ob-
tained in random packing geometries containing cylinders
with a Gaussian distributed diameter of 20 µm ± 4.1 µm
(standard deviation).

• Effect of the fibre density

The effect of fibre density was investigated by increasing
the density in steps of 0.04 starting from 0.02 up to the
closest possible fibre packing.
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Ordered packing geometries with varying fibre density (FD
= 0.02, 0.06, . . . ) were obtained by generating hexagonal
and square grids whereby the distance between neighbour-
ing grid points, representing the centre point of the cylin-
ders, was narrowed down to the most dense packing (0.91
for a hexagonal and 0.785 for a square packing). For these
simulations, the cylinders had a fixed diameter of 20 µm.

Homogeneously randomly packed fibre geometries were pro-
duced by random generation of a given number of circles
in a square (1 mm × 1mm), whereby the circles were not
allowed to overlap. For cylinders with a variable diameter,
the order of the placement of circles was chosen according
to decreasing circle diameter such that the highest feasible
packing density was obtained. The highest fibre density
that could be achieved within a reasonable calculation time
was 0.54 for the simulations with a constant diameter of
20 µm and 0.7 for the simulations with a variable diameter
of 20 µm ± 4.1 µm.

• Effect of fibre clustering

In the previous chapter, we demonstrated that hydropho-
bic fibre materials show the best performance to be used
as diffusion phantoms. Due to the hydrophobic nature of
the fibre, clustering of the fibres in the phantoms can be
expected.

To model the diffusion in the fibre bundles appropriately,
the effect of clustering has been investigated. Clustered
packing geometries were generated whereby the fibres were
densely grouped together in randomly chosen circular clus-
ters. An example of a clustered packing geometry is shown
in figure 4.5. The overall fibre density of the packing ge-
ometries was 0.18, 0.26, 0.34, 0.42 and 0.5. Simulations
were performed in the clustered geometries for 50.000 par-
ticles and compared to the simulations performed in ho-
mogeneously randomly packed geometries with a similar
overall fibre density.

• Effect of surface relaxation

Simulations were performed in case of no surface relaxation
(ρ = 0 µm/s) and in case of a surface relaxation with ρ =
3 µm/s.
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(a) (b)

Figure 4.5: Two packing geometries with an overall fibre density of 0.42.
(a) homogeneously packed (b) packed in clusters

3. Simulation of the fractional anisotropy (FA)

FA-values are derived from the simulated diffusion coefficients
according to equation (4.19). The FA-simulations were per-
formed to explain the experimental results described in the
previous chapter and further in section 4.4.2. Simulations were
performed in random packing geometries for a ∆ of 50 ms while
investigating the following:

• Effect of fibre radius

The effect of the fibre radius was examined by increasing
the mean fibre radius rfibre from 2 µm up to 40 µm in steps
of 2 µm.

• Effect of fibre density

The effect of the fibre packing density was examined by
increasing the fibre density from 0.1 up to 0.7 in steps of
0.04.

• Effect of surface relaxation

The effect of surface relaxation was evaluated by increasing
the surface relaxivity from 0 µm/s up to 20 µm/s.
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fibre packing geometry accuracy precision

Hexagonal 0.30% 0.51%
Square -0.41% 0.42%
Random 0.11% 0.21%

Table 4.2: The accuracy and precision of the simulation of ADCZ calculated
according to equation (4.22) and (4.23)

4.3.2 Results

4.3.2.1 Simulation results of the apparent diffusion coeffi-
cient (ADC)

• Precision and accuracy

Figure 4.6(a) shows the ADC obtained from the MC-simulations
in the z-direction (along the cylinder) for the hexagonal packing
arrangement. In this direction the ADC equals the diffusion
coefficient of a free medium and is independent from diffusion
time or packing density. ADCZ was also found to equal D0

for the square and random packing geometries. The calculated
values for the accuracy and precision of the simulation of the
ADC are presented in table 4.2. There is some variation in
the accuracy between the different fibre pakcing geometries.
However, for each fibre geometry, the accuracy value is smaller
than the precision value and thus acceptable.

• Effect of fibre geometry and fibre density

The ADC in the x-direction (perpendicular to the cylinder di-
rection) is shown for a hexagonal packing (figure 4.6(b)), a square
packing (figure 4.7(a)) and random packing (figure 4.7(b)) as a
function of ld and FD. Within the confidence levels as deter-
mined in the accuracy and precision study, the ADC was found
to be identical in both the x- and the y-direction.

• Effect of variation of the fibre radius

The simulated ADC for the random packing geometries with a
fixed diameter were similar to the results for a random packing
with a variable diameter. Hence, the results are not shown here.

• Time dependency:

When looking at the ADC in the transverse plane as a func-
tion of the diffusion length ld (

√

(D0∆), a short-time diffusion
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(a) z-direction, hexagonal fibre geometry

(b) x-direction, hexagonal fibre geometry

Figure 4.6: Simulation results of the apparent diffusion coefficient (ADC).
(a) ADCZ/D0, i. e. the simulated relative diffusivity in the longitudinal
direction, is similar for the three tested packing densities and shown for a
hexagonal fibre geometry as a function of ld and FD. (b) ADCX/D0, i.e. the
simulated relative diffusivity in the transverse plane, for a hexagonal fibre
geometry as a function of ld and FD.
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(a) x-direction, square fibre geometry

(b) x-direction, random fibre geometry

Figure 4.7: Simulation results of the apparent diffusion coefficient (ADC).
ADCX/D0, i.e. the simulated relative diffusivity in the transverse plane as
a function of ld and FD for square (a) and random (b) packing geometry.
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Figure 4.8: ADCX as a function of the mean diffusion length ld in the
transverse plane for the three tested fibre geometries with a given fibre den-
sity of 0.58. The short-time diffusion regime, equation (4.1), is shown and
the Padé-approximation for intermediate diffusion times, equation (4.14),
is fitted through the simulation results.

regime with a time-dependent ADC, a long-time diffusion limit
with a constant ADC, with a transition period in between. As
an example, figure 4.8 shows the time-decay of the ADC as a
function of ld for the three tested packing geometries each with
a packing density of 0.58.

In the next items, we present the comparison between the sim-
ulated ADC and the models for the time-dependent diffusion
coefficient as described in section 4.2.

1. Short-time diffusion regime
As shown in figure 4.8, the decay of the ADC in the short-
time regime is the same in the three cases and corresponds
to equations (4.1) and (3.3) with rfibre = 10 µm and FD =
0.58. However, the ADC-decay curves deviate in the long-time
diffusion limit for each geometry and fibre density.

2. Transition between short-time regime and long-time limit:

– To test for anomalous diffusion (see equation (2.17)), the
data can be replotted as log(r2

rms) versus log(∆). Normal
diffusion yields a slope of 1; anomalous diffusion yields a
slope of 2/dw≤1 with dw the walk dimension. One can
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derive the following equation from equation (2.17):

r2
rms

∆
∝ ∆2/dw−1.

A clear picture of the dependence of the diffusion be-
haviour with respect to the diffusion time is obtained when
plotting log r2

rms/∆ as a function of log t. Then normal
diffusion yields a line slope of 0, and anomalous diffusion
yields a line slope of 2/dw-1 [18].

Logarithmic plots of r2
rms/∆ versus ∆ are shown in figure

4.9 for the three different packing geometries. < r2 > /∆
is in fact proportional to the ADC. The plots show that
at intermediate diffusion times, the diffusion is anomalous,
whereas for very short and long diffusion times, the diffu-
sion is normal. It is clearly visible that the transition time
from anomalous to normal diffusion occurs at a longer dif-
fusion time for the random than for the ordered packing
geometries.

– The Padé interpolation formula, equation (4.14), was fit-
ted to the simulation results using a Levenberg-Marquardt
algorithm to obtain the ADC in the long-time diffusion
limit (figure 4.10(a)), 1

Λ and the Padé length
√

D0θ (fig-
ure 4.10(b)). The goodness of the fit was evaluated visu-
ally and by calculating the correlation coefficient R2. A
good correspondence with the Padé interpolation (equa-
tion (4.14)) was obtained for the random geometries (R2 ≥
0.995), for the hexagonal packing geometries with 0.2 ≤
FD ≤ 0.88 (R2 ≥ 0.992) and for the square packing ge-
ometries with 0.2 ≤ FD ≤ 0.7 (R2 ≥ 0.993). For very low
fibre densities (≤ 0.2), R2 is lower due to variations caused
by statistical noise. For higher fibre densities the ADC
started to deviate systematically from equation (4.14) with
increasing fibre density and tortuosity Λ. The worst fit,
i.e. an overestimation of the Padé length, was found for
the highest packing geometries (R2 = 0.985 for FD = 0.78
for the square geometry and R2 = 0.98 for FD = 0.91 for
the hexagonal geometry).

The fitted Padé lengths (figure 4.10(b)) are about 5 µm
larger for a random packing than for ordered packing ge-
ometries, which indicates a longer transition between short-
and long-time diffusion limit.
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Figure 4.9: Logarithmic plots of r2

rms/∆ as a function of ∆ for various
fibre densities (0.1 up to the closes packing) and packing geometries (a)
hexagonal, (b) square, (c) random. For the plot of the random geometry,
extra simulations are performed with 25.000 particles for longer diffusion
times.
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Figure 4.10: Fitted parameters of the Padé-approximation (4.14) for differ-
ent FD. (a) The Padé length,

√
D0θ. (a) the ADC in the transverse plane

(an average is taken of ADCX and ADCY )in the long-time limit plotted
as a function of (1-FD) in a double logarithmic scale and compared to the
Archieś law (equation (4.8)) and the Maxwell-Garnett equations of the 1st

and 2nd order for a hexagonal and square packing geometry (4.10,4.11).
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3. Long-time diffusion limit

The ADC becomes 1
Λ in the long-time limit. Values for the

ADC in the long-time diffusion limit were obtained when fit-
ting the Padé interpolation formula, equation (4.13), to the
simulation data and shown in figure 4.10(b).

– The fitting for the regular packing geometries (figure 4.10(a))
confirm the derived Maxwell-Garnett formulas of the 1st

and 2nd order for a hexagonal and square packing geome-
try (equations (4.10) and (4.11)).

– Archie’s law, equation (4.8), was fitted to the simulation
results using a Levenberg-Marquard algorithm to obtain
β for the different geometries. For the random packing
geometries, it was possible to fit equation (4.8) for all
porosities (0.3-0.7) resulting in βrandom = 0.790 ± 0.014
with R2 = 0.9935. In contrast, for ordered geometries no
reasonable fit was obtained against equation (4.8) for the
simulation data with low porosities. The best fits were
obtained for the range of porosities 0.3-0.98 for the square
geometry and 0.14-0.98 for the hexagonal geometry re-
sulting in βsquare = 0.636 ± 0.020 with R2 = 0.9827 and
βhexagonal = 0.4685 ± 0.025 with R2 = 0.9187.

• Effect of fibre clustering

The ADC for clustered geometries and random geometries with
equal fibre densities is shown in figure 4.11. The simulations re-
veal that the transition between short and long diffusion time
takes longer for clustered packing geometries than for homoge-
neous packing geometries. Moreover, ADCX in the long-time
diffusion limit is slightly lower for clustered geometries than
for homogeneous geometries. The difference in ADCX between
both cases increases with overall fibre density.

• Effect of the surface relaxation

The effect of surface relaxation on the simulated diffusion co-
efficient is shown in figure 4.12 where ADCX is shown in the
case of absence of surface relaxation and in the case of a sur-
face relaxivity ρ of 3µm/s. The ADC decreases slightly in the
presence of surface relaxation. For a fibre density of 0.7, the
decrease in ADC is 3%.
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Figure 4.11: Effect of clustering on the simulated apparent diffusion coeffi-
cient in the x-direction for varying FD in a randomly packed fibre geometry.
The dotted red lines represent ADCX for the clustered geometry while the
solid blue lines represent ADCX in the homogeneous random geometries.
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Figure 4.12: Effect of the surface relaxation on the simulated apparent dif-
fusion coefficient in the x-direction for varying FD in a randomly packed
fibre geometry. The solid blue lines correspond with the ADCX without sur-
face relaxation while the dotted red lines represent the ADCX with surface
relaxation for a given relaxivity ρ=3 µm/s.
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fibre packing geometry accuracy precision

Hexagonal 0.1% 0.8%
Square 0.03% 1.0%
Random -0.1% 1.0%

Table 4.3: The accuracy and precision of the simulation of ADKZ calculated
according to equation (4.24) and (4.25)

4.3.2.2 Simulation results of the apparent diffusion kurtosis
(ADK)

• Precision and accuracy

Figure 4.13(a) shows the ADK obtained from MC-simulations
in the z-direction. In this direction the ADK was found to equal
zero for the three different packing geometries. The calculated
values for the accuracy and precision of the simulation of the
ADK are presented in table 4.3. There is some variation in
the accuracy between the different fibre pakcing geometries.
However, for each fibre geometry, the accuracy value is smaller
than the precision value and thus acceptable.

• Effect fibre geometry and density

The ADK in the x-direction (perpendicular to the cylinder
direction) is shown for a hexagonal packing (figure 4.13(b)),
a square packing (figure 4.14(a)) and random packing (figure
4.14(b)) as a function of ld and FD. Within the confidence lev-
els as determined in the accuracy and precision study, the ADK
was found to be identical in both the x- and the y-direction.

Whereas the diffusion kurtosis reaches zero in the longitudi-
nal direction and for long diffusion lengths in the transverse
plane, the kurtosis becomes positive (leptokurtic) in the trans-
verse plane at intermediate diffusion lengths, indicating a diffu-
sion profile more sharply peaked and containing more extreme
values than a Gaussian diffusion profile. For low fibre densi-
ties, the ADK increases slightly with increasing fibre density
and is similar for the three packing geometries, while the ADK
increases considerably for higher fibre densities, whereby the
highest kurtosis values are found for the square packing geome-
tries. It is also seen that the ADK stays positive for longer
diffusion lengths for the random than for the ordered packing
geometries.
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(a) z-direction, hexagonal fibre geometry

(b) x-direction, hexagonal fibre geometry

Figure 4.13: Simulation results of the apparent diffusion kurtosis ADK).
(a) ADKZ , i. e. the kurtosis in the longitudinal direction, is similar for the
three packing geometries and is shown for a hexagonal fibre geometry as a
function of ld and FD. (b) ADKX/D0, i.e. the simulated relative diffusivity
in the transverse plane, for a hexagonal fibre geometry as a function of ld
and FD.
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(a) x-direction, square fibre geometry

(b) x-direction, random fibre geometry

Figure 4.14: Simulation results of the apparent diffusion kurtosis ADK).
ADKX/D0, i.e. the simulated relative diffusivity in the transverse plane as
a function of ld and FD for square (a) and random (b) packing geometry.
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Figure 4.15: (a) Simulated FA-values for fibres without surface relaxation
as a function of the fibre diameter and fibre density. (b) FA values for
fibre with a radius of 2 µm as a function of the fibre density and the surface
relaxivity. The diffusion time ∆ was 50ms.
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4.3.2.3 Simulation results of the fractional anisotropy (FA)

Based on the simulated ADCś in the x-,y-,z-directions, FA was de-
rived using equation (4.19). FA-values were derived for randomly
packed fibre geometries consisting various fibre densities and fibre
diameters.

• Effect of fibre radius and fibre density

Simulated values for FA as a function of the fibre radius and
fibre density (∆ = 50 ms) are shown in figure 4.15(a). FA in-
creases significantly with increasing fibre density and decreasing
radius.

• Effect of surface relaxation

The effect of surface relaxation on FA is shown in figure 4.15(b)
for a fibre radius of 2 µm and a diffusion time ∆ of 50 ms. For
fibre bundles with a high fibre density and small radius, there
is a slight increase in FA with increasing surface relaxation e.g.
for a fibre density of 70 % the FA increases with 7% for an
increase in relaxivity from 0 up to 20 µm/s.
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4.4 Experimental verification of the diffusion

in an anisotropic fibre phantom

4.4.1 Materials and methods

Fibre phantoms

Since it was shown in chapter 3 that DyneemaR© is the preferred fibre
material for constructing diffusion phantoms, the following experi-
ments were carried out with this fibre material. The fibre bundles
were manufactured as described in chapter 3.

To determine the micro-structure and the packing geometry, a
fibre bundle with an external diameter of 3 mm was manufactured
and scanned with an X-ray micro-CT at an isotropic resolution of
3.4µm. A directional X-ray tube was used, with a focal spot size
of approximately 3.5µm, a tube voltage of 60 kV and an electron
beam power of 9 W [150]. The data were acquired by a CMOS flat
panel with a replaceable Gadox scintillator, containing 512 by 1024
pixels at a pixel size of 48µm. To compensate for the relatively small
difference in the attenuation coefficient between water and the fibres,
iodine was added to the water (0.97mol/l) to increase its attenuation
coefficient. This resulted in reconstructed cross-sections showing void
areas, corresponding with the fibres.

To evaluate the effect of the packing density on the diffusion prop-
erties experimentally, 54 straight fibre bundles with varying FD were
fabricated by contracting different number of fibres in a shrinking
tube to an inside diameter of 9.5 mm. The fibre bundles were fixed
to a PMMA plate and placed in a cylindrical container.

MRI measurements

Measurements were performed at 20◦C on a Siemens Trio scanner
(3 T, Erlangen, Germany) equipped with an 8-element head coil. The

fibre bundles were oriented parallel to ~B0 to eliminate magnetic field
gradients that result from local susceptibility differences between wa-
ter and fibres [97,151].

• DW-MRI was performed in 60 directions with a DW EPI SE
sequence with a receiver band width of 1275 Hz/pixel. A to-
tal of 20 slices was acquired in a repetition time (TR) of 8 s
and with an effective echo time (TE) of 93 ms. To minimize
the influence of eddy currents, a TRSE [40] diffusion prepara-
tion was used with b-factors of 0 and 700 s/mm2. The actual
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diffusion time ∆ was estimated to be 36 ms based on the scan-
ning protocol. The spatial resolution was 2 mm× 2 mm× 2 mm.
The diffusion weighted images were used to estimate the DT’s
by linear regression and to derive the directional dependency
of the diffusion coefficient [43]. Fibre tracking was performed
using an Euler line integration algorithm [152].

• Proton density measurements were performed with a multiple
spin echo sequence with 32 T2-weighted contrasts with an inter-
echo time spacing ∆TE = 40 ms, a TR of 10 s and BW =
130 Hz/pixel. The resolution was 0.9 mm × 0.9 mm × 2 mm.
The proton density fraction was obtained as described in sec-
tion 3.4.2. The fibre density was calculated as FD = (1-PD).

NMR bulk measurements

The time-dependent ADC and ADK were obtained in a fibre bun-
dle with a measured proton density of 0.45± 0.05. Quantitative
diffusion-measurements were performed on a 0.5 T bench-top NMR
relaxometer equipped with a pulsed field gradient unit (Brüker Min-
ispec mq20). Both a DW PFG stimulated echo (STE) and a spin
echo (SE) sequence were used. Various diffusion weighted gradients
(0 up to 2T/m) were applied perpendicular to the fibre direction for
increasing diffusion times (∆ = 20 ms up to 100 ms for the STE, ∆
= 4 ms up to 50 ms for the SE, δ = 0.7 ms).

The acquired signal was averaged over 15 measurements to ob-
tain a sufficiently high SNR. To minimize the influence of field inho-
mogeneities and gradient imperfections on the resulting b-factors, a
calibration was performed on a water sample with dimensions similar
to the fibre phantom.

The temperature was kept constant at 40◦C (D0 = 3.28×10−3 mm2/s
[30]). The difference in radius between 20◦C and 40◦C was not
measurable. ADC(∆) and ADK(∆) were obtained by fitting the

ln
(

S(b)
S(b=0)

)

-curve to the 2nd order cumulant expansion formula (see

section 2.4.3.2):

ln

(

S(b)

S(b = 0)

)

= −bADC +
1

6
b2ADC2ADK + O(b3) (4.26)

using a Levenberg-Marquardt algorithm.
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4.4.2 Results

Micro structure

Figure 4.16(a) and figure 4.16(b) show a cross-section and a 3D re-
construction of the micro-CT scans. It can be seen that the fibres
are randomly packed and that the fibres are aligned parallel in the
longitudinal direction. The quality and resolution of the micro-CT
scans (about 5 µm) were too low to perform further processing.

FA measurements

Figure 4.17 shows the measured FA-values of the DyneemaR© fibre
bundles as a function of the measured FD-values. The error bars of
the experimental data correspond to the standard deviation over the
chosen ROI’s within the fibre bundles (containing 297± 45 voxels for
the FD-measurements).

ROI’s for the FA measurements were determined on the recon-
structed fibre bundle using tractography and contained 96 ± 41 vox-
els.

The fits to obtain the FD were performed using a Levenberg-
Marquardt algorithm with all correlation coefficients ≥ 0.997. The
standard deviation of the FD was found to increase with FD.

The measured FA-values can be compared with the simulated FA-
values for the same diffusion time as in the MR diffusion experiment
(∆ = 36 ms). Simulations are shown for a random and a hexagonal
fibre packing geometry. The best correspondence between the exper-
imental and simulated FA is found for a random packing geometry.
As an illustration of the time-dependency, the simulated FA-values
in the long-time diffusion limit are also shown in figure 4.17. For
∆ = 36 ms the long-time diffusion limit is already reached in case of
the hexagonal packing geometry but not for the random packing ge-
ometry.

The diffusion measurements performed for the different fibre ma-
terials (see chapter 3) were simulated to enable the comparison be-
tween experiment and simulation. FA was simulated for a diffu-
sion time ∆ of 50 ms and with fibre radii derived from the SEM-
measurements (see table 3.1). In figure 4.18, FA-values as a function
of the measured FD are compared to the simulated FA-values. The
effect of surface relaxation was neglected during the simulations.
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100 µm

(a)

(b)

Figure 4.16: (a) micro-CT image of a cross-section of a fibre phantom.
(b) three dimensional reconstruction of a small ROI chosen within the fibre
phantom. The void area representing the fibres is rendered opaque (white)
while the iodine-doped water is rendered transparent.
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Figure 4.17: Comparison between the measured FA and the simulated FA
of fibre bundles with a random and hexagonal fibre packing. The diffusion
time ∆ = 36 ms corresponds with a long-time diffusion limit for a hexagonal
fibre packing geometry but not for a random fibre packing geometry which
as also plotted for illustration.
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Figure 4.18: FA as a function of fibre density for the different fibre bundles
as described in chapter 3. The measured FA-values of the fibre bundles are
compared with the simulated FA-values for the different measured radii (see
table 3.1) for ∆ = 50ms.
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Time-dependent diffusion properties

Figure 4.19(a) shows the measured ADC(∆) (obtained by a bulk
NMR measurement) of a fibre phantom in comparison with the sim-
ulated ADC(∆) for a random fibre packing with density of 0.54, 0.58
and 0.62. The same comparison between experiment and simulation
is shown for the ADK(∆) in figure 4.19(b). The ADC and ADK-
values were fitted using a Levenberg-Marquardt algorithm with all
correlation coefficients ≥ 0.998.

Taking into account the error bars, indicating the 95% confidence
bounds of the fit, the fitted ADC-values were the same for the SE
and STE sequence, whereas for the fitting results of the ADK, a
difference of 10% was found. There is a good agreement between the
experimental measured ADC(∆) and the simulated ADC(∆) with
FD = 0.58, which matches the measured ADK(∆) with a FD of 0.58
and the experimentally measured curve.

4.5 Discussion

4.5.1 MC simulations

Molecular diffusion of water in the interstitial space between fibres
was modelled in the short- and long-time diffusion limit using MC
simulations of random walk. The influence of the fibre density and
the packing geometry on the diffusion properties (ADC, FA, ADK)
has been investigated quantitatively.

At short diffusion times, the decay of the ADC as a function of the
diffusion time is the same for both ordered and random geometries
and depends only on the fibre radius and fibre density according to
equation (4.1) as shown in figure 4.8. At long diffusion times, the
ADC becomes constant and can be characterized by the tortuosity
Λ, (equation (4.4)),which depends on the fibre density and the fibre
packing geometry.

Models for the tortuosity in the long term diffusion limit

For low fibre densities, the simulated ADC agrees with the Maxwell-
Garnett formula of the first order, equation (4.9), for all fibre packing
geometries (see figure 4.10(b)). The simulated diffusion coefficients in
the case of hexagonal and square packing geometries correspond very
well with the higher-order analytical Maxwell-Garnett formulas for
a hexagonal and a square packing (equations (4.10) and (4.11)) for
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Figure 4.19: Comparison between the measured and simulated time-
dependent apparent diffusion coefficient ADC(∆) (a) and kurtosis ADK(∆)
diffusion parameters of a fibre phantom with FD=0.55± 0.05. A spin echo
(SE) sequence is used for the diffusion measurements at short diffusion times
(4ms≤∆≤ 36ms) and a stimulated echo (STE) sequence for long diffusion
times (20ms≤∆≤ 100ms). Simulated values for the ADC and ADK are
given for fibre densities FD=0.54, 0.58 and 0.62.
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all fibre densities, except for fibre densities close to the maximum
obtainable packing density.

The tortuosity was also predicted by the empirical law of Archie,
equation (4.8), and applied to the simulation results. Whereas the
tortuosity fits well to equation (4.8) for high porosities or low fibre
densities, the power-law relation does not apply for structures with
a low porosity. The validity of Archie’s law for low fibre densities
is obvious and in fact a linear behaviour instead of a scaling law.
One would expect the Archie’s law to apply for high fibre densities,
near the theoretical limit for FD approaching 1. However, no data
points can be generated close to FD = 1. Based on the simulations
performed in this study, the law of Archie appears to be less suit-
able than the first order Maxwell-Garnett formula, equation (4.9), to
predict the tortuosity at low FD.

Pocket effect

In contrast to the results for ordered packing arrangements, the sim-
ulations in the random packing geometries revealed more diffusion
restriction and thus higher tortuosity and anisotropy values, espe-
cially at lower fibre densities (see figure 4.10). This may be attributed
to the fact that for random geometries there is a larger variation in
the distance between fibres. In case of nearly touching fibres, pock-
ets or lakes are created in which the diffusing particles get trapped,
resulting in an effective diffusion coefficient of zero in the long-time
diffusion limit. This is illustrated in figure 4.20.

This so called “pocket-effect” [145, 153] also appears from fig-
ure 4.11 where the diffusion in the clustered randomly packed fi-
bre geometries is more restricted than in homogeneously random
packed geometries. It also explains the differences in tortuosity be-
tween hexagonal and square packings for higher densities (see fig-
ure 4.10(b)), where the diffusion process is mainly dominated by the
pore structure of the interstitial space [154,155].

As proven by the simulation shown in figure 4.10(b), the large
spread in inter-fibre distance in a random packing geometry also re-
sults in a longer transition time between the short- and long-time
diffusion limit in comparison with ordered geometries. In the case
of clustered random fibre packing geometries, the transition time be-
tween the short- and long-time diffusion limit is even much longer
(see figure 4.11).

In clinical DW-MRI, the diffusion time ∆ is typically 50 ms or
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(a) (b)

Figure 4.20: Illustration of the “pocket-effect”: both geometries have the
same density. (a) In the order geometry, the particles can travel relatively
unhindered. (b) In the random geometry, lakes are created in which the
particles are locally trapped

more. The time-dependency of the diffusion cannot be neglected
when performing quantitative measurements and is related to the
fibre size and the fibre density. This appears from figure 4.15(a). De-
creasing fibre diameter will result in a higher measured FA. Increasing
the diffusion time, will also result in a higher measured FA.

Transition between the short- and long-time diffusion limit.

The simulation results were used to test the accuracy of the Padé
approximation for increasing fibre densities. The Padé form of the
ADC(∆) in equation (4.14) is a formula that enables interpolation
between the analytical short- and long-time diffusion limits. The
physical interpretation of the Padé length

√
D0θ is not straightfor-

ward since there exist different length scales in the fibre packing ge-
ometries. Several experimental studies show that the Padé-equation
(4.14) adequately fits ADC(∆) for random bead packs [132,133] and
porous rocks [135]. The simulations confirm that this equation is
also appropriate for fitting 2D geometries but some deviations are
found for the ordered packing geometries at the highest fibre densi-
ties. Therefore the Padé approximation seemed less suitable in the
case of 2D geometries with very high fibre packing densities.

Besides the Padé approximant, the time dependence of diffusion-
weighted MR signals can also be parametrized with an anomalous
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diffusion model as described in [17, 73]. Figure 4.9 shows that the
diffusion is anomalous at intermediate diffusion times and normal
at long diffusion times. The results shown here are in agreement
with [18] where the anomalous diffusion due to obstacles in three di-
mensions is studied. Similarly to the fitted Padé lengths, which are
larger for random packing geometries than for ordered packing ge-
ometries, the crossover time occurs much later for random than for
ordered geometries, and is the longest for clustered random geome-
tries. The diffusion in the interstitial space of random geometries at
typical diffusion times used in DW-MRI can thus be considered as
anomalous.

Surface relaxation

The simulations confirm the theory describing the effect of surface
relaxation [137, 148] as explained in section 4.2. The effect of sur-
face relaxation on the diffusion coefficient is shown in figure 4.12 by
comparing the ADC in the case of absence of surface relaxation with
the ADC in case of surface relaxation (with a surface relaxivity of
3 µm/s). The ADC remains equal at short diffusion times and de-
creases slightly in the long-time diffusion limit due to surface re-
laxation. This decrease increases with increasing fibre density, as
expected from equation (4.12).

The effect of surface relaxation on the measured FA is shown in
figure 4.15(b). Diffusion in fibres with a small fibre radius will reach
the long-time diffusion limit sooner than in fibres with a larger radius.
As a result, the measured FA is slightly increased due to surface
relaxation. The increase in FA depends on the fibre density and
surface relaxivity. As shown in chapter 3 hydrophobic fibre materials
are the most appropriate fibre materials to use because their surface
relaxivity is rather low and its effect on the measured ADC and FA
negligible.

Kurtosis

MC simulations are frequently used to model diffusion in porous me-
dia. In addition, this study shows how MC simulations can be used
for modelling the diffusion kurtosis, though it is found that the diffu-
sion kurtosis is more susceptible to statistical variations. The diffu-
sion kurtosis reaches zero for long diffusion lengths (see figure 4.14),
confirming the hypothesis of a Gaussian diffusion profile that can
be described by the tortuosity. However, for intermediate diffusion
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lengths the diffusion kurtosis becomes positive. As the considered
porous medium can be regarded as a single compartment system,
the ADK reveals the non-Gaussian diffusion behaviour for interme-
diate diffusion lengths caused by the presence of barriers. As shown
in figure 4.14, the diffusion kurtosis increases considerably with fibre
density so that the DW-MRI signal shows a non-exponential decay
for large b-values.

Several models in literature for brain white matter suppose the
”slow exchange” limit to be valid and the diffusion in the extra-axonal
part to be Gaussian [103, 143] (see section 5.2). The MC results
here show a non-Gaussian diffusion profile in the interstitial space.
The question raises whether the assumption made in some diffusion
models [103,143] is correct that the signal attenuation at high b-values
is caused exclusively by diffusion in the intra-axonal space. Although
the Monte-Carlo simulations performed here suggest non-Gaussian
diffusion in the interstitial space, the findings of this study cannot
be extrapolated directly to the case of diffusion in the extra-axonal
space. The geometry of brain white matter differs from the model
of packed cylinders used in this study. The diameter of the cylinders
used in the simulations was in average 20 µm and the maximum fibre
packing density for a random packing geometry in this study was 0.7.
The diameter of the axons in brain white matter is much smaller than
20 µm [27] and the axon density is measured to be about 0.8 [33] (see
section 2.3.2). Both differences can diminish or shorten the effect
of kurtosis in the diffusion measurements. In the next chapter, MC
random walk simulations are performed in a more realistic geometry
mimicking BWM.

4.5.2 Experiments

Figure 4.17 demonstrates a good agreement between the experimen-
tally derived FA in the fibre bundles and the corresponding simulated
FA for random fibre packing geometries. The hypothesis of a random
packing geometry is verified by micro-CT imaging (figure 4.16). The
random geometry is a consequence of the fabrication method of the
fibre bundles. Although in reality the fibres are not perfectly parallel,
the variation in the longitudinal directions is negligible in comparison
with the close packing arrangement in the transverse plane. Thus,
the model of parallel aligned cylinders is suitable for modelling the
diffusion in the fibre phantom.

The transition from the short- into the long-time diffusion limit is
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shorter for smaller fibre diameters. Consequently, the measured FA
depends on the fibre diameter as shown in figure 4.18. There is again
a good agreement between simulations and experiments.

Since the FA-measurements were performed on a clinical MR-
scanner, the narrow pulse approximation [133] may not be valid any-
more and is a potential source of inaccuracy in the comparison. In
the calculations for the comparison, the diffusion time ∆ is derived
as the time between the onset of the first diffusion gradient and the
onset of the third gradient in the TRSE sequence. However, ∆ equals
the effective diffusion time, i.e. the time at which the PDF is mea-
sured, only in the case that the duration of the diffusion gradients
δ << ∆. For clinical sequences, this condition is not fulfilled. For the
used TRSE sequence, the effective diffusion time could be estimated
to be 36 ms instead of 30 ms [156]. The difference between the FA-
values derived at a diffusion time of 36 ms and 30 ms is smaller than
1.6 % for all fibre densities. As the uncertainties on the measured
FA-values are much higher than 1.6 % (see figure 4.17), it is justified
to take the effect of the finite width of the diffusion gradients not into
account when comparing the simulations with the experiments.

The time-dependent ADC and ADK were also measured and com-
pared with the simulations. Figure 4.19 shows that the best agree-
ment is obtained for a random fibre packing geometry with the cor-
responding measured fibre density.

By performing the measurement at 40◦C, the term (bD0)
2 was rel-

atively high so that the signal decay is described by equation (4.26)
from which the ADK can be determined. The small differences be-
tween the ADK measured with the SE and the STE sequence can
be explained by the slightly different range of b-values used in both
experiments. The precision of the signal decay measured with the
NMR scanner or relaxometer is not high enough to resolve the higher
order coefficients (kurtosis, ...). However, incorporation of higher or-
der terms in the fitting of ln(S) was necessary to obtain an accurate
description of the ADC.

The cumulant expansion form of the second order has been chosen
to fit to the data since the parameters of this model (the ADC and
ADK) could be simulated using random walkers. Since the phan-
toms are one-compartment systems, others models such as the bi-
exponential form (see section 2.4.3.1) are not straightforward to in-
terpret or simulate which makes validation hard. In the next chapter,
we will investigate in more detail the validity of measuring higher or-
der moments such as the kurtosis.
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The homogeneity of the fibre density increased with increasing
fibre density. For low FD, the DyneemaR© fibres tend to cluster in
the middle of the shrinking tube of the fibre phantom as observed
in the micro-CT image (figure 4.16). The simulated ADC as a func-
tion of the diffusion length (figure 4.11) predicts a lowering of the
FA because of a longer transition time from short into long diffusion
time. In contrast, the experimental data show that for low fibre den-
sities the measured FA was in average equal or higher than the FA
obtained from the simulations in a homogeneous random geometry.
This indicates that the considered clustered geometries used for the
simulations do not correspond to the true geometries within the fi-
bre phantoms. The assumption that the fibres are homogeneously
random packed within the size of the voxels seems valid. Possible
deviations in the co-registration between the proton density and FA-
images due to the difference in resolution, may have caused a slight
overestimation of FA for the low fibre densities.

4.6 Conclusion and original contributions

The diffusion in the interstitial space of anisotropic fibre bundles
was measured using DW-MRI and bulk NMR diffusion measure-
ments. The measured diffusion parameters agree with those obtained
through MC random walk simulations in media consisting of par-
allel randomly packed cylinders. The MC simulations confirm the
accuracy and validity of analytical models for ordered fibre packing
geometries. The simulations in the random packed fibre geometries
showed a higher FA and a longer transition diffusion time between
the short- and long-time diffusion limit in comparison with ordered
packing geometries.

We conclude that DyneemaR© fibre phantoms are appropriate for
testing DW-MRI sequences and diffusion parameters on clinical MRI-
scanners. There are several potential applications for DyneemaR©

fibre phantoms. As the diffusion behaviour of the phantoms is well-
known, they can serve as a daily reproducible reference measurement
for DTI and can be used to investigate systematic errors of FA and
other diffusion parameters. They are also helpful in multi-centre
studies. The FA-values were high enough to perform fibre tracking
and are therefore helpful in testing fibre tractography algorithms.
The large variety of available shrinking tubes with different shapes
and sizes enables the construction of fibre tract topologies. In chapter
6, some possible applications of the fibre phantoms are illustrated.
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Validation of models for the diffusion

weighted MRI signal in brain white

matter

5.1 Introduction

As has been mentioned in chapter 2, the origin of the anisotropic
DW MR-signal observed in brain white matter is still not completely
understood. The contributions of the three components (intracellular
diffusion, extracellular diffusion and exchange between the intracel-
lular and extracellular space - see figure 2.18) are still unknown. To
understand the diffusion in a complex geometry such as the brain
white matter, a simpler model is considered including the main parts
of the white matter structures.

In this chapter, the MC random walk simulations are discussed
in the light of validation of diffusion models in BWM. MC random
walk simulations were performed for BWM micro-structure. The
bi-exponential model and the cumulant expansion form have been
evaluated as a function of the considered b-interval and the exchange
between the compartments. Other diffusion models described in the
scientific literature will also be discussed.
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5.2 Models for the diffusion in brain white

matter

Models for the diffusion in BWM described in the literature are sum-
marized, without the intention of being complete but rather to high-
light the specific assumptions. Most of the models rely on the as-
sumption of a Gaussian diffusion profile and a steady state regime of
the diffusion process, corresponding to the long-time diffusion limit.
Considering the exchange between the intracellular and extracellular
space, a slow exchange limit with no exchange and the opposite case
of a fast exchange limit can be distinguished, depending on the dif-
fusion time ∆, the membrane permeability and the thickness of the
myelin sheet [157].

The first parameter to describe diffusion anisotropy was the dif-
fusion tensor DT, proposed by Basser et al [43]. The free diffusion
physical model (with a Gaussian displacement profile) is assumed to
be valid in the excited volume, but with D0 replaced by the ADC in
each direction.

The ADC concept has been widely adopted in the literature. Sev-
eral numerical studies have been performed to model the ADC and
corresponding DT in WM using MC random walk simulations. In
these studies complex geometries with assumed micro structure and
architecture similar to WM [158–160] are simulated. An analytical
model describing the DW signal decay in bovine optic nerve was
derived in [161] and can be applied to derive diffusion parameters
such as the free diffusion coefficients, permeabilities and geometri-
cal dimensions. Another framework was developed by Sen et al for
predicting the long-time ADC of water parallel and perpendicular to
a pack of myelinated axons in case of the slow exchange diffusion
limit [143].

To explain the non-mono-exponential signal attenuation at high
b-values, the assumption of a Gaussian diffusion profile had to be
revisited. In the slow exchange limit, the two-compartment model
assumes the presence of a fast and slow diffusion water pool with each
a Gaussian diffusion profile. In this case the MR signal S as a function
of b can be described by a bi-exponential function as explained in
section 2.4.3.1. In vivo studies were performed by Niendorf et al [57]
in the brain of a rat with b-factors up to 10000 s/mm2. Fitting
the bi-exponential model yielded an ADCfast of 0.824 m2/s and an
ADCslow of 0.168 m2/s with corresponding fractions respectively 0.8
± 0.02 and 0.17 ± 0.02. The assumption is often made that water
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in the extracellular space corresponds to the fast diffusion pool and
water in the intracellular space corresponds to the slow diffusion pool.
However, the volume fractions obtained by fitting the bi-exponential
model do not agree with those known for the intra- and extracellular
compartments, i.e. 0.8 and 0.2 respectively [32].

The cumulant expansion form (see section 2.4.3.2) is proposed
as a model free description for S fitting the MR signal for high b-
factors. In this chapter, the usefulness of the cumulant expansion
form is discussed.

The q-space approach, explained in section 2.4.3.3, provides also
a model free description of the MR signal in BWM. A composite
hindered and restricted model of diffusion (CHARMED) within axons
is introduced by Assaf et al in [103]. This model provides a theoretical
framework that uses the q-space approach to model the restricted
diffusion in the intracellular space and the DT model to describe
the hindered diffusion in the extracellular space. The CHARMED
model is elaborated to extract the axon diameter and density in WM
(AxCaliber) [162].

5.3 Random walk simulations of the DW MRI

signal in WM

Software phantom construction

The diffusion process was modelled in a raster with a square cross-
section of 1 mm× 1 mm filled with infinitely long parallel aligned rigid
cylinders. The diameters and density of the cylinder packing were
chosen similar to those observed in brain white matter [33]. The radii
of the cylinders were distributed according to a Gaussian distribution
with a mean radius of 5 µm and a standard deviation of 1.75 µm. The
density of the cylinder packing was 79.5 %. Figure 5.1 shows a cross-
section of the cylinder packing.

Random walk simulation

The diffusion process was modelled by MC random walk simulation as
described in the previous chapter (section 4.3). The first and higher
order moments of the total travelled distance in the direction perpen-
dicular and parallel to the fibres were used to calculate the ADC and
the ADK.
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Figure 5.1: A cross-section of 80 µm× 80 µm through the generated phantom
consisting of parallel cylinders, showing the random packing geometry and
the variation in diameter of the cylinders.

Diffusion MR experiment simulation

The diffusion weighted MR-signal S(b) itself was also simulated as a
function of the b-value by extending the MC simulations and taking
the spin phase of the particles into account.

When applying a diffusion gradient
→
G in a given direction

→
n dur-

ing a time δ, the phase φ of the diffusion spin phasors was incremented
during each time step dt by:

∆φ = γ
→
G .

→
r dt,

where γ is the gyromagnetic ratio,
→
r is the position of the spin and

~G =







G~n if 0 < t <= δ
−G~n if ∆ < t <= ∆ + δ

0 at other times.

The diffusion weighted MR-signal S is then derived from the
phases of all spins: S =

∑

eiφ. For all calculations and fittings,
the magnitude of this signal will be used, and will be further denoted
as S.

The diffusion gradient is chosen perpendicular to the fibers. The
gradient strength was varied with a constant gradient duration (δ =
0.7 ms). Increasing diffusion times ∆ ( 2 ms up to 100 ms) were con-
sidered so that the corresponding b-factors, defined by γ2δ2G2(∆ −
δ/3), ranged from 0 up to 10.000 s/mm2. The intrinsic diffusion co-
efficients for free media D0 for the intra- and extracellular space of
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brain white matter were taken as 10−9 m2/s inside the cylinders and
2.5 10−9 m2/s outside the cylinders [103].

All particles were considered to reflect elastically at the cylinder
boundaries. In a first case, the diffusion process has been simulated
inside and outside of the cylinders simultaneously to obtain the ADC,
the ADK and S(b). In a second case, the diffusion process has been
simulated separately inside the cylinders and outside the cylinders to
obtain the corresponding apparent diffusion coefficients ADCin and
ADCex.

Simulations were performed for 300.000 spins with a timestep dt
of 0.07 ms. The accuracy of the simulation of the DW-MRI signal S
was determined by simulating the diffusion weighted MR signal in a
free medium, showing a mono-exponential decay of S as a function
of b according to S = e−bD0 .

Evaluation of diffusion models

Validation of a bi-exponential diffusion model

The validity of the bi-exponential model was tested by fitting the sim-
ulated S(b)/S(b=0)-curve equation for each diffusion time ∆ against
the bi-exponential model using a Levenberg-Marquardt algorithm:

S(b)

S(0)
= αe−bADCslow + (1 − α)e−bADCfast . (5.1)

The fitted values for α, ADCslow and ADCfast were compared to the
theoretical value for α (0.795) and the simulated values for the diffu-
sion coefficient inside the cylinders and outside the cylinders ADCin

and ADCex.
The effect of the considered b-interval was evaluated by increasing

the interval from [0-500 s/mm2] up to [0-10.000 s/mm2] in steps of
500 s/mm2. Original data sets contained 50 up to 1000 data points.

Validation of the cumulant expansion form

The model free cumulant expansion form bN has also been evaluated:

ln(
S(b)

S(0)
) = C1b + C2b

2 + C3b
3 + . . . . (5.2)

This formula describes the cumulant expansion of ln S in powers
of the applied gradients. The coefficients of the first and second
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Figure 5.2: Flow chart of the evaluation of the diffusion models.

order yield the apparent diffusion coefficient ADC and the kurtosis
ADK [62]:

C1 = −ADC, (5.3)

C2 =
1

6
ADK · ADC2. (5.4)

The termination of the series in equation (5.2) after the Nth order
term is called the bN cumulant expansion form. The applicability of
the cumulant expansion form depends crucially on its convergence.
This was investigated by fitting polynomials of the order N = 1 up
to 10 to the logarithm of S(b) for each diffusion time ∆ using a
Levenberg-Marquardt algorithm. For every fitted bN cumulant form,
the fitted first and second order coefficients were used to obtain the
ADC and the ADK using equations (5.3) and (5.4). The fitted values
for the ADC and ADK were then compared with the simulated val-
ues. The effect of the considered b-interval was evaluated as well by
increasing the interval from [0-500 s/mm2] up to [0-10.000 s/mm2]
in steps of 500 s/mm2. A schematic overview of the procedure to
evaluate the diffusion models is presented in figure 5.2.
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Figure 5.3: Flow chart of the evaluation of the noise characteristics.

Evaluation of the noise characteristics

The effect of noise on the precision of the fitting results has been
investigated by simulations with the following data set S(b=0, 600,
1200, 1800, 2400). Starting from this 5-point data set, we constructed
10.000 hypothetical data sets S∗ by superimposing on each simulated
complex point S a statistical error produced by a Gaussian noise gen-
erator: S∗ = S + δS. A standard deviation of 1% of S(0) was taken.
Both the bi-exponential model and the cumulant expansion forms
bN with N=2,3,4 were fitted for each of the 10.000 data point sets.
The standard deviation σ and mean value µ of the fitted parameters
(α, ADCfast and ADCslow for the bi-exponential model and the ADC
and the ADK for the cumulant expansion form) were derived numer-
ically. A schematic overview of the procedure to evaluate the noise
characteristics is presented in figure 5.3.
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Exchange

The effect of exchange between the intra cellular and extra cellular
space has also been assessed. Exchange was incorporated in the ran-
dom walk simulations by the method described in [159]. Every time
a water molecule hits a cylinder wall, the last step is recalculated
and the particle is either transmitted or (specularly) reflected at the
cylinder surface with a probability that is determined by the perme-
ability P . The exchange probability for incident particles from the
intracellular is pI→E and for incident particles from the extracellu-
lar space is pE→I . The permeability P , pI→E and pE→I are related
according to:

P =
1

4

√

6DI

dt
pI→E =

1

4

√

6DE

dt
pE→I . (5.5)

The DW MR signal was simulated for 300.000 spins whereby P in-
creased from 0 up to 100 µm/s in steps of 10 µm/s.

5.4 Results

Evaluation of the diffusion models

Validation of a bi-exponential model

For all diffusion times ∆, the datasets S(b) are well fitted to a bi-
exponential model, equation (5.1), with a correlation coefficient of
minimum 0.9999. Figure 5.4(a) shows the fitted values for (1-α) as a
function of ∆ for increasing b-intervals. (1-α) is the fraction corre-
sponding with the fastest ADC and should equal the water fraction
outside the cylinders, i.e. 0.2. The best agreement between theo-
retical and fitted values of (1-α) is obtained for long diffusion times.
When including a large b-interval in the fit, the water fraction inside
the cylinders α is underestimated, especially at short diffusion times.

Figure 5.4(b) presents the fitted values for ADCfast and ADCslow

as a function of ∆ for increasing b-intervals. ADCslow corresponds
with the fitted fraction α and should thus be compared with ADCin

while ADCfast should be compared with ADCex. The best agreement
is obtained for long diffusion times. When including a large b-interval
in the fit, ADCfast and ADCslow are underestimated, especially for
short diffusion times.



Validation of models for the DW-MRI signal in BWM 129

diffusion time ∆ [ms]

(1
-α

)

αIN

αEX

0
0

0.2

0.4

0.6

0.8

1

20 40 60 80 100

(a) (1-α)

 

 

diffusion time ∆ [ms]

A
D

C
10

3
m

m
2
/s

ADCIN

ADCEX

0
0

0.5

1

1.5

2

20 40 60 80 100

(b) ADC

Figure 5.4: Simulated values for (1-α) and the ADC’s in a bi-exponential
model. Fitted values are shown whereby the considered b-interval increases
from [0-500 s/mm2] up to [0-10000 s/mm2], as indicated by the arrow in
each figure. (a) 1-α, the fraction corresponding to ADCfast, as a function
of the diffusion time ∆. The theoretical fraction of the cylinder packing (αIN

- dotted red line) and the fraction outside the cylinders (αEX - dotted black
line) are also shown. (b) Fitted values for ADCfast (blue lines) and ADCslow

(green lines) as a function of the diffusion time ∆. The simulated values
for the ADC inside the cylinders (ADCIN - dotted black line) and outside
the cylinders (ADCEX - dotted red line) are also plotted as a comparison.
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Validation of the cumulant expansion form

For all diffusion times ∆, the datasets S(b) were fitted to the cu-
mulant expansion form bN , equation (5.2), for increasing b-intervals.
The fitted ADC and ADK values are compared to their simulated
values for increasing N in figure 5.5 and figure 5.6 respectively. The
cumulant expansion fits of S(b) with the highest correlation coeffi-
cients resulted in fitted values for the ADC and ADK which were
closest to the simulated values.

The minimum order N to obtain a good agreement between fit-
ted and simulated values for the ADC and the ADK decreases with
decreasing b-interval. When N >= 7, the fitted values for the ADC
and ADK match the simulated values for all considered b-ranges. Cu-
mulant expansion fits with N = 3 result in accurate fits for the ADC
and the ADK for b-intervals ranging up to 2500 s/mm2. Even for
the shortest b-interval of [0-500 s/mm2], the third order term should
be included in the fit to obtain an accurate fit of the ADK. When
taking the b-interval too large or N too low, the difference between
fitted and simulated ADC is rather low but considerably larger for
the ADK.

Evaluation of the noise characteristics

The effect of noise on the fitted parameters of both the bi-exponential
model and the cumulant expansion form is demonstrated in figure
5.7(a) and 5.7(b). For the bi-exponential model, the largest errors
are found on ADCfast and α. For the cumulant expansion model,
the relative variations in the fitted ADC and ADK-values increase
with increasing order N. The bi-exponential model is found to be
more sensitive to noise than the cumulant expansion model.
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Figure 5.5: Fitting results of the ADC using the bN cumulant expansion in
comparison to the simulated values (dotted red line) for N=1 up to 6. Fits
are shown whereby the considered b-interval increases from [0-500 s/mm2]
up to [0-10000 s/mm2], as indicated by the arrow in each figure. The larger
the considered b-interval, the more higher order terms need to be included
in the bN -fit to obtain a good correspondence between fitted and theoretical
ADC-values. When N ≥ 6, the fitted values for the ADC equal the simulated
values for all considered b-ranges.
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Figure 5.6: Fitting results of the ADK using the bN cumulant expansion in
comparison to the simulated values (dotted red line) for N=2 up to 7. Fits
are shown whereby the considered b-interval increases from [0-500 s/mm2]
up to [0-10000 s/mm2], as indicated by the arrow in each figure. The larger
the considered b-interval, the more higher order terms need to be included
in the bN -fit to obtain a good correspondence between fitted and theoretical
ADK-values. When N ≥ 7, the fitted values for the ADK equal the simulated
values for all considered b-ranges.
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Figure 5.7: Relative noise levels when fitting the bi-exponential model (a)
and the cumulant expansion form (b) to a 5-point data set superimposed
with gaussian noise with a standard deviation of 1%.

Evaluation of the effect of exchange

Figure 5.8 shows the natural logarithm of the simulated DW MR sig-
nal S(b) for increasing permeability and a diffusion time ∆ of 50 ms.
In the slow exchange limit, i.e. no exchange between the inside and
outside of the cylinders during the considered diffusion time ∆, the
S(b)-curve is clearly not exponential. When increasing the exchange
between the inside and outside of the cylinder, the S(b)-attenuation
curve becomes more similar to an exponential decay. It can be de-
rived from figure 5.8 that in the fast exchange limit, the S(b)-curve
becomes exponentially. The corresponding fitted ADC- and ADK-
values are shown in figure 5.9 as a function of the permeability. The
effect of exchange is larger on the fitted ADK parameter than on the
ADC parameter.

The simulated S(b)-curves in the considered b-interval [0-2500
s/mm2] for all diffusion times ∆ were used to fit the described models
for the DW MR signal (equations (5.1) and (5.2)). Figure 5.10 shows
the fitting result of the bi-exponential model for increasing permeabil-
ity. The fraction corresponding to ADCfast increases with increas-
ing permeability (figure 5.10(a)). As can be seen in figure 5.10(b),
ADCfast decreases and ADCslow increases slightly for increasing per-
meability P .

Figure 5.11 shows the results when fitting the b3 cumulant expan-
sion form to the simulated S(b)-curve for increasing permeabilitiy.
The ADC increases with increasing permeability (see figure 5.11(a))
while the ADK decreases with increasing permeability (see figure
5.11(b)).
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Figure 5.8: Simulation of the DW MR signal S(b) for a diffusion time ∆
of 50ms. The arrow stands for increasing permeability P from 0 up to
100 µm/s.
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Figure 5.9: The relative ADC- and ADK-values as a function of the perme-
ability P. ADC and ADK were fitted for a diffusion time ∆ of 50 ms using
the b3 cumulant expansion form. The considered b-interval was [0-2500
s/mm2]
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Figure 5.10: Bi-exponential fitting results for S(b) in the considered b-
interval [0-2500 s/mm2]. The arrows indicate the trend of increasing (1-α,
ADCslow) or decreasing (ADCfast) for increasing permeability P from 0 up
to 100 µm/s. (a) 1-α, the fraction corresponding to Dfast, as a function of
the diffusion time ∆. (b) Fitted values for ADCfast (blue lines) and ADCslow

(green lines) as a function of the diffusion time ∆.
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Figure 5.11: Fitting results of the b3 cumulant expansion in the considered
b-interval [0-2500 s/mm2] for increasing permeability P . (a) the ADC as a
function of the diffusion time ∆. (b) the ADK as a function of the diffusion
time ∆.
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5.5 Discussion

Validation of the diffusion models

As can be derived from figure 5.4(a) and figure 5.4(b), the fitted values
for ADCfast, ADCslow and α are dependent on the b-interval and the
diffusion time ∆. The fitted values for (1-α) differ from the real water
fraction outside the cylinders at short diffusion times. This indicates
that the fitted fractions and corresponding diffusion coefficients are
not solely attributed to the diffusion inside and outside the cylinders.
Pseudo bi-exponential diffusion weighted signal attenuation can also
be observed in single compartment systems such as the intra cellular
space [103] and the interstitial space between fibres. The good quality
of fitting a bi-exponential function to the data is not sufficient to prove
the accuracy of this model. The results in this study suggest that the
signal attenuation curve is not truly bi-exponential.

This study proves the convergence of the cumulant expansion form
when fitting the diffusion weighted signal attenuation. The results of
figure 5.5 and 5.6 show that the ADC and the ADK could be accu-
rately fitted if the order N is large enough. The cumulant expansion
form might be a better option to fit the diffusion weighted MR signal
in b-intervals in the range of [0 - 2500 s/mm2].

Noise effects

It is also shown that the cumulative expansion form is less noise sensi-
tive than the bi-exponential model (figure 5.7). The noise simulations
in figure 5.7 reveal that fitting the cumulant expansion form is more
robust against noise than fitting the bi-exponential model. ADCfast

is more sensitive to noise than ADCslow because ADCfast corresponds
to the smallest water fraction (0.2). Although the accuracy of the
ADC and ADK improves with increasing order N (figures 5.5 and
5.6), the precision of the ADC and ADK decreases with increasing N
(figure 5.7(b)).

For the parameter estimation, the magnitude data is fitted by
a nonlinear least square method using a Levenberg-Marquardt algo-
rithm. For SNR levels lower than three the noise distribution starts
to deviate from a Gaussian distribution and becomes Rician [163]. In
that case, a maximum likelihood estimation of the signal amplitude
that takes into account the Rician noise behaviour, could result in
more accurate fitting results [164].
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Effect of the exchange

In case of exchange between the intracellular and extracellular space,
the bi-exponential model, based on a two-compartment system in the
slow exchange diffusion limit, is not straightforward interpretable any
more. This is clearly demonstrated by the simulations in figure 5.10.
When the permeability increases, the fitted compartment (1-α), cor-
responding with the fast ADC, increases and can no longer be asso-
ciated with a physical compartment. The bi-exponential model fails
in the case of intermediate and fast diffusion exchange across the
cylinder walls.

On the other hand, using the cumulant expansion form turns out
to be useful to explain the diffusion process in multi compartment
system with or without mutual exchange. According to figures 5.11
and 5.9, increasing permeability results in an increase of the ADC and
a decrease of the ADK. This can also be derived from figure 5.8: in the
fast exchange limit, the diffusion is Gaussian with a mono-exponential
signal attenuation and a kurtosis equal to zero. However when the
exchange across the cell membrane slows down, the attenuation curve
moves from the bottom left upwards to the right top and the kurtosis
becomes positive. The relative change in the ADK is much higher
than the relative change in the ADC when changing the permeability
(see figure 5.9), which indicates that the kurtosis is a good probe for
the presence of membranes and other barriers and is sensitive for
changes in permeability.

Models for the DW MR signal that incorporate the kurtosis may
reveal new insights in the physiology of cells during pathological
states. As an example, because of the remarkable correlation with
membrane depolarization and cell swelling induced by ischaemia [77],
it has long been assumed that the decrease in ADC observed in WM
during stroke is caused by an increase of intracellular water. As
demonstrated in the simulations above, the decrease in ADC may
also be caused by a sudden drop of the membrane permeability re-
sulting in an increase of the kurtosis. The kurtosis has been com-
pared in [165] between normal rat brain (0.53± 0.05) and ischaemic
rat brain (1.42± 0.1), confirming this hypothesis. Another potential
clinical application is the detection of cancer and metastases [33].
The water ADC is significantly decreased in malignant tissues. The
origin of the change in the observed ADC is not completely under-
stood. Fitting the kurtosis as a measure for the permeability could
provide useful additional information.
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5.6 Conclusion and original contribution

In this chapter, MC random walk simulations were performed in a ge-
ometry with intra- and extracellular compartments imitating BWM.
The bi-exponential model and the cumulant expansion form were
evaluated as models for the DW MRI signal in BWM. The good ac-
curacy of the bi-exponential fit does not prove the validity of the
model since there is a strong dependence on the considered b-interval
and diffusion time. The cumulant expansion form is proposed as an
alternative. The diffusion coefficient and kurtosis could be accurately
fitted when higher-order terms are included in the cumulant expan-
sion form. Preliminary results show that the cumulant expansion
form is less sensitive to noise than the bi-exponential models. More
research is required to determine the optimal order N and b-interval
as a trade-off between accuracy and precision of the fitted parameters.

The kurtosis appeared to be a useful parameter to detect changes
in membrane permeability. Fitting the kurtosis could be useful to
link the observed changes in ADC in pathologies such as acute stroke
and malignant tumours to the underlying cell physiology.





6
Applications of anisotropic diffusion

fibre phantoms

6.1 Introduction

This chapter points out some potential applications where anisotropic
fibre phantoms may be useful as DW MRI test objects. Because
of their well-known structure and anisotropy, they are suitable for
sequence design, optimisation and the evaluation of imaging artefacts
which is exemplified in section 6.2. Since the fibre bundles are also
flexible, they can be used to create structures that imitate the in vivo
white matter tracts. This is illustrated in section 6.3. In section 6.4,
a crossing fibre phantom is proposed which can be used to test fibre
tractography algorithms.

6.2 Testing DWI sequences

While developing and testing new diffusion sequences, fibre phantoms
may be used as a relatively easy-to-make and stable anisotropic test
object with a well-known structure. As an example, the effect of sus-
ceptibility artefacts in standard EPI and spiral acquisition techniques
is illustrated here using diffusion fibre phantoms.
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Materials and methods

Two fibre bundles were fabricated and fixed in a closed container
filled with Gd-doped physiological saline. To evaluate the influence of
susceptibility artefacts a spherical air cavity was positioned between
the two bundles.

Imaging was performed on a 1.5T Siemens Symphony scanner
using an 8 elements head coil. Diffusion-weighted images were ac-
quired in 6 directions with b- factors of 0 and 1000 s/mm2. To
minimize the influence of eddy currents, a TRSE diffusion prepa-
ration was used [40]. The ~k-space was sampled with an 8-interleaved
Archimedean spiral trajectory with a maximum gradient amplitude
of 19.5 mT/m and a maximum slew rate of 94 mT/m/s [13]. For
comparison, also single shot standard EPI scans were acquired with
a bandwidth of 1346 Hz/Px and 20 averages. For both sequences, the
image resolution was 2.5 x 2.5 x 2.5 mm (64 x 64 matrix, 160 x 160
mm FOV, 2.5 mm slice thickness). A total of 20 slices were acquired
with a TR of 2000 ms and TE = 80 ms.

Results

In figure 6.1, the diffusion unweighted (b = 0) images recorded with
a Cartesian and spiral EPI sequence are shown. A standard T2 TSE
image (figure 6.1(a)) is also shown as a reference. The spatial distor-
tions are less pronounced in the spiral image (figure 6.1(b) than in
the Cartesian sampled EPI-images (figures 6.1(c) and 6.1(d)). Fig-
ure 6.1(c) and 6.1(d) illustrate the dependence of the susceptibility
artefacts on the phase encoding (PE) direction.

Discussion

Fast sequences are sensitive to susceptibility artefacts. The ~k-space
trajectory of spiral and Cartesian EPI is described in section 2.2.3.
The different trajectories result also in different point spread func-
tions. The radial symmetric point spread function of a spiral acquisi-
tion results mainly in blurring artefacts and less geometric distortions
compared to Cartesian EPI acquisition. Depending on the phase en-
coding direction, the tracked fibre bundles are biased near transitions
between regions with different magnetic susceptibility such as air and
water. The phantoms allow quantitative analysis of the effect of sus-
ceptibility differences on e.g. diffusion parameters such as FA and
ADC and on the accuracy of the extracted fibre tracts.
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1 cm

air cavity

fibre bundles

(a) T2 TSE (b) spiral

(c) EPI (d) EPI

Figure 6.1: MR images of a fibre phantom containing a spherical air cavity:
(a) T2 TSE ,(b) spiral, (c) and (d) EPI images, the phase-encoding direction
is indicated by the arrow.
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6.3 Head phantom

The feasibility of using an anthropomorphic head fibre phantom is
discussed here.

Materials and methods

The constructed fibres as well as the corresponding in vivo fibre bun-
dles in brain white matter are shown in figure 6.2. Fibre bundles with
different diameters and geometries were constructed to imitate some
of the major neural fibre tracts: corticospinal tracts, optical tracts,
corpus callosum (forceps maior and minor) and fronto-occipital tracts
(illustrated in figure 6.2).

For this experiment, fibre bundles were placed in a hydrogel con-
sisting of 1.25 % (w/w) agarose and 0.275 mM Gd-DTPA to obtain
T1- and T2-values similar to BWM. The hydrogel serves as a matrix
to reduce flow artefacts. The fibre bundles were fixed in a plastic
container with a shape as the human head. A hollow pipe imitating
the trachea was also added (see figure 6.3).

DW-MRI was performed on a 3T Siemens Trio scanner using a
birdcage head coil. The ~k-space (explained in section 2.2.3) was sam-
pled line by line (standard SE) with a bandwidth of 390 Hz/Px and
5 averages. TRSE diffusion gradients were applied in 12 directions
with b-factors of 0 and 700 s/mm2. The resolution was 2mm × 2mm
× 2mm (128 × 128 matrix, 256 × 256 FOV, 2 mm slice thickness).
A total of 10 slices was acquired for a TR of 300 ms with a TE of 60
ms.

Results

Figure 6.4 show T1-weighted cross-sections of the brain in three or-
thogonal directions. Although images were scanned at a very short
TE (4 ms), the signal in the fibre bundles is much lower in compari-
son to the signal of the hydrogel. Except for the corticospinal tract,
the signal in the fibre bundles on the DWI’s appeared to be too low
to perform fibre tracking.

Figures 6.5(a) and 6.5(b) show FA-maps of slices through the cor-
ticospinal tracts and the forceps minor (figure 6.5(a)) and the forceps
maior (figure 6.5(b)) of the corpus callosum. The reconstructed fibre
tracts of the corticospinal tract are shown in figure 6.5(c). Measured
FA was 0.321 ± 0.119 in the corticospinal tract.
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(a) (b)

(c) (d)

Figure 6.2: Fibre bundles inside the head phantom: (a) the fibre bundles
before shrinking, (b) the fibre bundles after shrinking, (c) sight at the top
(d) Illustration of the in vivo fibre tracts that served as a template for the
construction of the head phantom. The blue fibre bundles represent the
corticospinal tracts, the red fibre bundles represent the forceps maior and
minor of the corpus callosum, the yellow fibre bundles represent the optical
tracts and the green fibre bundles represent the fronto-occipital tracts.



146 Chapter 6

(a) (b)

Figure 6.3: Head phantom: (a) a hollow pipe representing the trachea is
positioned inside the phantom, (b) the phantom in his final form, filled with
gel and the fibres inside.

Figure 6.4: A coronal, sagittal and transversal cross-section of the head
phantom. A T1-weighted scan was performed with a TE of 4 ms and a TR
of 12 ms. The signal in the fibre bundles is rather low.
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(a) FA (b) FA

(c) fibre tracking

Figure 6.5: Result of DWI on the head phantom: (a), (b) FA-images of
different slices of the head phantom. (c) fibre tracking of the corticospinal
tract
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Discussion

This study illustrates the feasibility of constructing a realistic an-
thropomorphic head phantom. There is a good agreement of the MR
images (figures 6.4, 6.5(a) and 6.5(b)) and the constructed fibre tracts
with reality.

When the gel composition was optimized in terms of T1 and T2,
the effect of surface relaxation and internal magnetic gradients as de-
scribed in chapter 3 was neglected. This resulted in a short overall T2

and a corresponding low SNR as noticed in figure 6.4. Consequently,
fibre tracking could not be performed, except for the corticospinal
tracts in which the SNR was slightly higher. This is due to the fact
that the corticospinal tracts run parallel to the static magnetic field
~B0 by which the effect of internal gradients is minimized (see section
3.4.2).

This study is rather a proof of concept to show the feasibility
of manufacturing an anthropomorphic head phantom. The effect of
internal gradients and surface relaxation as described in chapter 3
should be taken into account when fabricating realistic anthropo-
morphic diffusion head phantoms in the future.
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(a) (b)

Figure 6.6: (a) Crossing fibre phantom and (b) illustration of the fibre cross-
ing itself

6.4 A crossing fibre phantom for the valida-

tion of fibre tracking algorithms

The DT model is widely used to extract the main fibre direction in
a voxel. However, the model fails in voxels with multiple fibre di-
rections. The constrained spherical deconvolution (CSD) technique,
based on the fibre orientation distribution function (ODF) (see sec-
tion 2.4.3.3), has recently been proposed to overcome this limita-
tion [67]. Crossing fibre phantoms were constructed as test objects
for the validation of tractography methods in crossing fibres.

Materials and methods

A 90◦ crossing fibre phantom was made of DyneemaR© fibres. The
fibres were grouped in parallel bundles of 780 filaments which were
crossed (see figure 6.6(b)), surrounded by a shrinking tube and sub-
merged in water (see figure 6.6(a)).

DW-MRI was performed on a 3T Siemens Trio scanner using a
knee birdcage coil. Diffusion weighted TRSE gradients were applied
in 256 directions and a b-factor of 0 and 2500 s/mm2 using an EPI
read-out sequence with a band width of 1565 Hz/pixel. A total of
44 slices was acquired with a TR of 6.7 s and a TE of 109 ms. The
resolution was 2 mm × 2 mm × 2 mm.

Fibre tractography was performed with a DTI streamline algo-
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Figure 6.7: The estimated fibre orientation distribution function (ODF) is
shown in each voxel as a surface rendered plot.

rithm [85] with the following parameters: step size = 1 mm, maxi-
mum angle = 70◦, minimum FA = 0.1. Subsequently, the streamline
algorithm was extended with CSD to extract multiple fibre orien-
tations. The performance of CSD was compared with the original
streamline algorithm.

Results

Figure 6.7 shows the estimated fibre ODF in a slice through the
crossing fibre phantom. Two fibre directions are clearly noticed at
the crossing. Figure 6.8(a) shows the results from DTI tractography
using the streamline algorithm initiated in ROI 1 (green tracts) and
ROI 2 (red tracts). At the intersection of both bundles, tracts turn
left or right. The reconstructed fibre tracts are not in agreement
with the actual phantom that only contains crossing fibres in that
region. Figure 6.8(b) shows the tractography results of the CSD
algorithm showing that the tracts run straight at the intersection of
both bundles.
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(a) DTI

(b) CSD

Figure 6.8: Tractography results on the crossing fibre phantom using (a)
diffusion tensor imaging (DTI) and (b) constrained spherical deconvolution
(CSD).
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Discussion

The use of a hardware crossing fibre phantom for testing fibre tracto-
graphy algorithms is demonstrated here. In literature, fibre crossing
phantoms made of rayon textile [117] and acrylic fibres [116] are also
described for the validation of q-ball imaging. In [113], the use of
both kissing and crossing fibre phantoms made of polyester fibres is
discussed to evaluate the performance streamline and probabilistic
fibre tracking algorithms.

The main advantages of using hardware crossing fibre phantoms
are the well-known structure and the possibility of testing the effect of
imaging parameters such as SNR. On the other hand, fibre phantoms
containing tubular fibres as present in BWM instead of full fibres
would come closer to the reality as mentioned in chapter 3.

6.5 Conclusion and original contributions

In this chapter, several potential applications for anisotropic fibre
phantoms are discussed. Anisotropic fibre phantoms showed to be
useful for sequence design, optimization and investigation of image
artefacts. The feasibility of creating an anthropomorphic head phan-
tom is demonstrated. The possibility of creating a crossing fibre
phantom to evaluate the performance of fibre tracking algorithms is
also mentioned. Fibre phantoms can also be used as a calibration
standard in multi-centre studies and as a model for the validation of
diffusion models (see chapter 5).



7
Overall Conclusion

The aim of this work was to develop methods for the validation of
DW-MRI in WM, for sequence testing, for the validation of diffusion
models and for the evaluation of fibre tractography algorithms. Both
hardware and software diffusion phantoms are developed for this pur-
pose. In this final chapter, we summarize the main contributions of
this work and highlight some aspects for future study.

Chapter 2 introduces briefly the basic principles of MRI, DW-
MRI, the diffusion in WM and its applications in clinic. DW-MRI
shows potential in the examination of stroke, tumours, ageing and
white matter diseases. The white matter anisotropy also enables
fibre tractography, i.e. the reconstruction of neural fibre tracts.

Chapter 3 overviews the different kinds of hardware phantoms:
isotropic versus anisotropic, biological versus synthetic. Synthetic
anisotropic fibre bundles are proposed as phantoms for the valida-
tion of DW-MRI because of their well-known structure, their long
preservability and the possibility to create complex geometries such
as curved fibres and fibre crossings. The manufacturing process of
the fibre bundles was optimized to create homogeneously packed fi-
bre bundles in a reproducible way. The main factors influencing the
outcome of the DW-MRI experiment were determined. On the one
hand, the fibre density and fibre diameter are two important factors
that determine the diffusion properties such as the fractional ani-
sotropy (FA). On the other hand, the fibre material parameters of
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surface relaxation and magnetic susceptibility determine the SNR.

With respect to the tested materials discussed in chapter 3, Dy-
neemaR© is found to be the most suited fibre material for testing DW-
MRI because of the combination of a high FA and a reasonable SNR.
Future work may include the study of other potential fibre materials
to manufacture diffusion phantoms. Particularly capillaries are in-
teresting to create more realistic phantoms imitating the diffusion in
both the intra- and extracellular space of WM. The ideal fibre would
be hollow, slightly hydrophilic with a small fibre diameter (< 10 µm)
and a magnetic susceptibility close to water (-9 ppm).

In chapter 4, the anisotropic fibre bundles are shown to be use-
ful experimental systems for validating analytical and computational
diffusion models. The diffusion is modelled in the interstitial space
between fibres by MC simulations of random walkers. The fibre phan-
toms can be considered as 2D porous media for which the diffusion
can be described by analytical models. The MC simulations confirm
the accuracy and validity of analytical models for ordered fibre pack-
ing geometries. The simulations in random packed fibre geometries
show a higher FA and a longer transition time between the short
and long-time diffusion limit in comparison with ordered packing ge-
ometries. The diffusion parameters (FA, ADC and ADK) in the in-
terstitial space of fibre bundles were measured using DW-MRI and
bulk NMR diffusion measurements. The measured diffusion parame-
ters agree with those obtained through MC random walk simulations
in media consisting of parallel randomly packed cylinders. Hence,
the DyneemaR© fibre bundles are appropriate for testing DW-MRI
sequences and diffusion parameters on clinical MR-scanners quanti-
tatively.

In chapter 5, the MC simulations were elaborated to model the
diffusion in a geometry with intra- and extracellular compartments
imitating WM. The results were compared with existing models for
the DW-MRI signal in WM. A bi-exponential function fits the sim-
ulated DW-MRI signal accurately but the fitted values for the slow
diffusion coefficient, the fast diffusion coefficient and corresponding
volume fractions depend on the considered b-interval and diffusion
time. Alternatively, the cumulant expansion form also fits the DW-
MRI signal accurately. Moreover, the diffusion coefficient and kur-
tosis could be accurately fitted when including higher-order terms in
the cumulant expansion form. The cumulant expansion form seemed
to be less sensitive to noise than the bi-exponential model. The accu-
racy of the fitted parameters increases by including higher order terms
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while the precision decreases. More research is required to determine
the optimal order of the cumulant expansion form and b-interval in
the presence of measured DW-MRI data.

The simulations also suggest that diffusion kurtosis maps may
provide additional information to ADC- and FA-maps. The kurtosis
showed to be a useful parameter to detect changes in membrane per-
meability. It might be interesting to correlate the kurtosis against the
observed changes in ADC in pathologies such as stroke and malignant
tumours to the underlying cell physiology.

Chapter 6 illustrates some potential applications for DyneemaR©

fibre phantoms. Because of their well-known structure and aniso-
tropy, they show to be useful for sequence design, optimization and
investigation of the effect of image artefacts. We have illustrated the
potential use for the evaluation of artefacts when comparing MR-
sequences with a standard EPI readout and a spiral readout. The
large variety of available shrinking tubes with different shapes and
sizes enables the construction of an anthropomorphic head phantom.
When fabricating realistic head phantoms, the effect of surface relax-
ivity and magnetic susceptibility should be incorporated when deter-
mining the gel composition in terms of T1 and T2 relaxation times.
The FA-values in the fibre bundles is high enough to perform fibre
tracking and showed therefore helpful in testing fibre tractography al-
gorithms. The possibility of creating a crossing fibre phantom to eval-
uate the performance of fibre tracking algorithms is demonstrated.

It is our hope that the design of both hardware diffusion phantoms
and synthetic phantoms and the methodological developments set
out in this thesis will be helpful for ongoing work on the validation of
DW-MRI. Future work may involve the fabrication of a fibre phantom
that can serve as a daily reproducible reference measurement for DW-
MRI and for the investigation of systematic errors in FA and other
diffusion parameters. The fibre phantoms may also be applied as a
calibration standard in multi-centre studies. Future work should also
investigate in more detail the usefulness of the kurtosis as a sensitive
parameter to detect cell pathological changes and its potential for
clinical applications.
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