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Nederlandstalige
samenvatting

–Summary in Dutch–

Positron Emission Tomography (PET) beeldvorming is een tak van de nucleaire
medische beeldvorming. Het is een relatief nieuwe en snel evoluerende modaliteit
die gebruik maakt van het speurstof-principe. Zoals de naam al impliceert, maakt
PET gebruik van straling gevormd door middel van positron-elektron annihilatie
waarbij twee annihilatie fotonen worden uitgestuurd in tegenovergestelde richt-
ing. PET beeldacquisitie begint met het toedienen van een positron emitterend
radiofarmacon in de patint. De moleculen van de speurstof zijn betrokken in fys-
iologische processen en worden verdeeld over het lichaam. De verdeling van het
radiofarmacon onthult op zijn beurt informatie over fysiologische processen. Een
PET-scanner meet de ruimtelijke informatie van alle gedetecteerde annihilatiefo-
tonen, en organiseert deze in een histogram, genaamd sinogram. Door een recon-
structieproces kunnen sinogrammen worden genverteerd en kan de verdeling van
de radiotracer worden weergegeven.

Vaak wordt de data-acquisitie procedure vereenvoudigd gemodelleerd als een
lijn-integraal, wat vergelijkbaar is met een verwante modaliteit: computed tomog-
raphy (CT). De beeldvorming in PET is in realiteit echter heel wat complexer. Na
emissie van het positron door radioactief verval van een isotoop (bvb. 18F), legt
dit positron een kleine afstand af vooraleer het annihileert met een elektron. Deze
kleine afstand wordt het positron bereik genoemd. Na annihilatie (hetzij tijdens
de vlucht of in rust), zijn de secundaire annihilatiefotonen niet perfect collineair
en is er een kleine hoekafwijking ten opzichte van de gedealiseerde 180 ◦ graden.
Deze hoekafwijking noemt men acollineariteit. De twee annihilatiefotonen kun-
nen verschillende foton-materie interacties ondergaan in het lichaam van een pa-
tient. Bij Compton verstrooiing buigt het foton af van zijn oorspronkelijke pad
wat gepaard gaat met energieverlies. Bij het foto-elektrische effect wordt het foton
geabsorbeerd. Zodra de fotonen zijn aangekomen in de detector, kunnen nog-
maals Compton verstrooiing en foto-elektrische effecten optreden. Als gevolg van
al deze effecten en de beperkingen van een PET-detector, moeten we rekening
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houden met een afwijking bij de waargenomen detectiepositie van elk foton.
Deze onvolmaaktheden kunnen in zekere mate worden gecompenseerd door

middel van resolutie-modellering tijdens beeldreconstructie. In dit proefschrift
richten we ons op het modelleren van deze degradatiefactoren tijdens het recon-
structieproces om zo de beeldkwaliteit te verbeteren. Dit wordt meestal uitgevo-
erd aan de hand van een systeemmodel, dat alle bekende factoren omvat, gerela-
teerd aan een patintenscan: 1) de geometrie van de scanner, 2) de structuur van de
scintillatiekristallen, 3) de energie- en tijdsresolutie, en 4) fysieke degradatiefac-
toren, met inbegrip van positron-bereik, de acolineariteit van de annihilatiefotonen,
kristalpenetratie, en de verstrooiing tussen de kristallen onderling.

In de praktijk moeten we echter een aantal veronderstellingen maken om het
genereren van een systeemmodel mogelijk te maken. Zo verschillen scanner con-
figuraties (opnameparameters en patinten) meestal in de klinische praktijk, het-
geen het systeemmodel nog ingewikkelder maakt. Het zou nauwkeuriger zijn om
een uniek systeemmodel op te stellen per opnameconfiguratie, maar dit is onhaal-
baar. Daarom zijn we ervan uitgegaan dat het systeemmodel onafhankelijk is van
de verschillende opnameconfiguraties. Dankzij tijdsonafhankelijke simulaties kan
de koppeling tussen de verschillende gebeurtenissen gelimineerd worden. Patint-
afhankelijke factoren worden uitgesloten uit het systeemmodel omwille van dezelfde
redenen .

Aan de hand van Monte Carlo simulaties kunnen alle bovengenoemde factoren
gemodelleerd worden. Variantie Reductie Technieken (VRTs) zijn noodzakelijk
voor het versnellen van simulaties van onder andere resolutie-modellering. Met
de veronderstellingen uit de vorige paragraaf implementeren we een aantal een-
voudige VRTs om de simulatie-efficintie van egs pet verder te verbeteren. De
eerste techniek bestaat uit het limiteren van de polaire hoek (Eng.: Polar angle
biasing), die wordt gebruikt om fotonen die niet in de richting van de detec-
tor vliegen tijdens de simulatie te elimineren. Een alternatief is om hit-tests uit
te voeren om na te gaan of een foton de detector al dan niet kan raken, maar
deze tests kunnen op hun beurt veel tijd in beslag nemen. ’Positron tracking’
kan verder geoptimaliseerd worden door hergebruik van de positron geschiede-
nis van meerdere gelimineerde foton-paren. Voor het traceren van fotonen in de
detector, is gebruik gemaakt van fictief transport in het kristal om de kost ver-
bonden aan ’bound cross handling’ te beperken, en ’forced energy window pass-
ing’ verhoogt de simulatie-efficintie door analytisch de kans te berekenen dat een
foton binnen het opgelegde energie-venster valt. Ten slotte kunnen de transport-
parameters geoptimaliseerd worden voor een betere efficintie, zonder verlies van
nauwkeurigheid. Een geoptimaliseerde Monte Carlo simulator vormt de basis voor
Monte Carlo gebaseerde resolutie-modellering, het centrale deel van dit proef-
schrift. In aanvulling op de eerder genoemde Monte Carlo simulator, hebben
wij een nieuw rotator-gebaseerd algoritme voor beeldreconstructie voorgesteld
voor het resolutie-compensatie probleem in PET. Met een rotator kan de rotatie-
symmetrie in een cilindervormige PET-scanner worden uitgebuit voor alle soorten
basisfuncties . Deze eenvoudige operatie verhoogt de efficintie van de resolutie-
modelleringssimulatie aanzienlijk. Verder vermindert deze aanpak ook de redun-



SUMMARY IN DUTCH xxix

dantie in het systeem-model, hetgeen dit systeem-model compact genoeg maakt
voor een opslag op een PC. Met onze snelle Monte Carlo simulator en rotatie-
gebaseerde technieken, kan op een week tijd een nauwkeurig systeem-model wor-
den opgesteld op een klein computationeel platform.

Naast Monte Carlo-gebaseerde resolutie modellering, bespreken we ook de
modellering van puntspreidingsfuncties (PSF) op basis van metingen in combinatie
met het rotator-gebaseerde algoritme. De methode karakteriseert de profielen van
de PSF. We voegen de belangrijkste parameters n voor n toe en evalueren telkens
hun impact op de kwaliteit van het gereconstrueerde beeld. In dit werk wordt
een eerste model voorgesteld. Radiale en axiale spreiding werden gemodelleerd
en hun effecten op de beeldkwaliteit werden gevalueerd. Onderzoek toont aan
dat axiale vervaging een kleine invloed heeft op de compensatie van de resolutie
maar het contrastherstel voor kleine hete lesies verbetert. Hierdoor vormt het een
belangrijke parameter in de modellering van de resolutie.

Hoewel een rotator de rotatie-symmetrie voor een Cartesiaanse discretisatie
geschikt maakt, zijn er uitgesproken ringvormige artefacten in het gereconstrueerde
beeld doordat een extra (artificile) vervaging gentroduceerd wordt. We karakteris-
eren de ringvormige artefacten in onze rotator-gebaseerde reconstructie door het
toepassen van een nauwkeurig systeemmodel in een ideaal rotator-gebaseerd al-
goritme. De ideale rotator gebruikt polaire-pixels als basisfuncties. Omdat deze
rotatiesymmetrisch zijn, vermijden ze de introductie van extra, ongewenste ver-
vaging. De enige ringvormige artefacten die overblijven in de ideale rotator-
gebaseerde aanpak behoren tot de bekende Gibbs effecten. Het verschil tussen de
artefacten met de ideale rotator wordt gebruikt om de herkomst van de ringvormige
artefacten in de algemene rotatorgebaseerde aanpak te onderzoeken. We onder-
zoeken ook de relatie tussen de artefacten en het contrastherstel voor kleine warme
lesies. Dit werk suggereert dat de artefacten vooral worden toegeschreven aan de
rotator. Onze studie geeft ook aan dat de ringvormige artefacten het contrastherstel
van warme lesies kunstmatig verbeteren, in het bijzonder voor kleine lesies.

De ringvormige artefacten veroorzaken bias in de beelden op plaatsen waar
er zich scherpe overgang van intensiteit voordoen. De artefacten zijn visueel
meer uitgesproken bij ruisvrije data. In de praktijk zijn de ringvormige artefacten
onzichtbaar geworden omdat er bij emissietomografie veel ruis aanwezig is in de
data. De bias blijft echter in de scherpe overgangen van het beeld en duwt het con-
trast in de richting van de werkelijke waarde, in het bijzonder voor kleine lesies.
Het verbeterde contrast kan het de detectie van kleine lesies verbeteren, dit is be-
langrijk in oncologie-toepassingen.





English summary

Positron Emission Tomography (PET) imaging is a branch of nuclear medicine
imaging. It is a relatively new and rapidly evolving imaging modality. This imag-
ing modality uses the tracer principle. As the name implies, PET uses radiation
formed by positron-electron annihilation, which is two back-to-back (180◦ apart)
annihilation photons. PET image acquisition begins with the administration of a
positron emission radiopharmaceutical in the patient. The molecules of the radio-
tracer are involved in physiological processes and are distributed within the body.
The distribution of the radiopharmaceutical in turn reveals information about the
physiological processes. A PET scanner records the spatial information of all de-
tected annihilation photons, organized as a histogram called a sinogram. Sino-
grams can be inverted into the distribution of the radiotracer through a process
called reconstruction.

Often, the data acquisition procedure is simplified as a line integral model,
which is similar to its sibling modality, computed tomography (CT). However, the
true data formation procedure in PET is much more complex. After the positron
emitted from an isotope (e.g. 18F), it travels a small distance before annihilating
with an electron. The small distance is called the positron range. After annihila-
tion (either in flight or at rest), the secondary annihilation photons are not ideally
collinear. Instead, the two photons fly back to back with a small angle deviation
from 180◦, which is called acolinearity. The two annihilation photons may un-
dergo different photon-matter interactions in the patient body, namely Compton
scattering, which deflects the photon from its original path with reduced energy,
and photoelectric effects, where the photon absorbed. Once the photons arrived
at the detector, Compton scattering and photoelectric effects may occur. Due to
these effects and limitations of a PET detector, the location sensed by the detector
is usually deviated from the travelling path of the annihilation photons.

To address these imperfections, resolution compensation is usually employed
to recover the missing information. In this dissertation we focus on modeling and
incorporating these degradation factors into the reconstruction procedure to im-
prove the image quality. This work is usually performed through a system model,
which in general includes all known factors related to a patient scan: 1) the geom-
etry of the scanner, 2) the crystal configuration, 3) the energy resolution and time
resolution, and 4) physical degradation factors, including the positron range, the
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acolinearity of the annihilation photons, the crystal penetration, and inter-crystal
scattering.

However, in practice , some assumptions are made in order to generate an
accurate system model. For example, the acquisition configurations (acquisition
parameters and patients) usually vary in clinical routines, which further complicate
the system model. Constructing a system model for each acquisition configuration
would be more accurate, but it is unfeasible. So we assumed that the system model
is independent of acquisition configurations. In this way, coupling among differ-
ent events can be eliminated by performing time-independent simulation. Patient-
dependent factors have to be excluded from the system model for the same reason
stated above.

Monte Carlo simulation is an ideal candidate to model all the aforementioned
factors. Variance reduction techniques (VRTs) are necessary for speeding up sim-
ulations of for instance resolution modeling. With the assumptions mentioned in
the previous section, we implement several simple VRTs to further improve the
simulation efficiency of egs pet. The first technique is polar angle biasing, which
is employed to reduce the cost in simulating photons that are not flying toward the
detector. An alternative way is to perform hit-testing on whether a photon can hit
the detector or not, but this testing could be expensive. Positron tracking can be
further optimized by reusing a positron history for multiple annihilation photon
pairs. For photon tracking in the detector, fictitious transport in crystal arrays is
used to save the cost in bound cross handling, and forced energy window passing
improves simulation efficiency by analytically calculating the survive probability
through the energy window. Finally, the transport parameters can be optimized for
better efficiency without loss of accuracy.

The optimized Monte Carlo simulator provides a solid basis for Monte Carlo-
based resolution modeling, which is the central part of this dissertation. In addition
to the aforementioned Monte Carlo simulator, we proposed a novel rotator-based
algorithm for the resolution modeling problem in PET. With a rotator, the rota-
tional symmetries in a cylindrical PET scanner can be employed for any basis
functions in resolution compensation. This simple operation improves the resolu-
tion modeling simulation efficiency by an order of magnitude. This approach also
reduces the redundancy in a system model, which makes the system model com-
pact enough for a personal computer. With our fast Monte Carlo simulator and
symmetry handling techniques, an accurate system model can be obtained within
a week on a small computational platform.

In addition to Monte Carlo-based resolution modeling, we also discuss the
experiment-based point spread function (PSF) modeling with the rotator-based al-
gorithm. Our method directly parameterizes the profiles of PSFs. We add key
components progressively and evaluate their impact on the quality of the recon-
structed image separately. An initial system model is presented in this work. Ra-
dial blurring and axial blurring are modeled and their effects on the image quality
are evaluated. Axial blurring has been demonstrated as a minor factor in resolution
compensation. However, axial blurring improves contrast recovery for small hot
lesions, which makes it an interesting factor in resolution modeling.
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Although a rotator makes the rotational symmetries open to a Cartesian dis-
cretization, pronounced ringing artifacts are detected in the reconstructed image
due to the extra (artificial) blur introduced. We characterize the ringing artifacts oc-
curring in our rotator-based reconstruction by applying an accurate system model
into the ideal rotator-based algorithm. The ideal rotator uses polar-pixels as the ba-
sis functions, which is rotationally symmetric. This feature is used to implement
an ideal rotator, which does not alter the detector response because no blurring is
introduced during image rotation. Thus, the ringing artifacts in the ideal rotator-
based approach belong to the well-known Gibbs effects because the ideal rotator
provides a matched system model to the data. This fact is used to investigate the
origin of the ringing artifacts in the rotator-based approach. We also investigate the
relationship between ringing artifacts and contrast recovery for small hot lesions.
This work suggests that the ringing artifacts are mainly attributed to the blurring
rotator. Our study also indicates that the ringing artifacts artificially improve the
contrast recovery of hot lesions particularly small hot lesions.

The ringing artifacts cause bias in the image at sharp transitions of image in-
tensities. The artifacts are visually more pronounced in noiseless data. In practice,
the ringing artifacts become invisible because noise artifacts in emission tomogra-
phy are more pronounced. However, the bias remains in image sharp transitions
and pushes the contrast toward the true value, particularly for small lesions. The
improved contrast may improve the detection of small lesions, which is very im-
portant in oncology applications.
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Chapter 1

Introduction

1 Background

Inspection is one of the most important medical diagnosis techniques. Over 2200
years ago, medical practioners in ancient China summarized a systematic non-
invasive diagnosis technique, including Inspection, Listening and smelling exam-
ination, Inquiry and Palpation. Some components of this technique remain im-
portant components in modern medical practice, such as inspection and inquiry.
Dissection is another category of diagnosis method, the invasive inspection tech-
nique. The emergence of modern medical imaging techniques, especially Ultra-
sound tomography (US), Computed Tomography (CT) and Magnetic Resonance
Imaging (MRI) modalities, have brought revolutionary transformations in medical
diagnosis by providing cross-sectional images without physical injury in the sub-
ject. Diseases are usually determined with regards to morphological changes. This
milestone transformation is usually referred to as bringing “the invisible into the
light” [Wernick and Aarsvold, 2004].

Another breakthrough lies in the raising of functional imaging techniques,
namely single photon emission computed tomography (SPECT) and especially
positron emission tomography (PET). It is well known that abnormal functions
precede changes in anatomical structures 1. In addition, abnormal functions could
be temporal if treated in time, while morphological alterations are usually per-
manent and might not be restored even after normal function has been restored.
Functional imaging modalities show their strongholds in detecting functional dis-
orders with great sensitivity. For this reason, these modalities have been applied
in molecular biology for inspecting cellular function and tracking the molecular
processes of living organisms in vivo. This intersection forms the new discipline
molecular imaging.

1Trauma is an exception
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PET imaging is a branch of nuclear medicine imaging. It is a relatively new
and rapidly evolving imaging modality in nuclear medicine imaging. This imaging
modality uses the same tracer principle as the other nuclear medicine modalities
(SPECT, planar imaging, etc.). As its name implies, PET uses the radiation formed
by positron-electron annihilation, which is two back-to-back (180◦ apart) annihi-
lation photons. PET image acquisition begins with administration of a positron
emission radiopharmaceutical in the patient. The molecules of the radiotracer are
involved in physiological processes and are distributed within the body. The dis-
tribution of the radiopharmaceutical, in turn, reveals information about the physi-
ological processes. A PET scanner records the spatial information of all detected
photons, organized into a special histogram called a sinogram. Sinograms contain-
ing the spatial information of detected annihilation photons can be inverted into the
distribution of the radiotracer by a process called reconstruction.

Many reconstruction methods have been proposed. These methods can be sub-
divided into two major categories: analytical algorithms and iterative algorithms.
Analytical algorithms find the radiotracer distribution by computing the analytical
solution directly, representative algorithms are filtered backprojection (FBP) and
backprojection filtration (BPF). Iterative algorithms search the radiotracer distri-
bution through an iterative procedure. There are two types of iterative algorithms,
algebraic algorithms and statistical iterative reconstruction (SIR) algorithms. Al-
gebraic algorithms mainly refer to the Algebraic Reconstruction Technique (ART)
and its variants. Typical SIR algorithms are the most popular reconstruction meth-
ods in PET imaging. Typical algorithms are maximum likelihood expectation
maximization (ML-EM), ordered subset expectation maximization (OS-EM) and
maximum a posteriori (MAP).

This PhD dissertation mainly focuses on statistical iterative reconstruction tech-
niques (SIRT) with Monte-Carlo modeling or experimental modeling of the image
formation process. Incorporation of a realistic model in the iterative reconstruction
algorithm improves the image quality significantly. However, Monte Carlo sim-
ulations are very time-consuming, especially for state-of-the-art whole-body PET
scanners. Even a reasonable Monte Carlo-based system model requires highly
efficient simulation techniques and exploiting inherent symmetries of the scan-
ner system. Proper choice of the basis function of image representation plays
an important role in symmetry handling techniques. Thus, we investigate two
different categories of techniques to solve the computational problem in Monte
Carlo-based resolution modeling for whole-body PET scanners. These techniques
are efficiency improvement techniques in Monte Carlo simulation and image rep-
resentation techniques using different basis functions. Experimental modeling is
also very time-consuming. A parameterization technique is used to reduce the
measurement time and downsize the system model.
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2 Organization of this dissertation

In chapter 2, a brief overview of PET imaging physics and scanner modeling,
including image formation and, key components of reconstruction algorithms, is
given. Preliminary knowledge of the physics relevant for PET imaging and the in-
strumentation of PET scanners are briefly described. Image quality degeneration
factors are then summarized based on the physics and instrumentation knowledge.
The first major component contains reconstruction algorithms, preceded by Monte
Carlo- and experiment-based scanner modeling techniques, the other major com-
ponent of this dissertation. This chapter ends with a discussion of open problems
in both reconstruction algorithms and system modeling techniques.

In chapter 3, the general methodology of SM simulation is described. This
methodology was implemented in egs pet, a light-weight EGSnrc-based Monte
Carlo C package. These variance reduction techniques (VRTs) are polar angle bi-
asing, hit-testing, positron history reuse, forced energy window passing, fictitious
transport in crystal arrays and optimal transport parameters. The VRTs are then
validated using voxel sources located at the center of the field of view (FOV) and
at the edge of the FOV. The simulation efficiency is improved by a factor of about
15 times without any degradation in image quality.

In chapter 4, a Monte Carlo-based resolution modeling technique using voxels
as the basis functions is described. This method tries to utilize the inherent sym-
metry of the PET scanner by rotating the image volume. Rotation of image grids
makes the voxel discretization rotationally symmetric. Hence, the rotator-based
method is able to utilize inherent rotational symmetry while retaining voxel dis-
cretization. This characteristic reduces the cost of SM simulation and saves the
storage requirement for storing the SM in main memory. The image quality was
considerably improved. However, ringing artifacts were found. The origin and
effects of the ringing artifacts will be discussed in the chapter 6.

In chapter 5, experimental system response modeling is investigated. The sys-
tem responses were acquired with a scanning point source using a staging robot.
The obtained point spread functions were then fitted according to an asymmetric
Gaussian model. The parameterized point spread functions were applied in the
rotator-based algorithm with considerably improved image quality. We also used
the factorized matrix technique to further reduce the storage requirement of the
system model.

In chapter 6, the ringing artifacts of the rotator-based method were charac-
terized quantitatively when it was used with an accurate system model. Because
the blur of the rotator may alter the system responses, i.e., increase the kurtosis
of the point spread function, the study also reveals the effects of exploiting an
over-blurred system response kernel in reconstruction. We also proposed an ideal
rotator to serve as the baseline. The rotator was chosen to be the Gaussian rotator
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as its blur is fixed and not angle-dependent. This characteristic of the chosen rota-
tor enables a quantitative study as the extent of the blurring can be calculated. We
also used the blurring of the rotator to compensate for positron range and acolin-
earity. However, the results indicate that the blurring of the rotator is wider than
the blurring of these two physical factors when ML-EM or OS-EM is used.

Finally, in the last chapter, general conclusions are drawn. Possible points and
directions that need further investigation are also briefly discussed and listed at the
end of this chapter.



Chapter 2

Positron Emission
Tomography

2.1 General Introduction

This dissertation lies in the exciting world of imaging science, which is a multi-
disciplinary field concerned with the generation, collection, duplication, analysis,
modification, and visualization of information [Hornak, 2002]. It is commonly
assumed in psychology that vision is the most important channel of source of in-
formation to humans. Human beings rely on tools to convert invisible informa-
tion into visible, interpretable, and understandable information. Telescopes help
us to understand the universe. Similarly, medical imaging devices help people to
not only “view” anatomical images for the diagnosis and treatment of the disease
(what) but also investigate the functional mechanism of the human body at phys-
iological, biochemistry, and molecular levels (how and why). Medical imaging
techniques have became a very important component in modern clinical diagnosis
and many routine procedures.

By definition, “medical imaging” refers to imaging techniques or processes
that reveal the subject of interest, whether it be anatomical or functional for clin-
ical purposes or for medical research. Many imaging modalities are employed in
clinical and biological research. There are various criteria used in classifying these
imaging modalities. Here, we use the properties of the information yielded by
an imaging device to classify the modality into two general categories. The first
category is the non-functional imaging techniques, which includes well-known
computed tomography (CT), ultrasound (US) imaging, magnetic resonance imag-
ing (MRI) and X-ray radiography. Non-functional imaging techniques usually
depict the anatomical structure of the human body. A disorder is usually diag-
nosed by looking for a visible change in anatomical structures. The other class
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is functional imaging, which includes most nuclear medicine imaging techniques,
namely positron emission tomography (PET), single photon emission tomogra-
phy (SPECT), scintigraphy (planar imaging), and other modalities, such as fluo-
resce imaging (FI) and optical imaging techniques. These imaging modalities pro-
duce images from which information can be derived about metabolic processes.
Nonetheless, recent advances in medical imaging have enabled some traditionally
non-functional imaging modalities to provide functional information as well. Typ-
ical examples of those imaging modalities are functional MRI (fMRI) and Doppler
ultrasound. An fMRI image provides information about oxygen consumption and
yields information related to the metabolism of oxygen. Doppler US is able to
detect the velocity of blood flow in the vessels; thus it provides functional infor-
mation about organs, e.g., the heart.

This work will focus on Positron Emission Tomography (PET), which is a
functional imaging modality frequently used in clinical practice. A brief descrip-
tion of the principle, the basic physics, instrumentation, reconstruction techniques
and Monte Carlo simulation of PET are presented. This introduction gives a brief
overview of the basic knowledge that is required for the Monte Carlo-based reso-
lution modeling in PET.

2.2 The Principle of PET

PET is a nuclear medicine (NM) imaging technique. It uses a positron-emitting
isotope as a radiotracer to investigate functional information by employing the
radiotracer principle. The radiotracers used in a PET scan are usually produced
on-site by a cyclotron, which is a device that can accelerate charged particles to
energy high enough to produce nuclear reactions.

Molecules that are significant for diagnostic purposes are labeled by positron
emitting atoms. The most commonly used radiotracer is F18-FDG, which behaves
like a glucose molecule inside the human body. After being emitted, the positron
annihilates with a nearby electron and two back-to-back annihilation photons are
produced. The back-to-back feature of the annihilation photons enables PET to
work without employing collimators. This difference is the reason why a PET
scanner has higher sensitivity than a SPECT scanner. The detection of such a
photon pair, a special technique called coincidence detection is needed, which de-
termines a valid pair of annihilation photons by examining the time of detection
and accepts two detections that are close enough as a valid coincidence. Once a
valid coincidence is determined, the origin of the two photons is known to approx-
imately belong to a line of response (LOR). Given millions of such coincidences,
the radioactive distribution can be estimated using tomographic image reconstruc-
tion. This process is illustrated in Fig. 2.1.

More details on physics, instrumentation and image reconstruction on PET can
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Figure 2.1: Illustration of the work flow in a real world PET examination.

be found in the following sections.

2.3 Nuclear medicine imaging physics

2.3.1 Common radiation forms in nuclear medicine

Radiation refers to the process of energy transfer in media or in space, in the form
of wave or particle. For example, the sunshine broadcasts heat from the sun to the
earth. The broadcasting of radiation can be utilized to transfer information, such
as a wireless network or a radio. When travels in media, the energy of the radia-
tion may be absorbed or reflected back by the media. By analyzing the remaining
or the scattered radiation, information about the structure of an object can be in-
vestigated. This principle forms the basis of most imaging modalities found in a
modern hospital.

In a radiology department, most imaging modalities, such as Nuclear medicine
imaging and CT use ionizing radiation, which transfers large amount of energy
and is capable of ionizing atoms. This radiation used in a nuclear medicine imag-
ing modality or a CT is usually composed of high-energy photons. Non-ionizing
electromagnetic radiation does not cause ionization of atoms. A typical example
of non-ionizing radiation is the radio frequency (RF) radiation, which is used in
MRI and fMRI to excite hydrogen protons in water molecules. Generally, particle
radiation is not directly employed in nuclear medicine imaging techniques to due
to their poor penetration capabilities. Some common ionizing radiation employed



10 POSITRON EMISSION TOMOGRAPHY

in different imaging modalities will be briefly introduced here.

β+ radiation The β+ radiation consists of energetic positrons. The positron is
the antiparticle of the electron. It occurs during the conversion of a proton
into a neutron. This process can be expressed as:

1
1p

+ →1
0 n+0

1 β
+ + ν (2.1)

A second particle is emitted, which is a neutrino. Similar to that of the elec-
tron, the energy spectrum of positron emission is also continuous. After
positron decay, an electron is also ejected from the daughter nuclei to bal-
ance charge, which is often through an internal conversion. Positron emis-
sion nuclei may also decay by electron capture. The most commonly used
isotope for PET imaging, 18-fluoride, has a positron emission branching
ratio of 97% and electron capture branching ratio of 3%.

Annihilation radiation Annihilation radiation forms the basis of PET. Most an-
nihilation of a positron and an electron occurs at rest. The combination of
these two particles forms a metastable intermediate species called positron-
ium, which exists for around 10−7 seconds (mean life) and then annihilates
into two photons that have an energy of approximately 511 keV and travel-
ing apart in opposite direction. At the time of annihilation, both the positron
and the electron have residual momentum, which leads to the acolinearity of
the two annihilation photons. The cross section of positron at rest is infinite,
so all positrons will eventually annihilate with electrons. The positronium
may annihilate into three or more photons. There are in flight annihilations.
For in flight annihilation, the polar angle of the annihilation can be uniquely
determined by the energy of the positron. The branch ratio is about 1

k , where
k ≈ 137 is the fine structure constant.

γ radiation Gamma rays are another important form of electromagnetic radia-
tion. Unlike X-rays, gamma rays are mainly involved in nucleus reactions
such as spontaneous nuclear decay. Thus, gamma radiation could be ac-
companied by a decay schema. Despite different origins, X- and γ-rays are
essentially the same substances (high energy photons). Gamma ray emis-
sion is also characteristic and its energy is determined by the difference in
energy levels between the initial and final state of the nucleus.

X-ray radiation X rays are electromagnetic radiation produced when orbital elec-
trons drop down to fill vacancies in the atom after an inner shell electron is
displaced. Thus, X-ray radiation is naturally characteristic because the en-
ergy of the X ray is the difference in the quantized binding energies between
the shells. Different atom species emit different characteristic X-rays.
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However, an X-ray tube produces a continuous energy spectrum with sev-
eral peaks in the physical world, which indicates that other sources of X-ray
radiation exist. This radiation is called bremsstrahlung (German: “break-
ing”). Bremsstrahlung radiation is caused by the deceleration of an electron
in the electromagnetic field of the nucleus. X-ray radiation is of special sig-
nificance in the history of medical imaging because the first radiology image
was made using X-rays.

Some other forms of radiation employed in therapeutic application also involve
some nuclear medicine imaging techniques, for instance, the α radiation and the
β− radiation.

α radiation Alpha radiation involves with alpha particles, which are actually nu-
clei of helium (42He

2+). Due to their large mass and electric charge, alpha
particles are very likely to interact with surrounding materials and loss their
energy over a short distance.

High energy alpha particles are frequently employed for therapeutic pur-
poses. During the treatment, some positron emitting nuclei (predominantly
11C and 15O) may be created, which can be employed to perform PET imag-
ing [Enghardt et al., 2004] [Parodi et al., 2005].

β− radiation In β− radiation, the energy is conveyed by electrons. It occurs in a
β− decay, where β− particles are emitted from the nucleus, together with an
anti-neutrino. The energy spectrum of the β− particles is continuous with
a maximum. Noting this phenomenon, Wolfgang Pauli discovered a new
particle, which was the antineutrino.

β− emitting isotopes are frequently employed in therapeutic applications.
The bremsstrahlung emission can be imaged by a gamma camera to evaluate
the dose distribution in treatment employing β− emitting isotopes [Kallergi
et al., 1992] [Balachandran et al., 1985] [Rault et al., 2008]

2.3.2 Interaction of β particles with matter

The emitted β particles have an initial energy whose value is in a continuous range
from zero to a maximum. The β particle loses kinetic energy through interactions
with the surrounding matter. For a positron, the distance from its original loca-
tion to the point of annihilation is called the positron range, which ranges from
0.5mm to 8 mm for common isotopes used in PET imaging [Cherry et al., 2003].
This physical effect is one of the fundamental limitations of the spatial resolu-
tion of PET. For electrons, the range is of importance for dose localization during
radioisotope therapy.

A β particle loses its kinetic energy by four types of interactions to its sur-
roundings:
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• Inelastic collisions with atomic electrons. The behavior of e+ and e− is
different when interacting with atomic electrons. The e−e− interaction is
described by Möller scattering, while e−e+ interaction is by Bhabha scat-
tering. In this process, the β is deflected and energy is transferred to the
electrons, which may cause ionization of the atom. This interaction is the
most important mechanism of kinetic energy loss;

• Elastic collisions with atomic electrons. In this process, the β is deflected
but energy and momentum are conserved;

• Inelastic scattering with a nucleus. This process can almost be ignored. The
positron is deflected. Bremsstrahlung radiation can often be found in this
process.

• Elastic scattering with a nucleus. The β is deflected with conserved energy
and momentum (similar to elastic collisions with atomic electrons).

The β particle loses energy in inelastic interactions with surrounding matter,
but it is deflected by both elastic and inelastic interactions. Thus, the path the
β particle takes in traveling through matter is extremely tortuous. These charac-
teristics of β particle-matter interactions pose major challenges in Monte Carlo
simulations of positron/electron transport.

2.3.3 Interaction of Photons with Matter

Photon-matter interactions are very different from positron-matter interactions.
Photons can pass through materials without a single interaction or with only a
few interactions. For the same incident energy, photons are more difficult to stop
than particles in the same material. Photon-matter interactions for the photon en-
ergy within the range of interest for medical imaging applications can be classified
into four types: Rayleigh scattering, the photoelectric effect, the Compton Effect,
and pair production. In addition, other mechanisms, such as triplet production and
photonuclear reactions exist, but they usually involve energy more than 10 MeV.
Thus, we only discuss the Rayleigh scattering, photoelectric effect, Compton ef-
fect and pair production.

2.3.3.1 Rayleigh scattering

Rayleigh scattering, also called coherent scattering, is an interaction between a
photon and a whole atom. This effect predominates at energies less than 50 keV.
This energy is of interest for low-energy CT or dual-energy CT imaging.
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2.3.3.2 Photoelectric Effect

The photoelectric effect (PE) involves the incident photon with an inner shell elec-
tron of an atom. The energy of the incident photon is transferred completely to
the electron, which is ejected from the atom. The removal of an inner electron
ionizes the atom. The excited atom returns to the ground state by emitting a char-
acteristic X-ray or by ejecting another electron, which is called an Auger electron.
The PE holds a very important place in the development of modern physics. From
his observations of this phenomenon, Einstein proposed the quantized theory of
electromagnetic radiation, which won him the Nobel Prize in 1905.

PE is the dominant effect for photons with energy less than 100 keV. This char-
acteristic is crucial for radiological imaging and CT imaging where the attenuation
of photons is the source of the image contrast.

2.3.3.3 Compton (incoherent) scattering

Compton scattering involves interactions between photons and loosely bound outer
shell electrons of an atom. It is also called incoherent scattering. These electrons
can be regarded as unbound and the binding energy can be neglected in calculating
the defection angle of the photon. After a Compton scattering, the incident photon
is deflected in a new direction and the wavelength of the photon is shifted towards
longer wavelengths. The major portion of this energy loss has been transferred
to the ejected electron. The atom remains in excited state. The transition of the
atom from the exited state to the ground state is generally negligible due to the
small binding energy. Thus, the electron ejected due to the Compton Effect has an
initial kinetic energy equal to the energy loss of the photon. The deflected angle is
correlated with the energy loss of the photon, which can be expressed as:

E
′

γ =
Eγ

1 +
Eγ
m0c2

(1− cos(θ))
(2.2)

Wherem0c
2 is the total rest mass energy of an electron. For PET, this equation

can be simplified as:

E
′

γ =
Eγ

2− cos(θ)
(2.3)

Compton scattering is of prime importance to radiobiology, as it happens to be
the most probable interaction for the gamma rays and high-energy X-rays used in
radiotherapy. Studies have shown that about 80% of the photons undergo Compton
scattering only once in human tissue [Ollinger, 1996].

2.3.3.4 Pair production

Pair production refers to the creation of an elementary particle and its antiparticle.
These particles are usually produced from a photon or another photon-like parti-
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cle (a neutral boson). Due to energy conservation, this process can only happen
when the photon has energy equal to the total rest mass energy of the two particles.
This minimum energy is 1.022 MeV to produce an electron-positron pair produc-
tion. This energy is usually beyond the energy of interest for photons in nuclear
medicine imaging.

2.4 PET Instrumentation

2.4.1 Geometry

PET scanners need at least two detector heads to collect coincidences formed by
back-to-back annihilation photon pairs. The two heads usually rotate to measure
projections at different angle to perform tomography imaging. This is different
from SPECT, where the data can be collected by a single rotating detector head. To
improve the sensitivity, more detector heads and longer axial extensions are used.
The most popular geometry setup for PET is the cylindrical scanners arrangement.
Fig. 2.2 displays some of the geometry setups that are used in PET scanners.

A scanner with proper geometry may offer better scanner performance. A
spherical geometry like Siemens Biograph (Hi-Rez) may offer better sensitivity,
but causes difficulties in image reconstruction with resolution compensation [Panin
et al., 2006c]. A tapered crystal may not only improve the sensitivity but also pro-
vides rotational symmetries and image reconstruction may benefit from this de-
sign [James et al., 2010] [Yang et al., 2011]. The spatial resolution of PET can
be improved by a virtual pinhole PET geometry [Tai et al., 2008]. Recently, re-
searchers evaluated stationary two-head scanner geometry for low cost preclinical
PET imaging with large detector blocks compared to the subject [Zhang et al.,
2010a].

2.4.2 Physics

2.4.2.1 Object Photon Attenuation

The end product of annihilation is mostly two back-to-back photons, each with
energy of approximately 511 keV. These photons may interact with the surround-
ing human tissue through processes, such as Compton scattering, photon electric
absorption or Rayleigh scattering. Thus, not all photons survive the journey to the
detector.

The effect that the number of photons goes down after traveling through certain
materials is called photon attenuation. This effect can be described by a monotonic
exponential function 1:

1Only for well-collimated narrow beams
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(a) (b)

(c) (d)

Figure 2.2: Typical geometric setups in PET scanners. (a) Flat panel detectors with large
detector blocks. This configuration has better sensitivity and more regular in-plane

sampling. (b) Cylindrical PET scanner with small detector blocks. This configuration
optimizes the system sensitivity and is the most popular geometry for commercial PET

scanners. (c) PET scanners using monolithic curvature detector. This configuration
optimizes the system sensitivity and event localization. (d) Two rotating-head-detector.
This configuration is the most economic setup that meets the minimal requirements for

PET imaging.
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Id = I0e
−µd (2.4)

where Id is the intensity of a photon beam after travel through a material with
thickness d, I0 is the initial intensity of the beam and µ is the linear attenuation
coefficient, describing the attenuation as a function of the distance traveled in a
material. The photon attenuation effect depends on the energy of the incident
photon and the characteristics of the material, mainly the electron density. Thus,
a crystal made from high-Z material is preferred in nuclear medicine imaging for
photon detection [Cherry et al., 2003].

2.4.2.2 Physics in the scintillation detector

X- and low energy gamma photons are the best candidates in medical imaging
due to their properties, e.g., they travel along a straight line (one reason electrons
cannot be used); they have stronger penetrating ability in human body (one reason
α particles are not used); and most important of all, they can be easily stopped
with heavy metal collimators and examined with scintillation detectors (the main
reason neutrinos cannot be used).

Scintillation detectors are made of luminescent crystals. The atoms of such
crystals often emit scintillation photons when transiting from an excited state to
the ground state. Sometimes, no scintillation photons may be emitted during the
state transition; this process is called quenching.

As discussed in section 2.3.1 and 2.3.3, there are three major photon-matter
interactions in the energy range of interest for medical imaging. After a Compton
scattering, the incident photon is deflected and a certain amount of its energy is
transferred to a loosely bound electron. This energy is partially used by the elec-
tron to overcome the binding energy, and the remaining energy becomes the initial
kinetic energy of the electron. The electron interacts with surrounding materials
mainly by inelastic scattering with other electrons, resulting in a large number of
excited atoms. These atoms return to the ground state by either a luminescence
or quenching process. The situation is similar when an incident photon undergoes
PE absorption: one (PE) or two electrons (internal conversion) are ejected from the
atom. These electrons induce quenching or luminescence in the crystal. As there
is no energy transfer in Rayleigh scattering, no scintillation photons are produced.

Crucial properties of a scintillator for imaging applications are stopping power,
signal decay time, light output and energy resolution [Melcher, 2000]. The stop-
ping power is measured by the attenuation length (mean distance) that a photon
travels in the crystal before being absorbed. The stopping power is determined by
density of electrons of the material or the density ρ and the effective Zeff . The
signal decay time is mainly attributed to the decay constant of the crystal. A fast
decay constant usually leads to a faster signal and better time resolution of the
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Property NaI (TI) BGO LSO LYSO GSO BaF2

Density (g/cm3) 3.67 7.13 7.4 4.53 6.71 4.89
Effective Z 50.6 74.2 65.5 34.2 58.6 52.2
Attenuation length 2.88 1.05 1.16, 2.58 1.43 2.2
Decay constant (ns) 230 300 40 70 60 0.6
Light output (photons/keV) 38 6 29 46 10 2
Energy resolution (%) 6.6 10.2 10 12.5 8.5 11.4

Table 2.1: Physical properties of scintillators commonly used in PET (the attenuation
length and energy resolution are measured at 511 keV

scanner, which is key in time of flight (ToF) PET imaging [Lecoq et al., 2010].
The energy resolution is correlated to light output. Generally, a high light-output
helps to attain better energy resolution when other conditions stay the same. High
light output also improves the time resolution [Conti et al., 2009] [Schaart et al.,
2010] [Lecoq et al., 2010]. In addition, a bright crystal enables finer pixelization of
the crystals, which helps to achieve better spatial resolution. Commonly used scin-
tillators in PET imaging are listed in Table 2.1 (the attenuation length and energy
resolution were measured at 511 keV).

2.4.3 Detectors

2.4.3.1 PMT

The luminescence photons are collected by photon detectors and converted into
electrical signals. Generally, photon detectors can be divided into two types:
photon-multiplier tubes (PMTs) and semiconductor detectors. The PMT is very
fast and has a very high gain (on the order of 106 ). The high gain is attributed to
the high signal-to-noise ratio (SNR) of the PMT [Cherry et al., 1995].

Fig. 2.3 displays a schematic drawing of a PMT. The cathode, anode and dyn-
ode stages are encapsulated in a vacuum tube, and high voltage is applied to each
dynode stage. The PMT actually multiplies photoelectrons. Luminescence pho-
tons entering the PMT first displace a photoelectron, which is then electronically
focused onto the first-stage dynode. These photoelectrons are accelerated from
one dynode to the next, displacing more electrons and the signal is amplified stage
by stage. Usually, a PMT contains ten to twelve accelerating stages, causing large
amplification by the end-stage dynode. These electrons are then collected and
further amplified by the pre-amplifier.

Alternative photon detectors to PMTs are semiconductor detectors such as
avalanche photo diodes (APDs). The advantage of semiconductor detectors lays
in their compact package sizes. It is possible to couple a single crystal to a sin-
gle APD in contrast to a PMT of 2 to 3 inches, which is too big for nowadays
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Figure 2.3: Schematic diagram of a photomultiplier tube.
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crystal dimensions (4 mm ≈ 6 mm). However, APDs suffer from poor perfor-
mance in practice due to their low gains and unstable performances [Moehrs et al.,
2006] [Otte et al., 2006]. Geiger mode APDs or silicon PMs (SiPMs) do not
have such constraints and are a promising alternative to PMTs, particularly for hy-
brid PET-MR imaging [Schaart et al., 2009] and ToF PET imaging [Schaart et al.,
2010].

2.4.3.2 Block detectors design

Accurate positioning can be determined by one-to-one coupling between a crys-
tal and photo detector pixel with position sensitive PMTs (PS-PMTs), SiPMs or
APDs. However, by employing a clever design, the use of low-price PMTs yields
reasonable results. This is done in the so called Anger camera, which was devel-
oped by Hal Anger in 1957 and is still widely used today [Cherry et al., 2003]. This
design uses sets of PMTs arranged (usually, in hexagonal configurations) behind
a slab of monolithic or pixelated crystal. The location of an incident photon can
be estimated by using equation 2.5. Most human PET scanners use the centroid of
the output of each PMT as the detection position. The centroid is equivalent to a
linear least square estimate [Gray and Macovski, 1976]. For pixelized detectors,
the crystal identification can be performed by using a 2D looking up table, or the
crystal position map, as illustrated in Fig. 2.4b. The crystal position map can be
determined by numerical analysis of a flood histogram [Wernick and Aarsvold,
2004]. Interested readers are encouraged to read literature [Chaudhari et al., 2008]
for a comprehensive review.

Fig. 2.4 illustrates the structure of a block detector employing the same idea as
the original Anger detector design. The total energy is the sum of the signals from
the four PMTs. The position is determined by the light ratio collected by these
PMTs:

px =
(A+B)− (C +D)

A+B + C +D
(2.5)

py =
(A+ C)− (B +D)

A+B + C +D
(2.6)

For small animal systems, advanced techniques employ different statistical ap-
proaches to estimate the interaction positions of detectors with a monolithic crystal
slab have been proposed [Gray and Macovski, 1976] [Joung et al., 2001] [Vinke
et al., 2010]. These approaches involve a comprehensive calibration scan to de-
termine the light response functions (LRFs), which links the PMT outputs and the
spatial information of a photon beam. The most likely interaction positions are
determined by matching the PMT outputs of a single event and those LRFs. The
total sum of the voltages from each photomultiplier is proportional to the deposited
energy of the incident photon.
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that region. The graph in Figure 7 shows crystal identifica-
tion (the ratio of the difference in the PMT outputs over the
sum of the PMT outputs) versus source position for an
experimental detector block using LSO crystals. This block
allows the decoding of 12 crystals with two PMTs. As can be
seen in the plot, the proper shaping of the LSF allows rela-
tively easy decoding of the crystals. Careful inspection also

reveals that there is some overlap between adjacent crystals
(the ratio does not go to zero between the peak centers).

Another example of the block design is the HR+ block
(Adam et al., 1997), which uses an 8 × 8 array of 4.5 ×
4.1 mm2 crystals in a block with four 19-mm PMTs perform-
ing signal readout. A modification of the block design is the
quadrant-sharing block design (Wong et al., 1995), which
reduces the number of PMTs needed for a given number of
crystals and has been used with arrays of smaller crystals
than those used, for example, in the HR+ design. For exam-
ple, one quadrant-sharing design uses blocks that make up a
7 × 7 array of 2.8 × 2.8 mm2 crystals. The 19-mm PMTs now
straddle four block quadrants so that each block is still
viewed by four PMTs but each PMT is also shared by four
blocks. The decoding ratio (number of crystals/PMT) of the
standard block is 16:1, whereas that of the quadrant-sharing
block is 49:1. However, because the PMTs are shared
by four blocks, an interaction in any given block of the
quadrant-sharing design will deaden the adjacent (eight)
blocks. In comparison, an interaction in a block of the stan-
dard block design will deaden only one block area. Thus, the
dead time of the quadrant-sharing block design using 2.8 ×
2.8 mm2 crystals will be more than a factor of 2 higher than
that of the standard HR+ block design. The LSO panel
detectors developed by CPS Innovations also use a quadrant-
sharing block design, using 4 × 4 mm2 crystals.

A different approach is used for the GSO detector
modules used in the Phillips Allegro scanner. Although the
detector uses discrete crystals (4 × 6 × 20 mm3), the crys-
tals are not grouped into small blocks, and the light guides
for each of the 28 detector modules are coupled to allow
light sharing between adjacent modules. Rather than using
four PMTs to decode each event, the Allegro design uses
seven 39-mm diameter PMTs in a hexagonal arrangement.
However, unlike the block detector, the group of seven
PMTs does not correspond to a specific block of crystals
because as it is chosen electronically from among a large
array of PMTs coupled to the detector.

III. TOMOGRAPHY SYSTEM GEOMETRY

As we have discussed, current detector module designs
use either large continuous NaI(Tl) crystals or arrays of
discrete crystals. The NaI(Tl) systems offer a lower price
due to the lower cost of the scintillator and the use of fewer
electronics channels, whereas the discrete crystal machines
offer higher sensitivity due to the higher stopping power of
the scintillators used (e.g., BGO, LSO, or GSO) and much
higher count-rate performance (e.g., lower dead time and
less pulse pileup). In either case, the detectors can be
configured as full rings that completely surround the patient
or as partial rings with rotational motion to obtain the
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FIGURE 6 A 2D block map of a 6 × 6 BGO crystal array viewed by
four PMTs. The relative light output is indicated by the isocount curves.
The heavy white lines indicate which regions wil be assigned to each
crystal position.

(PMTA – PMTB)/(PMTA + PMTB)

FIGURE 7 Plot of the PMT ratio (two PMTs) for a linear array of
12 LSO crystals. The y axis is the relative number of events detected.
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(b)

Figure 2.4: 2.4a A schematic illustration of the concept of a block detector, also called
Anger logic or the Anger camera. The energy is the sum of signals of the four PMTs. The
position of the event can be determined by the light share among illuminated PMTs or (b)
positioning by numerical analysis. A 2D block map of a 6x6 BGO crystal array viewed by
four PMTs. The relative light output is indicated by the isocount curves. The heavy white

lines indicate which region is assigned to a crystal.

2.4.3.3 Energy resolution

The energy resolution of a radiation detector is the resolving power in radiation
beams with different energies. The energy resolution of a scintillation detector
depends on the relative light output of the scintillator, variations of the photons
collected by the coupled PMTs, the fluctuation of amplification of readout elec-
tronics, and the intrinsic energy resolution of the scintillator [Cherry et al., 2003].
The intrinsic energy resolution is determined by the physical properties of the scin-
tillator and variations in light output [Bailey et al., 2003].

2.4.4 Coincidence logic

The detection of both photons of an annihilation event forms a valid detection that
can be used for tomographic reconstruction. However, the detector cannot deter-
mine if the detected photons are from the same annihilation event. To overcome
this problem, the arrival time is used to determine a valid detection, which oc-
curs if the two photons are detected within a limited time span. This concept is
called coincidence detection, and a valid detection is called a coincidence. The
limited time span chosen is called the coincidence window. Fig. 2.5 illustrates this
coincidence concept. For an annihilation event, the two annihilation photons are
detected. A pulse is formed on each detector channel. This pulse may trigger a
window signal on the coincidence channel. If a second pulse appears within the
window signal, a coincidence is formed between the two pulses. Otherwise, both
pulses are discarded.
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Figure 2.5: Illustration of coincidence detection. For an annihilation event, the two
annihilation photons are detected. A pulse is formed on each detector channel. This pulse
may trigger a window signal on the coincidence channel. If a second pulse appears within

the window signal, a coincidence is formed between the two pulses.

To determine this time span, the time resolution of the detector and the time
difference between the detection of the two photons has to be considered. The
typical time resolution of a PET scanner ranges from 1 ns to 2 ns. The difference
in detection times due to a different emitting location within the field of view
(FOV) is about 3 ns (assuming that the scanner has a diameter of 1 meter). These
two factors limit the minimum span of a coincidence window [Bailey et al., 2003].

2.4.4.1 Time of flight PET

Ideally, if the time resolution (the ability of the radiation detector to distinguish ra-
diation with different arrival times) of the detector is high enough, the origin of the
two back-to-back annihilation photons can be determined without reconstruction.

Even if the time resolution is not good enough to avoid reconstruction, the
limited timing resolution of a PET detector can be used to estimate the annihilation
point between the two detectors by looking at the difference in arrival times of the
two photons. This extra information confines the origins of a detection event to
a certain range on a LOR and improves the image quality. The improvement is
inversely proportional to the time resolution and is related to the size of the object
of interest. Generally speaking, if the range determined by ToF is smaller than the
object size, improvement in image quality can be expected [Karp et al., 2008].
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2.4.5 Image quality degradation factors

PET imaging is suboptimal. One reason for this deficiency lies in the poor count-
ing statistics of the radionuclide imaging technique. This limitation is fundamen-
tally due to the counting nature of nuclear events. Other limitations are due to
various physical degradation factors, such as the positron range, acolinearity of
annihilation photons, crystal penetration, inter-crystal scattering, photon attenua-
tion, randoms and scatters. The positron range and acolinearity are inherent to PET
imaging, while the other effects (crystal penetration, inter-crystal scattering, pho-
ton attenuation, randoms and scatters) could be reduced by improving the spatial,
temporal and energy resolution of the detector. Details about the positron range
and acolinearity can be found in section 2.3.2.

2.4.5.1 Crystal penetration

Crystal penetration refers to a phenomenon where a photon penetrates completely
through a crystal and is detected by its neighboring crystal in a pixelized detector
block, which results in a measured LOR that is different from the emission line.
The LOR is defined as the straight line connecting the center of each detector in
a detector pair, while the interaction site could be anywhere within the crystal
pixel. The error caused by crystal penetration is also called the parallax error.
This effect can be frequently found in a ring PET scanner composed of pixelized
block detectors, and most notably for LORs at the edge of the FOV, as illustrated
in Fig. 2.6. The axial parallax error may not be as pronounced as depicted in
Fig. 2.6 because the length of the crystal is usually negligible compared to the
radius of the scanner ring. This effect is geometric and can be modeled analytically
[Rahmim et al., 2008] [Qi et al., 1998]. Employing depth-of-interaction (DOI)
detector design may reduce the parallax error. In addition, the parallax error can
be minimized by using 3-D detectors [Levin, 2008].

2.4.5.2 Intercrystal scattering

Intercrystal scattering refers to photon scattering among multiple crystals in a pix-
elized detector block. The Anger logic detector may not identify the crystal that
contains the first interaction site. The centroid method may improve the localiza-
tion accuracy of an Anger logic detector. Thus, registered line of response usually
deviates from the emission line, which increases the positioning error. Fig. 2.7
displays the effects of inter-crystal scattering. Unlike the parallax error, the posi-
tioning error caused by inter-crystal scattering cannot be formulated and solved in
a closed form due to the difficulties in describing the geometry of a scanner and
the track of multiple scattering. This effect is usually estimated by Monte Carlo
simulation and modeled in the system matrix to improve the image quality [Qi
et al., 1998] [Rahmim et al., 2008].
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Flight path of photons Assigned LOR

Figure 2.6: Crystal penetration causes the parallax error. This effect can be found in a
ring PET scanner composed of pixelized block detectors and most notably for LORs at the
edge of FOV. The axial parallax error is not as pronounced as depicted because the length

of the crystal is usually negligible compared to the radius of the scanner ring.

Flight path of photons Assigned LOR

Figure 2.7: Illustration of the inter-crystal scattering. The positioning error is caused by
the loss of information in photon detection. Unlike the parallax error, the positioning error
caused by inter-crystal scattering cannot be formulated and solved in a closed form due to
the difficulties in describing the geometry of a scanner. This effect is usually estimated by

Monte Carlo simulation
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2.4.5.3 Randoms

A PET scanner acquires three different kinds of coincident events: true, random,
and scatter coincidences (Fig. 2.8). True coincidences arise from an emission from
a single annihilation: both the annihilation photons are detected by the scanner
without undergoing any directional changes on their paths. True coincidences con-
vey the most accurate information about the origin position of an event despite the
fact that they may suffer from crystal penetration and inter-crystal scattering as
well.

Random coincidences, also named accidental coincidences, are coincidences
composed of detections from different annihilation events. Randoms are a di-
rect consequence of the coincidence detection principle of PET, and are especially
present in PET scanners with poor timing resolution. Randoms arise when two
photons from different annihilation events are detected by two well-separated de-
tectors and are temporally close enough to be recorded within the coincidence
timing window. The occurrence of randoms is illustrated in Fig. 2.8. Because the
scanner cannot tag the photons with their annihilation origins, a false coincidence
is produced. Randoms, as indicated by the nomenclature, are purely random. Ran-
dom coincidences add uncorrelated background counts to an acquired PET image;
hence they decrease image contrast if no corrections are applied to the acquired
data.

The random coincidence rate in a PET scanner is proportional to 2τA2, where
τ is the coincidence window and A is the activity present in the scanner field of
view. However, the true coincident rate is linearly proportional to A. To reduce
randoms, a narrow coincidence window is preferred. Hence, for PET imaging a
fast scintillator with good timing resolution is desirable to reduce the number of
random coincidences. However, the coincidence time window cannot be reduced
to less than 3 ns (for a 1 m diameter ring scanner). Consequently, a PET scanner
needs an optimized operational activity level with tolerable random coincidences
and enough true coincidences for good imaging.

The random coincidence rate can be estimated during data collection. The
randoms can be estimated by a delayed window method. All detected events are
organized into a histogram as a function of the time difference between the two
detector signals. The peak contains all prompt coincidences and randoms. The de-
layed window, located on the tails far away from the peak, contains only randoms.
Techniques to improve the statistical properties are needed due to the limited count
of randoms collected in a scan.

2.4.5.4 Scatters

Scattered coincidences are coincidences that arise from the same annihilation event
but in which one or both of the annihilation photons undergo one or multiple scat-
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Figure 2.8: Types of coincidneces: trues (left), scatters (middle) and randoms (right).

tering interactions within the object. Photons that undergo scattering in the object
lose part of their energy and they can be selected out by applying an energy thresh-
old. However, photon detectors usually have a limited energy resolution to distin-
guish the scattered photons from the unscattered ones. Therefore, a significant
fraction of the prompts are scatters.

A PET scanner needs good energy resolution to reject scatters. This ability
is especially important in 3D volume imaging mode where high scatter fractions
are present. A good energy resolution allows the application of a very narrow
energy window, which results in more extensive and accurate rejection of scatter
coincidences. The energy window-based technique may fail for certain scattered
events because these events have the same energy as the true coincidences within
the photo peak. Estimates from literature show that for whole-body imaging, up to
50% of the total detected coincidences are scattered coincidences and most (80%)
of them are single scatter events [Ollinger, 1996] [Watson et al., 1997].

Scattered coincidences lead to wrongly positioned LORs, as illustrated in Fig. 2.8.
Unlike random coincidences, the distribution of scattered coincidences is corre-
lated with the distribution of the activity within the object. This effect leads to an
incorrect activity distribution within the FOV. The overall effect reduces the image
contrast.

Additional scatter-correction techniques are required to estimate the distribu-
tion of scattered radiation and remove scatters from the data to improve image
contrast. As previously mentioned, about 80% of the total detections undergo only
one scatter interaction in whole-body PET imaging, single scatter simulation (SSS)
techniques have been proposed and implemented to correct for scatters [Watson
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et al., 1997]. The attenuation map of the imaged object and an initial estimate of
the radiotracer distribution are required for the SSS algorithms.

2.4.5.5 Photon attenuation

As described in section 2.4.2.1, the annihilation photons may undergo Compton
scatter, photoelectric and other interactions within an object and may be absorbed
or scattered with reduced energy. Thus, some annihilation events cannot be sensed
by the scanner. Because the length of intersection of a LOR-object system varies
spatially, different parts of the object may have different attenuation factors. This
effect causes object-dependent sensitivity variation in the FOV, which leads to
wrong activity distribution estimation if not compensated for.

The acquired data can be corrected for attenuation by applying the attenuation
correction factor (ACF), which is a diagonal matrix and can be estimated from an
external measurement by a transmission scan [Meikle et al., 1993] [Karp et al.,
1995] or a CT scan [Kinahan et al., 1998] [Kamel et al., 2003] [Pan et al., 2005].
Recent approaches derive the attenuation map through MR images [Kops et al.,
2007] [Montandon and Zaidi, 2005] [Schreibmann et al., 2010] [Keereman et al.,
2010] [Catana et al., 2010].

2.5 PET Reconstruction

As described above, the signals detected by the PET scanner can only determine
a line in the FOV or a certain portion of a line (for ToF PET), where the annihi-
lation has occurred. This line is usually called a line of response (LOR) or more
accurately a tube of response (TOR) when the finite crystal dimensions are con-
sidered [Terstegge et al., 1996]. In a real PET scanner, all of the collected events
are sorted into a histogram, organized according to view angles and ring combina-
tions. This histogram can be converted into a common sinogram (a term borrowed
from CT imaging) by interpolation to correct for the special geometry of a PET
scanner. Reconstruction is the process of estimating the radiopharmaceutical dis-
tribution from a PET measurement or the sinogram data. Some prior information
is available for this “puzzle”, namely, the geometry of the scanner, the material of
the crystal and the attenuation map. In addition, some assumptions based on com-
mon sense (frequently called “priors”) might be used in the image reconstruction
such as non-negativity and smoothness of the activity distribution.

Various reconstruction techniques have been proposed. In general, these algo-
rithms can be divided into two classes: analytical algorithms and iterative algo-
rithms. Widely used analytical algorithms are filtered backprojection (FBP) and
backprojection filtration (BPF). These algorithms are based on an analytical solu-
tion of the imaging reconstruction problem using the Fourier slice theorem [Kak
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and Slaney, 2001]. The image can be calculated in one step. The limitations for
these algorithms are oversimplifications of the system model and a lack of com-
pensation for the underlying noise model. Iterative algorithms, on the other hand,
estimate the image in an iterative way. Iterative algorithms can be further sub-
divided into two subclasses: algebraic reconstruction techniques (ART) [Gordon
et al., 1970] and statistical iterative reconstruction algorithms (SIR). The ART
algorithms treat the image reconstruction as an algebraic equation system. The
image reconstruction reduces to finding the solution of a system of equations.
Typical ART algorithms are simultaneous ART (SART) [AH and AC, 1984] and
multiplicative ART (MART) [Herman, 1995]. SIRT algorithms are currently the
most important algorithms for emission tomography. These algorithms are based
on a certain statistical model e.g., a Poisson model or a Gaussian model of the
data). Typical algorithms are maximum likelihood expectation maximization (ML-
EM) [Shepp and Vardi, 1982] [Lange and Carson, 1984], MAP [Ganan and Mc-
Clure, 1985], least squares (LS), and their variants, such as OS-EM [Hudson and
Larkin, 1994]. An advantage of the iterative algorithms is that they allow a more
detailed model of the image acquisition process, which is beneficial in resolution
recovery and noise reduction [Rahmim et al., 2008].

Mathematically speaking, image reconstruction is an inverse problem, which
is usually ill-posed. An ill-posed problem was first defined by Hadamard in 1917
[Bertero and Boccacci, 1998]. A ill-posed problem has no solution or many so-
lutions. In addition, the solution does not depend continuously on the data. That
is to say, when there is an arbitrarily small change in the data (e.g., contamination
caused by noise), there may be an arbitrarily large error in the solution. Typical
reconstruction problems have a solution but the solution is not unique. As a re-
sult, an arbitrarily small perturbation in the measurement may cause considerable
noise in the reconstructed image. In numerical analysis, the term ill-posedness
can be interpreted as ill-conditionedness because the error is considerably ampli-
fied. For medical imaging reconstruction, especially in emission tomography, the
ill-posedness is mainly caused by the non-perfect detector, which cannot collect
all the information required for an exact reconstruction. The ill-posedness can be
reduced by introducing some priors, such as smoothness of the radiotracer distri-
bution, etc. These priors are used in the regularization term to restrict the data
matching term.

This section will introduce the basics of the reconstruction problem, with an
emphasis on resolution modeling. The image quality degradation factors are of
primary significance in this context. In practice, the resolution modeling largely
depends on the choice of the object parameterization and the accuracy of the sys-
tem model. The choice of an appropriate object parameterization could be the key
to successful resolution modeling.
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2.5.1 Problem formulation

The measured signal originates from decays of nuclides in emission tomography
(both PET and SPECT). These nuclides are administrated to the patient. Thus, the
imaged object in emission tomography is the distribution of radiopharmaceuticals,
denoted as f(r) where r is a vector representing the decay or annihilation location
in three-dimensional (3D) Euclidean space. This principle is not the same as in
CT or MRI, where the imaged object reflects the anatomical structure of the body.
The object f(r) can always be treated as a vector in Hilbert space L2. Thus, the
function f(r) can be further expressed as the linear combination of a set of basis
functions as:

f(r) =

∞∑
j=1

xjbj(r) (2.7)

where bj(r) are the basis functions, and xj are the coefficients of the linear
combination.

The measurement, on the other hand, is discrete. The data are denoted as
y = (y0, y1, , yN ), which is a vector with each element yi representing the number
of detected events of a detector bin or LOR, and N is the total number of detector
bins. Consequently, the image reconstruction problem becomes a continuous-to-
discrete mapping problem [Lewitt and Samuel, 2003]. For emission tomography,
the imaging formation can be expressed as:

E(yi) =

∫
hi(r)f(r)dr + si (2.8)

The expected count E(yi) at detector pair i is determined by the sensitivity
function hi(r) associated with LOR i at r and si is the expectation of scattered
events. Using 2.7, equation 2.8 can be expanded as:

E(yi) =

∫
hi(r)xjbj(r)dr + si = xj

∫
hi(r)bj(r)dr + si (2.9)

It is not feasible to estimate the infinite radiotracer distribution f(r) from the
finite observations yi because the problem is extremely under-determined. In prac-
tice, especially for tomographic reconstruction, the large demand on computational
power requires the object to be represented in a discretized form in order to per-
form an image reconstruction on a computer. The object is truncated and approx-
imated by a linear combination of M basis functions. Thus, equation 2.7 can be
modified to the following form:

f(r) ≈ f̃(r) =

M∑
j=1

xjbj(r) (2.10)
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Consequently, equation 2.8 can be expressed as:

E(yi) =

∫
hi(r)f(r)dr+si =

∫ N∑
i=1

xjhi(r)bjr+si =

M∑
j=1

xjai,j +si (2.11)

where ai,j is defined as:

ai,j =

∫
hi(r)bj(r)dr (2.12)

Equation 2.12 is the link between the emission distribution and the measured
data. It represents the expectation of an emission originating from location r to
be detected by LOR i. This term is usually called the system matrix or system
transition matrix.

2.5.2 Major Components in Iterative Reconstruction Algorithm

Fessler et al. summarized the major components of an iterative reconstruction al-
gorithm [Fessler, 1994]. The first component is the object parameterization, or
basis functions used to represent the object. The second component, the system
model, is also called the system matrix that models the system characteristics based
on the chosen basis functions. The third component is the statistical model, or the
statistical distribution that is assumed for the measured data. The fourth compo-
nent is the cost function of the optimization problem, which an iterative recon-
struction algorithm tries to either maximize or minimize. The cost function has
two terms, the data-mismatch term and the regularization term. The last compo-
nent is the optimization algorithm, by which we achieve a maximum or minimum
of the cost function.

2.5.2.1 Object parameterization

The object is truncated and represented by a linear series expansion of a set of
basis functions, as described in section 2.5.1. Thus, the object is now represented
as a vector x = (x1, x2, ..., xM ), where xj is the coefficient of the basis function
bj , denoted as:

f(r) ≈ f̃(r) =

M∑
j=1

xjbj(r) (2.13)

Typical linear basis functions are cubic voxels, polar-pixels [Mora and Rafe-
cas, 2006, Leroux et al., 2007b, Ansorge, 2007], blobs (generalized Kaiser-Bessel
window functions) [Matej and Lewitt, 1995, Matej and Lewitt, 1996], natural pix-
els {hi(r)} [Buonocore et al., 1981], and B-splines [Verhaeghe et al., 2008]. There
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are many non-linear basis functions of choice, such as the mesh model and adap-
tive mesh models [Brankov et al., 2004], as illustrated in Fig. 2.9.The criteria for
choosing an appropriate basis function are largely requirement-driven. However,
in all cases, the object must be well represented by the basis function. The choice
of basis function has a large influence on the image quality and the complexity of
the reconstruction problem (e.g., the blob and polar pixels). Generally, a smooth
basis function is preferred because the objects are continuous in the physical world.
This concept is illustrated in Fig. 2.10.
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Fig. 2. Illustration of a pixel model (a) and a mesh-based model (b) for the
case of SPECT imaging. In a mesh model, the contribution of mesh node j to the
measurement data is spatially varying, while in a pixel model all the pixels play
the same role. The support of basis function � (x) is limited to those elements
attached to the node j.

same properties. In particular, the updated mesh nodal values
in (15) always remain nonnegative, provided that

their initial estimates are nonnegative. This can be readily seen
from (15) because all the coefficients are nonnegative. An-
other important property is that the total counts are conserved
by the iterates generated from the MESH ML algorithm, just as
they are in the pixel-based EM algorithm. This is true because
of the following identity:

(16)

which can be derived from (15).
2) Ordered-Subset EM Algorithm: In an OSEM algorithm

[26], the projection data are divided into a number of subsets,
each containing multiple views. The update expression (15) is
then computed iteratively over one subset at a time. OSEM has
become popular because it leads to a faster computation than
EM [26]. We refer to this algorithm as MESH OSEM.

B. Maximum a Posteriori (MAP) Solution

Let denote a prior on the unknown nodal values .
Then, the MAP estimate is obtained as

(17)

In this paper, we assume a Gibbs prior [24], i.e.,

(18)

where is a scalar weighting parameter, and the potential func-
tion is quadratic

(19)

In (19), denotes the index set of nodes connected to node .
The MAP estimate can be computed by using the following

one-step-late expectation-maximization algorithm [27]:

(20)

We refer to this reconstruction algorithm as MESH MAP.

IV. IMPLEMENTATION ISSUES

A. Content-Adaptive Mesh Generation

For the remainder of the paper we focus on a 2-D implemen-
tation of the proposed method; however we have developed a
3-D version of the required mesh-generation step (using tetrahe-
drons) [28], which we will apply to the reconstruction problem
in future studies.

As we discussed earlier, from the viewpoint of nonuniform
sampling, the mesh nodes should be placed most densely in
areas of the image that contain significant details. In our pre-
vious work [11], [12], we proposed an algorithm, based on a
theoretical study of the approximation error of the model, that
specifically achieves this goal. The algorithm yields very accu-
rate image representations at extremely low computational cost.
In this paper, we employ our mesh-generation algorithm to con-
struct a mesh model for the image to be reconstructed.

In [11] and [12], we aimed to produce a good mesh structure
for a known image. Of course, here the image to be reconstructed
is not known beforehand. Therefore, for purposes of mesh gen-
eration, we replace the image with a reference image ,
the purpose of which is to provide an estimate of the distribu-
tion of the local image content, according to which the mesh
nodes are then placed. A reference image can be obtained from
a preliminary reconstruction of the image using a simple algo-
rithm such as filtered backprojection (FBP). A more-sophisti-
cated joint estimation of nodal locations and nodal values will
be undertaken in future work. A further option, based on mul-
timodality imaging [29], [30], is to use the higher resolution
modality as the reference. A preliminary study of this approach
was presented in a recent conference paper [31].

Once the reference image is obtained, the mesh is gener-
ated by the following procedure: 1) generate a feature map
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Figure 2.9: An example of the mesh object parameterization.

2.5.2.2 System model

Definition With the definition of the object parameterization, the system model
can be defined as a matrix A = {ai,j}:

ai,j =

∫
hi(r)bj(r)dr (2.14)

The system model, generally speaking, includes all known factors related
to the patient scan, such as the geometry of the scanner, the crystal con-
figuration, the detector efficiency and dead time, the energy resolution and
time resolution, the geometry and composition of the patient, and physi-
cal degradation factors, including the positron range, the acolinearity of
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Nonlinear Object Parameterizations

Estimation of intensity and shape (e.g., location, radius, etc.)

Surface-based (homogeneous) models
• Circles / spheres
• Ellipses / ellipsoids
• Superquadrics
• Polygons
• Bi-quadratic triangular Bezier patches, ...

Other models
• Generalized series f (~r) = ∑ j x j b j(~r,θθθ)
• Deformable templates f (~r) = b(Tθθθ(~r))
• ...

Considerations
• Can be considerably more parsimonious
• If correct, yield greatly reduced estimation error
• Particularly compelling in limited-data problems
• Often oversimplified (all models are wrong but...)
• Nonlinear dependence on location induces non-convex cost functions,

complicating optimization

2.4
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Disks [80,81]

Polygons [82]

Generalized series [83]

Bi-quadratic triangular Bezier patches [84]
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Example Basis Functions - 1D
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In the above example, neither the pixels nor the blobs are ideal, though both could reduce the
average approximation error as low as needed by taking np sufficiently large.

2.5
Figure 2.10: Representing a continuous object (1-D) by smooth basis functions and pixels.

Courtesy Dr. J. A. Fesseler.
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the annihilation photons, the crystal penetration, and inter-crystal scatter-
ing. These factors are known prior to the emission tomography reconstruc-
tion and can be divided into two classes: the object-dependent factors and
system-dependent factors [Zhang et al., 2010c]. Object-dependent factors
refer to effects that are primarily determined by the properties of the object,
e.g., photon attenuation and scattering within the patient. System-dependent
factors are the factors that are mainly related to the scanner of interest. Typ-
ical system-dependent factors are scanner geometry, crystal configuration
and of course the material of the crystals. These parts of the system model
(together with photon attenuation inside the study subject) are often used
in practice in the resolution compensation of a scanner. Some tricky parts
such as positron range and acolinearity of the annihilation photons are usu-
ally clustered with the system-dependent factors and modeled in projection
space even though the positron range is primarily an object-dependent fac-
tor [Zhang et al., 2010c] and the acolinearity is dependent on both the sys-
tem and the object [Iwata et al., 1997]. We found that image space mod-
eling is algorithm-dependent if it has to be estimated by an inverse pro-
cess [Zhang et al., 2010d]. The same phenomenon has been reported by
other researchers [Cloquet et al., 2009]. This classification is reasonable be-
cause researchers usually use the positron range and acolinearity measured
in water to reduce the object-dependency of these two effects [Zhang et al.,
2010c]. In a measured system model, these effects only depend on the com-
position of the point source and are also independent of object properties.

Calculation Various methods have been proposed to calculate the system model.
These methods can be divided into three categories: the analytical approaches,
the Monte Carlo-based approaches, and the measurement-based approaches.
Analytical resolution models are usually biased and under-estimate the blur-
ring of system responses due to over-simplifications in describing the scan-
ner model and the acquisition process. For instance, the line-length of inter-
section with a voxel has been used to represent the solid angle effects [Sid-
don, 1985]. Less biased approaches use more accurate models to approxi-
mate the geometric response by calculating the area of intersection or vol-
ume of intersection [Scheins et al., 2006]; studies have shown that a tube of
response (3-D) or a strip of response (2-D) is more appropriate than the line
of response [Terstegge et al., 1996] [Vandenberghe et al., 2001]. Recently,
detector responses and physical effects, e.g., the positron range, acolinearity,
parallax error, and inter-crystal scattering have been included in analytical
models with [Rahmim et al., 2008,Moehrs et al., 2008a] or without the help
of Monte Carlo simulations [Staelens et al., 2004, Selivanov et al., 2000].

Theoretically, a bias-free system model can be measured using a scanning



CHAPTER 2 33

point source. One limitation of these methods is the need for extensive
scanning [Panin et al., 2006a]. These methods assume a certain distribu-
tion of the system response (e.g., an asymmetric Gaussian) to parameterize
it because the scanning grid is relatively sparse compared to the voxel grid
[Panin et al., 2006b, Panin et al., 2006a, Alessio et al., 2010, Wiant et al.,
2010]. Unfortunately, this assumption introduces bias in the system model.
In addition, these methods cannot address object-dependent factors, such as
photon attenuation and scattering.

In contrast to analytical methods and measurement approaches, Monte Carlo
resolution modeling (MCRM) methods are bias-free2 and have the potential
to model both system-dependent factors [Johnson et al., 1995,Qi et al., 1998,
Rannou and Chatziioannou, 2004, Rafecas et al., 2004b, Shokouhi et al.,
2004, Mora and Rafecas, 2006, Ansorge, 2007, Leroux et al., 2007a] and
object-dependent factors [Watson et al., 1997] [Rehfeld and Alber, 2007]
[Rehfeld et al., 2010]. However, the computational load to calculate the
SM has limited the use of these methods for state-of-the-art whole-body
PET scanners [Buvat and Lazaro, 2006, Panin et al., 2006a]. To address
these problems, symmetries have been exploited to reduce the redundancy
in the SM [Johnson et al., 1995, Qi et al., 1998, Rannou and Chatziioan-
nou, 2004, Rafecas et al., 2004b, Shokouhi et al., 2004, Mora and Rafecas,
2006, Vandenberghe et al., 2006, Ansorge, 2007, Leroux et al., 2007a]. Al-
ternative symmetry handling methods have been proposed by using a ro-
tationally invariant object model, such as polar pixels [Mora and Rafecas,
2006], [Ansorge, 2007], [Leroux et al., 2007a], [Scheins and Herzog, 2008]
and the generalized natural pixels [Vandenberghe et al., 2006]. Non-exact
approaches, i.e., “quasi-symmetry” [Herraiz et al., 2006] and approximate
rotational symmetry [Qi et al., 1998], have also been proposed.

The system model can be expressed as a factored matrix approach [Qi et al.,
1998] [Reader et al., 2003] [Rahmim et al., 2005]:

A = PGW (2.15)

where PN×N represents projection space factors, such as photon attenu-
ation correction factors (ACF), detector efficiency correction factors, and
in-projection space blurring (unless it is clustered in G, e.g., when a mea-
sured system model is used), GN×M represents effects that contribute to
the mapping of the source distribution to the projection (such as geomet-
ric responses ), depth-dependent system sensitivity, crystal penetration, and
inter-crystal scattering, and W represents effects in image space (such as

2This conclusion is valid if and only if the simulator is validated against the physical scanner
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the positron range). A constraint of this factored matrix approach is blurring
in projection space [Tohme and Qi, 2009] and image space [Cloquet et al.,
2009], which is found to be algorithm-dependent if blurring were estimated
as an inverse problem.

Projectors Measured data are obtained by the integral of the source distribution
weighted by the sensitivity function over the object:∫

hi(r)f(r) (2.16)

Using equation 2.10, the forward projection in a D-D model becomes a sum-
mation, which can be expressed as:

ȳi =

∫
hi(~r) ˜f(r) =

∫
hi(r)

 M∑
j=1

xjbj(r)

 =

M∑
j=1

∫
hi(r) [xjbj(r)]

(2.17)

Using equation 2.14, equation 2.17 can be written as:

M∑
j=1

ai,jxj = [Ax]i (2.18)

The backprojection maps the measurements or the errors back into the image
space:

xj =

N∑
i=0

ai,jyi =
[
A

′
y
]
i

(2.19)

2.5.2.3 Statistical model

The system model gives the expected response of the scanner. Thus, it is a deter-
ministic model:

ȳi = [Ax]i (2.20)

However, the measurement y = {yi} is typically very noisy in emission to-
mography. Thus,

yi 6= ȳi = [Ax]i (2.21)

To solve this discrepancy, we need to assume that the data has a certain sta-
tistical distribution. The most common data model for emission tomography is
the Poisson model, and by ignoring or pre-correcting for background, it can be
expressed as:

yi ∼ Poisson {[Ax]i} (2.22)
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or with the background ri considered:

yi ∼ Poisson {[Ax]i + ri} (2.23)

With a proper statistical model, the inconsistency in the data can be reduced.
This leads to improved image quality, and naturally, lower variance.

2.5.2.4 Cost function

The cost function, also called the objective function, is a function which needs to
be minimized (or maximized) in order to get a solution.

x̂ = arg max
x≥0

Ψ(x) (2.24)

For emission tomography, the most popular algorithm is the maximum likeli-
hood expectation maximization (ML-EM). For Poisson likelihood, the cost func-
tion used in this algorithm is:

Ψ(x) = −L(x;y) (2.25)

= −logp(y|x) (2.26)

=

N∑
i=1

([Ax]i + ri)− yilog([Ax]i + ri) + log(yi!) (2.27)

2.5.2.5 Optimization algorithm

Once a cost function is defined, the (global) maximum can be found through the
use of an optimization algorithm, which is usually an iterative process. A good
optimization algorithm is stable and convergent, which means that {xn} always
converges to x̂ if the algorithm is iterated indefinitely. In practice, we would prefer
an optimization algorithm that converges quickly (i.e., it approaches to x̂ in a few
iterations).

The ML-EM algorithm, for instance, optimizes the cost function ML (equa-
tion 2.27) using the optimization algorithm EM. The object parameterization can
be voxels or polar-pixels, which will be addressed in details in chapter 4, 5 and
6. The system model can be a line-length model, a Monte Carlo-based model
(see Chapter 4 or a experimental model (see Chapter 5). The EM algorithm is
frequently used in parameter estimation with incomplete data. The algorithm is
composed of two steps, the E-step and the M-step.

The E-step calculates the expectation of the log-likelihood of a Poisson likeli-
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hood, which is the statistical model.

L(x;y) =
∑
i

−∑
j

ai,jxj + yiln(
∑
j

ai,jxj)

 (2.28)

≥ −
∑
i

∑
j

ai,jxj +
∑
i

yi
∑
j

ai,jx
n
j∑

k ai,kx
n
k

ln(xj) + const (2.29)

The M-step gets a new estimate of xn+1 by maximizing equation 2.29:

x
(n1)
j = arg max

xj≥0
(xnj

∑
i

ai,jyi∑
k ai,kx

(n)
k ln(xj)

− xj
∑
i

ai,j) (2.30)

Let the first order derivative of M-step 2.30 to be zero and solving it analyti-
cally, one gets:

0 = x
(n)
j

∑
i

ai,jyi∑
k ai,kx

(n)
k

1

xj
−
∑
i

ai,j (2.31)

⇒x(n+1)
j =

x
(n)
j∑
i ai,j

∑
i

ai,jyi∑
k ai,kx

(n)
k

(2.32)

Equation 2.32 is the well-known ML-EM algorithm. This ML cost function
implies a Poisson statistical model of the data, which is the statistical model. It
can be seen that the ML-EM algorithm implies a non-negative constraint on the
object for a Poisson noise model.

2.5.3 Quantitative techniques in PET reconstruction
2.5.3.1 Randoms correction

The orgins of randoms have been described in section 2.4.5.3. For PET, the rate of
random coincidences of a LOR is estimated by:

Ri,j = 2τrirj (2.33)

where Ri,j is the random rate of a LOR defined by detector i and j, τ is the
coincidence window, and ri and rj are the rate of singles on the corresponding
detector.

The randoms rate is often determined by experimental method by the dual
window method (also called the delayed window method). In this method, the
timing signals from one detector are delayed by a time significantly longer than the
coincidence window. Thus, the timing signals are not correlated with the signals
from the other detector. These “coincidences” are the measured randoms and are
then subtracted online or stored for later processing. This method suffers from
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poor counting statistics because the number of randoms is very limited. Methods
to improve the noise characteristics of the random estimate have been developed
by utilizing randoms collected for a detector and a 2-D or 3-D fan of detectors
opposite to it [Casey and Hoffman, 1986] [Badawi et al., 1999].

2.5.3.2 Attenuation correction

The photon attenuation of a patient is assumed to be a known factor prior to recon-
struction. Thus, photon attenuation must be measured along or before the emission
acquisition. For a PET/CT scan, the attenuation map is usually estimated from the
CT image. As the energy of interest is different in PET and CT scanners, a linear
or bilinear conversion has to be performed to translate a CT image into a PET at-
tenuation map for typical biological materials [Kinahan et al., 1998] [Kamel et al.,
2003] [Pan et al., 2005]. For a PET only scanner, the attenuation map is usually
estimated by performing a transmission scan using a positron emission isotope or a
gamma emission isotope separately or simultaneously [Meikle et al., 1993] [Karp
et al., 1995] [Meikle et al., 1995] or from the emission scan itself [Nuyts et al.,
1999] [Liu et al., 2006]. A similar transformation has to be performed if the en-
ergy of the gamma photon is not 511 keV for the same reason as in the PET/CT
case. The attenuation map can also be determined by a segmented MRI image in a
PET/MR scanner [Kops et al., 2007] [Montandon and Zaidi, 2005] [Schreibmann
et al., 2010] [Keereman et al., 2010] [Catana et al., 2010].

2.5.3.3 Scatter correction

As mentioned in Section 2.4.5.4, the scatters are usually estimated in a separate
step, which yields a scattering sinogram. One well-established method is the single
scatter simulation (SSS) technique [Watson et al., 1997] [Werling et al., 2002]
[Accorsi et al., 2004]. This method requires a rough estimation of the source
distribution and an attenuation map of the imaged subject. The rough estimation
can be either the post-smoothed FBP reconstruction or a 2-D statistical iterative
reconstruction.

Recent approaches [Rehfeld and Alber, 2007] [Rehfeld et al., 2010] models
the scattering SM as an additive term in Equation 2.15:

A = Asf + S (2.34)

where SN×M is the scattering matrix, which determinates the scattered con-
tribution to an LOR-basis function pair, and the term Asf refers to the scatter-free
SM.

However, it is not practical to include the effects of object scattering in the
resolution compensation of a PET scanner because of constraints in computational
resources.
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2.6 Monte Carlo simulation in PET
Monte Carlo methods (or Monte Carlo experiments) are a class of numerical al-
gorithms that mimic a real physical process by sampling from known probability
density functions to compute the result of a problem. Monte Carlo methods are es-
sentially “numerical” experiments. The accuracy of this algorithm depends on how
accurately the process is simulated and the number of “experiments” performed.
Thus, these algorithms are mostly implemented on computers and are usually ap-
plied in problems where it is not feasible or necessary to obtain an exact result
by a closed-form analytical formula. Monte Carlo simulation is heavily used in
medical imaging physics because the scanner geometry and the topology of a pa-
tient cannot yet be modeled by analytical means. Literature [Zaidi, 1999] [Buvat
and Castiglioni, 2002] gives a more complete description of the significance and
applications of this method in medical imaging.

The applications of Monte Carlo simulations in PET generally lie in the fol-
lowing fields:

Quantitative techniques The modeling of imaging physics of PET has been largely
employed in quantitative techniques, particularly, scattering correction [Wat-
son et al., 1997] [Werling et al., 2002] [Accorsi et al., 2004] [Wollenweber
et al., 2000] [Qi and Huesman, 2002] [Holdsworth et al., 2003] [Barret et al.,
2005].

Modeling of PET detectors Simulations of detectors are frequently performed
in PET instrumentation to optimize scanner design such as, scintillation ma-
terials choice, crystal size, signal processing chain optimization, etc [Derenzo,
1981] [Cherry et al., 1995] [Binkley, 1992] [Choong, 2009].

Image Reconstruction The reconstruction algorithm, particularly, newly devel-
oped algorithms, are usually first evaluated by Monte Carlo simulated data.
This method is capable of providing a baseline performance of the algo-
rithm with trues only. As mentioned in Section 2.5.2.2, Monte Carlo-based
reconstruction is capable of modeling all system-dependent factors [Johnson
et al., 1995,Qi et al., 1998,Rannou and Chatziioannou, 2004,Rafecas et al.,
2004b, Shokouhi et al., 2004, Mora and Rafecas, 2006, Ansorge, 2007, Ler-
oux et al., 2007a,Zhang et al., 2010c] and object-dependent factors [Rehfeld
and Alber, 2007, Rehfeld et al., 2010].

Acquisition protocol Monte Carlo simulation techniques can be used to opti-
mize the acquisition protocols of clinical PET scans [Tang et al., 2008].

Pharmacokinetic modeling Monte Carlo techniques can be applied in pharma-
cokinetic modeling to estimate the cumulated activity distribution in the
body [Zeng et al., 1994a] [Millet et al., 1996] [Wang and Qi, 2009].
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This book is also an example of exploiting Monte Carlo simulations in PET
image reconstruction. For this particular task, a highly optimized and yet realistic
Monte Carlo PET simulator is required. In addition, the code needs an architec-
ture that allows development of various variance reduction techniques for better
simulation efficiency. There are many existing PET Monte Carlo simulators, such
as PETSIM [Thompson et al., 1992], SimSET [Lewellen et al., 1998], GATE [Jan
et al., 2004], PenelopePET [Espana et al., 2009], PET-SORTEO [Reilhac et al.,
2005]. We chose egs pet as the basis to develop our own system matrix simula-
tion tool because the others were not applicable (i.e. not efficicent enough) or not
ready or needed a special license to use at the time we started resolution model-
ing. EGSnrc stands for “electron gamma shower” (by) national research council,
which is maintained by NRC, Canada. The EGSnrc system is a general purpose
Monte Carlo simulation package inherited from the EGS4 code developed at the
Stanford linear accelerator center (SLAC) (http://www.slac.stanford.edu/) but with
many improvements. The energy range of applicability is from 1 KeV to 10 GeV.
This Monte Carlo code system has been widely used in radiotherapy and is usually
regarded as the gold standard in this field.

The egs pet code is a user code of the EGSnrc system using the newly released
C++ interface, the egspp [Kawrakow et al., 2009]. The lower level part of egs pet
is the EGSnrc system, which responses for the coupled electron-photon transport
and physical interaction simulation. The egs pet interacts with the EGSnrc library
through three routines: hownear,howfar and ausgab, as illustrated in Fig. 2.11.
Routines hownear and howfar specify the geometry boundaries and the routine
ausgab is the interface to probe, alter, and score the simulation process. The code
first initializes the EGSnrc package with user provided macro files. after initializ-
ing EGSnrc package, the code guides the transport of particles in media through
the howfar and hownear routines. The score is usually extracted from the simula-
tion in the routine ausgab.

The user code egs pet supports three types of sources, namely the positron
source, the back-to-back gamma source, and the back-to-back gamma source with
acolinearity. The code egs pet provides a set of signal processing chain modules
for PET, called the pulse processors in egs pet, which are equivalent to the corre-
sponding modules in GATE. These modules include an adder module, a readout
module, an energy window module, an energy blurring module, a coincidences
sorting module and a root output module. The root module supports singles, coin-
cidences and annihilation information.

The egs pet code system provides both accurate low energy cross section tables
and highly efficient coupled electron (positron) photon transport. It has a light-
weighted structure with inherent support for various variance reduction techniques.
A constraint of this user code is the shortage of much basic functionality (e.g. some
primitive geometry components) and is relatively difficult to use.
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Figure 17: The structure of the EGSnrc code system when used with a user-code.

Last edited 2009/07/09 17:26:53 3.2 General Description of Implementation

Figure 2.11: The user code - EGSnrc interface. The user code first initializes the EGSnrc
package with user provided macro files. After initialization, the user code guides the

transport of particles through the howfar and hownear routines. The score is extracted
from the simulation in the routine ausgab. Courtesy NRC, Canada
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Interested readers may refer to Simulation System for Emission Tomography
(SimSET) for an alternative tool in resolution modeling [Lewellen et al., 1998].
This package is optimized for realistic acquisition simulation, but the electron
tracking is not included.

2.7 General conclusion
In this chapter, we covered the basic physics, the instrumentation, the basic theory
of imaging reconstruction and Monte Carlo simulation for PET imaging. Much of
this information is not only relevant to PET but also to SPECT imaging because
these two image modalities are closely related. This introduction gave an overview
of the principles of PET imaging and prepared the necessary background knowl-
edge about Monte Carlo-based resolution modeling for PET reconstruction, which
is the main topic of this dissertation.

In the following chapter, advanced simulation techniques in resolution model-
ing are introduced. The assumptions and simplifications of system modeling are
also introduced. With these techniques, the simulation efficiency can be improved
considerably without compromising the accuracy of the simulation.





Chapter 3

Variance Reduction
Techniques in Resolution

Modeling

In this chapter, all the variance reduction techniques (VRTs) we developed are
summarized. Dr. Iwan Kawrakow has equal contribution to this chapter as the
author. This study was performed after the our Monte Carlo- and experiment-
based resolution modeling (Chapter 4, 5, 6). Thus, not all of the techniques
described here were used in these chapters. This work is mainly motivated by the
fact that the reconstruction with the proposed Monte Carlo model is very noisy.

3.1 Introduction
Monte Carlo-based resolution modeling can effectively improve the image quality
in Positron Emission Tomography (PET). The improvement is usually achieved by
compensating for various resolution degradation factors in image acquisition pro-
cess, namely solid angle effects, the positron range, acolinearity of the annihila-
tion photons, the parallax error, and inter-crystal scattering. Resolution modeling
is usually performed through a model called system matrix (SM), which can be
employed in an iterative reconstruction algorithm to improve the image quality.

Although the mathematics of the system model is clearly defined, the calcula-
tion of the SM has been significantly challenged for modern PET scanners. The
first challenge lies in the complexity of deriving a bias-free analytical model for
a PET scanner. Such a model is almost not feasible due to the large number of
degrees of freedom, which are usually also coupled. Stimulation of the SM can
be accelerated by employing light weight Monte Carlo simulators [Rafecas et al.,
2004b, Shokouhi et al., 2004] and VRTs.
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Geometry equivalence or employing symmetries is the simplest VRT and is
also the most frequently used technique to speed-up the simulation of the SM
[Johnson et al., 1995, Qi et al., 1998, Rannou and Chatziioannou, 2004, Rafe-
cas et al., 2004b, Shokouhi et al., 2004, Mora and Rafecas, 2006, Vandenberghe
et al., 2006, Ansorge, 2007, Leroux et al., 2007a]. Other standard VRTs, such
as the importance sampling technique and the forced detection technique, have
also been used in resolution modeling of small animal PET scanners [Shokouhi
et al., 2004]. Advanced VRTs, such as pre-computation techniques have been
employed to calculate the dose distribution in therapeutic applications. The pre-
computation method first derives the probability density functions of certain tal-
lies associated with predefined physical processes and particles through analog
simulations. These probability density functions are then used to transport of the
particles. This technique has been employed to simulate detector responses in
PET [Ortuno et al., 2006] [Ortuno et al., 2010] and SPECT [Descourt et al., 2008].
A more efficient method is to derive analytical formula of the probability density
functions directly, for instance, the positron range and the acolinearity in SimSET
are simulated in this way [Harrison et al., 1999].

In this chapter, we analyze the unique challenges of SM simulation and propose
a set of simple VRTs for the resolution modeling task using EGSnrc-based PET
simulator, the egs pet [Kawrakow et al., 2008c]. For general PET and SPECT
simulation techniques, interested readers are encourage to read literature [Haynor
et al., 1991] [Lewellen et al., 1998] [Kawrakow et al., 2008b] for more detailed
information.

3.2 Materials and Methods

3.2.1 Figures of merit
3.2.1.1 Precision

The precision of tally in a resolution modeling simulation is measured by the error
defined as:

ε =
σ(Nd)

Ne
(3.1)

where σ(Nd) is standard deviation of the number of detections (prompts) Nd,
andNe refers to the number of the simulated events in the simulation. In this chap-
ter, we proposed some VRTs that introduce bias, but the bias is not compensated
by a corresponding weight. These VRTs are polar angle biasing and positron his-
tory reuse. When such VRTs are used, Ne has to be adjusted to compensate for
the bias. The methods on the compensation will be discussed in section 3.2.3.1
and section 3.2.3.3. The quantity σ(Nd) measures the uncertainty in forward pro-
jection to ensure that the error in the reconstructed image is insignificant [Qi and
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Huesman, 2005]. The uncertainty in the back projection is automatically ensured
by the number of events simulated in a voxel (e.g., 50 million decays [Shokouhi
et al., 2004]).

3.2.1.2 Efficiency evaluation

The efficiency of a SM simulation was measured by η:

η =
1

s2T
(3.2)

where T is the execution time of the simulation, and s2 is the variance of the
estimated tally. In this work, we use s = ε, which is given by Equation 3.1.

3.2.2 SM simulation

The SM was simulated for the Philips Gemini GS PET scanner. This scanner has
28 detector modules. Each module consists of an array of 22x29 crystals with a
dimension of 4 mm (tangentially) by 6 mm (axially) by 20 mm (length), which
form 29 rings with 616 crystals per ring and a ring pitch of 6.3 mm [Lamare et al.,
2006]. The voxel dimension is chosen as 2mm×2mm×3.15mm, which yields two
image planes per ring that are symmetric about the central plane of the ring.

We used a uniform source with and without a water phantom in our system ma-
trix simulation. In a whole-body scan using 18F, it is not necessary to include the
effects of the positron range. Thus, a water phantom is not necessary. However,
for a small animal PET scan or a non-standard isotope, a water phantom is very
important because the positron range significantly improves the image quality [Bai
et al., 2005]. The water phantom was considerably larger than the source to allow
sufficient positron tracking. The EGSnrc-based PET simulator egs pet was used in
this work, which was reported to be 15 - 120 times (depends on a specific configu-
ration) faster than GATE. The coincidences were grouped according to their voxel
and LOR indices in the post-processing step. The number of coincidences was
recorded as the value of the corresponding SM element because this value is pro-
portional to the absolute value of the corresponding SM element. This approach
integrated the point spread function within a uniform voxel, which yields a “voxel
spread function”.

We assumed that the system model was independent of the acquisition pa-
rameters in resolution modeling [Panin et al., 2006a]. In reality, different system
sensitivities can occur with different acquisition parameters. For instance, at a
higher count rate, a larger fraction of randoms and a lower fraction of true coinci-
dence can be expected. To avoid this problem, we assumed that the activity of the
source was so low that the time interval between two events was sufficiently long
compared to the coincidence window; this is denoted as the “time independence”
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assumption. This assumption yielded a simulation free of randoms and enabled
a faster signal processing chain because the interference among events and dead
time effects were ignored. In addition, if one of the two back-to-back photons
1 was not traveling towards a detector, the whole event was discarded because a
coincidence would not be possible [Rafecas et al., 2004b].

Another assumption in our resolution modeling was the exclusion of object-
dependent factors. Although recent approaches implemented patient-specific res-
olution modeling, the feasibility of generating a patient-specific system model that
met clinical requirements is still under-investigation [Buvat and Lazaro, 2006]
[Panin et al., 2006a] [Rehfeld and Alber, 2007] [Rehfeld et al., 2010]. Object-
dependent factors include namely, the positron range and acolinearity, photon at-
tenuation, and scattering within the object. To exclude these factors, we used a
water phantom, but disabled photon-matter interactions within the phantom in the
SM simulation. Thus, in our study, positron range and acolinearity values in wa-
ter were used to reduce their object dependency as recommended by [Shokouhi
et al., 2004]. The acolinearity is not modeled in the current release of EGSnrc
[Kawrakow and Rogers, 2007], so we modeled this effect in water as recom-
mended by Harrison et al. [Harrison et al., 1999].

3.2.3 Implemented variance reduction techniques

3.2.3.1 Polar angle biasing

Generally, a PET scanner has a limited axial extent due to engineering constraints
and for the purposes of patient comfort. The effective solid angle is limited across
the FOV of the scanner. Thus, the polar angle of the annihilation photon must be
within a certain range to hit the scanner ring. The range of the polar angle is both
location- and azimuthal-angle-dependent. The maximum range of the polar angle
is used as the effective range of the polar angle across the whole FOV, which can-
cels the dependence on the location and the azimuthal angle. The effective range
can be exploited to improve the simulation efficiency by avoiding the generation
and transport of photons that cannot produce valid coincidences. It can be proven
that the maximum effective range is found at the edge of the FOV in the central
plane and the minimum effective range is found at the center of the FOV if the
acolinearity is not considered, as illustrated in Fig. 3.1. The θmax and θmin corre-
spond to the maximum range and the minimum range of the effective polar angle
in the FOV. θoff is half of the effective range at an off-center location within the
same plane.

In practice, the annihilation photons are not strictly collinear. The angular de-
viation from a straight line follows a Gaussian distribution with a FWHM of about

1photons that are emitted in opposite direction
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Figure 3.1: The effective range of the polar angle is location-dependent. The maximum
effective range of the polar angle is found at the edge of the FOV; the minimum effective

range of the polar angle is found at the center of the FOV.

0.25 degree for 18F [Cherry et al., 2003]. In a simulation, the polar angle can be bi-
ased to be the effective range plus (or minus) 2 FWHM (approximately 5σ) of the
acolinearity distribution. This technique introduces bias in the system sensitivity.
We did not assign a weight to correct for the biasing because all photon pairs have
the same importance and the absolute sensitivity is not of interest for resolution
modeling simulation. In addition, a floating point weight is also incompatible with
the system matrix storage schema in Chapter 4.

This importance can be estimated by launching two simulations of the source
of the target simulation. Both simulations have the same activity. The first simu-
lation is with polar angle biasing active, and the second one without polar angle
biasing. The ratio of the number of detections of the second simulation to the first
one can be used to compensate the sensitivity bias.

3.2.3.2 Hit-testing

Hit-testing evaluates whether a photon can reach the detector or not by checking
if the ray intersects with the scanner cylinder. This test was performed after the
positron-electron annihilation. If either photon in a pair failed to hit the detec-
tor, the whole event was discarded. This technique required the time-independent
assumption and object-independent assumption because one detected photon may
contribute to randoms and object scattering may deflect the photon to hit the detec-
tor without those assumptions. This technique could be used to avoid the transport
of certain photons together with the polar angle biasing technique.
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3.2.3.3 Positron history reuse

The positron history reuse technique reuses the transport histories of electrons by
producing more than one pair of annihilation photons when a positron annihilates
with an electron. These photon pairs will share the same positron track, but the
directions of these photon pairs are randomly sampled. These photon pairs are then
tracked and the obtained detections are sorted into coincidences independently,
which is valid when the time independence assumption holds 2.

Correlations are introduced when pairs share the same antecedent positron.
However, the correlations can be insignificant when the chances of these annihi-
lation photon pairs contributing to the same LOR are very small. For instance,
if a positron history is reused 20 times, less than one coincidence is produced on
average for the Philips Gemini GS PET scanner with a point source at the center
of the FOV. This technique performs particle splitting for the annihilation photons
and a weight of the inverse of the number of splitting can be used to correct for
this bias. In this work, we did not correct the bias for the same reason described in
section 3.2.3.1.

3.2.3.4 Forced the energy window passing

Traditionally, a photon is forced to reach the detector [Haynor et al., 1991] [Har-
rison et al., 2002]. We forced a readout signal to pass the energy window. For
instance, a readout signal may fail to pass the energy window due to the energy
blur of the detector even though its energy was within the window. To avoid such
losses, a forced detection was enforced and a weight was calculated from the prob-
ability of passing the energy threshold. The energy blurring was modeled as a
Gaussian with a mean at the deposited energy E and a standard deviation σ, which
was calculated by Equation 3.3:

σ =
1

2.35
ER (3.3)

where R is the energy resolution of the scanner at this energy, which can be
obtained given the energy of reference E0 and the energy resolution of reference
R0 (FWHM):

R = R0

√
E0

E
(3.4)

The overlapping area between the energy window and the Gaussian distribu-
tion is proportional to the probability of passing the energy window. The weight is
calculated using the overlapping area and the new weight of the surviving single
is w ×wold, as illustrated in Fig. 3.2. Mathematically, the weight is the difference

2Otherwise, it would be difficult to assign realistic time for those annihilation photo pairs
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between the cumulative density function of the Gaussian distribution at the upper
and lower threshold of the energy window:

w = cdf(Eupper)− cdf(Elower) (3.5)

where cdf is expressed as:

cdf =
1

2

[
1 + erf(

x− E√
2σ2

)

]
(3.6)

Energy

Energy window

Figure 3.2: Illustration of the concept of forced passing the energy threshold.

3.2.3.5 Fictitious transport in the crystal array

Fictitious interaction tracking, also called Woodcock tracking or delta scattering,
is frequently used in accelerating photon tracking in matters with relatively little
variation in cross section at the photon energy of interest [Woodcock et al., 1965]
[Cramer, 1977]. The human body is an appropriate candidate for this technique,
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which allows a relatively longer free mean path compared to voxel dimension in
simulation. The computational load caused by boundary crossing is avoided as the
whole volume is regarded as isotropic media. The tracking uses a maximum cross
section to sample the distance to travel but uses the ratio of maximum to local cross
section to determine the occurrence and type of an interaction. This technique has
been applied in photon tracking in collimator and crystal detectors [Tenney et al.,
2004]. We applied this technique for photon transport in the crystal arrays because
the crystal pitch is generally smaller than the free mean path in common scintillator
for 511 keV photons (e.g. the free mean path is about 1 cm in BGO). The cross
section of the crystal was used in transport. The interaction was determined by the
local cross section at a fictitious interaction site.

3.2.3.6 Transport parameters

The transport parameters are often adjusted to get a better simulation efficiency
given a required precision. In emission tomography, it is justifiable to switch off
the transport of the secondary electrons in crystals [Wernick and Aarsvold, 2004].
This technique has become the standard configuration in emission tomography
Monte Carlo simulators and the efficiency has been improved considerably. In
PET resolution modeling, range rejection of positron can be applied with the same
rationale to avoid this computational overload. However, this technique is not
appropriate for small animal PET scanners or some non-standard isotopes where
positron range matters [Bai et al., 2005] [Rahmim et al., 2008]. We did not ap-
ply this technique in our simulations because the positron history reuse technique
relaxed this computational challenge.

Other parameters that can be adjusted are photon range rejection (pcut in
EGSnrc), Rayleigh scattering and bounded Compton scattering. These parame-
ters may not improve the simulation efficiency and have limited contributions to
the simulation accuracy. However, their effects on the accuracy of resolution mod-
eling remain uninvestigated. Thus, we evaluated these effects in this work.

3.2.4 Validation and efficiency evaluation

We evaluated our implemented VRTs by several voxels at representative locations
because the simulation of a full system matrix was computational expensive and
was not the main purpose of this work. The results were compared with a baseline
analog calculation (hereafter referred as the baseline), where the primary positron
was fully tracked until annihilation (either at rest or in flight). The photon range
rejection or pcut in EGSnrc was applied for photons with energy below 10 keV
and the secondary electrons were not simulated [Wernick and Aarsvold, 2004].
The Rayleigh scattering and bounded Compton scattering were both active. The
baseline simulation contained 50 million decays. To evaluate the precision and
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the efficiency of the proposed VRTs, the baseline simulation was compared with
calculations progressively incorporating different VRTs.

To validate the proposed VRTs, PSFs of a voxel source at the center and the
edge (25 cm off-center) of the FOV were simulated. The simulation with all VRTs
active (hereafter referred as the VRT simulation) was compared to the PSFs de-
rived from the baseline. The number of decays in the VRT simulation was 2.5
million in the central voxel and 250 million in the off-center voxel, respectively.
Each positron history was reused 20 times in both simulations, which equal to 50
million and 5 billion decays, respectively. The polar angle was biased to 75◦ -
105◦. The pcut was 50 keV; Rayleigh scattering and bounded Compton scattering
were both inactive. To compensate for the bias caused by polar angle biasing in the
VRT simulation, the number of decays in the baseline was adjusted to 193 million
and 20.5 billion. For the voxel at the center of the FOV, the PSF was obtained by
summing over all azimuthal angle and slices to increase the effective count by em-
ploying inherent symmetries of the scanner. For the voxel at 25 cm off-center, the
PSF is obtained from azimuthal angle 154 in a slice with ring combination (15,15).
All simulations were launched on a quad-core Xeon platform of 2.50 GHz.

3.3 Results

3.3.1 Validation results

Fig. 3.3 shows the PSFs obtained from the VRT simulation and the baseline sim-
ulation for a voxel at the center of the FOV. The VRT simulation slightly under-
estimates the peak of the PSF compared to the baseline. The FWHMs are 3.64
mm (the VRT simulation) and 3.51 mm (the baseline), respectively; the full width
at tenth maximum are 9.05 mm (the VRT simulation) and 8.62 mm (the baseline),
respectively. Both differences are less than 5%.

Fig. 3.4 shows the PSFs obtained from the VRT simulation and the baseline for
a voxel at the center of the FOV. The FWHMs are 7.37 mm (the VRT simulation)
and 7.28 mm (the baseline), respectively; the full width at tenth maximum are
14.9 mm (the VRT simulation) and 14.8 mm (the baseline), respectively. Both
differences are less than 1.2%.

3.3.2 Precision and efficiency evaluation

The baseline simulation took 1,241 s and yielded 2,442,797 coincidences. The
simulation efficiency is 8.25E5 and precision is 3.13E-5. A summary of the results
from employing different VRTs is listed in table 3.1. Detailed results for each VRT
will be given item by item.



52 CHAPTER 3

1.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

240 250 260 270 280 290

C
o

u
n

ts

Bin #

PSF Comparision - Center

vrtPSF analogPSF

Figure 3.3: Point spread functions of the VRT simulation and the baseline simulation for a
voxel source at the center of the FOV.

Techniques Improvement
Polar angle biasing (75 – 105 ◦) 2.92
Positron history reuse (25) 4.4
Hit-testing, fictitious transport and forced detection 1.22
Transport para (bounded Compton off) 1.0
Transport para (Rayleigh off) 1.0
Overall (w/o geometry equivalence) 15.3

Table 3.1: Efficiency improvement of different VRTs.
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Figure 3.4: Point spread functions of the VRT simulation and the baseline simulation for a
voxel source at 25 cm off-center.
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Figure 3.5: The efficiency was plotted as a function of the number of reuse. The efficiency
of a simulation using back-to-back gamma source was also plotted.

Polar angle biasing The simulation using polar angle biasing took 1,600s and
produced 9,457,023 coincidences. The simulation efficiency is 2.39E+06,
which is improved by a factor of 2.92 compared to the baseline. The pre-
cision of simulation with polar angle biasing is 1.59E-05. The precision is
improved by a factor of 1.97 compared to the baseline simulation for the
same number of simulated events.

Positron history reuse The efficiencies for reusing a positron history for 1 time
(the baseline simulation), 5 times, 10 times, 25 times, 50 times, 100 times
are plotted as a function of the number of reused in Fig. 3.5. The efficiency
of a simulation with back-to-back gamma source and the same configuration
is also plotted in this figure. The precision is 3.12E-5 for simulations with
positron sources, and is 3.44E-5 for the simulation with a gamma source.

Hit-testing, fictitious transport and forced passing These three techniques were
evaluated together. The simulation employing these VRTs took 1,070.7s and
produced 2,453,060 ± 1,513.7 coincidences. The efficiency is 1.01E+06,
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which is improved by a factor of 1.22 compared to the baseline simulation.
The precision is 3.0e-5, which is improved 4% compared to the baseline
simulation for the same number of events simulated.

Transport parameters The execution time of the simulation with pcut set to 50
keV was 1,235s and the number of coincidences was 2,440,595. The effi-
ciency is 8.33E5 and the precision is 3.12E-5. When Rayleigh scattering
was turned off, the execution lasted for 1,235s and yielded 2,434,774 co-
incidences. The efficiency is 8.35E5 and the precision is 3.12E-5. When
the bounded Compton was turned off, the simulation took 1,236s and pro-
duced 2,452,881 coincidences. The efficiency is 8.27E5 and the precision is
3.13E-5. Both the efficiency improvements and precision improvements are
negligible.

Overall efficiency improvement The VRT simulation lasted for 374.5s, and yielded
9.45768e+06± 2807.5 coincidences. The efficiency is 1.27E7, which is im-
proved by a factor of 15.2 compared to the baseline. The precision is 1.45E-
5, which is improved by a factor of 2.16 compared to the baseline for the
same number of simulated events.

3.4 Discussion and future work
The simulation of the system matrix is different from a realistic data acquisition
simulation in PET. One such differences is the assumption “time independence”.
This assumption enables event-based signal processing and coincidence determi-
nation logic because randoms are not included to cancel acquisition parameter
dependences. In addition, this assumption also enables the positron history reuse
technique for the same reason. The assumption of object independence enables the
separation of the scattering system matrix and the detector response component.
But this simulation setup requires data to be pre-corrected for both photon attenu-
ation and scattering inside the object. This assumption also makes hit-testing and
polar angle biasing possible because photon attenuation and photon scattering are
not allowed inside the object. The efficiency improvements of different VRTs are
correlated, such as the polar angle biasing technique and the hit-testing technique.

The effects of discarding the secondary electrons in the crystals were not eval-
uated because it has been well-justified [Wernick and Aarsvold, 2004]. Our studies
indicated that the 50 keV pcut, bounded Compton, and Rayleigh effects are rela-
tively insignificant for both precision and efficiency in resolution modeling.

We used a uniform positron source in a sufficiently large water phantom in
our system matrix simulation. The system response obtained by this simulation
setup is consistent with the continuous-discrete reconstruction problem [Lewitt
and Samuel, 2003]. However, the system response estimated by this method is
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equal to the system response of a voxel source in air due to the object indepen-
dence. This may lead to an under-estimated system response kernel because the
system response kernel varies with respect to different activity in the warm back-
ground in a physical scanner. In addition, with a “voxel spread function”, the
partial volume effect cannot be completely compensated. The advantage of this
approach lies in its simplicity, which is obtained at the cost of flexibility: once a
system model is determined, the voxel size is also determined.

The polar angle biasing and hit-testing techniques improve simulation effi-
ciency by avoiding the transport of photons that are known to miss the detector.
Forced detection in SPECT simulation employed the same principle. Implemen-
tation of forced detection is more complex because the location- and azimuthal-
angle-dependent polar angle complicates the calculation of the solid angle, which
may cancel out the gain in simulation efficiency by employing forced detection.

Positron history reuse improves the simulation efficiency because a large frac-
tion of the positrons are tracked but produce no coincidences. Correlations among
those detections are introduced in positron history reuse, but these correlations
are insignificant because the chances of annihilation photon pairs from the same
positron contributing to the same LOR are very small. For example, if 25 annihila-
tion photon pairs share the same positron history, approximately one coincidence
is produced on average for the Philips Gemini GS PET scanner with a point source
at the center of the FOV. With polar angle biasing, the number of photon pairs for
the same positron history can be reduced to avoid such correlation.

The gain from employing the fictitious transport technique is limited in our
study. For multilayer detectors such as the jPET-4D scanner [Nishikido et al.,
2008], positive gains could be achieved [Tenney et al., 2004]. In the future, more
advanced techniques, such as pre-computation of positron distribution [Harrison
et al., 1999] and detector responses [Ortuno et al., 2006] [Ortuno et al., 2010] will
be investigated.

Accurate photon attenuation and scattering have been investigated for 2-D and
3-D PET reconstruction [Rehfeld and Alber, 2007] [Rehfeld et al., 2010]. How-
ever, these methods are constrained by the computational power. Our methods
could be candidates to produce an accurate patient-specific system model that
meets clinical requirement; the scatter-free SM can be pre-computed by Monte
Carlo simulations and the scattering component can be estimated by an SSS or a
multiple scattering simulation. However, one limitation is the attenuation correc-
tion, which is based on a narrow beam model and is not accurate for PET as its
beams are blurry and wide. An accurate modeling of the wide beam effect could
improve the image quality. These hypotheses will be investigated in the future.
The simulation with all VRTs active show slight under-estimation in the PSF de-
rived from voxel source located at the center and 25 cm off center in the FOV. This
under-estimation is acceptable for reconstruction tasks, although the reason is not
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clear yet. This will be investigated in the future.

3.5 Conclusion and original contribution
We developed a set of VRTs to use in the SM simulation of PET with egs pet.
For the modeled PET scanner (Philips Gemini GS), the simulation efficiency for a
voxel located at the center of the FOV was improved by a factor of 14 for a voxel
located at the center of the FOV compared to the analog simulation. Our method
indicates that positron transport can be included in an SM simulation with accept-
able simulation efficiency loss (30%). These techniques considerably reduced the
cost of SM simulation. These techniques could be used in resolution compensa-
tion for small animal PET scanners or non-standard isotopes in whole-body human
PET scanners.

As the major original contribution, we proposed following VRTs to the field of
SM simulation: polar angle biasing, positron history reuse, fictitious transport in
crystals, and transport parameter analysis for a PET scanner. These simple VRTs
improved the simulation efficiency considerably. This work will be submitted to
an A1 journal [Zhang et al., 2010b].





Chapter 4

Resolution Modeling using
Cubic Voxels

In this chapter, we will discuss the simulation and reconstruction techniques we
developed to meet the computational requirements in Monte Carlo-based resolu-
tion modeling using voxels as the basis functions.

4.1 Introduction

As mentioned in Chapter 2, Monte Carlo-based resolution modeling has been
demonstrated as an effective method in image quality improvement when used
in an iterative reconstruction algorithm in PET reconstruction [Johnson et al.,
1995,Shokouhi et al., 2004,Qi et al., 1998,Rannou and Chatziioannou, 2004,Rafe-
cas et al., 2004b,Herraiz et al., 2006,Mora and Rafecas, 2006,Ansorge, 2007,Ler-
oux et al., 2007a]. However, the computational load to calculate the SM and
the memory capacity to store the SM (hereafter referred to as the two problems)
have limited the use of these methods for state-of-the-art whole-body PET scan-
ners [Buvat and Lazaro, 2006, Panin et al., 2006a]. To address these problems,
many methods have been proposed with voxels as the basis functions [Johnson
et al., 1995,Rafecas et al., 2004b]. Alternative basis functions have also been used
to utilize the inherent symmetries of a PET scanner [Mora and Rafecas, 2006,An-
sorge, 2007, Leroux et al., 2007a, Vandenberghe et al., 2006].

In this chapter, we focus on a framework of methods that uses voxels as the
basis functions. Symmetries have been utilized to reduce the redundancy in the
SM and the simulation cost [Johnson et al., 1995, Rafecas et al., 2004b]. One
limitation of these approaches is the limited in-plane symmetries, whose max-
imum is four-fold. This number is much less than the available in-plane sym-
metries in a typical PET scanner. For this reason, non-exact approaches, i.e.,
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“quasi-symmetry” [Herraiz et al., 2006] and approximate rotational symmetry or
azimuthal independence [Qi et al., 1998] [Panin et al., 2006a], have also been
proposed for voxel-based image parameterization. A more efficient and accurate
method uses a factored matrix to reduce memory requirements and simulation
costs in Monte Carlo-based resolution modeling [Qi et al., 1998, Rahmim et al.,
2008], but this method is usually slow as accessing an SM element involves on-
the-fly calculation in addition to symmetry handling.

We propose a rotator-based approach to solve both the problems simultane-
ously. This method enables the simulation of a fast, realistic and physically ac-
curate SM for cylindrical whole-body PET scanners. This obtained matrix can be
stored in the main memory of a personal computer. Fast reconstruction can be ob-
tained with multi-CPU desktop systems. The first component is the fast SM simu-
lation module, which is based on egs pet [Kawrakow et al., 2008c] and optimized
for SM simulation. This PET simulator provides the same simulation accuracy
for this application as Geant4 Application for Emission Tomography (GATE) [Jan
et al., 2004] but is, 15–130 times faster [Kawrakow et al., 2008c]. The second
constituent is the transformation of the Monte Carlo simulation output into an SM
with redundancies reduced by exploiting symmetries of the scanner. This ma-
trix is stored in a highly efficient sparse matrix storage format. The final compo-
nent is a rotator-based ordered subset expectation maximization (OS-EM) algo-
rithm [Shepp and Vardi, 1982, Hudson and Larkin, 1994]. This algorithm uses as
input the line of response (LOR) histogram [Kadrmas, 2004,Moehrs et al., 2008a].
The rotator retains voxels as the object model, which is simple and consistent with
the continuous-discrete model of the computed image reconstruction problem. In
addition, this basis facilitates a measured system model using a scanning point
source.

In addition to utilizing symmetries (referred as “geometry equivalence” in
Monte Carlo simulations), the SM simulation can be further accelerated by a
light-weight, dedicated, fast and yet realistic Monte Carlo simulators [Shokouhi
et al., 2004] with different variance reduction techniques e.g., importance sam-
pling, forced detection [Rafecas et al., 2004b,Shokouhi et al., 2004]. More details
about variance reduction techniques in resolution modeling can be found in Chap-
ter 3.

4.2 Materials and Methods

4.2.1 Imaging geometry

The SM was simulated for the Philips Gemini GS PET scanner. The scanner is
equipped with GSO crystals of 4.0 mm × 6.0 mm × 20 mm in the tangential,
axial and radial directions, respectively. These crystals are arranged into 22 × 29
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Transverse FOV 576×576 mm2

Axial FOV 183 mm
Detectors/ring 616
Number of blocks 28
Number of rings 29
Maximum ring difference 28

Table 4.1: Philips Gemini GS PET/CT Characteristics

LORs per angle 527
Number of angles 308
Number of ring combinations 841
LOR histogram dimension 841×308×527
Voxel size, mm3 2×2×3.15
Object size, voxels 288×288×58
SM dimension 6.567×1014

Storage SM (Tb) 2,389

Table 4.2: Image volume and LOR histogram configuration

arrays (tangential and axial directions) in 28 flat panels, which form 29 rings with
616 crystals per ring [Lamare et al., 2006, Surti and Karp, 2004]. The whole-
body field of view (FOV) is 576×576 mm2 trans-axially by 183 mm axially [Surti
and Karp, 2004]. Table 4.1 lists the characteristics of this scanner. The object
volume and LOR histogram settings of the target system are shown in Table 4.2.
The dimension of the SM is 6.6×1014 and the storage requirement of the whole
matrix is estimated to be 2,389 Tb if each SM element were represented by a single
precision floating point data type (Table 4.2).

4.2.2 System matrix simulation
4.2.2.1 Simulation setup

The SM calculation used EGSnrc-based code egs pet, which was reported to be
15 to 130 times faster than GATE [Kawrakow et al., 2008c]. The same principle
as described in Chapter 3 such as time independence and object independence,
was used to calculate the SM. A uniform cylindrical source (30 cm radius and
20 cm height) of 18F was used to simulate the SM. The source was placed in the
center of a water phantom, which had a cylindrical shape, but which was 3 cm
larger in radius and 6 cm larger in height. This arrangement allowed a sufficient
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positron range. No VRTs (including those described in Chapter 3) were employed
in this study because the system matrix quality index in section 4.2.2.3 requires
justification.

4.2.2.2 Symmetry handling

Considering the cylindrical shape of the target system, the geometrical symmetries
can be exploited for variance reduction [Bielajew and Rogers, 2010]. Two types
of equivalent geometries exist in the scanner: axial symmetries and in-plane sym-
metries. Axial symmetries, i.e., the reflection symmetry (reduction factor 2) and
the parallel chord translational symmetry for LORs with a common ring differ-
ence (reduction factor: NR −Rd, NR number of rings, Rd ring difference), can be
utilized assuming identical detector rings and choosing the voxel size in the axial
direction to be an integer fraction of the ring pitch [Johnson et al., 1995], i.e., 2
in this chapter. In reality, less translational symmetry could be employed due to
border effects of a detector block. Under the reflection symmetry, the z index of a
voxel is mirrored to 2(R1 +R2)− z + 1, where R1 and R2 are the two rings (top
in Fig. 4.1a). With respect to the translational symmetry, the z index of a voxel is
shifted by 2∆R if the two LORs are separated by ∆R rings (bottom in Fig. 4.1a).

In-plane symmetries include the rotational symmetry and in-plane mirror sym-
metry. Because the scanner consists of 28 blocks, equally spaced on a ring, ro-
tational symmetry is achieved by rotating the image grids to these positions, as
illustrated in Fig. 4.1b. A voxel in the rotated grid (in black) has the same contri-
bution to a rotated LOR as the corresponding voxel in the original grid (in grey)
to the original (non-rotated) LOR. We chose to rotate the image over π, leading to
a reduction factor of 14. In addition, there exists 2-fold in-plane mirror symmetry
when the block edge effects were modeled, as illustrated in Fig.4.2b. LORs of the
two view angles are equivalent under a mirror operation. We did not exploit this
symmetry in present study. In contrast, traditional methods use 4-fold in-plane
symmetry for the same configuration.

To use the translational symmetry, correct sensitivity must be maintained be-
cause this symmetry is ring difference-dependent. The maximum ring difference
was chosen to be 14, leading to 15 translational symmetries for all selected LORs.
We reduced the number of translational symmetries to 11 to exclude LORs with
a ring difference greater than 14 (e.g. ring 0 and ring 28), which have different
system responses than LORs in the center (detector border effects).

4.2.2.3 System matrix quality index

Because there exists a trade-off between simulation time and image quality, dif-
ferent indices have been proposed to evaluate the precision of a calculated SM.
Basic empirical indices consider only the voxel size or the sensitivity of a LOR.
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Figure 4.1: (NOT TO SCALE) Symmetries. (a) Axial symmetry. SM elements associated
with crossed LORs are interchangeable under a mirror operation. SM elements associated

with LORs in parallel are identical. (b) Rotational symmetry. The two SM elements are
identical given detector blocks are identical.

The number of events in one voxel and detections of a LOR are used as the figures
of merit (e.g. 50 million events per voxel [Shokouhi et al., 2004], 10 detections per
LOR [Leroux et al., 2007b]). More advanced indices include the effects of both the
voxel size and the LOR sensitivity and use statistical properties of the SM as an in-
dex, such as mean and “mean relative error” [Rafecas et al., 2004b]. A theoretical
approach characterizes the effect of the variance/error in the SM on the accuracy
in reconstructed images and concludes that the artifacts caused by the noisy SM
should be insignificant compared to these of data [Qi and Huesman, 2005]. This
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Figure 4.2: (NOT TO SCALE) The base-symmetry LORs. (a) Axial base-symmetry LORs.
(b) In plane base-symmetry LORs (Only two views were drawn for clarity).

introduces study-dependent factors into the evaluation of a SM, which reveal the
fact that the precision of a SM also depends on the involved study. However, none
of the above indices cover all aspects of the problem. Therefore, we propose the
following index:

Nsim ≥
1

α
Mmea, (4.1)

where Nsim is the total number of events required to simulate the SM, Mmea

is the total number of emissions in the data and α is a constant to balance the
simulation cost and the image quality to ensure that the error caused by the SM in
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the reconstructed image is α times the error caused by the data [Qi and Huesman,
2005]. A reference α value of 0.01 was suggested. This index is “image quality
aware” because it quantifies the image error caused by the statistical quality of the
SM.

Equation 4.1 can be used in a more practical way:

k =
Nsim ·max(A)

max(y)
, (4.2)

where max(·) represents the maximum operator (only non-zero elements are
considered), y refers to the measured data vector, k is a constant to balance the
simulation time and image quality, A is the noisy SM (in absolute probability).

4.2.3 System matrix storage

The SM is very sparse (a large portion of elements are zero) and redundant (a large
portion of elements are identical) [Rafecas et al., 2004b]. Thus, a sparse matrix
storage format was used to reduce the storage requirement. The LOR index was
reused by all SM elements associated with it, and the voxel index was encoded with
the SM element value in a four-byte word, resulting in a highly compact and di-
rect access scheme. Time-consuming techniques, such as automated indexing [Qi
et al., 1998], were avoided. Redundancy in the obtained SM was reduced by using
LOR symmetries. Only a subset of SM elements was stored and the rest could
be obtained by either in-plane symmetry or axial symmetry. This subset, called
the base-symmetry SM, contained elements associated with the base-symmetry
LORs. The base-symmetry LORs contained 29 ring combinations (one for each
ring difference), each with 22 view angles of 527 LORs, as illustrated in Fig. 4.2.
The maximum ring difference was chosen to be 14, resulting in an extra reduction
factor of 1.93 ( 2915 ) in SM storage at the cost of about 25% sensitivity loss. The
base-symmetry SM was stored in the aforementioned sparse matrix storage for-
mat. Elements in the base-symmetry SM whose values are less than 0.5% of the
maximum were removed from the SM [Rafecas et al., 2004a,Leroux et al., 2007b].

4.2.4 The rotator-based OS-EM

The rotator-based maximum likelihood expectation maximization (ML-EM) was
first used in Single Photon Emission Computed Tomography (SPECT) reconstruc-
tion [Frey et al., 1993, Zeng et al., 1994b]. This method has been introduced into
PET to exploit redundancy in the SM [Kadrmas, 2004, Moehrs et al., 2008b]. In
this article, a Gaussian rotator with a 1 pixel full-width-at-half-maximum (FWHM)
and a 3×3-pixel kernel [Wallis and Miller, 1997] was used in an OS-EM algorithm.
A sub-iteration of the rotator-based OS-EM can be expressed as:
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fK,S+1
j =

fK,Sj

SenSj

∑
r

RTr

(∑
i∈S

ãl,j
gi∑

j ãl,j [Rr (fK,S)]j

)
(4.3)

where f is the image volume, K is the iteration number, S refers to a subset,
ãl,j is the base-symmetry SM, i is the LOR number, which organized as i = r ×
Nsm + l, Nsm is the LOR dimension of the base-symmetry SM, r is the rotational
symmetry number, which can be calculated as r = i/Nsm, l = imodNsm is the
LOR index of the base-symmetry SM, g is the measurement, R and RT are the
rotation operators, and Sen is the sensitivity term, which can be expressed as:

SenSj =
∑
r

RTr

(∑
l∈S

ãl,j

)
j

(4.4)

In this chapter, the ordered-subset level was chosen to be 22, which corre-
sponds to the number of angles of a ring combination in the base-symmetry SM.
Consequently, a subset contains 14 angles, corresponding to the number of rota-
tional symmetry.

4.2.5 Image quality evaluation

The contrast recovery coefficient (CRC) and noise level calculated on regions of
interest were used as figures of merit. Regions of interest were defined for cold
lesions, hot lesions and the background. The CRC of a hot lesion is expressed as:

CRC(%) =
1

CZ

Z∑
z=1

µ̄h,z
µ̄b,z

× 100 (4.5)

where z is the realization number and Z the total number of realizations.
µ̄h,z is the mean of the reconstructed activity in a hot lesion h of a realization
z, µ̄b,z refers to that in the background of a realization z and C is the true hot-to-
background contrast.

The CRC of a cold lesion is defined as:

CRC(%) =
1

Z

Z∑
z=1

µ̄b,z − µ̄l,z
µ̄b,z

× 100 (4.6)

where µ̄l,z is the mean of the reconstructed activity in a cold lesion l of a
realization z.

The noise level σn is denoted as:

σn(%) =
1

Bµ̄b

B∑
b=1

σ̄b × 100 (4.7)
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where B is the total number of pixels in the background, µ̄b is the mean of the
reconstructed activity in the background of different realizations, σb is the standard
deviation of the reconstructed activities within a pixel b of different realizations.
For a single realization, i.e., the measurement study, the noise was calculated as
the relative standard deviation in the background.

4.2.6 Simulation study

A customized image quality phantom filled with 18F-FDG in water was simulated
to characterize the contrast noise trade-offs. It consisted of four hot spheres (9.89,
12.43, 15.43, 19.79 mm diameter) with a contrast to background ratio of 4:1, and
two cold spheres (25.4, 31.8 mm diameter) located at the central plane. The back-
ground was a cylinder of 204 mm in diameter and 150 mm in height. The cylinder
was filled with water as annihilation medium, but photon attenuation and scatter-
ing were disabled in the simulations within this cylinder. A total of 50 realizations
were simulated, with 5,500 million disintegrations each. Scatters and randoms
were directly rejected during simulation, resulting in a collection of 200 million
true coincidences per realization.

The simulated data were reconstructed using the LOR-based OS-EM and the
simulated SM. Contrast and noise properties were evaluated with the figures of
merit described in Section 6.3.3. The results were compared to those of a standard
OS-EM using a multi-ray Siddon projector [Verhaeghe et al., 2008]. The crystals
were assumed to be a 2-D pixelized black body. We tracked five rays on-the-fly
per LOR, each end point location was randomized within the crystal.

4.2.7 Measurement study

A Deluxe Jaszczak Phantom (Data Spectrum Corporation, Hillsborough, NC, USA)
filled with 1 mCi 18F-FDG in water was imaged on the Gemini GS PET/CT scan-
ner. The phantom consisted of six spheres and an ultra deluxe cold rod insert. The
spheres included four hot spheres (9.89, 12.43, 15.43, 19.79 mm diameter) and two
cold spheres (25.4 and 31.8 mm diameter). The cold insert consisted of six wedges
of cold rods (3.2, 4.8, 6.4, 7.9, 9.5 and 11.1 mm diameter). The hot-to-background
ratio was 4:1.

The phantom was scanned for 40 minutes in fully 3-D mode. About 250 mil-
lion coincidences (after subtracting randoms) were collected and binned into an
LOR histogram [Kadrmas, 2004]. Normalization was applied onto the LOR his-
togram using an iterative model-based method [Ferreira et al., 2000]. The attenua-
tion map was obtained from the CT scan. Scatter correction was applied by a single
scatter correction technique [Watson et al., 1997]. Finally, the preprocessed data
were reconstructed using the MCSM method. The same data set was also recon-
structed on 2 mm× 2 mm× 2 mm grids by the blob-based Row-Action Maximum
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Indices MCSM Reference
Events/voxel 54.9 million 50 million or 100 million

[Shokouhi et al., 2004]
Detections/LOR 4.7 · 104 10 [Leroux et al., 2007b]
Theoretical analysis
(simulation)

4.5 · 104 100 [Qi and Huesman, 2005]

Theoretical analysis
(measurement)

104 100 [Qi and Huesman, 2005]

SM mean 14.1 3.06 [Rafecas et al., 2004b]

Table 4.3: Relationship with other indices

Likelihood Algorithm (RAMLA) equipped on the scanner using routine parame-
ter settings in brain mode, where neither span nor mashing was applied [Surti and
Karp, 2004]. This algorithm calculates on-the-fly the length of intersection with
blobs as the system model [Lewitt, 1992]. All corrections were applied using the
standard tools equipped on the scanner prior to reconstruction.

4.3 Results

4.3.1 System matrix quality index

The SM was built from 2.1 · 1010 coincidences. The statistics of the obtained
SM are equivalent to those of an SM derived from a simulation with 6.4 · 1012

detections without exploiting symmetries. This simulation contained 2.5 · 1014

events as the simulated sensitivity was about 2.6% by using the aforementioned
simulation setup (section 4.2.2). The average number of detections per LOR was
4.7 · 104. The number of events per voxel was 54.9 million. The average of all
non-zero elements in the obtained base-symmetry SM was 14.1 after applying the
threshold defined in section 4.2.3.

The data were simulated from 5.5 · 109 events, resulting in a 1/α of 4.5 · 104.
This quantity of the measurement study was assumed to be of the same order of
magnitude (104) as the simulation study. The exact number was unknown however
1. These figures are summarized and compared to the other indices (table 4.3).

1In terms of system modeling, we were only interested in events that contributed to the detector
response.



RESOLUTION MODELING USING CUBIC VOXELS 69

egs pet 15.8 2

Efficiency improvement techniques 1.2
Rotational symmetry 14
Translational symmetry (axial) 11
Reflection symmetry (axial) 2
Total 5,839.7

Table 4.4: Simulation efficiency improvement

Max ring diff 14 1.93 ( 2915 )
Rotational symmetry 14
Translational and reflection symmetry 29
Total 791.7

Table 4.5: Storage reduction factors

4.3.2 Calculation time

The SM simulation took approximately five days on a cluster with 50 Intel Xeon
2.66Ghz cores. The factors that contributed to the simulation efficiency improve-
ment are listed in table 4.4. Egs pet was 15.8 times more efficient than GATE for
this particular application without the use of variance reduction techniques. The
efficiency was further improved by 23% with the fast signal processing chain and
code optimization. The total acceleration factor was 5,840.

This SM was then integrated within the rotator-based OS-EM algorithm. The
reconstruction of the measurement data in section 4.2.7 took 2,450 seconds per
iteration on a single CPU core of an Intel Core 2 Duo 2.53 GHz. This code was
not yet fully optimized for speed. Many optimization strategies, i.e., parallelism,
smart symmetry handling and access order optimization, could be used to further
reduce reconstruction time. The reconstruction of the same data with the multi-
ray Siddon projector algorithm, also using 22 subsets, lasted 1,550 seconds per
iteration on the same CPU core.

4.3.3 Storage of the system matrix

The number of non-zero SM elements was 5.4 · 108, resulting in an SM sparsity
of 99.94%. The size of the SM was therefore approximately 2.01 GB. Table 4.5
summarizes the results of the different storage reduction techniques. The total
memory requirement was reduced by a factor of approximately 790.
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(a) (b)

Figure 4.3: Reconstruction examples. (a) Multi-ray Siddon projector method (iter 4, 22
subsets). (b) MCSM method (iter 4, 22 subsets). Ringing artifacts indicated by white

arrows.

4.3.4 Image quality evaluation

4.3.4.1 Simulation study

Slices of the Jaszczak phantom reconstructed with the Siddon OS-EM and the
MCSM method algorithm are shown in Fig. 4.3a and Fig. 4.3b respectively. Both
slices are illustrated at iteration 4 of OS-EM with 22 subsets and at 50% FOV.
Visual inspection revealed that our method led to smoother and sharper images.
However, noticeable ringing artifacts were detected along the edge of the back-
ground and of the largest hot lesion, indicated by white arrows.

The contrast recovery versus noise curves are plotted both for our method and
for the Siddon OS-EM algorithm in Fig. 4.4. Error bars are derived from 50
different realizations.

4.3.4.2 Measurement study

Reconstructed slices of the Deluxe Jaszczak phantom are shown in Fig. 4.5a (spheres)
and Fig. 4.5b (cold rods) for the blob-based RAMLA. The same slices recon-
structed with the MCSM method are illustrated in Fig. 4.5c (spheres) and Fig. 4.5d
(cold rods). The ringing artifacts are undetectable in Fig. 4.5c and the cold rods in
Fig. 4.5d are visually sharper. This was confirmed by the profile through one row
of the 11.1- and 7.9-mm diameter rods, depicted in Fig. 4.6. In Fig. 4.7a the CRC
versus noise of the hot lesions is plotted for both reconstruction methods and in
Fig. 4.7b for the cold lesions.
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Figure 4.4: Contrast versus noise curves of the simulation study, each point represents one
OS-EM iteration with 22 subsets. (a) Contrast-noise curve for hot lesions (b)

Contrast-noise curve for cold lesions.

4.4 Discussion

The variance of an SM element estimation decreases as 1/N , which is consistent
with the theoretical analysis [Qi and Huesman, 2005]. Thus, the achieved effi-
ciency improvement can be estimated by the factor of increased number of events
simulated for the same computational power. Exploiting symmetries of the PET
scanner attributes to the largest fraction in both the storage reduction (factor 406
= 29x14) and simulation efficiency improvement (factor 308 = 11x2x14). The
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(a) (b)

(c) (d)

Figure 4.5: Reconstruction examples. (a) The spheres of the clinical software. (b) Cold
rods of the clinical software. (c) The spheres of the MCSM method. (b) Cold rods of the

MCSM method.

rotator-based algorithm provides a maximum in-plane symmetry of 28 (14 rota-
tional symmetry and two mirror symmetry) for both simulation and SM storage
with the same axial symmetries on a cuboid voxel discretization 3. The conven-
tional methods provide at most four in-plane symmetries for the same configura-
tion. More rotational symmetries may be exploited for a PET system with an ideal
cylindrical shape in our method. The light-weight simulator egs pet contributes an
additional factor of 16 in efficiency improvement. The timing independent simu-
lation provides an extra 20% speed-up.

The acolinearity of the annihilation photon was not modeled because this effect
is not included in EGSnrc [Kawrakow and Rogers, 2007]. However, this effect has
little impact on simulation efficiency and the storage requirement of the SM [Har-
rison et al., 1999]. We also investigated SM simulation and reconstruction using a
back-to-back gamma source for 18F studies. The simulation time was reduced by
a factor of four compared to a positron source simulation. The reconstruction re-

3the two-fold in-plane mirror symmetry was not employed.
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Figure 4.6: Profile extracted through 11.1- and 7.9-mm cold rods.

sults indicated that positron range could be skipped without compromising image
quality for the target system and proposed algorithm. The same conclusion could
be expected when the acolinearity is included in the system modeling. However,
system modeling without positron range may not be appropriate for small animal
PET scanners, where the positron range matters.

The working SM comfortably meets the suggested lower limit criteria reported
in the literature [Shokouhi et al., 2004, Rafecas et al., 2004b, Qi and Huesman,
2005, Leroux et al., 2007b], as summarized in the right column of Table 4.3. The
error caused by the SM in the reconstructed image could be ignored by using the
theoretical analysis by Qi et al. [Qi and Huesman, 2005]. Ring artifacts due to
exploiting symmetries were avoided by simulating more than ten detections per
LOR [Leroux et al., 2007b]. However, significant contrast loss had been detected
when the same data were reconstructed by a low statistics SM, which contains half
of the detection as the working SM. This indicates that more detections are needed
to build a more accurate SM.

Quantitative accuracy, in terms of contrast recovery (bias), was significantly
improved compared to the multi-ray Siddon projector algorithm and the blob-
based RAMLA algorithm. The improvement in cold spheres contrast was more
pronounced with respect to the blob-based RAMLA. The blob-based RAMLA
showed better noise properties because a blob radius of 2.5 pixels was used in
clinical settings [Surti and Karp, 2004], which regularized the image to be smooth.
Studies have shown that the blob object model was equivalent to an after-backprojection-
filter using the same blob function [Zhang and Zeng, 2006].

Ringing artifacts were detected in the simulated phantom studies. We investi-
gated the origin of ringing artifacts using an “ideal” rotator based on polar-pixels,
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Figure 4.7: Contrast noise trade-offs of the measured data, each point represents a single
iteration. (a) Hot lesions. (b) Cold lesions.

which provides perfectly rotated image without any blurring or distortion in chap-
ter 6. The study indicates that the artifacts could be mainly attributed to the rotator
because it causes blurring in image space [Wallis and Miller, 1997], which further
blurs the system response kernel (Fig. 4.8). Similar results were reported in the
reconstruction using an over-blurred system response kernel (i.e. wider kernel) in
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Figure 4.8: The Gaussian rotator blurs the PSF obtained by simulation.

image space [Reader et al., 2003, Sureau et al., 2008].
However, ringing artifacts were barely detected in the measurement studies,

indicating an absence of over-blurred system responses. The absence of the acol-
inearity of annihilation photons in egs pet contributes to this under-estimation of
the width of the PSF [Kawrakow and Rogers, 2007]. Factors that are not included
in the scanner model, i.e., optical photon transportation and detector electronics,
may also contribute to this effect [Lamare et al., 2006]. Our SM simulation is
equivalent to a simulation with a voxel source in air because no photon-matter
interactions were simulated in the water phantom. This method yields sharper
system response function compared to the voxel in a warm background. In ad-
dition, non-perfect correction techniques (randoms, scatters and normalization)
might contribute to the artifact reduction as the residual errors might introduce
bias, boost noise or expand the blurring of system responses (i.e., randoms and
scatters).

In contrast to a radial symmetry object model, we used a rotator to exploit
the rotational symmetry of the LORs. This method retains the cuboid voxel dis-
cretization, which is simple and conforms to the discrete-to-discrete model of im-
age reconstruction [Lewitt and Samuel, 2003]. In addition, retaining cuboid voxels
facilitates a measured system model using a scanning point source. However, the
use of a rotator compromises the accuracy of the system response function as an
ideal rotator does not exist for the voxel discretization [Wallis and Miller, 1997].
The exact effects of this compromise and how it relates to the blurring effects of
the positron range require further investigation.
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4.5 Conclusions and original contribution
We developed a framework of SM simulation and reconstruction techniques, in-
cluding a fast, realistic SM simulation module and a rotator-based OS-EM algo-
rithm. This framework allowed exploitation of the rotational symmetry of a cylin-
drical PET scanner and retention of voxels as the object model. The SM could be
efficiently calculated and stored in the main memory of a standard PC. The image
quality improved considerably in terms of contrast-noise trade-offs. Image quality
was also compared to clinical software using routine parameter settings. The quan-
titative accuracy of smaller spheres and cold spheres was significantly improved.
Our novel method may be used in other cylindrical whole-body and preclinical
PET scanners.

The work described in this chapter yields to several conference publications
[Kawrakow et al., 2008a] [Zhang et al., 2008] [Zhang, 2008] and one A1 journal
publications [Zhang et al., 2010c].



Chapter 5

Experiment-based
Resolution Modeling

In this chapter, the initial implementation of a rotator-based method using experiment-
based point spread function (PSF) modeling is presented to investigate the poten-
tial of the rotator-based reconstruction algorithm.

5.1 Introduction

Employing measurement-derived PSFs in PET reconstruction has been generally
regarded as the most accurate approach in resolution compensation [Tohme and
Qi, 2009] [Wiant et al., 2010]. One reason lies in its ability to measure effects
that are difficult or unfeasible to model in other methods, such as the crystal iden-
tification algorithm in an Anger logic detector and optical photon transport 1. A
limitation of this approach is the necessity for intensive scanning, which often
takes several minutes per position. Thus, measurement on a complete image grid
is unfeasible [Panin et al., 2006b]. This constraint can be addressed with a pa-
rameterization technique and a sparse measurement grid. This technique was first
applied in SPECT for resolution compensation [Rowe et al., 1993] [Chen et al.,
2005] [van der Have et al., 2008]. The unmeasured detector response functions
can be estimated from the parameters obtained from the measured points [Panin
et al., 2006b] [Wiant et al., 2010] [Tohme and Qi, 2009] [Alessio et al., 2010].
Another constraint of this method is the requirement of storing the obtained sys-
tem model. Because the measured system matrix is denser than other approaches
(such as a Monte Carlo-based approach), storing the pre-computed system ma-
trix in the memory is challenging. Symmetries can reduce the redundancy in the

1Although optical photon tracking is possible in GATE, including it in system matrix simulation is
highly prohibitive
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LORs per angle 589
Number of angles 322
Number of ring combinations 841
LOR histogram dimension 841×322×589
Voxel size, mm3 2×2×2.1
Object size, voxels 288×288×87

Table 5.1: image volume and LOR histogram configuration

system matrix.
However, for a voxel-based approach, the available symmetries are limited for

cylindrical scanners. As we argued in the previous chapter (Chapter 4), a rotator-
based approach may reduce the storage cost. Because voxels are used as basis
functions, the existing resolution modeling techniques [Panin et al., 2006b, Wiant
et al., 2010, Tohme and Qi, 2009, Alessio et al., 2010] using measured data can be
directly employed in the rotator-based method because all these techniques used
voxels.

In this chapter, we present the initial implementation of the rotator-based method
using a factorized matrix approach and PSF modeling, which include both radial
and axial blurring effects. We also investigate the contribution of the radial and
axial blurring effects to image quality.

5.2 Materials and Methods

5.2.1 The scanner

We used the Philips Gemini GS PET/CT scanner. The technique specification of
this scanner can be found in section 4.2.1 of Chapter 4. The scanner was assumed
to be a perfect cylinder with a continuous crystal. Thus, the gaps were treated as
virtual crystals with no output. In this work, we used different image volume and
LOR histogram settings, which are listed in Table 5.1.

5.2.2 PSF measurement

An uncollimated 22Na point source in Lucite was used. Monte Carlo simulation
has demonstrated that the positron range of such a configuration is approximately
the same as that of 18F in water [Alessio et al., 2010]. The activity of the point
source was 40 µCi and the radius was 225 µm. The robot was the Owis LTM80
precision linear stage. It has maximum ranges of 290 mm in the x-, y- and z-
direction. We used 260 mm of this range. The positioning error is less than 25
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µm per 100 mm of movement. The robot was mounted on an optical table, which
had four legs with wheels. Because of the rails at the end of the PET scanner were
about 70 cm, we used a long arm to cover half of the axial FOV. The robot and the
arm are illustrated in Fig. 5.1.

Figure 5.1: The robot

The scanner coordinate system was aligned with the coordinate system of the
robot by adjusting the position and height of the legs of the optical table. After
each adjustment, the point source centering test utility on the scanner was used to
test whether the point source was approximately centered. When the point source
passed the centering test program, the point source was scanned at three positions
(0 cm,0 cm), (27 cm, 0 cm) and (0 cm, 20 cm) in the central plane to ensure that
the frame of the robot was well-aligned with that of the scanner by analyzing the



80 CHAPTER 5

sinogram.

After the two coordinate frames were well-aligned, the sinogram intensities of
the three point sources should have been approximately identical across several
direct planes. The positioning precision of this technique was believed to be less
than 0.5 mm in the axial direction [Wiant et al., 2010]. To determine the center,
we used two criteria: 1) where the count rate is the highest and 2) where the ratios
of the sum of the count rate in the central plane to its two neighboring planes were
approximately the same. In addition, the sinogram of a point source is a vertical
line in the direct central plane if the point source is centered.

Because the measurement is very time-consuming, measuring the entire image
grid is not practical [Panin et al., 2006b]. We chose to measure the PSFs on a
sparse grid in a small portion of the entire FOV (see Fig. 5.2 and Fig. 5.3). This
portion was carefully chosen such that the entire FOV could be covered by using
the inherent symmetries of the scanner. The sampling points that share the same
z-coordinate was referred as a sampling plane. The spacing between rows and
columns in a sampling plane was 10 mm, which was sufficient for robust parame-
terization [Wiant et al., 2010]. The spacing between two sampling planes was 3.15
mm, which was half of the crystal ring pitch of the scanner. The axial location
of each plane was chosen to be symmetric about the center of the associated ring
(Fig. 5.3).

The system response kernels were measured at 29 sampling planes, which con-
tained 2,175 locations in the FOV. The point source was scanned for 3 minutes at
each location, yielding approximately 15 million coincidences. Because of the
long half-life of the isotope (≈2.6 year), its activity was assumed to be constant
during the point source acquisition (within one month). The data were acquired in
raw list mode and the data volume was about 200 GB.

5.2.3 PSF modeling

The system model should be independent of the specific scanner of the same model
[Panin et al., 2006b]. Thus, the data were first normalized using a component-
based iterative approach [Wang et al., 2007] to remove any scanner-specific factors
(e.g., geometrical misalignment of the crystals in a detector blocks and variations
in the gain of PMTs). We assumed that perfect rotational symmetries can be em-
ployed. This similarity is usually achievable in modern PET scanners with a small
block detector design [Panin et al., 2006b]. We also assumed that the PSFs along
the same LOR were approximately identical at different depths. This assumption
is also achievable in a block-detector scanner [Panin et al., 2006b].
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PSF measurement – Grids
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Figure 5.2: The sampling grids in the x-y (transverse) plane. The grid area is slightly
larger than the triangle formed by the origin, the middle of the detector block and the

middle point of the two adjacent blocks.
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PSF measurement – Grids
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Figure 5.3: Schematic drawing of the sampling grid in the z (axial) direction.
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Figure 5.4: The principle of the parameterization-based technique. The unknown PSF
(dotted line) is obtained indirectly: the measured PSFs are first parameterized with a
proper model. Another model is then fitted to the parameters. The unknown PSFs are

finally sampled from the model of the parameters.
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5.2.3.1 Radial blurring modeling

Given these assumptions, the measured PSFs at an azimuthal angle (φ = 165) were
employed to derive the parameters of the radial profiles. A radial PSF profile
was modeled as an asymmetric Gaussian function, which is the summation of two
Gaussian functions with the same amplitude and peak location. The left and right
parts had standard deviations of σL and σR. The radial profile of a ray is expressed
as follows:

PSF radslc (r, p) = Aslc(p) · e
(−

(r − r0slc(p))2

2σ2
slc(p)

)

(5.1)

where slc stands for the index of an LOR histogram slice (LORs that share the
same ring pair) and p stands for a point source location,Aslc(p) is the amplitude of
the asymmetric Gaussian, r0slc(p) represents the peak location in radial direction,
and σslc(p) is the standard deviation, which is σLslc(p) when r < r0slc(p) and
σRslc(p) when r > r0slc(p). The PSF profiles were fitted using the Levenberg-
Marquardt algorithm [Levenberg, 1944] [Marquardt, 1963] [Lourakis, 2004].

Because a relatively sparse grid was measured compared to the image grid,
the PSFs at unmeasured locations needed to be determined. The parameters of
the unknown PSFs were sampled from the models of the parameters. This proce-
dure is illustrated in Fig. 5.4. The azimuthal angle (phi = 165) was chosen to be
perpendicular to the p-axis and the depth of this angle is zero.

Because the count level varies dramatically across different slices for a given
point source at a measurement location, the accuracy of the fitted radial profile
may vary significantly in different slices. Fig. 5.5 provides an example of such
fitting for different slices of a point source in measurement plane 0. The param-
eterization model matched the measured data in the high-statistics slice but not
in the low-statistics slice. In addition, the estimated peak locations were slightly
different. We ignored these errors because the low statistics slices were less signif-
icant than the high statistics in resolution modeling, and the peak positioning error
was minimized with a geometric model.

The parameters A, σL and σR were fitted to parabolic functions of the loca-
tions of the point sources. An example of the fitting at a peak slice is displayed
in Fig. 5.6. We noticed that radial profiles significantly vary across different slices
for the PSF of a ray. An example of the fitting at a non-peak slice is illustrated in
Fig. 5.7.

The parameter r0 was then fitted as a function of the locations of the point
sources for all of the slices. The function was [Panin et al., 2006a]:

p = (R+DOI · cos(θ))sin(θ), θ = r0
π

N
(5.2)

where R is the radius of the scanner, DOI is the depth of interaction (which
was found to be 1.3 cm through fitting a model using Equation 5.2 and direct slices
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Figure 5.5: Fitting examples for a point source that is 1 cm off-center in measurement
plane 0, (a) slice of ring pair (15,15), (b) slice of ring pair (15, 16).
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Figure 5.6: An example of fitting models to the parameters at the slice of ring pair (15,
15) for point sources in the measurement plane 0. (a) (b) The parameter A and σ are fitted

to a parabola function of the locations of point sources. (c) The parameter ρ is fitted to
Equation 5.2 of the locations of point sources.
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Figure 5.6: An example of fitting models to the parameters at the slice of ring pair (15,
15) for point sources in the measurement plane 0. (a) (b) The parameter A and σ are fitted

to a parabola function of the locations of point sources. (c) The parameter ρ is fitted to
Equation 5.2 of the locations of point sources.

of measurement data plane 0 – 8), and N is the number of crystal (including gaps
(644)). As an example, fitting models to the parameters is illustrated in Fig 5.6.

5.2.3.2 Axial blurring modeling

The parameter A at peak locations across different slices was virtually linked
and modeled by the sum of Gaussian functions that were continuously distributed
across the slice space. In this work, we assumed that all these Gaussian functions
have the same σ due to the small oblique angle (< 12.5◦ for the target scanner),
despite the fact that the axial profiles could be slightly asymmetric or blurry for
oblique LORs. This assumption also implies that the axial peak location is in a
middle of a ring. The axial blurring function with amplitude normalized to unity
was defined as follows:

PSF axlslc = e
[−

(slc− slc0)slc)2

2σ2
]

(5.3)

where PSF axl is the axial blurring function, and slc0 is the peak location of
the axial profile.

The overall PSF of this ray is a collection of the radial profiles weighted by the
value of the axial profile function in each slice. Thus, the complete PSF can be
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Figure 5.7: An example of fitting models to the parameters at the slice of ring pair (15,
16) for point sources in the measurement plane 0. (a) (b) The parameter A and σ are fitted

to a parabola function of the locations of point sources. (c) The parameter ρ is fitted to
Equation 5.2 of the locations of point sources.
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Figure 5.7: An example of fitting models to the parameters at the slice of ring pair (15,
16) for point sources in the measurement plane 0. (a) (b) The parameter A and σ are fitted

to a parabola function of the locations of point sources. (c) The parameter ρ is fitted to
Equation 5.2 of the locations of point sources.

expressed as:
PSF (r, p) =

∑
slc

PSF axlslc PSF
rad
slc (r, p) (5.4)

An example of the proposed PSF model is illustrated in Fig. 5.8. The radial and
axial profiles of the proposed model are illustrated in Fig. 5.9. It can be seen that
the PSF model is naturally a summation of all radial profiles at different slices. The
summation model allows different radial profiles in different slices, while existing
models do not permit such situations due to the constraints of the separable radial
and axial profiles [Panin et al., 2006a]. Our summation PSF model may degrade
into an existing model if we assume that all the radial profiles have the same shape
across different slices, where the complete PSF model can be approximated as a
product of the radial and axial profiles.

5.2.4 System matrix construction

In this work, we used a factorized matrix approach to model the complete system
model:

AN,I = PN,NGN,I (5.5)

where N and I are dimensions of the LOR histogram and image, AN,I is the
complete system matrix, PN,N is the PSF component that models the blurring in
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sinogram space, and GN,I is the geometric component that models the solid angle
effects.

We used a multi-ray Siddon algorithm to approximate these effects by ran-
domly sampling and tracing 5000 rays per LOR. The size of the obtained geomet-
ric matrix G is about 220 Mb.

In order to determine the PSF component, the mapping that links the loca-
tion of a point source to its axial and radial peak locations must be known. In
contrast to radial peak locations, the axial peak locations are a complicated func-
tion of radial, depth, and axial positions of the point sources. To the best of our
knowledge, no a established analytical model exists. Estimating these locations
from measurements is also challenging because too many unknowns may cause
the fitting to fail [Panin et al., 2006b]. In this initial implementation, the axial peak
locations were assumed to be the center of a ring. And the relationship between
the point source location and axial peak location were determined by a ray-tracing
algorithm. This technique introduced a maximum positioning error of one axial
bin, which has been shown to be negligible [Alessio et al., 2010]. The radial peak
location was precisely determined by using equation 5.2 for each ray. We also
assumed that the radial blurring of the LOR had the same shape across different
slices, which is the shape of the radial blurring at the peak slice. This axial profile
is a spatially invariant kernel, which has a FWHM of 0.86 slice bin. This param-
eter was estimated from the data from measurement plane 0 – 8. The size of the
PSF component P is about 25 Mb.

5.2.5 Reconstruction

The rotator-based ordered subsets expectation maximization (OS-EM) [Hudson
and Larkin, 1994] was used for image reconstruction [Zhang et al., 2010c]. The
formula can be found in Chapter 4. The rotator was a Gaussian rotator with a
one-pixel (2 mm) FWHM and a 3×3-pixel kernel [Wallis and Miller, 1997]. In
the forward projection, the volume of intersection system model was first used
and the projection was then distributed to its radial and axial neighbor bins. In
the backprojection step, the ratio LOR histogram was first deblurred (both radially
and axially) and then backprojected by the geometric system matrix. The forward
projection and backprojection are illustrated in Fig. 5.10. Two system models
were built and used in the reconstruction. In one model, the axial blurring was not
included but the axial blurring was included in the other model.

5.2.6 Figures of merit

The contrast recovery coefficient (CRC) and noise calculated for the ROIs were
used as figures of merit. The CRC of a hot lesion is expressed as follows:
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Figure 5.10: The forward- and back-projector. (a) The forward projection operation using
the factorized matrix approach. (b) The backprojection operation using the factorized

matrix approach.
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CRC =
1

C

µ̄h
µ̄b
× 100% (5.6)

where µ̄h is the mean of the reconstructed activity in a hot lesion h, µ̄b is the
mean of the reconstructed activity in the background, and C is the true hot-to-
background contrast.

The CRC of a cold lesion is defined as:

CRC =
µ̄b − µ̄l
µ̄b

× 100% (5.7)

where µ̄l is the mean of the reconstructed activity in a cold lesion l.
The noise σn was calculated as the coefficient of variance (CV) in the back-

ground, expressed as:

σn =
σbgd
µbgd

× 100% (5.8)

where σbgd is the standard deviation in the background and µbgd the mean in
the background.

5.2.7 Resolution properties

Six point sources were placed radially in the central image plane with a spacing
of 5 cm, which covered a half-FOV from 0 cm to 25 cm. Each point source was
scanned for 1 minute and the approximately 5 million prompts were collected.
These point sources were then reconstructed using the proposed method with or
without axial blurring modeled. The radial, tangential and axial resolutions were
measured by fitting a Gaussian function through the peak using the fifth iteration
of the reconstructed image. These point sources were not reconstructed by the
scanner software because the clinical routine uses 4x4x4 mm3 voxels. Thus, the
resolution of the proposed method was compared to that of an OS-EM using a
multi-ray Siddon (5 rays) projector, where the finite crystal size was modeled. The
end-points of each ray were randomized to avoid artifacts. We also compared
the resolution properties to the Monte Carlo-based reconstruction. The Monte
Carlo system matrix was created by egs pet with some of the VRTs described in
Chapter 3. These VRTs are polar angle biasing, positron history reuse, hit-testing
and the transport parameters were optimized. The details about these VRTs can be
found in Chapter 3.

The volumetric resolution was calculated by the volume contained by the FWHM
contour of a reconstructed point. This volume was approximated by the volume of
an ellipsoid, whose radii were the FWHMs in different directions.
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5.2.8 Phantom study

5.2.8.1 Jazsczak phantom

To evaluate the image quality, we scanned an image quality phantom on the Gem-
ini GS PET/CT. The cylindrical container of the Deluxe Jaszczak phantom from
DSC (Hillsborough, NC) was used, which was 18.6 cm in height and 21.6 cm in
diameter. The hot/cold lesions used hollow spheres from the Hollow Sphere Sets
(6) and Solid Sphere Sets (6) from DSC. The dimensions of the four hot spheres
were 9.89 mm, 12.43 mm, 15.43 mm and 19.79 mm in diameter and the two cold
spheres were 25.4 mm and 31.8 mm in diameter. The spheres were in a plane
about 4.6 cm off-center. The background was filled with 0.98 mCi 18F-FDG in
water. The hot-to-background ratio was 4:1. The phantom was scanned for 25
minutes with approximately 200 million coincidences collected in list mode. The
data were then pre-corrected for randoms, normalization effects, attenuation and
scattering. The attenuation map was obtained from the CT scan. Scatter correction
was applied by a single scatter simulation technique [Watson et al., 1997]. Again,
the phantom was reconstructed using the proposed method with or without axial
blurring.

The new approach was compared to the commercial algorithm equipped on the
scanner and an algorithm employing the same rotator and a Monte Carlo-derived
SM with fully simulated positron range effects. Both the new approach and the
Monte Carlo-based algorithm used the raw LOR histogram [Kadrmas, 2004] as
an input, which was pre-corrected for randoms, attenuation and scattering effects.
The subset level was chosen to be 23 in both approaches.

The scanner software used an interpolated sinogram with seven tilts. The im-
age was reconstructed on 2x2x2 mm3 grid with a blob-based RAMLA algorithm.
Clinical routine settings were used during the reconstruction and iterated at the
10th iteration [Surti and Karp, 2004].

5.2.8.2 Hoffman phantom

We also scanned a Hoffman phantom (from DSC) to evaluate the overall perfor-
mance of the reconstruction algorithm on the Gemini GS PET/CT. The phantom
was filled with 1.0 mCi 18F in water, and scanned for about 20 minutes. The col-
lected coincidences were about 110 million. All corrections were applied to the
data before reconstruction.

The data were reconstructed using our method with the full PSF model (in-
cluding both axial and radial blurring) and the commercial software on the scan-
ner, which used clinical routine settings and iterated up to 10 iterations [Surti and
Karp, 2004]. The subset level was chosen to be 23 in our reconstruction method.



94 CHAPTER 5

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30

R
e

so
lu

ti
o

n
 F

W
H

M
 (

m
m

)

Point source location (cm)

Resolution - w/o axial blurring

Siddon axial

Siddon transverse

PSF axial (w/o A)

PSF transverse (w/o A)

PSF  Axial (w/ A)

PSF transverse (w/ A)

MC Transverse

MC Axial

Figure 5.11: Volumetric resolution of the PSF modeling (with or without axial blurring),
the Monte Carlo-based method and the OSEM Siddon approach. The volumetric

resolutions were measured at the fifth iteration with 23 subsets.

5.3 Results

5.3.1 Resolution properties

The resolution of the proposed method with or without axial blurring is compared
to a standard OS-EM algorithm using the multi-ray Siddon projector and to the
Monte Carlo-based approach described in Chapter 4. The radial, tangential and
axial FWHMs of the reconstructed point sources are displayed in Fig. 5.11. The
manufacturer’s data are listed in Table 5.2. These data were measured using the
3D-FRP algorithm with a narrow filter [Surti and Karp, 2004].

Locations (cm) Resolution transverse
(mm)

Resolution axial
(mm)

1 3.77 5.31
10 5.46 6.44
15 6.78 15.74
20 7.62 15.48

Table 5.2: The resolution properties from the manufacturer. Reproduced from [Surti and
Karp, 2004].

The volumetric resolution as a function of point source locations is also plot-
ted in Fig. 5.12 for the Monte Carlo-based approach, the standard OS-EM using
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Siddon projector and the proposed method with or without axial blurring. The vol-
umetric resolutions were measured at the fifth iteration with 23 subsets. The mean
volumetric resolution as a function of iteration number is plotted in Fig. 5.13with
increasing iteration number for the point source at the center of the FOV and a
point source 10 cm off-center.
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Figure 5.12: The volumetric resolution as a function of point source locations at the 5th
iteration of the standard OS-EM using Siddon projector and the proposed method with and

without axial blurring.

5.3.2 Image quality evaluation

5.3.2.1 Jazsczak phantom

The reconstructed slices of the phantom with or without axial blurring are shown
in Fig. 5.14 (transverse view in Fig. 5.14a and 5.14b, coronal view in Fig. 5.14d
and 5.14e and sagittal view in Fig. 5.14g and 5.14h) for the proposed method. The
reconstruction of the manufacture’s method is listed in the rightmost column for
reference. Ringing artifacts can be detected along the edge of the background in
the transverse view for both system models (see Fig. 5.14a, 5.14b).

In Fig. 5.15 the CRC vs. noise is plotted for the proposed method with axial
blurring, the Monte Carlo-based method and the manufacture’s method (Philips).
Fig. 5.15a and 5.15b contain the curves for hot and cold lesions, respectively.

To evaluate the effects of axial blurring, the CRC vs. noise is plotted for the
proposed method with or without axial blurring in Fig. 5.16.
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source at the center of the FOV and a point source 10 cm off-center.

5.3.2.2 Hoffman phantom

Images of the proposed method, Monte Carlo-based resolution modeling and the
clinical software are displayed in Fig. 5.17. The tenth-iteration images were ob-
tained for the proposed method, the Monte Carlo method and the clinical software.

5.4 Discussion

The proposed method directly parameterized the profiles in each slice of a PSF.
Our approach is different from existing measurement-based techniques, where the
PSF is modeled as separable radial and axial components to downsize the size of
the system matrix [Panin et al., 2006a]. In our approach, the PSF is modeled as the
weighted sum of the radial profiles and the weights are the axial component. This
small change allows fitting different radial profiles in different slices to accurately
reconstruct a measured PSF.

The amplitudes of the radial profiles were then fitted to a Gaussian function
to further smooth the PSF model. This Gaussian function can be regarded as the
axial profile in existing approaches [Panin et al., 2006a]. Despite we assumed a
fixed location in this initial work, the peak location of this axial profile modeling
can be determined by a new model to include the DOI effects in axial direction.
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(a) (b)

(c)

Figure 5.14: Reconstruction examples for the proposed method without axial blurring. (a),
(d) and (g) show the transverse, coronal and sagittal views, respectively, of the model

without axial blurring. (b), (e) and (h) show the transverse, coronal and sagittal views,
respectively, of the model with axial blurring. (c), (f) and (i) are the transverse, coronal

and sagittal views, respectively, of manufacture’s method.
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(d) (e)

(f)

Figure 5.14: Reconstruction examples for the proposed method without axial blurring. (a),
(d) and (g) show the transverse, coronal and sagittal views, respectively, of the model

without axial blurring. (b), (e) and (h) show the transverse, coronal and sagittal views,
respectively, of the model with axial blurring. (c), (f) and (i) are the transverse, coronal

and sagittal views, respectively, of manufacture’s method.
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(g) (h)

(i)

Figure 5.14: Reconstruction examples for the proposed method without axial blurring. (a),
(d) and (g) show the transverse, coronal and sagittal views, respectively, of the model

without axial blurring. (b), (e) and (h) show the transverse, coronal and sagittal views,
respectively, of the model with axial blurring. (c), (f) and (i) are the transverse, coronal

and sagittal views, respectively, of manufacture’s method.
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Figure 5.15: Contrast noise trade-offs of the image quality phantom. Each point represents
a single iteration of the proposed method (PSF modeling with axial blurring), the Monte
Carlo-based method and the manufacture’s method (Philips). (a) Hot lesions. (b) Cold

lesions.
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Figure 5.16: Contrast noise trade-offs of the image quality phantom. Each point represents
a single iteration of the proposed method with or without axial blurring in the system

model. (a) Hot lesions. (b) Cold lesions.
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(a) (b)

(c)

Figure 5.17: Hoffman phantom at the 10th iteration. (a) (c) (e) The transverse, coronal,
and sagittal view of the image reconstructed by the PSF method. (b) (d) (f) The transverse,

coronal, and sagittal views of the image reconstructed by the clinical software.
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(d) (e)

(f)

Figure 5.17: Hoffman phantom at the 10th iteration. (a) (c) (e) The transverse, coronal,
and sagittal view of the image reconstructed by the PSF method. (b) (d) (f) The transverse,

coronal, and sagittal views of the image reconstructed by the clinical software.
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(g) (h)

(i)

Figure 5.17: Hoffman phantom at the 10th iteration. (a) (d) (g) The transverse, coronal,
and sagittal view of the image reconstructed by the PSF method. (b) (e) (h) The transverse,
coronal, and sagittal view of the image reconstructed by the Monte Carlo method. (c) (f)
(i) The transverse, coronal, and sagittal views of the image reconstructed by the clinical

software.
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This method will be investigated in the future.
In this initial implementation, we approximated this model by assuming that

the radial profiles of the PSF of a ray are the same. It can be proved that the pro-
posed PSF model degraded into a separable model under this approximation. A
full implementation of the proposed model yields a more accurate PSF model, but
the memory required to store the PSF blurring matrix substantially increases. An
optimal configuration of the proposed system model could be achieved by balanc-
ing the complexity of the system model and the image quality. This hypothesis
will be investigated in the future.

The contrast recovery was improved compared to that of the Monte Carlo-
based approach because the accuracy of the model was better than the Monte
Carlo-based approach. Due to the smoothness of the parameterized model, the
image was significantly less noisy than the Monte Carlo-based method. The com-
mercial algorithm yielded the best noise performance because the radius of the
blobs was 2.5 pixels, which regularized the images to be smooth [Wang et al.,
2004] [Vanhove et al., 2007].

Axial blurring was found to be an important factor in the axial resolution. How-
ever, the improvement in contrast noise trade-offs from including axial blurring
effects is limited, which is consistent with the finding of peer researchers [Alessio
et al., 2010]. We also noticed that the contrast recovery of the smaller hot lesions
was increased more than the larger hot lesions. This improvement makes the mod-
eling of axial blurring attractive because improved contrast recovery of small hot
lesions is clinically important [Kim et al., 2005]. This finding also suggests that
the modeling of axial blurring is important in small animal PET imaging, where
the lesion sizes are smaller.

Ringing artifacts were detected along the edge of the background in the image
reconstructed using the proposed method. However, ringing was not detected in
the Monte Carlo-based approach in the experimental data study in chapter4. These
phenomena indicate that the system responses obtained in this work are blurrier
than those obtained by Monte Carlo simulations.

The scanner had large detector panel, which may damage the assumption of
azimuthal independence. Our study showed that the azimuthal independence as-
sumption was appropriate. In the current implementation, only part of the data was
used to build the model because we ignored the difference between the blurring of
the oblique LORs and the direct LORs due to the small oblique angle. This as-
sumption is frequently used in PSF modeling, where the axial profile is estimated
from data of one line or plane of point sources [Tohme and Qi, 2009] [Alessio
et al., 2010].

In addition to the Gaussian rotator-based approach, an ideal rotator could also
reduce the storage requirements. A measured system matrix with polar-pixel dis-
cretization requires integral of the PSFs within the polar voxel elements. This
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approach will be investigated in the future.

5.5 Conclusions and original contributions
The results show that our technique is promising in terms of its resolution prop-
erties and contrast noise trade-offs. Our method allows a very compact system
model (< 250Mb) with complete system responses modeled. Our studies indicate
that the axial blurring remains an interesting component because including this ef-
fect considerably improved the axial resolution and contrast recovery for small hot
lesions.

In this work, we presented a factorized system model in PET image recon-
struction. A blurring component that directly parameterized the profiles of the
PSFs was obtained from point source data. This technique has several advantages
over existing techniques, such as increased accuracy and readiness for fully 3-D
reconstruction. The downsides are the increased complexity and increased storage
requirement for the full PSF model.



Chapter 6

Ringing Artifacts in
Resolution Modeling

In this chapter, we investigated the origin and characterized the behavior of the
ringing artifacts detected in the approach using a blurring Gaussian rotator (see
Chapter 4 for details). An ideal rotator was proposed to provide a baseline for
these investigations.

6.1 Introduction

As mentioned in Chapter 4, the rotator-based method solves some of the issues
in applying Monte Carlo resolution modeling into state-of-the-art whole body PET
scanners, such as the memory requirement for storing the SM and the expensive
computational cost for calculating the SM. However, pronounced ringing artifacts
in reconstructed images were detected when applying the rotator with an accurate
system model. Ringing artifacts have been reported (or can be detected) in many
recent works employing an accurate system model, particularly, a measurement-
derived system model [Qi et al., 1998, Reader et al., 2003, Panin et al., 2006a,
Sureau et al., 2008, Tohme and Qi, 2009, Alessio et al., 2010, Wiant et al., 2010].

Here, we propose an ideal rotator, which yields perfectly rotated images, to in-
vestigate the origin and behaviors of these aforementioned artifacts. The ideal ro-
tator method was used as a baseline to analyze the artifact behavior of the Gaussian
rotator method. A full system model and a partial system model without positron
range and acolinearity modeled for 18F studies were used during this evaluation.
The full system model was used for the artifact investigation and the partial system
model was used to investigate the feasibility of employing the blurring of the rota-
tor to compensate for certain resolution loss effects. Noiseless data, Monte Carlo
simulation data and acquired data were employed to quantitatively characterize the
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behavior of artifacts in the Gaussian rotator-based method. The angle-independent
and predictable blurring of the Gaussian rotator [Wallis and Miller, 1997] provides
valuable information about how much over-compensation is tolerable for PET re-
construction in practice.

6.2 Theory

6.2.1 The Ideal Rotator

Polar pixels have been intensively used in small animal PET systems for resolution
compensation [Scheins et al., 2006, Mora and Rafecas, 2006, Ansorge, 2007, Ler-
oux et al., 2007a]. We used a “square” like polar-pixels discretization [Mora and
Rafecas, 2006], as illustrated in Fig. 6.1. Our ideal rotator is based on this image
discretization. This discretization shows a radial symmetry in a cylindrical PET,
as illustrated in Fig. 6.1. It is perfect or “ideal” for rotating the image to reach a ra-
dial symmetry position since no interpolation is required (Fig. 6.1b). The inherent
radial symmetry can be fully utilized when the number of segments of polar-pixel
discretization equals to the number of detector blocks.

The polar-pixel representation is converted to Cartesian discretization to dis-
play the image or perform Regions of Interest (ROI) analysis. This transformation
maps the polar pixels to voxels by calculating the 2-D area-of-overlapping using a
convex-hull algorithm [Brown, 1979].
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Figure 6.1: (NOT TO SCALE) Illustration of polar-pixel topology and image rotation. (a)
Polar-pixel discretization. (b) Image rotation is “ideal” for radial symmetry positions.
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6.2.2 Analytical modeling of positron range and acolinearity

Positron range has been intensively studied in PET applications, such as experi-
mental measurements [Derenzo, 1986], Monte Carlo simulations [Levin and Hoff-
man, 1999] and empirical modeling [Harrison et al., 1999]. In early days of
PET, the positron range was compensated by deconvolution methods [Derenzo,
1986, Hebert et al., 1990]. However, the noise was significantly amplified. Re-
cently, this effect has been modeled in the SM of an iterative scheme, and im-
provements were reported in 82Rb studies [Rahmim et al., 2008,Alessio and Mac-
Donald, 2008].

The distribution of the positron range can be fitted to the sum of two exponen-
tial functions, expressed as [Levin and Hoffman, 1999]:

P (r) = De−k1r + (1−D)e−k2r r ≥ 0 (6.1)

The acolinearity of the annihilation photon is modeled as a Gaussian distribu-
tion with a mean m = 0 and a full-width-at-half-maximum (FWHM) FWHM =

2.35σ = 0.0026L (in mm), where L is the separation of the detector pair in a
cylindrical scanner [Rahmim et al., 2008, Jan et al., 2004]:

A(r) = Ee−
r2

2σ2 (6.2)

where E is a normalization factor.
The overall blurring of these two factors is the convolution of the two com-

ponents: P (r) ⊗ A(r). For 18F, D is 0.516, k1 is 0.379 (mm−1) and k2 is 0.031
(mm−1) [Levin and Hoffman, 1999]. This model yields a Gaussian shape blurring
kernel (Fig. 6.2). The FWHM of the total blurring is plotted as a function of the
off-center distance for a cylindrical PET scanner, as shown in Fig. 6.2c.

6.3 Materials and Methods

6.3.1 The PET scanner

We used the Philips Gemini GS PET/CT scanner. The technique specification of
this scanner can be found in section 4.2.1 of Chapter 4. The characteristics of the
image volume and sinogram settings are the same as in Table 4.2 of Chapter 4.

6.3.2 System Matrix Simulation

In the SM calculation, we used the EGSnrc based code egs pet, which has been
reported to be 15 to 130 times faster than GATE [Jan et al., 2004, Kawrakow
et al., 2008c]. Uniform sources were used in the simulation of the SMs and
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Figure 6.2: Overall blurring of positron range and acolinearity (a) at the center and (b) at
the edge (288 mm off-center) of the FOV. (c) FWHM as a function of the off-center distance
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Figure 6.2: Overall blurring of positron range and acolinearity (a) at the center and (b) at
the edge (288 mm off-center) of the FOV. (c) FWHM as a function of the off-center distance

then discretized into polar pixels or voxels during post-processing. The SM el-
ement was calculated by counting detected events for the associated LOR-voxel
pair. A water phantom was used to allow the positron transport and annihilation.
But photon-matter interactions within this phantom were disabled. This setting
excluded the object dependent factors such as attenuation and scattering of the
object. The time-independent simulation was applied, which not only excludes
acquisition parameter-dependant factors but also provides possibilities for imple-
menting simulation efficiency improvement techniques [Zhang et al., 2010c]. Ge-
ometrical symmetries such as in-plane rotational symmetry and axial translational
and reflection symmetries were exploited to improve the statistics of the SM at no
additional cost on simulation.

Two SM simulations were performed. The first simulation used a positron
source, simulating the complete positron range and acolinearity; the second simu-
lation employed a back-to-back gamma source, without simulating positron range
and acolinearity. System matrices were derived for both the voxel discretiza-
tion and the polar-pixel discretization. Using the same number of decays, three
base-symmetry system matrices were generated from these simulations: Ap,pol

(positron source simulation, polar pixels discretization), Ap,v (positron source
simulation, voxels discretization) and Ag,v (gamma source simulation, voxels dis-
cretization). The characteristics of these system matrices are listed in Table 6.1.
System matrices Ap,v and Ap,pol are the full system models using different object
parameterizations and the SM Ag,v is the partial one.
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SM statistics SM Ap,v SM Ag,v SM Ap,pol

SM mean 15.1 15.5 14.9
SM max 260 287 185
SM storage (Gb) 2.31 2.26 2.20

Table 6.1: System matrix characteristics

6.3.3 Figures of merit
6.3.3.1 Contrast recovery

The contrast recovery coefficient (CRC) and noise calculated on ROIs were used
as figures of merit. ROIs for lesions were defined in Fig. 6.3a. The CRC of a hot
lesion is expressed as:

CRC =
1

CZ

Z∑
z=1

µ̄h,z
µ̄b,z

× 100% (6.3)

where z is the realization number and Z the total number of realizations. µ̄h,z
is the mean of the reconstructed activity in a hot lesion h of a realization z, µ̄b,z is
the mean of the reconstructed activity in the background of a realization z and C
is the true hot-to-background contrast.

The CRC of a cold lesion is defined as:

CRC =
1

Z

Z∑
z=1

µ̄b,z − µ̄l,z
µ̄b,z

× 100% (6.4)

where µ̄l,z is the mean of the reconstructed activity in a cold lesion l of a
realization z.

The noise σn is denoted as:

σn =
1

Bµ̄b

B∑
b=1

σb × 100% (6.5)

where B is the total number of pixels in the background, µ̄b is the mean of
the reconstructed activity in the background of different realizations and σb is
the standard deviation of the reconstructed activities within a pixel b within the
background ROI over different realizations. For a single realization, i.e. the mea-
surement study, the noise was calculated as the coefficient of variance (CV) in the
background, expressed as:

σn =
σbgd
µbgd

× 100% (6.6)
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where σbgd is the standard deviation in the background and µbgd the mean in
the background.
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Figure 6.3: ROI definitions. (a) ROI for lesions. (b) ROI for artifact evaluation: dark
annular ROIs are for cold lesions and the edge of the background; white circular ROIs

within hot lesions are for hot lesions.

6.3.3.2 Artifacts Evaluation

To quantify the ringing artifacts, ringing indices were calculated on ROIs at dif-
ferent places. In Fig. 6.3b, three annular ROIs were used to characterize ringing
at the edge of the background and cold lesions and two small circular ROIs were
used to quantify the ringing of the associated hot lesions.

For hot lesions, the ringing index was defined as the ratio of the mean in an
artifact ROI to the mean value of the associated lesion; for cold lesions and the
edge, the ringing index was defined as the ratio of the mean in an artifact ROI
to the mean in the background. In the noiseless study, the minimum of an artifact
ROI was used to evaluate the ringing in hot lesions, and the maximum in an artifact
ROI was used to quantify the ringing at cold lesions. For multi-realizations, i.e.
in the Monte Carlo study, the ring indices were the average of ringing indices
from different realizations. The ringing index of a hot lesion equals to one for
true images and is less than one for images with ringing artifacts (Fig. 6.4). For a
normal reconstruction, the reconstructed image has a taper profile and the ringing
index is greater than one. We call this error the taper artifact, which is induced by
the partial volume effect (Fig. 6.4).
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baseline

Figure 6.4: The Ring Index (RI) for hot lesions. Left: artifact-free image, RI equals to 1;
Middle: taper artifacts, RI > 1; Right: ringing artifacts, RI < 1.

6.3.4 Image reconstruction

In this article, our rotator-based algorithm was used for image reconstruction [Zhang
et al., 2010c]. The Gaussian rotator with a 1-pixel (2 mm) FWHM and a 3×3-pixel
kernel [Wallis and Miller, 1997] was used in an ordered subsets expectation max-
imization (OS-EM) [Hudson and Larkin, 1994] algorithm. For Gaussian rotator-
based reconstruction, the SM Ap,v and Ag,v were used.

The baseline algorithm used the polar-pixel discretization. The polar-pixel
discretization has 58 image planes and each plane was divided into 28 segments
with 2,450 polar pixels per segment. The SM Ap,pol was used in the ideal rotator
approach. The raw LOR histogram [Kadrmas, 2004] was used as input in both the
Gaussian rotator approach and the baseline method. The OS level was chosen to
be 22 in both approaches.

6.3.5 Noiseless Data Studies

To characterize the artifacts caused by the blurring rotator, reconstructions of the
noiseless data were performed. The noiseless projection was obtained by forward
projecting a numerical phantom by the ideal rotator method using Ap,pol. The
numerical phantom consists of 4 hot spheres (9.89, 12.43, 15.43 and 19.79 mm
in diameter) with a ratio of 4:1 to background and 2 cold spheres (25.4 and 31.8
mm in diameter) located at the central plane. The background was a cylinder of
204 mm in diameter and 150 mm in height. The noiseless data were reconstructed
using the Gaussian rotator method with SMAp,v and SMAg,v and were compared
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with that of the baseline method using SM Ap,pol.

6.3.6 Simulation Studies

Realistic data were simulated using egs pet to investigate the effects of noise on
artifacts in the Gaussian rotator method. An customized image quality phantom
was used in this study, which consists of 4 hot spheres (9.89, 12.43, 15.43 and
19.79 mm in diameter) with a ratio of 4:1 to background and 2 cold spheres (25.4
and 31.8 mm in diameter) located at the central plane. The background was a
cylinder of 204 mm in diameter and 150 mm in height, which was filled with
18F-FDG in water. The water was used as the annihilation medium, but photon
attenuation was not simulated within it. Acolinearity of the annihilation photon
was modeled for annihilation at rest. Realistic photon-detector interactions were
fully modeled. The detector outputs were digitized using the signal processing
chains of egs pet, which provide the same output as GATE given the same detector
signals [Kawrakow et al., 2008c].

In total 50 realizations were simulated. Randoms and scatters were simulated
but not stored in the list mode output, yielding true coincidences only. Simula-
tion data sets at different noise level were simulated: 150 million and 50 million
true coincidences respectively. The simulated data were reconstructed using the
Gaussian rotator method with SM Ap,v and SM Ag,v . The reconstruction results
were compared with the baseline method and a standard OS-EM using a multi-ray
Siddon projector [Verhaeghe et al., 2008].

6.3.7 Experimental Studies

A customized image quality phantom was imaged on the Gemini GS PET/CT. The
phantom had a cylindrical shape with 18.6 cm in height and 21.6 cm in diameter.
It contained six spheres: four hot (diameters: 9.89 mm, 12.43 mm, 15.43 mm and
19.79 mm) and two cold (diameters: 25.4 mm and 31.8 mm). The spheres were
located in a plane about 4.6 cm off-center. The background was filled with 1 mCi
18F-FDG in water. The hot-to-background ratio was 4:1.

The phantom was scanned for 25 minutes with approximately 200 million co-
incidences collected in list mode with about 16.4 million randoms. The scan data
were then binned into the LOR histogram with the randoms subtracted from the
dual windows measurement. Normalization was applied onto the raw histogram
using an iterative model-based method [Ferreira et al., 2000]. The attenuation map
was obtained from the CT scan. Scatter correction was applied by single scat-
ter correction technique [Watson et al., 1997] and the estimated scatter fraction is
about 41.4%. The pre-corrected data were reconstructed using the Gaussian rota-
tor method with SM Ap,v and SM Ag,v and compared with the baseline method
and the multi-ray Siddon OS-EM.
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6.4 Results

6.4.1 Noiseless Data Studies

Slices of reconstruction examples at the 20th iteration (OS-EM, 22 subsets) are
displayed in Fig. 6.5 and Fig. 6.6. Images of the Gaussian rotator method with SM
Ap,v and SM Ag,v are shown in Fig. 6.5a and Fig. 6.5b respectively. The image of
the ideal rotator method is depicted in Fig. 6.5c. The profiles extracted through the
hot lesions were depicted in Fig. 6.6a and 6.6b. Ringing artifacts were observed
at various places, namely the edge of the background, the cold spheres and the
hot spheres, as indicated by white arrows. The Gaussian rotator method with Ap,v

demonstrated the most pronounced artifacts.
The results of the artifact analysis are displayed in Fig. 6.7. The ringing indices

for hot lesions (Fig. 6.7a), cold lesions (Fig. 6.7b) and the edge of the background
(Fig. 6.7c) were plotted as a function of the iteration number. Each point represents
one iteration. The ideal rotator method with Ap,pol yielded the least pronounced
artifacts. All ringing indices of the three methods showed a tendency to converge
upon each other, except for the maximum of the edge of the background for the
Gaussian rotator method.

The CRC of the 20th iteration are depicted in Fig. 6.7d. The Gaussian rotator
method with Ap,v yielded the highest CRC.

6.4.2 Simulation Studies

Slices of reconstruction examples at the 20th iteration (OS-EM, 22 subsets) for the
high count study and the low count study are illustrated in Fig. 6.8. The top row is
of the high count study and the bottom row is of the low count study. The profiles
extracted through hot lesions were depicted in Fig. 6.9 for the high count study (the
top row) and the low count study (the bottom row). For reconstruction examples
of the high count study (Fig. 6.8a, 6.8c and 6.8e), it can be seen that the ringing
artifacts at cold spheres became unnoticeable. The rest artifacts remained present
but became irregular in shape, as indicated by white arrows (Fig. 6.8a, 6.8c and
6.8e). The profiles indicate that the ringing artifacts at the edge of the background
is negligible compared to noise although visible (Fig. 6.9a and 6.9b). From the
reconstruction examples of the low count study (Fig. 6.8b, 6.8d and 6.8f), it can
be seen that the ringing artifacts become invisible except for the largest hot lesion.
The ringing artifacts at the edge remains visible but can be discarded as well for
both the high count and the low count study, as indicated by the profiles in Fig. 6.9c
and 6.9d.

The results of the artifacts analysis are summarized in Fig. 6.10 for the high
count and the low count study. The ringing indices for hot lesions (Fig. 6.10a and
6.10c) and the edge of the background (Fig. 6.10b and 6.10d) were plotted as a
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(a) (b)

(c)

Figure 6.5: Artifact illustration with noiseless data (a) Gaussian rotator method with SM
Ap,v . (b) Gaussian rotator method with SM Ag,v . (c) Ideal rotator method with SM Ap,pol.
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Figure 6.6: Artifact illustration with noiseless data. (a) and (b) Profiles extracted through
hot lesions.
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Figure 6.7: Artifact evaluation indices for different methods, PV: Gaussian rotator method
with SM Ap,v , GV: Gaussian rotator method SM Ag,v , PPol: ideal rotator method with
SM Ap,pol. (a) Ringing indices for hot lesions. (b) Ringing indices for cold lesions. (c)
Ringing indices for the edge of the background. (d) Contrast recovery at 20th iteration.
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Figure 6.7: Artifact evaluation indices for different methods, PV: Gaussian rotator method
with SM Ap,v , GV: Gaussian rotator method SM Ag,v , PPol: ideal rotator method with
SM Ap,pol. (a) Ringing indices for hot lesions. (b) Ringing indices for cold lesions. (c)
Ringing indices for the edge of the background. (d) Contrast recovery at 20th iteration.
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(a) (b)

(c) (d)

Figure 6.8: Artifact depiction in simulation data. Top row is of the high count study and
bottom row is of the low count study. (a) Gaussian rotator method with SM Ap,v of the

high count study. (b) Gaussian rotator method with SM Ag,v of the high count study. (c)
Ideal rotator method with SM Ap,pol of the hight count study. (d) Gaussian rotator method
with SM Ap,v of the low count study. (e) Gaussian rotator method with SM Ag,v of the low

count study. (f) Ideal rotator method with SM Ap,pol of the low count study.
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(e) (f)

Figure 6.8: Artifact depiction in simulation data. Top row is of the high count study and
bottom row is of the low count study. (a) Gaussian rotator method with SM Ap,v of the

high count study. (b) Gaussian rotator method with SM Ag,v of the high count study. (c)
Ideal rotator method with SM Ap,pol of the hight count study. (d) Gaussian rotator method
with SM Ap,v of the low count study. (e) Gaussian rotator method with SM Ag,v of the low

count study. (f) Ideal rotator method with SM Ap,pol of the low count study.

function of the iteration number. Each point represents one iteration. The ringing
indices of the high count study and the low count study display similar amplitude.
The three methods displayed artifact behaviors with the iteration number.

The CRCs of different methods at the 10th iteration were depicted in Fig. 6.11a
for the high count study and Fig. 6.11b for the low count study. The noises of
different methods are 19% (Gaussian rotator with Ap,v), 21% (Gaussian rotator
with Ag,v) and 20% (Ideal rotator with Ap,pol) and 27% for the multi-ray Siddon
method at this iteration in the high count study. The Gaussian rotator method with
Ap,v showed the highest CRC and the lowest noise. The noises of different meth-
ods are 34% (Gaussian rotator with Ap,v), 38% (Gaussian rotator with Ag,v) and
35% (Ideal rotator with Ap,pol) and 46% for the multi-ray Siddon method at this
iteration in the high count study. The Gaussian rotator method with Ap,v showed
the highest CRC and the lowest noise. Monte Carlo-based methods considerably
out-performed the standard OS-EM in terms of contrast noise trade-offs in both
studies.

6.4.3 Experimental Studies

Slices of reconstruction examples at the 5th iteration (OS-EM, 22 subsets) are
displayed in Fig. 6.12. The images of the Gaussian rotator method with SM Ap,v

and SM Ag,v are shown in Fig. 6.12a and Fig. 6.12b. The image of the ideal
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Figure 6.9: Profile extracted from hot lesions on simulation data. Top row is of high count
and bottom row is of low count. (a) and (b) show profiles extracted through hot lesions in
the high count study. (c) and (d) depicted profiles extracted through hot lesions in the high

count study.
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Figure 6.9: Profile extracted from hot lesions on simulation data. Top row is of high count
and bottom row is of low count. (a) and (b) show profiles extracted through hot lesions in
the high count study. (c) and (d) depicted profiles extracted through hot lesions in the high

count study.
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Figure 6.10: Artifact evaluation indices for different methods (I), PV: Gaussian rotator
method with SM Ap,v , GV: Gaussian rotator method SM Ag,v , PPol: ideal rotator method
with SM Ap,pol, Sid: the standard OS-EM. Top row is of the high count study. Bottom row

is of the low count study. (a) Ringing indices for hot lesions in the high count study. (b)
Ringing indices for the edge of the background in the high count study. (c) Ringing indices
for hot lesions in the low count study. (d) Ringing indices for the edge of the background in

the low count study.
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Figure 6.10: Artifact evaluation indices for different methods (I), PV: Gaussian rotator
method with SM Ap,v , GV: Gaussian rotator method SM Ag,v , PPol: ideal rotator method
with SM Ap,pol, Sid: the standard OS-EM. Top row is of the high count study. Bottom row

is of the low count study. (a) Ringing indices for hot lesions in the high count study. (b)
Ringing indices for the edge of the background in the high count study. (c) Ringing indices
for hot lesions in the low count study. (d) Ringing indices for the edge of the background in

the low count study.
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Figure 6.11: Artifact evaluation indices for different methods (II), PV: Gaussian rotator
method with SM Ap,v , GV: Gaussian rotator method SM Ag,v , PPol: ideal rotator method
with SM Ap,pol, Sid: the standard OS-EM. Top row is of the high count study. Bottom row

is of the low count study. (a) Contrast recovery at the 20th iteration in the high count
study. (b) Contrast recovery at the 20th iteration in the low count study.
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rotator method is depicted in Fig. 6.12c. The profiles extracted through the largest
and smallest hot lesions are depicted in Fig. 6.12d. Only ringing artifacts along the
edge and the 19.79 mm hot sphere remain visible. The profiles indicate that the
ringing artifacts at the edge of the background are negligible compared to noise.

(a) (b)

(c)

Figure 6.12: Artifact depiction in acquired data (a) Gaussian rotator method with SM
Ap,v . (b) Gaussian rotator method SM Ag,v . (c) Ideal rotator method with SM Ap,pol. (d)

Profiles extracted through the largest and smallest hot lesions..

The results of the artifact analysis are summarized in Fig. 6.13. The ringing
indices for hot lesions and the edge of the background were plotted as a function of
the iteration number (till the 20th iteration), as shown in Fig. 6.13a and Fig. 6.13b.
Each point represents one iteration.

The CRCs of different methods at the 5th iteration are depicted in Fig. 6.13c.
The CVs of different methods are 32% (Gaussian rotator with Ap,v), 35% (Gaus-
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Figure 6.12: Artifact depiction in acquired data (a) Gaussian rotator method with SM
Ap,v . (b) Gaussian rotator method SM Ag,v . (c) Ideal rotator method with SM Ap,pol. (d)

Profiles extracted through the largest and smallest hot lesions..
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sian rotator with Ag,v) and 33% (Ideal rotator with Ap,pol) and 46% for the multi-
ray Siddon method. Monte Carlo-based methods considerably outperformed the
standard OS-EM in terms of contrast noise trade-offs. The Gaussian rotator method
with Ap,v showed the highest CRC and the lowest CV.

6.5 Discussion and future work

The polar-pixel images were converted to voxel images in the CRC study. A slight
blurring may exist in the Polar-to-Cartesian conversion, leading to a slightly under-
estimated contrast recovery in the baseline method. This under-estimation was
discarded in this chapter because this error was systematic and marginal.

Ringing artifacts were detected in the baseline method (the ideal rotator method),
which is due to the Gibbs phenomenon [Reader et al., 2003] and is inevitable [Sny-
der et al., 1987,Qi et al., 1998,Reader et al., 2003,Panin et al., 2006a]. For this rea-
son, an under-compensated system model was suggested to avoid artifacts [Reader
et al., 2003, Sureau et al., 2008].

The noiseless study revealed that the pronounced bias errors at sharp image
intensity transitions are caused by ringing artifacts. In addition, the noiseless data
study suggested that other origins of artifacts exist in the Gaussian rotator method.
More pronounced ringing artifacts were observed in Gaussian rotator reconstruc-
tions as compared with the baseline method. This phenomenon indicated that the
ringing artifacts in this method were not only due to Gibbs effects but also due to
the blurring rotator that further blurred the system response kernels. Similar results
have been reported in image space resolution modeling [Reader et al., 2003,Sureau
et al., 2008]. The Ap,v reconstructions showed more pronounced artifacts com-
pared to the Ag,v ones. This result indicates that blurrier system responses lead to
more pronounced artifacts because Ap,v is blurrier than Ag,v due to the modeling
of the positron range and acolinearity.

The effect of noise was investigated by studying the simulation data. In the
presence of noise, the artifacts of the Gaussian rotator method become visually less
pronounced or even undetectable because the integrity of the ringing is damaged by
noise, i.e., the ringing at cold lesions in the high count study and the hot lesions in
the low count study (Fig. 6.8). The high count study and low count study show that
the nosier the data are, the less pronounced the artifacts appear. This phenomenon
was previously reported by Panin et al. [Panin et al., 2006a]. The quantitative
study shows that the ringing indices remain the same, but are insignificant for
quantitative studies because the means of artifact ROIs are greater than the means
of the corresponding lesions. These findings indicate that the noise artifacts are
the dominant artifacts in a clinical PET scan.

Correlation between the types of artifacts and the lesions size was observed.
For large hot lesions (e.g. the 15.43 mm hot lesion), ringing artifacts were visible,
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Figure 6.13: Artifact evaluation indices for different methods, PV: Gaussian rotator
method with SM Ap,v , GV: Gaussian rotator method SM Ag,v , PPol: ideal rotator method
with SM Ap,pol, Sid: the standard OS-EM. (a) Ringing indices for hot lesions. (b) Ringing

indices for the edge of the background. (c) Contrast recovery at the 5th iteration.
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Figure 6.13: Artifact evaluation indices for different methods, PV: Gaussian rotator
method with SM Ap,v , GV: Gaussian rotator method SM Ag,v , PPol: ideal rotator method
with SM Ap,pol, Sid: the standard OS-EM. (a) Ringing indices for hot lesions. (b) Ringing

indices for the edge of the background. (c) Contrast recovery at the 5th iteration.
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but were less pronounced than noise artifacts. Virtually no artifacts other than
taper artifacts were detected in small lesions. This finding indicates that the partial
volume effects dominate for small lesions, while noise artifacts dominate for large
lesions. Cold lesions showed no pronounced artifacts.

The noiseless and Monte Carlo studies showed that “higher” CRC can be
achieved by the Gaussian rotator method as compared to the baseline method, par-
ticularly for small hot spheres. These improvements are spurious and are caused by
the bias error (overshoot and undershoot) induced by the ringing artifacts. How-
ever, the CRC cannot reach 100% due to partial volume effects, particularly for
small lesions and the limited over-compensation of resolution loss in our study.
This phenomenon indicates that the partial volume effects remain important even
with resolution compensation. The artifacts are also tolerable due to the predom-
inant presence of noise in PET. This bias error also induces artificially improved
resolution when an over-estimated system response kernel is used [Fessler, 2010].
The slightly improved contrast for small spheres may increase detection of small
lesions, which is very important in improving the patient survival rate [Kim et al.,
2005]. Moderate ringing in large lesions might facilitate tumor volume delin-
eation [Mitchell and Netravali, 1988]; improved contrast recovery yields slightly
better quantification. These improvements are beneficial for treatment planning or
treatment response monitoring in radiation oncology [Wiant et al., 2010]. How-
ever, this improvement might cause problems in absolute quantification, e.g. over-
estimating the SUV, because the over-estimation of the width of the response ker-
nel is difficult to quantify. This issue becomes more complicated in practice due to
simplifications in resolution modeling and the fact that the true detector response
kernel is never known.

In the validation using measured data, we observed less pronounced artifacts
(especially for ringing at the 15.43 mm hot lesion and along the edge of the back-
ground), as compared to the high count Monte Carlo study. Noise contributes to
this improvement because the noise equivalent count is about 58 million trues.
This explanation is consistent with the low count Monte Carlo study. Non-perfect
correction techniques might contribute this improvement because the introduced
noise and bias may disguise these artifacts. This improvement could be attributed
to the fact that blurring of system responses was under-estimated by the Monte
Carlo simulator due to factors that are not included in the scanner model, namely
pulse pile-up, optical photon spreading in crystal and light guide and the Anger
logic positioning determination. In physical world, the system responses are even
blurrier in a warm background than in the air and may vary with different inten-
sities of the background. Our scanner model is not validated against the physical
scanner yet, which complicates the analysis. However, the low count study sug-
gested that these factors are minor.

We employed the 2-mm FWHM Gaussian rotator to compensate for the res-
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olution loss caused by the positron range and acolinearity in the Gaussian rotator
method using SM Ag,v . The result indicated that the blurring of the Gaussian
rotator can be employed to compensate for resolution loss in projection space.
Over-compensation of the resolution loss was detected because the method em-
ploying Ag,v yielded more pronounced ringing artifacts than with the baseline
method. This result did not agree with the theoretical analysis described in sec-
tion 6.2.2, which predicted more blurring than the 2 mm FWHM Gaussian kernel
for the size of the imaged phantom (Fig. 6.2c). We investigated this issue by
simulating the point spread function (PSF) with only the positron range and aco-
linearity for the target scanner. The FWHM of the PSF is considerably smaller
than 2 mm when OS-EM is used to reconstruct the projection data. This finding
explains this discrepancy because the resolution kernel in image space modeling
is algorithm-dependent [Cloquet et al., 2009]. Under certain conditions, i.e. lack
of computational resources, the Gaussian rotator method with SM Ag,v could be
a better choice. The SM simulation efficiency was significantly improved because
time consuming positron tracking was avoided.

Our method retained the simplicity of using voxels while enjoying the same
symmetry handling properties of a cylindrical scanner as a radial symmetry object
parameterization, namely, polar pixels. Consequently, measurement-derived sys-
tem matrix could be directly incorporated in our method because, to the best of our
knowledge, all established methods using measured system responses were imple-
mented on the voxel discretization [Alessio et al., 2005,Panin et al., 2006a,Tohme
and Qi, 2009]. In addition, the rotator-based method would be preferred when
an accurate system response is impractical by either simulation or measurement.
For instance, measuring system responses for short-lived isotopes, namely 82Rb
and 15O, is not feasible in practice as a long-lived positron emitter with proper
positron range does not exist. The “missing” part could be compensated by ad-
justing the blurring of the Gaussian rotator at no cost on symmetry handling. This
hypothesis will be investigated in the future. Otherwise, the resolution loss is
over-compensated by the rotator. The consequences of such over-compensation
in resolution loss could require more studies with clinical data. In addition, the
techniques on improvement of the simulation accuracy will be investigated and
the improved scanner model will be validated against the physical scanner in the
future.

6.6 Conclusion and original contributions

We found that the ringing artifacts were composed of the Gibbs ringing and the
ringing caused by the over-compensation in resolution modeling. Image quality
improvements in terms of contrast noise trade-offs were detected by using an over-
blurred system response kernel, i.e. a wider kernel. The artifacts were tolerable in
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practice with a moderately over-compensated system model. Our study suggested
better quantitative results can be achieved with the moderately over-compensated
system model, at least when the locations of the lesions are known. This finding
is significant for treatment planning or treatment response monitoring in radiation
oncology.

In this work, we investigated the origins of the ringing artifacts in the rotator-
based algorithm and characterized the artifacts quantitatively. This study revealed
that the ringing artifacts can be caused by an over-blurred system response kernel
in addition to the Gibbs effects. It also suggested that the bias caused by the ringing
artifacts is invisible for emission tomography. Most important of all, the bias of
the ringing artifacts enhanced the image contrast, particularly for small hot lesions.
This finding is significant for treatment planning or treatment response monitoring
in radiation oncology where the locations of the lesions are already known. This
study leads to one A1 journal publication [Zhang et al., 2010d] and book chapter
in preparation.





Chapter 7

General Conclusion

This chapter contains a summary of the principle contribution of this work. In
addition, some interesting topics are listed for future study.

7.1 Main conclusions

This work discusses the resolution modeling of PET, particularly system matrix
generated with Monte Carlo or measured point sources. We focused on several
aspects of this problem:

• Fast Monte Carlo simulation of PET (various particular VRTs for resolution
modeling).

• The choice of basis functions and reconstruction algorithms, e.g. their sym-
metry properties

• Ringing artifacts occurring at sharp image intensity transitions during recon-
struction with an accurate system model

• PSF modeling using measured point source data

These aspects are not mutually exclusive. Rather they are closely linked. Due
to the dimensions of the problem, a fast Monte Carlo simulator is necessary. How-
ever even dedicated Monte Carlo simulators are still too time-consuming for the
resolution model of a state-of-the-art whole-body PET scanner. Usually, this prob-
lem is solved by employing the symmetries of the PET scanner to reduce the redun-
dancy of the system model. The number of symmetries that can be used depends on
the basis functions and reconstruction algorithms. In a radially symmetric object
parameterization, more symmetry can be used compared to a Cartesian discretiza-
tion. However, a rotator may use radial symmetries in a Cartesian discretization
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without using a radially symmetric object parameterization. A potential problem
with this approach is that a rotator may alter the system model. We found that the
rotator made the ringing artifacts more pronounced in an accurate system model.
For a rotator with moderate and predictable blurring, the contrast is enhanced with
ringing artifacts that are less pronounced than the noise artifacts. To exploit this
effect, an experimental data-based PSF model is the best candidate. Thus, we
initially investigated the feasibility of a measured PSF model in the rotator-based
algorithm.

The simulation efficiency for resolution modeling in PET can be signifi-
cantly improved with a set of simple VRTs.
In chapter 3, we described a set of simple VRTs for PET simulation, particularly
for resolution modeling. A system model must be independent of object-dependent
factors, variation in the crystal alignment, uniformity, electronics properties, and
different acquisition parameters. With these constraints, we assumed that the sim-
ulation is time-independent and object-independent. A set of VRTs (such as po-
lar angle biasing, hit-testing, positron history reuse, forced passing energy win-
dow, and fictitious transport in crystal array) were implemented using egs pet.
The transport parameters were optimized for the specific task. Combining all the
above techniques, the simulation efficiency was improved fifteen-fold compared to
an analog simulation without system symmetries. This speedup allows resolution
modeling for a state-of-the-art PET scanner with a smaller cluster.

Rotationally symmetrical basis functions are advantageous for reducing
redundancies in a system model of a cylindrical PET scanner
In chapter 4 and section 6.2.1 of chapter 6, we investigated different basis functions
and applied them to a Monte Carlo-based system model. These basis functions are
based on Cartesian discretization (cubic voxels) and polar-pixels. The polar-pixels
are rotationally symmetric. Thus, the inherent rotational symmetries in a cylindri-
cal PET scanner can be used without additional techniques. And the redundancy
of a system model can be reduced by storing the base-symmetry set. The polar-
pixels may be problematic for a perfectly cylindrical PET scanner, because the
over-segmenting the transverse FOV may lead to very small pixels at the center of
the FOV. Thus, the voxel-based or voxel-grid-based approaches remains an inter-
esting topic in resolution modeling.

A proper rotator helps to achieve rotational symmetries in a Cartesian
discretization
In contrast to a rotationally symmetric basis function, limited symmetries can be
utilized in a Cartesian discretization (i.e. the voxels). In chapter 4, we demon-
strated that the Cartesian object parameterization shares the same rotational sym-
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metries as the polar-pixels and the strip blobs. This approach is more flexible than
the other two approaches. For example, this approach can use all rotational sym-
metries, the FOV is segmented by non-overlapping voxels, and the voxels facilitate
an experimentally derived system model.

Perfect rotators can be implemented with the rotationally symmetrical ba-
sis functions.
The rotational symmetry of the polar-pixels implies that the image represented
by the polar-pixels can be perfectly rotated to certain quantized angular positions
where the rotational symmetry occurs. In chapter 6, we demonstrated one such
polar-pixel implementation and observed considerably fewer ringing artifacts. An
ideal rotator can be implemented with any object parameterization with rotational
symmetry.

In resolution modeling, the blurring (in either projection or image space)
estimated by an algorithm is better to use in the same algorithm
In chapter 6, we compared the analytical modeling of the positron range and aco-
linearity to a full Monte Carlo-based model using an ideal rotator. We found that
the algorithm using the analytical model yielded a blurrier system response kernel
than the Monte Carlo model, where the blurring kernel was estimated by OS-EM.
Our simulation showed that the blurring of the positron range and acolinearity
is lower than that reported in literature when ML-EM was employed. Thus, the
blurring kernel of the positron range and acolinearity is best estimated by an ML-
EM/OS-EM algorithm for a perfectly matched blurring kernel if the blurring kernel
must be applied to an ML-EM/OS-EM algorithm. The reason is that the blurring is
highly algorithm-dependent. This conclusion is consistent with other studies using
resolution modeling in the image space.

The ringing artifacts in our studies are mainly caused by the over-blurred
system response kernels and the Gibbs effects
Although a rotator makes the rotational symmetries available in a Cartesian dis-
cretization, ringing artifacts are a drawback. In chapter 6, we characterized the
ringing artifacts that occurred in our rotator-based reconstruction using an accu-
rate system model. An ideal rotator-based approach was implemented as the gold
standard. We found that the ideal rotator-based approach also showed slight ring-
ing artifacts at sharp transitions of the image intensity. According to the definition,
these ringing artifacts belong to the well-known family of Gibbs effects. The blur-
ring rotator-based approach exhibited more pronounced ringing artifacts than those
of the ideal rotator-based approach. This finding indicates that the ringing in our
reconstruction is mainly caused by the rotator, which further over-blurred the sys-
tem response kernels.
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The azimuthal independence assumption is valid for the target PET scan-
ner: Philips Gemini GS and her sibling models
In our studies in chapter 5, we found that all 2-D slices were properly recon-
structed. Azimuthal independence is a very important feature in resolution model-
ing because all of the rotational symmetries can be used in the system model when
this assumption holds.

Axial blurring is a minor effect, but remains attractive in resolution com-
pensation for PET
In chapter 5, our studies revealed the importance of modeling axial blurring. In
axial modeling, the axial resolution has been significantly improved. The contrast
noise trade-off study showed that both the contrast recovery and noise reduction
were not significantly improved. However, the improvement in the smaller lesions
was greater than the larger lesions. This finding suggests that axial blurring is a
minor effect in terms of contrast noise trade-offs but remains attractive because the
contrast recovery of small lesions has been improved with this modeling.

Resolution compensation for fully 3-D PET reconstruction is practical
Employing resolution compensation in fully 3-D reconstruction of human PET are
hindered by two challenges. The first challenge is the expensive computational
cost of generating data for resolution modeling. This issue has been addressed by
VRTs and a light-weight Monte Carlo simulator or by measuring PSFs on a sparse
grid. For both approaches, inherent symmetries, particularly the radial symmetries,
in a scanner can be utilized to reduce the storage requirement of a system model,
which is the second challenge. In addition, parameterization and factorized matrix
techniques can be used to further downsize the storage requirement of the system
model. In chapter 4 and 5, we have demonstrated that it is practical to apply
resolution compensation for image reconstruction of fully 3-D, whole-body human
PET scanners. Particularly, in chapter 5, we have achieved to a system model of
250 Mb with considerable image quality improvement.

Resolution compensation improves reconstruction considerably
In our studies, we observed that the resolution and contrast noise trade-offs have
been improved significantly. In the reconstruction with resolution compensation,
the FWHM becomes approximately half of the FWHM without resolution model-
ing for a point source at the center of the FOV. With resolution compensation, the
spatial resolution also becomes uniform across the entire FOV. For an extended
source study, the contrast recovery for hot and cold lesions have been significantly
improved compared to a reconstruction without resolution compensation. In ad-
dition, the noise has been reduced considerably. Thus, resolution modeling also
improves the SNR, which indicates that it may reduce the patient scan time similar
to what TOF does.
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7.2 Future work
For Monte Carlo simulation, it would be interesting to investigate some advanced
VRTs (e.g. using a pre-commutated or experimentally measured PDF to further
improve the simulation efficiency). For the positron physics, a “condenser” history
technique could be used by building spectra of the positron ranges of different
materials. For the detector physics, the detector responses could be pre-calculated
or measured for the photons with the energy of interest.

For the Monte Carlo-based resolution modeling techniques, it would be inter-
esting to implement an ideal rotator for other rotationally symmetric basis func-
tions such as the generalized natural pixels and strip blobs. Additionally, as sug-
gested by the preliminary results of the experiment-based resolution modeling, the
Monte Carlo-based approach can avoid modeling the detector block effects to fur-
ther improve the simulation efficiency and reduce the redundancy in the system
model if the readout logic can be accurately simulated for the Philips Gemini GS
PET scanner.

For the experiment-based resolution modeling, our approach allows different
effects to be added progressively and more accurate PSF modeling. These effects
include solid angle effect, axially variant radial blurring, axial blurring, and some
image space effects (e.g. the positron range of 82Rb). It would be interesting to
compare the effects of different factors on the image quality and derive an optimal
system model with a balanced computational complexity and image quality. In
addition, it would be also interesting to include an image space PSF modeling
technqiues in the investigation of an optimal system model.

For reconstruction with resolution compensation, it is also interesting to in-
cluding some clinical studies to evaluate our method, particularly to investigate
the effects of the blurring of the rotator. More clinical relevent FOMs may be
used to evaluate the effects of over-blurring. The ideal rotator method can also be
used as the gold standard. Moreover, employing GP-GPUs to speed up both the
reconstruction and Monte Carlo simulation would also be very interesting.

In the future, a patient-specific system model would be preferred to maximize
the physical performance of an existing scanner. The object-dependent factors,
namely, positron range, object scattering and attenuation can be modeled by a
Monte Carlo simulator. The detector response part could use the experimental
resolution modeling technique. The computational cost and storage requirement
of the patient-specific system model could be considerably reduced through these
techniques.
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