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English summary

This dissertation is situated within the research field of ElectroEn-
cephaloGraphy (EEG), which is a non-invasive technique to record the
electrical activity of the brain. By placing electrodes on the scalp, the
technique allows to measure the electrical potentials generated by electri-
cally active areas in the brain. This allows to characterize brain activity
with a milliseconds time resolution in a very straightforward and cheap
way. Despite the simple nature of the recording technique, the analy-
sis of EEG signals provides several challenges in an engineering context.
EEG signals are often contaminated by noise, because any source of elec-
trical activity is recorded through the electrodes, i.e. electrical activity
from the muscles, eye blinks, the power net, etc. To solve this problem,
several measuring and signal processing techniques have been developed
that allow to record signals with lower noise contamination and allow to
extract the ‘relevant’ information from the signals.

The measured EEG signals indirectly provide spatial information
about the electrically active areas in the brain. This means that it is
possible to determine the location of the active areas in the brain based
on the recorded activity on the scalp. Therefore an inverse problem has
to be solved. This is a process termed EEG source imaging (ESI) and
is very challenging because only a limited number of electrodes, ranging
from 20 to 256, are available to characterize the activity of the whole
brain. The ESI process can be subdivided into 2 parts. The fist part
consists of a generative model or forward model of the measured EEG
data. The forward model includes the characterization and parameteri-
zation of the sources that are generating the EEG, commonly modeled as
electrical current dipoles. It contains the geometry and electromagnetic
properties of the head to calculate the field propagation of the sources
that are assumed inside the head to the electrodes. Based on the forward
model, the second part of ESI is an inverse technique that allows to de-
termine the parameters of the forward model in function of the measured



EEG data.
The work presented in this dissertation is related to the forward model

corresponding with ESI. There exist several forward modeling approaches
depending on how the sources are modeled, how the head is modeled and
which technique is chosen to model the field propagation of the sources.
An analytical solution of the forward model is only possible for a highly
symmetrical geometry, such as spherical approximations of the head,
and homogeneous isotropic electrical conductivity in the head model.
The use of high resolution anatomical MR images of a subject or a pa-
tient allows to construct a realistic model characterizing the properties
of the head in detail. This is done by processing the MR image with seg-
mentation techniques to extract the different tissues in the head and by
assigning a certain conductivity to each tissue. Numerical methods that
allow to construct such realistic forward models are the Finite Element
Method (FEM), the Finite Difference Method (FDM) and the Bound-
ary Element Method (BEM). The FEM and the FDM are volumetric
forward modeling techniques that make no assumptions about the shape
of the head model and allow the estimation of the electrical potentials
at any location in the volume. The BEM is a surface based forward
modeling technique that is based on the hypothesis that the volume is
divided into subvolumes of homogeneous and isotropic conductivity and
the potentials are estimated only on the surfaces separating these sub-
volumes. As a consequence the FEM and the FDM offer a more general
solution of the forward model. They have many advantages over surface
based BEM approximations of the head. First of all, the head models are
constructed using 3D volumetric MR images so it is straightforward to
construct 3D volumetric head models from it. Secondly, the volumetric
forward modeling techniques allow to easily include different volumetric
layers in the head model, including the highly conductivity cerebrospinal
fluid (CSF). In a BEM model this is a difficult task due to the complex
geometrical structure of the CSF, demanding a strongly increased com-
putational effort.

The premise in this dissertation is that more accurate and realistic
forward models will lead to more accurate EEG source imaging results.
This was shown in several previous studies based on simulated data from
an assumed true forward model. In contrast to these studies, we made
use of realistic data recorded in subjects and patients in this dissertation
to compare different forward models. Therefore we used the Paramet-
ric Empirical Bayesian (PEB) framework implemented in the Statistical
Parametric Mapping Software (SPM). This is a MATLAB (The Math-



works. Inc., Natick, USA) to analyze EEG signals, MagnetoEncephalo-
grapgy (MEG), Positron Emission Tomography (PET), Single Photon
Emission Tomography (SPECT) and functional Magnetric Resonance
Imaging (fMRI) data, that is widely used in the neuroimaging commu-
nity. The PEB framework offers a natural way to introduce multiple
constraints, or priors, in order to obtain a unique solution for ESI. It
provides an alternative way of testing forward models, using real data,
based on the estimated model evidence corresponding with a certain
forward model.

The implementation of the PEB framework in the SPM software did
however not allow to use volumetric forward models based on the FEM
or FDM. By default a three-layered BEM model including a scalp, skull
and brain compartment was used. We extended the PEB framework
so it could be used with more realistic volumetric forward models, with
specific focus on the inclusion of FDM models. Based on this extension
we were able to compare different FDM forward models using real EEG
data.

As a first step we introduced volumetric template head models based
on an anatomical MRI template. We constructed a FDM head model
equivalent to the BEM model used by default in the SPM software and
extended the FDM model by including CSF. These models were com-
pared within the context of three different types of source priors related
to the type of inversion used in the PEB framework: independent and
identically distributed (IID) sources, equivalent to classical minimum
norm approaches, coherence (COH) priors similar to methods such as
LORETA, and multiple sparse priors (MSP). The resulting models were
compared based on EEG data recorded in 20 subjects. In brief, twenty
healthy individuals performed trials of faces, houses, inverted faces and
words stimuli resulting in 4 types of Event Related Potentials (ERP)
for each subject. The different models were evaluated using Bayesian
model selection for group studies and the reconstructed activity was also
compared with the findings of previous studies using functional magnetic
resonance imaging. We found strong evidence in favor of the extended
FDM head model with CSF and assuming MSP.

In a second step, we revisited the multiple sparse priors (MSP) algo-
rithm implemented in the PEB framework. In the current implemen-
tation, multiple cortical patches are introduced as source priors based
on a dipole source space restricted to a cortical surface mesh. We pre-
sented a technique to construct volumetric cortical regions as source



priors by restricting the dipole source space to a segmented gray matter
layer and using a region growing approach. This extension allowed us to
reconstruct brain structures besides the cortical surface and facilitated
the use of more realistic volumetric head models including more layers,
such as a CSF layer, compared to the default 3-layered scalp-skull-brain
head models in the SPM software. We called this technique the Multiple
Sparse Volumetric Priors (MSVP) approach and illustrated the technique
with EEG data recorded in 12 subjects, and the anatomical MR images
of the subjects. In brief, the subjects performed 80 trials of circular
black-and-white checkerboard stimuli presented to one of the four quad-
rants of the visual field resulting in 4 types of ERPs for each subject.
Based on the segmented gray matter for each of the subjects, cortical
regions were created and introduced as source priors for MSP-inversion
assuming two types of head models. The standard 3-layered scalp-skull-
brain head models and extended 4-layered head models including CSF.
We compared with the current implementation by assessing the model
evidence corresponding with each of the reconstructions using Bayesian
model selection for group studies. Strong evidence was found in favor of
the MSVP approach compared to the MSP approach based on cortical
patches for both types of head models. Overall, the strongest evidence
was found in favor of the MSVP reconstructions based on the extended
head models including CSF. These results were verified by comparing
the reconstructed activity.

Based on the MSP algorithm and the extensions to volumetric forward
models in the previous step, we finally compared different sets of source
priors to localize the generating sources of interictal spikes observed in
EEG recordings of patients with refractory focal epilepsy. We introduced
an EEG source imaging technique to estimate the activity of multiple dis-
tributed sources corresponding with the full time course of the spikes, and
suggested to identify the origin of the activity based on the dipole source
with the maximum energy during the rising phase of the spike. We in-
troduced multiple sets of sparse volumetric priors in the PEB framework
and illustrated the technique using averaged interictal epileptic spikes in
6 patients with refractory epilepsy that were successfully treated with
surgery. Based on pre-surgical anatomical MR images and the electrode
positions that were available for each patient, patient specific 5-layered
head model were constructed. We modeled 100 different sets of 256 volu-
metric regions with locations that were maximally spread inside the gray
matter of the patient. Each set of regions was introduced as priors for
inversion, and we obtained the most likely set of priors using Bayesian



model selection. The resected zone in each of the patients, extracted
from post-operative MR images, was used to evaluate the proposed ap-
proach. We compared with a LORETA approach implemented in the
CARTOOL software and an equivalent current dipole (ECD) approach
at the spike peaks and at 50% of the peaks during the rising phase of the
spike. We found equally good or smaller distances to the border of resec-
tion, i.e. < 15 mm, with robust results for all the patients. The results
we obtained are promising because the approach allows to identify the
spatial spread of the sources, and allows incorporating prior knowledge
from other clinical investigations such as Positron Emission Tomography
(PET) and functional Magnetic Resonance Imaging (fMRI).

As an overall conclusion, we compared forward models based on real-
istic data in 32 subjects and 6 patients in this dissertation. The results
we obtained in this work suggest that the use of realistic volumetric for-
ward models improve EEG source imaging. We showed that the use of
volumetric cortical regions as source priors is a useful complement to
the present implementation in the PEB framework as it allows to intro-
duce more complex head models and volumetric source priors in future
studies. We introduced a new ESI technique to localize interictal spike
activity based on patient specific head models by introducing multiple
sparse regions in the Bayesian frameworks. The findings suggest that our
approach is potentially useful to delineate the zone where the epileptic
spikes originate in addition to the CARTOOL software and the currently
used ECD modeling techniques. The resultt need verification in a larger
patient group and need to be compared with the gold standard, being
intracranial recordings.





Nederlandstalige
samenvatting

Het onderzoek dat in dit proefschrift wordt beschreven is gesitueerd bin-
nen het onderzoeksveld van ElektroEncefaloGrafie (EEG). Dit is een
niet-invasieve techniek om de elektrische activiteit in de hersenen te re-
gistreren door het plaatsen van elektroden op de hoofdhuid. Elektrische
potentialen worden opgemeten via de elektroden, die worden gegenereerd
door elektrisch actieve gebieden in de hersenen. Dit maakt het mogelijk
om de hersenactiviteit te karakteriseren met een milliseconden temporele
resolutie op een rechtstreekse, eenvoudige en goedkope manier. Ondanks
de eenvoud van de techniek biedt de analyse van EEG signalen ver-
schillende technische uitdagingen. EEG signalen zijn bijvoorbeeld vaak
verstoord door ruis omdat elke bron van elektrische activiteit wordt op-
genomen via de elektrodes. Dit kunnen oogknipperingen zijn, activiteit
van de spieren, het elektricititeitsnetwerk, enz. Verscheidene opname-
en signaalverwerkingstechnieken zijn reeds ontwikkeld om signalen op te
nemen die minder ruis bevatten en om de ‘relevante’ informatie uit te
signalen te kunnen extraheren.

De opgenomen EEG signalen bevatten impliciet ook spatiële informa-
tie omtrent de actieve gebieden in de hersenen. Dit betekent dat het
mogelijk is om de locatie van de actieve gebieden in de hersenen te bepa-
len gebaseerd op de signalen die worden opgemeten op de hoofdhuid. Om
dit mogelijk te maken moet een invers probleem worden opgelost. Dit is
een proces dat EEG bronanalyse wordt genoemd (of EEG source imaging
(ESI) in het Engels) en is uitdagend omdat slechts op een beperkt aantal
elektroden kan beroep gedaan worden om de activiteit te karakteriseren
van de volledige hersenen. Het proces van EEG bronanalyse kan worden
opgedeeld in 2 componenten. De eerste component omvat een generatief
of voorwaarts model van de gemeten EEG data. Het voorwaartse mo-



del omvat de karakterisering en parameterisatie van de bronnen die de
opgemeten EEG signalen genereren, typisch gemodelleerd als elektrische
stroomdipolen. Het omvat een beschrijving van de geometrie en de elek-
tromagnetische eigenschappen van het hoofd. Ook een numerieke tech-
niek om de propagatie te modelleren van de bronnen in het hoofdmodel
naar de elektroden is noodzakelijk. De tweede component is een inverse
techniek die het mogelijk maakt om de paramaters van het voorwaartse
model te bepalen in functie van de opgemeten EEG data. Het onder-
zoek dat is beschreven in dit proefschrift is gericht op het voorwaartse
model voor EEG bronanalyse. Er bestaan verschillende opties voor de
voorwaartse modellering afhankelijk van de bronnen die worden veron-
dersteld de activiteit te genereren, hoe het hoofd wordt gemodelleerd en
welke techniek wordt gekozen om de propagatie te modelleren.

Een analytische oplossing bestaat alleen voor symmetrische geome-
trieën van het hoofd, zoals bolvormige benaderingen, en homogene en
isotrope elektrische conductiviteiten in het hoofdmodel. Voor andere
meer algemene gevallen maakt de opname van een hoge resolutie anato-
misch MR-beeld van de proefpersoon of de patiënt het mogelijk om meer
realistische modellen van het hoofd te bekomen waarbij de eigenschappen
in detail worden gekarakteriseerd. Door het MR-beeld te segmenteren
kunnen verschillende types weefsel en lagen in het hoofd worden geëxtra-
heerd en kan aan elk van deze lagen een specifieke conductiviteit worden
toegekend. Numerieke technieken die dit mogelijk maken zijn de eindige-
elementen-methode (of Finite Element Method (FEM) in het Engels), de
eindige-differentie-methode (of Finite Difference Method (FDM) in het
Engels) en de rand-elementen-methode (of Boundary Element Method
(BEM) in het Engels). De FEM en FDM zijn volumetrische voorwaartse
modelleringstechnieken die geen veronderstellingen maken over de vorm
van het hoofdmodel en het mogelijk maken om de elektrische potentialen
te berekenen op elke locatie in het volume van het hoofdmodel. De BEM
maakt gebruik van oppervlakken en is gebaseerd op de hypothese dat het
hoofdvolume kan worden opgesplitst in subvolumes met een homogene
en isotrope conductiviteit, waarbij de potentialen enkel worden berekend
op de oppervlakken die deze subvolumes scheiden. Bijgevolg bieden de
FEM en FDM een meer generieke oplossing voor het voorwaartse mo-
del. Ze hebben verscheidene voordelen tegenover de BEM benadering
van het hoofd. Eerst en vooral worden realistische hoofdmodellen gecon-
strueerd op basis van 3D volumetrische MR-beelden waardoor het voor
de hand ligt om hieruit 3D volumetrische hoofdmodellen te construeren.
Ten tweede maken volumetrische technieken het mogelijk om verschil-



lende lagen in het hoofdmodel te modelleren, zoals het sterk geleidende
cerebrospinaal vocht (of CerebroSpinal Fluid (CSF) in het Engels). Dit
is erg moeilijk in een BEM model door de complexe structuur van het
CSF wat kan zorgen voor een erg lange berekeningstijd.

Het uitgangspunt in dit proefschrift is dat meer accurate en realisti-
sche voorwaartse modellen leiden tot meer accurate ESI resultaten. Dit
is reeds aangetoond in verschillende studies in het verleden gebaseerd op
gesimuleerde data waarbij een aangenomen “waar” voorwaartse model
als referentie werd gekozen. In tegenstelling tot deze studies maakten
we in dit proefschrift gebruik van realistische EEG data opgenomen in
proefpersonen en patiënten, en een statistisch raamwerk om verschillende
modellen met elkaar te vergelijken. We maakten gebruik van een Para-
metrisch Empirisch Bayesiaans (PEB) raamwerk dat is geïmplementeerd
in de Statistical Parametric Mapping Software (SPM). Dit is een MAT-
LAB (The Mathworks. Inc., Natick, USA) toolbox voor de analyse van
EEG signalen, Magnetoencephalografie (MEG), Positron EmissieTomo-
grafie (PET), enkelvoudige foton-emissie computationele tomografie (of
Single Photon Emission Computed Tomography (SPECT) in het En-
gels) en functionele Magnetische Resonantie Beeldvorming (fMRI) data.
Dit software-pakket wordt wereldwijd veel gebruikt voor de beeldvor-
ming van de hersenen. Het PEB raamwerk biedt een elegante manier
om verschillende restricties op te leggen voor het oplossen van het in-
vers probleem, en maakt het mogelijk om voorkennis te incorporeren om
een unieke oplossing te bekomen. Het raamwerk biedt verder de mo-
gelijkheid om verschillende voorwaartse modellen te testen op basis van
realistische data via de geschatte model-evidentie die correspondeert met
een bepaald voorwaarts model.

De implementatie van het PEB raamwerk in de SPM-software liet het
echter niet toe om volumetrische voorwaartse modellen te vergelijken ge-
baseerd op FEM of FDM. Standaard werd er een BEM model gebruikt
waarbij een 3-lagig hoofdmodel werd verondersteld met een hoofdhuid-,
schedel- en hersencompartiment. Om meer realistische modellen te kun-
nen gebruiken hebben we in dit proefschrift het PEB raamwerk uitge-
breid zodat ook volumetrische technieken konden gebruikt worden voor
meer realistische voorwaartse modellen. Hierbij hebben we ons specifiek
gefocust op de FDM. Op basis van deze uitbreiding werd het mogelijk
om verscheidene voorwaartse modellen te vergelijken geconstrueerd met
verschillende veronderstellingen.

In een eerste stap introduceerden we volumetrische sjabloon hoofdmo-



dellen gebaseerd op een sjabloon anatomisch MR-beeld. We constru-
eerden een FDM hoofdmodel equivalent aan het BEM model standaard
gebruikt in de SPM software en een uitgebreid FDM model met CSF.
Deze modellen werden vergeleken in de context van 3 verschillende re-
stricties opgelegd aan de bronnen die typisch worden gebruikt in het
PEB raamwerk: onafhankelijk en gelijk gedistribueerde bronnen (Inde-
pendent and Idencentically Distributed (IID) in het Engels) equivalent
aan de klassieke minimum norm benaderingen, coherentie (COH) pri-
ors gelijkaardig aan methodes zoals LORETA, en meerdere ijle priors
(Multiple Sparse Priors (MSP) in het Engels). De resulterende modellen
werden vergeleken gebaseerd op stimulus gerelateerde potentialen (Event
Related Potentials (ERP) in het Engels) van 20 proefpersonen. Kortweg
gezegd werd het EEG geregistreerd in 20 gezonde proefpersonen waaraan
stimuli van gezichten, huizen, omgekeerde gezichten en woorden werden
gepresenteerd. Dit resulteerde in 4 verschillende ERP types per proefper-
soon. Op basis van Bayesiaanse modelselectie voor groepstudies werden
de verschillende modellen vervolgens vergeleken. Ook werd de gerecon-
strueerde activiteit vergeleken met de bevindingen van eerdere studies
gebruik makende van fMRI. De bevindingen wijzen op betere resulta-
ten op basis van het uitgebreide FDM hoofdmodel met CSF en in de
veronderstelling van MSP.

In een tweede stap, reviseerden we het MSP algoritme in het PEB
raamwerk. In de standaard implementatie werden verscheidene corti-
caal actieve zones geïntroduceerd als bronvoorkennis gebaseerd op een
bronruimte beperkt tot een corticaal oppervlak. We stelden een nieuwe
techniek voor om verscheidene corticale regio’s te introduceren als bron-
voorkennis door de bronruimte te beperken tot de gesegmenteerde grijze
materie en op basis van een techniek om regio’s te groeien. Deze uit-
breiding biedt de mogelijkheid om hersenregio’s te reconstrueren naast
het corticaal oppervlak en maakte het mogelijk om meer realistische
volumetrische hoofdmodellen te gebruiken met meerdere lagen in het
hoofdmodel zoals CSF, in tegenstelling tot de 3-lagige hoofdmodellen
die standaard werden gebruikt in de SPM software. Deze uitbreiding
werd kort benoemd als MSVP of Multiple Sparse Volumetric Priors in
het Engels. We illustreerden de technieken op basis van ERP data en
anatomische MR-beelden in 12 proefpersonen. Kortweg gezegd werd
het EEG opgenomen bij 12 gezonde proefpersonen waaraan schaakbord-
vormige stimuli werden gepresenteerd in één van de kwadraten van het
gezichtsveld. Dit resulteerde in 4 verschillende ERP types per proefper-
soon. Gebaseerd op de gesegmenteerde grijze materie voor elk van de



proefpersonen werden corticale regio’s geconstrueerd en geïntroduceerd
als bronvoorkennis voor MSP inversie in de veronderstelling van 2 ty-
pes hoofdmodellen. Het standaard 3-lagige hoofdmodel gebruikt in de
SPM software en een hoofdmodel uitgebreid met CSF. We vergeleken
de huidige implementatie met de nieuwe technieken door de geschatte
model-evidentie te vergelijken corresponderend met elk van de modellen
en op basis van Bayesiaanse modelselectie voor groepstudies. De bevin-
dingen wijzen op betere resultaten op basis van de MSVP benadering in
tegenstelling tot de MSP benadering gebaseerd op het corticale opper-
vlak voor beide types hoofdmodellen. Globaal gezien tonen de resultaten
dat de MSVP reconstructies gebaseerd op het hoofdmodel uitgebreid met
CSF leidt tot betere reconstructies. De resultaten werden ook geverifi-
eerd door de gereconstrueerde activiteit te vergelijken.

Gebaseerd op het MSP algoritme en de uitbreidingen die we deden
in de vorige stap, vergeleken we vervolgens verschillende verzamelingen
van bronvoorkennis, voor het lokaliseren van de bronnen die interictale
spikes genereren in patiënten met refractaire epilepsie. We stelden een
ESI techniek voor om de activiteit te schatten van meerdere bronnen in
overeenstemming met het volledige tijdsverloop van de spike, en sugge-
reerden om de oorsprong van de activiteit aan te duiden gebaseerd op de
bron met de maximale energie gedurende de stijgingsfase van de spike.
De EEG activiteit achter de piek van de spike correspondeert immers
met propagatie van de activiteit. We introduceerden verschillende ver-
zamelingen van bronvoorkennis in het PEB raamwerk en illustreerden
de techniek op basis van uitgemiddelde interictale spikes in 6 patiënten
met refractaire epilepsie die werden behandeld met chirurgie. Gebaseerd
op de pre-chirurgische anatomische MR-beelden en de elektrodenposi-
ties die beschikbaar waren voor elke patiënt, construeerden we patiënt
specifieke 5-lagige hoofdmodellen. We modelleerden 100 verzamelingen
van 256 regio’s met locaties die maximaal verspreid waren in de grijze
materie van de patiënt. Elke verzameling van bronnen werd geïntrodu-
ceerd als bronvoorkennis voor inversie, en de verzameling met de hoogste
model-evidentie werd aangeduid als de meest waarschijnlijke verzameling
bronnen corresponderend met de spike. Om de techniek te vergelijken,
gebruikten we de CARTOOL software. Dit is de referentie, vrij te ver-
krijgen, software voor spike-lokalisatie. Op basis van deze software loka-
liseerden we de activiteit corresponderend met de spike pieken en op 50%
van de spike pieken gedurende de stijgingsfase van de spike. Ook werd
vergeleken met equivalente stroomdipolen (of Equivalent Current Dipole
(ECD) in het Engels) corresponderend met de spike pieken en op 50%



van de spike pieken gedurende de stijgingsfase van de spike. ECD op-
lossingen worden namelijk typisch gebruikt in een klinische context. We
extraheerden vervolgens de zone in elk van de patiënten die chirurgisch
werd verwijderd. Dit is de resectie die we vervolgens gebruikten als veri-
ficatiebasis om de verschillende methodes mee te evalueren. We vonden
gelijkaardige of kleinere afstanden tot de rand van de resectie, d.w.z. <
15 mm, met robuste resultaten voor alle patiënten. De resultaten die we
verkregen zijn veelbelovend omdat de de voorgestelde techniek toelaat
om de spreiding van de bronnen te modelleren. Ook is het mogelijke om
diverse types voorkennis te integreren van andere klinische onderzoeken
zoals PET of fMRI.

In dit proefschrift werden verscheidene voorwaartse modellen vergele-
ken op basis van realistische EEG data in 32 proefpersonen en 6 patiën-
ten. De resultaten die we bekwamen in dit proefschrift tonen aan dat
het gebruik van realistische volumetrische voorwaartse modellen ESI kan
bevorderen. We toonden aan dat het gebruik van volumetrische corti-
cale regio’s als bronvoorkennis een nuttige uitbreiding is op de bestaande
implementatie in het PEB raamwerk omdat het de mogelijkheid biedt
om meer complexe volumetrische voorwaartse modellen en bronruimtes
te gebruiken in toekomstige studies. We introduceerden ook een nieuwe
ESI techniek om interictale spike activiteit te lokaliseren gebaseerd op
patiënt specifieke hoofdmodellen en door het introduceren van meerdere
verzamelingen bronvoorkennis in het PEB raamwerk. De bevindingen
suggereren dat de techniek waardevol is voor het aflijnen van de zone
in de hersenen waar de epileptische spikes ontstaan bovenop de typisch
gebruikte technieken. De resultaten vereisen nog verificatie in grotere
groepen patiënten en met intracraniële EEG opnames.



Chapter 1

Introduction

“The path we’re on is the path we chose”
Deus - Keep you close

1.1 Context

Electroencephalography (EEG) is a non-invasive technique to character-
ize the electrical activity of the brain. By placing electrodes on the scalp,
the technique measures the electrical potentials generated by electrically
active areas in the brain. This allows to characterize brain activity with
a milliseconds time resolution in a very straight forward and cheap way.

Despite the simple nature of the recording technique, the analysis of
EEG signals provides several challenges in an engineering context. EEG
signals are often contaminated by noise, because any source of electri-
cal activity is recorded through the electrodes, i.e. electrical activity
from the muscles, eye blinks, the power net, etc. To solve this problem,
several measuring and signal processing techniques have been developed
that allow to record signals with lower noise contamination and allow
to extract the ‘relevant’ information from the signals. The EEG signals
indirectly provide spatial information about the electrical active sources
in the brain. This means that it is possible to determine the location
and activity of the sources in the brain based on the recorded activity
on the scalp. Therefore an inverse problem has to be solved. This is
a process termed EEG source imaging and is very challenging because
only a small number of electrodes, ranging from 20 to 250, are available
to characterize the activity of a whole brain.



2 Introduction

Briefly stated, EEG source imaging consist of 2 parts: (i) a generative
model or forward model of the measured EEG data characterized by a
number of parameters and (ii) an inverse technique that allows to deter-
mine the parameters of the forward model in function of the measured
EEG data. A forward model can be subdivided into 3 main components:
(i) the characterization and parameterization of the generating sources
of the measured EEG data, (ii) the characterization of the geometry and
electromagnetic properties of the head and (iii) a method to calculate
the field propagation of the sources through the head. The first EEG
source imaging techniques were developed in the beginning of the 90’s
and the field experienced a slow progress since then due to computational
limitations. Because of the fast progress in computation power and the
development of new brain imaging techniques like Magnetic Resonance
Imaging (MRI) to characterize the anatomy of the brain, new advances
in the field of EEG source imaging became recently possible.

This dissertation is situated within the field of EEG source imaging
with the focus on the forward model of the EEG data. There exist sev-
eral different forward modeling approaches depending on how the head
is modeled and which source modeling approach is chosen. An analytical
solution is only possible for a highly symmetrical geometry and homo-
geneous isotropic electrical conductivity. For other more general cases,
numerical methods are required which allow to make no assumptions
about the shape of the head model and allow the estimation of the elec-
trical potentials at any location in the volume. The recording of high
resolution anatomical MR images of a subject or a patient allows to con-
struct a realistic forward model characterizing the properties of the head
in detail. This is done by processing the MR image with segmentation
techniques to extract the different tissues in the head and by assigning
a certain conductivity to each tissue. In absence of a high resolution
MR image, often template MR images are used to construct a template
model of the head.

The premise in this work is that more accurate and realistic forward
models will lead to more accurate EEG source imaging results. This is
shown in this dissertation for several forward models, by testing them
using real data, rather than the more traditional simulated data from
an assumed true forward model shown in various previous studies. We
made use of a Bayesian framework to invert the forward model based
on a distributed source model. In distributed models, the solution space
typically contains a large number of sources at discrete points within
the brain, which leads to a largely underdetermined EEG inverse prob-



1.2 Outline 3

lem. Bayesian approaches offer a natural way to introduce multiple con-
straints, or priors, to “regularize” the solution. In addition, and most
importantly for the work performed in this dissertation, they provide an
alternative way of testing forward models, using real data, based on the
model evidence corresponding with a certain forward model. Based on
the model evidence, we evaluated forward modeling choices both with
and without the presence of an anatomical MR image using realistic data
in about 32 subjects and 6 patients.

1.2 Outline

In what follows we describe the organization of this dissertation divided
in 7 more chapters. This dissertation can be read as shown in Fig. 1.1.
In chapter 2, we give a general introduction to electroencephalography.
We start by describing the early history of EEG followed by the mod-
ern principles of recording EEG signals. The anatomy and physiology
of the brain is subsequently briefly described. Next, we discuss the gen-
erators of the electrical potentials we measure on the scalp. Therefore,
the electrical brain activity at different spatial scales is discussed and we
describe the characteristics of the measurable sources with EEG. The
chapter continues by describing the recording principles of EEG signals
and how to visualize the signals. We continue with the types of activity
that can be observed in an EEG recording, discuss the artifacts that are
often present and explain some techniques to remove them. To conclude,
some applications of EEG are presented starting with the clinical appli-
cations such as in epilepsy and sleep research. We briefly describe the
role of EEG in cognitive neuroscience and recent applications for brain
computer interfaces and neuromarketing.

In chapter 3, the background and recent developments in EEG source
imaging are given in order to put the work in this dissertation in per-
spective. We start by describing the principles of EEG forward model-
ing. Therefore, we first introduce the current dipole and describe how
an electromagnetic model of the head is subsequently constructed. Af-
ter introducing the algebraic representation of the forward model, we
discuss the techniques to model the propagation of the sources through
the different tissues the head. Subsequently a general overview is given
of the different inverse techniques that are developed for source imag-
ing. Some application are presented and we discuss the position of EEG
source imaging within other neuroimaging techniques in terms of spa-



4 Introduction

Chapter 2! Chapter 3! Chapter 4!

Chapter 5! Chapter 6! Chapter 7!

Figure 1.1: This dissertation can be read following this suggested diagram.

tial and temporal resolution. To conclude, the concept of multimodal
neuroimaging is described and illustrated with an example.

In chapter 4, the Bayesian framework for EEG source imaging, which
is the backbone in this dissertation, is described in detail. We start by
describing Bayes’ theorem. Next, the hierarchical Bayesian formulation
of the EEG inverse problem is introduced. We subsequently describe the
approach to introduce multiple priors in terms of covariance components
and how a unique solution can be obtained by optimizing the free en-
ergy cost function using a restricted maximum likelihood technique. We
explain that the free energy is an approximation of the model evidence
and can be used to compare different forward models based on realistic
EEG data.

In chapter 5, we present the results of a comparison study of template
forward models in absence of an anatomical MR image, for EEG source
imaging based on EEG data of 20 subjects. Using the Bayesian frame-
work presented in chapter 4, we compared the typically used 3-layered
scalp-skull-brain head models with head models including the highly con-
ductive cerebrospinal fluid. Using EEG data of 20 subjects evidence is
provided that it is worthwhile to model the CSF in a template head
model.

In chapter 6, we go a step further and compare subject specific for-
ward models constructed based on high resolution anatomical MR im-
ages. Based on EEG data of 12 subjects the effect of modeling the CSF
is evaluated and the concept of using volumetric regions as source priors
for inversion is introduced.

In chapter 7, we describe an application of the Bayesian framework
and the techniques developed in chapter 6, using patient specific forward
models, for EEG source imaging of epileptic activity. Using the high
resolution anatomical MR images of 6 patients with epilepsy that were
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treated with surgery, we compare the results of a classical approaches to
localize the activity to a new approach presented in this chapter. The
different techniques are compared based on the area in the brain that
was removed during surgery and served as our verification basis.

A summary of the results that are described in this thesis, along with
the conclusions that can be drawn from them is given in chapter 8.
Some possibilities for future research and a final conclusion is also pre-
sented there.





Chapter 2

Electroencephalography

“We are electronics”
Air - Electronic Performers

2.1 Introduction

In this chapter, the principles of electroencephalography (EEG) are ex-
plained. The chapter starts off with a brief history of the first EEG
recordings. These measured brain activity over time using metal strips
pasted on top of the scalp. To understand the origin of the measured
EEG activity, the subsequent section describes the anatomy and function
of the brain with the focus on the mechanisms of neural activity. This
allows us to elaborate on the origin of electrical brain activity at different
spatial scales, going from electrical signals measurable at the microscopic
level to signals that are measurable on top of the scalp. Next, we look
at the modern EEG recording techniques and describe methods to visu-
alize the recorded data. The chapter continues with a description of the
various types of brain activity that can be observed in an EEG record-
ing. The different types of artifacts often present in the recordings, and
some techniques to remove them are described subsequently. To finish
the chapter, we present a number of applications.

2.2 Early History

The first human EEG recordings were carried out by Hans Berger in 1924.
He used metal strips pasted on top of the scalps of his subjects to record
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their brain activity using a sensitive galvanometer. This is an instrument
to measure electrical currents based on a moving electromagnetic coil. To
visualize the measured activity over time, Berger plotted the successive
positions of the moving coil of the galvanometer on a continuous roll of
paper [1]. As such, he was able to measure irregular, relatively small
electrical potentials (in the range of 50 µV to 100 µV) coming from the
brain. In his report of 1929, Berger describes oscillating brain activity
at 10 Hz. He used chlorinated silver needle electrodes, platinum wires,
and zinc-plated steel needles to record the activity of his son [2], see Fig.
2.1. The lower line is a 10 cycles/sec sine wave for use as a time marker.
The upper line is the recording from Berger’s son.

Berger is the founder of the present applications of electroencephalog-
raphy. He started using the word electroencephalogram to denote the
EEG recorded signals themselves. The word is derived from the Greek
word �γκ�φαλoζ or enkephalos which literally means “with brain”. Nowa-
days the terms electroencephalography and electroencephalogram are
both used in literature and are both abbreviated as EEG.

Figure 2.1: The first recorded electroencephalogram of a human. Figure
adapted from [2] with permission from Springer.

2.3 The human brain

It is critical for the use of EEG as a brain activity recording technique to
understand the nature of the sources generating the measured activity.
For this purpose, the following section introduces the brain’s anatomy
and function allowing for a clear understanding of the used terminology.

2.3.1 The neuron

2.3.1.1 Anatomy

The basic building block of the human brain is the neuronal cell or the
neuron. A brain contains approximately 86 billion neurons, all intercon-
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nected to form a complex network [3]. Neuron cells are the information
carriers and signal processing units of the human body. Each neuron
connects with 5.000-200.000 other neurons and the complexity of the
network increases from birth to the infant years, resulting in a full grown
brain at the age of 30.

The anatomy of the neuron is shown in Fig. 2.2. A neuron consists of
a cell body or soma, dendrites and an axon. Dendrites transmit infor-
mation to the cell body, the cell body regulates the information coming
from several dendrites and the axon sends information away from the
cell body. Dendrites are very thin (≈ 1 µm) and the length of a single
dendrite is typically several 100µm. Dendrites brach multiple times and
can therefore reach several centimeters in total. We distinguish dendrites
that are close to the cell body or basal dendrites and dendrites that are
distant to the cell body or apical dendrites. The axon is much thicker (≈
25 µm) than the dendrites, and can transmit information over distances
up to meters. In order to prevent the signals from loss in signal strength,
the axon is covered with myelin sheaths. The area in the cell body where
the signal transmission to the axon originates is the axon hillock. The
ends of the axon reaching another neuron cell are the axon terminals.
Between connecting neurons there is a gap, called the synapse. The neu-
ron that transmits its information to another neuron is termed as the
pre-synaptic neuron. The neuron that receives information from another
neuron is termed as the post-synaptic neuron. The pre-synaptic neuron
transmits its information along its axon to the post-synaptic dendrite.

There are many different types of neurons in the human brain that can
be classified based on their function or morphology. We distinguish affer-
ent, efferent and interneurons. Afferent neurons are also called sensory
neurons that transmit information from tissues and organs to the brain.
Efferent neurons are also called motor neurons and convey signals from
the brain to the to the muscles, glands and organs in the body. Interneu-
rons connect neurons between specific regions in the brain. The most
important type of neuron we consider in this dissertation is the pyra-
midal neuron cell, which has a triangular shaped cell body. Pyramidal
cells have an axon, a large apical dendrite and multiple basal dendrites,
as can be seen in Fig. 2.3.

2.3.1.2 Function

The communication between neurons is based on chemical and electri-
cal conduction. Signals are transmitted electrically along the neuron.
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Figure 2.2: The anatomy of the neuron. Figure adapted from [4].
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Cell body!

Apical dendrite!

axon!
Basal dendrites!

Figure 2.3: Example of a pyramidal neuron neuron stained via the
Golgi technique. (Image obtained from http://en.wikipedia.org/wiki/
Pyramidal_cell/mediaviewer/File:GolgiStainedPyramidalCell.jpg,
used under a Creative Commons Attribution-ShareAlike license:
http://creativecommons.org/licenses/by-sa/3.0/)

Based on the synapse structure the electrical signal can be transmitted
chemically to another connecting neuron. A schematic overview is given
in Fig. 2.4. We distinguish a pre-synaptic neuron and a post-synaptic
neuron. Signals coming from the pre-synaptic neuron travel along the
pre-synaptic axon based on a mechanism of action potentials. An action
potential is a short-lasting event during which the membrane potential of
the axon rapidly rises and falls based on the active movements of K+and
Na+ions. The action potential travels along the axon from the axon
hillock, near the cell body, to the axon terminal, as represented in panel
1. The + and − signs represent the collection of extracellular charges cor-
responding with the movement of the action potential. When the action
potential reaches the axon terminal, a synaptic transmission of the prop-
agating signal takes place based on chemical conduction, as represented
in panel 2. The chemical conduction between the pre-synaptic axon ter-
minal and the post-synaptic dendrite is based on neurotransmitters such
as dopamine, glutamate and gamma-aminobutyric acid (GABA). The
release of neurotransmitters in the synaptic cleft, evoked by the action
potentials, triggers a mechanism in the post-synaptic dendrite that ini-
tiates the propagation of a post-synaptic potential to the cell body. The
propagation of post-synaptic potentials is based on the passive spread of
charges corresponding with the movement of K+and Na+ions. This is
presented in panel 3. In this case, the + and − signs represent the col-
lection of extracellular charges corresponding with the movement of the
post-synaptic potential. Excitatory and inhibitory post-synaptic poten-
tials can be distinguished. Excitatory post-synaptic potentials (EPSP)

http://en.wikipedia.org/wiki/Pyramidal_cell/mediaviewer/File:GolgiStainedPyramidalCell.jpg
http://en.wikipedia.org/wiki/Pyramidal_cell/mediaviewer/File:GolgiStainedPyramidalCell.jpg
http://creativecommons.org/licenses/by-sa/3.0/
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are a direct consequence of an excitatory synapse corresponding with the
influx of Na+ions in the post-synaptic dendrite. Inhibitory post-synaptic
potentials (IPSP) are a direct consequence of an inhibitory synapse cor-
responding with the outflux of K+ions from the post-synaptic dendrite.
Depending on the balance between EPSP and IPSP, the arrival of the
post-synaptic potential in the cell body may trigger the neuron cell body
to fire a new action potential along its axon in order to communicate with
other neurons, represented in panel 4. Note that this is a simplified rep-
resentation of neuronal communication. For a detailed description we
refer the reader to [5].

cell body!
- - - --
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dendrite!

action potential!
+ + + + + + + + - - - +++ ++
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axon terminal!
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Figure 2.4: Schematic drawing to illustrate the principle of neuronal commu-
nication.
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2.3.2 Brain structures

In order to visualize and denote specific structures or areas in the brain,
we first introduce some conventions in Fig. 2.5. We show an axial, sag-
ital and coronal plane or section, typically used for visualization. The
location of an area is described according to the distance to the centre
of the brain. Medial or lateral parts respectively depict areas or sections
close or distant from the center of the brain. Posterior and anterior parts
respectively depict backwards and frontal areas. Superior and inferior
parts respectively depict upper and lower areas.

Axial plane! Sagital plane! Coronal plane!

!!

Frontal view!

Medial! Lateral!

Side view!

Superior!

Anterior!Posterior!

Inferior!

Figure 2.5: Left: the 3 primary orthogonal planes to visualize the brain.
Right: a frontal view of the brain with a lateral and medial line denoting the
position of the line to the midline of the brain. Figure adapted with permission
from [6].

Both a frontal view of the brain and a sagital cross section of the hu-
man head are shown in Fig. 2.6. Different anatomical brain structures
can be distinguished as a consequence of biological evolution. They are
characterized by the typical arrangement of the neurons in these struc-
tures. The oldest part of the brain is known as the brain stem and is
mainly responsible for the basic functioning of the human body: heart
rate, breathing, sleeping etc. The cerebellum, meaning “little brain”, is
attached to the rear of the brainstem and is in charge of processing sen-
sory input, coordinates movement output, and balance. The youngest
part of the human brain is the cerebrum which is responsible for higher
order human functioning and is divided into the left and right hemi-
sphere.

The brain is covered by the scalp, skull, 3 meninges and the cere-
brospinal fluid (CSF). The meninges are the pia mater, the arachnoid
and dura mater, which protect the brain from rubbing against the bone
of the skull. The CSF acts as a protective layer for the cerebral cortex
and serves as a transport conduit for nutrients to the brain and waste
from the brain. The ventricles are four spaces within the brain that are
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filled with CSF. The ventricles foster circulation of CSF into the brain
and also acts as a protective cushion against trauma.

Pia mater!

Cerebrospinal 
fluid!

Ventricle!
(Corpus callosum)!

skull!scalp!
Cerebrum!

Cerebellum!

Brain stem!

Cerebral 
cortex!

Arachnoid 
and dura 
mater!

Brain stem!

Right  hemisphere! Left hemisphere!

Cerebellum!

Frontal view! Cross section!

Cerebrum!

Figure 2.6: Frontal view and cross-sectional view of the brain. Figure adapted
with permission from [6].

The most outer layer of the cerebrum is the cerebral cortex which con-
sist of gray matter containing the neurons’ cell bodies and dendrites,
see Fig. 2.7 for a coronal slice through the brain. The cerebral cortex
controls higher brain functions such as sensation, voluntary muscle move-
ment, thought, reasoning and memory. The inner layer of the cerebrum
is the white matter, which contains the neuron’s axons covered by the
myelin sheets which gives them the white color.

The cerebral cortex has a layered structure containing the cell bodies
and dendrites of interconnected pyramidal neuron cells. It is typically 2
to 4 millimeters thick. The largest part of the cerebral cortex, covering
both hemispheres, is the neocortex which contains 6 main layers that can
be distinguished based on the grouping of the pyramidal neurons shown
in Fig. 2.8.

The cerebral cortex is heavily folded resulting in a much greater surface
area inside the skull volume. The foldings in the cortex are termed as
the gyri (singular: gyrus) and the grooves in the cortex are termed as
the sulci (singular: sulcus). In Fig. 2.9 an overview is given of the largest
sulci and gyri in the cerebral cortex.

Based on topographical conventions related to the gyri and sulci, the
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Figure 2.7: A coronal slice of the brain’s cerebrum. The outer layer of the
cerebrum is the cerebral cortex and consists of gray matter. The inner layer
consist of white matter. Figure adapted with permission from [6].

cerebral cortex is classified into four main lobes: the temporal lobe,
the occipital lobe, the parietal lobe and the frontal lobe, shown in Fig.
2.10. Furthermore, based on the histological differences in the neocortex,
different neocortical regions, known as the Brodmann areas [7] can be
distinguished.

2.3.3 Brain functioning

Particular, anatomically segregated regions in the cerebral cortex or cor-
tical maps have specialized functions to process information or cause
responses. These regions in the brain consist of large clusters of neurons,
i.e. cortical columns of neurons, ranging from thousands to millions.
Particular clusters work closely together in order to perform a specific
function. An overview of some of the functionally specialized regions
in the left hemisphere of the brain is given in Fig. 2.11. Some areas
in the cerebral cortex are specialized in memory, language, emotions,
sensations, perceptions and thought, or in producing body movement.
The areas of the brain responsible for perceptions are spread over the
temporal, occipital and parietal lobe. We can distinguish areas respon-
sible for spatial awareness, visual processing and recognition. The areas
responsible for thought are located in the frontal lobe. They can be sub-
divided into areas specialized in thinking, judging, spelling, planning,
etc. The sensations areas are spread over the frontal, parietal and oc-
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Figure 2.8: The layered structure of the cerebral cortex with
the surface of the cortex shown on top. Left: Nissl-stained cor-
tex of a human adult. Middle: Nissl-stained cortex of a hu-
man adult. Right: Golgi-stained cortex of a 1.5 month old in-
fant. (Image obtained from http://en.wikipedia.org/wiki/Cerebral_
cortexmediaviewer/File:Cajal_cortex_drawings.png, used under a Cre-
ative Commons Attribution-ShareAlike license: http://creativecommons.
org/licenses/by-sa/3.0/)

http://en.wikipedia.org/wiki/Cerebral_cortexmediaviewer/File:Cajal_cortex_drawings.png
http://en.wikipedia.org/wiki/Cerebral_cortexmediaviewer/File:Cajal_cortex_drawings.png
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
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Lateral view! Medial view!

Figure 2.9: The cerebral cortex has a heavily folded structure with gyri and
sulci. The names of the different gyri and sulci of the cerebral cortex are
depicted. Figure adapted with permission from [6].

Lateral view! Medial view!

Figure 2.10: Naming of the different lobes in the cerebral cortex. Figure
adapted with permission from [6].

cipital lobe. They can be subdivided into specialized regions for taste,
smell, sound, touch and vision, each with a distinct location in the brain.
The areas responsible for language are spread in the frontal, parietal and
temporal lobe. There is a specialized area responsible for speech and one
responsible for language comprehension. The cerebellum is responsible
for coordination whereas the brainstem controls the arousal state.

In the modern view of brain functioning, the cortical infrastructure
supporting a process or response may involve neuronal activity in several
functionally specialized areas of the brain, all of which are functionally
integrated. This means that the brain performs a task or function as an
interconnected network of several specialized regions.
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Figure 2.11: Different areas in the brain have different specialized functions
depicted by the different colors in the left hemisphere. Figure adapted with
permission from [6].

2.4 From neural activity to electrical potentials
on the scalp

In the following section we explain at which spatial scales the neuronal
activity takes place in order to describe which kind of neural activity
is necessary in order to generate measurable EEG signals on the scalp
surface.

Invasive neurophysiological recordings in animals allow to character-
ize neural activation at different spatial scales, going from intracellular
recordings of individual neurons to nearby extracellular recordings. At
the single neuron level, the dominant electrical events are the action po-
tentials corresponding with a rise and fall of the membrane potential of
the axon over 80 mV. The action potentials propagate rapidly, within less
than 1 ms from the axon hillock to the axon terminals. The nearby ex-
tracellular activity corresponding with the propagating action potential,
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can reach at least 600 µV close to the membrane and falls off rapidly
to a tenth (<60 µV) outside a 50 µm radius from the membrane [8].
Therefore the extracellular spatial spread of action potentials is limited
to sub-millimeters. This is important to know, because it prevents the
extracellular fields caused by an action potential to be potentially mea-
surable in the EEG, since the scalp surface is at least 2 cm away from
the brain tissue. Moreover, because of the short duration of individual
action potentials (<1 ms) summation in time of several action potentials
is unlikely.

Another type of observable electrical activity in the brain, which is
less focal and has slower and weaker fields, is the extracellular field po-
tential [9]. Extracellular field potentials reflect the summation of the
extracellular post-synaptic potentials in a large group of neurons in both
space and time. They can be measured in the brain when neurons are
both arranged in parallel over some distance, and receive synchronized
synaptic input [10]. These conditions are typical for the pyramidal cells
located in the cerebral cortex. They are organized in such a way that
the neighboring dendritic trees lie parallel to each other, orthogonally
to the cortical surface (see also the introduction of the pyramidal cell in
section 2.3.1.1). The extracellular post-synaptic currents caused by syn-
chronized synaptic input are matched by reverse intracellular currents
resulting in arrangements of sinks and sources in the different cortical
layers, see Fig. 2.12. The electrical fields caused by the sinks and sources
propagate trough the skull to the scalp and evoke measurable potential
fields on the scalp surface in the range of ≈ 100 µV.

2.5 Recording EEG signals

2.5.1 EEG recording hardware

In order to perform an EEG registration, 4 main hardware components
are required: (i) a system of electrodes that are placed on top of the
scalp, (ii) an amplifier to amplify the measured signals, (iii) an analog
to digital convertor and (iv) a recording device. Modern commercially
available EEG recording systems use silver/silver-chloride electrodes, 1 to
3 mm in diameter, and have long flexible leads to plug into the amplifier.
A ground electrode is required to amplify a differential voltage with
a typical amplification factor around 10.000. The amplified signal is
subsequently digitized with a high sampling rate (typically 1000 Hz)
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Figure 2.12: Simplified illustration of the extracellular currents (represented
by current sinks and current sources) that originate due to post-synaptic activ-
ity in the dendrites of aligned pyramidal neurons. The generation of massive
synchronized post-synaptic activity causes electrical fields that are measurable
on the scalp surface.

using an analog to digital convertor. This leads to millisecond time
resolution. A recording device such as a regular computer stores and
displays the recorded data.

To acquire high quality data, the proper functioning of the EEG
recording electrodes is most critical. To reduce the scalp-electrode
impedance, a conductivity gel is used. This gel serves as a conduc-
tive medium between the electrode and the scalp surface. Typically an
impedance below 5 kΩ is adequate to record high quality scalp potentials.
The digitized potentials are then represented over time with respect to
a designated reference electrode (see section 2.6).

2.5.2 Positions of the electrodes and spatial sampling

An internationally accepted standard to position the EEG electrodes on
the scalp surface is the so called 10-20 or 10-10 system (see Fig. 2.13
for an example of the 10-20 system) [11]. This system determines the
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electrode positions with respect to fractions (10 % or 20 %) of the dis-
tance between the nasion-inion position and the pre-auricular points.
Each electrode channel gets a label. Each label corresponds with the
anatomical conventions used to locate the various brain regions. ‘F’, ‘T’,
‘P’, ‘O’ or ‘A’, corresponds with an electrode that covers the frontal,
temporal, parietal, occipital or auricular regions, respectively. The ‘C’
label is given for the central electrodes. The even subscripts depict elec-
trodes that are located above the right hemisphere, odd subscripts depict
electrodes that are located above the left hemisphere. The z subscripts
corresponds with electrodes located on the midline of the brain. ‘Fp1’
and ‘Fp2’ depict frontal polar electrode 1 and 2, covering the area on the
forehead. In recent EEG systems, more electrodes are used with a higher
spatial sampling of the scalp surface. To denote these electrodes, combi-
nations of brain regions are used to indicate the position of the electrode,
for example FT, corresponds with a frontal temporal electrode.

Pre-auricular !
point!

Figure 2.13: The 10-20 system for EEG recordings. Figure adapted from [4].

The spatial sampling depends on the number of electrodes that are
used, the application and the hardware provider. In clinical practice for
example usually 27 to 32 electrodes are used, see Fig. 2.14a. In modern
systems there is a trend to use up to 128 or even 256 electrodes in order
to achieve a higher spatial sampling, see Fig. 2.14b and c. These are so
called high density EEG recordings. The recordings have a higher sensi-
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tivity than regular systems when it comes to measuring the underlying
brain activity.

(a)! (b)! (c)!

Figure 2.14: Example of the spatial sampling with (a) 32 electrodes, (b) 128
electrodes, (c) 256 electrodes.

2.6 Visualizing EEG signals

2.6.1 Choice of the reference

An example of an EEG recording is given in Fig. 2.15. The channels
are typically presented on the y-axis and the time on the x-axis. In
this example, the EEG recording is shown with a single reference, which
means that the measured voltages from the reference electrode channel
are subtracted from the other electrode channels for each time sample.
The choice of the reference electrode channel can differ depending on the
purpose of the EEG recording. In order to remove brain unspecific activ-
ity, the reference electrode should be affected by global voltage changes
in the same way as all the other electrodes because in that case, the
unspecific activity is subtracted from the recording by referencing [12].
Moreover, the reference should not pick up signals which are not intended
to be recorded, like electrical activity from the heart. Reference choices
can be the ear-lobes, the nose, the mastoids (i.e. the bone behind the
ears) or central electrodes. When using > 32 electrodes, it is common to
compute the “average reference”. For this type of referencing, the aver-
age over all electrodes is subtracted from each measured electrode signal
for each time point. Sometimes, especially in a clinical setting, bipolar
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montages are used showing the potential difference over time between
adjacent electrodes.

2.6.2 Scalp topography

The measured EEG activity is frequently visualized in a 2-dimensional
scalp topography. This makes it easier to determine the most active
areas on the scalp. A 2-dimensional topography shows the measured
EEG activity at a specific time point for each electrode represented by
means of color coding on a plane. The activity corresponding with each
electrode is shown on the locations corresponding with the projection
of the electrodes on the plane and the points between the electrodes
are calculated by interpolation. An example is given in Fig. 2.15. The
activity shown in the topography on the right directly corresponds with
the peak activity indicated by the vertical blue line on the left.
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Figure 2.15: Left: Example of an EEG registration in which the electrical
potentials are represented with respect to a single reference. Right: Example
of the representation of the measured EEG activity by the vertical line in blue
shown in a 2D topography on the right.
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2.7 Observed activity in EEG

As introduced in section 2.4, the synchronized activity in large groups
of pyramidal neurons can produce electrical activity that is observable
in the EEG. Typically, two types of EEG phenomena are distinguished.
These correspond with rhythmic brain activity or transient brain activ-
ity. Often the brain activity is monitored during the presentation of
a stimulus or event, for example a picture with a face on it, causing
an Event Related Potential (ERP) in the EEG. This kind of activity is
usually too weak to be clearly visible in the EEG recording. In order
to increase the signal to noise ratio, the EEG data recorded during the
presentation of many similar stimuli is averaged.

2.7.1 Rhythmic activity

The rhythmic activity that can be observed in the EEG is a consequence
of the rhythmic patterns of actions potentials or rhythmic oscillations
in the membrane potentials of pre-synaptic neurons that give rise to
oscillating extra-cellular currents in the post-synaptic dendrites. The
rhythmic patterns arise from feedback connections between the neurons
and can be classified according to the observed frequency content [13].
We distinguish: delta rhythms (frequencies < 4 Hz), theta rhythms (fre-
quencies between 4 and 7 Hz), alpha rhythms (frequencies between 8 and
13 Hz), beta rhythms (frequencies between 14 and 30 Hz) and gamma
rhythms (frequencies > 30 Hz) shown in Fig. 2.16A. Based on the am-
plitude and frequency of the rhythms, the observed EEG signals can be
used to study and identify normal and abnormal brain conditions (see
section 2.9 for some examples).

2.7.2 Transient activity

Next to the rhythmic activity, transient phenomena can be observed in
the EEG. In panel B of Fig. 2.16, an example is given of spiking activity
which is often observed in EEG recordings of patients with epilepsy.
During sleep, the EEG shows transient features such as vertex waves
and sleep spindles. Each transient feature reflects a certain condition of
the brain and the origin and morphology of the feature can be used to
characterize this condition.
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Figure 2.16: Panel A: Different kinds of rhythmic activity observed in a right
occipital channel O2. The delta, theta, alpha, beta and gamma activity is
respectively shown in red, black, blue, green and gray. Panel B: Example of an
epileptic spike shown on 2 channels of a bipolar montage.

2.7.3 Event related potentials

The response of the brain is often monitored after the presentation of a
stimulus or event during a continuous EEG recording. After the record-
ing of the EEG data, the data is divided into separate segments corre-
sponding with the presentation of a stimulus, called a trial, in which the
zero time point is defined as the stimulus onset, see Fig. 2.17. The trails
can then be averaged in order to increase the signal-to-noise ratio (SNR).

2.7.3.1 Evoked responses

If it is assumed that the brain response is very similar across trials, the
averaged activity across the trials, time-locked to the stimulus is called
an event related response. See the left part of Fig. 2.18 for an illustrative
example. If the noise is assumed to be random, decreasing the noise level
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Figure 2.17: Illustrative example of a continuous EEG registration in which
stimuli of faces are presented to the participant. The brain response, time
locked to the presentation of the stimulus, is called a trial. N trials are presented
to the participant.

with a factor N would require N2 trials that have to be averaged. If we
assume the noise level in an EEG recording is typically around 20 µV,
and the signal of interest around 5µV, this means that averaging over
100 trials, would reduce the noise level to 2 µV. This is important when
designing a study to analyze brain activity because it defines the duration
of the experiment.

2.7.3.2 Induced responses

If the brain response is similar across trials, but the phase of the activ-
ity is changing for each of the stimuli, a different averaging technique is
needed. Especially for high frequency oscillations, like gamma activity
(with frequencies > 30 Hz), the phase of the oscillating activity can be
different from trial to trial, so averaging would result in zero activity.
Such brain responses are termed as induced responses so as to differenti-
ate them from evoked responses. In order to increase the signal to noise
level for induced responses, the phase information needs to be included
in the averaging procedure. This is typically done by computing a spec-
trogram, in which the frequency spectrum is plotted over time and the
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trials can be aligned depending on the occurrence of activity in a certain
frequency band. For a more detailed explanation we refer the reader to
[14]. An illustrative example is given in Fig. 2.18.
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Figure 2.18: Illustrative example of the averaging procedures for evoked and
induced responses.

2.8 EEG artifacts

2.8.1 Biological or environmental

Because the EEG electrodes register electrical activity generated by every
source in their vicinity, the EEG recordings are often contaminated by
activity from sources that are not related to brain activity. This kind of
recorded activity, called artifacts (or noise), can either be of biological
(when it is caused by the subject) or environmental (when it is caused by
the environment) nature. Typical biological artifacts are ocular, muscle
and cardiogenic artifacts. The artifacts originating from the environment
are commonly caused by the power line (50 Hz in Europe) and the EEG
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hardware, for example when an EEG electrode is not functioning well or
is not attached on the scalp surface. Some examples of common artifacts
are shown in Fig. 2.19. The ocular artifacts are especially observed in the
frontal polar channels, ‘Fp1’, ‘Fp2’, ‘Fpz’ and typically have a duration of
≈ 200 ms. Muscle artifacts can be caused by chewing or teeth grinding,
jaw movements, activity of the facial muscles, etc. They can exhibit
high amplitudes, high frequencies (> 100 Hz), and a long duration. The
power line typically causes a 50 Hz buzz in the EEG recording.
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Figure 2.19: Panel A: example of ocular artifacts due to eye blinks. The
frontal polar channels, ‘Fp1’, ‘Fp2’ and ‘Fpz’ pick up electrical activity caused
by eye movements. Panel B: example of muscle artifacts. Panel C: example of
the 50 Hz noise due to the power line.

2.8.2 Artifact handling

Five strategies to deal with EEG artifacts can be distinguished. The first
and most straightforward strategy is to avoid recording unwanted activ-
ity. To avoid environmental activity, the EEG signals can be recorded
in a Faraday cage. However this limits the recording of EEG signals to
specialized rooms which are expensive and can be inconvenient. Also the
proper usage of a conductive gel between the electrodes and the scalp
can remove environmental activity and increases the signal to noise ra-
tio. To reduce the biological artifacts, the subject can be instructed in
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such a way as to limit as much as possible the biological noise during
the periods of interest in the EEG. One can ask the subject to relax,
to refrain from grinding his teeth, or from making too many movements
using the facial muscles or the jaw during these periods.

The second strategy of artifact handling is to use an averaging ap-
proach to the EEG signals as was presented in section 2.7.3. The main
assumption is that the noise present in the recording, is random and the
signal of interest is stable. When several trials of the same EEG signals
of interest, locked to a certain event, are averaged, the random noise will
cancel itself out.

The third strategy involves the rejection of the parts in the EEG
recordings that contain artifacts. For example by removing the EEG
segments that contain eye-movement artifacts. This approach can how-
ever be a time-consuming process because it mainly relies on visual in-
spection. Moreover, some artifacts are not always clearly visible in the
recording. Methods have been developed that allow identification of bad
channels in the EEG recordings and detection of bad segments. These
methods are usually based on tresholding or time-frequency analysis be-
cause artifacts usually contain high power at certain frequencies [15].
The disadvantage of these methods is that they rely on specific rejection
criteria and additional visual inspection is often necessary to remove the
false positives and false negatives. Another approach is to detect the
artifacts based on additional measurements. For example eye movement
artifacts can be detected by placing electrodes above and below the eye
to record the electric field around the eye in the so called electrooculo-
gram (EOG). Based on these signals the eye movement artifact can be
removed by a simple subtraction of the propagated EOG activity at each
channel [16].

The fourth strategy is based on filtering techniques. This is probably
the fastest and easiest way to remove artifacts. The 50 Hz noise from the
powerline can for example be filtered out by a simple notch filter at 50
Hz. Usually high-pass filtering is applied to filter out frequencies below
0.01 Hz. This way, slow changes in the signals that can be caused by
sweating and drifts in the electrode impedances, can be filtered out. High
frequency activity caused by contraction of the muscles can be removed
from the recordings using low-pass filtering with a cut-off frequency of
100 Hz for example. Note however that one has to be careful with filter-
ing techniques because the used filters can also remove signals of interest
from the recordings.
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The final approach is to select the relevant activity using data decom-
position techniques. The currently most popular approach to correct for
artifacts is based on independent component analysis (ICA) [17]. This
technique relies on the hypothesis that brain activity is the result of a
superposition of several independent activities. The activity produced
by an eye blink or eye movement is considered to be represented as one
such independent component. This interpretation is physiologically well
justified and ICA has proven its strength in detecting and removing of oc-
ular artifacts [18, 19]. Other types of artifacts, i.e. from muscle activity
and electrical noise, have been successfully characterized and removed by
ICA as well, making it the method of choice to clean up EEG recordings
[20].

2.9 Applications

Since EEG is a relatively cheap and easy applicable technique to record
brain activity, it can be applied into various fields: medicine, research,
brain computer interfaces and neuromarketing. Note that this is not a
strict classification because the application fields often overlap. Some
examples for each category are given in the next sections.

2.9.1 Medical

2.9.1.1 Epilepsy

EEG is the technique of choice to record brain activity for diagnosing
epilepsy. Epilepsy is a neurological disorder characterized by recurrent
epileptic seizures and epileptiform discharges in the brain. These seizures
and dischagers are expressed in the EEG as ictal epileptic seizure activ-
ity and interictal epileptiform discharges (IED). Based on the topogra-
phy, morphology and typical signature of the ictal and interictal activity,
clinicians are able to classify the type of epilepsy. This is used to plan
treatment. An example of an interictal spike, a special type of interictal
epileptiform discharge, is given in Fig. 2.16B. An example of ictal seizure
activity is shown in Fig. 2.20.

2.9.1.2 Sleep

In clinical investigations of sleeping behavior, EEG is commonly used
to study the different stages of sleep. The sleep of the patient is typi-
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Figure 2.20: Example of EEG seizure activity. The starting point of the
seizure is marked by the vertical red line.

cally registered with EEG electrodes during the whole night to identify
different types of brain waves that are generated during sleep. These
types of brainwaves can be divided into rapid eye movement (REM) and
non-rapid eye movement (NREM) types of sleep. The NREM type is
further subdivided into 3 main stages depending on the features of the
brain waves such as theta and delta activity. Depending on the sequence
and duration of the different sleep stages, clinicians can observe whether
the patient suffers from sleep disorders such as insomnia, sleep apnea,
hypersomnia, REM behavior disorders, etc.

2.9.2 Research

In general, EEG is a technique that is often used in cognitive neuro-
science to monitor brain activity during the execution of a specific cog-
nitive task corresponding with a certain event or stimulus. There are a
lot of different research paradigms to study brain activity. They differ
depending on the stimuli, timing of the stimuli, sequence of the different
stimuli, etc. As mentioned in section 2.7.3, the response of the brain
to specific events or stimuli typically elicits an event related potential
(ERP) in the EEG, i.e. an evoked or induced response. The study of
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event related potentials can help to depict the regions in the brain that
are functionally integrated (see section 2.3.3) in order to perform a cog-
nitive task. In chapter 5 and 6, two types of event related potentials are
investigated corresponding with respectively, checkerboard stimuli and
stimuli of house, faces, inverted faces and words.

2.9.3 Brain Computer Interfaces

The recording of brain activity can be used in order to communicate
directly with an external device, which is called a brain computer inter-
face. Based on a well-chosen paradigm, the brain activity of a user can be
monitored with EEG and processed in such a way that features reflect-
ing the user’s intent can be extracted. For example in awake people, the
primary sensory and motor cortical areas typically evoke 8-14 Hz activ-
ity in the EEG recordings when the areas are not engaged in processing
sensory input or producing motor output. Movement, or preparation for
movement is typically accompanied by a decrease of this activity, in the
motor areas contralateral to the movement. These effects also occur dur-
ing imaginary movement of the limbs and can be detected in the EEG
using advanced signal processing techniques. A clinical application of
this phenomenon is to restore the communication for patients with the
locked-in syndrome, a condition in which the patient is aware but cannot
move or communicate due to complete paralysis [21].

2.9.4 Neuromarketing

A rapidly growing and new application is related to the field of neuro-
marketing. Neuromarketing investigates the behavior of customers by
studying the brain in order to advice companies in their marketing cam-
paigns. EEG recordings of subjects are used to investigate how the
subject is responding when a specific product or brand is presented as a
stimulus. Based on the measured activity neuroscientists develop tech-
niques that allow to measure “the physiological state” of the subject in
order to optimize the customers experience. It is a new application field
which is still very experimental but has high potential [22, 23].

The described applications in this chapter are all related to the pro-
cessing of the signals at the level of the electrodes. The signals however
indirectly provide spatial information of the active areas in the brain.
In order to reveal this information, EEG source imaging techniques are
applied. An overview of EEG source imaging together with the recent
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development is given in the next chapter.





Chapter 3

EEG source imaging

“The pot is full of secrets to be told”
Radiohead - Staircase

3.1 Introduction

Several physical phenomena in nature are characterized by sources of
activity that propagate their energy through a medium reaching the
place where they can be observed. The estimation of the activity and
location of these sources based on the observations requires solving an
inverse problem. Depending on the application, there may not be enough
information to find a unique solution, i.e. to clear the unknowns, making
the problem ill-posed.

The estimation of the sources that generate the measured EEG ac-
tivity, a process called EEG source imaging (ESI), requires solving an
ill-posed problem [24]. The recorded electrical EEG activity originates
from several areas in the brain and propagates trough different tissues
in the human head before reaching a limited number electrodes on the
scalp. Consequently, deriving a realistic and unique solution rests on
prior knowledge, in addition to the observed EEG measurements.

Any EEG source imaging approach is characterized by a generative
model or forward model of the EEG data and an inverse technique to
find a solution, see Fig. 3.1. The forward model includes a biophysical
source model of the brain sources and the definition of a source space.
It includes information about the physical and geometrical properties
of the head, included in the head model. Using techniques to calculate
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the field propagation of the sources through the different tissues in the
head, EEG signals can be generated in function of the sources. An
inverse technique defines then a cost function based on the difference
between the generated and measured EEG data, i.e. the residuals, that
is optimized in order to find the optimal solution of the sources.

In the following sections we will introduce a brain source model and
explain how we model the field propagation of the sources through the
various tissues in the human head to the electrodes. We subsequently
discuss several inverse techniques that were developed over the last 20
years. Next an overview is given of the features of EEG source imaging
related to other functional neuroimaging techniques. We finally present
some applications.
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Figure 3.1: Illustration of the EEG source imaging principle using a forward
model and an inverse technique.

3.2 EEG forward modeling

3.2.1 The current dipole

In order to model the measured EEG signals, a biophysical model of
the sources that are generating the activity is required. As discussed in
section 2.4, the major generators of scalp EEG signals are the synchro-
nized extracellular post-synaptic currents which flow between the layers
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of parallel pyramidal neurons in the cerebral cortex. These currents can
be represented using a current dipole. It represents the postsynaptic
currents at the apical dendrites (see Fig. 3.2) and has 6 parameters: the
position r = [x, y, z], the orientation (φ and θ) and the intensity (I).
The orientation and intensity can also be described by the dipole mo-
ment j = [jx jy jz], with ||j|| = 2sI and s the inter-distance between the
current sink (-I) and current source (+I) [25].

Typically an arrangement of current sinks and sources in a cortical
area of 4 mm × 4 mm × the thickness of the cortex (4 or 5 mm) is
needed to generate EEG signals that are measurable on the scalp surface.
This criterium determines the intrinsic spatial resolution of EEG source
imaging.

Figure 3.2: The current dipole representation of the synchronized postsy-
naptic currents at the apical dendrites. We consider a current sink (-I) and a
current source (+I) with interdistance equal to s. The current dipole can be
characterized by 6 paramaters: the position r = [x, y, z], the orientation (φ
and θ) and the intensity (I) or equivalently, the orientation and intensity can
also be described by the dipole moment j = [jx jy jz].

3.2.2 The head model

To model the field propagation of the current dipole sources to the elec-
trodes, a description of the electromagnetic and geometrical properties
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of the head is required. Due to computational limitations, early EEG
source imaging techniques used (multi-layer) spherical models to approx-
imate the human head [26], which is an oversimplification of reality. As
a first step towards more realistic head modeling, extra anatomical infor-
mation about the human head can be incorporated based on structural
images of the head.

3.2.2.1 Geometry

Magnetic Resonance Imaging (MRI) is a noninvasive technique that al-
lows to produce a high resolution 3D image of the head. It provides
excellent soft tissue contrast, e.g. between the gray and white matter in
the brain. An example of a structural MR image is shown in Fig. 3.3A.

Computed Tomography (CT) is a technique in which X-rays are used
to make tomographic images of the brain. Detailed anatomical images
of the skull, which is not visible in MR images, can be acquired. An
example of a CT image is shown in Fig. 3.3B.

In order to construct a realistic head model including the geometry and
electromagnetic properties of the head, MR images and sometimes CT
images are used. The overall structure of the head is rather complicated.
The brain, skull, scalp and other parts of the head such as the eyes,
vessels, nerves, cerebrospinal fluid, etc. comprise various tissues and
cavities of different electrical conductivity. In the construction process
of the head model, these complications are generally ignored.

In Fig. 3.3C we show 2 typical types of head models constructed based
on a high resolution anatomical Magnetic Resonance (MR) image of the
human head. The head model contains 3 or 4 different layers: scalp,
skull, brain and cerebrospinal fluid which are segmented from the MR
image. Each tissue has a specific conductivity value (see the next sec-
tion). A more advanced, 7-layered, head model constructed using both
MR images and CT images is shown in Fig. 3.4. The most widely used
open source packages to segment MR images in order to extract the differ-
ent layers in the head are the Statistical Paramateric Mapping Software
[27], the Freesurfer toolbox [28], the FSL toolbox [29] and the Brainstorm
toolbox [30].

MR and CT images are however not always available due to additional
costs for the acquisition of the images and the subject or patient is ra-
diated with X-rays during the acquisition of a CT image. In case no
anatomical images are available, template MR images are used, for ex-
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Figure 3.3: A: Example of a sagittal, horizontal and coronal slice of an MR
image of the human head. B: Example of a sagittal, horizontal and coronal
slice of a CT image of the human head. C: head model constructed based on
segmentation of an anatomical MR image.

Figure 3.4: Example of a 7-layered head model including scalp, compact bone,
spongy bone, air cavities, cerebrospinal fluid, white and gray matter segmented
from MR and CT images.
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ample the colin template [31], to construct a template head model (see
also chapter 5).

3.2.2.2 Conductivity

The electrical conductivity of brain tissue is highly anisotropic. The con-
duction is 10 times greater along an axon fibre than in the transverse
direction. It is currently impossible to accurately measure the detailed
conductivity of all tissues in vivo and to account for them in the solution
of the forward model [32, 33]. Therefore, the head is usually modeled
simplified as a set of homogeneous volume conductors with isotropic
conductivity values that are reported in literature based on in-vivo mea-
surements (see table 3.1).

Conductivity (S/m)
[34] [35] [36] [37]

Scalp 0.33 0.22 0.3279 0.43
Compact bone - - 0.0064 0.008
Spongy bone - - 0.02865 0.025
Skull 0.0041 0.015 0.0041 0.01
Gray Matter 0.33 0.22 0.3333 0.33
White Matter 0.33 0.22 0.1428 0.14
CSF - - 1.79 1.79
Air - - 0 0

Table 3.1: Overview of the isotropic conductivity values reported in literature.

3.2.2.3 Electrode positions

The accurate modeling of the positions of the electrodes on top of the
scalp in the head model is crucial in the forward model because the elec-
trode positions directly relate to the position of the sources, the different
tissues in the head model and the field propagation of the sources. We
distinguish 3 main strategies depicted in Fig. 3.5 to derive the electrode
positions.

Often the default electrode positions are used corresponding with the
10-10 or 10-20 system for example. In this approach, the default elec-
trode positions are coregistered to the head model and are warped onto
the scalp surface of the head model.
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A more accurate approach is to determine the electrode positions based
on electromagnetic measurements of the position for each electrode using
a Polhemus (Colchester, USA) digitizer system for example, shown in
Fig. 3.5B. The measured positions are subsequently coregistered with
the head model and warped onto the scalp surface.

A final approach is to segment the electrode positions from structural
images such as a CT image shown in Fig. 3.5C. Also markers are used
placed on top of the electrodes that are clearly visible in an anatomical
MR image.

A! C!B!

Figure 3.5: Approaches to determine the positions of the electrodes. A: the
default electrode positions, B: based on a positioning system, C: using a CT
image.

3.2.2.4 Dipole source space

Because the major generators of scalp EEG signals are located in the
cerebral cortex (see section 2.4), the dipole source space is typically re-
stricted to the gray matter. The cortical surface is often extracted from
an anatomical (template) MR image and the dipoles are restricted to
the meshes of the surface, see Fig. 3.6A. A more general approach is
to restrict the sources to the segmented gray matter segmented from a
(template) MR-image, see Fig. 3.6B. The orientation of the dipoles are
usually chosen orthogonally to the cortical surface. This is based on
the fact that the layers of parallel pyramidal neurons in the cortex are
orientated orthogonally to the cortical surface [38].
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Figure 3.6: Dipole sources restricted to A: the cortical surface (in blue), B:
inside the gray matter (depicted by the arrows in white). The orientations of
the dipole sources are chosen orthogonally to the cortical surface.

3.2.3 Algebraic representation of the forward model

With the source model and head model in mind, the EEG forward model
can be represented algebraically as the potentials, assume V ∈ RNc×1 of
Nc channels, that are generated by a current dipole source at the position
r = [x, y, z] and intensity of the dipole moment j = [jx jy jz]:

V = L(r)j(r) (3.1)

where V ∈ RNc×1 represents the EEG signals of Nc channels and j(r) ∈
R3×1 the amplitude of a current dipole at location r in 3 orthogonal
directions. The lead fields L(r) ∈ RNc×3, represent the field propagation
of the current dipole to the electrodes on the scalp and embodies the
forward model.

Because of the superposition principle, Eq. (3.1) also holds for multiple
active sources:

V = L(r1)j(r1) + L(r2)j(r2) + · · ·+ L(rP )j(rP ) (3.2)

With P the number of dipoles on a variable location r1, r2, . . . rP . As
such, we can assume that the EEG measurements are generated by P
sources.

We can also assume that Nd sources defined at fixed locations ri (i =
1 . . . Nd) and with dipole moments ji (i = 1 . . . Nd) are generating the
EEG signals. In this case the forward model can be rewritten as:
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V = LJ (3.3)

where J = [j1, j2, . . . , jNd ]
T is a vector of current dipoles at Nd locations

and where ji = [jx,i, jy,i, jz,i]T is encoding both the orientation and am-
plitude of the i-th dipole. L = [L(r1),L(r2), · · · ,L(rNd)] ∈ RNc×3Nd is
the lead field matrix linking the source amplitudes in J of the assumed
dipoles on fixed locations to the electrical potential V.

3.2.4 Modeling the field propagation of the current dipole

In order to calculate the field propagation of the current dipole to the
electrodes on the scalp, i.e. to compute the lead fields, an electromagnetic
problem has to be solved that can be expressed with classical electro-
magnetism. In what follows we describe the equations of classical elec-
tromagnetism corresponding with the description of a current dipole and
the head model including different layers with different electromagnetic
properties. We derive the poisson equation which is used to calculate
the electrical potentials on the scalp surface caused by a current dipole.

3.2.4.1 Derivation of Poisson’s equation

The Maxwell’s equations are:

∇ ·E =
ρ

�
(3.4)

∇ ·B = 0 (3.5)

∇×E = −∂B

∂t
(3.6)

∇×B = µj+ µ�
∂E

∂t
(3.7)

where E and B are the electric field and magnetic field respectively, j is
the current density vector field, ρ is the charge density, � the electrical
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permittivity, and µ) the magnetic permeability each of them dependent
on the position. The electrical permittivity represents the resistance of
the medium, i.e. the different modeled layers in the head model, when
forming an electrical field in the medium. The magnetic permeability
represents the ability of the medium to support the formation of a mag-
netic field in the medium. Eq. (3.4) represents Gauss’ law that describes
the relation between the distribution of electrical charge and the result-
ing electrical field. Eq. (3.5) represents Gauss’ law for magnetic fields,
which states that there are no sources of magnetic fields, analogue to
electrical charges. Eq. (3.6) represents Faraday’s law that describes that
a changing magnetic field generates electrical fields. Eq. (3.7) represents
Ampères law that describes the relation between the magnetic field in-
duced by an electrical current and a changing electrical field.

Assuming isotropic conductivities in the head model Ohm’s law states
that:

j = σE (3.8)

where σ(x, y, z) is the position dependent conductivity. The law de-
scribes that the current through a conductor is directly proportional to
the electrical field. If we furthermore add the continuity equation for
electrical charges:

∇ · j = ∂ρ

∂t
(3.9)

that states that electric charge can neither be created nor destroyed, we
are able to describe all electromagnetic phenomena based on Eq. (3.4)-
(3.9).

For EEG measurements, we are only interested in the electrical field E.
The Maxwell’s equations can be simplified significantly by noting that
the media comprising the head model have no significant capacitance,
i.e. charge does not accumulate in the volume or on tissue interfaces and
the charges are redistributed in negligible time. This means there are no
electromagnetic wave propagation phenomena [39]. This simplification
allows us to adopt a quasistatic approximation of Maxwell’s equations,
which means that, in the calculation of E, ∂B

∂t and ∂E
∂t can be ignored as

source terms. Physically, these assumptions mean that the instantaneous
current density only depends on the instantaneous current sources. Eq.
(3.6) then becomes ∇×E = 0 and the electric field E can be expressed as
the negative gradient of a scalar field, the electrical position dependent



3.2 EEG forward modeling 45

potential U(x,y,z):

E = −∇U. (3.10)

Due to the linearity of the Maxwell equations the current density in the
head model, consists of a current density imposed by the dipole source,
or forced current density jf , and the return current jr which is the result
of the macroscopic electric field in the conducting medium, as expressed
by Ohm’s law. The total current density jtot flowing through the media
becomes:

jtot = jr + jf = σE+ jf = −σ∇U + jf (3.11)

based on Ohm’s law and Eq. (3.10). Neglecting the capacitance of the
head tissues translates mathematically into zero divergence of the current
density ∇ · jtot = 0. By taking the divergence of Eq. (3.11), we obtain
the Poisson’s equation:

∇ · (σ∇U) = ∇ · jf (3.12)

which is at the heart of the forward problem in EEG. It links the current
source jf and the electrical potential U.

3.2.4.2 Numerical solvers: overview

Eq. (3.12) can be solved for U in various ways, depending on the geometry
of the head model, the form of the conductivity σ in the head model and
the location of the sources jf . An overview of the open-source toolboxes
including different techniques to calculate the field propagation of the
sources is given in table 3.2.

An analytical solution is possible only for particular cases: a highly
symmetrical geometry (e.g. concentric spheres) and homogenous
isotropic conductivities. This approach is implemented in the CAR-
TOOL software, a toolbox designed for the localization of epileptic spikes
[40].

For other more general cases, numerical methods are required. Typical
methods include the ‘Finite Element Method’ (FEM) [37, 41–45], the



46 EEG source imaging

‘Finite Difference Method’ (FDM) [46–50] and the ‘Boundary Element
Method’ (BEM) [51–53].

The BEM approach is based on the hypothesis that the head volume
is divided into subvolumes of homogeneous and isotropic conductivity,
and the potentials are only estimated on the surfaces separating these
subvolumes. The BEM only allows to use closed compartments with the
limitation that usually only 3-layered head models can be modeled. BEM
models are used in the OpenMEEG, Fieldtrip and Statistical Parametric
Mapping Software.

The FEM and the FDM approach are similar and are based on the
hypothesis that the head volume is divided in small volume elements.
The only difference is the fact that the volume elements are of arbitrary
shape (usually tetrahedron or regular polyhedron) using the FEM while
the volume elements are cubic with the FDM. Therefore the FEM ap-
proach is more flexible but also computationally more intensive. The
MRI (or CT) images used to construct the head models are however
intrinsically cubic so there is a direct correspondence with the FDM ap-
proach. The FEM and FDM make no assumptions about the shape of
the volume conductivity and allow the estimation of U at any location
in the volume. The volume is tessellated into small volume elements in
which Maxwell’s equations are solved locally. As each volume element is
characterized by its own conductivity. Any configuration of conductive
volume can be modeled. Therefore the FDM and FEM are the tech-
niques of choice to construct accurate and realistic head models based
on structural images. In chapter 5 a more extensive discussion is pre-
sented. We refer the reader to [54], for a comprehensive overview on the
field of EEG forward modeling.

Toolbox
spherical CARTOOL [40]

BEM OpenMEEG [55], Fieldtrip [34] (SPM [56])
FEM Simbio (neuroFEM) [57]
FDM Developed at Ghent University [58, 59]

Table 3.2: Overview of the toolboxes to calculate the field propagation of a
current dipole to the electrodes. Note that the Statistical Paramateric Mapping
(SPM) toolbox relies on the Fieldtrip toolbox.

In this dissertation, we made use of the finite difference method based
on reciprocity for isotropic media [49, 50]. The implementation of the
approach is explained in the next section.
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3.2.4.3 The Finite Difference Method

Implementation

For the finite difference approach, the head model consists of volume
elements defined by a cubic grid as illustrated in Fig. 3.7, where hx, hy
and hz correspond with the size of the cubic volume elements in x, y or
z direction. The potentials on the nodes surrounding the central node
(depicted by 0) of the cubic grid are defined as Ui, with i = 1 . . . 6.

Figure 3.7: The 3D cubic grid. The potentials in the nodes surrounding the
node in the center, i.e. 0, are numbered from 1 to 6.

We assume a dipole model in which the dipole is represented by 2
monopoles (−I and +I) extending over 3 voxel nodes in x, y or z direction
and the center node represents the dipole position, see Fig. 3.8 for an
example of a dipole in the z-direction. For such a current dipole model,
we can write Eq. (3.12) as [49, 60]:

∇ · (σ∇U) = −Iδ(r− r2) + Iδ(r− r1) (3.13)

where r1 = [x1, y1, z1]T and r2 = [x2, y2, z2]T correspond with the loca-
tions of the nodes and representing a current sink and source respectively.
Expanding Eq. (3.13) yields:
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Figure 3.8: Example of the representation of a current dipole on a cubic grid
in the negative z-direction. The dipole is represented by 2 monopoles (−1 and
+1) extending over 3 voxel nodes in z direction and the center node represents
the dipole position.

The finite difference formulation of Eq. (3.14) for the central node in a
cubic volume element as shown in Fig. 3.8, was first introduced by [61]
and [47] based on the surrounding potentials Ui and adopted by [50]
resulting in:

6�

i=1

AiUi −
�

6�

i=1

Ai

�
U0 = IP (3.15)

where U0 is the potential at the central point. The Ai coefficients, with
i = 1, . . . , 6, are the Saleheen coefficients depending on the conductivity
of the 8 volume elements shown in Fig. 3.7:
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A1=
1

4h2x
[σ1 + σ2 + σ3 + σ4] (3.16)

A2=
1

4h2y
[σ1 + σ5 + σ4 + σ8] (3.17)

A3=
1

4h2x
[σ5 + σ6 + σ7 + σ8] (3.18)

A4=
1

4h2y
[σ2 + σ3 + σ6 + σ7] (3.19)

A5=
1

4h2z
[σ1 + σ2 + σ5 + σ6] (3.20)

A6=
1

4h2z
[σ3 + σ4 + σ7 + σ8] (3.21)

where σp, with p = 1, . . . , 8 is the conductivity defined at element p.
Each of the coefficients Ai corresponds with 4 volume elements with a
fixed position relative to the center node as is illustrated in Fig. 3.9.

Figure 3.9: Geometrical representation of the volume elements containing the
conductivity values used to compute A1 to A6. For A1 the conductivity of the
4 volume elements left to the center node is used, For A2 to A6 the volume
elements behind, right to, before, above and under the center node are used
respectively.

Note that the volume elements indicate the conductivity and the ge-
ometry of the head model, but the potential values are computed at the
nodes between the voxels. IP denotes the current depending on the posi-
tion of the center node. If the center node is at a monopole of the current
source or sink, then IP = 1 or IP = −1, respectively, else IP = 0.
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For each node of the cubic grid in the head model we obtain a linear
equation given by Eq. (3.15). Assume we have n nodes. In matrix
notation we can write:

A ·U = I (3.22)

where U = (U1, . . . , Un)
T ∈ lRn×1 is a vector with the potential values

at each computational point and I ∈ lR(n×1) is a vector indicating the
current sources and sinks. If the current source (or sink) monopole is
placed at the k-th (or l-th) node of the computational grid, then Ik = 1
(or Il = −1), else Ip = 0 with p �= k, l. A ∈ lR(n×n) is a stiffness
matrix, with Aij the j-th coefficient if the i-th node is assigned as the
center node. Notice that in the linear Eq. (3.15) only the neighboring
computational points are included. The system matrix A has at most
six off-diagonal elements per row and is therefore a sparse matrix.

The linear system in Eq.(3.22) can be solved using direct or iterative
techniques to obtain the potentials in each node:

U = A
−1 · I (3.23)

In this dissertation we used the Biconjugate gradient stabilized method
with Incomplete LU preconditioning, both implemented in MATLAB
(The MathWorks Inc., Natick, USA) for an optimal computation speed
and accuracy of the solution. By evaluating Eq. (3.23) on the coordi-
nates for each of the electrodes, we obtain the potentials caused by the
current dipole.

The lead fields introduced in Eq. (3.1) are then computed using Eq.
(3.23), 3 times for 3 dipolar sources introduced on the same location
r in each direction x, y and z. By evaluating U in the Nc indices of
the electrode positions on the scalp of the head model for each of the
three sources and assuming a unit amplitude, i.e. I = 1, we become the
electrode potentials Vu ∈ RNc×3. Vu represents the lead field L for that
particular source location.

The reciprocity principle

The forward model is typically calculated for all the sources assumed
in the source space, i.e. for 10.000 up to 1.000.000 sources, in order
to find the optimal solution. The computation of the lead fields for
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all these sources is therefore computational intensive. The reciprocity
principle states that the roles of the dipoles and the electrodes can be
reversed, compared to the direct computation of the lead fields. As such
the computation time reduces drastically because it is limited to the
number of computations corresponding with the number of electrodes.
The reciprocity principle is explained in detail in appendix A.

3.3 Inverse techniques

3.3.1 Background

As stated in the introduction, EEG source imaging involves solving an
inverse problem. The basic principle to solve the EEG inverse problem
is illustrated in Fig. 3.1. Based on the forward model, EEG data can
be generated assuming a number of active current dipoles. An inverse
technique allows to find a unique solution by minimizing the difference
between the generated EEG data and the measured EEG data, i.e. the
residuals. Each inverse technique will differ depending on the nature of
the forward model and the cost-function that is optimized in order to
find the optimal dipole parameters, i.e the locations and the intensities of
the dipoles. Depending on the nature of the forward model described in
the previous section, we separate the inverse techniques for EEG source
imaging in two categories:

• The equivalent current dipole (ECD) approaches, where the EEG
signals are assumed to be generated by a relatively small number
(< 10) of focal sources [62, 63]. In this case the forward model is
characterized by Eq. (3.1) for a single dipole or (3.2) for multiple
dipoles.

• Distributed dipoles approaches, where all possible source locations
(typically around 10.000) are considered simultaneously [64–66]. In
this case the forward model is characterized by Eq. (3.3).

3.3.2 ECD approaches

Equivalent current dipole approaches are based on iterative algorithms
that estimate the source parameters in order to explain the data as ac-
curately as possible. In the iterative process, the source parameters are
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modified to minimize the residual error [67]. ECD approaches are es-
pecially suited when the sources are assumed to be focal, for example
corresponding with the generation of an epileptic spike in epilepsy pa-
tients. The solution is however very sensitive to the number of sources
and initial parameters (dipole locations and orientations), which need
to be specified a priori. ECD models require non-linear optimization
with the possibility of local minima. Moreover, determining the optimal
number of ECDs is a non-trivial issue [68].

3.3.2.1 Single dipole model at one time point

Assume the measured electrode potentials Vm ∈ RNc×1 at a specific time
point. The inverse problem for a single ECD is solved by minimizing the
relative residual energy (RRE):

RRE =
�Vm − L(r)j(r)�

�Vm� (3.24)

The dipole parameters r and j(r) are optimized so that they minimize
the RRE, i.e. the energy that cannot be explained by the model. This is
a 6D optimization problem that can be simplified to a 3D problem if the
optimal dipole moment at position r is assumed to be given by [69, 70]:

jopt(r) = L(r)†Vm (3.25)

with L
† the Moore-Penrose pseudo-inverse of matrix L [71]. This way

Eq.(3.24) reduces to a minimization problem with respect to parameter
r:

RRE =
�Vm − L(r)L(r)†Vm�

�Vm� (3.26)

Based on a 3D scanning approach or optimization techniques like the
Nelder-Maede simplex method, this problem can be solved [72].

3.3.2.2 Multiple dipole modeling

An example of a multiple dipole modeling approach is the multiple signal
classification (MUSIC) algorithm. The algorithm can be used to localize
multiple asynchronous dipolar sources through a 3D head volume by
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computing projections onto an estimated signal subspace. To locate the
sources, the user must search the head volume for multiple local peaks
in the projection metric. For more details see [53].

An alternative signal subspace algorithm is the FINES approach [73].
This approach employs projections onto a subspace spanned by a small
set of particular vectors (FINES vector set) in the estimated noise-only
subspace instead of the entire estimated noise-only subspace as in case
of classic MUSIC. For a comprehensive review on this topic we refer the
reader to [74].

3.3.3 Distributed solutions

In contrast to ECD approaches, distributed dipoles approaches repre-
sent a highly under-determined but linear system since the number of
assumed dipoles is much higher than the number of EEG channels. The
linear model (see Eq. (3.3)) is formally similar to those encountered in
signal and image processing. They all obtain a unique solution by op-
timizing a goodness-of-fit term and a regularization term in a carefully
balanced way. Most distributed dipoles approaches can be framed in
terms of a Weighted Minimum Norm criterion (WMN) (see section 3.3.3),
which represents the classical and most popular distributed approach.

3.3.3.1 Weighted minimum norm solutions

The distributed dipoles approach can be expressed as a general lin-
ear model in Eq. (3.3). One common approach to this problem is the
weighted minimum norm (WMN) solution or Tikhonov regularization
method [75]. The WMN solution constrains the reconstructed source dis-
tribution by minimizing a linear mixture of some weighted norm ||HJ||
of the source amplitudes J and the residuals of the fit. Assuming that
the noise on the measurements is Gaussian � ∼ N(0,C�) with known
covariance matrix C�, the regularized problem is expressed as:

Ĵ = argmin
J

(||LJ−Vm||+ µ||HJ||) (3.27)

With Ĵ the estimated activity and the paramater µ expressing the
balance between fitting the model ||LJ − Vm|| and minimizing the a
priori constraint ||HJ||. The solution of Eq. (3.27) for a given µ is:
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Ĵ = (HT
H)−1

L
T [L(HT

H)−1
L
T + µC�]

−1
Vm (3.28)

The WWN solution depends on the parameter µ that balances the rela-
tive contribution of fitting the model and the constraint on the solution.
As µ varies, the regularized solution of Eq. (3.28) varies. Therefore the
choice of µ is crucial. In most cases µ is estimated using an L-curve
approach [76].

3.3.3.2 LORETA

A well known and often used approach is the low resolution electrical
tomography algorithm (LORETA). In the approach, it is assumed that
the sources are smoothed and multiple dipoles are related in focal regions
[77, 78].

3.3.3.3 Beamformers

The basic assumption in beamforming is that the sources are uncorre-
lated, and therefore the activity of each source in the distributed source
model is estimated independent of the others. In a beamformer approach,
spatial filters are designed for each dipole source that passes the signal
coming from the location of the dipole and attenuates all signals coming
from other dipoles. We refer the reader to [79–81] for more details and
chapter 4 for a mathematical representation.

3.4 Applications

ESI can be applied in each of the applications we introduced for EEG in
section 2.9. In the following sections we discuss the main application of
ESI in epilepsy studies, ERP research and BCI experiments.

3.4.1 Epilepsy

Approximately 30 % of the patients with epilepsy suffer from refractory
epilepsy, a condition in which epileptic seizures are not adequately con-
trolled with anti-epileptic drugs. One of the treatments for refractory
epilepsy patients is epilepsy surgery [82]. The possibility for a surgical



3.4 Applications 55

procedure to treat the patient is assessed during the pre-surgical eval-
uation. During the pre-surgical evaluation the results of different tech-
niques that characterize the epilepsy are combined in order to delineate
the zone in the brain where the epileptic activity originates from. One
such technique is ESI.

As introduced in section 2.9.1.1, Interictal epileptiform discharges
(IEDs) are typical manifestations of epileptic activity in the EEG. They
possess information to identify the irritative zone (IZ), i.e. the zone
where the IEDs originate. In Fig. 3.10A an example is given of a single
dipole ECD approach in order to localize the source generating the in-
tertictal epileptiform activity shown in the scalp topography. This 3D
information of the epileptic activity can help neurologist and neurosur-
geons to evaluate whether surgery is the optimal treatment.

Several studies attempting to determine the accuracy of ESI to local-
ize the IZ have been reported and showed high positive predictive value
[83–91]. The latest studies that applied ESI techniques to epileptic ac-
tivity recorded in the EEG to guide brain surgery are very promising. A
study of Geneva Hospital [91] based on 152 operated patients recently
quantified the sensitivity and specificity of ESI based on the brain area
that was removed during surgery, i.e. the resected zone. The sensitiv-
ity was defined as the ability to estimate the epileptic focus inside the
resected zone when the patient was rendered seizure free after surgery.
The specificity was defined as the ability to estimate the epileptic focus
outside the resected zone when the patient was not rendered seizure free
after surgery. The authors showed that the sensitivity and specificity of
ESI to delineate the epileptic focus were respectively 66% and 54% when
< 32 electrodes were used. These values are comparable to other func-
tional imaging techniques (see section 3.5) that are used to delineate the
epileptic focus such as Positron Emission Tomography (PET) with a sen-
sitivity and specificity of respectively 68% and 43%, and Single Photon
Emission Computed tomography (SPECT) with a sensitivity and speci-
ficity of respectively 57% and 46% . For the patients registered with a
higher number of electrodes, 128 or 256, the sensitivity and specificity of
ESI increased to respectively 84.5% and 87.5% which was much higher
than the sensitivity and specificity of SPECT and PET, typically both
< 65%, in these patients.

In chapter 7 we devoted an entire chapter to an application of ESI in
epilepsy. A nice overview of the clinical use of ESI in epilepsy is given
in [92].
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3.4.2 Research

ESI is often used in cognitive neuroscience to extract and characterize the
active sources in the brain during a cognitive task based on event related
potentials. In Fig. 3.10 an example is given of a study to characterize
the sources during visual attention [93]. EEG recordings of ERPs were
used corresponding with small checkerboard stimuli that were flashed in
the lower left quadrant of the visual field at a rapid rate. During the
stimuli the subjects were instructed to either attend to the stimuli in
the left quadrant or were unattended. A multiple dipole modeling ECD
approach was used to characterize the time course of 7 sources corre-
sponding with the ERP activity at a specific location in the brain. The
earliest ERP component (C1 at 50-90 ms) was localized to the calcarine
cortex, source 1. A longer latency deflection, P1 and N1, was found in
higher extrastriate areas, source 2 to 7. In the 150-225 ms range again
a deflection was found in the same calcarine cortex, source 1, especially
for attended stimuli. These results provided support to the hypotheses
that spatial attention in humans is associated with delayed feedback to
the calcarine area from higher extrastriate areas.

In chapter 5 and 6, ESI of ERP components for visual processing is
discussed in detail.

3.4.3 Brain computer interfaces

A more recent application field is related to BCI systems. A general
problem in the design of an EEG-BCI system is the poor quality and low
robustness of the extracted features, affecting the overall performance.
ESI techniques can help to enhance the extracted features. As introduced
in section 2.9.3, movement, or preparation for movement is typically
accompanied by a decrease of beta band activity, in the motor areas
contralateral to the movement. ESI can be used to localize the sources
corresponding with the movement. In Fig. 3.11 an example is given of
an ERP experiment we performed during which a subject was instructed
to press a button with his right hand forefinger [94]. We localized the
sources generating the ERP based on a linearly constrained minimum
variance (LCMV) beamformer [95]. The area of the sources can be used
subsequently as a region of interest to project the recorded activity into,
in real-time, during a BCI experiment based on motor-imagery, for better
feature extraction [96–99].
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Figure 3.10: A: Example of a single dipole ECD approach to localize the
generating source of an interictal epileptic spike. B: Example of a multiple
dipole ECD approach to localize the generating sources corresponding with the
processing of stimuli in the left visual field, attended and unattended. The time
course of 7 sources is given, each with a specific location in the brain (Figure
adapted with permission from [93]).

Right hand!

Figure 3.11: Example of a beamforming approach to localize the sources
corresponding with right hand button pressing. The activity is located in the
left motor cortex. These locations in the brain can be used to project the
activity into a region of interest during a BCI experiment for better feature
extraction.
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3.5 Positioning within the field of functional
neuroimaging

3.5.1 Different techniques

In order to position EEG, and by extension EEG source imaging as
a neuroimaging technique, i.e. a technique to image brain activity, we
give an overview of the currently used most common non-invasive func-
tional neuroimaging techniques presented in Fig. 3.12. We distinguish
Positron Emission Tomography (PET), Single Photon Emission Com-
puted Tomography (SPECT), functional Magnetic Resonance Imaging
(fMRI), MagnetoEncephaloGraphy (MEG) and Near InfraRed Spec-
troscopy (NIRS). Each functional neuroimaging technique is based on
a different measuring principle of brain activity and therefore each tech-
nique is characterized by a typical spatial and temporal resolution (see
Fig. 3.13). In what follows the different techniques are briefly discussed.

Positron Emission Tomography (PET) is a nuclear imaging technique
that can be used to image the distribution of an injected radio tracer in
the brain, typically 18F-fluorodeoxyglucose (18F-FDG). This is a glucose
molecule labeled with a positron emitting radionuclide to investigate and
visualize the glucose uptake in the different brain regions. PET imaging
allows to characterize brain activity with minute temporal resolution and
a spatial resolution from 3 to 10 mm.

Single Photon Emission Computed Tomography (SPECT) is also a nu-
clear imaging technique that allows to image the distribution of a radio
tracer in the brain labeled with a single photon emitting isotope, typi-
cally 99mTc-HMPAO (Technetium - hexamethylpropylene amine oxime).
99mTc-HMPAO-SPECT allows to image the perfusion, i.e. the blood
flow in the brain. After the tracer is injected the tracer flows to the
brain cells that take up the isotope. The SPECT recording is performed
several hours later to asses the regional cerebral blood flow at the time
of injection. The temporal resolution is several minutes and the spatial
resolution is worse compared to PET, i.e. typically > 1 cm.

Functional Magnetic Resonance Imaging (fMRI) is a technique that
uses MRI acquisition technology to measure brain activity. The tech-
nique relies on the fact that active areas in the brain require a higher
blood flow to these areas, i.e. the direct coupling between brain ac-
tivity and cerebral blood flow. The most widely used fMRI technique
is based on the Blood-Oxygenation-Level-Dependent (BOLD) contrast.
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Figure 3.12: Overview of the most common non-invasive functional neu-
roimaging techniques. PET = Positron Emission Tomography, FDG = Fluo-
roDeoxyGlucose, EEG = ElectroEncephaloGraphy, SPECT = Single Photon
Emission Tomography, HMPAO = HexaMethylPropyleneAmine Oxime, NIRS
= Near InfraRed Spectroscopy, fMRI = functional Magnetic Resonance Imag-
ing. Figure adapted from [100].

This contrast allows to indirectly investigate neuronal activation based
on the oxygenation level of the blood in different brain areas. fMRI
is a very popular functional neuroimaging technique because it has a
high spatial resolution, i.e. up to the sub-millimeter scale and temporal
resolution of several seconds.

Magnetoencephalography (MEG) is a technique similar to EEG that
allows to record the magnetic field produced by the electrical currents in
the brain. The magnetic field of the brain is very small in the order of
10 to 1000 femtotesla (fT) while the environment noise is around 108 fT.
Therefore, MEG recordings need to be registered in a special shielded
magnetic room with highly sensitive magnetometers. MEG source imag-
ing (MSI) techniques are developed similar to ESI that allow to charac-
terize the sources that are generating the measured MEG signals. The
temporal and spatial resolution of MEG and MSI are equivalent to EEG
and ESI, i.e. a milliseconds temporal resolution and a spatial resolution
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Figure 3.13: The spatial and temporal resolution of the most common non-
invasive functional neuroimaging methods. The spatial resolution is depicted
in terms of anatomical regions in the cerebral cortex with different sizes: brain,
lobe, cortical map, column or layer.

of centimeters. MSI has the advantage over ESI that it is less sensitive
to the forward model, i.e. it is less sensitive to accurate head modeling
incorporating the skull, and different tissues in the brain. In contrast
to that, MEG is more sensitive to tangential sources (originating in the
sulci) than radial sources, while EEG is sensitive to both tangential and
radial sources. Compared to EEG, MEG is much more expensive (typi-
cally EUR 1000,- for a 1 hour MEG registration).

Functional Near-Infrared Spectroscopy (fNIRS) is a more recent tech-
nique to measure brain activity by analyzing the absorption patterns of
near-infrared light in the brain. In a typical fNIRS study, the cerebral
cortex is irradiated with near infrared light via laser sources and optical
fibers, i.e. the emission probes, at the scalp surface. The light penetrates
through the skull into the cerebral cortex. After absorption and scat-
tering of the light in the cortex it is observed again on the scalp surface
via the receiver probes with a light detector, typically at a distance of
30 mm to the emission probes. By analyzing the absorption patterns of
the detected light, corresponding with varying oxygenated hemoglobin
or deoxygenated hemoglobin levels in the blood (similar to fMRI), neu-
ronal activity can be detected. It is a promising technique because it is
portable, has a high intrinsic temporal resolution in the order of seconds
and a spatial resolution comparable to EEG and MEG. A disadvantage



3.5 Positioning within the field of functional neuroimaging 61

of fNIRS is that it currently only allows to visualize superficial brain
activity close to the scalp surface.

3.5.2 Multimodal neuroimaging

As introduced in the previous section, there exist several techniques or
modalities to investigate brain activity. The question one can ask here
is which of the techniques is the best or most optimal technique to char-
acterize brain activity. The answer to the question strongly depends on
the type of study to investigate the activity. For example whether it is
required to characterize the brain activity with a high temporal resolu-
tion, it is necessary to the determine the activity of deeper sources in the
cerebral cortex, or whether the accurate localization of the brain activity
is important. Often the most powerful way to study brain activity is to
use different modalities, combine them, and interpret the results together
in order to improve the characterization of the process being studied. In
a multimodal characterization of brain activity it is important to realize
the limitations and strengths of each of the modalities.

Much effort is already put into the development of techniques to si-
multaneously measure the EEG and fMRI or the EEG and the MEG.
In a combined registration of EEG and fMRI the high spatial resolution
of the fMRI study can be coupled to the high temporal resolution of the
EEG registration [101–103]. A registration of EEG and MEG together
can result in more accurate source imaging results [104–106].

To illustrate the principle of multimodel neuroimaging, we present the
results of a study we performed in which we tried to determine the origin
of the epileptic activity in the brain of a patient using several modalities
in Fig. 3.14. MR en CT structural images were recorded. ESI and
MSI were performed on epileptic spikes. An ictal subtraction HMPAO-
SPECT was performed, i.e. an interictal SPECT fused, normalized and
subtracted from an ictal SPECT investigation. And finally an interictal
FDG-PET investigation was performed. Comparing the results of each
of the modalities and by combining them it was possible to pinpoint the
origin of the epileptic activity in the frontal areas of the right temporal
lobe.

Several open-source software toolboxes are already developed that al-
low the analysis of multimodal neuroimaging data. The most widely used
toolbox is the Statistical Parametric Mapping software [107]. This is a A
MATLAB (The Mathworks. Inc., Natick, USA) toolbox for the analysis
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MRI! CT! ESI! MSI! SPECT! PET!

R!

R!

L!

L!

Figure 3.14: Example of a multimodal neuromaging study to determine the
origin of the epileptic activity. The MSI, ESI, SPECT and PET investigations
pinpoint the frontal areas in the right temporal lobe.

of EEG signals, MagnetoEncephaloGraphy (MEG), Positron Emission
Tomography (PET), Single Photon Emission Tomography (SPECT) and
functional Magnetic Resonance Imaging (fMRI) data. In the next chap-
ter the framework for ESI in SPM is described. Based on this framework
we present some extensions and applications in the following chapters.



Chapter 4

Bayesian framework for ESI

“Somewhere I remain inside this house of all big thoughts that linger”
Geppetto & the whales - Cocklane ghosts

4.1 Introduction

In this chapter we introduce a Bayesian statistical framework to solve
the inverse problem for EEG source imaging. The chapter begins with
an explanation of Bayes’ theorem, followed by the hierarchical Bayesian
formulation of the inverse problem based on a distributed source model.
Also the Bayesian interpretation of the classic ESI methods is discussed.
Next, the framework is introduced that allows to introduce multiple
source priors for EEG source imaging. A generalized cost function is
derived, i.e. the free energy, that is optimized to find a unique solution
using the Restricted Maximum Likelihood (ReML) algorithm. Finally,
we show how the framework can be used to compare different forward
models depending on the measured EEG data. The methods that are
described in this chapter are all implemented in the Statistical Paramet-
ric Mapping software (SPM) for neuroimaging that was introduced in
the previous chapter.

4.2 Probability and Bayesian inference

The notion of probability in inferential statistics is used to express the
belief that an event has or will occur. It is introduced to account for
randomness and uncertainty in the data, for hypotheses testing, inferring
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hidden paramaters etc. Probability has different interpretations. In the
classical interpretation, the probability corresponds with the frequency
of the occurrence of an event, given an infinite number of trials. It is only
defined for random processes that can be observed many times and it
is meant to be objective. In the Bayesian interpretation the probability
expresses the degree of belief a certain event occurs. It is a measure
of uncertainty. In the Bayesian interpretation, the probability can be
defined for any type of event and is considered to be subjective in essence.

Based on the axioms of Kolmogorov [108] some calculation principles
can be derived. Assume we have 2 events A and B, and p(A) and p(B)
denote the probability of event A or event B, with 0 ≤ p(A) ≤ 1 and
0 ≤ p(B) ≤ 1. The probability p(A,B) expresses the joint probability of
A and B. If A and B or mutually exclusive events, i.e. if either event A
or event B occurs, it follows that:

p(A,B) = 0 (4.1)

and if A and B are independent events it follows that:

p(A,B) = p(A)p(B) (4.2)

The conditional probability of A given B is defined as p(A|B) and is
equal to:

p(A,B) = p(A|B)p(B) (4.3)

Note that if A and B are independent, p(A|B) = p(A) and p(A,B) =
p(A)p(B). If we furthermore consider:

p(A,B) = p(B,A) = p(B|A)p(A) (4.4)

Bayes’ theorem can be derived from Eq (4.3) and (4.4):

p(A|B) =
p(B|A)p(A)

p(B)
(4.5)

Bayes’ theorem describes that the conditional probability of A given B
is equal to the conditional probability of B given A times the probability
of A divided by the probability of B. Assume for example that 10% of
happy people are rich, 40% of people are happy and 5% of people are
rich. The people that are rich are defined as event A and the people that
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are happy are defined as B. What is interesting to know is the percentage
of rich people that are happy. This can be derived with Bayes’ theorem.
The people that are rich and happy p(A|B) is equal to 10%×40%

5% = 80%,
meaning that the majority of rich people are happy. Therefore proving
in this hypothetical situation that money buys happiness.

4.3 Hierarchical Bayesian model

In what follows we introduce a hierarchical Bayesian framework for a
distributed source model and explain how Bayes’ theorem is used to
derive a solution of the source intensities.

4.3.1 The model

The problem of finding the source intensities in a distributed source
model introduced in Eq. (3.3) can also be expressed in the context of a
two-level hierarchical Parametric Empirical Bayes (PEB) model [109]:

Vm = LJ+ �(1)

J = �(2)
(4.6)

where Vm ∈ RNc×Nt represents the EEG signals of Nc electrode
channels over Nt time samples. J = [j1, j2, . . . , jNd ]

T is a vector
of current dipoles at Nd locations each over Nt time samples, L =
[L(r1),L(r2), · · · ,L(rNd)] ∈ RNc×Nd is the lead field matrix linking the
source amplitudes in J of the assumed dipoles on fixed locations to the
electrical potentials Vm; �(1) and �(2) are the noise at the level of the
electrode channels and at the source level respectively. Given the prior
probability of the source activity: p(J) and the likelihood of fitting the
data: p(Vm|J), the posterior source activity distribution can be esti-
mated using Bayes’ theorem:

p(J|Vm) =
p(Vm|J)p(J)

p(Vm)
. (4.7)

We define:

• p(J|Vm) as the posterior probability distribution of the sources
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• p(Vm|J) as the likelihood

• p(J) as the prior knowledge of the sources

• p(Vm) as the evidence.

The likelihood and the prior knowledge are directly related to the forward
model of the EEG measurements and the magnitudes of the sources can
be recovered applying the expectation operator: �J� = E[p(J|Vm)]. In
the next section we explain how to compute the solution for p(J|Vm).

4.3.2 Solution

Given the evidence p(Vm) is constant because the dataset is fixed, we
get:

p(J|Vm) ∝ p(Vm|J)p(J). (4.8)

We assume that the noise at the channel and source level is both Gaussian
distributed with zero mean and covariances C� and CJ: �(1) ∼ N(0,C�)
and �(2) ∼ N(0,CJ), with N(·) the matrix normal distribution. Under
these assumptions, the likelihood p(Vm|J) is Gaussian with mean LJ

and covariance C�: N(LJ;C�). The likelihood gives us the probability
of the data for a given distributed source activity. Because the prior on
the sources and likelihood are both Gaussian, we can rewrite Eq. (4.8)
as:

p(Vm|J)p(J) ∝ exp

�
1

2
tr((Vm − LJ)TC−1

� (Vm − LJ)− 1

2
J
T
C

−1
J J)

�
.

(4.9)
With:

φ = exp

�
1

2
tr((Vm − LJ)TC−1

� (Vm − LJ)− 1

2
J
T
C

−1
J J)

�
(4.10)

the optimal source intensities correspond with the intensities that opti-
mize φ. This is equivalent to finding the intensities where the derivative
of log(φ) with respect to J is equal to zero [110]:

d(logφ)

dJ

����
J=Ĵ

=0 (4.11)
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= tr(LT
C

−1
� LĴ− L

T
C

−1
� Vm +C

−1
J Ĵ) (4.12)

(4.13)

from which Ĵ can be derived [104]:

Ĵ=[LT
C

−1
� L+C

−1
J ]−1

L
T
C

−1
� Vm (4.14)

=CJL
T [LCJL

T +C�]
−1

Vm (4.15)

which is the commonly used equation for inverse problems based on dis-
tributed sources with Gaussian assumptions and known values of CJ and
C� [74]. Comparing Eq. (3.28) wtih Eq. (4.15) provides the motivation
for choosing forms of H, where:

µHT
H = C

−1
J (4.16)

Or in other words, H specifies the form of the precision or our prior belief
on where the source activity is expressed (knowing that precision is the
inverse of the variance).

4.4 Multiple priors in the hierarchical Bayesian
framework

Within a Bayesian framework, the covariance matrices C� and CJ do
not necessarily have to be fixed before calculating the solution. In the
most general case C� and CJ can be modeled as a linear combination of
covariance components:

C� = λ(1)
1 Q

(1)
1 + λ(1)

2 Q
(1)
2 + ...

CJ = λ(2)
1 Q

(2)
1 + λ(2)

2 Q
(2)
2 + ...

(4.17)

with λ(1)
1 , λ(1)

2 , . . . and λ(2)
1 , λ(2)

2 , . . . the hyperparameters that balance
the various covariance components either at the first (electrode channels)
or second (source) level [109]. The hyperparameters can be estimated
from the EEG measurements and control the power allocated to each of
the components. In the following sections different choices of covariance
components are discussed.
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4.4.1 Choices of covariance components

The covariance components may embody different types of informative
priors, e.g., different smoothing functions, mathematical priors, medical
knowledge, fMRI priors, etc. [111]. In this dissertation we assume the
same amount of noise variance on all sensors: C� = λ�INc , where INc ∈
RNc×Nc is an identity matrix, and λ� is the sensor noise variance.

There are different examples of covariance components that can be
introduced at the source level. They are represented visually in Fig.
4.1. We first describe covariance components that can be introduced
corresponding with classical methods: the minimum norm solution,
A LORETA-like solution and a beamformers solution. Subsequently,
the most general solution formed by hundreds of covariance compo-
nents is discussed. We denoted the set of covariance components as
Q

(2) = {Q(2)
1 ,Q(2)

2 , . . . }.

4.4.1.1 Examples of typical classical methods

Weighted minimum norm solutions
Following the classical weighted minimum norm approaches, introduced
in section 3.3.3.1, one may just choose 1 covariance component as the
identity matrix: Q

(2) = Q
(2)
1 = INd . See Fig. 4.1A for an example.

Coherence priors

For a solution similar to the LORETA approach an extra covariance
component can be added: Q

(2) = {INd ,QG}, where QG represents a
coherence prior on the sources. The coherence prior expresses that the
sources are smoothed and multiple dipoles are related in focal regions
(see Fig. 4.1B for an example). Such a coherence function was proposed
in [113]. The authors presented a Green’s function based on a graph
Laplacian calculated using the locations of the dipoles and the dipole
source space. The Green’s function QG ∈ RNd×Nd is defined as:

QG = exp(ωGL) (4.18)

with ω a positive constant value that determines the smoothness of
the current distribution or spatial extent of the activated regions, and
GL ∈ RNd×Nd , a graph Laplacian with inter-dipole connectivity informa-
tion. The graph Laplacian GL is calculated using an adjacency matrix
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A: Minumum norm! B: LORETA-like! C: Beamformer!

D: MSP 1! E: MSP 2! F: MSP 3!

Figure 4.1: Choices of covariance components: (A) a minimum norm solution
does not include prior information. (B) A LORETA-like is based on a fixed
smoothing function relating each dipole with its nearest neighbors. (C) A
beamformer weights the main diagonal giving priority to those dipoles with
higher probability of activity. (D), (E) and (F) multiple sparse covariance
components each with a different possible location. Figure adapted from [112]

corresponding with the dipole locations and defining the neighboring
dipoles based on the dipole source space.

Beamforming

The beamforming solution can be introduced as a single covariance ma-
trix: Q

(2) = B with B ∈ RNd×Nd a diagonal matrix formed directly
from the data by a projection into the source space with the lead field
matrix and normalized to give the same priority to deep and external
sources. Each diagonal element of B is defined as:

Bii =
1

∆i

�
L
T
i (VmV

T
m)Li

�
(4.19)
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for each i = 1, . . . , Nd and Bii the i-th main diagonal element of B, Li

is the lead field of the i-th source, and the normalization parameters ∆i

is defined as:

∆i =
1

L
T
i Li

(4.20)

for each i = 1, . . . , Nd. See Fig. 4.1C for an example.

4.4.1.2 Multiple sparse priors algorithm

In the multiple sparse priors (MSP) algorithm [114], Nq covariance com-
ponents at the source level Q =

�
Q

(2)
1 , . . . ,Q(2)

Nq

�
are assumed for which

each of the components defines a potential activated region of cortex,
with scalar hyperparameters, λ =

�
λ(2)
i

�
, and i = 1, . . . , Nq. Typically

around 500 active patches of sources with locally identical variance are
assumed. Each covariance component is a diagonal matrix and the diag-
onal elements are constructed using the columns of the Green’s function.
Each column in the Green’s function corresponds with a specific source
assumed in the source space and models a patch on the cortex formed
around that source. Each patch has a bell shape, with a full width half
maximum depending on the neighboring dipoles and the smoothing fac-
tor ω. See Fig. 4.1D, E and F for 3 examples of covariance components.
Note that each covariance component has a column of the coherence
prior on its diagonal as shown in Fig. 4.1B.

The size and the number of the patches to construct the covariance
components can be defined based on prior knowledge. In the default
approach in the SPM software, the number of patches is set to Nq = 512
so the the entire cortical area is covered (see Fig. 4.2B), the centers of
these patches are selected from a set of Nd = 8196 dipoles shown in Fig.
4.2A. Fig. 4.2C, D and E show different sizes of the patches obtained
with different values of ω equal to 0.1, 0.6 and 1, respectively. In the
SPM software, ω = 0.6 by default.

In the next section of this chapter a cost function for determining the
optimal set op hyperparameters, i.e. the λ values corresponding to each
of the components, will be derived.
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(A)! (B)!

(C)! (D)! (E)!

Figure 4.2: Generation of covariance components: (A) The sources of neural
activity are limited to a set of 8196 current dipoles distributed over the cortical
area, (B) each dot represents the centre of 512 assumed patches. The Green’s
function allows to modify the size of the patches depending on ω, ω is equal
to 0.1 in (C), 0.6 in (D) and 1 in (E). In all figures, the sources are shown in
the glass brain, often used in the SPM software in a sagittal, coronal and axial
view.

4.4.2 Free Energy

4.4.2.1 Derivation

Since λ is not known, a suitable approximation λ ≈ λ̂ can be used to
calculate the posterior distribution of the source intensities based on the
covariance and expectation of p(J|V) as in Eq. (4.17).

To calculate the optimal set λ̂, we now introduce the joint proba-
bility distribution of the hyperparameters and the measured EEG data
p(Vm,λ). The hyperparameters that correspond with the highest evi-
dence value are selected.
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Since the source intensities in J are fully dependent on λ, we can define
the joint probability of Vm, J and λ as:

p(Vm,J,λ) = p(Vm|J)p(J|λ)p(λ). (4.21)

Given that the parameters J fully depend on λ, they can be marginalized
from the optimization problem:

p(Vm,λ) =

�
p(Vm,J,λ)dJ (4.22)

Together with Eq. (4.21) this becomes:

p(Vm,λ) =

�
p(Vm|J)p(J|λ)p(λ)dJ. (4.23)

and because p(λ) is independent of J, it can be placed outside the inte-
gral:

p(Vm,λ) =

��
p(Vm|J)p(J|λ)dJ

�
p(λ). (4.24)

Because:

p(Vm,λ) = p(Vm|λ)p(λ). (4.25)

it follows that:

p(Vm|λ) =
�

p(Vm|J)p(J|λ)dJ (4.26)

The solution of this equation is a Gaussian distribution:

p(Vm|λ) ∝ exp(−1

2
V

T
mΣ

−1
Vm

Vm) (4.27)

with

ΣVm = C� + LCJL. (4.28)

We refer the reader to appendix B for a detailed mathematical descrip-
tion. This result is important because it obviates the use of J in the
optimization problem, and allows to formulate a cost function for λ ex-
clusively in terms of the data Vm.
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There are two other advantages of using ΣV instead of CJ for optimiz-
ing the hyperparameters: (i) the size of the matrices is highly reduced due
to its projection into sensor space, and (ii) the inclusion of noise variance
C� into the equation allows adding the noise regularization parameter
λ� (see section 4.4.1.1) as another hyperparameter for optimization.

With the definition of the hyperparameters exclusively in terms of the
data it is possible to define the optimization problem:

λ̂ = argmax
λ

[p(Vm|λ)p(λ)] (4.29)

which can be obtained by maximizing the cost function:

Θ(λ) = log[p(Vm|λ)p(λ)]. (4.30)

Replacing p(Vm|λ) with Eq.(4.27), the following generalized cost func-
tion can be derived [112]:

Θ(λ) = log

�
1

(2π)Nc/2
�
|ΣV|

exp

�
−1

2
tr(VT

mΣ
−1
V Vm)

�
p(λ)

�
(4.31)

In what follows we define p(λ) to obtain the free energy cost function used
in the Statistical Parametric Mapping software. We define p0(λ) as the
prior knowledge about the hyperparameters and q(λ) as an approximate
posterior. Following the maximum entropy principle [115], we can specify
p(λ) based on 2 Gaussian distributions:

p0(λ) = N(λ;ν,Cν) (4.32)
q(λ) = N(λ; λ̂,Σλ). (4.33)

with, ν ∈ RNp×1 the initial values of the hyperparameters, Cν ∈ RNp×Np

their prior covariance, λ̂(λ) ∈ RNp×1 the posterior mean of the hyperpa-
rameters and Σλ(λ) ∈ RNp×1 their posterior covariance. Based on the
the maximum entropy principle we can write the log-prior p(λ) as:

log p(λ) = −1

2
tr
�
(λ− ν)TC−1

ν (λ− ν)
�
+

1

2
log |ΣλC

−1
ν | (4.34)

Using Eq. (4.34) to complete the cost function of Eq. (4.31) gives the
free energy F used in [114]:
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F =−Nt

2
tr(CVΣ

−1
V )− Nt

2
log |ΣV| − NcNt

2
log(2π)

−1

2
tr
�
(λ− ν)TC−1

ν (λ− ν)
�
+

1

2
log |ΣλC

−1
ν | (4.35)

with CV = 1
Nt

VmV
T
m. For a more detailed derivation of the free energy

function we refer the reader to [116].

4.4.2.2 Interpretation

Maximizing the free energy cost function implies a trade off between
the accuracy of the solution and the complexity of the solution. The
accuracy term penalizes the difference in variance between the measured
EEG data Vm and the estimated solution LJ. The complexity term
gives a measure of how difficult it is to optimize the hyperparameters for
a given prior. The free energy defined in Eq. (4.35) can be divided into
these terms:

F = accuracy(λ)− complexity(λ). (4.36)

where the accuracy is defined as:

accuracy(λ) = −Nt

2
tr(CVΣ

−1
V )− Nt

2
log |ΣV| − NcNt

2
log(2π) (4.37)

and the complexity as:

complexity(λ) = −1

2
tr
�
(λ− ν)TC−1

ν (λ− ν)
�
+

1

2
log |C−1

ν Σλ|. (4.38)

Each term in the free energy cost function of Eq. (4.35), can be expressed
in words as follows [117]:

F =−[Model error] (4.39)
−[Size of model covariance]
−[Number of data samples]
−[Error in hyperparameters]
+[Error in covariance of hyperparameters].
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This trade-off reflects the principle of parsimony, i.e. Occam’s razor
[118], that states that complex models should not be considered without
necessity (see also section 4.4.2.4). In the next section we show how the
free energy cost function is optimized.

4.4.2.3 Optimization

The optimal combination of hyperparameters λ̂ is achieved for the max-
imum free energy value. Based on these optimal hyperparameters, C�

and CJ can be calculated using Eq. (4.17), and the source intensities
Ĵ can be calculated using Eq. (4.15). In what follows we describe 2
optimization techniques of the free energy.

Expectation Maximisation

To select the optimal hyperparameters λ̂, iterative algorithms such as
Expectation-Maximization (EM) can be used, treating J as hidden data
[119]. In the E-step the hyperparameters are fixed and the problem is
solved for the free energy in Eq. (4.35). In the M-step the hyperparam-
eters λ are updated with the gradient and Hessian of the Free energy.
Within this process all non relevant hyperparameters are eliminated to
reduce the computational cost. The derivative of F (λ) in Eq. (4.35) is:

∂F (λ)

∂λi
= −Nt

2
tr(Pi(CV −ΣV))−Cνii(λi − νi) (4.40)

with

Pi =
∂Σ−1

V

∂λi
= λiΣVQiΣV (4.41)

and its Hessian is obtained with the derivative of the gradient:

∂2F (λ)

∂λi∂λj
= −Nt

2
tr(PiQiPiQj)−Cνii (4.42)

Note that the first term of both Eqs. (4.40) and (4.42) is only defined
by the accuracy, and the second term only depends on the complexity.

Restricted Maximum Likelihood
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The iterative computation of the E and M steps is not computation-
ally efficient. In the original implementation of the MSP algorithm in
the SPM software [114], the Restricted Maximum Likelihood (ReML)
algorithm was proposed for computing the E-step once and optimizing
over the M-step. The hyperparameters are initialized in the algorithm
as log(ν) = −32 and log(Cν) = 256INq . The ReML algorithm then goes
as follows:

1. For the k-th iteration compute the covariance matrix Σ
(k)
V .

2. Compute the gradient of the free energy with Eq. (4.40) for each
hyperparameter.

3. Compute the curvature of the free energy with Eq. (4.42) for each
hyperparameter.

4. Update the hyperparameters:

λ(k)
i = λ(k−1)

i +∆λi (4.43)

where the variation on each hyperparameter ∆λi is computed with
a Fisher scoring over the free energy variation:

∆λi = −
�
∂2F (λ)

∂λi∂λj

�−1
∂F (λ)

∂λi
(4.44)

5. Eliminate those hyperparameters near to zero, and their corre-
sponding covariance component.

6. Update the free energy variation

∆F = [
∂F

∂λ1
, . . . ,

∂F

∂λNq

].[∆λ1, . . . ,∆λNq ]
T (4.45)

and finish if it is less than a given tolerance (here ∆F < 0.01).
Otherwise go back to step 1.

Note that the total free energy was not computed within ReML, it is done
just once at the end of the iterative process. Although, the ReML by
itself is enough to compute the optimal set of hyperparameters, it is com-
putationally too intensive for a large number of covariance components.
In order to reduce the computational burden, two main improvements
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are proposed in the SPM software: A Greedy Search (GS) over the mul-
tiple sparse priors, for more information see [120, 121] and an Automatic
Relevance Determination (ARD) optimized for sparse patterns, see [114].

4.4.2.4 Bayesian model selection

Assume we want to compare different forward models using the hierar-
chical Bayesian framework. By making the dependency of the forward
model, assume model n given the lead fields, explicit, Eq. (4.7) becomes
[117]:

p(Jn|Vm, n) =
p(Vm|Jn, n)p(Jn)

p(Vm|n) (4.46)

where p(Jn) represents the prior assumptions about the source activity
and p(Vm|n) the model evidence.

The log evidence after inversion, i.e. the free energy computed with
the optimal set of hyperparameters: log p(Vm, λ̂), is a rigorous upper
bound on the log model evidence: log p(Vm|n) [112, 117]. Therefore the
free energy can be used for Bayesian model selection.

In the next sections we defined some metrics based on the free energy
values in order to test the likelihood of obtaining a model in favor of the
other model given the data.

Fixed effects analysis
The free energy values corresponding with the inversion of different mod-
els can be evaluated in a fixed effects analysis comparing the log Bayes
factors (BF). The log Bayes factor for two models n1 and n2 is defined
as [122]:

log(BF12) =
p(Vm|n1)

p(Vm|n2)
= F (n1)− F (n2) (4.47)

where F (n1) is the free energy corresponding with model 1 and F (n2)
the free energy corresponding with model 2. The group log Bayes factor
(GBF) is defined as the sum of the Bayes factors over N subjects:

log(GBF12) =
N�

i=1

F (n1)
i − F (n2)

i (4.48)
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According to the decision rule described in [123] one model can then
be chosen in favor of the other when there is a difference larger than 3.
This criterium is valid for both the BF and the GBF at the group level.
The GBF is a simple and straightforward index for model comparison
but it does not account for group heterogeneity or outliers.

Random effects analysis
The expected posterior model frequencies and exceedance probabilities
are typically reported to quantify the probability that a particular model
generated the data for any randomly selected subject, relative to other
models. These metrics are calculated using a random effects approach
treating each model as a random variable and estimating the param-
eters of a Dirichlet distribution that describes the probabilities for all
considered models [124]. This approach is robust to the presence of out-
liers. The expected posterior model frequency reflects the proportion of
participants that favor a certain model:

�rk� =
αk

α1 + · · ·+ αK
(4.49)

with k = 1, . . . ,K and K the number of models, αi with i = 1, . . . ,K,
the Dirichlet parameters and �rk� representing the expected likelihood
of obtaining the k-th model over all the other models. The exceedance
probability expresses belief that a model has the highest posterior prob-
ability, relative to other models, given the group data V:

φk = p(rk > rj |V;α) (4.50)

with k = 1, . . . ,K and K the number of models, j = 1 . . .K and j �= k,
α = [α1, . . . , αK ], the Dirichlet parameters and rk the probability of
model k.

In order to quantify the reliability of the results obtained based on the
exceedance probabilities and the expected posterior model frequency,
the Bayesian omnibus risk (BOR) is typically reported [125]. The BOR
directly quantifies the probability that the expected posterior model
frequencies are all equal to each other and therefore evaluates the prob-
ability that the observed findings may have occurred by chance. The
BOR can be compared to any desired error rate, for example the 5%
rate in analogy to the classical p-values. The rule of thumb states that
when the BOR is smaller than 0.25, we can be confident in choosing
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the best model based on the results of the exceedance probabilities [125].

Remarks
Two additional comments should be made. First, the free energy only
provides an approximation to the Bayesian log evidence (see [121] for a
detailed discussion). Nevertheless, there is enough confidence based on
almost 30 years of advances and successful results in the field that it is
a good measure to compare models [116, 124, 126]. Second, there is no
absolute information how good the models are, but only which model is
more probable depending on the data.

In the next chapters of this dissertations we used the free energy cor-
responding with the Bayesian inversions of realistic EEG data to com-
pare different forward modeling assumptions using the metrics described
above.





Chapter 5

Template forward models

“There was no preconception of what to do”
Daft Punk - Giorgio by Moroder

5.1 Introduction

As shown in the previous chapter, the PEB framework allows to com-
pare forward models based on the free energy bound on the Bayesian log
model evidence. It provides an alternative way of testing forward models,
using real data, rather than the more traditional simulated data from an
assumed true forward model. Only a few forward modeling approaches
have been compared within the PEB framework for MEG source imag-
ing. Based on event related fields (ERF) for visual processing of faces
and scrambled faces, [127] recommends to use a 3-layered Boundary El-
ement Method (BEM) approximation of the head containing 3 homoge-
nous isotropic conducting compartments corresponding with scalp, skull
and brain tissue. In this study, the authors compared 3-layered BEM
template head models with multi-layer spherical models.

To our knowledge, no prior studies have been published that used
the PEB framework to compare forward modeling approaches for EEG
source imaging. The forward model is however more crucial for EEG
source imaging than for MEG source imaging [128]. In this chapter we
therefore extended the [127] study to EEG forward modeling approaches.
In the context of group studies, we used an anatomical template MR
image (i.e. the Colin27 template [31]) to construct the head models. In
addition to the currently used 3-layered BEM approach we introduced
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models based on the finite difference reciprocity method introduced in
section 3.2.4.3. As such we were able to construct a head model including
cerebrospinal fluid (CSF) segmented from the template MRI.

In previous studies, EEG and MRI experiments in supine and prone
subject position experimentally proved how important the effect of CSF
on the EEG is [129]. Also simulation studies showed that it is crucial
to model the CSF [130–132], and it was recently shown that the CSF
effect is far bigger than differences in numerical errors between state-of-
the-art forward modeling approaches [133]. The study in this chapter is
complementary to these studies. Different head models with and without
CSF are compared based on using realistic EEG data.

Using a 96-channels ERP datasets of 20 subjects in 4 stimulus con-
ditions and using Bayesian model selection for group studies [124, 125],
we investigated the effect of using three different template head models.
We therefore used three different types of source priors related to the
type of inversion used in the PEB framework. The default BEM model
used in the SPM software was considered, a FDM model equivalent to
the 3-layered BEM model and a FDM model extended with CSF com-
partments segmented from the template MRI. Three different types of
source priors were compared for each of these head models: independent
and identically distributed (IID) sources, coherence (COH) priors and
multiple sparse priors (MSP) that we introduced in section 4.4.1. In
addition, the reconstructed activity was also compared with the findings
of previous studies using functional magnetic resonance imaging (fMRI)
in similar stimulus conditions.

In the next methods section, we will introduce the FDM forward mod-
eling approach. For numerical validation, we first compare the FDM
approach numerically to a state-of-the-art BEM approach based on an
analytical spherical reference model. In the following subsections we
will describe how we constructed the different head models based on
the anatomical template MR image. We explain how we compared the
models numerically and how the models were compared for each of the
assumed source priors using Bayesian model selection based on free en-
ergy (see section 4.4.2.4).
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5.2 Methods

5.2.1 Forward modeling

To calculate the BEM based field propagation, the OpenMEEG toolbox
was used within FieldTrip [34] using the symmetric BEM [55]. The FDM
lead fields were computed using an implementation based on reciprocity
(FDRM) as described in section 3.2.4.3.

5.2.1.1 Spherical model

Triangulated spherical meshes were built using the FieldTrip toolbox
[34] with origin-to-vertex radii of 80, 85 and 92 mm and 2562 vertices
per surface. The meshes were subsequently rotated around the x, y
and z axis in random angles to avoid excessive symmetry. The mean
Triangle-Side Length (TSL) was 6 mm of the innermost mesh. These
surfaces were subsequently voxelized in a 1× 1× 1 mm volume in order
to be able to compare with the FDRM based volumetric approach. The
conductivities of the brain and scalp were set to 0.33 S/m and 0.022
S/m for the skull [35]. On the scalp we assumed 96 electrodes embedded
inside the boundary of the scalp surface to calculate the lead fields for
the analytical, BEM and FDRM solution.

For numerical validation, we used a similar approach to the one ex-
plained in [134, 135]. A set of 50 random positions were generated in an
upper left quadrant of the inner skull surface at various nominal depths
orthogonal to and measuring from the innermost sphere. For each posi-
tion, unit dipoles were placed in x, y and z direction. We only used the
upper left quadrant because of symmetry, see Fig. 5.1.

5.2.1.2 Forward models based on the Colin27 template

The geometry of the considered template head models used for recon-
struction is based on the default Boundary Element Method (BEM)
geometry used in the SPM software. This geometry relies on surface
meshes of the scalp, outer skull and inner skull that are constructed
from a template anatomical MR image registered to the ICBM152 MNI
stereotaxic space, known as the Colin27 template [31].

Three layered scalp-skull-brain model
We used the scalp, outer skull and inner skull meshes containing 2562
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Figure 5.1: Illustration of the approach for validation in a 3-layered spherical
head model using dipoles in the upper left quadrant related to the electrodes.
50 random dipole positions were generated in the upper left quadrant of the
inner skull surface at various nominal depths orthogonal to and measuring from
the innermost sphere. This is depicted by the dashed line in the right figure.

vertices per surface to construct a 3-layered BEM based geometry. These
surfaces were subsequently discretized on a 3D, 1×1×1 mm cubic grid to
compare with a FDRM based volumetric approach. For these 3-layered
head models we used the BEM3lay, FDRM3lay notation respectively. On
the scalp surface we assumed 96 electrodes embedded inside the bound-
ary of the scalp to calculate the lead fields for both the FDRM and BEM
solution. The conductivities of the brain and scalp were set to 0.33 S/m
and 0.022 S/m for the skull [35].

Incorporation of CSF
We extended the 3-layered scalp-skull-brain isotropic FDRM3lay head
model with isotropic conducting cerebrospinal fluid (CSF) compart-
ments. For this model we used the FDRM4lay notation. The CSF was
modeled based on the volume between the cortical surface and the dis-
cretized inner skull mesh. The CSF in the ventricles and the cerebellum
were segmented from the MRI template using the SPM software [27].
The conductivity of CSF was set to 1.79 S/m according to [136]. The
conductivity of the brain compartment was set to 0.33 S/m. This re-
sulted in a model including scalp, skull, CSF and brain tissue.
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Source space
For all the considered head models for reconstruction, the source space
was constructed using a template cortical mesh corresponding with the
Colin27 template, also available in the SPM software [137]. In order to
build a state-of-the-art BEM and FDM model, this cortical mesh was
resampled according to some restrictions. For the BEM, the dipoles
had to be at least 1/2 mean triangle side length (TSL) vertex-to-vertex
distance away from the inner skull according to [135]. The mean TSL of
the inner skull was 5.11 mm, so we ensured that the dipoles were at least
2.56 mm vertex-to-vertex distance away from the inner skull surface.
For the FDRM, the dipole model extends over 3 nodes of the voxel
elements in the x,y and z direction [50]. In order to have a physically
correct model, we ensured that at least 2 voxels of gray matter were
between the central node of the dipole model and the boundaries with
other tissues in the x,y and z direction. In addition, we ensured that the
vertices of the mesh were corresponding with unique voxel nodes of the
discretized volume. This resulted in 7002 dipoles we modeled with fixed
orientations orthogonal to the cortical surface (see section 3.2.2.4). The
closest vertex-to-vertex distance from a dipole to the inner skull surface
was 2.61 mm.

For the MSP approach, a set of Np = 512 patches was assumed cover-
ing the entire cortical surface. The centers of these patches were a sparse
sample of the original set of the 7002 dipoles assumed on the cortical
surface. Rather than each covariance component corresponding to a
single patch, the set was supplemented by 256 covariance components,
in which patches in opposite hemispheres were correlated. The size of
the patches was fixed (ω = 0.6 in Eq. (4.18)).

Overview of the resulting models
Fig. 5.2 shows an overview of the construction of the different head
models. We used the default electrode positions, corresponding with the
ERP data, coregistered to the MRI template. Step (1) corresponds with
the resampling process of the template cortical mesh. Step (2) represents
the coregistration process of the default electrode positions to the MRI
template. Step (3) and (4) show how the BEM3lay model was constructed
based on the surface meshes and how the FDRM three-layered model
(FDRM3lay) was constructed based on a volumetric approximation of it.
Step (5) corresponds with the CSF and cerebellum segmentation. Step
(6) shows the extension of FDRM3lay with CSF to FDRM4lay.

Fig. 5.3 shows 3 orthogonal slices of the three-layered scalp-skull-brain
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FDRM3lay model and the FDRM4lay model with CSF. The white spots
correspond with dipoles located on the discrete cortical mesh.

BEM3lay! FDRM3lay!

MRI template !

Electrode positions!template cortical mesh!

voxelized mesh!

(1)! (2)!

(3)! (4)!

CSF + Cerebellum!

(5)!

FDRM4lay!

(6)!

Figure 5.2: Comparison of the BEM3lay, FDRM3lay and FDRM4lay head mod-
els constructed based on a MRI template (Colin27) and the default electrode
positions corresponding with the ERP data. In step (1) the template cortical
mesh used in SPM was resampled in order to be able to use it in a volumetric
model. The dipoles depicted by the red spots are located on the template cor-
tical mesh. Step (2) corresponds with the coregistration process of the default
electrode positions to the MRI template. In step (3) the BEM3lay model was
constructed based on the surface meshes extracted from the template and in
step (4) the FDRM three-layered model (FDRM3lay) was constructed based
on a volumetric approximation of it. In step (5) the CSF and cerebellum
were segmented form the template. Step (6) corresponds with the extension of
FDRM3lay with CSF to FDRM4lay.
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A 

B 

Figure 5.3: Sagittal, coronal and horizontal slices of the FDRM head mod-
els including the dipoles, depicted by the white spots, located on the dis-
cretized cortical mesh. A: the 3-layered isotropic scalp-skull-brain head model
(FDRM3lay), B: the 3-layered FDRM model including CSF (FDRM4lay).

5.2.1.3 Numerical model comparison

In order to numerically compare the lead fields corresponding with the
head models that are considered in this study, we used the Magnitude
(MAG) ratios and Relative difference measures (RDM) [55]:

MAG(L1,L2) =
||L2||
||L1||

(5.1)

RDM(L1,L2) =

����

����
L2

||L2||
− L1

||L1||

����

���� (5.2)
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L denotes the lead fields and subscript 1 and 2, correspond with the
considered head models. The closer to 1 (respectively to 0) the MAG
(respectively the RDM), the closer model 2 is to model 1.

5.2.2 Realistic EEG data

We used ERP datasets of 20 subjects expressing a N170 component in
4 different stimulus conditions. In brief, twenty healthy individuals per-
formed 150 trials of faces, houses, inverted faces and words stimuli. The
EEG data were collected from 96 EEG electrodes using a BrainAmp sys-
tem (BrainProducts, Gilching, Germany). To extract task-related ERPs,
the data were then segmented from −100 ms before until 500 ms after
stimulus onset, and baseline corrected. Finally, the data were averaged
over trials and average referenced resulting in 4 different ERP datasets
for each subject corresponding with each condition: faces, houses, in-
verted faces or words. A detailed description of the experimental set-up
and previous data analysis is presented in [138].

5.2.2.1 Bayesian model selection based on free energy

To compare the different models considered in this chapter - i.e. the
BEM3lay , FDRM3lay and FDRM4lay model for each of the source priors,
IID, COH or MSP, resulting in 9 models - we applied Bayesian model
selection based on the free energy, for group studies [124, 125]. This is
based on the assumption that the maximum free energy approximates
the logarithm of the model evidence (see section 4.4.2). For all the
comparisons reported in this chapter we calculated the free energy values
corresponding with the reconstructions of the whole ERP, this means
from 100 ms before stimulus to 500 ms after stimulus. This resulted in
9 different free energy values for each of the 20 subjects and each of the
stimulus conditions. Bayesian model selection was used to identify the
best model. The best model was identified using 3 measures: the log
group Bayes factor, the expected posterior model frequencies and the
exceedance probabilities.

For each stimulus condition we performed a fixed effects analysis com-
paring the log model evidences for each stimulus condition at the group
level. This is accomplished by calculating the log group Bayes factor
which is the sum across subjects of individual log Bayes factors (as in-
troduced in section 4.4.2.4). According to the decision rule described
in [123] one model can be chosen in favor of the other when there is a
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difference larger than 3.
We also performed a random effects analysis and reported the ex-

pected posterior model frequency and exceedance probabilities (see sec-
tion 4.4.2.4). In addition, as advised in [125] and computed with the
VBA toolbox [139], we reported the Bayesian omnibus risk (BOR). If
the BOR is smaller than 0.25, then we could be confident in choosing
the best model based on the results of the exceedance probabilities.

5.2.2.2 Comparing the reconstructed activity

We verified the reconstructed activity corresponding with the N170 com-
ponent by comparing our results with the findings of previous studies
using fMRI in similar stimulus conditions. For the faces stimuli we ex-
pected the bilateral activation of the fusiform face areas (FFA) located
in the left and right fusiform gyrus dominant in the right hemisphere
[138, 140–143]. For the houses stimuli we expected the activation of the
parahippocampal place areas (PPA). For the inverted faces stimuli, it
is less clear which brain areas are dominantly activated. In general, the
effect of inversion causes a shift from specialized faces processing streams
towards generic object-processing mechanisms [144–146]. For the words
stimuli we expected the activation of the left mid fusiform (MF) gyrus,
sometimes called the visual word forming area (VWFA) [147, 148]. The
MNI coordinates of the aspected active areas are shown in table 5.1.

Left Right Reference
FFA [-37 -42 -22] [39 -40 -21] [149]
PPA [-27 -52 -8] [28 -47 -9] [150]
MF [-42 -57 -10] [42 -57 10] [151]

Table 5.1: The MNI coordinates of the aspected active areas.

In Fig. 5.4 an example is shown of the ERP data averaged over trials
for one of the subjects in the different stimulus conditions on a left and
right lateral occipital channel. To compare the reconstructed activity we
reported the mean evoked energy across subjects of the reconstructed
activity corresponding with the time windows depicted by the arrows.
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A B 

Figure 5.4: ERP data averaged over trials of one of the subjects for a (A) left
lateral occipital and a (B) right lateral occipital channel. The arrows depict
the time windows for which the mean evoked energy across subjects is reported
to compare the reconstructed activity: 140 - 180 ms for faces, 180 - 220 ms for
houses, 150 - 190 ms for inverted faces and 140 - 180 ms for words.

5.3 Results

5.3.1 Numerical forward model comparison

5.3.1.1 Spherical analytical reference

At each depth, starting from 3 mm from the skull (see section 5.2.1.1),
the MAG/RDM values for the 50 dipoles were calculated for both the
FDRM and the BEM (see Fig. 5.5). The thick lines show the median
MAG/RDM, and the thin lines the minimum and maximum MAG/RDM
corresponding with each depth from the inner skull surface. The dashed
vertical lines mark the depths of one and two mean TSL. In general the
BEM performs better than the FDRM but the FDRM is still performing
reasonably well with median ln(MAG) nearly at 0 and median RDM
below 0.03. The MAG/RDM differences between the FDRM and BEM
are mainly expressed for source depths smaller than 1 TSL (6 mm). From
that point, the MAG/RDM values start to rise quickly for the BEM
compared to the FDRM which tends to stay more stable for superficial
sources in this geometry.

5.3.1.2 Forward models based on the colin27 template

In Fig. 5.6 A and B, boxplots of the MAG and RDM are shown for the
7002 dipoles assumed inside the brain compartment. For both A and B,
in the first row the BEM3lay lead fields are compared to the FDRM3lay
lead fields, in the second row the BEM3lay lead fields are compared to
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A 

B 

x-direction y-direction z-direction 

Figure 5.5: A) Magnitude ratios (MAG) and B) Relative Difference Measures
(RDM) of the BEM and FDRM versus a spherical analytical reference model
in x, y and z direction. The thick lines show the median MAG/RDM, and the
thin lines the minimum and maximum MAG/RDM corresponding with each
depth from the inner skull surface. The dashed vertical lines mark the depths
of one and two mean triangle side length (TSL).

the FDRM4lay lead fields and in the last row the FDRM3lay lead fields
are compared to the FDRM4lay lead fields. The mean and standard
deviations for the MAG and RDM are given for clarity. It is clear that
the modeling of CSF using the FDRM has a bigger influence on the MAG
and RDM values than comparing the techniques themselves in the same
scalp-skull-brain geometry.

5.3.2 Model comparison based on free energy

In Fig. 5.7 an overview is given of the log group Bayes factor (log GBF),
the expected posterior model frequency and the exceedance probabili-
ties for the different stimulus conditions. The log group Bayes factor
is shown in the first row for each stimulus condition and is calculated
for each model versus model MSP - FDRM4lay. For each of the stimu-
lus conditions the log group Bayes factor is much lower than -3 which
corresponds with strong evidence in favor of model MSP - FDRM4lay.
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Figure 5.6: A) Boxplot of the Magnitude ratios (MAG) and B) boxplot of
the Relative Difference Measures (RDM) expressing the verification of the lead
fields corresponding with BEM3lay, FDRM3lay and FDRM4lay for the 7002
dipoles we assumed inside the brain compartment. In the table on the right,
the mean and standard deviations are depicted for each comparison.

The expected posterior model frequency and the exceedance probabil-
ities are shown in the second and third row. For each of the stimulus
conditions also the BOR values are shown. They are much below 0.25
which suggests that we can be very confident about the results of the
exceedance probability. For the faces condition, the exceedance probabil-
ity is 0.84 for model MSP - FDRM4lay. Similar results have been found
for the other conditions. The exceedance probabilities are 0.998, 0.999
and 0.996 for the houses, inverted faces and words stimuli respectively.
Based on these results we have strong evidence in favor of the MSP -
FDRM4lay model for all datasets.

5.3.3 Comparing the reconstructed activity

We compared the mean reconstructed activity over subjects of the
MSP inversions corresponding with the event related potentials elicited
by faces, houses, inverted faces and words stimuli for the BEM3lay,
FDRM3lay and FDRM4lay head models. The mean evoked energy across
subjects of the MSP inversions corresponding with the N170 peak is
presented in Fig. 5.8. Each panel shows a maximum intensity projec-
tion (MIP) of the 512 greatest source strengths within MNI space. The
columns in the figure correspond with the type of head model that was
assumed and the rows correspond with the different stimulus conditions.
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Inverted Faces Words 

BOR = 8.175e-7! BOR = 9.776e-9!

BOR = 1.454e-9! BOR = 4.929e-8!

Faces Houses 

Figure 5.7: Bayesian model selection results of the different models we as-
sumed for reconstructing the ERP data corresponding with faces, houses, in-
verted faces and words stimuli. We show the log group Bayes factor (log GBF),
the expected posterior model frequency and the exceedance probabilities. The
different models we used for reconstruction are depicted by the different colors
shown in the legend. The log GBF is calculated versus FDRM4lay. For each
of the stimulus conditions we also show the Bayesian omnibus risk (BOR). If
the BOR is smaller than 0.25, then we can be confident in choosing the best
model based on the results of the exceedance probabilities.
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For all the head models we checked the activation near the MNI coordi-
nates reported in literature (see section 5.2.2).

For each of the subjects and stimulus conditions we moreover gener-
ated 3D images containing the reconstructed activity. Based on these
images we performed statistical analysis to see the main effect over sub-
jects, i.e. at the group level, corresponding with each of the stimu-
lus conditions. The statistical analysis was performed in the Statistical
Parametric Mapping software and included a classical T-test corrected
for multiple comparisons (see [56] for more details on the procedure).

5.3.3.1 Faces stimuli

For the faces stimuli, the evoked energy of the reconstructed activity is
shown between 140 and 180 ms after stimulus to represent the activity
corresponding with the N170 peak. Based on literature we expected
bilateral activation of the fusiform face areas (FFA) dominant in the
right hemisphere which is depicted by the red squares in the glass brain.
For the 3 models, the dominant activity was more or less the same. We
did not find a clear difference for this stimulus condition.

The results of the group level statistical analysis are presented in Fig.
5.9. The activity with the highest significance is depicted by the red
arrow, with the same location for each of the methods. Note that the
FWE correction for the BEM3lay was chosen < 0.1 because for the default
< 0.05 we did not find any significant activity. It is also clear that the
significant blob of activity using FDRM4lay was the largest.

5.3.3.2 Houses stimuli

For the houses stimuli, the evoked energy of the reconstructed activity
is shown between 180 and 220 ms after stimulus. Based on literature
we expected bilateral activation around the PPA depicted by the green
squares in the glass brain. For this stimulus condition the difference
between both 3 layered models and the extended model is bigger. Using
FDRM4lay, the sources with the maximum intensity are estimated more
medial compared to the reconstructions based on the other models, this
is depicted by the arrow. It suggests a correspondence with the PPA
which is located more medial.

The results of the group level statistical analysis are presented in Fig.
5.10. The activity with the highest significance is depicted by the red
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MSP - FDRM3lay MSP - FDRM4lay MSP - BEM3lay 

Houses (    PPA) 

Faces (    FFA) 

Words (    MF) 

Inverted Faces (    FFA,    PPA) 

Figure 5.8: The mean evoked energy across subjects of the MSP inversions
corresponding with the N170 peak. Each panel shows a Maximum Intensity
Projection (MIP) of the 512 greatest source strengths within MNI space (in
the glass brain view) for the three head models shown in separate columns.
Each row corresponds with a different stimulus condition. The (centers of the)
squares show the location of the activity which we expected from the findings of
previous studies using fMRI (see section 5.2.2): FFA = fusiform face area, PPA
= parahippocampal place area, MF = mid fusiform (MF) gyrus. The arrows
depict the main differences between the 3-layered models and the 4-layered
model including CSF.
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FWE < 0.1!

MSP-FDRM3lay! MSP-FDRM4lay!MSP-BEM3lay!

FWE < 0.05! FWE < 0.05!

Figure 5.9: Statistical analysis of the reconstructed activity for the faces
stimuli over subjects. The main effect is shown of a t-test corrected for multiple
comparisons with a FWE < 0.1 for the BEM3lay inversions and FWE < 0.05 for
both FDRM inversions. The activity with the highest significance is depicted
by the red arrow. The location of the right FFA area is depicted by the red
square.

arrow, with different locations for each of the methods. For the BEM3lay
and FDRM3lay models the significant activity was mainly located in the
right hemisphere. For the FDRM4lay the most significant activity was
found in a right occipital region, but also bilateral activity was found
near the PPA regions.

MSP-FDRM3lay! MSP-FDRM4lay!MSP-BEM3lay!

p < 0.001! p < 0.001! p < 0.001!

Figure 5.10: Statistical analysis of the reconstructed activity for the houses
stimuli over subjects. The main effect is shown of a t-test with a p-value <
0.001. The activity with the highest significance is depicted by the red arrows.
The location of the PPA regions is depicted by the green squares.
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5.3.3.3 Inverted Faces stimuli

For the inverted faces stimuli, the evoked energy of the reconstructed
activity is shown between 150 and 190 ms after stimulus. Based on
literature we expected a shift from specialized faces processing streams
towards generic object-processing mechanisms. Therefore both the FFA
and PPA are depicted in the glass brain. Again both 3 layered models are
very similar. The FDRM4lay model, results in an extra patch of activity
located medial close to the right PPA, this is depicted by the arrow.

The results of the group level statistical analysis are presented in Fig.
5.11. The activity with the highest significance is depicted by the red
arrow, with roughly the same locations for each of the models. The most
significant activity estimated based on FDRM4lay is more focal, located
in 2 bilateral regions compared to BEM3lay and FDRM3lay.

p < 0.001! p < 0.001! p < 0.001!

MSP-FDRM3lay! MSP-FDRM4lay!MSP-BEM3lay!

Figure 5.11: Statistical analysis of the reconstructed activity for the inverted
faces stimuli over subjects. The main effect is shown of a t-test with a p-value
< 0.001. The activity with the highest significance is depicted by the red arrow.
The locations of the FFA regions are depicted by the red squares.

5.3.3.4 Words

For the words stimuli, the evoked energy of the reconstructed activity is
shown between 140 and 180 ms after stimulus. Based on literature we
expected the activation of the left mid fusiform (MF) gyrus. This region
is depicted by the dark yellow square in the glass brain. Again both
3 layered models are very similar. Compared to assuming FDRM4lay,
the reconstructions based on the 3 layered models show a right temporal
high intensity region, depicted by the arrows. The left MF activity is
found for the 3 models.

The results of the group level statistical analysis are presented in Fig.
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5.12. The activity with the highest significance is depicted by the red
arrows. The most significant activity estimated based on FDRM4lay and
FDRM3lay is located close to the MF region. For the inversions based
on BEM3lay the most significant activity was located in the opposite
hemisphere close to the FFA region.

p < 0.001! p < 0.001! p < 0.001!

MSP-FDRM3lay! MSP-FDRM4lay!MSP-BEM3lay!

Figure 5.12: Statistical analysis of the reconstructed activity for the words
stimuli over subjects. The main effect is shown of a t-test with a p-value <
0.001. The activity with the highest significance is depicted by the red arrow.
The location of the MF region is depicted by the orange squares.

5.4 Discussion

In this chapter, we compared different EEG forward modeling options
within the SPM-PEB framework for distributed EEG source imaging. By
assessing the free energy of ERP source imaging, we explored the effect
of assuming different source priors and different head models constructed
based on the Colin27 template. We introduced volumetric FDRM head
models in addition to the default available 3-layered BEM3lay model.

The results in favor of the MSP approach are consistent with earlier
studies comparing the different source priors (IID, COH, MSP) based on
EEG and MEG data and a 3-layered BEM approximation of the head
[114, 127]. However, assuming a 3-layered isotropic conducting approxi-
mation of the head is a strong simplification of reality. By extending this
head model with CSF using FDRM modeling, we built a more realistic
template head model. Based on grand average ERP data we showed em-
pirically with strong evidence that assuming MSP, this model is better
than the competing models. These findings are concordant with previous
studies [129, 130, 132, 152, 153].

We numerically compared the FDRM and openMEEG symmetric
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BEM versus an analytical spherical reference model. The BEM per-
formed better than the FDRM in this geometry. This is mainly a conse-
quence of the volumetric approximation of the spherical surfaces for the
FDRM method. Regarding the boxplots of Fig. 5.6, it is clear that the
modeling of CSF using the FDRM has a bigger influence on the RDM
and MAG values than comparing the techniques themselves in the same
scalp-skull-brain geometry. According to this we can conclude that the
influence of introducing CSF is much bigger compared to the influence
of using a different forward modeling technique in the same head model
geometry. This result was also found in [133]. Including the CSF in
the BEM model is a difficult task due to the complex geometrical struc-
ture of the CSF, demanding a high number of additional nodes for an
accurate modeling, and a strongly increased computational effort. Com-
pared to the BEM, the CSF and other tissue types can be included at
negligible computational costs when applying FDRM or other volumetric
techniques like finite element modeling (FEM) approaches [133].

We also compared the reconstructed activity. Therefore we showed
the mean evoked energy of the reconstructed activity over subjects in a
time window corresponding with the N170 peak. Because we could not
rely on a ground truth, we could not explain the differences in recon-
structed activity quantitatively. However, we did find clear differences
between the reconstructed activity assuming the FDRM4lay and both the
3-layered models assuming MSP. We showed this qualitatively by using
maximum intensity projections and by reporting the area of expected
activity based on the findings of previous studies using fMRI in simi-
lar stimulus conditions. Also the statistical analysis at the group level
showed clear differences assuming each of the 3 considered forward mod-
els for which the FDRM4lay results provided the most consistent results
when comparing with the findings of previous studies.

Note that the use of template models is, in general, very approximative
compared to using subject specific models [153]. To model the CSF for
example, we used the cortical surface of the Colin27 template as the CSF
boundary. As such, there could be discrepancies between the modeled
CSF and the subjects’ anatomy. Nevertheless, the CSF conductivity is
well known and nearly not varying inter-individually [136]. Therefore it
is not surprising that the incorporation of CSF in a template head model
seems to be better than not modeling it for the reconstructions of the
ERP data used in this chapter. Also template head models can introduce
additional noise and cause systematic errors in the reconstructed activity.
For example for the houses stimuli, regardless of the used forward model,
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the focus of the activity is rather lateral, although for the houses it should
be more medial.

An important major issue is to assign the conductivity values to the
different modeled tissues in the head model. The skull conductivity for
example is strongly debated. Assuming a lower conductivity, for exam-
ple 0.0041 S/m assumed in the Fieldtrip software package [154], would
cause differences in source depths [36, 155]. The PEB framework could
offer an elegant opportunity to determine the conductivity empirically,
by assessing the free energy values corresponding with reconstructions
assuming head models with different conductivity values.

Being able to use volumetric forward modeling techniques gives many
advantages over surface based approximations of the head. First of all,
the head models are constructed using 3D cubic MR images so it is
straightforward to construct 3D cubic head models from it. Second,
It is possible to model tissue anisotropy [36, 54]. Third, by creating
more advanced head models incorporating white and gray matter, more
advanced dipolar source spaces can be constructed. This means sources
do not necessarily have to be modeled based on a template mesh of the
cortical surface but can also be located inside a modeled gray matter
layer. Finally, volumetric techniques are able to take care of skull holes
easily. Even if there are BEM approaches that can take care of skull holes
[154], the construction of the BEM surfaces is extremely difficult. On
the other side, in areas where the skull is very thin the FDRM approach
used in this chapter might create skull representation errors, namely that
current is shunted in areas where two skull elements are only connected
by one single node. It is important to take care of these skull holes during
the construction of a head model [36].

Note that we did not consider to reconstruct the activity with multiple
sparse priors that were kept fixed over subjects, as is suggested in [156]
for group studies. This is an option that can be investigated in future
work. In the next chapter we will explore the use of subject-specific
volumetric head models using the FDRM (or FEM) including more tis-
sues based on the segmentation of high resolution anatomical MR images
within the PEB framework. In the chapter we especially focus on the
development of volumetric dipolar regions to use as empirical priors in
the MSP algorithm.
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5.5 Conclusion

In this chapter, we introduced volumetric template head models based
on the finite difference method (FDM). We constructed a FDM head
model equivalent to the standard BEM model in the SPM software and
an extended FDM model including CSF. These models were compared
within the context of three different types of source priors related to the
type of inversion used in the PEB framework: independent and identi-
cally distributed (IID) sources, equivalent to classical minimum norm ap-
proaches, coherence (COH) priors similar to methods such as LORETA,
and multiple sparse priors (MSP). The resulting models were compared
based on ERP data of 20 subjects using Bayesian model selection for
group studies. The reconstructed activity was also compared with the
findings of previous studies using functional magnetic resonance imaging.
We found strong evidence in favor of the extended FDM head model with
CSF and assuming MSP. These results suggest that the use of realistic
volumetric forward models can improve PEB EEG source imaging.

5.6 Original Contributions

The use of the PEB framework for forward model comparison based on
finite differences was first presented at the 18th Annual Meeting of the
Organization for Human Brain Mapping [157]. The comparison of for-
ward models based on the boundary element method and finite difference
method was first presented at the 18th International Conference on Bio-
magnetism [158]. The results presented in this chapter were presented
in the A1-journal NeuroImage [159]. The validation of the Finite Dif-
ference Method based on spherical head models and the implementation
to calculate the lead fields was also incorporated in a publication in the
A1-journal Brain Topography [36].





Chapter 6

Subject specific forward
models

“Where are we, this everything?”
The war on drugs - Red Eyes

6.1 Introduction

In this chapter we investigate subject specific forward models using the
parametric empirical Bayesian (PEB) framework. We depart from the
framework that was introduced in chapter 4 and applied in chapter 5.
In the present implementation of the MSP algorithm, multiple cortical
patches of sources are constructed from the dipoles in the source space
that are constrained to a cortical surface mesh [137] and the field prop-
agation of the surface patches is calculated based on a 3-layered scalp-
skull-brain BEM head model [127]. Constraining the dipolar sources to
a cortical mesh does only allow the reconstruction of brain activity on
the cortical surface. This way deep sources in the cerebral cortex can-
not be reconstructed. Moreover, it is not straightforward to use more
complex head models that extend the 3-layered BEM model with extra
layers such as cerebrospinal fluid (CSF). Because the dipoles are located
on the boundary between the CSF and the brain, they will either be
located inside the CSF or brain compartment which does not satisfy the
restrictions that apply to the source space of commonly used numer-
ical methods, such as the boundary element method, finite difference
method or finite element method that were introduced in section 3.2.4.2,
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to properly calculate the dipole field propagation [135, 159].
In this chapter, we propose a technique to construct volumetric regions

based on a dipole source space restricted to gray matter, segmented from
an anatomical MR image, and using a region growing technique. This
approach allows the inclusion of more prior information incorporating
the anatomy and shape of the sources and does not require the extrac-
tion of the cortical surface. It provides the possibility to use the MSP
algorithm to reconstruct brain structures outside the cortical surface and
facilitates the use of more realistic volumetric subject specific head mod-
els including cerebrospinal fluid (CSF).

To illustrate the volumetric MSP approach, we used realistic ERP
datasets and anatomical MR images in 12 subjects. Based on the seg-
mented gray matter for each of the subjects, cortical regions were created
and introduced as source priors for MSP-inversion assuming two types
of head models. For every subject, a 3-layered volumetric subject spe-
cific head model was constructed. Also extended 4-layered head models
including CSF were built to investigate the influence of increasing the
head model complexity. We compared with the present implementation
by assessing the free energy corresponding with the reconstructions using
Bayesian model selection for group studies [124, 125]. The reconstructed
activity was also compared with the results of previous studies using
similar ERP datasets [160].

In the first section of this chapter, we explain how we extended the
currently used approach based on cortical patches to volumetric regions
and subsequently describe how the different head models used in this
study were constructed. Next, we explain how we compared the models
using Bayesian model selection and how we verified the reconstructed
activity.

6.2 Methods

6.2.1 Multiple sparse priors (MSP) based on cortical sur-

face mesh

In the currently used MSP approach implemented in the SPM software
package that was introduced in section 4.4.1.2, the dipole source space is
constrained to the nodes of a cortical surface mesh. Based on this sur-
face mesh, covariance components {Q(2)

1 ,Q(2)
2 . . . ,Q(2)

Np
} are constructed

that are each corresponding to a different locally smooth focal patch of
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cortex. The covariance components are constructed using the columns
of a Green’s function, QG ∈ RNd×Nd defined as:

QG = exp(ωGL) (6.1)

and calculated based on a graph Laplacian GL ∈ RNd×Nd , with inter-
dipole connectivity information containing the neighboring dipoles, and
ω, a positive constant value that determines the smoothness of the cur-
rent distribution or spatial extent of the activated regions [114]. The
graph Laplacian GL is calculated using an adjacency matrix correspond-
ing with the vertices and faces provided by the cortical surface mesh.

As such, each column of QG corresponds with a cortical patch and
has a bell shape, with a full width half maximum depending on the
neighboring dipoles and the smoothing factor ω which is equal to 0.6
in the SPM software. The centers of these patches correspond to the
original set of dipoles used to form the lead field matrix.

6.2.1.1 Extension to multiple sparse volumetric priors
(MSVP)

In the construction process of the surface patches, a cortical mesh is
used to calculate the adjacency matrix using the faces and vertices of
the cortical mesh. This way, the connections between the sulci of gray
matter are taken into account. In order to incorporate the shape of
the cortical layer based on the segmented gray matter, we propose a
technique to construct volumetric sparse regions using a region growing
approach.

Assume a source space of distributed dipoles located inside the seg-
mented gray matter. For each dipole in the source space, a volumetric
region is determined based on region growing within the segmented gray
matter. The region growing approach starts from a dipole and is char-
acterized by a certain maximum distance to the dipole. As such, the
neighboring dipoles for each dipole of the source space can be deter-
mined as the dipoles located within the corresponding region of each
dipole. An example of the approach in 2D is given in Fig. 6.1. In this
example, we assume that we have a slice of a cubic 3D volumetric head
model (1 × 1 × 1 mm resolution) with dipoles in the segmented gray
matter equidistant to each other, with a 3mm spacing.

With the information of the neighboring dipoles within the region of
each dipole, the adjacency matrix, graph laplacian and Green’s function
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air!
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skull!
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GM!

WM!

Figure 6.1: An example of the used region growing approach in 2D. The
original dipole from which the region growing starts is depicted by the red
circle on the left. The maximum distance to the original dipole is 5 mm (i.e. 5
voxels). Based on this restriction, the original dipole has 2 neighboring dipoles
depicted by the green circles on the right. CSF = cerebrospinal fluid, GM =
gray matter, WM = white matter

can be calculated. Each column of the Green’s function QG represents a
volumetric region and has a bell shape, with a full width half maximum
depending on the maximum distance to the original dipole used in the
region growing approach and the smoothing factor ω.

6.2.2 Illustration on realistic data

To illustrate the proposed approach, we used ERP data and anatomical
MR images in 12 subjects to which checkerboard stimuli were presented.
In brief, twelve healthy individuals performed 80 trials of circular black-
and-white checkerboard stimuli presented to one of the four quadrants
of the visual field. The EEG data were collected from 62 electrodes us-
ing the BrainAmp MR+ system (BrainProducts, Gliching, Germany).
To extract task-related ERPs, data were then segmented from -100 ms
before until 500 ms after stimulus onset, and baseline corrected. Finally,
the data were average referenced resulting in 12×4 different grand aver-
aged ERP datasets corresponding with each condition: down left, down
right, upper left or upper right. The whole data-acquisition process and
preprocessing of the data is described in detail in [160].

In addition, full brain anatomical images were obtained with the mag-
netization prepared rapid gradient echo (MPRAGE) imaging sequence
(230 coronal slices, time to echo [TE] = 4.6 ms, TR = 9.7 s) which we
used to construct the subject specific head models.
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6.2.2.1 Construction of head models

Because we used a volumetric finite difference method based on reci-
procity (FDRM) (as described in section 3.2.4.3) to calculate the dipole
field propagation, each of the considered head models was volumetric
with a 3D, 1× 1× 1 mm voxel resolution.

3-layered models
We followed the default approach implemented in the SPM software
to construct subject specific 3-layered models based on the anatomical
MR images of the subjects. Meshes representing the scalp, outer skull
and inner skull were extracted from the subjects’ MR images (see Fig.
6.2A). These meshes were subsequently converted to filled volumes in
order to construct volumetric 3-layered head models. Isotropic conduc-
tivities of the brain, scalp layer and skull layer were set to 0.33 S/m,
0.33 S/m and 0.022 S/m [35] respectively. In Fig. 6.2B an example is
given of a 3-layered volumetric model, denoted as 3lay. We coregistered
the 62 electrode positions, corresponding with our realistic EEG data,
to the scalp surface and embedded them inside the boundary of the scalp.

4-layered models
Using the anatomical MR images of the subjects, we segmented gray
matter, white matter and CSF using SPM8 segmentation techniques
[27]. Based on these segmentations and the 3-layered models, 4-layered
head models were constructed including a brain and CSF compartment.
The conductivity of the CSF was set to 1.79 S/m [136] and 0.33 S/m for
the brain layer. In Fig. 6.2C an example is given of a 4-layered volumet-
ric model, denoted as 4lay. We coregistered the 62 electrode positions,
corresponding with our realistic EEG data, to the scalp surface and
embedded them inside the boundary of the scalp.

6.2.2.2 Construction of dipole source spaces

Cortical surface mesh
For each subject, the source space was constructed using a canonical
cortical mesh, defined in a standard stereotactic space. This mesh was
warped, in a nonlinear fashion, to match the subjects’ anatomy [137].
This resulted in 8196 dipoles distributed on the nodes of the warped
cortical surface mesh, with fixed orientations orthogonal to the mesh.



108 Subject specific forward models

4lay!

scalp! skull! brain!

scalp! skull! CSF! brain!

3lay!

Figure 6.2: Example of the subject specific head models constructed based
on an anatomical MR image. The subject specific anatomical MR image is
depicted in gray. The electrodes are depicted in yellow. In the first row, the
surface meshes used to construct the 3-layered models in SPM are shown in
red. The inner mesh corresponding with the red dots corresponds with the
inner skull surface. The second row depicts 3 orthogonal slices of the 3-layered
volumetric model denoted as 3lay. The third row depicts 3 orthogonal slices of
the 4-layered volumetric model including CSF denoted as 4lay.
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Volumetric
For each of the models the source space was constructed based on the
segmented gray matter. Dipoles were assumed inside gray matter on a
cubic grid equidistant to each other with a spacing of 3 mm. Because
the dipole model in the FDRM method extends over 3 nodes of the voxel
elements in the x, y and z direction [50], we ensured that at least 2 voxels
of gray matter were between the central node of the dipole model and the
boundaries with other tissues in the x, y and z direction. This resulted
in approximately 10.000 dipoles for each of the models. The orientations
of the dipoles were determined based on a method described in [161].
This method starts from the segmented white matter to calculate the
orientations of the grid points in gray matter after smoothing and taking
the gradient of the volume. An example is given in Fig. 6.3.

air!

scalp!

skull!

CSF!

GM!

WM!

Figure 6.3: Example of the dipole orientations depicted by the white arrows
shown in a detailed view corresponding with 3 orthogonal slices. The different
colors in the slices correspond with different tissue types shown in the legend
on the right. CSF = cerebrospinal fluid, GM = gray matter, WM = white
matter.

6.2.2.3 Construction of the source priors

Cortical surface
We considered a subset of Np = 256 source priors, sampled from the
total set of priors (or columns of QG (see Eq. 4.18)), covering the entire
cortical surface mesh. The size of each patch was approximately 1 cm2

(dependent on the distance to the nearest dipoles). This type of source
priors is denoted as Surf.

Volumetric
Again a set of Np = 256 volumetric regions was considered covering the
entire cortical layer. The maximum distance to the original dipole and
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the smoothing factor ω were set to 5 mm and 0.6 respectively. The size
of the regions was therefore approximately 1 cm3. In order to compare
with the default approach, we chose the centers of the 256 volumetric
regions as close as possible to the centers of the 256 surface patches. All
distances between the centers were below 9 mm. This type of source
priors is denoted as Vol.

6.2.2.4 Bayesian model comparison based on free energy

In order to compare the different models we applied Bayesian model
selection based on free energy for group studies [124, 125]. For all the
comparisons reported in this chapter, we used the free energy values
corresponding with the reconstructions of the full ERP time window,
this means from 100 ms before stimulus to 500 ms after stimulus. This
resulted in 3 different free energy values for each of the 12 subjects and
each of the stimulus conditions. Bayesian model selection was used to
identify the best model using 4 measures: the log group Bayes factor, the
expected posterior model frequencies, the exceedance probability and the
Bayesian omnibus risk (BOR) that were introduced in section 4.4.2.4. To
compare the considered models, the free energy of the reconstructions
were grouped over stimulus conditions, meaning that we compared 48
free energy values for each of the models.

6.2.2.5 Comparison of the reconstructed activity

To check the validity of the reconstructions based on the different mod-
els, we compared the evoked energy of the ERP reconstructed activity
corresponding with the P1-peak. We used time windows of 16 ms cen-
tered around the peak. In Fig. 6.4 an example is given of the ERP
waveforms in each of the stimulus conditions for one of the subjects on a
left and right lateral occipital channel. The time windows for which we
calculated the evoked energy are depicted by the different colors.

For the volumetric approaches, the subject specific volumetric source
activity was transformed to MNI space, based on a spatial normalization
transformation used to normalize the MR images to the MNI template
in SPM8 [162]. Because a canonical cortical mesh in MNI space was used
warped to the subject’s anatomy to construct the cortical patches, each
source of the mesh in subject space was directly corresponding with a
location in MNI space [137]. As such, we generated 3D images corre-
sponding with the P1-activity in MNI space. We averaged the resulting



6.3 Results 111

images over subjects for each condition to compare the mean evoked P1
energy for each of the models. Moreover, equivalent to the approach in
the previous chapter, we performed a statistical analysis based on the
3D images to see the main effect over subjects, i.e. at the group level,
corresponding with each of the stimulus conditions.

From previous studies with similar ERP waveforms, we know that P1-
activity is mainly generated contralateral to the stimulus, located around
the calcarine sulcus, in the fusiform gyrus and lingual gyrus (see [163]
and [160]). These findings are used to compare the reconstructed activity
based on the different models and for the different stimulus conditions.

A B 

Figure 6.4: ERP data averaged over trials of one of the subjects for a (A)
left lateral occipital and a (B) right lateral occipital channel. DL = down left
stimuli, DR = down right stimuli, UL = upper left stimuli, UR = upper right
stimuli. The arrows depict the time windows in which we calculated the mean
evoked energy across subjects, 100 - 116 ms for DL stimuli, 100 - 116 ms for
DR stimuli, 92 - 108 ms for UL stimuli and 132 - 158 ms for UR stimuli.

6.3 Results

6.3.1 Bayesian model comparison

In Fig. 6.5, the log Bayes factors are shown, computed as differences in
free energy (F) corresponding with the reconstructions based on the con-
sidered models for each stimulus condition and every subject. In the first
row, we compared the 3-layered models assuming volumetric regions,
Vol3lay, with the 3-layered models assuming cortical surface patches,
Surf3lay. In the second row, the 4-layered models assuming volumet-
ric regions, Vol4lay were compared with the Surf3lay models. The Vol4lay
models were compared versus the Vol3lay models in the last row. We can
notice a trend in favor of the Vol4lay models compared to both 3-layered
models and of the Vol3lay modes in favor of the Sur3lay models.
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To verify these trends statistically over subjects and stimulus condi-
tions, we performed Bayesian model selection for group studies. We
performed two analysis resulting in summary statistics for model com-
parison. In the first analysis we compared the Surf3lay and Vol3lay mod-
els. The results are presented in the left panel of Fig. 6.6. In the first
row, the log group Bayes factor is shown calculated versus the 3-layered
volumetric models. It is clear it is considerably lower than -3, which
corresponds with strong evidence in favor of the model assuming volu-
metric regions. The expected posterior model frequency and exceedance
probability confirm this with an exceedance probability of the volumetric
models equal to 0.99. The BOR for this comparison is equal to 0.018,
which is below 0.25 and suggests that we can be very confident about
the results of the exceedance probability.

In the second analysis we also included the Vol4lay models. The results
are shown in Fig. 6.6 on the right panel. The first row shows the log group
Bayes factor calculated versus the 4-layered volumetric models. Both 3-
layered models have log group Bayes factors much lower than -3, which
corresponds with strong evidence in favor of the 4-layered volumetric
model. The exceedance probability of the 4-layered model is equal to
0.99. With a BOR of 0.001 we found very clear evidence in favor of the
4-layered volumetric model.

6.3.2 Comparison of the reconstructed activity

In the first row of Fig. 6.7, maximum intensity projections are shown of
the 99th percentile mean evoked energy across subjects corresponding
with the P1 peak for the down left stimulus condition shown in different
columns for the Surf3lay, Vol3lay and Vol4lay model. To enhance inter-
pretation of the location of the reconstructed activity, the second row
depicts the 99th percentile mean evoked energy rendered on the canoni-
cal cortical mesh in 2 views.

For the reconstructions based on the Surf3lay models, the activity is
spread above the right calcarine sulcus, right lingual gyrus and right
cuneus. Assuming both volumetric models, we found clear focal activity
above the right calcarine sulcus and in the lingual gyri.

For both volumetric models, the P1 reconstructed activity agrees very
well with the P1-activation found in a previous EEG/fMRI study using
the same ERP data based on a jointICA decomposition (see [160] for
more details). The late P1-activity that was found is included in the
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Vol3lay > Surf3lay!

Vol3lay < Surf3lay!

Vol4lay > Surf3lay!

Vol4lay < Surf3lay!

Vol4lay > Vol3lay!

Vol4lay < Vol3lay!

Down Left! Upper Left! Down Right! Upper Right!

F(Vol3lay) - F(Surf3lay)!

F(Vol4lay) - F(Surf3lay)!

F(Vol4lay) – F(Vol3lay)!

Figure 6.5: log Bayes factors computed as differences in free energy (F)
to compare the considered models across subjects and stimulus conditions:
Surf3lay, for the 3-layered surface based models, Vol3lay, for the 3-layered vol-
umetric models and Vol4lay for the 4-layered volumetric models. The different
subjects are represented by the different colors and each column represents
a different stimulus condition. We used the < and > signs when there were
differences bigger than 3 to denote evidence in favor of a one of the models.
When comparing Vol3lay versus Surf3lay for example, a difference bigger than
3 corresponds with strong evidence in favor of the Vol3lay model, indicated as
Vol3lay > Surf3lay on the left side of the bar graph. We restricted the y-axis to
differences bigger than 20 to increase the interpretation of smaller differences.

third row depicted in 3 orthogonal slices. The correspondence for the
reconstructions based on the Surf3lay models was less pronounced.

The results of the group level statistical analysis for the down left
stimuli are presented in Fig. 6.8. The activity with the highest signif-
icance is depicted by the red arrow for each of the considered models.
The most significant area for Surf3lay was located in the center of the
brain. For both Vol3lay and Vol4lay we found the same location of the
most significant activity around the right calcarine sulcus.

The maximum intensity projections for the other stimulus conditions
are shown in Fig. 6.9. For the down right stimuli, the reconstructed
activity based on Surf3lay was mainly located in the left lingual gyrus,
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Vol3lay! Vol4lay!

BOR = 0.018! BOR = 0.001!

Sur3lay!

Figure 6.6: Bayesian model comparison results of the different models we
assumed for reconstructing the ERP data: Surf3lay, Vol3lay and Vol4lay. On the
left, the comparison results are shown between the 3-layered models. On the
right, the comparison results are shown for both the 3-layered models and the 4-
layered volumetric models. For both comparisons, we show the log group Bayes
factor (log GBF), the expected posterior model frequency and the exceedance
probability. The different models we used for reconstruction are depicted by
the different colors shown in the legend. The log GBF is calculated versus
Vol3lay for the comparison on the left and versus Vol4lay for comparison on the
right. We also show the Bayesian omnibus risk (BOR). If the BOR is smaller
than 0.25, then we can be confident in choosing the best model based on the
results of the exceedance probability.
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Figure 6.7: Maximum intensity projections of the 99th percentile of the mean
evoked energy across subjects for the MSP inversions corresponding with the
P1-peak (see Section 6.2.2.5) assuming Surf3lay, Vol3lay or Vol4lay depicted in
the different columns. In the second row, 2 views are shown of the 99th per-
centile mean evoked energy rendered on the canonical cortical mesh. In the
third row, the late P1-activity is shown from a jointICA EEG/fMRI decompo-
sition reprinted from NeuroImage, [160], Copyright 2012, with permission from
Elsevier.
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Vol3lay! Vol4lay!Surf3lay!

p < 0.05! p < 0.05! p < 0.05!

Figure 6.8: Statistical analysis of the reconstructed activity for the DL stimuli
over subjects. The main effect is shown of a t-test for a p-value < 0.05. The
activity with the highest significance is depicted by the red arrow.

left inferior occipital gyrus, left midcingulate cortex, right precuneus and
right fusiform region. Assuming Vol3lay the reconstructed activity was
less lateralized. We found a strong activation in the right parahippocam-
pal region. The reconstructed activity based on Vol4lay was located above
the left calcarine sulcus, left lingual gyrus and left fusiform gyrus. The
results of the group level statistical analysis are presented in Fig. 6.10.
The most significant area for Surf3lay was located in the center of the
brain. For Vol3lay we found the most significant area located in the right
fusiform gyrus. For Vol4lay, the most significant area was located above
the left calcarine sulcus.

For the upper left stimuli, the reconstructed activity based on Surf3lay
was mainly located in the right inferior occipital and temporal gyrus and
the left inferior temporal gyrus. For Vol3lay the reconstructed activity
was less lateralized with strong activation around the left calcarine sul-
cus. The reconstructed activity based on Vol4lay was mainly located in
the right lingual and right fusiform gyrus. The results of the group level
statistical analysis are presented in Fig. 6.11. The most significant area
for Surf3lay was located in the center of the brain. For Vol3lay and Vol4lay
we found the most significant area located above the left calcarine sulcus.

For the upper right stimuli, the reconstructed activity based on Vol4lay
and Vol3lay was mainly located around the left calcarine sulcus. The re-
constructed activity based on Surf3lay was more widespread with the
strongest activation located in the left cuneus. The results of the group
level statistical analysis are presented in Fig. 6.12. Again the most sig-
nificant area for Surf3lay was located in the center of the brain. For
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Vol3lay and Vol4lay we found the most significant area located above the
left calcarine sulcus.
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Figure 6.9: Maximum intensity projections of the 99th percentile of the mean
evoked energy across subjects for the MSP inversions of the P1-peak (see Sec-
tion 6.2.2.5) assuming Surf3lay, Vol3lay or Vol4lay. The columns correspond with
the different stimulus conditions

6.4 Discussion

In this chapter, we have extended the current application of the multiple
sparse priors algorithm [114] from sparse surface based priors to multiple
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p < 0.05! p < 0.05! p < 0.05!

Vol3lay! Vol4lay!Surf3lay!

Figure 6.10: Statistical analysis of the reconstructed activity for the DR
stimuli over subjects. The main effect is shown of a t-test for a p-value < 0.05.
The activity with the highest significance is depicted by the red arrow.
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p < 0.05! p < 0.05! p < 0.05!

Figure 6.11: Statistical analysis of the reconstructed activity for the UL
stimuli over subjects. The main effect is shown of a t-test for a p-value < 0.05.
The activity with the highest significance is depicted by the red arrow.

p < 0.05! p < 0.05! p < 0.05!

Vol3lay! Vol4lay!Surf3lay!

Figure 6.12: Statistical analysis of the reconstructed activity for the UR
stimuli over subjects. The main effect is shown of a t-test for a p-value < 0.05.
The activity with the highest significance is depicted by the red arrow.
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sparse volumetric regions. This extension provides the ability to use
the MSP algorithm to reconstruct brain structures besides the cortical
surface and opens up the ability to introduce more advanced volumetric
head models based on volumetric forward modeling approaches using
finite differences [49], finite elements [164] or finite volume modelling
[165]. Both the Bayesian model selection analysis and the comparison
of the reconstructed P1 activity demonstrated the value of the extension
compared to the currently used approach.

Because we could not rely on a ground truth, we could not explain
the differences in reconstructed activity quantitatively. However, we did
find clear differences between the reconstructed activity assuming each
of the models. By using maximum intensity projections of the P1 re-
constructed activity for down left stimuli and showing this activity on
the canonical cortical surface mesh we showed a high correspondence of
the reconstructions based on the volumetric models with the findings
of previous studies for down left stimuli [160, 163]. This was less pro-
nounced assuming the surface based models. Also the reconstructions
for the other stimulus conditions showed clear differences assuming each
of the considered models. In general, the reconstructed activity assum-
ing Vol4lay was consequently focused in occipital regions contralateral to
the stimulus which is congruent with previous studies in literature. This
was less expressed for the reconstructions based on the 3-layered models.
Notice that we would expect the activity for the upper stimuli to be more
focused below the calcarine sulcus contralateral to the stimulus. Because
the P1-components for the upper stimuli were not as highly expressed
across subjects compared to the down stimuli we found deviations from
the expected retinotopic locations in each of the models. Also the re-
sults of the statistical analysis at the group level showed clear differences
assuming each of the 3 considered forward models for which the Vol4lay
results provided the most consistent results with previous findings. As-
suming Sur3lay, the most significant activity was always found in the
center of the brain.

We did not compare the considered models with the currently used
approach based on cortical patches and assuming a 4-layered head model
including CSF because of the fact that the dipoles are located on the
boundary between the CSF and brain compartment. Because we used
a finite difference approach with a dipole model extending over 3 nodes
of each voxel (the outer nodes have opposite currents (monopoles) in x,
y or z direction, see section 3.2.4.3), the dipoles placed onto the CSF-
brain boundary will have one side of the dipole source feeding directly
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to the CSF which is physically wrong and may have a large effect. We
therefore had to ensure that at least 2 voxels of gray matter were between
the central node of the dipole model and the boundaries with other
tissues in the x, y and z direction, in order to have a proper source
model. To construct such a model based on the cortical surface mesh
is very difficult because the mesh would need to be resampled, inflated
or deflated to ensure no dipoles were modeled inside the CSF. With the
extension proposed in this work, we can avoid this.

Note that we found evidence in favor of the Vol3lay models compared
to the Surf3lay models, although the same number of priors was used and
these were at approximately the same cortical locations. The modeling
of the volumetric regions was however closer to the actual anatomy of
the subjects. They were constructed based on the actual segmented gray
matter using the subject’s anatomical MR image. For the construction
of the cortical surface patches, a canonical cortical surface mesh was
used which was warped to the subject’s anatomy. This warping process
is not faultlessly and the resulting cortical surface does not necessarily
fully overlap with the actual cortical surface itself. Therefore also the
orientations of the considered dipoles were different. For the dipoles
located inside the gray matter layer, the orientations were determined
based on the curvature of the segmented white matter and interpolating
for gray matter. For the dipoles located on the cortical surface mesh,
the orientations were set orthogonal to the surface. We could have used
an approach in which we determined the individual cortical surfaces for
each of the subjects based on subject’s anatomical MRI. This is however
not how it is done in the present implementation and the construction
of these cortical surfaces often requires manual intervention [127].

Clearly, there are many issues that we have not addressed. There are
for example a lot of different other possibilities to construct the vol-
umetric regions by introducing fMRI prior regions, anatomical priors,
different smoothing functions, etc. Also other parameters can be opti-
mized. These include the spacing of the dipoles, the optimal number of
regions, the spacing of the regions, the smoothness of the regions, the
dipole orientations, etc. The question of which set of priors will work
best in practice depends on the data, and the Bayesian framework is a
useful tool to evaluate different sets of priors in future work.

We think that the use of realistic volumetric regions using advanced
volumetric forward models can further improve PEB-EEG source imag-
ing. In future studies, volumetric brain activity could be reconstructed
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based on volumetric regions including more anatomical or functional in-
formation. For example using cortical parcellation information [166].
Also future studies including more realistic head models should be in-
troduced in the framework. For example, with accurate modeling of the
skull including compact bone and spongy bone [36] or tissue anisotropy
[54].

6.5 Conclusion

In this chapter we revisited the multiple sparse priors (MSP) algorithm
implemented in the statistical parametric mapping software (SPM) for
distributed EEG source imaging. We presented a technique to construct
volumetric cortical regions to introduce as source priors by restricting the
dipole source space to a segmented gray matter layer and using a region
growing approach. This extension allows to reconstruct brain structures
besides the cortical surface and facilitates the use of more realistic vol-
umetric head models including more layers, such as cerebrospinal fluid
(CSF), compared to the standard 3-layered scalp-skull-brain head mod-
els. We illustrated the technique with ERP data and anatomical MR
images in 12 subjects. Based on the segmented gray matter for each of
the subjects, cortical regions were created and introduced as source priors
for MSP-inversion assuming two types of head models. The standard 3-
layered scalp-skull-brain head models and extended 4-layered head mod-
els including CSF. We compared with the current implementation by
assessing the free energy corresponding with each of the reconstructions
using Bayesian model selection for group studies. Strong evidence was
found in favor of the volumetric MSP approach compared to the MSP ap-
proach based on cortical patches for both types of head models. Overall,
the strongest evidence was found in favor of the volumetric MSP re-
constructions based on the extended head models including CSF. These
results were verified by comparing the reconstructed activity. The use
of volumetric cortical regions as source priors is a useful complement to
the present implementation as it allows to introduce more complex head
models and volumetric source priors in future studies.

6.6 Original Contributions

The main idea to introduce volumetric regions as source priors was first
presented at the 19th annual meeting of the organization for human
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brain mapping [167]. An extension of this study was presented at the
international conference on basic and clinical multimodal imaging [168].
The results that are presented in this chapter are published in the A1-
journal NeuroImage [169].



Chapter 7

ESI of interictal spikes in
patients with refractory
epilepsy

“My brain is in a tangle”
Atoms For Peace - Stuck Together Pieces

7.1 Introduction

In this chapter we present a clinical application of the techniques that
were presented in the previous chapter. We suggest to use the multiple
sparse volumetric priors (MSVP) approach to localize the sources that
are generating interictal epileptiform spikes. Interictal spikes are char-
acterized by a large amplitude rapid component lasting 50 - 100 ms that
is usually followed by a slow wave, 200 - 500 ms in duration [170], see
Fig 2.20. The generation of interictal spikes is a complex phenomenon,
and propagation of activity from the source to remote cortical regions
can occur within milliseconds [92, 171, 172].

A problem to estimate the activity in these approaches is the selection
of the time points or time periods of the spike to localize the origin of
the epileptic activity. It has been shown in previous studies that the
early component of the spike is likely to represent the location and field
of the source, and the peak of the epileptiform discharge actually reflects
propagated activity [173–175]. As such, modeling of the spike peak could
be misleading. However, the early component of the spike is of much
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smaller amplitude than the peak so accurate modeling is complicated by
high noise contamination [62].

In this chapter, we compared different sets of MSVPs to localize the
generating sources of interictal spikes recorded in 6 patients with re-
fractory focal epilepsy that were successfully treated with surgery. We
estimated the activity of the sources over the the time course of the
spike, in order to obtain a high spatiotemporal resolution of the inter-
ictal epileptiform activity. Three different windows were chosen: (i) a
window starting before the spike till 50% of the spike peak during the
rising phase of the spike, (ii) a window starting before the spike till the
spike peak and (iii) a window starting before the spike till 230 ms af-
ter the spike. For each of the three windows, multiple sets of MSVPs
were introduced for reconstruction, and we obtained the most likely set
of priors using Bayesian model comparison. Based on the time course
of the intensity of the estimated sources, the maximum energy of the
sources from the beginning of the spike till 50% of the peak during the
rising phase of the spike was used to identify the primary interictal spike
source from propagated sources. This way no additional information of
the time samples or time periods to estimate the sources was required.

We compared different sets of MSVPs to localize the generating sources
of interictal spikes recorded in six patients with refractory focal epilepsy
who were successfully treated with surgery and showed no interictal
spikes after surgery in routine EEG registrations of 1 hour. As such there
was evidence that the generator of the epileptic activity was removed.
For verification, we furthermore compared the performance of the MSVP
introduced approach with the results obtained with the LORETA ap-
proach implemented in the CARTOOL software, commonly used for
spike localization [40, 176]. Also an equivalent current dipole (ECD)
approach was used. We compared the distances of the estimated inter-
ictal source maxima to the border of the resected area for each of the
approaches.

7.2 Patient data

We retrospectively selected interictal spike data in six patients with re-
fractory focal epilepsy who were treated with surgery using the following
inclusion criteria: (i) the patient was seizure free (i.e. Engel class I) after
surgery, with minimum follow up of 1.5 years, (ii) the electrode positions
were known and (iii) the seizures and interictal spikes showed the same
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lateralization in the EEG recordings, i.e. over the left or right hemi-
sphere, (iv) there were no spikes observed in routine EEG registrations
after resection. An overview of the patient data is given in tables 7.1
and 7.2. All patients had temporal lobe epilepsy.

Three patients had 27 channel EEG recordings and 3 patients had 64
channel EEG recordings. The recorded interictal EEG data was first
filtered between 0.5 and 40 Hz with a Butterworth zero phase filter and
a 50 Hz notch filter implemented in the Brain Vision Analyzer software
(Brainproducts, Munich). Spike selection was visually performed by ex-
pert electrophysiologists (AM and EC) experienced in reading clinical
EEG. All patients had one dominant spike type with an invariable mor-
phology and maximal amplitude at the same electrode. The spikes were
marked at the time point with the highest amplitude, i.e. the peak of
the spike, on the same channel. The spikes were subsequently segmented
from -50 ms to 230 ms around the peak, in order to include the large
amplitude rapid component followed by a slow wave for inversion. The
spikes were subsequently averaged. Some electrodes were removed in the
analysis due to bad signal quality. In Figs. 7.1 and 7.2, the averaged
spikes for the 64 channel and 27 channel recordings are shown, respec-
tively. The electrode for spike selection and the number of averaged
spikes are depicted for each patient. For each of the patients the topog-
raphy corresponding with the spike peak and at 50% of the peak is also
shown. The spikes were finally referenced to the average before ESI.

For all patients pre-surgical and post-surgical anatomical MR images
were available. We manually segmented the resected zone from the post-
surgical anatomical MR images to determine the volume of the resection
and to compare the ESI approaches considered in this study. In order
to construct the patient specific forward models, the electrode positions
were extracted from CT images of the patient (with scalp electrodes
attached) for the 27 channel recordings and Polhemus recordings (by
Polhemus Inc., USA) for the 64 channel EEG..

7.2.1 Construction of patient specific forward models

In the CARTOOL software, patient-specific spherical forward models
were constructed for all patients (see also section 3.2.4.2). For the ECD
and MSVP inversions we constructed 5-layered patient-specific FDRM
models.
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Figure 7.1: The averaged spikes and topographies corresponding with the
spike peak and at 50% of the spike peak for the 64 channel recordings in patient
1 to 3. The vertical blue lines correspond with the spike peaks. The vertical
dashed lines correspond with 50% of the spike peak during the rising phase of
the peak. The channel to select the peak of the spike and the number of spikes
that were averaged are given for each patient.
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Figure 7.2: The averaged spikes and topographies corresponding with the
spike peak and at 50% of the spike peak for the 27 channels recordings in
patient 4 to 6. The vertical dashed lines correspond with 50% of the spike peak
during the rising phase of the peak. The channel to select the peak of the spike
and the number of spikes that were averaged are given for each patient.
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7.2.1.1 Multi-layer spherical forward models

In the CARTOOL software, multi-layer spherical head models were con-
structed taken into account the anatomical pre-surgical MR images of
the patients. This approach is known as the Locally Spherical Model
with Anatomical Constraints, or LSMAC model [40, 176]. In this ap-
proach an adaptive local spherical model is used at each electrode. To
do so, the thicknesses of the scalp, skull and brain are estimated from
the MR images of the patients. These thicknesses are then used in a 3-
shell spherical model with the local radiuses, allowing the real geometry
between the dipole solution points. Around 5000 dipole solution points
were distributed with equal distances inside the brain surface for each
patient. The lead field matrices in x, y and z direction were subsequently
computed for each electrode using the known analytical solutions for a
three-shell spherical head model [177].

7.2.1.2 Forward models using the finite difference method

For each patient, FDRM head models were constructed based on the pre-
surgical anatomical MR images. Meshes representing the scalp, outer
skull and inner skull were extracted from the MR images in SPM. These
meshes were subsequently converted to filled volumes. We segmented
gray matter, white matter and CSF using Freesurfer segmentation tech-
niques [28]. Based on these segmentations and the volumes that were
built from the surface meshes, 5-layered head models were constructed
including scalp, skull, gray and white matter and CSF layers. The con-
ductivity of the CSF was set to 1.79 S/m [136], 0.33 S/m for gray matter,
0.14 S/m for white matter, 0.022 S/m and 0.33 S/m for the skull and
scalp, respectively [36, 37]. In Fig. 7.3 the 5-layered volumetric model
for patient 4 is shown. The electrodes were extracted from a CT image
of the patient and we coregistered the electrode positions, corresponding
with our realistic EEG data, to the scalp surface and embedded them
inside the boundary of the scalp. The resulting volumetric head models
were resampled to 1× 1× 1 mm voxel resolution.

Construction of dipolar source spaces

For each of the head models, the source space was constructed based on
the segmented gray matter. For the ECD approach, the dipoles were
assumed inside the gray matter (excluding the cerebellum) on a cubic
grid equidistant to each other with a 1mm spacing. We ensured that at



7.2 Patient data 131

air!

scalp!

skull!

CSF!

GM!

WM!

A!

B!

Figure 7.3: Example of a 5-layered patient specific head model. A: 3D repre-
sentation of the head model. The electrodes were extracted from a CT image of
the patient, depicted in yellow. CSF = cerebrospinal fluid, GM = gray matter,
WM = white matter. B: The head model shown on top of the anatomical MR
image of the patient in 3 orthogonal slices
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least 2 voxels of gray matter were between the central node of the dipole
model and the boundaries with other tissues in the x, y and z direction.
This resulted in approximately 10,000 dipoles inside the gray matter for
each of the models. The orientations of the dipoles were determined
based on Eq. (3.25). For the MSVP approach, we used a subsampled
dipolar source space with a spacing of 3 mm resulting in approximately
2,000 dipoles inside the gray matter for each of the models. The orien-
tations of these dipoles were determined with the technique introduced
in section 6.2.2.1.

7.2.2 EEG source imaging of the interictal spikes

For the multi-layer spherical models, ESI was performed using the
LORETA approach. For the 5-layered patient specific FDRM forward
models both an ECD approach was used and the MSVP approach that
was introduced in chapter 6.

7.2.2.1 LORETA

For the multi-layer spherical models, source estimation was performed in
the CARTOOL software using the low resolution electromagnetic tomog-
raphy algorithm known as LORETA (see section 3.3.3). We localized the
distributed sources at 50% of the spike peaks during the rising phase of
the spike and on the spike peaks for each of the 6 patients.

7.2.2.2 Equivalent current dipole solutions

We localized ECDs at the spike peaks and at 50% of the spike peaks
during the rising phase of the spikes for each of the 6 patients. We
solved Eq. 3.26 (see section 3.3.2.1) with the Nelder-Maede simplex
optimization method considering each dipole assumed in the source space
of the patient.

7.2.2.3 Multiple sparse volumetric priors (MSVP)

We applied an equivalent approach to the approach presented in chap-
ter 6 for the MSVP inversions. We assumed the same amount of prior
variance on all electrodes, C� = λ(1)

1 INc . Based on the dipolar source
space in each patient, we constructed 100 possible sets of Np = 256
sparse volumetric regions. For each set of volumetric regions, we assured
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global gray matter coverage by randomly selecting 256 region locations,
from 256 fixed regions covering the full gray matter. Each of the regions
was constructed based on region growing inside the gray matter of the
patient based on the methodology that was presented in section 6.2.2.3.
The maximum distance to the original dipole and the smoothing fac-
tor ω were set to 5 mm and 0.6, respectively. Each of the regions were
subsequently introduced as a single predefined covariance matrices Q

(2)
i

(i = 1, . . . , 256) in Eq. (4.17). As such, 256 covariance matrices were
introduced as priors for inversion and the hyperparameters λ(2)

i were es-
timated in the variational Bayesian scheme by optimizing the free energy.
The most likely set of volumetric regions was subsequently selected using
Bayesian model comparison using the free energy values corresponding
with each of inversions. We estimated the time courses of all the dipoles
corresponding with tree different windows: (i) a window starting before
the spike till 50% of the spike peak during the rising phase of the spike,
(ii) a window starting before the spike till the spike peak and (iii) a win-
dow starting before the spike till 230 ms after the spike. Subsequently
we calculated the energy of the dipoles from -50 ms to 50% of the spike
peak during the rising phase of the spike.

7.2.3 Comparison of the ESI approaches

For all the ESI approaches considered in this study, we calculated the
distances to the resected zone (dr), defined as the closest distance of the
estimated activity to the resection border. For the LORETA approach
we calculated the dr based on the dipole source with the maximum esti-
mated activity corresponding with the spike peak and at 50% of the spike
peak. For the ECD approach, we calculated the dr for the dipole source
corresponding with the spike peak and at 50% of the spike peak. For the
MSVP approach, the source with the maximum estimated energy from
-50 ms to 50% of the spike peak during the rising phase of the spike was
selected and dr was calculated for each of the different time windows.

7.3 Results

7.3.1 Overall results

The dr values for each method are shown in Fig. 7.4. Overall, the mean
and standard deviation of 3.8 mm ± 5.1 mm for the dr based on the
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proposed MSVP method using the full spike time course were the lowest
distances to the border of the resection. For the MSVP method using
smaller time windows, i.e. from -50 ms to 50% of the spike peak and
from -50ms to the spike peak, we found 10.8 mm ± 9.3 mm and 14.1
mm ± 11.2 mm, respectively. The mean and standard deviation of dr
based on the CARTOOL software were 12.5 mm ± 11.0 mm at 50% of
the spike peak and 7.1 mm ± 6.0 mm at the spike peak. For the ECD
solutions we found 10.2 mm ± 6.6 mm at 50% of the spike peak, and 8.5
mm ± 6.4 mm at the spike peak.

In three patients, the proposed MSVP method using the full spike
time course estimated the maximum activity inside the resected zone,
compared to two patients using the MSVP method based on a window
cropped to the rising phase of the spike. With the CARTOOL approach
the maximum activity was estimated inside the resected zone for one
patient at 50% of the spike and for two patients at the spike peak. For
the ECD approach the activity was estimated inside the resected zone
for one patient at 50% of the spike peak and at the spike peak.

The overall maximum distance to the resection of the MSVP approach
using the full spike time course was 12 mm compared to 29.4 mm, 14
mm, 17 mm, 15 mm, 23 mm and 28 mm for the CARTOOL solution
at 50% of the spike peak, the CARTOOL solution at the spike peak,
the ECD solution at 50% of the spike peak, the ECD solution on the
spike peak, and the MSVP approaches based on a window cropped to
the rising phase of the spike, respectively.

7.3.2 Individual patient results

The results for patient 1 are presented in Fig. 7.5. In the first row, we
show the resected zone based on the post-operative MR image of the
patient in three orthogonal slices. In the second row, the results based
on the CARTOOL software at the spike peak and the ECD solutions
are presented. For the CARTOOL solution, the 95% percentile of the
activity is shown in three orthogonal slices on top of the post-operative
MR image. Also the locations of the estimated ECDs corresponding
with the spike peak and at 50% of the spike peak are shown on top of
the post-operative MR image. In panel A, a histogram depicts the num-
ber of reconstructions, corresponding with a certain free energy value,
for different sets of MSVPs. We selected the set of volumetric regions
corresponding with the highest free energy for further analysis in panel
B. In panel B, we show the evoked energy (from -50 ms to 50% of the
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Figure 7.4: The distance to the resection border, dr (in mm) for each of the
patients (P1 to P6) and for the different methods. In the table below, the
means, standard deviations and maximum distances to the resection of each
method are given. The stars denote the situations in which the activity was
correctly estimated inside the resected area

spike peak) for the estimated time courses of the estimated dipoles. The
sources with the highest energy are depicted by S1, S2, S3 and S4. In
panel C, the time courses of the sources are shown. The dipole with the
highest energy is depicted by S1 and its location is shown on top of the
post-operative MR image in Panel D. We presented the results for the
five other patients considered in this study in the same fashion in Fig.
7.6, 7.7, 7.8, 7.9 and 7.10.

7.4 Discussion

To the best of our knowledge, this chapter demonstrates the first ESI ap-
plication including a Bayesian multiple sparse priors inversion approach
that uses the maximum energy of the estimated dipole intensities to de-
pict the generator of the interictal spikes. Using the PEB framework,
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Figure 7.5: First row: the resected zone of patient 1. Second row: the
CARTOOL solution at the spike peak and the ECD locations corresponding
with the spike peak and at 50 % of the peak shown in yellow and red. Panel A:
histogram of the free energy values corresponding with the MSVP inversions.
Panel B: energy of the dipole intensities based on the MSVP solution. The
dipoles with the maximum energy are depicted by S1, S2, S3 and S4. Panel
C: the time courses of S1, S2, S3 and S4. Panel D: the location of volumetric
region corresponding with S1.
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Figure 7.6: First row: the resected zone of patient 2. Second row: the
CARTOOL solution at the spike peak and the ECD locations corresponding
with the spike peak and at 50 % of the peak shown in yellow and red. Panel A:
histogram of the free energy values corresponding with the MSVP inversions.
Panel B: energy of the dipole intensities based on the MSVP solution. The
dipoles with the maximum energy are depicted by S1, S2, S3 and S4. Panel C:
the time courses of S1, S2 and S3. Panel D: the location of volumetric region
corresponding with S1.
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Figure 7.7: First row: the resected zone of patient 3. Second row: the CAR-
TOOL solution at the spike peak and the ECD locations corresponding with
the spike peak and at 50 % of the peak shown in yellow and red. Panel A:
histogram of the free energy values corresponding with the with the MSVP in-
versions. Panel B: energy of the dipole intensities based on the MSVP solution.
The dipoles with the maximum energy are depicted by S1, S2 and S3. Panel C:
the time courses of S1, S2 and S3. Panel D: the location of volumetric region
corresponding with S1.
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Figure 7.8: First row: the resected zone of patient 4. Second row: the
CARTOOL solution at the spike peak and the ECD locations corresponding
with the spike peak and at 50 % of the peak shown in yellow and red. Panel A:
histogram of the free energy values corresponding with the MSVP inversions.
Panel B: energy of the dipole intensities based on the MSVP solution. The
dipoles with the maximum energy are depicted by S1 and S2. Panel C: the time
courses of S1 and S2. Panel D: the location of volumetric region corresponding
with S1.



140 ESI of interictal spikes in patients with refractory epilepsy

C!

ECD model!

Distributed source model!

Multiple dipole priors!

S1!

S2! S3!S4!

COH!

COH!

Multiple dipole priors!A!

B!

S1!

peak (LE =11 mm)!50% peak (LE = 5 mm)!

Resected zone!

LE = 32 mm! LE = 8 mm!

S1!

S1!

Patient 1!50% peak (DR = 5 mm)!

CARTOOL! ECD model!

Resected zone!
Patient 5!

C!

Distributed source model!

Multiple dipole priors!

COH!

COH!

Multiple dipole priors!A!

B!

S1!

ECD model!Resected zone!

S1!

peak (LE = 1 mm)!50% peak (LE = 15 mm)!

LE = 0 mm! LE = 2 mm!

S1!

S1!

Patient 5!

C!

Distributed source model!

Multiple dipole priors!

COH!

COH!

Multiple dipole priors!A!

B!

S1!

ECD model!Resected zone!

S1!

peak (LE = 1 mm)!50% peak (LE = 15 mm)!

LE = 0 mm! LE = 2 mm!

S1!

S1!

Patient 5!

peak (dr  = 1 mm)!50% peak (dr = 15 mm)!

dr = 0 mm!

dr = 12 mm!

A!

C! D!

MSVP!

S1!

S1!

S2! S3!

En
er

gy
 (-

50
m

s 
to

 5
0%

 s
pi

ke
 p

ea
k)
!B!

Figure 7.9: First row: the resected zone of patient 5. Second row: the
CARTOOL solution at the spike peak and the ECD locations corresponding
with the spike peak and at 50 % of the peak shown in yellow and red. Panel A:
histogram of the free energy values corresponding with the MSVP inversions.
Panel B: energy of the dipole intensities based on the MSVP solution. The
dipole with the maximum energy is depicted by S1, S2 and S3. Panel C:
the time course of S1, S2 and S3. Panel D: the location of volumetric region
corresponding with S1.
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Figure 7.10: First row: the resected zone of patient 6. Second row: the
CARTOOL solution at the spike peak and the ECD locations corresponding
with the spike peak and at 50 % of the peak shown in yellow and red. Panel A:
histogram of the free energy values corresponding with the MSVP inversions.
Panel B: energy of the dipole intensities based on the MSVP solution. The
dipoles with the maximum energy are depicted by S1, S2, S3 and S4. Panel
C: the time courses of S1, S2, S3 and S4. Panel D: the location of volumetric
region corresponding with S1.
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we compared 100 sets of 256 volumetric priors for inversion and deter-
mined the most likely set of priors based on Bayesian model comparison
[111, 178]. The localization results clearly corresponded to the resected
zone in all patients. The proposed approach was compared with the re-
sults of the CARTOOL software and the ECD modeling technique. We
found equally good or smaller distances to the resection, with robust
results for all patients.

Note that patients 1, 2, 4 and 6 had a left or right selective amyg-
dalolohypocampectomy. Discharges in the hippocampus or amygdala
are assumed to produce no observable scalp EEG rhythms [179–181].
Because we did not observe interictal activity in the routine EEG regis-
trations after surgery we can assume that the interictal activity observed
in the EEG registration was caused by adjacent regions in the temporal
cortex. Typically these regions are activated because of spreading from
the hippocampus or amygdala. We therefore have to be careful to use
the resection border to evaluate the different methods. Patients 3 and 5
had a 2/3 temporal lobectomy. In these patients the resected zone was
larger. For patients 3, all the approaches estimated the activity inside
the resected zone except the CARTOOL approach at 50% of the spike
peak and the ECD approach at the peak of the spike. For patient 5,
only the CARTOOL approach estimated the activity inside the resected
zone, both at 50% of the spike peak and at the spike peak. In order
to estimate the irritative zone (see section 3.4.1) more precisely, simul-
taneous intracranial recordings are necessary. These were however not
available in the patients. Typically also the specificity and sensitivity
of the ESI techniques are reported [91, 176, 182]. Because we only used
6 patients and the irritative zone wasn’t clearly defined, these measures
are not relevant in this study.

The choice to use the whole time window for spike inversion using the
MSVP approach is similar to other studies [183, 184]. In addition to that
we evaluated the influence of using smaller time windows before the spike.
For each of the approaches, the noise was assumed to be independent in
each sensor. The reason to use smaller time windows before the spike is
that the high-amplitude spike activity is eliminated so the ESI scheme
will not focus on reducing the error for reconstructing the peak activity
and therefore might ignore the activity of interest. The choice of the time
window effects the location of the region with the highest energy, which
is a similar to the findings reported in [173]. In order to investigate this
more in depth, more patients are needed.
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Note that we only selected the solution with the highest free energy
to compare the reconstructed activity. In some cases there were models
with similar free energy values near the highest free energy value, i.e.
in a range less than 3. For these solutions we calculated the Bayesian
Model Average (BMA) in an interval of 3 from the highest free energy
[185, 186]. The BMA approach did however not influence the selection
of the source location with the maximum activity and therefore did not
influence the findings based on the results corresponding with the max-
imum free energy.

So far many studies for EEG source imaging used ECD models
[83, 187–189]. The ECD model is limited because it does not allow
to investigate the spatial extend of the sources corresponding with the
interictal activity. The technique that was presented here is especially
suited to investigate the spatial extend of the epileptic activity, since it
allows to introduce regions with a different spatial spread, i.e. by varying
the parameters of the region growing and the smoothing factor. Another
advantage of the approach is that any shape of the volumetric regions
can be introduced as prior. For example, regions constructed based on
(f)MRI prior knowledge, clinical results from PET or SPECT studies of
the patients, prior knowledge based on the ECD solutions, etc. Whether
the results improve with additional prior knowledge can be evaluated
using Bayesian model selection. In this study, a set of volumetric priors
was constructed by randomly selecting 256 dipole locations from 256 dif-
ferent fixed regions in the gray matter of the patient to cover the whole
gray matter layer. Different numbers could also have been evaluated but
we do not expect much differences in the results. A smaller number of
volumetric regions would result in smaller sampling of the gray matter
and higher numbers would increase the complexity of the problem. Each
of the priors is weighted based on the data by estimating the hyperpa-
rameters, so the most relevant priors are selected for any set of priors.

An important factor influencing the ESI results is the forward modeling
approaches we used to for the ECD, CARTOOL and MSVP technique.
In this work we used both multi-spherical and 5-layered patient spe-
cific head models including scalp, skull, cerebrospinal fluid, white and
gray matter segmented from the anatomical MR images of the patients.
Moreover, we used both free orientations and fixed orientations of the
dipoles. Because we used the resected zone to verify the ESI results, we
could however evaluate different approaches for different forward models.
Although the work of [176] suggests there is no need for highly sophis-
ticated head models in clinical applications, we think the more realistic
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the forward model is constructed, the more accurate the results could
potentially be. In order to investigate this, more patients are needed
and the results should be verified with intracranial EEG recordings to
clearly delineate the irritative zone.

There are some issues that we did not address in this paper. For
example the time window around the spike peak we used for inversion, i.e.
-50 ms to 230 ms, could be chosen differently. In general, it is important
to include the rising phase (from -50 ms to the peak) of the spike in
order to include the origin of the epileptic activity [173–175]. Moreover,
we did not evaluate the spatial spread of the source of the spike activity
in detail using the CARTOOL software and for the ECD solutions. Only
the results corresponding with the peaks of the spikes and at 50% of the
peaks were reported. More time points could have been shown but we
did not include this in the study because of small localization differences
or higher RRE percentages due to increasing noise levels in the beginning
of the rising phase of the spike. Moreover, we only evaluated averaged
spikes for inversion because the RRE values of the ECD solutions were
too high due to an increased noise level for single spikes. Furthermore,
we analyzed both 27 channel and 64 channel EEG data but did not
evaluate the effect of using a different number of electrodes because of
the small patient group and the small differences we found between the
distance to the resection. Finally, we did not investigate propagation
effects based on the estimate time courses of the dipole sources. Also
using the LORETA approach in the CARTOOL software, the dipole
activity could have been estimated for the whole spike time window to
study the network of the activity.

There are many opportunities for future work. First of all the network
effects can be studied based on the estimated time courses of the dipoles.
This can be investigated in future studies using different techniques to
estimate connectivity patters between the sources, for example using
dynamical causal modeling [190] or functional connectivity approaches
[191]. Moreover, it is important in future studies to evaluate the appli-
cability of ESI techniques in order to localize seizure activity. In this
context, it is also important to focus on the network aspects of the esti-
mated activity of the sources in order to localize the origin of the activity
[192, 193].
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7.5 Conclusion

In this chapter, we presented an ESI technique to localize interictal spike
activity based on patient specific head models and by introducing multi-
ple volumetric sparse regions in a parametric empirical Bayesian frame-
work for distributed sources. The technique uses the whole time-window
of the interictal spike activity to localize the generating sources and al-
lows to study propagation effects. Based on averaged interictal spike
data of 6 patients, the findings suggest that our approach is potentially
useful to delineate the irritative zone in addition to other distributed
approaches such as those implemented in the CARTOOL software and
ECD modeling techniques.

7.6 Original Contributions

The work performed in this chapter was presented at the 18th interna-
tional conference on biomagnetism [194] and the international confer-
ence on basic and clinical multimodal imaging [195]. The results that
are presented in this chapter are currently in preparation for submission
to the A1-journal NeuroImage [196] and will be presented at 17th Up-
date@Kempenhaeghe.nl and the 20th annual meeting of the organization
for human brain mapping.





Chapter 8

General conclusions and
future research

“The words go, the word goes, The words go”
David August - innervisions #50

In this final chapter we give a general overview of the main contri-
butions of the work that was performed in this dissertation. For each
chapter, the results are summarized followed by the conclusions that can
be drawn from them. Based on the overall presented work we discuss
some future research directions and close with a final conclusion.

8.1 Summary

The purpose of this dissertation was to show that more accurate and
realistic forward models improve EEG source imaging results. This was
shown in this dissertation for several forward models, by testing them
using real data, rather than the more traditional simulated data from an
assumed true forward model as shown in various previous studies. We
made use of a Bayesian framework to invert the forward model based
on a distributed source model. This provided us an alternative way of
testing forward models, using real data, based on the model evidence
corresponding with a certain forward model. This way, we evaluated
forward modeling choices using realistic EEG data in 32 subjects and 6
patients.

In chapter 2, the principles of electroencephalography (EEG) were de-
scribed. We presented a brief history of the first EEG recordings. To un-
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derstand the origin of the measured EEG activity, the subsequent section
described the anatomy and function of the brain with the focus on the
mechanisms of neural activity. This allowed us to elaborate on the origin
of electrical brain activity at different spatial scales, going from electrical
signals measurable at the microscopic level to signals that are measur-
able on top of the scalp. Next, we looked at the modern EEG recording
techniques and described methods to visualize the recorded data. Var-
ious types of brain activity that can be observed in an EEG recording
were also presented. The different types of artifacts often present in the
EEG recordings, and some techniques to remove them were described
subsequently. Finally, a number of applications were presented.

The techniques to estimate the sources that generate the measured
EEG activity, a process called EEG source imaging (ESI) were intro-
duced in chapter 3. EEG source imaging is characterized by a genera-
tive model or forward model of the EEG data and an inverse technique
to find a unique solution. We started the chapter focusing on the for-
ward model of the EEG data. First a brain source model of the sources
generating the EEG data was described. We then introduced the head
model. Several techniques to construct the head model using structural
images of the head were introduced. Next, the algebraic representation
of the forward model of the EEG data was introduced. Based on that,
we explained how the field propagation of the sources through the vari-
ous tissues in the human head can be modeled using a technique based
on finite differences. After introducing the forward modeling part of
the EEG data, several inverse techniques that were developed over the
last 20 years were discussed. Also an overview was given of the fea-
tures of EEG source imaging related to other functional neuroimaging
techniques. We concluded the chapter by presenting an application of
multimodal neuroimaging.

In chapter 4, we presented the Bayesian framework we used to in-
vert the forward model. To draw the context of probability calculus
we started the chapter with an explanation of Bayes’ theorem. Sub-
sequently the hierarchical Bayesian formulation of the inverse problem
was described based on a distributed source model. Next, we explained
the framework that allows to introduce multiple source priors for EEG
source imaging. Also the Bayesian interpretation of the classic methods
was discussed. A generalized cost function was derived, i.e. the free
energy, that is optimized to find a unique solution using the Restricted
Maximum Likelihood (ReML) algorithm. Most important for the subse-
quent chapters, we described how the framework can be used to compare
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different forward models depending on the measured EEG data.
In chapter 5, the parametric empirical Bayesian (PEB) framework for

distributed source imaging in EEG/MEG implemented in the Statis-
tical Parametric Mapping software was introduced for forward models
constructed based on finite differences. We introduced volumetric tem-
plate head models based on the Colin27 template. FDM head models
were constructed equivalent to the BEM model (used by default in the
SPM software) and we constructed an extended FDM model including
cerebrospinal fluid. These models were compared within the context of
three different types of source priors related to the type of inversion used
in the PEB framework: independent and identically distributed (IID)
sources, equivalent to classical minimum norm approaches, coherence
(COH) priors similar to methods such as LORETA, and multiple sparse
priors (MSP). The resulting models were compared based on ERP data
of 20 subjects. In brief, they performed trials of faces, houses, inverted
faces and words stimuli resulting in 4 types of Event Related Poten-
tials (ERP) for each subject. Using Bayesian model selection for group
studies the different models were evaluated. The reconstructed activity
was also compared with the findings of previous studies using functional
magnetic resonance imaging. We found strong evidence in favor of the
extended FDM head model with CSF and assuming MSP. These results
suggest that the use of realistic volumetric forward models can improve
PEB EEG source imaging.

In chapter 6, we revisited the MSP algorithm implemented in the SPM
software for distributed EEG source imaging. In the present implemen-
tation, multiple cortical patches are introduced as source priors based
on a dipole source space restricted to a cortical surface mesh. We pre-
sented a technique to construct volumetric cortical regions to introduce
as source priors by restricting the dipole source space to a segmented gray
matter layer and using a region growing approach. We called this tech-
nique the Multiple Sparse Volumetric Priors (MSVP) approach. This
extension allowed us to reconstruct brain structures besides the cortical
surface and facilitated the use of more realistic volumetric head mod-
els including more layers, such as cerebrospinal fluid (CSF), compared
to the default 3-layered scalp-skull-brain head models in the SPM soft-
ware. We illustrated the technique with ERP data and anatomical MR
images in 12 subjects. In brief, the subjects performed 80 trials of cir-
cular black-and-white checkerboard stimuli presented to one of the four
quadrants of the visual field resulting in 4 types of Event Related Po-
tentials (ERP) for each subject. Based on the segmented gray matter
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for each of the subjects, cortical regions were created and introduced as
source priors for MSP-inversion assuming two types of head models. The
standard 3-layered scalp-skull-brain head models and extended 4-layered
head models including CSF. We compared these models with the current
implementation by assessing the free energy corresponding with each of
the reconstructions using Bayesian model selection for group studies.
Strong evidence was found in favor of the MSVP approach compared
to the MSP approach based on cortical patches for both types of head
models. Overall, the strongest evidence was found in favor of the MSVP
reconstructions based on the extended head models including CSF. These
results were verified by comparing the reconstructed activity.

In chapter 7, we compared different sets of MSVPs to localize the
generating sources of interictal spikes observed in EEG recordings of
patients with refractory focal epilepsy. Based on the extensions of the
MSP algorithm in chapter 6, an ESI technique was described to estimate
the activity of multiple distributed sources corresponding with the full
time course of the spikes. We suggested to identify the origin of the
activity based on the source with the maximum energy during the rising
phase of the spike. Our approach consisted of introducing multiple sets
of sparse volumetric priors in the PEB framework and evaluating the
effect of the priors based on the model evidence. We illustrated the
technique using averaged interictal epileptic spikes in 6 patients with
refractory focal epilepsy that were treated with surgery. Based on pre-
surgical anatomical MR images and the electrode positions that were
available for each patient, patient specific 5-layered head models were
constructed. We modeled 100 different sets of 256 volumetric regions
with locations that were maximally spread inside the gray matter of the
patient. Each set of regions was introduced as priors for inversion, and we
obtained the most likely set of priors using Bayesian model selection. The
resected zone in each of the patients, extracted from post-operative MR
images, was used to evaluate the proposed approach. We compared with
a LORETA approach implemented in the CARTOOL software and an
equivalent current dipole (ECD) approach at the spike peaks and at 50%
of the peaks during the rising phase of the spike. We found equally good
or smaller distances to the border of resection, i.e. < 15 mm, with robust
results for all the patients. The results we obtained are promising because
the approach allows to identify the spatial spread of the sources, and
allows incorporating prior knowledge from other clinical investigations
such as Positron Emission Tomography (PET) and functional Magnetic
Resonance Imaging (fMRI).
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8.2 Future research possibilities

Future research is still required for several aspects of EEG source imag-
ing. It is a very slow moving field because of computational limitations
in the past and the inherent challenge to validate the ESI techniques
thoroughly. This is a consequence of the fact that EEG source imag-
ing depends on a whole sequence of recording and pre-processing factors
that could influence the results. Assuming that the recording equipment
is functioning perfectly and the electrodes are placed well, we present
some of the limiting factors below categorized as factors on the electrode
level, for the forward model and validation aspects. A couple of research
opportunities that are relevant to the research methodology presented in
this dissertation are subsequently discussed.

1. At the electrode level the main limiting factor is the external noise
in the recordings besides the brain activity being studied.

2. For the forward model we distinguished:

• the quality and resolution of the anatomical images, i.e. the
anatomical MR images or CT images, of the head to construct
the forward model,

• the segmentation techniques of the MR images that are used
to model the different tissues in the head model,

• the choice of the number of tissues that should be modeled in
the head model,

• the unknown conductivities of the tissues modeled in the head
model,

• whether modeling of the electrodes is possible based on addi-
tional measurements.

3. For ESI validation the main limiting factors are:

• the lack of a ground truth,
• and the different sensitivity of ESI to different areas in the

brain, i.e. the detection of brain activity in deeper areas in
the brain is less likely than activity close to the scalp surface.

It is moreover important to realize the fact that these limitations depend
on the brain activity being studied. For example, the modeling choices
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of an ESI technique for source imaging of interictal epileptic spikes will
be different than localizing the sources generating an ERP component.

In order to improve the robustness to noise in the EEG recordings, the
Bayesian framework that was introduced in this dissertation allows to
incorporate prior information about the noise inserted as prior covariance
components. The noise can be measured in single recording before the
experiment.

For the forward model, the main opportunity is to cope with the prob-
lem of the conductivities of the tissues. Typically conductivity values are
used that are reported in literature from in vivo measurement. In reality
this is however an approximation because the conductivity of the tissues
can vary from subject to subject, is dependent on the age, time, etc.
Initiatives are taken to calibrate the conductivities in the brain using an
evoked source inside the brain that comes from a well-known somatosen-
sory experiment. These data can be measured in a single run before
acquisition of the brain activity of interest. Also techniques such as
Electrical Impedance Tomography (EIT) and Magnetic Resonance Elec-
trical Impedance Tomography can provide alternative ways to measure
the conductivity of the tissues in the human head. The Bayesian frame-
work could offer an elegant opportunity to determine the conductivity
empirically, by assessing the free energy values corresponding with re-
constructions assuming head models with different conductivity values.
Forward modeling choices such as the accurate modeling of the elec-
trodes and different segmentations technique can be evaluated using the
framework and the extensions that were proposed in this dissertation.

To validate ESI techniques, the most rigorous way is to use simultane-
ously recorded scalp EEG data and intracranially recorded EEG data,
i.e. brain activity monitored inside the brain. This is of course not
straightforward in humans because it requires a very invasive procedure
to place the intracranial electrodes. Worldwide initiatives are however
taken to provide datasets registered in monkeys in order to validate ESI
techniques in depth. Often epileptic patients are monitored with in-
tracranial electrodes in order to determine the epileptic focus. Datasets
of simultaneously recorded EEG and intracranial EEG provide the most
straightforward way to validate the techniques for ESI of epileptic events
recorded in the EEG.

In order to validate ESI for a specific type of brain activity, large
datasets are necessary to determine the accuracy and uncertainty on
the localized sources. Such studies are currently lacking. Once a specific
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technique for ESI is chosen for an experiment to localize the sources that
are generating the EEG data, the uncertainty on the locations should
also be quantified. The PEB framework provides an optimal statistical
framework in that context.

8.3 Final conclusions

Several EEG source imaging techniques have been proposed to identify
the generating neuronal sources of electrical activity measured on the
scalp. The solution of these techniques depends directly on the accuracy
of the forward model that is inverted. In this dissertation several for-
ward models were compared based on realistic data in 32 subjects. We
introduced advanced forward models in a parametric empirical Bayesian
framework in order to compare the models based on an approximation
of the model evidence. The results we obtained in this work suggest that
the use of realistic volumetric forward models improve EEG source imag-
ing. We furthermore showed that the use of volumetric cortical regions as
source priors is a useful complement to the present implementation in the
Bayesian framework as it allows to introduce more complex head models
and volumetric source priors in future studies. In the final chapter we
presented a new ESI technique to localize interictal spike activity based
on patient specific head models and by introducing multiple sparse vol-
umetric priors in the Bayesian framework for distributed sources. Based
on data of 6 patients, the findings suggest that our approach is potentially
useful to delineate the irritative zone in addition to the currently used
techniques. The results are promising but need verification in a larger
patient group and need to be compared with intracranial recordings.
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Appendix A

The reciprocity principle for
EEG forward modeling

We could use Eq. (3.23) to compute the lead fields for every dipole
we consider inside the head model. Typically about 10.000 to 100.000
dipoles are considered as possible sources so this would take a lot of com-
putation time. Based on a reciprocal approach, we can limit the number
of computations to the number of electrodes.

A.1 The general idea of reciprocity

Consider a circuit with two clamps A and B representing a pair of scalp
electrodes, and two clamps on a location described by index r measuring
a dipolar source in the brain region illustrated in Fig. A.1.

First a current Ir at clamps r is introduced. This source will generate a
potential VAB(Ir) at AB as illustrated in Fig. A.1A. Next a current IAB is
introduced at clamps A and B. This will give rise to a potential difference
Ur(IAB) at r as illustrated in Fig. A.1B. The reciprocity theorem in
circuit analysis states [198]:

VAB IAB = Ur Ir (A.1)
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Figure A.1: A schematic representation of the reciprocity theorem. A network
where a current source is introduced in the brain and a potential difference
is measured at an electrode pair, and visa versa: (a) a current source Ir is
introduced and the potential VAB is measured, and (b) a current source IAB is
introduced and a potential Ur is measured. Figure adapted from [197].

A.2 Application of reciprocity to compute EEG
lead fields using finite differences

Considering Eq. (A.1). We assume a dipole oriented in the x-direction
at a location described by index r of the computational grid. The dipole
is represented by two current monopoles, a current source and sink, pro-
viding Ir and −Ir, on opposite nodes along the x-direction separated by
a distance 2hx, with hx the spacing of the nodes in the x-direction. The
dipole is oriented from the negative to the positive current monopole and
the centre node with index r of the two monopoles is the dipole posi-
tion. the magnitude of the dipole moment is then 2hxIr. Because the
scalp electrodes are located sufficiently far from the sources compared
with the distance 2hx between the sources we can assume a dipolar field.
Equation (A.1) can be rewritten as:

VAB =
Ur Ir
IAB

. (A.2)
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To explicitly include the orientation of the dipole in x,y or z direction
in Eq. (A.2), we describe a dipole based on its location r = [ihx, jhy, khz]
in the 3D computational grid, with hx, hy and hz the spacing of the nodes
in the x,y or z-direction and the indices i, j, k the number of nodes along
the x,y and z direction. Rewriting Eq. (A.2) with dx = 2hxIr and

∂U

∂x
(r) ≈ [U(r+ hxex)− U(r− hxex)]

2hx
,

with ex the unit vector in the x-direction, gives:

VAB =
dx(r)

∂U
∂x (r)

IAB
, (A.3)

meaning that the potential VAB can be calculated for a dipole oriented
along the x-axis on location r given ∂U

∂x (r). In a similar way, VAB can
be calculated for a dipole located at r oriented along the y-axis and
the z-axis. Consider a dipole at position r and with dipole components
d = (dx, dy, dz)T ∈ R3×1. The potential VAB reads:

VAB(r,d) =
d
T · ∇U(r)

IAB
, (A.4)

with ∇U(r) = (∂U(r)/∂x, ∂U(r)/∂y, ∂U(r)/∂z)T ∈ R3×1.
Based on Eq. (A.4), the approach based on reciprocity to calculate the

EEG lead fields goes as follows for 2 electrodes considered on the scalp
surface:

• A fictive current IAB = 1, with unit amplitude is assumed, which
enters the head at electrode A and leaves the head at electrode B.

• Utilizing the FDM equation (3.23), the potentials U(ihx, jhy, khz)
can be calculated for every position. Fig. A.2 illustrates the equipo-
tential lines and current density vectors J = −σ∇U in the brain
region, with ∇U = (∂U/∂x, ∂U/∂y, ∂U/∂z)T . The partial deriva-
tive ∂U/∂x is approximated by [U((i + 1)hx, jhy, khz) − U((i −
1)hx, jhy, khz)]/2hx. The partial derivatives ∂U/∂y, ∂U/∂z are
obtained in a similar way.

• VAB the potential difference between the scalp electrodes A and
B generated by the dipole at position r and dipole moment d is
obtained by applying Eq. (A.4).
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Figure A.2: Potential field calculated using the finite difference modeling
approach for a current introduced between two electrodes A and B on the
scalp. Figure adapted from [197].

If N scalp electrodes are used to measure the EEG, N − 1 electrode
pairs can be found with linear independent potential differences. For
each electrode pair, Eq. (A.4) can be used to calculate the VAB for each
position r in the brain. Therefore N − 1 numerical forward calculations
are performed and the N −1 potential differences at the N −1 electrode
pairs are subsequently transformed in N average referenced potentials
at the N electrodes to calculate the lead fields in each direction [50]. As
explained in section 3.2.4.2, if we subsequently assume that the dipolar
sources have unit amplitudes in 3 orthogonal directions for each location
r the resulting potentials Vu represent the lead field L in 3-directions
for each location r. Note that the leadfields computed based on the
reciprocal approach will differ a factor of 2hx, 2hy and 2hz in each di-
rection compared to the direct computation used in Eq. (3.23). This is
important if different forward modeling techniques are compared to have
a consistent comparison.
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The derivation of p(Vm,λ)

In this appendix we work out p(Vm,λ):
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For solving this integral it is necessary to apply the following solution for a Gaussian
integral:
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