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Summary

This PhD dissertation involves the application of artificial intelligence
to advance medical imaging. Driven by the ever increasing amount
of computational power and generated digital data, Al is employed to
develop voice assistants, computer vision, self-driving cars, recommenda-
tion systems etc. These systems already achieve incredible performances
that match or even outperform humans and are finding their way into
our daily lives. Also in healthcare the need and potential of Al arises.
Electronic health records contain a wealth of information that can be
used towards personalised and precision medicine. Due to the immense
quantity and complexity of this data, especially in medical imaging, and
the limited available workforce, it is not possible to fully exploit all
this information. For this reason, Al algorithms are being developed
to improve the efficiency of the radiological workflow.

In this work we focus on two use cases of Al in medical imaging. The first
use case is situated at the acquisition stage where we use neural networks
to improve the spatial resolution of positron emission tomography (PET)
detectors and consequently PET scanners. The second application is
located at the very end of the imaging pipeline, on the analysis of
pre-therapy magnetic resonance images (MRI) for computer-aided brain
tumour segmentation and diagnosis.

PET detector calibration

The purpose of a detector in positron emission tomography is to stop
incoming gamma rays and determine their energy, interaction position
and arrival time inside the detector. Current clinical PET scanners
use pixelated detector designs consisting of long and thin scintillation
crystals. A downside of this design is a spatial resolution that is limited to
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the pixel size. When decreasing pixel size to improve spatial resolution,
this results in increased dead space and reduced sensitivity. A monolithic
design, consisting of a large monolithic crystal connected to a pixelated
photodetector array, can prove to be beneficial in terms of sensitivity and
spatial, timing and energy resolution. Moreover, monolithic detectors
allow intrinsic depth-of-interaction encoding resulting in accurate 3D
positioning of the interaction inside the crystal. Monolithic PET de-
tectors do, however, require lengthy calibration procedures and powerful
positioning algorithms to determine the exact position of interaction. To
train these algorithms, calibration data needs to be acquired by irradi-
ating the detector with a source beam at pre-defined discrete positions.
We investigated the use of artificial neural networks to estimate the 3D
gamma interaction position from the light response measured by the
photodetector array in a monolithic PET detector.

In a first study, simulation data was used to assess the optimal net-
work complexity, amount of training data and training procedure. The
ultimate achievable spatial resolution was investigated and compared
with an established positioning algorithm called mean nearest neighbour.
Optimal performance was achieved with a network containing three hid-
den layers of 256 neurons trained on 1000 events per training grid po-
sition. Results showed that a very high spatial resolution was obtained
of around 0.50 mm FWHM across the entire detector. Comparison with
mean nearest neighbour positioning demonstrated superior performance
both in spatial resolution as in computational efficiency. When training
neural networks, however, potential overfitting on the discrete training
positions should be carefully evaluated through the use of validation data
acquired at intermediate positions. Network complexity should be tuned
to the calibration setup and we showed that by stopping the training
process when performance on intermediate data stops improving, strong
overfitting and thus non-uniform positioning can be prevented.

Furthermore, we investigated the potential degrading effect of intra-
crystal Compton scatter and calibration source beam width on the achiev-
able spatial resolution with neural networks.

Around 60% of the arriving gamma rays first undergo one or multiple
Compton interactions inside the LYSO crystal before final photoelectric
absorption. Estimation of the required first interaction position from
the measured electronic signal is difficult as often only a small amount
of energy is released when Compton scattering. Evaluation of spatial
resolution with and without Compton scattered events revealed that
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Compton scatter has a significant degrading effect on the overall po-
sitioning accuracy (mean 3D positioning error of 2.29 mm versus 0.49
mm). However, the positioning error depends on the scatter distance
and only a small fraction of events scatters very far (10% more than
8 mm). A network specifically trained to position Compton scattered
events did not result in an improvement in performance. We therefore
investigated whether networks can identify far scattered events and could
help to improve positioning accuracy. To this end, a network was trained
to predict 3D scatter distance. This network could be used to filter out
far scattered events in order to improve spatial resolution with a tradeoft
in sensitivity which can be justified in certain applications. Considering
the limited practicality of training a scatter prediction network in an
experimental setup (no available labels), a different approach was inves-
tigated using a Bayesian neural network. This method allows to train
one network to predict both the position as the positioning uncertainty
related to Compton scatter without requiring additional information on
Compton scattering. When filtering out 10% most uncertain events, the
mean positioning error could be reduced from 1.54 mm to 1.23 mm.

A calibration source with a certain beam width can introduce differences
between the ground truth position label and the actual first interaction
position. These errors in the ground truth data could influence the
training process of neural networks. Comparison between a network
trained on data acquired with a perfectly narrow beam versus a calibra-
tion source with a realistic beam width of 0.6 mm showed no significant
difference in achieved intrinsic spatial resolution. The beam diameter
does, however, influence the measured spatial resolution (0.74 mm versus
0.52 mm FWHM) which should be taken into account when evaluating
and comparing spatial resolution of different PET detectors.

The developed neural networks and training procedure were also
evaluated on an experimental setup. Similar to the results on simulation
data, high spatial resolutions (around 1 mm FWHM in detector centre)
could be achieved with neural networks, superior to the mean nearest
neighbour positioning algorithm (1.14 mm FWHM in centre region).
Neural networks are trained on individual events, directly learn to infer
the interaction position from the measured light distribution and produce
continuous coordinate outputs, not restricted to a discrete calibration
grid. This leads to an improved positioning accuracy of Compton scat-
tered events and less degradation near the detector edges. Improved
spatial resolution of PET detectors with neural networks can help reach
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the physical limits of PET and a better detection of small tumours.
Moreover, when achieving better spatial resolutions than required, there
is room to trade resolution for other parameters, e.g.: less readout
channels, inexpensive materials with less light output, larger detector
thickness etc. Lastly, positioning events with the network is fast and
parallelisable, especially when using powerful hardware like GPUs.

Computer-aided primary brain tumour diagnosis

The second part of this work focuses on the application of Al in medical
image analysis, specifically for primary brain tumour segmentation and
diagnosis. Primary brain tumours are a complex type of neoplasms that
originate in the brain and are relatively rare with an incidence rate
of 10.8 people per 100,000 per year. They are, however, a significant
cause of cancer morbidity and mortality, especially in children and young
adults where they are the leading cause of cancer deaths. The most
common types of PBTs are glioma and meningioma. In this work,
we focus on the characterisation of glioma. In the most recent WHO
classification guidelines, increased emphasis is placed on the integration
of molecular markers next to histopathological analysis. Integration of
genotypic parameters for tumour classification intends to add objectiv-
ity and yield more narrowly defined diagnostic entities with respect to
prognosis and optimal therapy. Three markers play a central role in
the classification of glioma: histological grade, isocitrate dehydrogenase
(IDH) 1 and/or 2 mutation and co-deletion of chromosome arms 1p and
19q. Determination of these markers requires tumour samples obtained
through biopsy or resection. These invasive procedures involve risks and
are not always possible to perform depending on tumour location and
accessibility, the patient’s clinical condition or when the patient refuses
a surgical procedure. Therefore, non-invasive assessment of clinically rel-
evant markers based on medical images can aid in characterising glioma
and guide therapy and surgery planning, especially when extraction of
tumour tissue is not possible or genetic testing not available. It has been
shown that MR tumour phenotype is correlated with genetic markers and
malignancy. However, visual interpretation and prediction of tumour
properties remains very challenging and inaccurate. To increase the
efficiency and accuracy of non-invasive glioma characterisation, Al algo-
rithms are developed. Many existing approaches use manually obtained
tumour segmentations which introduces subjectivity and variability in
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performance. Moreover, they are often trained and evaluated on data
from a small dataset acquired at one institution, limiting their gener-
alisability to data from different centres. The goal of this work is to
develop an accurate, robust and fully automatic pipeline to segment and
characterise glioma using deep convolutional neural networks.

In a first study, we investigated the task of non-invasively distinguish-
ing high-grade glioblastoma (GBM) from lower-grade glioma (LGG).
The BraTS 2017 dataset consisting of 210 GBM and 75 LGG cases
was used for this study. For every patient, four MRI sequences (T1,
T1ce, T2 and FLAIR) were provided with manual tumour segmentation
labels. Predictive performance of hand-engineered radiomics features
that describe tumour shape, texture and intensity was compared with
features extracted using a pre-trained CNN. Moreover, we compared
the performance of pre-trained CNN features extracted from different
input scales: one or multiple slices and with or without cropping to the
tumour ROI. Classification of the features was done using a Random
Forest classifier. Best performance was achieved with the radiomics
features extracted from manually segmented tumour volumes (AUC of
96%). Features from a pre-trained CNN, on the other hand, had a high
predictive value as well and allowed to design a fast and automatic binary
grading system reaching an AUC score of 91%. Best performance was
achieved when cropping the MRI to the tumour ROI (AUC of 94%).

Since manual tumour segmentation is time- and labour-intensive and
prone to inter- and intra-observer variability, we developed an automatic
tumour delineation network based on the U-Net architecture. The net-
work was trained using the BraTS 2019 training dataset (335 patients)
and evaluated on the BraTS 2019 validation set (125 patients). Accu-
rate delineation of different tumour regions was achieved with average
Dice scores of 90%, 83% and 76% for the total abnormal, tumour core
and enhancing tumour regions respectively. In clinical practice, not all
four input MRI (T1, T1ce, T2 and FLAIR) are always available. We
therefore applied input channel dropout, i.e. randomly excluding input
MRI during training, which we demonstrate to significantly increase
robustness to missing input modalities. These scores match state-of-
the-art results reported in the most recent BraTS challenges and we
believe that the obtained performance is sufficiently high to be useful
in a clinical setting. It can be debated whether further improving the
Dice scores with a few percentages is clinically relevant as they are
evaluated on manual delineations which are also not 100% accurate.
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Objectivity and robustness could be more important when analysing
brain tumour volumes and progression over time. Qualitative evaluation
on independent data acquired at the Ghent University Hospital showed
good generalisation performance.

To train a brain tumour classification network, a large dataset of
628 patients was collected from multiple public databases available on
The Cancer Imaging Archive. The automatic segmentation network was
applied to extract the 3D tumour region of interest from every MRI
sequence. Subsequently, a classification 3D CNN was trained to predict
tumour grade, IDH and 1p/19q co-deletion status. Multi-task learning
was employed to simultaneously predict these three markers and to deal
with missing ground truth labels in the dataset while reducing the risk of
overfitting. On a test dataset of 100 patients, not used during training,
the network achieved AUC scores of 93% for WHO grade, 94% for
IDH mutation and 82% for 1p/19q co-deletion prediction. We addition-
ally evaluated the classification performance on an entirely independent
dataset of 110 patients retrospectively acquired at the Ghent University
Hospital. On this dataset, AUC scores were reported of 94%, 86% and
87% for the three tasks respectively.

The above two-stage approach can have some downsides as the clas-
sification network only operates on the tumour region of interest which
excludes potentially relevant information on location and surrounding
tissue. Moreover, possible errors in the prior segmentation step could also
influence the subsequent classification performance. As an alternative,
we developed a network that performs simultaneous segmentation and
classification based on the full brain MRI. The segmentation U-Net was
extended with a classification branch and called Y-Net. Through the use
of multi-task learning, techniques to reduce GPU memory consumption
and appropriate patch extraction, one network could be trained on the
large multi-institutional and heterogeneous database containing many
cases with missing labels. A similar segmentation performance was
achieved with average Dice scores of 89%, 84% and 75% for the whole
tumour, tumour core and enhancing tumour regions respectively. In
terms of classification performance, WHO grade could be predicted with
98%, IDH mutation with 96% and 1p/19q co-deletion with 87% AUC on
the TCIA test dataset. On the independent GUH test data, the AUC
scores were 96%, 83% and 90%. Classification performance is slightly
higher than with the two-stage approach. This is possibly because the
entire input MRI is now processed and the addition of the segmentation
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task could provide additional regularisation to the training process.
Finally, insights into the network’s visual knowledge and extracted imag-
ing features were obtained using several visualisation techniques. The
feature embeddings of the network were plotted for every brain tumour
case in the dataset after t-SNE feature reduction. This revealed different
clusters of brain tumour cases with similar imaging characteristics such
as ring enhancement, lesion size, frontal lobe location and T2-FLAIR
mismatch. These are indeed known imaging features that are correlated
with these tumour markers. Saliency maps, that visualise where the
network places the most attention in the input MRI to make a cer-
tain prediction, showed that the network indeed looks at the relevant
tumour regions. This allows an additional check to gain confidence in
the network’s predictions. Lastly, a synthetic input was generated that
maximises the output scores for a glioblastoma, IDH wildtype tumour.
Starting from random noise, a ring-enhancing tumour pattern appeared
with a hypo-intense core in the Tlce channel and surrounding hyper-
intense tissue on the T2 channels. This indicates that the network
learned to attribute these features to this tumour type.

In conclusion, we have demonstrated that neural networks can im-
prove the image acquisition process on detector level which eventually
results in better image quality and affects the entire remaining imaging
pipeline. Furthermore, an image analysis application was researched
on primary brain tumour characterisation resulting in non-invasive and
accurate brain tumour segmentation and diagnosis tools. Although chal-
lenges remain regarding standardised datasets and understanding of Al,
both by experts and the general public, we can conclude that AI will
have a profound impact on radiology. It will become and important tool
supporting radiologists to increase efficiency, perform routine tasks and
enable personalised and precision medicine. It will, however, not replace
radiologists as many vital elements to the radiological profession can
never be automated.
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Samenvatting

Deze doctoraatsthesis behandelt de toepassing van artifici¢le intelligentie
(AI) ter bevordering van medische beeldvorming. Gedreven door de
steeds grotere hoeveelheid beschikbare rekenkracht en gegenereerde digi-
tale data, wordt AI gebruikt om slimme assistenten, computervisie, zelf-
rijdende auto’s, aanbevelingssytemen enzovoort te ontwikkelen. Deze
systemen leveren al ongelooflijke prestaties die de mens evenaren of zelfs
overtreffen en vinden hun weg in ons dagelijks leven. Ook in de medische
zorg ontstaat de nood en het potentieel van Al. Elektronische medische
dossiers bevatten een schat aan informatie die kan worden gebruikt voor
gepersonaliseerde en precisie geneeskunde. Door de immense hoeveelheid
en complexiteit van deze data, zeker binnen medische beeldvorming, en
het beperkte aantal experten die deze data kunnen verwerken, is het
niet mogelijk om al deze informatie volledig te benutten. Om deze reden
worden Al algoritmes ontwikkeld die de efficiéntie van de radiologische
workflow kunnen verbeteren.

In dit werk richten we ons op twee toepassingen binnen medische beeld-
vorming. De eerste bevindt zich in de acquisitiefase waar we neurale
netwerken gebruiken om de spatiéle resolutie van positronemissietomo-
grafie (PET) detectoren en dus ook PET scanners te verbeteren. De
tweede toepassing bevindt zich helemaal aan het einde van het beeldvor-
mingsproces, de analyse van pre-therapie magnetische resonantie (MR)
scans voor computer-ondersteunde segmentatie en diagnose van primaire
hersentumoren.

PET detector kalibratie

Het doel van een PET detector is om inkomende gamma stralen te
stoppen en hun energie, interactiepositie en aankomsttijd in de detector
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te bepalen. Huidige klinische PET scanners maken gebruik van geseg-
menteerde detectorontwerpen die bestaan uit lange en dunne kristallen.
Een nadeel van dit ontwerp is dat de spatiéle resolutie beperkt is tot de
kristal grootte. Bij het gebruik van dunnere kristallen om de resolutie
te verhogen, resulteert dit in meer dode ruimte tussen de kristallen en
dus een lagere sensitiviteit. Een monolithisch ontwerp, bestaande uit
een groot monolithisch kristal verbonden met een gesegmenteerde foto-
detector matrix, kan gunstiger zijn op gebied van sensitiviteit en spatiéle,
tijds- en energieresolutie. Bovendien maken monolithische detectoren in-
trinsieke interactiediepte-codering mogelijk, wat 3D-positionering van de
interactie in het kristal toelaat. Monolithische PET detectoren vereisen
echter langdurige kalibratieprocedures en krachtige positioneringsalgorit-
men om de exacte positie van interactie te bepalen. Om deze algoritmen
te trainen, moet kalibratie data worden verkregen door de detector te
bestralen op vooraf gedefinieerde discrete posities. We onderzochten het
gebruik van neurale netwerken om de 3D interactiepositie te schatten
op basis van de lichtrespons gemeten door de fotodetector matrix in een
monolithische PET detector.

In een eerste studie werd simulatiedata gebruikt om de optimale
netwerkcomplexiteit, hoeveelheid training data en trainingsprocedure
te bepalen. De ultiem haalbare spati€le resolutie werd onderzocht en
vergeleken met een gevestigd positioneringsalgoritme genaamd gemid-
delde dichtstbijzijnde buur. De beste performantie werd bereikt met een
netwerk bestaande uit drie verborgen lagen van 256 neuronen, getraind
op 1000 datapunten per kalibratiepositie. De resultaten toonden een
zeer hoge resolutie aan met een halfwaardebreedte van 0.50 mm over de
hele detector. Vergelijking met het gemiddelde dichtste buur algoritme
demonstreerde superieure prestaties met neurale netwerken, zowel in
spatiéle resolutie als in rekenefficiéntie. Bij het trainen van neurale
netwerken moet echter de mogelijke overfitting op de afzonderlijke trai-
ningsposities zorgvuldig worden geévalueerd. Dit kan door het gebruik
van validatiedata die is verkregen op tussenliggende posities. De net-
werkcomplexiteit moet worden afgestemd op de kalibratie-opstelling en
we hebben aangetoond dat door het trainingsproces te stoppen wanneer
de performantie op tussenliggende posities niet meer verbetert, sterke
overfitting en dus niet-uniforme positionering kan worden voorkomen.

Verder onderzochten we het potentieel degraderend effect van intra-
kristallijne Compton-verstrooiing en breedte van de kalibratie straal op
de positioneringsnauwkeurigheid van neurale netwerken.
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Ongeveer 60% van de gammastralen ondergaat eerst een of meerdere
Compton interacties in het LYSO kristal voordat ze definitief worden
geabsorbeerd door middel van foto-elektrische absorptie. Het schat-
ten van de vereiste eerste interactiepositie uit het gemeten signaal is
moeilijk omdat er vaak slechts een kleine hoeveelheid energie vrijkomt
bij Compton-verstrooiing. Evaluatie van spatiéle resolutie met en zon-
der Compton-verstrooide data onthulde dat Compton-verstrooiing een
significant degraderend effect heeft op de positioneringsnauwkeurigheid
(gemiddelde 3D euclidische afstand tot de correcte positie van 2.29 mm
versus 0.49 mm). De afwijking hangt echter sterk af van de verstrooi-
ingsafstand en slechts een klein percentage van de data verstrooit zeer
ver (10% meer dan 8 mm). Een netwerk dat specifiek is getraind om
Compton-verstrooide gebeurtenissen te positioneren leidde niet tot een
verbetering van de resolutie. We hebben daarom onderzocht of net-
werken ver verstrooide gebeurtenissen kunnen identificeren om zo de
performantie te verbeteren. Hiertoe werd een netwerk getraind om de
3D verstrooiingsafstand te voorspellen. Dit netwerk kon worden gebruikt
om ver verstrooide gebeurtenissen uit te filteren en zo de resolutie te
verbeteren met een klein verlies in sensitiviteit wat gewenst kan zijn
in specifieke toepassingen. Gezien de beperkte bruikbaarheid van deze
methode in een experimentele opstelling (geen beschikbare labels over
verstrooiingsafstand) werd een andere aanpak onderzocht met behulp
van een Bayesiaans neuraal netwerk. Deze methode maakt het mogelijk
om één netwerk te trainen om zowel de positie als de positionerings-
onzekerheid gerelateerd aan Compton-verstrooiing te voorspellen zonder
dat aanvullende informatie over Compton-verstrooiing nodig is. Bij het
uitfilteren van de 10% meest onzekere gebeurtenissen, kon de gemiddelde
positioneringsfout worden verminderd van 1.54 mm tot 1.23 mm.

Een kalibratiebron met een bepaalde bundelbreedte kan verschillen in-
troduceren tussen de positie labels (positie van de bron) en de daad-
werkelijke eerste interactieposities. Deze fouten in de labels kunnen het
trainingsproces van neurale netwerken beinvloeden. Vergelijking tussen
een netwerk getraind op data verkregen met een perfecte smalle bundel
versus een kalibratiebron met een realistische bundelbreedte van 0.6 mm
toonde geen significant verschil in bereikte intrinsieke spati€le resolutie.
De bundeldiameter heeft echter wel invloed op de gemeten resolutie (0.74
mm versus 0.52 mm FWHM), waarmee rekening moet worden gehouden
bij het evalueren en vergelijken van de resolutie tussen verschillende PET
detectoren.
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De ontwikkelde neurale netwerken en trainingsprocedure werden ook
geévalueerd op een experimentele opstelling. Vergelijkbaar met de resul-
taten op simulatiedata, werden hoge spatiéle resoluties (ongeveer 1 mm
FWHM in het centrum van de detector) bereikt met neurale netwerken,
superieur aan het gemiddelde dichtste buur algoritme (1,14 mm FWHM
in het centrum). Neurale netwerken worden getraind op individuele
datapunten, leren om rechtstreeks de interactiepositie af te leiden uit
de gemeten lichtverdeling en produceren continue waarden, niet beperkt
tot een discreet kalibratieraster. Dit leidt tot een betere positione-
ringsnauwkeurigheid van Compton-verstrooide gebeurtenissen en minder
degradatie nabij de detectorranden. Verbeterde spatiéle resolutie van
PET detectoren met neurale netwerken kan helpen de fysische limieten
van PET te bereiken en kleine tumoren beter op te sporen. Bovendien is
er bij het bereiken van betere resoluties dan vereist, ruimte om resolutie
in te ruilen voor andere parameters zoals: minder uitleeskanalen, goedko-
pere materialen met minder lichtopbrengst, dikkere detectoren enz. Ten
slotte is het positioneren van gamma interacties met het netwerk snel

en parallelliseerbaar, vooral bij gebruik van krachtige hardware zoals
GPU’s.

Computer-geassisteerde primaire hersentumor diagnose

Het tweede deel van dit werk concentreert zich op de toepassing van
AT in medische beeldanalyse, specifiek voor segmentatie en diagnose van
primaire hersentumoren. Primaire hersentumoren vormen een complex
type neoplasia die ontstaan in de hersenen en relatief zeldzaam zijn met
een incidentie van 10.8 personen per 100 000 per jaar. Ze zijn echter een
belangrijke oorzaak van morbiditeit en mortaliteit door kanker, vooral bij
kinderen en jongvolwassenen waar ze de belangrijkste oorzaak zijn van
sterfte door kanker. De meest voorkomende soorten primaire hersentu-
moren zijn gliomen en meningiomen. In dit werk richten we ons op de
karakterisering van gliomen. In de meest recente classificatierichtlijnen
van de WHO wordt naast histopathologische analyse meer nadruk gelegd
op de integratie van moleculaire merkers. Integratie van genetische para-
meters voor tumorclassificatie is bedoeld om objectiever en nauwkeuriger
gedefinieerde diagnostische entiteiten op te leveren met betrekking tot de
prognose en optimale therapie. Drie merkers spelen een centrale rol bij
de classificatie van gliomen: histologische graad, isocitraatdehydrogenase
(IDH) 1 en/of 2 mutatie en co-deletie van chromosoomarmen 1p en 19q.



xvii

Bepaling van deze merkers vereist tumorweefsel die is verkregen door
middel van biopsie of resectie. Deze invasieve procedures brengen risico’s
met zich mee en zijn niet altijd mogelijk, afhankelijk van de locatie en
toegankelijkheid van de tumor, de klinische toestand van de patiént of
wanneer de patiént een chirurgische ingreep weigert. Daarom kan niet-
invasieve bepaling van klinisch relevante merkers op basis van medische
beelden helpen bij het karakteriseren van gliomen en bij therapie en
operatieplanning. Vooral wanneer extractie van tumorweefsel niet mo-
gelijk is of genetische tests niet beschikbaar zijn. Het is aangetoond
dat tumorfenotype op MR scans gecorreleerd is met genetische merkers
en maligniteit. Visuele interpretatie en voorspelling van tumoreigen-
schappen blijft echter zeer uitdagend en onnauwkeurig. Om de efficiéntie
en nauwkeurigheid van niet-invasieve glioomkarakterisering te verhogen,
worden Al algoritmes ontwikkeld. Veel bestaande studies gebruiken
manueel verkregen tumorsegmentaties die subjectiviteit en variabiliteit
introduceren. Bovendien worden ze vaak getraind en geévalueerd op
data uit een kleine dataset die bij één instelling is verzameld waardoor
de generaliseerbaarheid naar data van andere centra beperkt is. Het doel
van dit werk is om nauwkeurige, robuuste en automatische algoritmes te
ontwikkelen om gliomen te segmenteren en te karakteriseren met behulp
van diepe, convolutionele neurale netwerken (CNN).

In een eerste studie onderzochten we het probleem van het niet-
invasief onderscheiden van hooggradige glioblastomen (GBM) en lager-
gradige gliomen (LGG). Voor dit onderzoek is gebruik gemaakt van de
BraTS 2017 dataset bestaande uit 210 GBM en 75 LGG gevallen. In
deze dataset zijn voor elke patiént vier MR sequenties (T1, T1lce, T2
en FLAIR) en manuele tumorsegmentaties voorhanden. De voorspel-
lende waarde van hand-gedefinieerde radiomics parameters of features
die tumorvorm, textuur en intensiteit beschrijven, werd vergeleken met
features die zijn geéxtraheerd met behulp van een CNN die vooraf werd
getraind op niet-medische beelden. Bovendien vergeleken we de perfor-
mantie van CNN features die werden geéxtraheerd uit verschillende MR
input groottes: een of meerdere slices en met of zonder bijsnijden tot de
tumor regio. Voor de classificatie is gebruik gemaakt van een Random
Forest classificatie algoritme. De beste performantie werd bereikt met
de radiomics features die werden geéxtraheerd op basis van handmatig
gesegmenteerde tumor volumes (AUC van 96%). Features van een vooraf
getrainde CNN hadden daarentegen ook een hoge voorspellende waarde
en maakten het mogelijk om een snel en automatisch binair classificatie
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systeem te ontwikkelen dat een AUC-score van 91% bereikte. De beste
score met CNN features werd behaald na het bijsnijden van de MR tot
de tumor regio (AUC van 94%).

Aangezien manuele tumorsegmentatie tijds- en arbeidsintensief is en
vatbaar voor variabiliteit tussen verschillende waarnemers, hebben we
een netwerk ontwikkeld voor automatische tumorsegmentatie op basis
van de U-Net architectuur. Het netwerk werd getraind met behulp van de
BraTS 2019 trainingsdataset (335 patiénten) en geévalueerd op de BraT$S
2019 validatieset (125 patiénten). Nauwkeurige segmentatie werd bereikt
met gemiddelde Dice scores van respectievelijk 90%, 83% en 76% voor
de totale abnormale, tumorkern- en contrast-capterende tumorregio’s.
In de klinische praktijk zijn niet altijd alle vier de input MR sequenties
(T1, Tlce, T2 en FLAIR) beschikbaar. Daarom maakten we gebruik
van input kanaal dropout, d.w.z. het willekeurig op nul zetten van
een input MRI tijdens de training om zo het optreden van ontbrekende
sequenties te simuleren. We toonden aan dat dit de robuustheid tegen
ontbrekende sequenties aanzienlijk verhoogt. De behaalde Dice scores
komen overeen met state-of-the-art resultaten gerapporteerd in de meest
recente BraTS competities en we zijn van mening dat de verkregen per-
formantie voldoende hoog is om bruikbaar te zijn in een klinische setting.
Men kan zich afvragen of het verder verbeteren van de Dice scores met
enkele percentages klinisch relevant is, aangezien ze worden beoordeeld
op basis van manuele segmentaties die ook niet 100% nauwkeurig zijn.
Objectiviteit en robuustheid zijn mogelijk belangrijker bij het analyseren
van hersentumorvolumes en progressie in de tijd. Kwalitatieve evaluatie
op data verkregen in het Universitair Ziekenhuis Gent toonde een goede
generalisatie aan naar data van verschillende centra.

Om een hersentumor classificatienetwerk te trainen, werd een grote
dataset van 628 patiénten verzameld uit meerdere publieke databases,
beschikbaar op The Cancer Imaging Archive (TCIA). Het automatisch
segmentatienetwerk werd toegepast om de 3D tumorregio uit elke MR
sequentie te extraheren. Vervolgens werd een classificatie 3D CNN ge-
traind om de tumorgraad, IDH mutatie en 1p/19q co-deletie status te
voorspellen. Multitask leren werd gebruikt om deze drie merkers tegelij-
kertijd te kunnen voorspellen, om met ontbrekende labels in de dataset
om te gaan en terwijl het risico op overfitting te verkleinen. Op een test
dataset van 100 patiénten, niet gebruikt tijdens de training, behaalde het
netwerk AUC scores van 93% voor WHO graad, 94% voor IDH mutatie
en 82% voor 1p/19q co-deletie predictie. We evalueerden bovendien de
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classificatie performantie op een volledig onafhankelijke dataset van 110
patiénten die retrospectief werden verkregen in het Gentse Universitair
Ziekenhuis. Op deze dataset werden AUC scores gerapporteerd van
respectievelijk 94%, 86% en 87% voor de drie merkers.

De bovenstaande twee-stappen methode, bestaande uit eerst seg-
mentatie en vervolgens classificatie, heeft mogelijks enkele nadelen. Het
classificatienetwerk wordt enkel toegepast op de tumorregio, wat poten-
tieel relevante informatie over de locatie en omliggend weefsel verwijdert.
Bovendien kunnen mogelijke fouten in de eerdere segmentatie stap ook
de daaropvolgende classificatie beinvloeden. Als alternatief ontwikkelden
we een netwerk dat gelijktijdig hersentumoren kan segmenteren en clas-
sificeren op basis van de volledige hersenscans. Het segmentatienetwerk
werd uitgebreid met een classificatietak en kreeg de naam Y-Net. Door
het gebruik van multitask leren, technieken om het geheugengebruik
op de GPU te verminderen en een adequate patch-extractie methode,
kon één netwerk worden getraind op de grote multi-institutionele en
heterogene database met ontbrekende labels voor veel patiénten. Een
vergelijkbare segmentatie performantie werd bereikt als voorheen met
gemiddelde Dice scores van respectievelijk 89%, 84% en 75% voor de
hele tumor, tumorkern en contrast-capterende regio’s. De WHO graad
kon worden voorspeld met 98%, IDH-mutatie met 96% en 1p/19q co-
deletie met 87% AUC op de TCIA test dataset. Op de onafhankelijke
testdata uit het universitair ziekenhuis waren de behaalde AUC scores
96%, 83% en 90%. De classificatie performantie is iets hoger dan bij de
twee-stappen methode. Dit komt mogelijk omdat de gehele MR scan nu
wordt ingevoerd en de toevoeging van de segmentatietaak zou kunnen
zorgen voor extra regularisatie van het trainingsproces.

Ten slotte werden inzichten in de visuele kennis van het netwerk en
geéxtraheerde features verkregen met behulp van verschillende netwerk
visualisatietechnieken. De features van het netwerk werden geplot voor
elke case in de dataset na t-SNE feature reductie. Dit onthulde ver-
schillende clusters van hersentumor cases met vergelijkbare kenmerken
zoals ringvormig contrast-capterend weefsel, laesiegrootte, locatie van de
tumor in de frontale kwab en T2-FLAIR mismatch. Dit zijn inderdaad
gekende kenmerken die gecorreleerd zijn met deze tumormerkers. Sali-
ency maps, die visualiseren waar het netwerk het meeste focust in de
MR om een bepaalde voorspelling te doen, lieten zien dat het netwerk
inderdaad kijkt naar de relevante tumorregio’s. Dit laat een extra con-
trole toe om vertrouwen te krijgen in de voorspellingen van het netwerk.
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Ten slotte werd een synthetische input gegenereerd die de outputscores
voor een glioblastoom, IDH wildtype tumor maximaliseert. Startende
van een input bestaande uit willekeurige ruis verscheen na verschillende
iteraties een ringvormig contrast-capterend tumorpatroon met een kern
bestaande uit lagere intensiteitswaarden in het T'lce kanaal. Op de T2
kanalen ontstond omringend hyper-intens weefsel. Hieruit blijkt dat het
netwerk heeft geleerd deze kenmerken toe te schrijven aan dit tumortype
wat overeenkomt met bestaande kennis rond correlaties tussen tumor
fenotype en tumormerkers.

Samenvattend hebben we aangetoond dat neurale netwerken het beeld-
vormingsproces op detectorniveau kunnen verbeteren, wat uiteindelijk
resulteert in een betere beeldkwaliteit en invloed heeft op de gehele
resterende radiologische workflow. Verder werd een toepassing voor
beeldanalyse onderzocht, meer specifiek de karakterisering van primaire
hersentumoren. Dit resulteerde in niet-invasieve en nauwkeurige al-
goritmes voor het segmenteren en diagnosticeren van hersentumoren.
Hoewel er nog uitdagingen zijn met betrekking tot gestandaardiseerde
datasets en het begrijpen van Al, zowel bij deskundigen als bij het grote
publiek, kunnen we concluderen dat Al een grote impact zal hebben op
radiologie. Het zal een belangrijk hulpmiddel worden voor radiologen om
de efficiéntie te verhogen, routinetaken uit te voeren en gepersonaliseerde
en precisie geneeskunde mogelijk te maken. Artifici€le intelligentie zal
echter radiologen niet vervangen, aangezien veel elementen die essentieel
zijn aan het radiologisch beroep nooit kunnen worden geautomatiseerd.
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1 Introduction

1.1 Context

This dissertation involves the application of artificial intelligence (Al) in
medical imaging. Although the idea of intelligent machines and artifi-
cial neural networks has been around for decades, Al has only recently
known an unprecedented growth. The required computational power
and large amounts of data are only recently available to bring Al into
practice. Artificial intelligence is being applied in numerous industries
and entering our daily lives in the form of voice assistants, face recog-
nition, recommendation systems in advertising and entertainment (e.g.
social media, Spotify and Netflix), intelligent driver assistance, household
robots etc. These systems achieve incredible performances that match
or even outperform humans.

Driven by the increasing digitisation of healthcare, Al is also finding
its way into the healthcare industry. Wearables measure more and
more health related data and the amount of lab tests, DNA analyses,
treatment results and medical imaging is rapidly expanding. This data
contains a wealth of information that presents opportunities to improve
and personalise healthcare, but it is becoming increasingly difficult to
efficiently and fully exploit all this intelligence. In medical imaging, the
radiology workforce is struggling to meet the rising demand for imaging
examinations which can lead to delayed diagnoses and potentially affect
accuracy [1]. This rising demand also puts pressure on the throughput
of medical image acquisition with imaging technology that continuously
advances in resolution and quality and becomes more complex, multi-
modal, 3D and dynamic. Hence there is also a need for Al systems in
healthcare to improve efficiency and enable personalised and precision
medicine.
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Even though there is a lot of interest and enthusiasm on the develop-

ment and application of Al, it is also feared. Concerns range between Al
taking over jobs to robots taking over the world. In healthcare there are
concerns on Al ethics, trustworthiness and interpretability, responsibility
and legal aspects, privacy and security etc. News reports appear that
announce the extinction of radiologists and numerous other professions.
It is clear the a good understanding of this technology and debate on
these questions is of utmost importance as it is not a matter of if but
how AT will influence our society.
Current Al technology is still very narrow meaning that an Al algorithm
is able to perform only one specific task. The algorithm can reach high
performances for this task, but for every task, different Al systems need
to be developed. General Al that exhibits human like intelligence is still
far from being a reality. In medical imaging, many therefore believe
that AI will help to perform routine tasks and increase efficiency of the
radiological workflow. But it will remain the doctor who ultimately
decides as many aspects to the radiological profession can never be
performed by a machine regarding expertise, human attitude, empathy,
mutual understanding, family situation and support etc.

This PhD dissertation focuses on the use of Al in medical imaging.
AT can be applied throughout the entire medical imaging pipeline: from
acquisition, image enhancement and post-processing to image analysis
including detection, segmentation and diagnosis of diseases. Under the
influence of recent advances in computer vision, a lot of research is situ-
ated on the use of Al for analysing medical images [2]. Algorithms based
on deep learning reach performances that exceed humans in numerous
tasks such as pneumonia detection on chest X-ray, breast cancer mam-
mography screening, analysing skin lesions etc. The use of Al in medical
imaging remains, however, challenging as the amount and size of curated
datasets is still limited, certainly when compared to natural imaging
datasets employed in computer vision. Data is scattered across clinical
centres with high heterogeneity is imaging protocols, quality, recorded
modalities and annotations. Curation of medical imaging datasets is time
consuming and requires expert knowledge. Medical images are also very
complex with large 3D volumes, many different modalities with differing
characteristics and complex, highly variable healthy and pathological
structures. Moreover, as these systems are used in critical settings that
can have a direct influence on diagnosis and treatment planning, they
need to be trustworthy and interpretable.
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Two different applications of Al in medical imaging are explored in
this work. One is situated in the acquisition stage, more specifically on
improving the spatial resolution of positron emission tomography (PET)
detectors. The second application is located at the end of the medical
imaging pipeline, on the analysis of pre-therapy brain MRI for automatic
segmentation and diagnosis of primary brain tumours.

The purpose of a PET detector is to detect gamma rays emitted by
a radioactive tracer that is injected into the body that is imaged. It is
important to determine the exact position of arrival of the gamma ray
within the PET detector as this has a direct influence on the spatial
resolution of the final image. In this dissertation, we investigate the
use of artificial neural networks to accurately determine the gamma
ray arrival position from the electronic signal measured by the detector.
Positioning accuracy is evaluated in a simulation and experimental setup
and compared with an established positioning algorithm called mean
nearest neighbour.

Primary brain tumours (PBTs) are a complex type of neoplasms.
They are often difficult to treat and associated with low survival rates,
depending on tumour type, as the brain is a complex and a vital or-
gan itself. Recent guidelines of the World Health Organisation (WHO)
have put increased emphasis on the integration of molecular markers to
differentiate primary brain tumours [3]. These markers have prognostic
value and enable better and more personalised therapy planning. In
order to determine these molecular markers, invasive procedures are
required such as biopsy or resection that involve risks. These surgical
procedures are not always possible depending on the tumour location,
the patient’s clinical condition or when the patient refuses surgery. Being
able to determine tumour characteristics non-invasively based on pre-
therapy MRI can therefore be beneficial for initial prognosis and ther-
apy planning. Many studies have already reported correlations between
tumour phenotype (appearance on MRI) and genetic markers [4-8]. Al
algorithms can learn to fully exploit these patterns in medical images
and perform an accurate diagnosis. Existing Al systems are, however,
often not fully automatic (require manual delineation of the tumour) and
trained and evaluated on a single small dataset. Hence their robustness
to data from different centres remains to be validated.

In this work, deep learning models are developed for non-invasive and
fully automatic segmentation and classification of primary brain tu-
mours. Moreover, their generalisation capacity to data from different
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institutions is evaluated.

1.2 OQOutline

In what follows, an overview is provided of the structure of this disser-
tation.

As artificial intelligence is an essential topic in this work, chapter 2

provides a thorough explanation of important Al, machine learning and
deep learning concepts that are necessary to understand the remaining
part of this book. The chapter focuses on artificial neural networks
and especially convolutional neural networks as this is one of the most
common Al algorithms in medical imaging.
Chapter 3, covers the role of Al in medical imaging. The need, potential
and challenges of Al in healthcare are discussed followed with a brief
overview of the most common medical imaging modalities. Positron
emission tomography is explained in more detail as this is relevant for
the first main topic of this work. Finally, an overview is provided of
state-of-the-art applications of AI throughout the entire medical imaging
pipeline.

The rest of this book is divided into two parts: one on PET detec-
tor calibration (three chapters) and a second on computer-aided brain
tumour diagnosis (five chapters).

In chapter 4 the use of neural networks to determine the gamma

ray arrival position in a PET detector is investigated using simulation
data. The optimal architecture, amount of training data and training
procedure is evaluated and potential pitfalls related to the training and
evaluation of neural networks are identified and addressed. Further-
more, the positioning performance is directly compared to mean nearest
neighbour positioning which is an established algorithm for gamma ray
positioning in PET detectors.
There are several factors that can potentially degrade the gamma ray
positioning accuracy of neural networks. Chapter 5 will explore two
different factors being Compton scattering of the gamma ray inside the
crystal and precision of the calibration beam used to acquire training
data. Their influence on the positioning accuracy is evaluated and, if
necessary, different techniques are explored that could help mitigate these
effects.
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The methodology of training neural networks for positioning of gamma
rays developed in chapters 4 and 5 will be validated on experimental
data in chapter 6. Two different detector setups will be evaluated
and performance will again be compared with mean nearest neighbour
positioning.

The second part of this book on computer-aided brain tumour diag-
nosis starts with an introductory chapter, chapter 7, providing some
background information on neuroanatomy, nomenclature on different
brain tumour types and markers as defined by the WHO and their rela-
tion between prognosis and optimal therapy. Furthermore, a literature
review is included on recent work on brain tumour segmentation and
classification with Al
In chapter 8, the important task of determining brain tumour grade
is investigated as tumour malignancy is highly predictive for prognosis
and optimal therapy planning. The predictive performance of more
traditionally used hand-engineered imaging features is compared with
deep learning features extracted with a convolutional neural network,
pre-trained on natural images. Additionally the effect of the provided
region to the network (only tumour region of interest or full MRI) on
the classification accuracy is examined.

As brain tumour segmentation is important in the diagnosis and man-
agement of primary brain tumours and is often a required pre-processing
step before classification, an automatic segmentation algorithm is de-
veloped in chapter 9. Automatic and accurate delineation of brain
tumour tissues is necessary as manual segmentation is time-consuming
and suffers from inter- and intra-reader variability. Additionally, the
segmentation algorithm is made robust to missing input MRI modalities
as often not all MRI sequences are available in clinical practice and in
the dataset that is collected and used in the subsequent chapters.

In chapter 10, a convolutional network will be trained from scratch that
not only predicts tumour grade but also important molecular markers
according to the most recent WHO guidelines. To this end, a large
dataset is collected from multiple public databases. The segmentation
algorithm from chapter 9 is applied to these clinical scans to extract the
tumour region of interest which is fed into the classification network.
An additional independent dataset acquired at the Ghent University
Hospital is used to evaluate the generalisation performance to data from
different centres.

The two-stage approach proposed in chapter 10 (segmentation followed
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by classification) can have some downsides as the classification network
only operates on the tumour region of interest which excludes poten-
tially relevant information on location and surrounding tissue. Moreover,
possible errors in the prior segmentation step can also influence the
subsequent classification performance. As an alternative, a network
that performs simultaneous segmentation and classification based on the
full brain MRI is explored in chapter 11. To train such a network
different techniques are used to deal with limited GPU memory, data
heterogeneity and missing labels. The segmentation and classification
performance of this approach is compared with the two-stage pipeline
in chapter 10 on the same data. Furthermore, several visualisation
techniques are implemented to gain insights into the imaging features
that are automatically learned by the network.

Finally, chapter 12 concludes this dissertation and discusses some
future work and research directions.



2 Artificial intelligence

The purpose of this chapter is to provide an introduction to artificial
intelligence and its different terminology such as Machine Learning (ML),
Deep Learning (DL), narrow versus general Al etc. Necessary machine
learning and deep learning concepts are explained in more detail to
support subsequent chapters and describe current state-of-the-art Al
technology applied in medical imaging. I refer the reader to the fol-
lowing works for an in-depth review on artificial intelligence [9], machine
learning [10, 11| and deep learning [12].

2.1 Introduction

So what is Artificial Intelligence? The term Artificial Intelligence was
first coined in 1955 by John McCarthy in a conference proposal for
“a study to proceed on the basis of the conjecture that every aspect
of learning or any other feature of intelligence can in principle be so
precisely described that a machine can be made to simulate it” [13].
Modern dictionaries such as the Oxford english dictionary state: “The
capacity of computers or other machines to exhibit or simulate intelligent
behaviour.” However, what is intelligent behaviour or intelligence in
general? On this day there is still no clear definition of Al as defining
intelligence itself is already very difficult and subject to a lot of philo-
sophical discussion.

An operational definition of intelligence was proposed by Alan Turing
in 1950 [14]. The imitation game, more famously known as the Turing
Test, tries to evaluate whether a machine can think. A computer passes
as intelligent if a human interrogator cannot tell whether the responses
come from a person or not. Although the value of the Turing Test

7
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has been debated ever since, it is still relevant today and remains an
important milestone to reach for many years to come.

This shows that the idea of intelligent machines has been around for

decades. Yet why is Al only recently growing so rapidly and finding
its way into society? Throughout the years Al research has known
a lot of successes but also many disappointments. Overestimation of
AT’s progress and failure to meet excessive promises from the early days
led to a rapid decline in funding for AI research and a so called ‘Al
winter’. Al continued to show some progress under different names such
as ‘machine learning’ or ‘pattern recognition’, however, commercial Al
industry advances were very limited.
The recent revival of Al research in the 21st century is driven by two key
elements. The first and most important factor is the exponential increase
in computational power and data storage, also known as Moore’s law.
Computers are getting faster, smaller and more affordable and thereby
accessible to everyone. This in turn leads to an increasing digitisation of
our world and an explosion in data which is the second requirement to
bring Al technology invented many years ago, such as neural networks,
finally into practice. Complex tasks like image analysis or natural lan-
guage processing require complex algorithms not only resulting in a need
for fast processors to execute these huge number of calculations but also
for a lot of data to discover patterns and learn to perform these tasks.

These two elements proved to be key to lead Al into a new summer,
rapidly progressing both in academia as in industry. It is increasingly
playing a role into our daily lives with applications in speech recogni-
tion (voice assistants such as Siri and Alexa), image recognition (face
recognition, self-driving cars...), recommendation systems in retail and
entertainment and even analysis of healthcare data for faster and more
accurate diagnoses. Al will advance numerous industries and is antic-
ipated to be the key driver of the fourth industrial revolution but is
also seen as a potential threat to job security and human society incited
by futuristic science-fiction movies where robots take over the world.
It is clear that a good understanding of this technology is important
to facilitate debate on ethical questions not defining if but how it will
influence our society. This is especially important in healthcare where
Al can have a direct influence on people’s lives and possibly survival.
In 2016, several industry leaders including Google, Facebook, Apple and
Microsoft joined together in a partnership to formulate best practices on
AT technology and advance the public’s understanding of AI [15].
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One often makes the distinction between narrow and general Al
Narrow Al is trained to perform one specific task and is what we currently
find in our devices. For every task (recognising objects in images, speech
recognition, playing chess...) a different algorithm is trained. General
Al on the other hand is able to perform a lot of different tasks and
exhibits human like intelligence. While a lot of narrow AI applications
with impressive performance are developed today, general Al is still far
from being a reality.

Understanding Al terminology can be difficult as it is often inter-
changeably used with Machine Learning and Deep Learning although
they do not refer to the same thing. Where Al is the most general
term and encompasses any technique to bring intelligence to a machine,
machine learning and deep learning subsequently cover more specific
types of Al as illustrated in figure 2.1. Machine learning algorithms
allow a computer to learn how to perform a task without explicitly being
programmed [16]. In other words ML is an approach to develop Al
systems. One type of ML is a network of simple connected processing
units or neurons often organised in layers. When these neural networks
contain enough layers (typically more than three) and neurons one talks
about deep learning.

Artificial
Intelligence

Machine
Learning

Deep
Learning

Figure 2.1: Diagram illustrating relation between different AI terminology.
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2.2 Machine learning

Machine learning is programming computers to perform a certain task
using example data or past experience. This is useful (or even necessary)
in cases where humans are unable to precisely explain their expertise
(for example face recognition) or when algorithms constantly need to
be adepted (changes in time or users). Figure 2.2 shows a schematic
overview of different ML components illustrated with a brain tumour
detection example. A model, defined up to some parameters, receives
brain MRI as input and needs to provide as output whether the brain
scan shows a tumour or not. Based on example data, i.e. labelled
brain MRI, a learning algorithm optimises the model parameters to
improve a certain perforrnance measure. When training is finighed
and the model achieves sufficient performance, it can be used to detect
tumours in new MRL

Learning algorithm

&=

Performance measure
{e.q., accuracy)

$

F;-\' Machine Learning Model
# Output:
‘é’a. Tumour or normal?

Figure 2.2: Schematic overview of different machine learning componenta and
their interaction.

Input

In the following sections, we will discuss the different types of machine
learning and explain the elemental ML algorithms: linear and logistic
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regression which form the foundation to understand neural networks
described in section 2.3. Furthermore sections 2.2.4 and 2.2.5 will discuss
performance evaluation and the main challenge of machine learning:
generalisation. Finally, the random forest classification algorithm is
explained in section 2.2.6 as this classifier will be used in chapter 8.

2.2.1 Types of machine learning

Based on the type of example data and available information, different
types of machine learning can be defined.

Supervised learning

In supervised learning, the most common type of machine learning,
example data consists of known input-output pairs. Labelled data is
available and the model is trained such that its output is as close as pos-
sible to the desired label for every input. After training, the model can
be applied to new unlabelled input data. Supervised learning can further
be categorised into classification and regression. In case of classification,
the output consists of a discrete set of output values or classes as in the
brain tumour detection example in figure 2.2. In case of regression, the
output is a continuous variable. For example, house price prediction or
survival time estimation.

Unsupervised learning

The second type of ML is unsupervised learning, where no output labels
are available. The aim is to find hidden structure in the example input
data. One method is clustering into different groups of similar inputs.
For example, tissue segmentation in medical images where pixels with
similar intensities are grouped together.

Reinforcement learning

The final type of learning is often used in game playing or robot control
and is called reinforcement learning. The goal now is for an artificial
agent to learn a policy on which actions to take in an environment in
order to reach a certain goal or maximise a cumulative reward. Hence
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there is not one sequence of best actions or in any intermediate state
there is not one best action but an action is good if it is part of a good
policy that in the end leads to a maximal reward. The agent explores
the environment and possible actions using trial and error. Based on
past good action sequences, the machine learning algorithm should be
able to learn a good policy.

2.2.2 Linear regression

An example of a supervised regression ML algorithm is linear regression.
We will start with explaining the simplest case, univariate linear regres-
sion, using with a well known house price prediction example. The goal
is to train a model, in this case a univariate linear function, that allows
us to predict the price of a house based on its size (in squared metres).
A univariate linear function (i.e. a straight line) has the following form:

7 = w1z + wo

where z is the input of the model (the size of the house), ¢ is de
output (the house price) and wy (the slope) and wp (the intercept) are
called the weights of the model.

To train the house prediction model we use a training dataset con-
taining input-output pairs or training samples (x,y). In figure 2.3, an
example training dataset is plotted. The goal is to find the line that
best fits the training samples, i.e. the optimal weights w; and wg that
minimise the distance between each training sample and the line. In
order to evaluate how well a line fits to the data, a loss or cost function
needs to be defined. Often the Mean Squared Error (MSE) loss is used
defined as

N
N 1 N
MSE(y,9) = + > (Wi —w)?
i=1

with N the number of data samples, y the ground truth label and g
the predicted output of the model.
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Figure 2.3: Linear regression illustrated with a house price prediction
example. Training samples are plotted of size versus house price
along with the linear function that corresponds with a minimal
squared error loss.

Gradient descent

The optimal weights can be found using an iterative optimisation algo-
rithm called gradient descent (GD). This algorithm initialises the model
with randomly chosen weights and iteratively updates them in a direction
that minimises the loss based on the dataset. This direction is given by
the negative partial derivative or gradient of the loss with respect to the
weights. For linear regression, the gradient of the MSE loss with respect
to the weight w; is calculated as follows:

OMSE 8 1 &
S B N > ((wrz; + wo) — i)?
2 T ‘£=1

N
2 9

For wy and wy this results in
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o N
Wo = Wo — & Z(ﬁz‘ — ¥i)

where « is defined as the learning rate or step size by which the
weights are updated. The learning rate is an important hyperparameter
of gradient descent. Setting the learning rate too high can prevent proper
convergence by overshooting the minimum. A learning rate that is too
low results in very slow convergence. Each iteration, the weights can be
updated based on the entire training dataset (batch gradient descent),
only on a small random subset or mini-batch (mini-batch gradient de-
scent) or only on a single sample (stochastic gradient descent, SGD).
Mostly mini-batch gradient descent is used as calculating the gradient
on the entire dataset is computationally inefficient. One iteration over
the entire training set (either in one step or in multiple steps) is often
called an epoch.

Multivariate regression

The univariate linear regression example can easily be extended to a
multivariate case where we have more than one input feature. For
example, next to the size of the house, the energy performance, distance
to shops, number of bedrooms, etc., can be important to accurately
determine the price. We then have

M

§=wo+ Y wiz
i=1
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with M the number of input features. Defining the input value xg
as always equal to 1 we can write this as the product of the weight and
input vectors w and x:

j=wlx

Different features can be expressed in various units and thereby have
large differences in range. The size of a house, for example, ranges
between 100 to 500 m? in figure 2.3 while the number of bedroom
would typically vary between 1 to 5. It is important to address these
differences in range to improve the convergence speed of gradient descent
and reduce oscillation when features are highly uneven. The features can
be scaled to a fixed range, typically between 0 and 1. An other approach
is standardisation to zero mean and unit variance. These statistics are
calculated across the samples in the training dataset.

Higher order regression

Linear regression can also be extended to higher order polynomial re-
gression. In the univariate case this results in

P
g =wo+ Z wpz?
p=1

with p the order of the polynomial. The multivariate case addition-
ally includes product terms of different features. For example, with two
input features x1 and x3, we can define

2 2
21 = T1,22 = T2,23 = T1,24 = Tg,25 — T1X2

and apply linear regression on the five dimensional input z = [z1, 22,
23, 24, 25| Hence, instead of defining a nonlinear function in the original
space, a nonlinear transformation to a new space can be applied where
we define a linear function. The input space can be extended to any order
to better fit the training data. High order polynomials, however, might
better fit the individual training samples, but not capture the inherent re-
lation between input and output. The model complexity should carefully
be tuned to match the complexity of the function underlying the data.
This will be discussed in more detail in section 2.2.5 on generalisation.
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2.2.3 Logistic regression

Unlike the name suggest, logistic regression is used for classification
problems where the output value is categorical. In case of binary classi-
fication, the output is limited to values 0 or 1 instead of any continuous
value as with linear regression. This is solved by introducing the sigmoid
function to the linear regression model. The sigmoid function defined as

1
l+e =

o(z) =

transforms the output to a value between 0 and 1 which can be
interpreted as a probability (see figure 2.4). Hence the probability of an
input sample x belonging to class 1 can be written as:

1

P(Ci[x) = o(w'x) = P

A threshold, usually 0.5, is then defined to determine whether the
sample belongs to a certain class.

1.0 : : : : I
0.9+ #

081 i/

0.71
0.6+
0.5+ /
0.41
0.3
0.2+ /
0.11
0.0 —

Figure 2.4: The sigmoid function.

Similarly to linear regression, gradient descent can be used to find
the optimal weights of the model. Now a different loss function is used,
namely the negative log-likelihood (NLL) or cross-entropy loss (CE)
defined as:
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N
CE(y,§) = — ) i log(fi) + (1 — :) log(1 — 4)
i=1

The binary classification example can be extended to multiple classes
by using the softmax function instead of sigmoid:

erTx
ZkK—l e’ X

This way, the sum of the probabilities of all classes equals to one.

P(Cj|x) = softmax(w;x) ,j=1,..,K

2.2.4 Performance evaluation

To evaluate how well a machine learning model performs, various metrics
are used that compare the model’s predictions to the ground truth.

For regression tasks, distance measure are used such as mean squared
error or mean absolute error (MAE):

N
. 1 .
MAE(y, §) = + > " ldi — il
i=1

In case of classification, most metrics are derived from the confusion
matrix shown in table 2.1 for binary classification. A prediction can be
identified as a true positive TP or a true negative TN when it correctly
indicates that the sample belong to the ‘positive’ or ‘negative’ class
respectively. When the prediction is wrong, it is identified as a false
positive FP or false negative FN.

Table 2.1: Confusion matrix of a binary classifier.

Ground truth

Positive Negative

Positive | True positive (TP)  False positive (FP)

Negative | False negative (FN) True negative (TN)

Predicted
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The most well known classification metric is accuracy:

TP+TN
TP+ FP+TN+FN

accuracy =

Accuracy is not always a reliable performance measure, especially
for unbalanced classes where one class occurs much more often than
the other. For instance, the case of classifying tumours as benign or
malignant where 90% of the tumour samples in the data are benign and
only 10% malignant. When the model always predicts benign, it achieves
a high accuracy of 90%. One would think that the model performs very
well while it actually misses all malignant tumours. In case of class
imbalance, it is important to determine both the sensitivity (percentage
of correctly identified positive samples) and specificity (percentage of
correctly identified negative samples) of the model:

sensitivity = P
Y=TPYFN
speci ficity = _IN
~ FP+TN

Similarly one can define the positive predictive value (PPV) or pre-
cision and the negative predictive value (NPV) as the fraction of true
positive or negative samples over all samples that are predicted as posi-
tive or negative.

TP

PPV =_—"—

V=Tprrp
TN

NPV =———

V=FNTTN

The harmonic average between sensitivity and precision is defined as
the f1 score, also known as Sgrensen-Dice coefficient or Dice score.

1= 2 X precision X sensitivity 2TP
"~ precision + sensitivity =~ 2TP+ FP+ FN

The Dice score can also be interpreted as a measure of overlap be-
tween two sets and is often used to evaluate segmentation algorithms. A
balanced measure to evaluate a binary classifier, even if the classes are
of very different sizes, is Matthews correlation coefficient (MCC):
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TPxTN—-FPxFN

Mo = J(TP+ FP)(TP + FN)(IN + FP)(TN + FN)

The metric ranges between -1 and 1, where -1 indicates total dis-
agreement (reversed prediction), 0 indicates no better performance than
random guessing and +1 indicates perfect prediction.

1.0
»”
’/
’
,I
0.8 7
»”°
,l
2z g
) Fd
o 0.6 ’l
N P
2 #
= rd
0 rd
fal L4
(=% ”
204 ’
= e
’
,I
7
0.2 ’/
L4
’,’ —— ROC curve (AUC = 0.83)
’/ == Random prediction (AUC = 0.5)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 2.5: Example ROC curve.

The above measures use the predicted class labels after threshold-
ing the output probabilities and are therefore dependent on the chosen
threshold. An aggregate measure that evaluates performance across the
entire range of possible thresholds is the area under the receiver operating
characteristic (ROC) curve or simply AUC. The ROC curve plots the
true positive rate versus the false positive rate for different classification
thresholds and is illustrated in figure 2.5. Predictions that are no better
than chance result in a diagonal ROC curve corresponding with an AUC
of 0.5. An AUC of 1 indicates 100% correct predictions and an AUC of
0 indicates 100% wrong predictions. Hence classifiers that perform well
have an ROC curve closer to the upper left corner with an AUC closer
to 1.
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2.2.5 Generalisation

The main challenge of machine learning is to train a model that performs
well on new, unseen data. This is called generalisation. To assess the
generalisation performance of a model, the available dataset is typically
split into a train, validation and test set. The training set is used to
optimise the model weights. During training we minimise a certain error
measure calculated on the training set, called the training error. The
validation set is used to evaluate the generalisation performance of the
model during training. Hence no weights of the model are optimised
using validation data but the number of training iterations, model com-
plexity and hyperparameters are tuned to minimise the validation error.
After training the model is finally evaluated on the test dataset to assess
the predictive power on unseen samples.

Optimal Fit
‘| Underfitting Overfitting

Error

= Training error ;\

— = Testerror —

Model Capacity

Figure 2.6: Illustration of typical relationship between model capacity and
training and test error. At low capacity both training and
test error are high, the model is underfitting. When capacity
increases, the error decreases but the gap between training and
test error broadens. Eventually this gap becomes too large and
test error starts to increase while the train error keeps decreasing
i.e. the model is overfitting.

In order for a machine learning model to perform well, it needs to
have a low training error and a low test error i.e. a small gap between
training and test error. This corresponds with the two key challenges in



2.2. Machine learning 21

machine learning: underfitting and overfitting. When a model is not able
to sufficiently reduce the training error, it is underfitting. Overfitting
occurs when there is a large difference between the training and test
error. The balance between under- and overfitting can be controlled by
adjusting the model capacity as illustrated in figure 2.6. A model that
does not have enough capacity results in a high training and test error.
When the capacity increases, both errors decrease but the gap between
training and test error broadens. Eventually this gap will become too
large and the test error will start to increase while the train error keeps
decreasing i.e. the model is overfitting.

We illustrate this with the house price prediction example of sec-
tion 2.2.2. The linear function fitted in figure 2.3 might be too simple to
properly fit the underlying trend where the price appears to rise faster
for larger houses. We can increase the model’s capacity by fitting a
polynomial instead of a linear function. Figure 2.7a shows a polynomial
of order 3 fitted to the training samples. This regression line is a better
fit to the samples than the linear function of figure 2.3 which was too
simple and underfitting. If we further increase the model capacity to a
polynomial of order 9, see figure 2.7b, we clearly observe that the model
is overfitting. The polynomial better fits the individual training samples
but is very erratic and does not follow the expected underlying relation
between house size and price, especially the peak around a size of 500 m?2.
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(a) Polynomial regression with order 3. (b) Polynomial regression with order 9.

Figure 2.7: Polynomial regression illustrated with a house price prediction
example. Training samples are plotted of size versus house price
along with the fitted polynomial curve.
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Regularisation

We have seen in previous section that the amount of under- and overfit-
ting can be controlled by altering the capacity or number of parameters of
the model. However, instead of changing the variety of functions that the
model can represent, we can also incorporate a preference towards certain
functions to limit the amount of overfitting. This is called regularisation
or “Regularisation is any modification we make to a learning algorithm
that is intended to reduce its generalisation error but not its training
error” [12].

For example, we can modify the loss function J of linear regression
to express a preference towards smaller weights by adding an extra term
that penalises weights with high squared L2 norm:

J = MSE + \wlw

where X is a hyperparameter controlling the strength of regularisa-
tion. This type of regularisation, called weight decay, allows to obtain
solutions that put weight on fewer number of features or that have a
smaller slope.

We illustrate this again with the house price prediction example. The
polynomial regression with order 9 of figure 2.7b is repeated with weight
decay in figure 2.8. The regularisation strength was set to A = 1.0. The
benefit of regularisation is clearly visible as the fit is now much smoother
and more similar to the polynomial in figure 2.7a.

Weight decay is only one example of the many regularisation tech-
niques and ways to control overfitting. Throughout section 2.3.1 several
other regularisation techniques will be discussed that are applicable to
deep learning.

2.2.6 Random forest

In this section, we will explain one of the most popular classifiers: ran-
dom forest (RF). This classifier will be used in chapter 8 to classify brain
tumours as high grade or lower grade.
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Figure 2.8: Polynomial regression illustrated with a house price prediction
example. Training samples are plotted of size versus house price
along with the fitted polynomial curve of order 9. Weight decay
with strength A = 1.0 was added to the loss function to prevent
overfitting.

Decision trees

The basic building block of a random forest classifier is a decision tree.
Decision trees are hierarchical models consisting of internal decision
nodes, branches and finally leaf nodes. At each node, starting from the
root node, a certain test is applied (e.g. is the size of the tumour larger
or smaller than a certain threshold) and one of the branches is taken
depending on the outcome. This process is recursively repeated until
arriving at a leaf node giving the final output. Decision trees have the
advantage that they can be visualised and are interpretable as they can
be written as a set of #f~then rules. For this reason they are applied to a
broad range of tasks including medical applications such as diagnosis.

The goal is thus to build a decision tree that optimally classifies
example data with a minimal amount of nodes. This is typically done
using a greedy top-down procedure. Starting from the root node, the
training data is iteratively split into smaller and smaller subsets. At each
node, the best split needs to be found. In other words, the attribute
has to be identified that makes the data in the child nodes as ‘pure’
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as possible i.e. containing data that belongs to just one class. One
measure that is often used to calculate impurity is entropy. The entropy
or impurity at node m is calculated as:

K

i(m) =—>_pk, log, pf,
k=1

where pF, is the fraction of samples arriving at node m that belong
to class k. Hence at each node, the split is selected that maximally
decreases the entropy. This process is repeated until the nodes are pure
or if certain stopping criteria are met such as maximum depth, minimal
number of samples per leaf etc. Learning a tree that classifies the training
data perfectly may lead to overfitting due to noise in the data and poor
decisions towards the leaves as they are based on a small number of
samples. For this reason, growing is often stopped when reaching a
sufficient purity or when there is no longer sufficient data to reliably
split the nodes. This is called prepruning. Another technique, called
postpruning, removes subtrees that do not have sufficient evidence after
the tree is fully grown. The output of a leaf node can be the class label of
the majority class or a probability calculated as the fraction of samples
in the node that belong to the majority class.

Random forest

Random forests make use of a bagging (bootstrap aggregating) technique
to create an ensemble of a lot of decision trees [17]. The idea is that the
error probability of a combination of many weak learners, in this case de-
cision trees, is lower than the error probability of the individual learners
and this way overfitting can be reduced. The principle of a random forest
classifier using bagging is illustrated in figure 2.9. Every tree is grown
on a subset of the training data randomly sampled with replacement to
introduce randomness between the different trees. Additionally, at every
node, the best split is chosen based on a random subset of the input
features. The outputs from all trees are aggregated through majority
voting to determine the final output class.
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Figure 2.9: Illustration of a random forest classifier. Every tree is grown
based on a random subset of the training data. When evaluating
an input, it is propagated through every tree in the forest and
the final output class is decided using majority voting.

2.3 Deep learning

In this section we will explain a type of machine learning algorithm
inspired by the biological functioning of the brain: artificial neural net-
works (ANN). Starting from the basic building block, the artificial neu-
ron, the principle behind feedforward neural networks (FNN) will be
described. Driven by the rapid increase in computational power and
amount of data, these neural networks became increasingly complex
which brings us to the domain of deep learning. We will describe how
these complex networks can be trained, including several regularisation
techniques to tackle the challenge of overfitting. Afterwards, we will
explain a type of neural networks specialised to process imaging data.
Their design and theoretical background will be discussed together with
several example architectures that play a key role in computer vision and
in this work.

2.3.1 Artificial neural networks

Artificial neuron

In 1943, Warren McCulloch and Walter Pitts proposed a model of ar-
tificial neurons based on physiological function of neurons in the brain
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where each neuron has two states “on” or “off” [18]. They showed that all
logical operators (and, or, not etc.) can be implemented with a simple
network of connected neurons and that any computable function can be
represented by a network of connected neurons [9].

X0 o
X1 h:

W2 —l +
X2 — y
XM

Figure 2.10: Artificial neuron or perceptron where the output g is calculated
as a weighted sum of input x = [zg,z1,...,Zp] and weights
w = [wg, w1, ..., War]-

An artificial neuron or perceptron with input x = [zg,z1, ..., Zp].
and output § is illustrated in figure 2.10 [19]. The output is calculated
as a weighted sum of the neuron’s inputs where mostly x¢g = 1, called the
bias term. This brings us back to the linear regression equation § = wlx
of section 2.2.2. Hence a neuron is just a different graphical represen-
tation of linear regression and al the theories and concepts explained
in sections 2.2.2 and 2.2.3 are applicable to neurons as well. Similar
to section 2.2.3 on logistic regression, the sigmoid or softmax functions
can be added to the output for classification tasks. These functions are

typically called activation functions.

Feedforward network

Multiple neurons can be connected to form a neural network. When the
network only has connections in one direction, it is called a feedforward
neural network or multilayer perceptron. When loops are added to the
network, i.e. neuron outputs are fed back into its inputs, we are dealing
with recurrent neural networks. They are especially suited to process
sequential data, for example in speech recognition. In this work, however,
only feed forward neural networks are discussed.
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Figure 2.11: Feedforward neural network arranged in input layer, hidden
layers and output layer.

Feedforward networks are typically arranged in layers starting with
the input layer followed by one or several hidden layers and finally the
output layer as illustrated in figure 2.11. The number of hidden layers
determines the depth of the network. Hence the term deep learning for
networks with many hidden layers. Figure 2.11 shows a network with
one output value, however multiple output values can the estimated by
adding additional output neurons.

The power of feedforward neural networks is shown by the universal
approximation theorem. This theorem states that feedforward networks
with at least one hidden layer (with any nonlinear activation, see next
section) and a linear output layer can approximate any continuous func-
tion [20, 21|. In other words, a feedforward neural network with just one
hidden layer is sufficient to represent any function. It is, however, not
guaranteed that the optimisation algorithm will be able to learn that
function as the hidden layer may be too large and fail to generalise. It
is often beneficial to use deeper models with less neurons per layer to
achieve a better generalisation error.

Activation functions

To model nonlinear functions, nonlinear activation functions need to
be added after every hidden layer. Otherwise, the network would per-
form a linear combination of linear combinations which is just another
linear combination. Many kinds of activation functions exist, but we
will only discuss the most common types. The sigmoid function seen
in section 2.2.3 is one example of an activation function. An other,



28 Chapter 2. Artificial intelligence

closely related, activation function is the hyperbolic tangent illustrated
in figure 2.12:
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Figure 2.12: The hyperbolic tangent function.

Both the sigmoid and hyperbolic tangent function saturate for high
and low values and are only sensitive to their input close to zero. This
can make gradient based learning difficult. Moreover, the derivatives
of the sigmoid and tanh functions lie within 0 and 1. This means
that every time the gradient is back-propagated to earlier layers (see
section 2.3.2), the signal gets smaller and smaller. This is also known
as the vanishing gradient problem. For these reasons, the use of sigmoid
and tanh activation in feedforward networks is discouraged.

An alternative activation function that does not suffer from the van-
ishing gradient problem is the Rectified Linear Unit (ReLU) shown in
figure 2.13a |22]. The derivative of the ReLU function is either 0 or 1
so the gradient will not vanish. It is not differentiable at zero, but this
is typically solved by returning either 0 or 1. One drawback to ReLU is
that the activation is zero for negative inputs which can result in dead
neurons that are never updated as the gradient is always zero. To resolve
this, Leaky ReLU was proposed which has a small slope for z < 0 (see
figure 2.13b) [23].
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Figure 2.13: The RelLU and Leaky ReLU activation functions.

2.3.2 Training neural networks

Neural networks can be trained using gradient descent similar to linear
regression in section 2.2.2. The weights are optimised in three steps:
forward propagation, backward propagation and weight update. Dur-
ing forward propagation, input samples are propagated from the input,
through the hidden layers to the output layer of the network. A loss is
calculated between the output predictions and the ground truth labels.
This loss is then backpropagated from the output layer to the input
where, at every layer, the gradient of the loss with respect to the weights
is computed using the chain rule [24]. The weights are then updated
using the negative gradient with a certain step size or learning rate .

Gradient descent with momentum

As mentioned in section 2.2.2, gradient descent updates are often based
on a small randomly sampled subset of the training set, called a mini-
batch. Larger batches provide a more accurate estimate of the gradients,
but are computationally expensive and the batch size is often limited by
the memory of the training hardware. Therefore, small batches are often
beneficial and can additionally offer a regularisation effect due to the
noise they add during the training process. However, they can also result
in noigy gradients as they are calculated based on a few samples. Large
oscillations in weight updates can cause slow convergence. To overcome
this problem, gradient descent with momentum is introduced. The idea
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is to use an exponentially decaying moving average of the past gradients
to update the weights. The weight update then becomes:

Aw; = —aVy,L(w) + nAw;

with hyperparameter 1 determining how quickly the contribution of
previous gradients decays.

Adam

The adaptive moment estimation (Adam) algorithm is a modified gra-
dient descent algorithm. It automatically adapts the individual learning
rates of the parameters using running averages of the gradients and
second moments of the gradients [25]. Through the combination of
momentum and adaptive learning rates, Adam is considered faster that
standard gradient descent.

Batch Normalisation

As discussed in section 2.2.2, it is important to scale different input
features to a similar range to improve the learning process. The idea
behind batch normalisation is similar and is used to improve the learning
of deep networks. Very deep neural networks consist of many layers and
with every iteration, the weights of every layer are updated based on the
assumption that the other layers do not change. Changes to the early
layers, however, will affect the deeper layers. To minimise this effect,
batch normalisation is introduced ensuring that the input of each layer is
re-normalised to zero mean and unit variance. Hence, after every hidden
layer, a batch normalisation layer normalises the batch again using the
mean and standard deviation of the current mini-batch [26]. At test
time, running averages of the mean and standard deviation calculated
during training can be used to allow evaluation of the model on a single
sample.

2.3.3 Regularisation

In section 2.2.5, we have explained that the central problem of machine
learning is to build a model that not only performs well on the training
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data but also on new unseen inputs. One strategy of regularisation,
weight decay, is already described. In this section we will discuss several
additional regularisation techniques applicable to deep neural networks.

Data augmentation

The best strategy to reduce overfitting is to train the model on more data.
Of course, in practice, the amount of available training data is limited
and it is not always possible to collect new additional data. Especially in
a medical context for example where data annotation is labour intensive
and requires expert knowledge. Data augmentation allows to artificially
create new data samples based on the existing training set. Most data
augmentation techniques are based on transformations or alterations
that the model should be invariant to. For instance, after horizontally
flipping an image of a cat, the image still contains a cat. Other methods
suited for imaging data are translation, cropping, rotation, adding noise,
blurring, changing the image intensity, elastic deformation etc. One
should always be careful, however, that the applied transformations do
not alter the correct label. For example, in digit recognition, 180° trans-
formations are not appropriate with respect to the difference between ‘6’
and ‘9.

Early stopping

When training neural networks, we typically observe a behaviour where
the training error steadily keeps decreasing while the validation error
starts to increase again after some time. This is similar to the behaviour
of the error as a function of model capacity illustrated in figure 2.6.
Therefore, instead of training a neural network for a fixed number of
iterations, it can be beneficial to monitor the validation error during
training and terminate the training process when no further improvement
of the validation loss is observed for a predefined number of iterations.
The optimal network state is then chosen at the point in time where
validation error was lowest. This strategy is known as early stopping.

Dropout

Another regularisation technique, effective in a lot of application do-
mains, is dropout [27, 28]. Here neurons of the network are randomly
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dropped during training with a certain probability p as illustrated in fig-
ure 2.14. Hence, for every sample in the mini-batch, different units are set
to zero and a different subnetwork is created. Therefore, dropout can be
thought of as a way to create and train an ensemble of many subnetworks
and thereby improve the generalisation performance (similar to random
forest as an ensemble of many decision trees in section 2.2.6). Another
view on why dropout has a regularisation effect is that it prevents co-
adaptation of different neurons. By removing different neurons at every
iteration, neurons that are included should perform well regardless of
which other neurons that are included in the network. Hence it forces
the neurons to be relevant in many contexts.
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(a) Original neural network. (b) Neural network after applying
dropout.

Figure 2.14: Illustration of dropout applied on a feedforward neural network.

Transfer learning

Transfer learning refers to techniques where knowledge learned from one
task is transferred to another task instead of training a network from
scratch. It is expected that features learned to identity for example cats
and dogs in images can be applied to other image recognition tasks as
well. This is especially useful in case only a small amount of data is
available for the new target task. Through the use of a good starting
point, i.e. a network pre-trained on a different related task for which
a lot of data is available, high performances can be achieved with only
a limited amount of data. One can identify two approaches to transfer
learning.

A first method is to use a pre-trained network as feature extractor. One
or several of the final layers of the network are removed. Data from the
new task is then propagated through the network and the output, i.e.
deep features, of the last remaining hidden layer is then used to train a
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new less complex machine learning model.

A second approach is to replace the final output layer of the network with
a new layer and train or fine-tune the weights of the final layers on data
from the new target task. The weights of the early (feature extraction)
layers are frozen and only the weights of the final layers are fine-tuned.

Multitask learning

Training a network to simultaneously perform various tasks is called mul-
titask learning. Multitask learning helps the network to learn features
that are relevant for multiple tasks which reduces the risk of overfitting
[29]. Typically the initial layers of the network are shared between the
different tasks and at the end the network is split into different parts
that are specific for each task. The different tasks must, of course, be
sufficiently related such that neurons trained for one task are applicable
for the other tasks as well.

2.3.4 Bayesian deep learning

When analysing data to make predictions, it is often desired to have
information on how certain a model is about its output. Uncertainty
and probabilistic modelling is of fundamental interest in Bayesian ma-
chine learning [30]. Deep learning models, however, often produce point
estimates of parameters and predictions with little information on model
uncertainty. This can be problematic when, for example, providing
out of distribution input data to a model with respect to the data
distribution it was trained on. Imagine the example where a model
trained on brain scans to detect brain tumours is given a scan of an
entirely different structure. The desired behaviour would be for the
model to make a prediction but with additional information that it is
highly uncertain and the input lies outside the data distribution. Other
situations that can lead to uncertain predictions are: noisy data, model
parameter uncertainty and uncertainty on the optimal model structure
[31]. Uncertainty is important in relation to Al safety. Especially in
systems that can directly or indirectly affect human lives like in medical
systems or autonomous vehicles.

Different types of uncertainty can be defined: aleatoric and epistemic
uncertainty [32].
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Aleatoric uncertainty captures noise inherent in the data. This can
be measurement noise due to sensor noise or motion. Aleatoric stems
from the Latin word Aleator which means ‘dice player’. One can fur-
ther distinguish two types of aleatoric uncertainty: homoscedastic and
heteroscedastic. Homoscedastic concerns constant observation noise for
every input. Heteroscedastic uncertainty depends on the input, where
some inputs can have higher noise outputs than others.

Epistemic uncertainty refers to uncertainty in the model parameters i.e.
which model optimally fits our data. This type of uncertainty can be
explained away with more data.

Most regression or classification machine learning models output a

single prediction value and do not capture uncertainty. The softmax
probability scores in classification models are often misinterpreted as
confidence levels [31]. Out of distribution samples can result in a high
softmax output. So, even with a high softmax score, the model can be
uncertain on its prediction.
Bayesian neural networks (BNNs) offer a way to model uncertainty by
inferring distributions (e.g. Gaussian) over the model weights instead of
point estimates. It was first proposed by MacKay [33] and Neal [34] and
further developed with variational techniques by Graves [35], Kingma
and Welling [36], and Bach and Blei [37]. Inferring the posterior in a
Bayesian neural network is difficult and often approximations are used
such as variational inference. Here, the posterior is modelled as a simple
variational distribution like a Gaussian. The distribution’s parameters
are fitted to be close to the true posterior though minimisation of the
Kullback-Leiber divergence [31]. These techniques often require many
more parameters, cannot scale to complex models and large amounts of
data or need specific models which all limit practicality.

In this work we include an intuitive explanation on two practical
techniques to model epistemic and heteroscedastic aleatoric uncertainty
that scale well to complex models, large data and are applicable to exist-
ing models that are widely used. For a more complete and mathematical
discussion on Bayesian deep learning we refer the reader to the work by
Yarin Gal [31].

MC Dropout

Gal and Ghahramani [38] show that training with dropout (see sec-
tion 2.3.3) can be cast as approximate Bernoulli variational inference in
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Bayesian deep learning. Bernoulli variables require no additional param-
eters and allow an efficient implementation of Bayesian NN. Through ap-
plication of dropout at test time and by averaging the outputs of multiple
stochastic forward passes, the predictive posterior can be approximated.
This is referred to as Monte Carlo (MC) dropout. In practice, an input
sample is passed multiple times through the network, each time with
different neurons randomly set to zero. The predictive mean over all
samples is then used as the final prediction and the variance can be used
as an estimate of model uncertainty. As dropout applies a Bernoulli
distribution on the model weights, MC dropout is a way to estimate
epistemic uncertainty. A more detailed explanation and proof can be
found in [31, 38, 39].

Predicted variance

Next to estimating model uncertainty, it can be interesting to model
heteroscedastic aleatoric uncertainty as well. Hence we are interested
in learning the variance as a function of the input. Heteroscedastic
uncertainty can be learned by adding an additional output such that
the model predicts both the desired output value § as the variance &2
associated with the input [31, 32]. The loss function J is then adapted
to (for one input sample):

1. .
JBNN = ﬁL(y,y) + log &2

where L(g,y) is the original regression or classification loss. One can
observe that to minimise the loss, the network needs to learn to associate
a higher variance to wrongly predicted samples as this effectively reduces
the first term. The second term discourages the model to predict high
uncertainties for all samples (and thus ignoring the data). More details
on heteroscedastic uncertainty modelling (optionally combined with MC
dropout) can be found in [31, 32].

2.3.5 Convolutional neural networks

Convolutional neural networks (CNN) are a type of neural networks
specialised to process structured input data [40]. This can be image data,
thought of as a 2D grid of pixels or even a 3D grid which is often the case
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with medical images. An other example is time-series data considered as
a 1D grid where samples are taken at regular time steps. Convolutional
neural networks have been successfully applied to numerous computer
vision applications reaching state-of-the-art performance.

In this section we will describe the fundamental layers used in CNNss:
convolutional, pooling and fully connected layers and explain the moti-
vation behind using convolutions in neural networks. Afterwards we will
discuss a selection of key CNN architectures throughout the history of
computer vision.

Convolutional layer

A convolutional layer consists of several kernels, containing the trainable
weights or parameters of the layer, that are convolved with the input.
They have the same number of dimensions as the input and an equal
depth but are usually much smaller in the other dimensions. The kernel
size determines their receptive field. For a 2D convolutional layer the
kernel size is defined as: width x height x depth.

Figure 2.15 illustrates a 2D convolutional operation (with a depth of
1). The kernel size is set to a width and height equal to 3 resulting in
a receptive field of 3 x 3. The kernel slides over the entire input with
a predefined step size or stride, and at every position, a dot product is
performed between de kernel and the current input patch. This way,
a feature map is created containing the output responses of the kernel
at every spatial position. The size of the output feature maps depends
on the kernel size Wi x Hp, the stride or step size S and the optional
amount of zero padding P around the border of the input according to
the following formula.:

Wip+2P — W
Wout = "”+S K 11
H;,,+2P—H
Hout = S K 11

Hence for figure 2.15 with W;, =6, H;,, =6 , K =3, 5 =1 and no
zero padding, the resulting output size is 4 x 4. Every convolutional layer
consists of several kernels and produces an equal amount of feature maps.
These features maps are concatenated resulting in an output with size
Wout X Hout X Doys, where Dy,; is the depth of the output and equal to
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the amount of kernels. Consequently, the input depth of a convolutional
layer depends on the amount of channels of the network input image (one
for a grayscale and three for an RGB image) or the number of feature
maps produced by the previous convolutional layer.

We can see that convolutional layers have a lot of hyperparameters
that need to be defined: number of kernels, kernel size, stride and
padding.

Kernel

Output feature map

Input

Figure 2.15: Illustration of a convolution operation between a 2D input and
a kernel with size = 3 and stride = 1.

The motivation behind using convolutional layers is twofold: sparse
connectivity and parameter sharing.
Sparse connectivity means that, in contrast to traditional feedforward
networks, the output neurons are not connected to all input units. Input
images can contain millions of pixels. Instead of connecting a neuron with
every input pixel, relevant features such as edges can be detected using
kernels that are much smaller than the input. Although the receptive
field of each kernel is small, deeper layers that interact with multiple
outputs of earlier layers have an increasingly large receptive field with
respect to the input. This allows the network to model complex interac-
tions between simple building blocks across the input.
Parameter sharing denotes that the same kernel is used multiple times
across the entire input while in a fully connected network, each weight
is only used once. Consequently, a feature only needs to be learned
once instead of multiple times for every location. Parameter sharing also
causes a convolutional layer to be translational equivariant. This means
that, if the input is translated, the output translates in the same way.
This is especially useful when features, that detect edges for example,
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are relevant across the entire input. Moreover, because of parameter
sharing, the input size does not have to be fixed which allows to process
inputs with varying sizes. Sparse connectivity and parameter sharing
results in a large reduction in number of parameters which improves
statistical efficiency and reduces memory requirements and amount of
computations [12].

Pooling layer

Pooling or subsampling layers reduce the size of the input by calculating
summary statistics over a predefined neighbourhood. As the number of
parameters in the next layers depend on the input size, pooling allows to
improve the computational efficiency and reduce memory requirements.
Different statistics can be computed such as max- and average pooling
as depicted in figure 2.16. The neighbourhood size is usually set to 2 x 2,
effectively reducing the input size by half. The pooling operation can
also be learned using convolutional layers with a stride larger than one.
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(a) 2 x 2 max pooling (b) 2 X 2 average pooling

Figure 2.16: Two types of pooling with neighbourhood size 2 x 2.

Fully connected layer

At the end of a convolutional neural network, often one or several fully
connected or dense layers are applied. This a standard feedforward
neural network layer as seen in section 2.3.1 where every neuron is
connected to every input. These final fully connected layers use the
features extracted by the convolutional layers to determine the final
output class. Hence the convolutional layers are generally seen as the
feature extractors of the CNN and the fully connected layers as the
classifier.
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2.3.6 LeNet

Although the idea behind convolutional layers already dates back to
1980 [41], the first modern convolutional neural network was proposed
by LeCun et al. [42] in 1998. They trained a CNN to recognise hand-
written digits on bank checks. Their dataset, known as the Modified
National Institute of Standards and Technology (MNIST) database, is
standardised and still used to benchmark different deep learning archi-
tectures.
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Figure 2.17: Architecture of LeNet-5 proposed by LeCun et al. [42] used for
hand-written digit recognition. Image from LeCun et al. [42].
© 1998 IEEE.

The proposed architecture, called LeNet-5 and shown in figure 2.17,
consists of two convolutional and subsampling layers followed by two
fully connected layers with tanh activation. The final output layer is
composed of 10, one for each class, Euclidean radial basis function units
which compute the Euclidean distance between the input vector and their
parameter vector. A 32x 32 pixel greyscale image is provided at the input
of the network. The first convolutional layer contains six 5x 5 kernels and
uses a stride of one resulting in six 28 x 28 feature maps. Both pooling
layers halve the input size and the second convolutional layer has sixteen
5 x b kernels. The network was trained using stochastic gradient descent
and MSE loss and data augmentations such as translations, squeezing
and shearing were applied to reduce overfitting. A test error was achieved

of 0.8%.

2.3.7 AlexNet

The next milestone in deep learning was achieved when a CNN won the
ImageNet Large-scale Visual Recognition Challenge in 2012. ImageNet
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is a large publicly available dataset containing millions of images labelled
with 1000 object classes [43]. AlexNet, proposed by Krizhevsky et al.
[44], won this challenge with a top-5 test error rate of 15.3% which was
significantly better than the 26.2% error rate achieved by the second-best

entry.
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Figure 2.18: Architecture of AlexNet, the winning algorithm of the ImagNet
Large-scale Visual Recognition Challenge in 2012. Image from
Krizhevsky et al. [44].

The AlexNet architecture shown in figure 2.18 consists of five convo-
lutional layers with max pooling and three fully connected layers where
the last dense layer has 1000 outputs with softmax activation. After
every convolutional and dense layer, ReLLU activation is applied to enable
faster convergence. Due to GPU memory limitations, two GPUs were
required to train the model which is why the network splits into two
streams. The model was trained using gradient descent with mini-batch
of 126, momentum and weight decay. Data augmentation and dropout
in the fully connected layers was applied to reduce overfitting.

2.3.8 VGG

The effect of network depth on image recognition performance was in-
vestigated by Simonyan and Zisserman [45]. They experimented with
networks consisting of 11, 13, 16 and 19 layers and reached an error
rate of 7.3% on ImageNet in 2014. Every network ends with three
fully connected layers similar to AlexNet so the number of convolutional
layers varied between 8 and 16. The VGG16 architecture is illustrated in
figure 2.19. Convolutional layers with 3 x 3 kernels are used with ReLLU
activation. The now common practice of doubling the number of kernels



2.3. Deep learning 41

after every max pooling operation was first presented in their work. The
training procedure is similar to the one used by Krizhevsky et al. [44]
with a mini-batch size of 256 samples.
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Figure 2.19: The VGG16 architecture with 13 convolutional layers and 3 fully
connected layers.

2.3.9 ResNet

The winner of the 2015 ImageNet challenge is the ResNet architecture
proposed by He et al. [46]. Previous results with the AlexNet and VGG
architectures indicate that increasing network depth strongly improves
the image recognition capacity. It was found, however, that when further
adding additional convolutional layers the training accuracy saturated
and even started to degrade. As this behaviour was observed on the
training accuracy, it was not caused by overfitting. This shows that
current optimisers find it hard to train increasingly deep networks. A
deeper model that performs equally well as its shallower counterpart
should exist as it can be constructed by adding layers performing an
identity mapping to the shallow network. Based on this idea, He et
al. [46] introduced the use of skip connections or residual blocks. The
residual block is depicted in figure 2.20. Instead of directly learning the
underlying mapping G(x), the layers learn the residual F(z) = G(z) — z
due to the skip connection. Their results show that it is easier to optimise
the residual function than the original mapping. Hence skip connections
allow better optimisation of deeper networks.

A ResNet architecture with 33 convolutional layers and one fully
connected layer (ResNet34) is illustrated in figure 2.21. Pooling was
performed using convolutions with a stride of two (indicated by /2).
Using an ensemble of different ResNet architectures containing up to
156 layers, an error rate was achieved of 3.6%

The use of skip connections was later further exploited by Huang
et al. [47] through the introduction of dense blocks containing multiple
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Figure 2.20: Illustration of a residual block. Image from He et al. [46].
© 2016 [EEE.

Figure 2.21: The ResNet34 architecture. Image from He et al. [46].
© 2016 IEEE.

convolutional layers with a lot of skip connections.

2.3.10 U-Net

In 2015, U-Net was proposed by Ronneberger et al. [48] as a biomedical
image segmentation architecture. They employed the architecture in
several segmentation challenges such segmenting neuronal structures in
electron microscopy (EM) stacks or cell segmentation in light microscopy
images and won with a large margin [48].

The typical use of CNNs was to classify an entire image into a single
class label. In many computer vision tasks, however, localisation is
required where every pixel is labelled with the class of the object it
belongs to. These so-called semantic segmentation tasks were usually
tackled using standard classification CNN architectures. Each pixel is
separately classified by providing a local region (also called patch) around
the pixel to the classification network. Using a sliding-window approach
all pixels of an image are classified. This approach has the advantage
that additional training data can be generated as a lot of patches can
be extracted from one image. This is especially useful in biomedical
tasks were the amount of training data is often limited. There are also
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two drawback to this strategy. First of all, segmentation of an image is
inefficient as many overlapping patches need to be propagated through
the network. Secondly, finding the optimal patch size is difficult due to
the trade-off between larger patches containing more context and smaller
patches for better localisation.

To combine both context and good localisation accuracy, Long et
al. [49] introduced the fully convolutional network. The idea is to add
upsampling layers after the usual contracting classification network to
increase the resolution of the output back to the input image resolution.
No fully connected layers are used to preserve spatial information. To
increase the output resolution, simple bilinear upsampling can be em-
ployed. An other approach is to use transposed convolutions, also called
up- or deconvolutions, where the upsampling parameters are learned.
The output size of the transposed convolution layer depends on the
chosen kernel size and stride. A transposed convolution operation with
a stride of two and kernel size 2 x 2 is illustrated in figure 2.22.

2x2 Kernel
1|4
LR s, i
| ol 2 i 3112|121 8
3|2 0O|6|0]| 4
>
4 10 Transposed Conv | 4 (16 0 |0
stride: 2 0|8]01]0

Figure 2.22: Transposed convolution operation with a 2 x 2 kernel and stride
2.

In the U-Net architecture this upsampling path is further extended
with convolutional layers, allowing to propagate context information to
the higher resolution layers [48]. This results in a more or less sym-
metric u-shaped architecture with a contracting and expansive path (see
figure 2.23). This type of architecture is also called an encoder-decoder
or auto-encoder network. To improve localisation, skip connections are
added between the high resolution features of the encoder path and the
upsampled feature maps in the decoder path. U-Nets efficiently use
semantic and spatial information for accurate segmentation and are still
the state-of-the-art for many segmentation tasks.
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Figure 2.23: The U-Net architecture. Reprinted by permission from
Copyright Clearance Center: Springer Nature, Ronneberger et
al. [48], © 2015.

2.4 Conclusion

In this chapter, we gave an overview and intro into artificial intelligence,
how it evolved throughout history and why Al development started to
boom in the last two decades. The relation between Al and its subfields
machine learning and deep learning as a means to build Al systems was
clearly described. The main principles behind machine learning were
introduced that also form the basis of neural networks and deep learning.
In the last part, deep learning networks and training procedures were
described with a focus on convolutional neural networks as this is the
most common type of network used in medical imaging.



3 Artificial intelligence in
medical imaging

This chapter covers the role and state-of-the-art of Al in medical imaging.
In the introduction, the need, potential and challenges of Al in healthcare
are discussed. Afterwards, a brief outline of several most common med-
ical imaging modalities is presented and positron emission tomography,
relevant to part I of this work, is covered in more detail. Finally an
overview is provided of state-of-the-art Al applications throughout the
entire medical imaging chain.

3.1 Introduction

In previous chapter we have seen that the rapid progress of Al over
the last decades has been possible due to the ever increasing amount of
computational power and available data. This growing amount of data is
witnessed across all industries, including healthcare. All kinds of patient
data are recorded and stored into electronic health records such as lab
results, reports, DNA analysis, activity and health data from wearables
etc. A major volume of healthcare data comes from medical imaging.
Due to advances in medical image acquisition, novel imaging procedures
are introduced and the amount of diagnostic imaging is growing fast [50].
From 2D X-rays in the early days, medical imaging evolved to multi-
modal, dynamic and 3D CT, MRI and PET exams. This rising amount
and complexity of imaging data increases the workload of radiologists.
The Royal College of Radiologists, for example, has warned of shortages
in the radiology workforce growing every year [1]. Radiologists struggle
to meet the rising demand for imaging examinations resulting in delayed
diagnoses and potentially affecting the accuracy of clinical decisions.

45
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At the same time, the increasing amount of healthcare data contains
a wealth of information that presents opportunities for personalised and
precision medicine. As the huge amount of data is overwhelming for
physicians, we need sophisticated Al algorithms to exploit all this in-
formation. We have seen in previous chapter that enough training data
is a key requirement to develop these Al algorithms. Hence the rising
amount of healthcare data is putting great pressure on the healthcare
industry but is simultaneously providing the opportunity to revolutionise
healthcare.

In case of medical imaging, artificial intelligence can be employed to
improve the entire imaging pipeline. This is also reflected in the amount
of publications about Al in radiology on PubMed as shown in figure 3.1.
AT can be applied during image acquisition (see section 3.3.1) and recon-
struction (see section 3.3.2) to advance image quality, acquisition speed
and reduce cost. Moreover, it can be used for image denoising, regis-
tration and translation between different modalities (see section 3.3.3).
Finally, a lot of Al applications are developed for medical image anal-
ysis including abnormality detection, segmentation and computer-aided
diagnosis (see section 3.4).

There remain, however, several challenges to the adoption of Al
in medical imaging. Although the amount of imaging data is rising
fast, the number of curated datasets is still limited. Data is scattered
across clinical centres with highly varying imaging protocols, recorded
modalities, patient groups, included patient information, annotations
etc. Data curation and annotation of medical images is time consuming,
requires expert knowledge and is subject to inter- and intra-observer
variability. It is difficult to gather enough data for rare pathologies and
the distributions between different classes are often highly unbalanced.
For these reasons, the availability of medical imaging data to train Al
algorithms is still limited, certainly when compared with natural image
datasets like ImageNet containing millions of images. An initiative that
tries to solve this issue is The Cancer Imaging Archive (TCIA) which
hosts a large archive of publicly available medical image datasets [51].
Medical image analysis is also more complex. The imaging data is
often 3D which adds an additional dimension of complexity. They can
have large variations in resolution, contain noise and artefacts and lack
contrast which influences the performance of Al algorithms. Many appli-
cations also require information from multiple images combining different
contrasts, functional and anatomical information or temporal behaviour.
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Figure 3.1: The growth of Al in radiology reflected in the number of

publications on PubMed when searching on the terms “radiology”

with “artificial intelligence”, “machine learning” or “deep learning”.

All these elements pose specific challenges to the design of medical image
analysis tools. Moreover, detection, segmentation and interpretation of
anatomical structures, both normal and pathological is inherently very
complex. They have varying shapes, intensities and show large inter-
and intra-subject variability. Al systems need to be robust to perform
well under this wide variety of conditions.

Finally, as these Al tools can have a direct influence on diagnosis and
treatment planning, more research is necessary towards explainable Al
in order to understand and trust these algorithms. Deep learning al-
gorithms are often seen as a black box and it is difficult to understand
how and why the algorithm makes certain predictions and under what
circumstances it might fail.

3.2 Medical imaging

Medical imaging encompasses techniques to image the structure and
function of the human body for research, diagnostic and treatment pur-
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poses. It allows to, often non-invasively, look at the interior of the body
and plays an increasing role in healthcare management. In this section
we will give a brief overview of the most common imaging modalities.
The principle behind positron emission tomography will be covered in
more detail as this is necessary to understand part I of this work.

3.2.1 Brief overview

In medical imaging one can distinguish structural and functional modali-
ties. Where structural imaging refers to the visualisation of the anatomy,
functional imaging measures the physiological activity of the human
body such as metabolism and blood flow. Figure 3.2 shows an overview
of different structural and functional imaging modalities that will be
discussed below. For a more complete overview of the different medical
imaging techniques, we refer the reader to the book Fundamentals of
Medical Imaging by Paul Suetens [52].

X-ray

X-ray is short-wave electromagnetic radiation and was first discovered
by Wilhelm Konrad Roéntgen while experimenting with cathode tubes.
He noticed that fluorescent screens started glowing when struck by light
emitted from the tube, even when the tube was inside a box. Hence, the
tube was not only emitting light but also a new kind of radiation. More-
over, Rontgen found that the radiation was attenuated differently by
various materials and that the projection of an object could be captured
on a photographic plate. Since different tissues inside the human body
have varying X-ray absorption coefficients depending on their density
and thickness, the medical potential soon became clear.

Today, X-ray or radiography is still widely used in clinical practice
with its main applications in imaging of the skeleton (fractures), chest,
lung, dental and breast (mammography). Drawbacks to radiography
are the limited contrast between soft tissues with similar densities and
exposure of the subject to ionising radiation.

Computed tomography

Computed tomography (CT) uses X-rays to produce a 3D image. Hence
the same principle is used as in radiography but many radiographs are
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Figure 3.2: Overview of the most common medical imaging modalities.

acquired from different rotation angles to obtain one CT scan. One cross-
section or slice is formed by rotating the X-ray source and detector at
one transversal location. By moving the scanner table, the whole body
can be scanned. The mathematical foundation of reconstructing a 3D
image from many projections at different angles was already proven by
Radon in 1917. The experimental development of the technique for CT
was done by Annan Cormack in 1963 and the first CT scanner was built
by G. Hounsfield in 1971. Since then CT has dramatically improved with
advances such as helical and dual-energy CT which reduce the scanning
time and patient dose and optimise the image quality. Current state-of-
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the-art CT can scan the full body in less than one minute.

Pixels in a CT scan are a measure of X-ray beam attenuation or
density and are scaled in Hounsfield Units (HU). They denote the ratio
of the linear attenuation coefficient u of a voxel to the linear attenuation
coefficient of water fyqter and is given by:

(x) y) — MHwater

Hwater

CT(z,y) = 10002

Lungs typically have very low intensities (HU below zero), soft tissues
range between 20 and 80 HU and bones have a much higher value than
water (300-2000 HU).

Compared to radiography, CT can produce 3D images with better
tissue contrast. An important drawback remains the radiation dose
delivered to the patient. The most common investigations include mus-
culoskeleton system, abdomen, head and neck and thorax. To study
arteries and veins, contrast agents with high attenuation coefficients
can be used. This is called CT Angiography (CTA). CT can also be
employed for functional imaging of blood flow for example which is
called CT perfusion (CTP). Dual-energy CT (DECT) uses two separate
x-ray photon energy spectra. This allows better visualisation of different
tissues and their chemical compositions, e.g. iodine and calcium content,
that have different attenuation properties at different energies.

Magnetic resonance imaging

Magnetic resonance imaging (MRI) is a relatively recent medical imaging
technique with the first nuclear magnetic resonance (NMR) image taken
in 1973 [53]. In contrast to CT, MRI does not use ionising radiation
but is based on interactions between hydrogen atoms in the body and
electromagnetic waves. Charged particles have a quantum mechanical
property called spin which can be regarded as a rotating motion about
its axis, creating a magnetic moment. Nuclei, consisting of an even or
odd number of subatomic particles, have a zero or non-zero magnetic mo-
ment. Hydrogen nuclei have a non-zero magnetic moment as they consist
of just one proton. As hydrogen is abundant in the human body, MRI
focuses on visualising hydrogen-containing tissues like muscles, brain,
kidney etc.
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The main component of an MRI scanner is a large superconducting
magnet producing a strong static uniform magnetic field. Typical mag-
netic field strengths are 1.5T (Tesla) or 3T and recently even 7T systems
are being installed in academic centra. By placing the subject in this
external field, a small fraction of the protons inside the body align with
this field. Radio-frequency pulses are then applied tuned to the resonance
or Larmor frequency with which the magnetic moment precesses around
the magnetic field. These pulses disturb the equilibrium and result in a
flip of the net magnetisation vector. The magnetisation vector now has
a transversal component which can be measured with radio-frequency
receiver coils of the MRI scanner. When the radio-frequency pulses are
switched off, the magnetisation returns to its equilibrium, also called
relaxation. The relaxation time depends on the local environment of the
atoms and is therefore tissue dependent. As a result, different tissues will
have different intensities in the MRI. By varying the acquisition protocol
determining the time points of excitation and acquisition, tissues will
show different values and the optimal contrast between tissues of interest
can be chosen. Spatial information (slice selection and position encoding
within the slice) can be encoded by superimposing small gradients to the
magnetic field.

Similar to CT, MR Angiography (MRA) can be used to visualise
blood vessels but without the need of contrast agents. However, contrast
can still be used for visualisation of blood. Various MR protocols exist for
functional imaging such as diffusion weighted imaging (DWI), perfusion
weighted imaging (PWI) or functional MRI (fMRI) visualising brain
activity based on changes in oxygenation level in the blood. MRI offers
better soft-tissue contrast compared to CT and can be used to image all
parts of the human body that contain hydrogen without using harmful
ionising radiation. A downside is that MRI is slower than CT and
MRI intensities do not have a direct physical meaning and are not
standardised. This results in large differences in intensities depending on
the MRI scanner and scanning protocol making it challenging to compare
data across different centres and apply artificial intelligence models.

Ultrasound

Ultrasound imaging was initially developed for military war purposes
to detect submarines (SONAR) during World War I. Only later, during
World War 1II, ultrasound started to be used for clinical applications
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and the first 2D grey scale image was produced during the 1950s. The
basic principle behind ultrasound is quite simple. A sound wave (with
a frequency higher than the upper limit of human hearing) excited by
an ultrasonic probe, also called a transducer and based on piezoelectric
elements, propagates through the imaged medium and reflects at the
interface between different tissues. These reflections are measured as
a function of time and using known velocities of the waves inside the
medium, positional information is obtained. However, other phenomena
like diffraction, attenuation, scattering etc. appear besides reflection
which complicate ultrasound imaging and need to be taken into account.

Ultrasound imaging is portable, has relatively low cost, harmless
and high temporal resolution making it a very popular medical imaging
technique. It is best known from gynaecology but is also widely used
for detection of liver tumours, liver cirrhosis, prostate and spleen cancer,
echocardiography, cranial ultrasound and carotid imaging. Motion (e.g.
blood flow) can be visualised as well by means of Doppler imaging.

Nuclear medicine

The goal of nuclear medicine imaging is to visualise the distribution of
a molecule inside the body and to derive information on the function
or metabolism of certain organs or to detect tumours with high activity
uptake. To this end, nuclear medicine uses radioactive isotopes and the
tracer principle. A radioactive isotope is labelled to a molecule that is
involved in a certain metabolic process and is injected in the body. With
the advent of the Anger Scintillation camera in 1957, «-rays emitted
by this radioactive isotope could be detected allowing to measure the
concentration of the molecule inside the body as a function of position
and time. Based on the work by David e. Kuhl and Roy Edwards
published in 1963 [54], two different tomographic techniques were de-
veloped: single photon emission computed tomography (SPECT) and
positron emission tomography. As the name suggest, SPECT uses single
photon emitting isotopes whereas PET uses positron emitting isotopes
followed by annihilation of the positron with an electron into two gamma
rays travelling in opposite directions. The principle and components of
PET scanners will be explained in more detail in section 3.2.2.

The strength of PET and SPECT is that the sensitivity is orders of
magnitudes higher than other functional imaging techniques of CT and
MRI. Weaknesses are the lower spatial (around 5 mm versus 1 mm) and
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temporal (minutes versus seconds) resolution and exposure of the subject
to radiation. PET and SPECT systems are nowadays combined with
CT or even MR into hybrid SPECT/CT, PET/CT, PET/MR systems
allowing to simultaneously obtain both structural and functional infor-
mation. The most important clinical applications of nuclear medicine
are in oncology, thyroid function, bone metabolism, functional cardiac
imaging and lung embolism.

3.2.2 Positron Emission Tomography

In previous section we already briefly explained the principle behind
nuclear medicine and positron emission tomography. Here we will discuss
the different components of a PET scanner in more detail. Figure 3.3

illustrates the principle and different components of a PET system.

PET Detector Ring

Coincidence Detection

\u:tmade Data

Image Reconstruction

Annihilation

Figure 3.3: A graphical illustration of the principle and workflow of positron
emission tomography.

The goal of PET is to image the distribution of a certain molecule of
interest (e.g. glucose) inside the body [55]. This molecule is labelled with
a radioactive isotope to form a tracer which is injected in the subject.
This tracer is administered in very low amounts such that the studied
biological process is not affected and the absorbed dose by the patient
remains as low as possible. Common PET radioisotopes are 'C, 18F,
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150, 13N and %8Ga. The most important tracer is 2-deoxy-2-'8F-fluoro-
D-glucose (1¥F-FDG) which is a glucose analog where one hydroxyl group
is replaced with 8F. It is used to visualise glucose metabolism with its
main application in oncology as malignant tumours show an increased
glucose metabolism.

The radioisotopes have a surplus of positive charge and decay by emitting
a positron (eT) and a neutrino (v). For '3F the following reaction occurs:

Bp o, B0 4et+v

The released positron travels a short distance (within a few mm,
depending on the positron energy), called positron range, through the
surrounding tissue until it annihilates with a nearby electron generating
two photons or gamma rays travelling in opposite direction. Each photon
has an energy of 511 keV (rest energy of an electron). These photons
are detected by PET detectors that are placed in a ring around the
subject. PET scanners operate under the assumption that the path of
the photons and the annihilation points are on the same line (collinearity)
and that photons originating from the same decay arrive around the
same time at the detector ring. Through coincidence detection, i.e.
when two photons are detected within a certain time window (around
10 ns), the line of response (LOR) where the annihilation occurred can
be recorded. By recording many LORs, the tracer distribution can be
calculated using reconstruction algorithms like filtered back projection
or iterative reconstruction methods such as maximum likelihood expec-
tation maximisation [56, 57].

PET Detector

An optimal PET detector should have following properties: a high stop-
ping power or sensitivity of 511 keV photons and a good energy, temporal
and spatial resolution. A high sensitivity is required in order to visualise
low radiation doses. A high temporal and energy resolution allows
optimal coincidence detection and spatial resolution is important to
accurately determine the LORs. The fundamental components are a
scintillator and photodetectors. Figure 3.4 shows a typical pixelated
clinical PET detector design consisting of discrete long and narrow scin-
tillation crystals coupled to an array of photodetectors.
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Figure 3.4: Illustration of PET Detector design with pixelated crystals.

Scintillation crystals are responsible for stopping the incoming gamma,
rays and to re-emit the absorbed energy in the form of light. During the
80s and 90s mostly pixelated BGO crystals were used. BGO crystals
have a high stopping power but a limited light output. Today, L(Y)SO
crystals have become the standard PET scintillators as they have a good
stopping power, high light output and are quite fast [58]. To further raise
the stopping power, the crystal thickness can be increased. This results,
however, in increased cost and can degrade spatial resolution (see section
on degrading factors below).

The photodetectors convert the emitted light to electrical signals. The
most common devices are photomultiplier tubes (PMTs). They are,
however, increasingly being replaced by Silicon photomultipliers (SiPMs)
due to their fast response time, compactness and high gain with low
voltage.

Based on the measured electronic signal, the pixel can be determined
where the gamma interaction occurred. This pixel position is then used
to estimate the LOR.

Image degrading factors

Besides the PET detectors properties, other factors influence the image
quality of PET as well.

Positron range and acollinearity impose fundamental limits on the
achievable spatial resolution of PET systems.
The positron travels a short distance through the subject to lose kinetic
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energy before annihilating with an electron. Hence the location of an-
nihilation is not the same as the location of positron emisgion. This
positron range depends on the radioactive isotope and the surrounding
tissue. Isotopes that emit low energy positrons will have a short positron
range. Typical root mean square effective ranges are around 0.5 mm to
3 mm [55].

The photons resulting from annihilation will not be emitted exactly in
opposite directions due to momentum of the positron and electron. This
effect is called acollinearity or non-collinearity. The angular distribution
follows a Gaussian distribution with a FWHM of 0.5°. The effect of
acollinearity on spatial resolution, expressed in FWHM, is dependent
on the detector ring diameter D according to Rjgpe = 0.0022D. For
a PET scanner with a diameter of 80 cm this result in a FWHM of
approximately 2 mm [55].

In case no depth-of-interaction (DOI) measurement in the PET de-
tector crystal is present, the parallax effect further degrades the spatial
resolution. This effect is illustrated in figure 3.5. Depending on the depth
of interaction in the crystal, the actual line or response differs from the
measured LOR.

Figure 3.5: Illustration of the parallax effect. Depending on the depth of
interaction in the crystal, the actual line or response (LOR) differs
from the measured LOR.

The emitted 511 keV photons have to travel through the body before
being detected. Hence there is a chance that one or both of the photons
undergo Compton scatter (deflection) or absorption in the body. This
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leads to a decreased number of coincidence events and thus measured
LORs. For 511 keV photons, the probability of absorption is higher
than the probability of Compton scattering. Because the probability
of attenuation for photons originating from the centre of the body is
much higher, it is important to implement attenuation correction during
reconstruction using an attenuation map of the body. This attenuation
map can be measured through a transmission scan or can be derived
from a low dose CT in PET-CT scanners [55].

Measured coincidences are not alway true coincidences i.e. containing
the annihilation point along its line of response. Coincidence events also
include scattered and random coincidences depending on the detector
energy and temporal resolution as illustrated in figure 3.6.

Scattered coincidences occur when at least one of the photons is Compton
scattered resulting in a loss of energy and deviation from the correct
LOR direction. It is possible to distinguish scattered from true events
through energy filtering. In practice, the detector energy resolution is
limited and coincidences within a certain energy window around 511
keV are accepted to maximise the detection of true coincidences while
minimising the amount of scattered coincidences.

Two photons from different annihilation events arriving at the detectors
within the coincidence time window is called a random coincidence.
Similarly to the energy window, the coincidence time window should
be large enough to avoid loss of true coincidences but not too large to
limit the number of random coincidences.

Innovations in PET

Continuing progress is made to improve the coverage, sensitivity and
spatial resolution of PET systems.

To increase the coverage and sensitivity, there is a trend towards PET
scanners with larger axial Field of View (FOV) and even to total-body
PET systems [55]. Typical whole body clinical PET scanners axially
cover 20 to 25 cm of the body at a time. Through the addition of
detector rings to extend the scanner along the length of the body, many
more events can be detected thereby increasing the signal to noise ratio
(SNR). The higher sensitivity can also be used to reduce the scan time
or radiation dose while maintaining the same SNR. The main difficulty
of these systems is the evident increase in cost.

Other innovations are mainly focused on improving the sensitivity and
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Scattered Coincidence Random Coincidence

Figure 3.8: Illustration of scattered and random coincidence events.

spatial, temporal and energy resolution of the PET detectors through the
use of better crystals, photodetectors, faster electronics, improved detec-
tor designs and computational methods to better estimate the location,
time and energy of interactions. Improvements in timing resolution are
also important to enable time-of-flight (TOF) PET [55]. By measuring
the time difference between coincident photons, which depends on the
distance between annihilation and the detectors, the position of annihi-
lation along the LOR can be determined. Theoretically it is possible to
directly infer the annihilation site using TOF information without the
need for a reconstruction algorithm. However, the difference in arrival
time changes only around 67 ps per cm difference in location and current
PET detectors do not have the necessary timing resolution for direct
reconstruction.

Monolithic PET detectors

Current clinical PET scanners employ pixelated scintillation detectors
(see figure 3.4) where the scintillation light is restricted to the individual
crystals thereby limiting the spatial resolution of the detector to the pixel
size (typically 3-5 mm) [58]. Improving the spatial resolution by reducing
pixel size negatively impacts other desirable parameters like sensitivity
(more dead space between crystals), timing and energy resolution and
increases cost.
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As an alternative, the use of monolithic detectors is investigated to
increase spatial resolution without the aforementioned trade-offs (see
figure 3.7)[59-62]. Monolithic detectors can provide a better sensitivity
(no dead space), temporal, energy and spatial resolution compared to
their pixelated counterpart. Additionally, DOI information is intrinsi-
cally present in the measured scintillation light distribution when using
monolithic detectors [63]. Interactions far from the photodetectors result
in a broader distribution compared to interactions occurring close to the
photodetectors. Estimation of the 3D interaction position, including
DOI, is important to draw the most accurate line of response and re-
duce parallax errors during image reconstruction. Moreover, using DOI
information, it is possible to improve timing resolution by correcting
for the photon travel time between the interaction position and the
photodetectors [64, 65].

Gamma ray

SiPM photodetector array

Figure 3.7: Illustration of a monolithic PET Detector design.

Already implemented in preclinical systems [66, 67], monolithic de-
tectors are likely to also appear in clinical scanners [58]. The main
challenges are (i) the lengthy calibration procedure and directly linked
to that (ii) the gamma event positioning algorithm.

Acquisition of calibration data is required to develop the positioning al-
gorithm. In a typical calibration setup, a collimated 511 keV pencil beam
is used to irradiate the crystal in discrete steps over the entire crystal
surface. This way, light distributions can be acquired at known beam
positions. This process is time-consuming but is not seen as a limiting
factor as techniques to expedite calibration are actively investigated in
other research groups [58, 68, 69].

The second challenge is to develop an accurate and efficient algorithm
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capable of correlating the measured light distribution with all possible
interaction positions within the crystal. The positioning performance
of monolithic detectors typically degrades near the edges [63]. Due to
truncation of the light distribution, the positioning algorithms have less
information to accurately estimate the interaction position. This edge
effect can be limited using powerful positioning algorithms and high
granularity readout [61]. A wide range of positioning algorithms have
been proposed and will be discussed in the next section.

3.3 Al in medical image formation

Artificial intelligence techniques can be applied throughout the entire
image formation process [70-74]. This includes Al to improve the raw
measurement data, for better reconstruction of the image and post-
processing to enhance the image quality or for translation between dif-
ferent modalities.

3.3.1 Acquisition

Improving the quality of the raw measurement data during image acqui-
sition has a beneficial effect throughout the entire subsequent imaging
pipeline, from reconstruction to analysis. The work by Sloun et al. [71]
covers the use of deep learning on all aspects of ultrasound imaging with
applications to improve raw signal acquisition using neural networks
for adaptive beamforming. In this section we focus on the use of Al
for positioning and timing of photons in monolithic PET detectors [72]
as this is relevant for part I of this work. We have seen in previous
section that spatial and timing resolution are critical parameters of PET
detectors that largely influence the performance of the PET system.

Positioning

Most of the Al applications in PET detectors are on the estimation of
the interaction position of the 511 keV photons in the detector. The
scintillation light distributions captured by the photodetectors are used
to determine the position of absorption.

In pixelated detectors, the determination of the interaction pixel is
quite straightforward using centroid weighted methods such as Anger
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Logic [72]. Hence there has been few investigations on the use of more
complex machine learning methods to estimate the crystal of interaction
in pixelated detectors. However, Al can play a role in obtaining DOI in-
formation which is normally not available in these detectors. Pizzichemi
et al. [65] proposed a linear method to infer DOI in a pixelated detector
with single side readout using light sharing through a light guide at the
front of the detector. A DOI resolution of 4.1 mm FWHM was achieved
with 1.53 x 1.53 x 15 mm?3 crystals arranged in an 8 x 8 array. Zatcepin
et al. [75] later improved upon this method through the use of neural
networks for DOI estimation resulting in a better uniformity and DOI
resolution of 3 mm FWHM.

In previous section we have seen that monolithic detectors can pro-
vide a better sensitivity, temporal, energy and spatial resolution and
intrinsic DOI encoding. They require, however, powerful positioning
algorithms able to correlate the measured light distributions with all pos-
sible interaction positions within the crystal. A wide range of positioning
algorithms have been proposed such as maximum likelihood estimation
[76-78], k-nearest neighbour [60, 79, 80|, gradient tree boosting (GTB)
[69, 81] and neural networks [82-84].

In Pierce et al. [78] a 50 x 50 x 10 mm® LYSO crystal fixed to a
65-channel position-sensitive photomultiplier tube was evaluated using
Gaussian maximum likelihood for interaction position estimation. Cal-
ibration data was acquired with a 0.9 mm beam source traversing the
crystal in 1.52 mm steps. A new multiplexing scheme was proposed to
reduce the 65-channel signal to 7 channels. They reported a FWHM of
1.2 mm in the detector centre and 1.9 mm near the edge of the crystal.
Using GTB, a spatial resolution of 1.4 mm FWHM has been reported for
a LYSO crystal of 32 x 32 x 12 mm3 [69]. Calibration data with a pitch
of 0.75 mm was acquired with a parallel hole or fan beam collimator.
Besides the photon counts for all pixels, additional features were used
as input such as centre of gravity, main pixel, row and column sums,
etc. Separate GTB models were trained for x- and y-position. A similar
approach was proposed to add DOI estimation (FWHM of 2.12 mm) by
acquiring calibration data through side irradiation. The GTB models can
be adapted based on required performance versus memory restrictions
[81].

A spatial resolution of 1.7 mm FWHM and an average DOI resolution
of 3.7 mm FWHM could be achieved with a 32 x 32 x 22 mm3 LYSO
crystal and the k-nearest neighbour algorithm [60]. Through the use of
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an algorithm that preselects only the most useful reference events, the
k-nearest neighbour classification algorithm could be accelerated.

In Stockhoff et al. [80], optical simulations were used to investigate
the lower limit of intrinsic spatial resolution for a 50 x 50 x 16 mm3
LYSO crystal using a mean nearest neighbour approach. Reference
light distributions were calculated for a grid of 49 x 49 positions and
interpolated to a step size of 0.25 mm. A 2D spatial resolution of
0.56 mm FWHM was reported with a DOI error of 1.6 mm. Nearest
neighbour algorithms achieve state-of-the-art spatial resolution but are
computationally expensive as for every new event a distance metric
needs to be calculated with a potentially large set of reference light
distributions of known incident positions.

The use of neural networks for 3D positioning has been proposed in
Wang et al. [83]. Events are processed in two steps: first a global
network roughly estimates the x- and y-coordinates to select a sub-
area of the detector. In a second step, separate x, y and DOI networks
for every sub-area further refine the position. For a LYSO crystal of
25.5 x 25.5 x 10 mm? a plane and DOI resolution of around 2 mm
FWHM is achieved. Iborra et al. [84] propose an ensemble of neural
networks, trained on simulation data, to estimate the 3D photoelectric
interaction position. Separate ensembles are trained for each coordinate
and evaluation on measured test data shows an average resolution of
2-2.4 mm FWHM. They report that training and testing the ensemble
to predict the first (Compton or photoelectric) interaction gave poor
results. However, positioning of the first interaction is required to draw
the most accurate line of response.

Timing

PET detectors with good timing resolution are important for random
scatter rejection and to allow time-of-flight estimation. In most PET
detectors, the time of interaction is estimated using linear methods that
measure the time when the photodetector signal crosses a certain thresh-
old [85]. This is likely not an optimal use of the information contained
in the detector waveforms. Machine learning algorithms that use the
digitised rising edge of the photodetector signals could more accurately
determine the time of interaction. Ground truth TOF data can easily be
acquired by moving a point source over a small distance range between
pairs of detectors as the TOF difference is exactly determined by the
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known distance and speed of light.

Berg and Cherry [86] proposed a convolutional neural network to
predict the TOF difference from the pair of digitised detector waveforms
of a coincident event. The detectors consisted of an LYSO crystal coupled
to a photomultiplier tube. An improvement in timing resolution of 20%
was achieved compared to leading edge discrimination (185 ps versus 231

ps).

3.3.2 Reconstruction

Most medical imaging modalities do not directly generate data in image
space but require an image reconstruction step to form the image from
the acquired raw signals. A first type of reconstruction algorithms are
analytical methods such as filtered back-projection for tomography data
or inverse fast Fourier transform for spatial frequency data in MRI.
These methods are popular due to their computational simplicity but
often suffer from poor resolution-noise tradeoffs [87]. Instead, iterative
reconstruction methods like expectation-maximisation can be used where
the image is recursively updated to better match the measured data
according to a forward model describing the system’s physics and sensor
and noise statistics [87]. They result in an improved image quality by
reducing noise and artefacts but are computationally expensive and may
contain errors in the forward model.

A recent development in the field of image reconstruction is the
introduction of deep learning approaches [87—-89]. Neural networks can
be trained to directly reconstruct the image from the raw projection or k-
space data using known input and output pairs as illustrated in figure 3.8.
This approach is entirely data-driven as the inverse mapping and noise
characteristics are learned from the data without underlying assumptions
on the imaging process. Examples of direct reconstruction methods
with deep learning are automated transform by manifold approximation
(AUTOMAP) [90], DeepPET [91] and direct PET image reconstruction
network (DPIR-Net) [92].

The AUTOMAP architecture consists of three fully connected lay-
ers followed by a convolutional encoder-decoder. They show flexibility
in learning the inverse mapping for various MRI acquisition strategies
(undersampled, misaligned Fourier, Radon projection and spiral non-



64 Chapter 3. Artificial intelligence in medical imaging

Encoder-decoder
network

Figure 3.8: Direct MRI or CT reconstruction from raw k-space or sinogram
data respectively using an encoder-decoder deep neural network.

cartesian Fourier). Results show diminished noise and artefacts with
AUTOMAP compared to conventional reconstruction methods. More-
over, they show that the inverse mapping could also be learned from
natural images in ImageNet and emphasise that their approach can be
generalised to other reconstruction problems across a broad range of
different modalities.

DeepPET similarly uses an encoder-decoder convolutional neural net-
work to directly reconstruct high quality PET images from the sinogram
data. The network was trained on simulated data derived from a whole-
body digital phantom. Results demonstrate higher quality images com-
pared to conventional techniques in only a fraction of the time.
DeepPET was later used by Hu et al. [92] as a generator in a Wasserstein
generative adversarial network (GAN) for direct PET image reconstruc-
tion, called DPIR-Net, reaching further improvement in image quality.
GANSs have recently gained a lot of attention in the computer vision and
medical imaging community, especially in image synthesis, enhancement
and translation tasks which will be explained in next section [93].
Remaining drawbacks to direct reconstruction are the large amounts of
data required to learn the complex mapping, limited interpretability and
current approaches operate on 2D slices instead of full 3D reconstruction
due to memory constraints.

For this reason there is an increasing interest in model-based networks
that incorporate existing domain knowledge prior to training. Existing
reconstruction techniques are translated into a neural network where
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the different mathematical operations are mapped to different networks
layers.

Wurfl et al. [94] showed that the filtered back-projection algorithm for CT
can be translated into a neural network. The weights are initialised with
known values from the analytical approach. This way, prior to training,
the performed operation is identical to the FBP algorithm. By further
training the network on known input-output pairs, noise characteristics
can be incorporated thereby improving the reconstruction accuracy.
Iterative reconstruction methods can similarly be translated into neural
networks through algorithm unrolling [95]. The number of iterations is
fixed and each update or iteration is mapped to one or several network
layers. These layers are then stacked to form an end-to-end mapping
between the raw data and the final reconstructed image which can then
further be optimised using regular network training. Applications of
unrolled algorithms in MRI [96-101], CT [102, 103] and PET [89, 104]
show that they can improve image quality and reconstruction speed
compared to traditional iterative methods [105].

3.3.3 Enhancement and translation

In previous section, we have seen that deep learning reconstruction tech-
niques can learn to correct noise and artefacts resulting in improved
image quality. Other than using deep learning during reconstruction, it
can also be applied as a post-processing tool in image domain to enhance
image quality. Possible applications include restoring high dose from
low dose scans [106—-113], fully sampled from undersampled scans [114,
115], super-resolution [116-119], denoising [120-124] etc. Next to image
enhancement, deep learning is also used for registration [125-130] and
translation [131-137] of different modalities. Registration refers to the
process of aligning different modalities or scans at different time points
such that anatomical structures spatially coincide. Cross-modality syn-
thesis or translation can be useful to generate other modalities without
additional acquisition time and cost. For example, pseudo-CT generation
from MRI allows MRI-guided radiation therapy requiring CT equivalent
images for positioning and dose calculation. Additionally, in PET/MR
systems, a CT image needs to be synthesised to calculate the attenuation
map necessary for attenuation and scatter correction.

State-of-the-art deep learning solutions for the above image-to-image
enhancement and translation tasks mostly use U-Net type networks com-
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Figure 3.9: Generative adversarial network (GAN) framework illustrated
with a pseudo-CT from MRI generation examples.

bined with a discriminator network to form generative adversarial net-
works [93]. Generative adversarial training is a framework where two
networks, a generator and a discriminator, are simultaneously trained
and compete against each other [138, 139]. This is illustrated with a
pseudo-CT from MRI generation example in figure 3.9. The generator
focuses on image synthesis and tries to fool the discriminator which is
trained to identify real versus synthesised images. While training, the
gradients are back propagated from the discriminator to the generator so
the parameters of the generator are adapted to produce realistic images
according to the discriminator. Next to this adversarial loss other loss
functions such as L1 Loss are incorporated as well to retain image details.
GANs and variants thereof, e.g. cycleGAN [140], are widely used in
image reconstruction and enhancement.

3.4 Al in medical image analysis

A lot of Al algorithms applied in medical imaging are to improve the
efficiency and accuracy of medical image analysis and even to extract
information that is not (yet) perceived by human experts. Different
applications can be identified being segmentation, treatment monitoring,
prognosis, computer-aided detection (CADe), computer-aided diagnosis



3.4. Al in medical image analysis 67

(CADx) etc.

Given that a vast number of medical image analysis applications of
AT have been reported, it is infeasible to cover all literature in this work.
We therefore selected several important works across different commonly
found anatomical application areas. This illustrates the potential and
current progress of Al in medical image analysis. For more exhaustive
literature surveys, we refer the reader to Litjens et al. [2], Zhou et al. [74],
Mazurowski et al. [141], Ranschaert et al. [142], Rueckert and Schnabel
[143], and Ibrahim et al. [144].

3.4.1 Approaches

There are two main approaches to medical image analysis, being the more
traditional radiomics pipeline and, more recently, the end-to-end deep
learning algorithms. Radiomics is mostly used in limited data settings
which was mostly the case in the early days of medical image analy-
sis with Al In recent years, the availability of larger medical imaging
datasets has increasingly resulted in a transition towards deep learning
approaches.

Radiomics

Radiomics refers to the extraction and analysis of large amounts of quan-
titative imaging features [145]. The aim is to convert medical images into
quantitative mineable data and to make current radiological practice,
which is often more qualitative, quantitative and standardised. In other
words, many quantitative features are extracted from the 2D or 3D med-
ical images which can then be analysed by machine learning algorithms
to find correlations with certain disease characteristics such as prognosis
and disease type. When the relation between image features and genomic
patterns are investigated one often refers to radiogenomics. The typical
radiomics workflow consist of a segmentation, feature extraction and
analysis step as illustrated in figure 3.10.

To extract radiomics features, the structures of interest need to be
segmented. This is often done manually by an experienced radiologist or
with (semi-)automatic segmentation algorithms. From these delineated
structures, many features can be extracted describing its shape, volume,
texture, intensities etc. The last step is then to analyse the extracted
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Figure 3.10: Ilustration of the radiomics workflow.

features. This often starts by removing redundant and irrelevant features
to select a minimal subset of highly predictive features with respect to
the considered task. One can use specific features selection algorithms
or find the features that result in the best performance of the subsequent
machine learning model. For final prediction, usually more traditional
machine learning algorithms are used like random forests and support
vector machines.

There are several challenges to the radiomics approach regarding
imaging, segmentation, feature extraction and efficiency. First of all,
there is a large variety in scanners and imaging protocols between differ-
ent institutions resulting in strongly differing image characteristics such
a3 resolution, contrast, noise, slice thickness, intensity values etc, These
differences have a strong impact on the extracted radiomics features
reducing robustness and generalisability of the trained models across
different centres. Therefore, standardised imaging protocols are preferred
and data from different sources should be normalised both in space and
intensity.

Secondly, since features such as shape are based on the segmentation
masks, accurate and reproducible delineation is of crucial importance.
Manual segmentation suffers from interreader variability and is labour
intensive making it unfeasible for large databases. (Semi-)automatic seg-
mentation algorithms are therefore increasingly developed. Training and
evaluation of these algorithms is often done using manual delineations
making the assessment of their true accuracy difficult. For this reason
consistency and reproducibility might be more important properties for
radiomics analysis. To this end, manual-interference should be min-
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imised.

Thirdly, a vast amount of features can be defined and extracted. Con-
sequently many of the extracted features can be redundant or irrelevant
for the task at hand. As seen in chapter 2, too many features can result
in overfitting and proper feature selection is therefore very important.
At the same time, the features are hand-engineered and defining the
optimal features for a certain task is not straightforward. This way,
import information in the medical images might be missed.

Finally, the entire pipeline of (manual) segmentation, features extraction
and analysis can be time-intensive which is often not desired in clinical
applications.

Deep Learning

To address the above challenges associated with radiomics, there is a
transition towards the use of end-to-end deep learning approaches. They
directly receive the medical images as input and provide at the output
the desired outcome prediction. Often the workflow is still split into a
segmentation and classification part to allow the prediction algorithm
to focus on the relevant regions of interest. However, no manual feature
extraction is necessary as the deep learning networks automatically learn
the most optimal features. Both in the segmentation and classification
stages, deep networks can pave the way for state-of-the-art, unbiased,
fast and automatic medical image analysis.

The challenge with deep learning on the other hand is the requirement
of even more data to train the complex (3D) networks. Large datasets are
not always available and strongly application dependent. Moreover, deep
learning often lacks interpretability. In radiomics, the features used by
the model to make a certain prediction can be identified and interpreted
whereas deep learning is seen as a black box. Hence, although there
is an increasing use of deep learning approaches to achieve state-of-the-
art performances, radiomics is still often employed when limited data is
available and insight in the decision process is necessary.

In chapter 8 we perform a comparison between radiomics and deep fea-
tures from a pre-trained CNN for brain tumour grading. The remaining
part of this dissertation focusses on deep learning.
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3.4.2 Segmentation

As discussed in previous section, segmentation of structures of interest is
an important task in medical image analysis. It is not only an important
pre-processing step to improve further classification and diagnosis, it
is also relevant for therapy planning and assessing therapy response.
Automatic segmentation has many advantages compared to labour in-
tensive manual segmentation suffering from interreader bias and low
reproducibility and is therefore widely investigated [146-148].

Where the early segmentation systems used region-growing, cluster-
ing and traditional machine learning approaches based on hand-crafted
features, deep learning approaches now dominate the state-of-the-art
in medical image segmentation. The most well-known CNN architec-
ture for medical image segmentation is U-Net originally proposed by
Ronneberger et al. [48] for segmenting neuronal structures in electron
microscopy stacks and cell segmentation in light microscopy images. U-
Nets and its modifications are the state-of-the-art architectures in many
segmentation tasks.

Milletari et al. [149] proposed a 3D variant of the U-Net architecture,
called V-Net, with residual blocks in the encoding and decoding paths for
prostate segmentation in MRI. They used a novel cost function to train
de model based on the Dice score (see section 2.2.4). This allows a more
balanced evaluation of segmentation performance in case the structure
of interest is much smaller compared to the entire image. Since then,
Dice loss is one of the most used cost functions for segmentation tasks.
They trained and evaluated their model on the PROMISE12! dataset of
the MICCAI Prostate MR Image Segmentation challenge organised in
2012 and reached an average Dice score of 87%.

A self-configuring deep learning method for medical image segmen-
tation, called nnU-Net was proposed by Isensee et al. [150]. It auto-
matically adapts pre-processing steps, network architecture (2D, 3D or
cascaded U-Net), training and post-processing depending on the task
and dataset properties. nnU-Net achieves state-of-the art results in
many biomedical segmentation challenges and won first place in the
Medical Segmentation Decathlon? organised in 2018 [151]. The aim
was to evaluate the generalisability of a segmentation algorithm across

'https: //promisel2.grand-challenge.org/Home/
http:/ /medicaldecathlon.com
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many different tasks instead of designing specialised solutions for one
specific task. The challenge includes segmentation of 10 structures: liver,
colon, pancreas and lung tumours in CT, brain tumours and prostate in
multi-modal MRI, hippocampus and cardiac in mono-modal MRI and
hepatic vessels and spleen in CT. Several segmentation examples from
the Medical Segmentation Decathlon are included in figure 3.11.

In chapters 7 and 9, brain tumour segmentation will be covered in
more detail.

(a) (b)

Figure 3.11: Segmentation examples from the Medical Segmentation De-
cathlon [151]. (a) Hepatic vessel (blue) and tumour (green)
in CT. (b) Lung tumour (green) in CT. (c) Pancreas (blue)
and tumour (green) in CT. (d) Left ventricle (green) in MRI.
(e) Spleen (green) in CT. (f) Prostate peripheral (blue) and
transitional (green) zones in MRI.

3.4.3 Detection and diagnosis

Computer-aided detection consists of localising organs or abnormalities
such as lesions. It can be seen as a pre-processing step followed by further
diagnosis of the found region of interest (ROI). Note that some of the
discussed studies may overlap with the subject of segmentation covered
in previous section.
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Chest pathology

One of the most widely studied topics is lung nodule detection in low-
dose CT scans which is an important step in identifying early stage
lung cancer [152]. Early detection reduces lung cancer mortality and
screening programs are increasingly implemented. As interpretation of
lung CT scans to find small lung nodules is tedious, error-prone and time
consuming this puts a lot of pressure on radiologists. Different algorithms
for automatic lung nodule detection were compared in the LUng Nodule
Analysis 2016 (LUNA16) challenge [153]. This challenge made use of the
publicly available LIDC-IDRI dataset containing 888 chest C'T scans with
lung nodule annotations performed by four radiologists [154, 155]. Most
of the proposed methods consist of two stages: a candidate detection
stage and a false positive reduction stage. The candidate detection stage
typically makes use of a 2D (slice-level) or 3D U-Net architecture and
often has a high sensitivity at the cost of many false positives. Therefore,
the false positive reduction stage additionally classifies the found ROIs
as a true nodule or not using standard classification CNN architectures.
Through the combination of different solutions, a sensitivity of over 95%
was achieved at less than 1 false positive per scan.

To analyse screening CT scans for lung cancer, the found nodules with
nodule detection algorithms need to be classified according to malignancy
[152]. Many different types of algorithms have been proposed for benign-
malignant pulmonary nodule classification including more traditional
radiomics approaches as well as 2D or 3D convolutional neural networks.
Diagnosis of lung cancer based on low-dose CT was the topic of the
2017 kaggle Data Science Bowl 3. The top ten submissions all used deep
learning algorithms often with a similar approach as for lung nodule
detection. Figure 3.12 shows an illustration of a typical lung cancer
screening pipeline with 3D CNNs. The winning algorithm consisted of
two modules: a 3D region proposal (nodule detection) network and a
second module evaluating the cancer probabilities for the five detected
nodules with highest detection confidence [156]. Both modules made use
of a modified U-Net architecture. Few years later, google researchers
published an end-to-end lung cancer screening algorithm using [157].
They employ a 3D inflated inception architecture [158] which builds
upon the inception network for 2D image classification pre-trained on
ImageNet but inflates the filters into 3D. Their model achieves state-of-

3https:/ /www.kaggle.com/c/data-science-bowl-2017
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the-art performance (AUC of 94%) on the National Lung Cancer Screen-
ing (NLST) dataset [159] containing 6716 cases and on an independent
clinical validation set of 1139 cases. This performance was on par or
even outperforming six radiologists.

Other applications of Al in chest pathology include diagnosis of pul-
monary embolism, tuberculosis, airway diseases, interstitial lung disease
and others [160].
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Figure 3.12: Illustration of a typical lung cancer screening pipeline consisting
of a lung nodule detection and a malignancy classification stage.
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Recently, medical imaging such as X-ray and CT have played an
important role in diagnosis and management of COVID-19. Many ar-
tificial intelligence tools have been developed and contributed to im-
prove the safety, efficiency and accuracy of the imaging workflow to fight
COVID-19 [161-168]. Murphy et al. [161] have proposed an Al system
to detect COVID-19 pneumonia in chest X-rays. After pre-processing
consisting of image normalisation and lung segmentation using U-Net,
a CNN was used for patch- and image-level classification. The network
was pre-trained to detect tuberculosis and subsequently fine-tuned to
detect pneumonia in general and COVID-19 pneumonia. FEvaluation
on a test dataset of 454 chest radiographs from an independent Dutch
hospital shows an AUC score of 0.81 which was comparable to the per-
formance of six chest radiologists. Prokop et al. [169] aimed to introduce
a standardised reporting system for CT of COVID-19. They assess the
suspicion of COVID-19 infection of a scale from 1 (very low) to 5 (very
high). An Al tool to automatically asses CO-RADS score and extend of
infection was proposed by Lessmann et al. [165]. The system consisted
of three successively applied deep learning algorithms performing lobe
segmentation, lesion segmentation and CO-RADS scoring respectively.
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Pulmonary lobe segmentation was performed using a two-stage U-Net
[170]. For segmentation of ground-glass opacities and consolidation in
the lungs, a 3D U-Net was used built with the nnU-Net framework [150].
It was trained on 108 scans with corresponding manual delineations. By
computing the percentage of affected parenchymal tissue, the severity
score could be assessed. To determine the CO-RADS score, again the
3D inflated inception architecture [158] was employed.

Breast cancer

Another well researched use case of Al in radiology is breast cancer
screening [171, 172]. Randomised trials show reduced mortality from
breast cancer after mass screening with mammography leading to a
widespread implementation of screening programs. This results in an
increased workload for radiologists but also a lot of data. Mammography
reading, i.e. finding masses and/or calcifications and identifying them as
benign or malignant, is complex and knows large inter and intra-observer
variations leading to missed lesions but also to many false positives. False
positive testing leads to additional healthcare costs and emotional stress
for patients and family. To reduce the error rate, blinded double-reading
by two independent readers was introduced in many European countries,
increasing the workload even further.

A large publicly available dataset for computer-aided breast cancer
screening is the Curated Breast Imaging Subset of the Digital Database
for Screening Mammography (CBIS-DDSM) on TCIA [51, 173, 174]. It
contains mammography data from 1566 participants with corresponding
ROI segmentations and verified pathology information. In 2017, the
digital mammography DREAM challenge was organised aiming to de-
velop algorithms that can improve early breast cancer detection [175].
Similarly to lung nodule analysis, most state-of-the-art CAD systems for
breast cancer screening rely on deep learning algorithms and consist of
a candidate detection stage and a classification stage.

Kooi et al. [176] compared a state-of-the-art CAD system relying
on manually designed radiomics features with a convolutional neural
network (see figure 3.13). Both systems were trained on a large dataset of
45000 mammograms and used the same candidate detection approach.
To obtain lesion candidates, a random forest classifier was trained on
pixel based first and second order gaussian kernel features. An AUC
score of 91% and 93% was achieved with the radiomics approach and
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with the CNN respectively. Through combination of the CNN with the
manual features, the performance could be improved to an AUC of 94%.
Comparison with certified radiologists showed no significant difference in
performance.

Additional features —_
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Figure 3.13: Breast cancer mammography screening using a convolutional
neural network. Image adapted from Kooi et al. [176] © 2016,
with permission from Elsevier.

The first UK company receiving a CE mark for deep learning in radi-
ology is Kheiron Medical Technologies*. Their mammography screening
system called Mia (Mammography Intelligent Assessment) is allowed to
be used as a second reader in breast cancer screening. The deep learning
algorithm was trained on more than one million screening mammography
images.

Google researchers have presented an Al system that is able to out-
perform human experts in breast cancer prediction [177]. They proposed
an ensemble of three deep learning models operating on different levels
of analysis (lesion level, individual breast and the full case). The lesion
level model consists of a detection (RetinaNet [178]) and classification
stage (MobileNetV2 [179]). The lesion level scores are combined to
produce a case level score. For the breast and case level models, ResNet-
50 image feature extractors were employed followed by per-breast and
per-case concatenation of the feature vectors and further classification.
The models were trained and evaluated on data from the UK and USA.
Compared to the average radiologist, the Al system achieved a greater
AUC score with an a margin of 11.5%. Including the AI system in a
double reading process showed that the performance was maintained and
led to a reduction in workload of the second reader by 88%. The work

“https: //www.kheironmed.com /meet-mia,
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by McKinney et al. [177] has, however, been criticised for the opacity
and lack of reproducibility of their methods [180].

Cardiovascular diseases

Various imaging techniques play an important role in the diagnosis and
management of cardiovascular diseases (CVD) including echocardiogra-
phy, CT, MRI and nuclear medicine [181]. Artificial intelligence tech-
niques are applied to many cardiac diagnostic applications including
myocardial infarction, cardiomyopathies, coronary artery diseases, valvu-
lar heart diseases etc. [182, 183]. An important step in the detection
and diagnosis of CVD is motion tracking and segmentation of the main
chambers [184-193]. This allows quantification of cardiac morphology
(e.g. ventricle volumes) and cardiac function (e.g. ejection fraction
and wall thickening). Therefore, continuing progress is made for cardiac
segmentation enabled by several ongoing challenges such as the Left Ven-
tricle Full Quantification Challenge (LVQuan)® and the Multi-Centre,
Multi-Vendor & Multi-Disease Cardiac Image Segmentation Challenge
(M&Ms)S.

Zheng et al. [191] proposed an automatic method to classify cardiac
pathologies such as dilated cardiomyopathy, hypertrophic cardiomyopa-
thy, myocardial infarction and right ventricle abnormality based on cine
MRI (see figure 3.14). Given two MR images from a 2D+t cine MRI se-
quence, apparent flow is estimated using a U-Net type network. Through
combination with segmentation, time series of the radius and thickness
of myocardial segments are extracted describing cardiac motion. These
features are then used to diagnose cardiac pathologies with binary lo-
gistic regression classifiers. The model was trained and evaluated on
the Automatic Cardiac Diagnosis Challenge (ACDC) dataset [194] and
achieved an accuracy of 94%.

The use of machine learning for per-vessel prediction of early coro-
nary revascularisation after fast myocardial perfusion SPECT imaging is
studied in Hu et al. [195]. A total of 1980 patients were included from 9
centres in the REFINE SPECT registry. A LogitBoost classifier used 18
clinical, 9 stress test and 28 imaging features to predict early coronary
revascularisation. Compared to standard quantitative analysis (total

Shttps://lvquan19.github.io
Shttps://www.ub.edu/mnms/
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Figure 3.14: Cardiac pathology classification on cine MRI with motion
characterisation. Image from Zheng et al. [191] © 2019, with
permission from Elsevier.

perfusion deficit), an improvement is achieved with the ML classifier
(AUC of 79% versus 71%). The ML algorithm also outperforms expert
interpretation by nuclear cardiologists.

In Betancur et al. [196] the potential of deep learning is investigated
for prediction of obstructive coronary artery diseases from SPECT my-
ocardial perfusion imaging. The study population comprised of 1638
patients from different institutions. Compared to standard quantitative
analysis, the CNN performed better with a per vessel AUC score of 76%
versus 73%.

Abdominal diseases

There has been accelerating progress in automated segmentation, de-
tection and diagnosis of abdominal anatomies and diseases [197-203].
This is facilitated by large public datasets like the Medical Segmentation
Decathlon [151] and DeepLesion [197] databases.

A universal lesion detector in abdominal CT was developed by Yan
et al. [197]. They collected a large-scale dataset composed of CT scans
from 4,427 patients containing 32,120 lesions from various anatomical
sites including lung, liver, lymph nodes, kidney, bone and so on. Their
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proposed lesion detector based on a VGG-16 backbone [45] achieved a
sensitivity of 81% with five false positives per image. Figure 3.15 includes
an example output of the lesion detector.

Figure 3.15: Example of the universal lesion detector proposed by Yan et
al. [197]. The liver lesion, renal cyst and bone metastasis
were correctly identified (green). A bone metastasis was
missed (blue). False positives (red) include normal pancreas,
gallbladder and bowel. Image reproduced with permission from
Yan et al. [197].

AppendixNet, an 18-layer 3D ResNet for detection of appendicitis on
CT exams, has been proposed by Rajpurkar et al. [200]. They showed
that pre-training the network on a large collection of YouTube videos
called Kinetics improved the performance from an AUC of 72% to 81%.
The potential of deep learning for non-invasive and automatic kidney
function estimation based on ultrasound has been demonstrated by Kuo
et al. [201].

Neurological diseases

Application of Al to neuroimaging has seen a lot of interest [204]. Pos-
sible tasks include brain age prediction [205, 206], cortical and cere-
bellum parcellation [207, 208], Alzheimer’s disease classification [209,
210|, schizophrenia classification [211, 212|, intracranial haemorrhage
detection [213, 214], aneurysm detection [215-217| and others. A large
number of studies address brain tumour analysis which will be covered
in detail in part IT of this work.
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Cerebral aneurysms can cause subarachnoid haemorrhages and early
detection is critical for management guidance. Usually CT angiography
is used for cerebral aneurysm examination associated with high sensitiv-
ity. However, because of the small size of cerebral aneurysms, some may
be overlooked during the initial assessment. Yang et al. [217] proposed a
deep learning system for aneurysm detection with CT angiography. The
detector based on an encoder-decoder architecture with convolutional
block attention modules (see figure 3.16) was developed on a large dataset
of 1,068 CT angiograms and evaluated on an external test set of 400 CT
angiograms. They achieved a sensitivity of 97.5% and conclude that the
overall detection performance of radiologists increased with the help of

the algorithm.
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Figure 3.16: The aneurysm detection network proposed by Yang et al. [217].
Image reproduced with permission from supplemental material
in Yang et al. [217] © 2021, RSNA.
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A deep learning model to predict Alzheimer disease using 3F-FDG
PET of the brain was developed by Ding et al. [218]. An InceptionV3
architecture was trained on data from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) [219]. The algorithm achieved an AUC
of 98% with a 100% sensitivity and 82% specificity at average of 75.8
months prior to the final diagnosis. The recent approval by the FDA
(Food and Drug Administration) of Aducanumab, a drug designed to
lower the amyloid plaque burden in the brain should renew the interest
of the medical community for amyloid plaque PET imaging. In this
regard, DL developed for quantifying amyloid burden with increased
accuracy may prove of great value. Further, as several radiotracers are
available for that purpose, the approach proposed by Kang et al. [220]
for translating the results obtained with ['!C]PIB and [‘®F|Florbetapir
into one another, appears highly attractive [220, 221]|.
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Whole-body imaging

Deep learning algorithms are also applied to analyse whole-body PET/CT
scans [222]. In Sibille et al. [223], different CNNs were evaluated to
detect, localise and classify 8F-FDG-avid foci in whole-body 8F-FDG
PET/CT images of patients with lung cancer and lymphoma. The CNNs
were trained and evaluated on a dataset of 629 patients (302 with lung
cancer and 327 with lymphoma). On the test set, the CNN was able to
classify 18F-FDG-positive foci as suspicious or not suspicious of cancer
with an AUC of 99% for lung cancer and 98% for lymphoma. The overall
localisation accuracy was 96.4% for the body part, 86.9% for the specific
region (i.e. organ), and 81.4% for the subregion. A follow up study
evaluated the usefulness and performance of the above CNN in research
and clinical routine [224]. Automatically segmented total metabolic
tumor volumes of diffuse large-B cell lymphoma lesions was predictive
for clinical endpoints such as disease-free survival and overall survival.
Yet the Dice coefficients between manual and automatic segmentations
was only 0.65 in a research cohort and 0.48 in a routine cohort.

Microscopy imaging

Next to the application on non-invasive imaging data, Al techniques are
increasingly applied to digital pathology data [225, 226]. Applications
range from identifying and segmenting individual primitives such as can-
cer nuclei and lymphocytes [227, 228] to slide or patient level detection,
diagnosis and prediction of mutation status [229-234].

A deep learning system to automatically grade prostate cancer biop-
sies according to the Gleason grading standard was proposed by Bulten
et al. [232]. Biopsies were collected from 1,243 patients. The whole-
slide images were pre-processed by previously developed tumour detec-
tion [235] and epithelial tissue segmentation models [236]. After patch
extraction, a U-Net model was trained to classify each pixel into back-
ground, stroma, benign epithelium, Gleason 3, Gleason 4, or Gleason 5.
Volume percentages were calculated to assign the final Gleason score and
Gleason Grade group. The automated deep-learning system achieved a
performance similar to pathologists. Figure 3.17 shows some example
grading results.

In 2020, the Prostate cANcer graDe Assessment (PANDA)” challenge

Thttps://www.kaggle.com/c/prostate-cancer-grade-assessment /overview
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was organised on kaggle using data from Bulten et al. [232] and Strém et
al. [237]. This resulted in the largest publicly available whole-slide imag-
ing dataset containing almost 11,000 bicpsies. Very high performances
were achieved with quadratic weighted kappa scores up to 94%.

Kather et al. [234] show that deep learning algorithms can predict
mutations, molecular tumour subtypes and immune-related gene expres-
sions directly form routine histology images of tumour tissue. They
applied their model on many different cancer types including breast,
prostate, head and neck, lung, pancreatic, colon and rectal, melanoma
and gastric cancer. Architectures pre-trained on ImageNet were fine-
tuned on data from The Cancer Genome Atlas (TCGA)® project.

Overlay legend: Benign Gleason 3 \ Gleason 4 ‘ Gleason &

Figure 3.17: Example results from the deep learning prostate grading
system proposed by Bulten et al. [232]. Image adapted from
supplementary appendix in Bulten et al. [232] @ 2020, with
permission from Elsevier.

3.5 Conclusion

In this chapter we have provided an overview of medical imaging and
the role of artificial intelligence. We started by giving a brief outline of
different medical imaging modalities and the principles behind them.
Positron emission tomography was explained in more detail as PET
detector calibration is the topic of part I of this work. Afterwards, we

®https: / /www.cancer.gov/tcga
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included an overview of state-of-the-art applications of Al throughout
the entire medical imaging chain. Starting with image formation we saw
how Al can improve the quality of the raw acquisition data, advance the
image reconstruction process and further enhance image quality through
post-processing. Furthermore, Al can transform medical image analysis,
helping radiologists meet the rising demand for imaging examinations
and leverage these large amounts of data towards precision medicine.
While challenges remain regarding training data availability, variability
of image quality and interpretability, Al systems already achieve high
performances in segmentation, detection and diagnosis across numerous
anatomical application areas that match or even outperform human
radiologists. We can conclude that AI will have a profound impact on
radiology and will become and important tool supporting radiologists in
their daily work but not replace radiologists.



PART I:

Al IN IMAGE ACQUISITION: PET
DETECTOR CALIBRATION
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4 Neural networks for
positioning of gamma
interactions

In this chapter we perform a comprehensive evaluation on the use of
artificial neural networks to estimate the 3D first interaction position
(Compton or photoelectric) in a monolithic crystal with a size and thick-
ness typical for clinical systems. Using data from optical simulations,
as in a previous study by Stockhoff et al. [80], results are compared
with the nearest neighbour algorithm. Performance is evaluated as a
function of network complexity and amount of training data and we
identify and address potential pitfalls related to neural network training
and evaluation. The content of this chapter is published in an Al publi-
cation: Milan Decuyper et al. “ Artificial neural networks for positioning
of gamma interactions in monolithic PET detectors”. In: Physics in
Medicine and Biology 66 (7 Mar. 2021), p. 075001. 1ssN: 0031-9155.
DOI: 10.1088/1361-6560/abebfc.

4.1 Introduction

In section 3.2.2 we have seen that detecting gamma rays with high
sensitivity and good spatial, timing and energy resolution is the key
challenge in PET detector design. To improve these properties, the
use of monolithic PET detectors is investigated as an alternative to
the pixelated design (see figure 3.7). The main challenge of monolithic
detectors is to develop an accurate and efficient algorithm able to deter-
mine the gamma interaction position from the measured light distribu-
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tion with limited degradation in spatial resolution towards the detector
edges. Several positioning algorithms reaching high spatial resolutions
were already discussed in section 3.3.1. Nearest neighbour positioning
algorithms for example reach state-of-the-art spatial resolutions [60, 79,
80, 239]. However, positioning of an event is computationally expensive
as a distance metric needs to be calculated with a large set of reference
light distributions.

Our aim is to investigate the use of artificial neural networks to design
a gamma, positioning algorithm that achieves a superior resolution and
is computationally more efficient.
One could argue on the necessity of further improving the spatial res-
olution of detectors as there are fundamental limitations due to the
physics of PET (see section 3.2.2). Positron range is the main factor
limiting the resolution of small animal PET systems to 0.54 mm. The
resolution of clinical systems is due to their large bore (diameter of 60
to 80 cm) limited by acollinearity to 1.5-2 mm. Taking into account the
fundamental PET limitations, an intrinsic detector spatial resolution of
1.6 mm is sufficient for a bore diameter of 70 cm [240]. On the other
hand, considering possible applications in organ dedicated and paediatric
imaging, systems with smaller bore diameters down to 35 cm could
benefit from intrinsic resolutions as good as 0.9 mm [241]. Moreover,
when achieving better spatial resolutions than required, there is room
to trade resolution for other parameters e.g.: less readout channels,
inexpensive materials with less light output, detector thickness, etc.
Besides superior resolution, we also aim for computational efficiency
which is necessary to process all events from a large number of detectors
at a sufficient rate (which is rather high in PET). This is important to
limit the compute time and could be a first step towards live reconstruc-
tion.

In this regard, neural networks pose several advantages. First, as
universal function approximators, they can directly infer the 3D position
from the measured light distribution. No feature extraction is necessary
as the networks automatically learn the optimal features from example
data. Second, neural networks with continuous output are not restricted
to a discrete calibration grid. Finally, once trained, inference by forward
propagating events through the network is fast and parallelisable.
Promising applications of neural networks for gamma positioning have
been reported (see section 3.3.1). However, when training neural net-
works, there are many hyperparameters, design choices and vulnerabili-
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ties related to overfitting that should carefully be investigated.

Comparison of spatial resolutions reported in different studies with

varying positioning algorithms is difficult. The measured resolution is
strongly dependent on detector geometry and there is no standardised
practice to evaluate the performance of monolithic detectors. Moreover,
accurate determination of the intrinsic detector spatial resolution of
monolithic detectors is challenging and is for example strongly influ-
enced by the width of the calibration beam. Some groups model the
source dimension as a Gaussian distribution and use deconvolution of
the beam width to report the intrinsic spatial resolution [69, 242]. A
method to measure the intrinsic spatial resolution in monolithic PET
detectors based on the convolution of a Gaussian shaped distribution and
a modified Lorentzian distribution was proposed in Gonzélez-Montoro et
al. [242].
We evaluate the performance of neural networks on the same geometry
and simulation data, acquired with a perfect calibration beam, as in a
previous study using mean nearest neighbour positioning. Moreover, we
employ the same evaluation methods. This allows a direct comparison
between the two positioning algorithms.

4.2 Materials and methods

4.2.1 Detector setup and simulation data

The data used to train the networks is a subset of the data used in
Stockhoff et al. [80]. For convenience of reading, some key aspects will
be repeated here. For full detail we refer the reader to Stockhoff et al.
[80]. A 50 mm x 50 mm x 16 mm LYSO (Lu; gY(.2SiOs) crystal is
simulated with GATE v8.0 (see figure 4.1). The readout of the crystal
is a pixelated 8 x 8 array of 6.07 mm x 6.07 mm SiPM photodetectors.
The photon detection efficiency (PDE) of the SiPMs is set to 75% as in
Stockhoff et al. [80]. Although a PDE of 75% cannot be obtained with
existing commercial SiPMs we opted to use this efficiency as the main
goal of this work is to investigate how neural networks can be used to
position gamma interactions and how they compare to nearest neighbour
positioning. In Stockhoff et al. [80] only a small loss in spatial resolution
is reported with combined readout (16 channels) compared to individual
readout (64 channels). As combined readout (where rows and columns



88  Chapter 4. Neural networks for positioning of gamma interactions

are summed) strongly reduces the cost of electronics, we chose to use the
16 channel readout in this work as well. The surface reflections of the
crystal are defined by the LUT Davis model [243, 244] (entrance face:
polished + optical grease | specular reflector, SMTMESR,; sides: rough
+ black paint; readout/SiPM face: polished + optical grease). The light
distributions are generated by irradiating the detector with a perfectly
perpendicular mono-energetic 511 keV pencil beam source at specific
positions. Two datasets are acquired. First a ‘training dataset’ by
traversing the entire detector in 1 mm steps. Hence events are acquired
in a 49 x 49 grid (blue positions in figure 4.2). In total 10,000 train
events and 2,000 evaluation events per position are acquired. The second
dataset i3 an independent ‘overfitting dataset’ of 10 x 10 intermediate
grid points in the detector centre with an offset of 0.5 mm from the
‘training dataset’ (see figure 4.2). This dataset will be used to evaluate
overfitting of the network on the discrete training grid and contains
2,000 events per position split into a validation and test set of 1,000
events per position. All events are individually standardised to zero and
unit variance. The X, y and z (depth of interaction) coordinates are
given as the position of the first gamma interaction (photoelectric or
Compton interaction) as this is the position we want to recover from the
given light distribution. Additionally, flood source data was acquired
as a rectangular 50 mm x 50 mm 511 keV source with perpendicular
irradiation. A total of 840,000 events was collected for this dataset.

511 keV pencil

16 mm

Figure 4.1: Nlustration of the simulated detector setup.

On a single core each optical simulation takes around 15 hours with
35000 simulated gamma events per calibration position. The Gate .root-
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Figure 4.2: Irradiated positions for the two acquired datasets: a ‘training
dataset’ with positions in 1mm steps across the entire detector
(blue) and an ‘overfitting dataset’ in the detector centre with
positions at an offset of 0.5 mm from the training positions (red).

file size is about 5GB and includes information on every single photon
interaction, energy, time, etc. After extracting only the number of
photons per photodetector pixel each file can be reduced to a file size
of approximately 20 MBs. The simulation ran on multiple cores on a
supercomputer (2 x 18-core Intel Xeon Gold 6240) and could be sped
up by taking advantage of the symmetry of the detector. Only 20% of the
calibration positions needed to be simulated while the rest of the signals
were generated in post-processing steps (see Stockhoff et al. [80]).

4.2.2 Network architecture

A regression artificial neural network is trained to learn the underlying
mapping between the measured light distribution and the first (Compton
or photoelectric) interaction position. The architecture is a multi-layer
perceptron with an input layer, several fully connected hidden layers
and finally the output layer. We train one network to predict both
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coordinates at once instead of separate networks for every direction.
Consequently, the architecture has 16 inputs (channels) and two outputs
(x- and y-coordinates) as illustrated in figure 4.3. A third z-coordinate
can optionally be added to allow DOI prediction as will be explained in
section 4.2.4.

The optimal network architecture should be complex enough to learn
the underlying function. On the other hand, a too complex network
might overfit on the noise or information specific to the training set
and not generalise to new unseen events across the entire detector. To
find the optimal network complexity, different architectures are evaluated
by varying the number of hidden layers (from 2 to 5) and the number
of neurons in each layer (64, 128, 256, 512 and 1024). Every hidden
layer is followed by a leaky ReLU activation function to introduce non-
linearity as it is computationally efficient and does not suffer from the
vanishing gradient problem (see section 2.3.1) [22]. No dropout or batch
normalisation is applied. All networks are trained on a training set
of 1,000 events/position except in section 4.3.2 where the influence of
amount of training data is investigated.

Figure 4.3: Neural Network architecture with 16 inputs, three hidden layers
and two (three) outputs x, y (and z).

4.2.3 Training procedure

As briefly discussed in previous section and in chapter 2, the risk of
overfitting is one of the main challenges when training deep neural net-
works. Besides choosing the optimal network complexity, overfitting can
be reduced by acquiring enough training data. One of the advantages of
using simulation data is that a lot of data can be generated. This allows
us to investigate the required amount of training data by evaluating
the performance of networks trained on a varying number of training
events per calibration position (100 to 8,000 events/position). There
is, however, an additional pitfall related to the calibration setup and
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corresponding training set. Only data from a discrete set of calibration
positions is fed to the neural network. This leads to the potential risk
of overfitting on those discrete positions in the training grid. In that
case, the network will only output those positions and no intermediate
coordinates. When evaluating on an independent test set with data
acquired at the same positions, a very small FWHM would be achieved
and this overfitting could remain unnoticed. Hence very good spatial res-
olutions would be reported while the overall spatial resolution is in reality
inhomogeneous which is unacceptable. As acquiring ground truth data
from all possible positions is not feasible, especially in an experimental
setup, training data remains limited to a discrete set of positions. To
assess and potentially limit this form of overfitting, we use data acquired
at intermediate positions, the red grid in figure 4.2, for validation and
testing. By stopping the training early and by choosing the optimal
epoch based on the validation loss on these intermediate positions, we
can select the best network state before overfitting starts to occur.

Below we report the training strategy used to train all networks.
Different hyperparameters were optimised for performance and fixed
to properly evaluate the effect of network complexity and training set
size. All networks are trained on data that includes both Compton
scattered and non-scattered events. The first (Compton or photoelectric)
interaction position is used as ground truth. Omne epoch is defined as
an iteration over 100 events/position (240,100 events in total) randomly
selected from the total training set. This way, irrespective of the training
set size (varying from 100 to 8,000 events/position), the same number
of events are processed per epoch. This allows a regular check of the
validation performance (after each epoch). Validation after iterating
over the entire train set, potentially 8000 events/position, might be too
late to assess and prevent overfitting. The network weights are optimised
through backpropagation using the Adam optimisation algorithm [25],
mini-batches of size 256 and L1 loss. The initial learning rate was
set to 0.001 which was halved every 10 epochs that the validation loss
did not improve. Early stopping was applied after 40 epochs without
improvement. The networks are implemented in PyTorch [245] and
trained on an 11 GB NVIDIA RTX 2080 Ti GPU.



92  Chapter 4. Neural networks for positioning of gamma interactions

4.2.4 DOI estimation

An advantage of monolithic detectors is that depth-of-interaction infor-
mation is present in the measured light distribution. Hence algorithms
can be trained to infer DOI and thereby more precisely position gamma
interactions. We extended the 2D positioning network from section 4.2.2
to predict DOI by adding a z-coordinate output as illustrated in fig-
ure 4.3. The optimal architecture and number of training events is chosen
based on the results of previous two sections. This architecture is then
trained to predict the 3D first interaction position.

4.2.5 Evaluation

Several metrics are used to characterise the performance of the position-
ing networks. All parameters are calculated on a test set with 2,000
events per position in the training grid (blue grid in figure 4.2) and on a
test set with 1,000 events/position for the intermediate positions in the
detector centre (red grid in figure 4.2). This data includes both Compton
scattered (around 60%) and non-scattered events. A 2D histogram of the
flood source predictions with a bin size of 0.2 mm was created to assess
uniformity. Each metric below is calculated per beam position. Mean
and median values are reported over the entire detector and the centre
region. Results and discussion will focus on the median values to assess
overall positioning performance as outliers can have a large influence on
the average performance metrics.

FWHDM: For every beam position a 2D point spread function (PSF)
of the predicted positions was created with a discretisation bin size of 0.1
mm. A Gaussian was fitted to the line profiles through the maximum
along the x- and y- directions from which the full width at half maximum
was calculated as a measure of the detector’s spatial resolution. For DOI
resolution, the FWHM was calculated from a Gaussian fit to the DOI
error distribution over all events with a bin size of 0.1 mm.

Euclidean Distance: The mean and median 2D or 3D Euclidean
distance between the ground truth beam position and the predicted
positions is calculated for every grid location.

Bias: The bias vector contains both distance as directional informa-
tion on where the algorithm tends to position events from a certain beam
location. Hence it illustrates whether the PSF is centred at the correct
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location or if, for an edge position for example, it is more directed towards
the centre. It is defined as the vector between the ground truth beam
location and the average predicted position. The bias vector magnitude
is reported, and directions are illustrated in a quiver plot.

4.3 Results

4.3.1 Network complexity

In order to find the optimal network complexity, different neural network
architectures are evaluated as a function of number of hidden layers and
neurons in each layer. Figure 4.4a shows the obtained median distance
measures, calculated over the entire detector on the training grid. In
figure 4.4b, the median distance is reported on the intermediate positions
in the detector centre to assess overfitting of the networks on the training
grid. The median FWHM values are shown in figure 4.5 for the same
two regions. When evaluating on the training grid, the distance and
FWHM keep decreasing for increasing network complexity. A median
Euclidean distance of around 0.48 mm and FWHM of 0.44 mm are
obtained with three or more hidden layers and 1024 neurons. On the
intermediate positions, the lowest median FWHM of 0.40 mm is achieved
with three hidden layers of 256 neurons. For more complex networks,
the distance measure saturates and FWHM slightly increases. Overall a
median positioning distance lower than 0.51 mm from the ground truth
location is achieved starting from a complexity of three hidden layers and
256 neurons. A lower distance and FWHM is observed in figure 4.4b and
figure 4.5b compared to figure 4.4a and figure 4.5a. This effect is because
subfigures (b) only include points in the detector centre, where we expect
better performance, while subfigures (a) include points across the entire
detector.

To more closely inspect potential overfitting on the training grid,
median FWHM values over the centre [-5 mm, 5 mm] region are reported
in table 4.1 for both the training grid positions and the intermediate
positions. Additionally, the effect of early stopping through validation
on intermediate positions is investigated. When using training grid data
for validation, the difference in FWHM between train and intermediate
positions is larger, especially for the more complex network with five
layers. The FWHM on intermediate positions increases from 0.41 mm to
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Figure 4.5: Median FWHM [mm]| values of networks with varying number of
hidden layers and neurons in each layer. Error bars represent the
interquartile range.

0.45 mm while a resolution of 0.37 mm FWHM is observed on the train
positions. In case of using intermediate grid points for validation and
early stopping, the FHWM remains 0.39 mm on train positions and varies
between 0.40 mm and 0.43 mm on the intermediate points. Figure 4.6
shows a 2D histogram of the reconstructed flood source positions with the
five-layer network of 256 neurons when using training grid positions for
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validation (figure 4.6a) and when validating on intermediate positions
(figure 4.6b). Without early stopping on intermediate positions, non-
uniform positioning can be observed around z = 0 and/or y = 0.

Table 4.1: Median FWHM [mm]| measures for different network complexities
illustrating the effect of using training grid positions or
intermediate positions for validation and early stopping. The
included networks have three, four or five layers with 256 neurons
each. Values are calculated in the detector centre [-5 mm, 5 mm]
on training grid positions (blue grid in figure 4.2) and intermediate
positions (red grid in figure 4.2).

Training positions Intermediate positions
for validation for validation
Network Train Grid Intermediate Grid Train Grid Intermediate Grid
3L - 256 0.37 041 0.39 0.40
41, - 256 0.38 0.42 0.39 0.43
5L - 256 0.37 0.45 0.39 0.42
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(a) Results when using training grid (b) Results when using intermediate po-
(red grid in figure 4.2) positions for sitions (blue grid in figure 4.2). for
validation and early stopping. validation and early stopping.

Figure 4.6: 2D histogram of predicted positions from a flood source for a
neural network with five layers of 256 neuron each.
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4.3.2 Amount of data

The positioning performance is evaluated as a function of amount of
training events per position for several network architectures. This allows
us to investigate the optimal training set size. Figure 4.7a indicates the
obtained median distance measures calculated on the training grid with
the number of training events varying from 100 to 8,000. The median
distance on the intermediate grid is reported in figure 4.7b. There is
a significant reduction in positioning error from 100 to 1,000 training
events after which the median distance remains stable between 0.48 mm
and 0.52 mm on the training positions and between 0.47 mm and 0.50
mm on the intermediate positions. More complex networks with 512
neurons in each layer achieve slightly lower distances on the training
grid while performance on the intermediate grid remains very similar for
all architectures.
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(a) Results calculated over the entire (b) Results calculated on intermediate
detector on training positions (blue positions in the detector centre 9 X
grid in figure 4.2). 9 mm? (red grid in figure 4.2).

Figure 4.7: Median positioning distance [mm)| of networks trained on varying
number of training events per position. Error bars represent the
interquartile range.

4.3.3 2D Positioning

This section includes a full evaluation of the positioning performance for
a network with three hidden layers of 256 neurons trained on 1,000 events
per position. The mean and median values of the performance measures
explained in section 4.2.5 are reported in table 4.2 on the training grid
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(both for the entire detector and centre region) and on the intermediate
grid. Over the entire detector, a mean and median spatial resolution
of 0.50 mm and 0.46 mm FWHM is achieved. In the detector centre,
spatial resolution improves to 0.40 mm. The 2D positioning distance
from the ground truth location is 1.10 mm on average with a median
value of 0.50 mm. In the detector centre and the whole detector, a mean
bias vector magnitude of 0.05 mm and 0.17 mm is observed respectively.
The performance on the 2,000 test events per position in the training
grid is visualised in figure 4.8. Figure 4.8a shows the 2D histogram of
the predicted positions and figure 4.8b denotes a quiver plot with spatial
resolution as a colour scale and bias vectors as arrows. Higher FWHM
values and a larger bias directed towards the centre is observed near the
edges of the detector. A 2D histogram of the reconstructed flood source
positions obtained with the trained network is shown in figure 4.9.

Table 4.2: 2D positioning performance measures [mm] calculated over
different regions of the detector on the training grid (blue grid
in figure 4.2) and on the intermediate grid (red grid in figure 4.2).

Train Grid Train Grid Intermediate Grid
Entire Detector Centre 30x30 mm? Centre 9x9 mm?

Mean Median Mean Median Mean Median

FWHM 0.50 0.46 0.41 0.41 0.40 0.40
2D Distance 1.10 0.50 1.11 0.48 1.12 0.48
Bias 0.17 0.09 0.05 0.05 0.05 0.04

4.3.4 Including DOI estimation

The network architecture of the previous section is extended with an
additional output to estimate the depth-of-interaction (z-coordinate).
This network is again trained on 1,000 events per position. The 2D
positioning performance is shown in table 4.3. With a mean FWHM, 2D
distance and bias vector magnitude of 0.50 mm, 1.09 mm and 0.17 mm
respectively over the whole detector, performance is very close to that
of the 2D positioning network (see section 4.3.3). The 3D positioning
performance, calculated over the entire detector, is included in table 4.4.
A mean and median 3D distance of respectively 1.53 mm and 0.77 mm is
achieved. The obtained mean and median absolute DOI error is 0.87 mm
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Figure 4.8: Histogram and Quiver plot illustrating 2D positioning perfor-
mance over the entire detector (training grid).
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Figure 4.9: 2D histogram of predicted positions from a flood source
demonstrating uniform positioning of the network.

and 0.39 mm respectively. Figure 4.10 shows the DOI error distribution
with a FWHM of 0.99 mm, calculated through a Gaussian fit (red curve).
A negative DOI error indicates that the event is positioned closer towards
the SiPM array.
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Table 4.3: 2D positioning performance measures [mm]| of the 3D positioning
network, different regions of the detector on the training grid
(blue grid in figure 4.2) and on the intermediate grid (red grid
in figure 4.2).

Train Grid Train Grid Intermediate Grid
Entire Detector Centre 30x30 mm? Centre 9x9 mm?

Mean Median Mean Median Mean Median

FWHM 0.50 0.46 0.42 0.42 0.41 0.41
2D Distance 1.09 0.51 1.11 0.49 1.11 0.49
Bias 0.17 0.11 0.07 0.06 0.05 0.05

Table 4.4: 3D and DOI positioning performance measures [mm| of the 3D
positioning network. Values are calculated over the entire detector
on training positions (blue grid in figure 4.2).

Mean Median

3D Distance 1.53 0.77
Absolute error DOI  0.87 0.39
FWHM 0.99

4.3.5 Computational complexity

Computational complexity of the positioning algorithm is important to
process events at a sufficient rate. Measured light distributions from
incoming gamma, rays are processed by forward propagation through the
network. This process is parallelisable and can be very fast, especially
when using powerful GPUs. For a network with 16 input channels, three
hidden layers of 256 neurons with ReLLU activation and three outputs,
positioning one event takes 272,640 FLOPs. To assess the event rate that
can be achieved with the Nvidia RTX 2080 Ti GPU, we propagated 100
million events through the network in batches of 100,000 events. The
compute time required by the GPU was 4.7 s resulting in an event rate
of over 21 million events per second. Training the above network took
around 14 minutes on the GPU.
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Figure 4.10: DOI error [mm]| distribution (blue) and Gaussian fit (red)
calculated from events over entire detector on training positions
(blue grid in figure 4.2).

4.4 Discussion

4.4.1 Network complexity

The optimal network architecture is assessed in section 4.3.1 through
evaluation of spatial resolution as a function of network complexity. Fig-
ure 4.4a and figure 4.5a suggest that the best performance measures are
achieved with the most complex network architectures. Hence when eval-
uating on data acquired using the same grid as the network was trained
on, a network with four or five hidden layers of 1024 neurons would
be chosen as the optimal architecture. On the other hand, figure 4.4b
and figure 4.5b reveal that performance saturates and even slightly de-
grades for the most complex networks on test data from intermediate
positions. In terms of median FWHM, a network with three hidden
layers of 256 neurons is now the optimal architecture. This illustrates
the potential pitfall of overfitting on the training grid positions. While
the spatial resolution on the training grid keeps improving for increasing
network complexity, it degrades on intermediate positions resulting in
non-uniform positioning. The optimal network complexity in relation to
overfitting depends on the studied detector geometry and/or the training
grid size. If the network is trained on a smaller grid, it is easier for the
network to start memorising those positions. Consequently, the network
architecture should be carefully chosen depending on the studied detector
setup and overfitting should be examined.

While training the network, we used validation data on intermedi-
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ate positions to select the best network state and stop training when
overfitting starts to occur. This way, we tried to limit the amount of
overfitting even if the chosen architecture would be too complex for the
task at hand. The effect of validation on intermediate positions is shown
in table 4.1 and figure 4.6. When validating on the training grid, the
difference in FWHM between train and intermediate positions is larger,
especially for the complex network with 5 hidden layers of 256 neurons.
Validation on an intermediate grid limits the amount of overfitting but
there still remains some difference for complex networks. A reason for
this can be that during training, performance on intermediate points
might still improve while overfitting already starts to occur. Instead of
choosing the network state where the validation loss is lowest, one could
select the epoch where training and validation loss is still close. This way,
an overall lower performance is achieved but resolution would be more
uniform for all positions. A second cause is that L1 loss does not penalise
discreteness of the predictions. The loss for discrete or uniform predic-
tions distributed over the same range can be the same. Hence choosing
the optimal network state and early stopping based on performance on
intermediate positions limits but not entirely prevents overfitting on the
training grid. This is also illustrated in figure 4.6. Strong overfitting is
observed in the detector centre without validation on an intermediate
grid (figure 4.6a). Using intermediate points for validation considerably
reduces the non-uniform positioning in the centre as seen in figure 4.6b.
This also shows that overfitting occurs earlier in the detector centre
than at the edges. Acquiring data at intermediate positions in the
detector centre is therefore sufficient to notice overfitting which limits
the additional calibration time needed to acquire the overfitting dataset.

4.4.2 Amount of training data

The performance as a function of the amount of training data is denoted
in figure 4.7. An improvement in positioning distance from the ground
truth is observed from 100 to 1,000 training events per position. For
more training events, performance remains stable with small variations
within a range of 0.02 mm. These variations are similar to those expected
due to differences in initialisation and the stochasticity of training neural
networks. For more complex networks with hidden layers of 512 neurons
we again see a lower median distance on the training grid (figure 4.7a).
Performance on the intermediate grid (figure 4.7b) however is similar for
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all networks. These results show that 1,000 training events per position
are sufficient to reach the limit of what the neural network is able to infer
from data of the simulation setup in this study. Furthermore, taking
into account the higher acquisition time when requiring more training
events, we have selected 1,000 as the optimal number of training events
per position. In an experimental setup, more data might be required due
to additional noise from various sources (e.g. electronic noise, scintillator
intrinsic activity etc.) in the data.

Based on the results in sections 4.3.1 and 4.3.2, the architecture with
three hidden layers of 256 neurons trained on 1,000 events per position
was chosen as the optimal network. Results included in sections 4.3.3
to 4.3.5 are therefore obtained using this network.

4.4.3 2D Positioning

A full 2D performance evaluation of the chosen network is included in
section 4.3.3. A very good average spatial resolution of 0.5 mm FWHM
is achieved across the whole detector and 0.41 mm without the 10 mm
border region. As illustrated in figure 4.8, performance degrades towards
the edge of the detector where a higher FWHM and a larger bias directed
towards the centre is observed. Estimating the interaction position for
gamma rays at the edge is more difficult due to truncation of the light
distribution. Additionally, as the training data ranges between -24 mm
and 24 mm, the network learns to only make predictions within this
range. Consequently, the bias is not compensated by predictions beyond
the edge positions and therefore directed towards the centre. Evaluation
on the intermediate grid shows that the network is not overfitting on the
training positions. This is also illustrated by the flood map in figure 4.9,
showing uniform positioning across the detector.

A previous paper by Stockhoff et al. [80] evaluates the spatial res-
olution with a mean nearest neighbour algorithm for the same optical
simulation setup. In total 20,000 events per training grid position were
used to calculate the reference light distributions which were interpo-
lated to a 0.25 mm grid. Performance was evaluated for different SiPM
readouts with 3 mm (32 channels) and 6 mm (16 channels) pixels. With
the same readout as in this study, the reported mean FWHM and 2D
distance measures are 0.48 mm and 1.73 mm respectively in the central
10 x 10 mm? region of the detector. The performance over the whole
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detector is reported for the 32 channel readout with 3 mm pixels. A mean
FWHM of 0.56 mm and 2D distance of 1.41 mm is achieved. Hence with
neural networks, a performance improvement of 11% in FWHM can be
obtained even with less input channels. In the detector centre, with
the same SiPM readout, the mean FWHM improves with 17%. When
comparing 2D histogram plots of positioned events across the 49 x 49
calibration grid, a much more uniform positioning and less artefacts are
observed with the neural network.

4.4.4 Including DOI

The 2D positioning network is extended with an additional z-coordinate
output. We believe that the features or parameters learned by the
network to accurately predict the 2D position are also appropriate for
DOI estimation and therefore no additional complexity or amount of
data is necessary when adding a third coordinate as output. Evaluation
of the 2D positioning performance (see table 4.3) indicates that adding
DOI almost has no effect on the achieved 2D spatial resolution. Perfor-
mance measures are very close to those obtained with the 2D positioning
network (table 4.2). Events are on average positioned 1.53 mm from the
ground truth 3D first interaction position. The mean absolute DOI error
is 0.87 mm and the DOI error distribution has a FWHM of 0.99 mm as
depicted in figure 4.10. The negative DOI error tail is longer indicating
a bias towards deeper DOI estimation. This is possibly due to Compton
scatter as will be discussed in next chapter. Compton scatter could
also explain the large differences between the mean and median distance
metrics suggesting the presence of strong outliers.

In Stockhoff et al. [80], DOI is incorporated by calculating the ref-
erence light distributions from each calibration position for six different
depth layers. To estimate the 3D interaction position, test events are
compared with reference signals from all positions and all six depth
layers. Consequently, DOI estimation is limited to a discrete set of 6
possible depths. For the central 10 x 10 mm? region of the detector, a
mean absolute DOI error is reported of 1.6 mm. With neural networks,
no discretisation into a set of possible depths is necessary and a contin-
uous DOI value can be inferred. This way an improvement in DOI error
is achieved of almost 46%. Moreover, the continuous DOI coordinate
can be estimated by only adding one additional output neuron to the
architecture used for 2D positioning. To increase the precision of DOI
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estimation with nearest neighbour more DOI layers have to be added.
This, however, increases the computational cost and amount of events
that need to be acquired as every layer should contain enough events
[80]. The number of DOI layers also influences the planar 2D positioning
accuracy with the nearest neighbour approach while for neural networks
the 2D resolutions remains very similar as shown in table 4.3.

These simulation results demonstrate the ultimate achievable reso-
lution. In an experimental setup, several factors can degrade resolution
such as the calibration beam diameter, lower photon detection efficiency,
intrinsic activity of L(Y)SO, additional noise etc. However, it illustrates
how neural networks can be trained and used to position gamma rays
with very good spatial resolutions that surpass current state-of-the-art
algorithms such as mean nearest neighbour. In chapter 6, neural net-
work positioning performance will be evaluated on experimental data
and contributing factors degrading spatial resolution will be assessed in
chapter 5. The approach of DOI estimation adopted in this study is not
directly transferable to an experimental setup. No accurate ground truth
depth information of the first interaction can be determined to train the
neural network on. Different techniques are investigated to derive DOI
information for experimental data [81, 246, 247]. For example, similar
to the nearest neighbour approach, DOI could be inferred by dividing
events into different depth layers based on variance of the measured
light distribution. Furthermore, ground truth DOI data can also be
acquired through side irradiation. However, the strong attenuation of
the large crystal would result in events being mainly located at the
irradiated crystal edge. This can significantly influence DOI estimation
performance for events located in the detector centre.

4.4.5 Computational Complexity

The very high event rate of more than 21 million events per second
shows that positioning with neural networks can be very fast with ap-
propriate hardware. Using GPUs, positioning is fast enough to process
all events from a large number of detectors. This is especially beneficial
in total body PET systems or to allow live reconstruction. With mean
nearest neighbour positioning, an event is positioned by calculating a
distance metric with a large set of reference signals. In the detector
setup of this work there are 193 x 193 reference positions per DOI
layer after interpolation to a step size of 0.25 mm. This results to in
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total 223,494 reference signals. When positioning events on an HPC
cluster (2 x 18-core Intel Xeon Gold 6140) with the python scikit-learn
KNeighborsClassifier algorithm, an event rate of around 20,000 events
per second is achieved. Although the event rate is strongly dependent
on the used hardware and algorithm implementation, this shows that
positioning with neural networks is significantly faster than with mean
nearest neighbour positioning.

4.5 Conclusion

In this study, we investigated the use of neural networks for 3D gamma
ray positioning in a large monolithic crystal using optical simulation
data. Performance was assessed as a function of network complexity
and amount of training data. Results show that networks should not
be too complex to avoid overfitting and be designed with respect to
the calibration setup. Through the use of validation data acquired
at intermediate positions that are not in the training set, we could
recognise and limit the risk of overfitting on the training grid. Optimal
performance was achieved with a network containing three hidden layers
of 256 neurons trained on 1000 events per position. Results show that
a very high spatial resolution can be achieved, superior to mean nearest
neighbour positioning. Finally, forward propagation of events through
the network is fast, especially when using GPUs.
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5 Degrading factors

In previous chapter, we have described how neural networks can be
trained to position gamma interactions in monolithic PET detectors.
Results on simulation data indicate state-of-the-art spatial resolution,
superior to mean nearest neighbour positioning. It remains to be in-
vestigated which factors influence and potentially degrade the 3D posi-
tioning performance of neural networks. Some of these factors are al-
ready mentioned such as light truncation and reflections near the crystal
edges resulting in degradation of spatial resolution towards the detector
borders. This effect was visualised in figure 4.8b, showing the spatial
resolution in FWHM across the entire detector. Other potential factors
are related to non-idealities which are not modelled in the simulation
data like lower photon detection efficiencies, varying SIPM gain, intrinsic
activity of L(Y)SO, additional noise in the electronics etc. In this chapter
we investigate two factors influencing the spatial resolution: intra-crystal
Compton scatter and width of the calibration beam.

5.1 Introduction

Compton scatter

In PET detectors, gamma rays are absorbed by the scintillation crystal
and the absorbed energy is re-emitted in the form of light. There are
several mechanisms in which photons can interact with matter where the
most important types are photoelectric absorption, Compton scattering
and pair production [55]. The predominant interaction types depend on
the atomic number of the material and the energy of the incident photon.
The energy of annihilation gamma rays (511 keV) is below the energy
threshold for pair production (1022 keV). We will therefore only consider

107
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photoelectric absorption and Compton scattering.

In case of photoelectric interaction, the total energy of the photon is
absorbed by an atom. The absorbed energy results in the ejection of
an electron with a kinetic energy equal to the difference between the
incident photon energy and the binding energy of the electron. This is
the desired form of interaction in the crystal as the photon disappears
and only undergoes one interaction that generates the measured light
distribution.

Compton scatter refers to the collision of a photon with an electron. As
a result, the photon is deflected with a scattering angle 8. A part of
the photon energy, related to the scattering angle 6, is transferred to
the electron which relaxes by emitting the energy in the form of light (in
case of scintillation material). The probability distribution of the photon
scattering angle is described by the Klein-Nishina formula [248] and is
illustrated in figure 5.1. The relation between scattering angle and the
transferred energy is shown in figure 5.2 and given by equation:

Ey
14 £0(1 - cos )

MeC

Esc =

with E,. the energy of the scattered photon and Ej the energy of the
incident photon. It is observed that forward scattering with small angle
is more likely than backward scattering for 511 keV photons. Moreover,
a higher energy is transferred to the electron with increasing scattering
angle. Hence the amount of visible light that is emitted in the crystal
through Compton interaction depends on the scattering angle and small
angle scattering with little light output is more probable.

Intra-crystal Compton scattering complicates the determination of
the correct line of response. Gamma rays can Compton scatter one
or multiple times before final photoelectric absorption as depicted in
figure 5.3. In L(Y)SO detectors, typically around 60% of the gamma,
rays undergo Compton scatter [250]. The light yield from Compton
interaction is often small compared to photoelectric interaction due to
the likelihood of small angle scattering (see figures 5.1 and 5.2). Dis-
cerning this small Compton light yield within the total light distribution
is difficult and recovering the first interaction position, necessary to
resolve the correct LOR, is therefore more challenging for these events.
Especially when photoelectric absorption occurs underneath the Comp-
ton interaction position as the light distributions of these interactions
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Figure 5.1: The Klein-Nishina distribution of photon scattering angles for

different incident photon energies. Incident photon arriving from
180° angle. Image from [249)].
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Figure 5.2: Relation between scattering angle and the energy FE,. of the
scattered photon and kinetic energy E. of the recoiling electron
after Compton scattering of an incident photon with energy Fy
= 511 keV.

overlap. In this case, the 2D coordinates {x,y) remain the same but
DOI estimation on the other hand will be affected considerably. The
photoelectric interaction closer to the photodetector causes the light
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distribution to be more narrow resulting in a deeper DOI estimation.

LYSC Crystal

Gamma ray.,

SIPM array

Figure 5.3: Illustration of & gamme ray undergoing two Compton interactions

(red stars) with small light yields before final photoelectric
absorption (blye star).

Mitigating the effect of Compton scatter on positioning accuracy has
been investigated in pixelated PET detectors through intercrystal scatter
identification [251-253|. Intercrystal scatter refers to the proces where
a photon first Compton interacts in a certain crystal element before ab-
sorption in a different (neighbouring) crystal leading to misidentification
of the true LOR.

There is only limited research on assessing and mitigating effects of
Compton scatter in monolithic PET detectors and most existing posi-
tioning algorithms are not optimised to handle Compton scatter.

In the mean nearest neighbour approach, for example, reference light
distributions are calculated using the mean gignal over all events acquired
at a beam location (both Compton scattered and pure photoelectric) [80].
Hence effects of Compton scatter are averaged out and MNN does not
take Compton scatter into account. Stockhoff et al. [80] report much
lower DOI errors when excluding Compton scattered events from the
dataset.

In Li et al. [254], spatial resolution is evaluated separately with and with-
out Compton scatter using maximum likelihood estimation. Simulation
data was acquired for a 49.2x49.2x15 mm?® LYSO crystal with a 12x12
SiPM array placed at the entrance side of the detector. They show that
Compton gcatter degrades 2D spatial resolution from 0.80 mm to 0.86
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mm FWHM and DOI resolution from 1.05 mm to 1.19 mm.

Iborra et al. [84] trained neural networks to predict the 3D location of
the photoelectric interaction. They state that poor results were obtained
when evaluating the entire process (training + testing) on predicting the
first (Compton or photoelectric) interaction position. Attempts were
made to train classification networks that separate Compton scattered
from pure photoelectric events with no success. They concluded that
the deviations in light distribution caused by Compton scatter are too
weak to determine the first interaction position and therefore trained the
networks to predict the final photoelectric interaction location.

The neural networks in chapter 4 are trained to predict the first
(Compton or photoelectric) interaction position. Hence the used sim-
ulation data consist of both Compton scattered and pure photoelectric
events. In the simulated LYSO crystal, around 60% of the gamma rays
undergo one or more Compton interactions before the final photoelectric
absorption. Hence a majority of events are Compton scattered. Using
simulation data, the exact number of interactions and their positions are
known which allows to investigate the degrading effect of Compton scat-
ter on the positioning performance of neural networks (see section 5.2).
Moreover, we examine whether this degradation can be mitigated using
Compton scatter detection neural networks and positioning networks,
specifically trained for Compton scattered events.

Calibration beam width

In the simulation setup of chapter 4, data was acquired by irradiating
the detector with a 511 keV perfect beam source. This means that the
emitted gamma rays do not deviate and exactly enter the crystal at
the transverse beam location. In an experimental setup, however, it is
difficult to replicate this perfect calibration beam with sufficient count
statistics. Using a collimator, radiation from a source is collimated
into a beam with a certain beam diameter (typically around 1 mm)
as illustrated in figure 5.4. Smaller beam widths lead to more precise
irradiation but increased acquisition time as it takes longer to acquire a
sufficient amount of events.

This beam width results in a broader spread of events acquired at
a certain beam location and therefore a measured spatial resolution
(FWHM) that is larger than the detector’s intrinsic spatial resolution.
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Figure 5.4: Illustration of an experimental calibration setup with a non-
perfect collimated beam source. The collimated beam has a
certain angular spread resulting in an increasing diameter deeper
into the crystal.

For this reason, a degradation in 2D spatial resolution is measured in
an experimental setup versus simulation while the intrinsic resolution
could be the same. As a consequence, accurate determination of the
intrinsic detector spatial resolution is difficult. Some research groups
model the source beam profile as a Gaussian distribution and use decon-
volution of the beam diameter to report the intrinsic spatial resolution
[69, 242]. In Gonzalez-Montoro et al. [242], the intrinsic spatial resolution
in monolithic PET detectors is determined based on the convolution of
a Gaussian shaped distribution and a modified Lorentzian distribution.

A non-perfect beam source can also have an effect on the calibration
of the positioning algorithms. In case of mean nearest neighbour po-
sitioning, the average detector response is calculated over many events
acquired at a beam location. Since the beam spread is symmetrical, a
broader peak will be observed but the peak location will remain the same.
It is expected that this will not have a big influence on the obtainable
intrinsic spatial resolution [255]. For neural networks, on the other
hand, the beam width could have an influence on the 2D positioning
accuracy. All events acquired at a beam location receive the same label
(the beam coordinates) even though they possibly enter the detector at
a position that deviates within the range of the beam width diameter
becomes broader deeper into the crystal (see figure 5.4). Training neural
networks on this data with slightly ‘wrong’ labels introduces additional
noise in the training updates which can degrade the obtained positioning
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performance.

In section 5.3, the effects of calibration beam width on the spatial
resolution of neural networks will be examined. To this end, a source
beam with a diameter of 0.6 mm is modelled in the same simulation setup
of chapter 4 and simulation data with a non-perfect beam is acquired.

5.2 Compton Scatter

In this section, we investigate the degrading effect of Compton scatter
on the positioning performance of gamma interactions in monolithic
PET detectors with neural networks. Additionally we examine whether
this adverse effect can be mitigated using scatter specific positioning
networks or scatter identification networks. The contents of section 5.2.1
were published in Milan Decuyper et al. “Artificial neural networks for
positioning of gamma interactions in monolithic PET detectors”. In:
Physics in Medicine and Biology 66 (7 Mar. 2021), p. 075001. ISSN:
0031-9155. poI: 10.1088/1361-6560/abebfc

5.2.1 Influence on spatial resolution

Methods

The same 3D positioning network is used as obtained in section 4.2.4.
This network was trained on the entire simulation dataset containing
both Compton scattered (“60%) and pure photoelectric (*40%) events.
The positioning performance on all data is included in section 4.3.4.
From simulations, the 3D positions from all (Compton and photoelec-
tric) interactions are known. To assess the adverse effect of Compton
scatter on the positioning accuracy, the spatial resolution is separately
evaluated for Compton scattered and pure photoelectric events. The
same evaluation metrics are used as in section 4.2.5.

We additionally evaluate the evolution of the positioning performance
(3D distance) as a function of 3D scatter distance. The scatter distance
is calculated as the 3D Euclidean distance between the first and final
interaction position. For pure photoelectric events this distance is set to
zero. It is expected that Compton scattered events with a photoelectric
interaction very close to the first interaction will only result in a small
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degradation in positioning performance. On the other hand, events that
have a final photoelectric interaction position far from the first Compton
interaction will have the worst positioning accuracy.

Results

Table 5.1 includes the 2D and 3D positioning performance of the same
neural network as in section 4.3.4, separately evaluated for Compton
scattered and non-scattered events. A large difference in spatial resolu-
tion is observed. For Compton scattered events the median FWHM is
0.66 mm compared to 0.42 mm for non-scattered events. The median 3D
distance increases from 0.40 to 1.59 mm and the FWHM of the DOI error
distribution increases by 150% (from 0.71 to 1.80 mm). Both DOI error
distributions are included in figure 5.5. A much larger negative tail is
observed for scattered events indicating that they are positioned deeper
than their first interaction position. A visual illustration of the influence
of Compton scatter on spatial resolution is shown in figure 5.6 through
separate 2D histogram plots for scattered and non-scattered events.

Table 5.1: 2D and 3D positioning performance of the 3D positioning neural
network with three hidden layers of 256 neurons for Compton
scattered and non-scattered events. Values calculated over the
entire detector on training positions (blue grid in figure 4.2).

Non-scattered Compton scattered
Mean Median Mean Median
2D FWHM 0.46 0.42 0.68 0.66
2D Distance 0.33 0.27 1.66 1.16
2D Bias 0.09 0.07 0.28 0.16
3D Distance 0.49 0.40 2.29 1.59
Absolute Error DOI 0.30 0.22 1.30 0.69
FWHM DOI Error 0.71 1.80

Figure 5.7 shows the evolution of the positioning performance (3D
distance) as a function of 3D scatter distance. The x-axis denotes the
scatter distance threshold where events are discarded with a scatter
distance beyond the threshold. The right y-axis and blue curve denote
the percentage of events that is discarded at each threshold. When
removing events that are scattered further than 11 mm (~5%) or 8 mm
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Figure 5.6: 2D histogram plots of predicted positions over the entire detector
(training grid).

(~10%), the 3D positioning distance improves from 1.53 mm to 1.36 mm
and 1.18 mm respectively.

Discussion

A considerable degradation in positioning accuracy is observed due to
Compton scatter. The median FWHM of 0.42 mm for non-scattered
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Figure 5.7: Evolution of 3D positioning performance and event loss as a
function of 3D scatter distance. Events are removed that are
scattered with a 3D distance between first and final interaction
position that exceeds the scatter distance threshold.

events increases to 0.46 mm for all events (see section 4.3.4) and to 0.66
mm for only Compton scattered events. Furthermore, the FWHM on
scattered data should be considered carefully as the PSFs show much
larger tails, reducing the goodness of the Gaussian fit which makes
the calculated FWHM values less reliable. These tails cause an over-
all blurring of the image that can be visually perceived in figure 5.6.
Compton scatter strongly influences the mean 3D positioning distance
(0.49 mm versus 2.29 mm). When comparing performance on non-
scattered events (table 5.1) with performance on all (scattered and non-
scattered) events in table 4.4, Compton scatter increases the positioning
error with 93%. The difference between mean and median values is also
much smaller for non-scattered events. Most events undergo small-angle
forward scattering resulting in a final photoelectric interaction that is
closer to the SiPM array than the first interaction. As a narrower light
distribution is measured, the network will position the event deeper into
the crystal. This explains the more prominent tail at the negative side
of the DOI error distribution for scattered events in figure 5.5b and
corresponds with other works that assess the effect of Compton scatter
[80, 254]. Note that data is acquired with a perfectly perpendicular
calibration source. In a realistic setup where gamma rays arrive at
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different angles, the degrading effect of Compton scatter on the 2D
positioning accuracy could be even larger.

Discriminating Compton from photoelectric events and removing them
to improve image quality would considerably decrease sensitivity since
the majority of events (around 60%) are Compton scattered. How-
ever, the evolution of 3D positioning distance as a function of scat-
ter distance (see figure 5.7) reveals that performance remains similar
when adding events with small scatter distances (within 2 mm). The
largest fraction of events scatter within a relatively small distance as
shown by the distribution (blue curve) in figure 5.7. Around 64% of the
events are pure photoelectric or scattered within a distance of 2 mm.
Events that scattered further away have a larger degrading effect on
the overall positioning accuracy. As only few events have a very large
scatter distance, the performance eventually saturates to an overall 3D
positioning distance of 1.53 mm. Figure 5.7 illustrates that discarding
a small fraction of Compton scattered events (corresponding with the
worst positioning performance) can already improve the overal spatial
resolution. Training neural networks to identify (far) Compton scatter
and potentially processing them with different positioning networks is
the topic of next sections.

5.2.2 Scatter specific positioning network

Methods

We now examine whether a neural network specifically trained to position
Compton scattered events can improve the positioning accuracy for these
events. Two separate 3D positioning networks are trained: one only on
pure photoelectric events and a second only on events that Compton
scattered at least once. Otherwise the exact same methodology was used
as in sections 4.2.3 and 4.2.4, i.e. the same network architecture (three
hidden layers of 256 neurons), the same number of training events (1000
events/pos.) and intermediate positions for validation. The same metrics
explained section 4.2.5 are used to evaluate the positioning performance.

Results

Table 5.2 includes the positioning performance of the network only trained
on pure photoelectric events. The metrics are separately evaluated on
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non-scattered and Compton scattered events. This allows comparison
with the results in table 5.1 when training a network on all data. On
pure photoelectric events, a median 2D FWHM and 3D positioning error
of 0.39 mm and 0.36 mm is achieved respectively. On Compton scattered
events this degrades to a 2D FWHM of 0.59 mm and 3D Distance of 1.75
mm. Due to the large tails in point spread functions caused by Compton
scatter, the Gaussian fits and consequently the FWHM measures are
less reliable. The distance metrics are therefore more meaningful. The
same evaluation is contained in table 5.3 for the network trained on only
Compton scattered events. With this network a median 3D distance is
attained of 0.48 mm on non-scattered events and 1.61 mm on scattered
events.

Table 5.2: 2D and 3D positioning performance of the 3D positioning neural
network with three hidden layers of 256 neurons only trained
on pure photoelectric events. Performance is included both on
Compton scattered and pure photoelectric (non-scattered) events.
Values calculated over the entire detector on training positions
(blue grid in figure 4.2).

Non-scattered Compton scattered
Mean Median Mean Median
2D FWHM 0.43 0.39 0.61 0.59
2D Distance 0.29 0.24 2.16 1.29
2D Bias 0.05 0.04 0.33 0.24
3D Distance 0.43 0.36 2.93 1.75
Absolute Error DOI 0.26 0.19 1.66 0.75
FWHM DOI Error 0.64 1.66

Discussion

Compared to the results in table 5.1, a similar or even slightly better
performance is achieved on pure photoelectric events with the network
only trained on these events. Performance on Compton scattered events,
on the other hand, is worse. This is not reflected in the (less reliable)
FWHM measures but can be noticed by the distance metrics. As ex-
pected, the network did not learn to take Compton scatter into account
as it is not trained on these events.

The network trained specifically for scattered events achieves a better
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Table 5.3: 2D and 3D positioning performance of the 3D positioning neural
network with three hidden layers of 256 neurons only trained on
Compton scattered events. Performance is included separately for
Compton scattered and pure photoelectric (non-scattered) events.
Values calculated over the entire detector on training positions
(blue grid in figure 4.2).

Non-scattered Compton scattered
Mean Median Mean Median
2D FWHM 0.51 0.48 0.77 0.77
2D Distance 0.39 0.31 1.65 1.17
2D Bias 0.11 0.08 0.30 0.18
3D Distance 0.59 0.48 2.27 1.61
Absolute Error DOI 0.38 0.28 1.27 0.72
FWHM DOI Error 0.87 1.97

positioning accuracy on these events. The obtained performance is,
however, similar to the network trained for all events. On non-scattered

events, the positioning is less accurate compared to the results in ta-
bles 5.1 and 5.2.

We can conclude that training a separate network for Compton scat-
tered events does not improve positioning performance. A network trained
on all data already learns to optimally process both scattered and non-
scattered events. The reduced performance without Compton scatter in
the training data does show that the network learns to identify Compton
scatter and take this into account to obtain a better estimation of the first
interaction position. This can be a reason why neural networks achieve a
better positioning performance than mean nearest neighbour algorithms
as shown in chapter 4. In mean nearest neighbour positioning, the effects
of Compton scatter are averaged out when calculating the reference light
distributions while neural networks are trained on the individual events.

5.2.3 Scatter identification

In previous section, we learned that training scatter specific positioning
neural networks does not improve the positioning performance of Comp-
ton scattered events. Figure 5.7 shows that the overall positioning error
can be reduced by discarding events with the largest distance between
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first (Compton) and final (photoelectric) interaction, associated with the
worst positioning accuracy. For this, an algorithm is necessary that is
able to identify these far scattered events. One could tackle this problem
as a classification or regression task.

In case of classification, a scatter distance threshold needs to be chosen
that separates all events into two classes: non- or close-scattered events
and far scattered events. This threshold determines a tradeoff between
positioning accuracy and sensitivity. Performance improves when dis-
carding more events but results in an increasing loss of sensitivity. As
PET scanners rely on coincidence detection, a loss of detector sensitivity
translates into a quadratic loss of sensitivity on scanner level. Choosing
this threshold is therefore difficult and might be application dependent.
If one wants to adapt the resolution-sensitivity tradeoff to specific ap-
plications, different classification algorithms need to be trained for each
desired threshold.

To allow a more user friendly and more precise control of resolution
versus sensitivity, a regression approach can be beneficial. Here the
algorithm is trained to estimate the distance between the first and final
interaction. Now the user can adapt the scatter distance threshold
depending on the application and all events that are predicted by the
algorithm to have scattered further than this threshold are discarded.

For these reasons we opted to tackle the scatter identification problem
as a regression task and investigate whether a neural network can be

trained to predict the scatter distance of incoming events in a monolithic
PET detector.

Methods

Using the simulation data from chapter 4, we train a neural network to
predict the 3D distance between the first (Compton) interaction and final
(photoelectric) interaction position. We use the same optimal network
architecture as obtained for event positioning, i.e. a network with 16
input channels and three hidden layers of 256 neurons with leaky ReLLU
activation (see figure 5.8). As this network architecture proved to be
optimal for event positioning, we expect that it will be also suited for
scatter distance prediction. For an initial proof of concept, we chose not
to perform a compute intensive grid-search optimisation as in chapter 4.
The network now has one output value, the predicted 3D scatter distance.
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Figure 5.8: Neural Network architecture to predict scatter distance with 16
inputs, three hidden layers of 256 neurons and one regression
output.

The network is trained using the training dataset acquired across the
entire detector (see section 4.2.1 and figure 4.2). From simulations, the
first and final interaction positions in the crystal are known and the 3D
euclidean distance between them can the calculated. These distances
(in mm) are used as ground truth labels to train the network. The
dataset is strongly imbalanced in terms of scatter distance. Around 40%
of the events are pure photoelectric which corresponds with a scatter
distance of 0 mm. This strong data imbalance can cause the network
to systematically underestimate the scatter distance and always predict
values close to zero. To limit this, the network is only trained on
Compton scattered events, i.e. all pure photoelectric events with a
scatter distance of zero are removed from the training set. Since close-
scattered events have a similar light distribution to non-scattered events,
we expect that the network will also learn to attribute a scatter distance
that is close to zero to pure photoelectric events. From the remaining
events, 2,401,000 (1000 per calibration position) are used for training and
an additional same amount for validation. The performance is evaluated
on the same testset as used to evaluate the positioning performance in
chapter 4 and contains 2,000 events per calibration position. For the test
set, the pure photoelectric events are not removed and performance is
evaluated on all events.

Furthermore, the network is trained using the AdamW optimisation
algorithm, mini-batch size of 256 events, MSE loss and L2 weight decay
set to 0.01. One epoch is defined as an iteration over 240,100 events,
randomly sampled with replacement from the entire training set. The
initial learning rate was set to 0.001 and halved every 10 epochs that
the validation loss did not improve. Early stopping was applied after 60
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epochs without improvement. The network was implemented in PyTorch
[245] and trained on a MacBook Pro with a 2.8 GHz Quad-Core Intel i7
CPU.

Results

The scatter distance prediction network achieves a mean absolute error
of 1.93 mm and a median absolute error of 1.82 mm. Similar to figure 5.7,
the evolution of 3D positioning distance as a function of predicted scatter
distance is shown in figure 5.9. For the same thresholds of 11 mm and
8 mm as in section 5.2.1, the 3D positioning distance reduces from 1.53
mm to 1.42 mm and 1.31 mm respectively. The corresponding loss
of events is 4% at 11 mm and 8% at 8 mm. When discarding 5%
(at 10 mm threshold) or 10% (at 7 mm threshold) of the events, the
positioning distance decreases to 1.39 mm and 1.26 mm respectively.
The classification performance at these two thresholds is included in
table 5.4. High specificities are achieved of 98.7% at 7 mm and 99.3% at
10 mm. The sensitivities are lower: 70.4% and 73.9% respectively.
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Figure 5.9: Evolution of 3D positioning performance and event loss as a
function of predicted 3D scatter distance with scatter distance
prediction network. Events are removed that are predicted as
scattered with a 3D Euclidean distance that exceeds the scatter
distance threshold.
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Table 5.4: Classification performance of the 3D scatter distance prediction
network for two scatter distance thresholds.

Threshold  Event loss Accuracy MCC  Sensitivity Specificity

7 mm 10% 95.21%  76.05% 70.35% 98.65%
10 mm 5% 97.66%  78.25% 72.85% 99.27%
Discussion

From the above results we can conclude that neural networks are able
to estimate the scatter distance between the first and final interaction
position of an incoming gamma ray in a monolithic crystal. This demon-
strates that the network is able to identify the Compton and final pho-
toelectric light yield, especially for far scattered events. The evolution
of positioning performance as a function of predicted scatter distance
(figure 5.9) shows a similar trend as observed in figure 5.7 when using
the ground truth scatter distances. Note that now all events (Compton
scattered and pure photoelectric) are included and the event loss goes
from 0% to 100% instead of 60% resulting in a steeper curve for small
scatter distances. When removing the 5% or 10% furthest scattered
events, an improvement in 3D positioning distance of around 9% and
18% can be attained respectively. Overall, the network slightly under-
estimates the scatter distances of far scattered events (illustrated by
the lower distance threshold for the same event loss percentages). This
results in a very high specificity and lower sensitivity (see table 5.4). A
high specificity is preferred as we want to be sure to only discard the far
scattered events associated with worst positioning performance.

These results on simulation data demonstrate the possibility of using
neural networks to identity Compton scatter and to tune the spatial
resolution versus sensitivity tradeoff to specific application dependent
situations. For applications that require high resolution with margin
to reduce sensitivity, more far scattered events can be removed. The
question remains how to implement this in an experimental setup. No
information on scatter distance is known for experimental calibration
data so we cannot train a scatter distance prediction network on real
detector data. A network trained on simulation data could be applied to
experimental data but factors that are not modelled in simulation such
as variable SiPM gain, electronic noise, lower PDE etc. would reduce
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the effectiveness. Application of neural networks on experimental data
will be investigated in chapter 6.

5.2.4 Bayesian positioning network

Discerning the small light yield of the first Compton interaction within
the total light distribution is challenging as it overlaps with other light
spreads of later interactions. The position estimation of an intra-crystal
Compton scattered gamma ray should therefore be associated with a
higher uncertainty than of a pure photoelectric event. This leads to a
possible different approach to (far) scatter identification through uncer-
tainty modelling with Bayesian neural networks (see section 2.3.4). The
uncertainty related to Compton scattering is input dependent and can
thus be identified as heteroscedastic uncertainty.

In this section we investigate whether heteroscedastic uncertainty
modelling with the predictive variance method explained in section 2.3.4
allows to identify events associated with uncertain and less accurate posi-
tion estimation. Furthermore, we asses whether the obtained uncertainty
scores are correlated with scatter distance.

Methods

We employ the same optimal network architecture, number of training,
validation and test events and training procedure that was found in
chapter 4. An additional output is added to the network to predict the
variance as illustrated in figure 5.10. We train the network to predict
the log variance s = log 62 as it is numerically more stable and avoids
potential division by zero [32]. The adopted training loss over N samples
is:

N
1 1 R 1
Lpnn = ; §€XP(—8z') MAE(p;, pi) + 55
with p; and p; the ground truth and predicted positions of the first

interaction. To evaluate the achieved spatial resolution, we use the same
evaluation metrics as in section 4.2.5.
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Figure 5.10: Neural Network architecture to predict the 3D first interaction
position and heteroscedastic uncertainty. The network consists
of 16 inputs (measured light distribution), three hidden layers of
256 neurons, three position outputs x, y and z and one output
s representing the log variance.

Results

The 2D and 3D positioning performance of the 3D positioning neural
network trained with heteroscedastic uncertainty modelling is included
in table 5.5. A median FWHM of 0.44 mm and mean 3D positioning
distance of 1.54 mm is achieved across the entire detector. The evolution
of mean 3D positioning distance as a function of predicted variance is
plotted in figure 5.11. When discarding 5% or 10% of the events (with
highest variance), the mean distance reduces to 1.36 mm and 1.23 mm
respectively. Figure 5.12 shows how the 3D scatter distance changes in
relation to the predicted variance. The mean scatter distance decreases
when events with high variance are removed. A Spearman’s correlation
coefficient of 0.64 is measured between 3D scatter distance and predicted
variance of Compton scattered events.

Discussion

The performance measures in table 5.5 indicate a spatial resolution that
is very close to that of the original network without uncertainty modelling
(see section 4.3.4). So adding an additional uncertainty output and
adapting the loss does not alter the achieved positioning accuracy.

A similar trend is observed in 3D positioning distance when removing
highly uncertain events compared to removing far scattered events. This
shows that events with a high positioning error are also predicted with a
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Table 5.5: 2D and 3D positioning performance of the 3D positioning neural
network trained with heteroscedastic uncertainty modelling (see
figure 5.10). Values calculated over the entire detector on training
positions (blue grid in figure 4.2).

Mean Median
2D FWHM 0.47 0.44
2D Distance 1.10 0.49
2D Bias 0.17 0.11
3D Distance 1.54 0.74
Absolute Error DOI 0.88 0.38
FWHM DOI Error 0.94
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Figure 5.11: Evolution of 3D positioning distance and event loss as a function
of predicted variance. Events are removed associated with a
high position estimation uncertainty that exceeds the variance

threshold.

high uncertainty. When removing 5% or 10% of the events with highest
predicted uncertainty, an improvement in 3D positioning distance of
around 12% and 20% can be obtained respectively. Training a posi-
tioning neural network with predictive variance to model heteroscedastic
uncertainty therefore allows to tune the spatial resolution versus sensi-
tivity tradeoff in monolithic PET detectors.

Figure 5.12 and the measured Spearman’s correlation coefficient reveal
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Figure 5.12: Evolution of 3D scatter distance and event loss as a function
of predicted variance. Events are removed associated with a
high position estimation uncertainty that exceeds the variance

threshold.

that the predicted uncertainty scores are correlated with scatter distance.
As expected, the modelled heteroscedastic uncertainty, which is input
dependent, incorporates ambiguity related to Compton scattering. The
network learned to recognise Compton scattered events and associate
this with a high uncertainty in the position estimation.

Filtering events associated with high positioning error mainly reduces
the long tails of the point spread functions. This has limited influence
on the Gaussian fits and consequently the measured FWHM values. For
this reason, we used the mean 3D Euclidean distance as metric to asses
the improvement in performance when filtering uncertain events.

Next to Compton scatter, heteroscedastic uncertainty could also in-
corporate position-related uncertainty related to the edge effect. This
type of uncertainty is also input dependent as events near the detector
border are more diflicult to position than events in the centre. However,
plotting the uncertainty as a function of position and calculation of the
correlation coefficient between uncertainty and calibration position did
not reveal a significant correlation. The contribution of event location to
the predicted uncertainty is therefore much smaller than the contribution
of Compton scatter.

In this section we demonstrated that state-of-the-art positioning ac-
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curacy can be achieved with Bayesian neural networks and that the
predicted uncertainty scores allow to further improve the resolution by
trading sensitivity. No pre-filtering of events with a different neural
network or other algorithm is necessary and only one network needs
to be trained. Furthermore, the uncertainty is learned from the avail-
able position labels and loss so no additional information on Compton
scattering is required. This methodology is therefore applicable to an
experimental setup as well which will be investigated in chapter 6.

5.3 Calibration beam width

In this section, we evaluate the effect of calibration beam source width on
the evaluation and training of neural networks for positioning of gamma
rays in monolithic PET detectors.

5.3.1 Materials and methods

Instead of using simulation data collected with a perfect beam source as
in chapter 4, we now use simulation data acquired with a beam source
that has a diameter of 0.6 mm at the entrance side of the crystal. The
simulation model for the non-perfect beam is illustrated in figure 5.13.
Except for the calibration beam, the same PET detector setup and
data acquisition methodology is used as in section 4.2.1. The data

was acquired by Mariele Stockhoff and the non-perfect beam model is
described in Stockhoff et al. [255].

Two 2D positioning neural networks are trained with different ground
truth labels. For one network, the x- and y-coordinates are set to the
true first interaction (Compton or photoelectric) position as obtained
from simulation. Because the source beam has a diameter of 0.6 mm,
these coordinates can deviate slightly form the beam positions (grid
locations as shown in figure 4.2). The other network is trained on
position labels where the x- and y-coordinates are set to the beam
location, similar to what is done in an experimental setup. Through
comparison of the positioning performance of both networks, we can
assess the influence of beam width on the evaluation and training of
neural networks. Both networks are evaluated on data acquired with
perfect beam (see section 4.2.1) as well as data with the non-perfect
beam. The same optimal network architecture (three hidden layers of
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Figure 5.13: Illustration of a non-perfect beam modelled as a collimated point
source with an angular spread of 1.53° and collimator diameter
of 0.6 mm [255].

256 neurons), training procedure and number of training events (1000
per position) was used obtained from chapter 4.

5.3.2 Results

Table 5.6 shows the 2D positioning performance of the network trained
on non-perfect beam data with true first interaction coordinates as ground
truth labels. Results are included both on the perfect beam data as on
the 0.6 mm beam data. On the perfect beam data a median FWHM is
achieved of 0.46 mm over the entire detector and 0.41 mm when excluding
the 10 mm border region (only detector centre). On the 0.6 mm beam
data, the FWHM measures are higher: 0.72 mm and 0.69 mm on the
entire detector and centre region respectively.

The 2D positioning performance of the network trained on non-
perfect beam data with beam location as ground truth labels for x- and
y-coordinates is included in table 5.7. Now a spatial resolution on perfect
beam data is obtained of 0.48 mm FWHM over the entire detector and
0.43 mm FWHM in the centre region. These values are slightly higher
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Table 5.6: 2D positioning performance of the neural network trained on 0.6
mm beam data with true first interaction positions as ground
truth labels. Values calculated on training positions (blue grid
in figure 4.2).

Perfect beam 0.6 mm beam
Mean Median Mean Median

Entire Detector Distance 1.10 0.51 1.14 0.58
FWHM 0.51 0.46 0.74 0.72

Bias 0.16 0.09 0.18 0.11
Detector Centre Distance 1.13 0.49 1.16 0.56
30x30 mm? FWHM 0.41 0.41 0.69 0.69
Bias 0.05 0.05 0.05 0.04

(0.02 mm) compared to the results in table 5.6. The attained median
FWHM scores on the 0.6 mm beam data are 0.72 mm (overall) and 0.69
mm (centre). Figure 5.14 visualises the performance on the non-perfect
beam data across the detector through a histogram and quiver plot.

Table 5.7: 2D positioning performance of the neural network trained on 0.6
mm beam data with beam location as ground truth labels for x-
and y-coordinates. Values calculated on training positions (blue
grid in figure 4.2).

Perfect beam 0.6 mm beam
Mean Median Mean Median

Entire Detector Distance 1.11 0.52 1.15 0.60
FWHM 0.52 0.48 0.74 0.72

Bias 0.16 0.10 0.18 0.11
Detector Centre Distance 1.14 0.50 1.16 0.57
30x30 mm? FWHM 0.43 0.43 0.69 0.69
Bias 0.07 0.06 0.07 0.06

5.3.3 Discussion

Results in table 5.6 show that when using the true first interaction
positions for training, the network achieves the same intrinsic spatial



5.3. Calibration beam width 131

T

y position (mm)
y position (mm)

20 -10 o 10 i -20 -10 0 10
x position {mm) X position (mm)

(a) 2D histogram plot of predicted (b) Quiver plot illustrating FWHM [mm]|
positions. (color scale) and bias vectors (arrows).

Figure 5.14: Histogram and Quiver plot illustrating 2D positioning perfor-
mance over the entire detector (training grid) on non-perfect
beam data with diameter of 0.6 mm. Results are obtain with
neural network trained on 0.6 mm beam data with beam location
as ground truth labels for x- and y-coordinates.

resolution as in table 4.2 when training on perfect beam data. When
using the beam location instead of the true interaction coordinates for
training, a slight degradation in intrinsic spatial resolution of 0.02 mm
can be observed (median FWHM of 0.48 mm versus 0.46 mm). The dif-
ference is, however, very small and we can conclude that neural network
training is robust to the ‘noisy’ labels associated with non-perfect beam
data. The acceptable width of the calibration beam has of course also a
limit. We expect that the beam width should be comparable or smaller
than the intrinsic spatial resolution.

As expected, higher FWHM values are measured on the 0.6 mm beam
data due to the broader spread of events. This can visually be observed
when comparing figure 5.14 with figure 4.8. FEvaluating the intrinsic
resolution in an experimental setup with a non-perfect source beam is
therefore difficult. The obtained FWHM measures are an underestima-
tion of the true intrinsic resolution and should be taken into account
when evaluating an experimental setup which will be done in chapter 6.

These observations correspond well with a similar study by Stockhoff
et al. [255] when using mean nearest neighbour positioning,.
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5.4 Conclusion

In this chapter we have assessed the effect of intra-crystal Compton scat-
ter and calibration source beam width on the positioning performance
of neural networks.

A considerable degradation in spatial resolution was observed due to
Compton scatter. It was noticed that the positioning error depends
on the scatter distance and that a small percentage of far scattered
events are associated with the highest positioning error. We therefore
investigated whether scatter-specific positioning networks or networks
to identify far scattered events could help to improve performance. A
network specifically trained to position scattered events did not result in
an improvement. This shows that a network trained on all (pure photo-
electric and Compton scattered) events already learns to take Compton
scatter into account. The fact that neural networks can learn to identify
(far) Compton scatter was further supported by training a network to
predict the 3D scatter distance. This network could be used to filter far
scattered events in order to improve spatial resolution with a tradeoff
in sensitivity which can be justified in certain applications. Considering
the limited practicality of training a scatter prediction network in an
experimental setup (no available labels), a different approach was inves-
tigated using a Bayesian neural network. This method allows to train
one network to predict both the position as the positioning uncertainty
related to Compton scatter without requiring additional information on
Compton scattering.

Comparison between a network trained on data acquired with a perfectly
narrow beam versus a calibration source with a realistic beam width
showed no significant difference in achieved intrinsic spatial resolution.
The beam diameter does, however, influence the measured spatial resolu-
tion which should be taken into account when evaluating and comparing
spatial resolution of different PET detectors.



6 Application on
experimental data

In this chapter, we validate the methodology of training neural networks
for positioning of gamma interactions in monolithic PET detectors de-
veloped in chapter 4 on experimental data. The spatial resolution is
evaluated for two PET detector setups. One has the same design as
the simulated detector in chapters 4 and 5. The other design is a
PET detector with a smaller size (35 mm x 35 mm) and thickness
of 12 mm. Results on the first PET detector design are published in
Mariele Stockhoff et al. “High-resolution monolithic LYSO detector with
6-layer depth-of-interaction for clinical PET”. in: Physics in Medicine
and Biology 66 (15 Aug. 2021), p. 155014. 1ssN: 0031-9155. DOI:
10.1088/1361-6560/ac1459.

6.1 Introduction

The optimal training procedure and architecture of neural networks for
positioning gamma interactions in a monolithic PET detector was inves-
tigated in chapters 4 and 5 using simulation data. The methodology and
spatial resolution remains to be validated on experimental data. Factors
that are not taken into account during simulation can complicate neural
network training and reduce performance. Potential degrading factors
are: background activity of LYSO, electronics noise, variable SiPM gain,
lower photon detection efficiency, none mono-energetic calibration beam,
irregularities in surface finish etc.

Evaluation of the gamma interaction positioning performance of neu-
ral networks for real PET detectors is the topic of this chapter. The

133
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methodology developed in previous chapters is applied on two detector
designs with different geometries. Performance is again compared with
mean nearest neighbour positioning.

6.2 Materials and methods

Overall the same methodology is used as developed in chapter 4 with
some alterations in data acquisition and DOI estimation. Below we first
explain the geometry, data acquisition en data pre-processing steps of
the two detector setups. Afterwards we briefly repeat the neural network
training procedure.

6.2.1 Experimental setup

An experimental setup was built with the same design as the simulated
PET detector in chapter 4. The design and data acquisition was per-
formed by Mariele Stockhoff and details can be found in Stockhoff et al.
[256]. For convenience of reading, some key aspects are repeated here.

Detector design

The detector consists of a 50 x 50 x 16 mm?® LYSO crystal (Epic
Crystal). A rough black painted finish is applied on the sides and a
black painted specular reflector on top. The crystal is coupled with
optical grease to an 8 x 8 array of 6 x 6 mm? SiPMs. The 64 SiPM
signals are combined to a readout of 16 (84-8) channels by summing rows
and columns. The signals are amplified, digitised and pulse integration
is performed on an FPGA after which the signal is transmitted to a
computer for further processing.

Data acquisition and pre-processing

For calibration, a %Ge source is placed in a tungsten collimator. Data is
acquired with two different collimators, one with a diameter of 0.6 mm
and an other with a 1 mm diameter. The beam source perpendicularly
irradiates the detector which is mounted on a robot stage to acquire data
at discrete positions. Similar to the simulation setup, a training data set
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Detector

Figure 6.1: Experimental calibration setup consisting of collimator and a
detector mounted on a 3D robot stage [256].

is acquired in a 49 x 49 grid across the entire detector (blue grid in
figure 4.2) and an overfitting data set at 10 x 10 intermediate positions
in the detector centre (red grid in figure 4.2) for validation.

During data acquisition, events are collected that originate from the
calibration source and from the intrinsic activity in LYSO. The net-
work should only be trained on true gamma events from the calibration
beam. To this end, the events are pre-positioned with Anger logic
and a region of interest is drawn around the calibration beam position.
The ROI is defined as the 109 connected highest intensity pixels in the
Anger histogram around the ground truth position. This resulted in
an ROI with a diameter of about 3 mm. Only events that are pre-
positioned within this region of interest are extracted. For evaluation,
this ROI filtering is not applied and performance is evaluated on all
events. Furthermore, energy filtering is applied with a 20% energy
window and each event is standardised to zero mean and unit variance.
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The training and validation sets contain 1,000 events/position (blue grid
and red grid in figure 4.2 respectively) and the test set contains 30,000
events/position. For the training and validation sets, two versions are
acquired: one with the 0.6 mm calibration beam and another with the
1 mm beam. Consequently, two networks are trained to evaluate the
influence of calibration beam width on the achievable spatial resolution
as in section 5.3. Both networks are evaluated on the 0.6 mm beam data
as this data is closer to the ground truth beam location.

The x- and y-coordinates are set to the beam position. In contrast to
the simulation setup, the exact z-coordinates of the first interaction po-
sition is not known for experimental data. Therefore, a similar approach
is used to obtain DOI information as proposed in Stockhoff et al. [80]
for mean nearest neighbour positioning. The events are divided into six
depth layers based to their standard deviation across the 16 channels.
For MNN positioning, the amount of DOI layers also influences the 2D
spatial resolution and six DOI layers was determined as the optimal
number. According to the depth distribution derived from the Beer-
Lambert attenuation law, the 28.85% events in the dataset with smallest
standard deviation across the channel values belong to layer 1 (furthest
from the SiPM array, see figure 6.2). The next 22.03% belong to layer
2, 17.4% to layer 3, 13.8% to layer 4, 10.85% to layer 5 and 8.07% to
layer 6 with largest standard deviation. This way the DOI layer can be
determined for every event and is used as the z-coordinate. To evaluate
DOI performance, evaluation data acquired with the 1 mm beam with
ROI filtering is used to limit the influence of background events.

LYSO Crystal

Figure 6.2: Illustration of virtual DOI layers defined to divide events into six
depth dependent groups.

To assess uniformity of the positioning across the detector, a ‘flood
source’ data set is acquired by placing the %8Ge source at a distance of
52.5 cm of the detector. Finally, a bar phantom data set is collected
to qualitatively asses the capability to resolve adjacent bars. The bar
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phantom consists of four quadrants with bars that are separated with
different spacings: 0.6 mm, 0.8 mm, 1.0 mm and 1.2 mm. Both flood

source and bar phantom data sets are energy filtered with a window of
20%.

V)

=

Figure 6.3: Picture of four-quadrant tungsten bar phantom. Each quadrant
consists of bars separated with different spacings as indicated on
the figure.

6.2.2 12 mm thick PET detector

The second PET detector design consists of a 34.9 mm x 34.9 mm X
12 mm LYSO crystal coupled to an 8 x 8 SiPM array. No multiplexing
is performed so all 64 SiPM channels are read. To assess the effect of
multiplexing, this is performed afterwards in softwarc by summing rows
and columns. The spatial resolution is then evaluated with and without
multiplexing. Accordingly, two networks are trained, one with 64 input
neurons (without multiplexing) and an other with 16 inputs.

Two datascts are acquired as depicted in figure 6.4. For the first
dataset, events are collected with a 8Ge source placed in a 1 mm beam
collimator that traverses the detector in a 35 x 35 grid with positions
spaced 1 mm apart. This dataset is used to train the network and 1,000
events were used per calibration position. The second dataset is acquired
with a 0.6 mm collimator in a 17 x 17 grid with 2 mm spacing (red grid
in figure 6.4). These positions are offset by 0.5 mm with respect to the
positions of the first dataset. The second data set is split into a validation
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set of 500 events/position (to prevent overfitting) and a test set of 1,000
events/position for final evaluation. Events are pre-processed through
offset and gain correction, energy filtering, LYSO background activity
filtering and standardisation to zero mean and unit variance.
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Figure 6.4: Irradiated positions for the two acquired datasets of the 12 mm
thick detector. A ‘training dataset’ with positions in 1 mm steps
across the entire detector (blue) and an ‘overfitting dataset’ with
positions in 2 mm steps at an offset of 0.5 mm from the training
positions (red).

The collected events are now grouped into seven depth-of-interaction
layers based on signal standard deviation. All layers now contain an equal
amount of events. As more events interact at the top of the crystal, the
first layers correspond with a smaller DOI range than the subsequent
deeper layers.

6.2.3 Neural network training

The same network architecture is used as in chapter 4 with three hidden
layers of 256 neurons, leaky ReLU activations, and three outputs (x-
and y- coordinates and DOI layer). The network is trained using the
Adam optimisation algorithm with initial learning rate of 10~3, mini-
batch size of 256 events, L2 weight decay set to 1072 and L1 loss. One
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epoch is defined as an iteration over 100 events per calibration position
when training for the 16 mm thick PET detector and 10 events/position
for the second, 12 mm thick detector. As the training set of the second
detector contains less discrete positions, it was opted to more regularly
evaluate on the intermediate validation data to check for overfitting.
Based on the validation loss, learning rate is halved every 10 epochs
without improvement and training is stopped if the loss did not improve
for 50 epochs. The networks en training procedure is implemented in
python using PyTorch.

6.2.4 Bayesian positioning neural network

We also apply the methodology of heteroscedastic uncertainty modelling
with predictive variance (see sections 2.3.4 and 5.2.4) to the experimental
setup. The same data and training procedure is adopted as explained in
sections 6.2.1 and 6.2.3 with an additional output and adapted loss to
predict the variance. We will evaluate whether the obtained uncertainty
measures can be used to further improve positioning performance by
filtering highly uncertain events.

6.2.5 FEvaluation metrics

To evaluate the 2D spatial resolution, the 2D FWHM and bias metrics
are used similar to the evaluation measures in section 4.2.5. The dis-
tance metrics are not calculated as the evaluation dataset also contains
many events originating from background activity that are distributed
across the entire detector. These events strongly influence the measured
average distance making this metric not useful. For the same reason,
the Gaussian used to calculate the FWHM values is only fit to the PSF
points in the 2D histogram that exceed 25% of the peak value. The
threshold of 25% was empirically determined and resulted in the most
consistent fit. Otherwise, the long tails due to background events cause
an inaccurate fit of the Gaussian (not fitting the peak of the PSF) and
thus less accurate estimation of FWHM.

To evaluate DOI performance, the predicted relative number of events
in each layer is compared to the expected theoretical percentages accord-
ing to the Beer-Lambert law. Furthermore the overall DOI accuracy and
F1 score is calculated together with a confusion matrix.
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6.3 Results

6.3.1 Experimental setup
2D spatial resolution

The spatial resolution obtained with the network trained on 0.6 mm
beam data is included in table 6.1. A quiver plot visualising FWHM
and bias values across the entire detector is shown in figure 6.5. Higher
FWHM and bias measures are observed near the detector edges. A
median 2D FWHM of 1.10 mm and bias of 0.12 mm is achieved over the
entire detector. Without the 10 mm border region, the median FWHM
and bias improve to 1.01 and 0.08 mm respectively. On the intermediate
grid points in the centre 9 x 9 mm? region, a median FWHM is measured
of 0.97 mm.

Table 6.1: 2D positioning performance [mm]| of the network trained on 0.6
mm beam data. Measures are calculated over different regions of
the detector on the training grid (blue grid in figure 4.2) and on
the intermediate grid (red grid in figure 4.2).

Train Grid Train Grid Intermediate Grid
Entire Detector Centre 30x30 mm2 Centre 9x9 mm?

Mean Median Mean Median Mean Median

FWHM 1.15 1.10 1.02 1.01 0.97 0.97
Bias 0.20 0.12 0.09 0.08 0.09 0.08

Training the network on 1 mm beam data and evaluation on 0.6
mm data results in a median FWHM of 1.10 mm across the entire
detector and 1.02 mm in the detector centre (see table 6.2). The attained
2D median bias values are 0.12 mm and 0.08 mm for the two regions
respectively. On the intermediate grid, the median FWHM is 0.98 mm.

DOI performance

In terms of DOI layer prediction, the network (trained and evaluated on
1 mm beam data with ROT filtering) achieves an overall accuracy of 74%
and an F1 score of 75%. The confusion matrix is depicted in figure 6.6a.
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Figure 6.5: Quiver plot illustrating FWHM [mm] (colour scale) and bias
vectors (arrows) over the entire detector (training grid) obtained
with the network trained on 0.6 mm beam data.

Table 6.2: 2D positioning performance [mm] of the network trained on 1 mm
beam data. Measures are calculated over different regions of the
detector on the training grid (blue grid in figure 4.2) and on the
intermediate grid (red grid in figure 4.2).

Train Grid Train Grid Intermediate Grid
Entire Detector Centre 30x30 mm? Centre 9x9 mm?

Mean Median Mean Median Mean Median

FWHM 1.15 1.10 1.02 1.02 0.97 0.98
Bias 0.19 0.12 0.09 0.08 0.08 0.07

Figure 6.6b shows the relative distribution of events across the six DOI
layers obtained with the neural network predictions and according to
the theoretical distribution expected from the Beer-Lambert attenuation
law. Most events are predicted in the correct layer with some confusion
mainly limited to the neighbouring layers.

Uniformity and bar phantom

The flood source uniformity plot is shown in figure 6.7. Bright hotspots
are observed in an 8 x 8 grid related to the 8 x 8 SiPM array. The four-
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Figure 6.6: DOI performance. The total number of included events is 2401000
(1000 events per calibration position) after ROI filtering.

quadrant bar phantom measurement is shown in figure 6.7. All four bar
spacings can be distinguished with the smallest spacing being 0.6 mm
(lower-left quadrant). The bars are more clear in the detector centre and
are more difficult to resolve near the edges, especially in the corners.

MNN performance

For easy comparison, we include the results with mean nearest neighbour
positioning as obtained from Stockhoff et al. [256]. With the MNN
positioning algorithm calibrated and evaluated on 0.6 mm beam data, a
median FWHM is achieved of 1.17 mm across the entire detector with
a median 2D bias of 0.59 mm. Without the 10 mm border region, the
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(a) 2D histogram of flood source predic-
tions illustrating detector uniformity.
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(b) Four-quadrant bar phantom measure-
ment.

Figure 6.7: Detector uniformity and bar phantom measurement as a
qualitative illustration of the achieved spatial resolution with the

neural network.

resulting median FWHM and bias values are 1.14 mm and 0.26 mm. The

quiver plot and bar phantom measurement is shown in figure 6.8.
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(a) Quiver plot illustrating FWHM [mm]
(color scale) and bias vectors (arrows).
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(b) Four-quadrant bar phantom measure-
ment.

Figure 6.8: Quiver plot and bar phantom measurement illustrating 2D
positioning performance of mean nearest neighbour positioning
algorithm [256].

6.3.2 12 mm thick PET detector

The performance for the 12 mm thick PET detector is presented in
table 6.3 with individual channel readout (64 input channels) and in
table 6.4 with multiplexed readout (16 input channels). With the mul-
tiplexed readout, the resulting median FWHM is slightly higher: 1.03
mm versus 0.99 mm across the entire detector and 0.99 mm versus 0.96
mm in the detector centre. The FWHM bias measures are visualised in
figure 6.9 for the two different readouts. Due to a problem with source
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positioning during acquisition, no correct events are acquired for the
first 7 positions at y = 9.5. These positions are not considered during
evaluation.

Table 6.3: 2D positioning performance [mm] for the 12 mm thick PET
detector with network trained on data with individual channel
readout (64 channels). Measures are calculated on the
intermediate grid (red grid in figure 6.4) over different regions of
the detector .

Intermediate Grid Intermediate Grid

Entire Detector Centre 22x22 mm?

Mean Median Mean Median
FWHM 1.04 0.99 0.96 0.96
Bias 0.40 0.34 0.31 0.31

Table 6.4: 2D positioning performance [mm| for the 12 mm thick PET
detector with network trained on data with multiplexed readout
(16 channels). Measures are calculated on the intermediate grid
(red grid in figure 6.4) over different regions of the detector .

Intermediate Grid Intermediate Grid

Entire Detector Centre 22x22 mm?

Mean Median Mean Median
FWHM 1.08 1.03 0.99 0.99
Bias 0.36 0.32 0.27 0.25

The DOI performance is depicted in figure 6.10 through a confusion
matrix and the obtained distribution across the different DOI layers.
Many events from the first layer are predicted into the second layer.
Otherwise the distribution with the predictions and labels are similar
with a majority of the events attributed to the same layer.

6.3.3 Bayesian positioning neural network

The 2D positioning performance of the network trained to predict both
position and heteroscedastic uncertainty is presented in table 6.5. A
median 2D FWHM is achieved of 1.09 mm across the entire detector
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Figure 6.9: Quiver plots illustrating the obtained FWHM [mm)] (color scale)
and bias vectors (arrows) for the 12 mm thick detector.

and 1.02 mm in the detector centre. The obtained median bias is 0.11
mm and 0.07 mm respectively. On the intermediate grid points in the
centre 9 X 9 mm? region, a median FWHM is measured of 0.97 mm.

Table 6.5: 2D positioning performance [mm)] for bayesian positioning network.
Measures are calculated over different regions of the detector on
the training grid (blue grid in figure 4.2) and on the intermediate
grid (red grid in figure 4.2).

Train Grid Train Grid Intermediate Grid
Entire Detector Centre 30x30 mm? Centre 9x9 mm?

Mean Median Mean Median Mean Median

FWHM 1.15 1.09 1.02 1.02 0.97 0.97
Bias 0.19 0.11 0.08 0.07 0.07 0.07

In chapter 5 it was already discussed that evaluating improvement
in positioning performance when filtering uncertain events is difficult
through FWHM measurement because reducing the long tails only has a
limited influence on the Gaussian fits to the PSFs. As we cannot calculate
a meaningful distance measure due to the presence of many background
events in the evaluation dataset, assessing whether the spatial resolution
improves is difficult. Plotting a histogram of all predictions without the
10% most uncertain events does reveal that mostly events in the corner
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Figure 6.10: DOI performance of 12 mm tick detector.

are filtered out (see figure 6.11).

6.4 Discussion

6.4.1 Experimental setup

The results in section 6.3.1 show that a high spatial resolution of around
1 mm FWHM is achieved in the detector centre region. Towards the
detector border, the resolution and bias degrade which is typical for
monolithic PET detectors. This is due to light truncation near the crystal
edges resulting in a more difficult position estimation. Additionally, the
measured PSFs near the borders show larger tails and are not well charac-
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Figure 6.11: Histogram of all predictions without the 10% most uncertain
events according to the bayesian positioning neural network with
heteroscedastic uncertainty modelling.

terised by the Gaussian fit used to measure FWHM. The FWHM values
near the detector edges should therefore be considered with caution.
Evaluation on intermediate grid points, not used for training, shows no
overfitting on the discrete 49 x 49 training grid.

Training the network on data acquired with a 1 mm collimated beam
source instead of 0.6 mm and evaluating on the same 0.6 mm evaluation
data shows no difference in performance. This corresponds with our
observations on simulation data in section 5.3. The calibration beam
diameter has little effect on neural network training and the achiev-
able spatial resolution. Calibration with a broader beam allows data
acquisition at a higher count rate and can therefore reduce the required
calibration time.

No correction for the calibration beam width was included in the
evaluation measures. In section 5.3, we have seen that a larger beam
width for the evaluation data does result in a degradation in the mea-
sured FWHM values. The source beam used to acquire the evaluation
data has a diameter of 0.6 mm at its smallest and spreads to more than
1 mm deeper into the crystal (see figure 5.13). We can therefore expect
that the true intrinsic spatial resolution is even better than the FWHM
measures indicate.

The DOI encoding capability of monolithic PET detector is an impor-
tant asset compared to other detector designs. From the measured light
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spread, the depth of interaction can be inferred. Using simulation data,
neural networks can be trained to directly predict the z-coordinate of the
first interaction position as demonstrated in chapter 4. For experimental
data, however, it is much more difficult to obtain accurate depth of
interaction information. In this work, DOI labels were used that were
obtained based on the standard deviation of the measured light distribu-
tion and the Beer-Lambert attenuation law. Events were grouped into six
DOI layers. These labels are not entirely accurate, especially when taking
Compton scatter into account. As demonstrated in section 5.2, Compton
scatter has a strong influence on the measured light distribution and
consequently the light spread and DOI estimation. Events that scatter
deeper into the crystal produce a sharper light peak and are potentially
categorised into a deeper DOI layer than the true layer of first interaction.
The problem of Compton scatter affecting DOI label accuracy persists
when using other methods to obtain depth dependent data such as
inclined or side irradiation. Quantifying the true DOI performance
is therefore difficult which should be considered when interpreting the
DOI results in section 6.3.1. The distribution of events across the DOI
layers obtained with the neural network fits the theoretical trend as
expected from the Beer-Lambert law. Most events are predicted into the
same layer as the derived DOI labels with some events positioned into
neighbouring layers. We can conclude that the neural network is able to
approximately infer the depth of interaction which can be used to reduce
parallax errors and improve time-of-flight estimation. Techniques to
determine more accurate ground truth DOI information for experimental
data could further improve the DOI performance.

The uniformity plot in figure 6.7a clearly shows the artefacts induced
by the 8 x 8 SiPM array. For gamma rays that interact deeper into the
crystal (close to the SiPMs), most of the light is captured by a single
SiPM and as a consequence little information is included on the exact
interaction position within the SiPM pixel. Most of these events are
therefore predicted in the centre of that pixel.

The bar phantom measurement allows to qualitatively assess the overall
detector resolution. Bars down to 0.6 mm can be resolved. The bars are
less clear near the detector borders due to the edge effect as discussed
previously. An additional reason is the source position and angle of the
incoming gamma rays. The gamma rays originate from a point source
and arrive in the border region with a certain angle resulting in increased
absorption of these events by the tungsten bar phantom. Gamma rays
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arriving in the centre below the point source are perpendicular and can
pass through the slits.

Comparison with the results obtained with mean nearest neighbour
positioning reveals superior positioning performance with neural net-
works. In the detector centre, an improvement of 11.4% is achieved with
the neural network compared to MNN positioning. This improvement
can also be visually perceived when comparing the quiver plots and bar
phantom measurements. The quiver plot obtained with the neural net-
work shows a more uniform positioning performance, especially towards
the detector edges. The bars in figure 6.7b appear more linear and less
noisy compared to figure 6.8b. Furthermore, the edge effect is more
noticeable with the MNN algorithm. A plot of the DOI distribution
in Stockhoff et al. [256], similar to figure 6.6b, shows that more events
are predicted in the sixth (deepest) layer with the MNN algorithm that
expected from the theoretical distribution. A similar result was observed
in simulations in Stockhoff et al. [80] and is related to Compton scatter.
This shows that the neural network is possibly able to more reliably
position these events and learn to take Compton scatter into account,
even when trained on imprecise labels.

As already discussed in chapter 5, comparison of spatial resolution
between different studies is difficult and strongly influenced by crystal
size and thickness, SiPM readout, calibration beam width and evaluation
procedure. Many different detector designs have been evaluated with
different positioning algorithms (see section 3.3.1). Reported FWHM
measures range between 1.2 mm for a 50 x 50 x 10 mm?3 LYSO crystal
[78] and 1.7 mm with a 32 x 32 x 22 mm? crystal [60]. This illustrates
that, in this work, state-of-the-art spatial resolution is achieved with
neural network positioning. A further improvement in resolution can
potentially be achieved by reducing SiPM pixel size as was shown in
Stockhoff et al. [80] on simulation data.

6.4.2 12 mm thick PET detector

For the second, smaller PET detector design, we also achieve a good
spatial resolution of 0.96 mm FWHM in the detector centre region.
The measures are calculated on intermediate positions, not used during
training, and no overfitting on the training positions is observed. When
looking at figure 6.9a, the edge effect appears less present. This can be
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explained by the intermediate positions that are slightly further from the
edges (see figure 6.4), especially at the right and top edges in figure 6.9a.
Comparing performance between individual and multiplexed readout
shows only a minor degradation of around 0.4 mm in achieved FWHM.
This is in line with previous observations on simulation data in Stockhoff
et al. [80]. Little difference was reported between individual and mul-
tiplexed SiPM readout. A combined readout can therefore be used to
greatly reduce the cost of readout electronics with only a minor decrease
in positioning accuracy.

The DOI performance shown in figure 6.10 indicates that the network
is able to infer the assigned DOI label. A majority of the events are
classified in the correct layer. Only for the first layer, many events are
predicted in the second layer. For this detector, the events are grouped
into seven DOI layers according to signal standard deviation, with an
equal amount of events in each layer. The different layers therefore
correspond with different thicknesses as more events interact at the top of
the crystal. Consequently, events attributed to the deeper layers have a
larger variety in light spread than events in the top layers and the relation
between DOI and the assigned label is less interpretable. Assigning
events to DOI layers with equal thickness according to the Beer-Lambert
law, as for the first detector, allows a more direct relation between signal
standard deviation and DOI label. This potentially results in a better
DOI estimation of the network.

6.4.3 Bayesian positioning neural network

Results of the neural network with uncertainty modelling demonstrate
that the same spatial resolution can be achieved as the original posi-
tioning network without variance prediction. When using the obtained
variance measures to filter uncertain events, we observe that mostly
events in the corners are discarded. This behaviour is not desired as
uniform positioning across the detector is necessary. It appears that the
contribution of event location (edge effect) to the predicted uncertainty
is now higher than the contribution of Compton scatter which was not
observed on the simulation data (see section 5.2.4).

One potential reason is that the edge effect can be stronger in the
experimental setup than with simulations because of imperfections in
the surface finish on the sides. A second reason could be that the ROI
filtering applied to the training dataset to remove background events also
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removes many of the (far) scattered events. When the training set does
not contain Compton scattered events, the network is not able to learn
uncertainty associated with Compton scatter and only the contribution
related to the edge effect remains. This problem could be diminished
through the use of a larger ROI, but this also introduces more background
events to the training data. The use of other crystals types without
intrinsic radioactivity such as BGO could also be a solution as no ROI
filtering would be required and all acquired events can be included in the
training dataset.

6.5 Conclusion

In this chapter, we have validated our methodology of training neural
networks for positioning of gamma interactions in monolithic PET de-
tectors on experimental data. Similar to the results on simulation data,
high spatial resolutions can be achieved with neural networks, superior
to the mean nearest neighbour positioning algorithm. Neural networks
are trained on individual events and directly learn to infer the interaction
position from the measured light distribution. This leads to an improved
positioning accuracy of Compton scattered events and less degradation
near the detector edges. Moreover, neural networks produce continuous
coordinate outputs, not restricted to a discrete calibration grid. Lastly,
positioning events with the network is fast and parallelisable, especially
when using powerful hardware like GPUs.
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7 Computer-aided
diagnosis of primary
brain tumours

The second part of this dissertation focuses on the application of Al
to medical image analysis, specifically on computer-aided diagnosis of
primary brain tumours (PBTs). Based on medical images, Al algorithms
(primarily deep learning networks) will be developed for segmentation
of primary brain tumours and prediction of important characteristics
regarding prognosis and therapy planning. To understand this part of
the thesis, some background information is provided in this chapter.
Starting with a brief overview of neuroanatomy, the different types and
classification of primary brain tumours will be described followed by
epidemiology, diagnosis and treatment of PBTs. Afterwards, a literature

review is included on work related to PBT segmentation and diagnosis
with AL

7.1 Primary brain tumours

In contrast to secondary brain tumours or metastases which originate
from other parts of the body and have spread to the brain, PBTs arise
in the brain. Different types of PBTs are historically named after the
cells or structures in the brain from which they originate. We therefore
provide a brief overview on neuroanatomy based on the human brain
book by Carter et al. [257] which contains a complete overview of the
brain.
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7.1.1 Neuroanatomy

A schematic overview of the brain anatomy is illustrated in figure 7.1.
Together with the spinal cord, the brain forms the human central nervous
system (CNS). The CNS is responsible for receiving information from all
over the body, processing this information and in turn send signals to
control the activity in all parts in the body. For protection, the brain is
surrounded by cerebrospinal fluid (CSF), the meninges, skull and scalp.
Cerebrospinal fluid is produced in the central cavities in the brain, called
ventricles.

The brain consists of three major parts: the brain stem, cerebellum and
cerebrum. The cerebrum is divided into a left and right hemisphere
and the outer part is called the cerebral cortex. In order to increase
the surface area that fits into the skull, the cerebral cortex is folded,
forming patters of bulges (gyri), shallow grooves (sulci) and deep grooves
(fissures).
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Figure 7.1: Overview of the anatomy of the central nervous system. Adapted
from [258-260].

The basic components of the brain are the neurons or nerve cells.
They are composed of a cell body or soma, dendrites and an axon. The
somas process signals arriving through the dendrites and transit new
signals along their axons to the dendrites of other neurons. The cell
bodies mostly reside in the cerebral cortex, giving this structure the
typical grey color which is why it is often referred to as grey matter.
Axons, on the other hand, surrounded by the myelin sheath are mostly
located in the inner part of the brain, called white matter.

Next to neurons, the brain also consists of supporting cells or glia.
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The cells that produce the myelin sheath around the axons are called
oligodencrocytes. Astrocytes maintain the chemical environment in the
brain and are part of the blood-brain barrier. Furthermore, ependymal
cells are responsible for secreting and circulating CSF. Finally, microglia
destroy invading microbes and clear away cell debris.

7.1.2 The WHO classification

The World Health Organisation (WHO) historically classifies primary
brain tumours based on histological findings and the microscopic simi-
larity with their cells of origin [3]. The characterisation of histological
similarities is primarily dependent on light microscopic features in hema-
toxylin and eosin-stained sections and immunohistochemical expression
of proteins. Many different types of PBTs are defined, where glioma and
meningioma are the most common forms. Glioma arise from glial cells
and are further subdivided according to the glial cell types they share
histological features with. The most common glioma are astrocytoma,
oligodendroglioma and ependymoma. Glioma can be very heterogeneous
and typically invade the brain tissue. They are the most frequently occur-
ring primary brain tumours and show a large heterogeneity in treatment
response and prognosis. Meningiomas originate form the meninges. In
contrast to glioma, they are slow growing, more homogeneous and rarely
invade the brain.

Next to cell type, primary brain tumours are also divided into differ-
ent WHO grades (I-IV) in order of malignancy based on histopathological
and clinical criteria [261]. Histological features used to determine malig-
nancy are anaplasia, pleomorphism, mitotic activity, proliferation, necro-
sis etc. WHO grade I tumour show low proliferation and are possibly
cured with surgery alone depending on location. Tumours with grade II
are more infiltrative and tend to recur and progress into higher grades of
malignancy. Grade III is assigned to neoplasms with histological evidence
of malignancy such as nuclear atypia and mitotic activity. WHO grade
IV is reserved for highly malignant tumours with high mitotic activity,
necrosis and rapid progression.

In the most recent classification of PBTs from 2016, the WHO has put
increased emphasis on the integration of molecular markers [3]. Classifi-
cation based on histopathological analysis alone suffers from subjectivity
and inter-observer variability [262, 263]. Moreover, tumours that were



158 Chapter 7. Computer-aided diagnosis of primary brain tumours

classified in one group based on histology often showed highly varying
prognosis and several studies report that gene expression profiles are
a better predictor of survival [264, 265]. The integration of genotypic
parameters for CNS tumour classification intends to add objectivity and
yield more narrowly defined diagnostic entities. A complete discussion
of all defined tumour types and nomenclature is out of the scope of
this study. The interested reader is referred to “The 2016 World Health
Organization Classification of Tumors of the Central Nervous System: a
summary” by Louis et al. [3]. We limit ourself to the important example
of the classification of diffuse glioma based on histological and genetic
markers which is shown in figure 7.2.
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Figure 7.2: Classification of diffuse gliomas based on histological and genetic
markers. Not otherwise specified (NOS) designates a group
of lesions that cannot be classified into the more narrowly
defined groups or for which insufficient information is available
[3]. Adapted with permission from Copyright Clearance Center:
Springer Nature, Louis et al. [3] ©) 2016.

In the classification scheme shown in figure 7.2, three markers play a
central role: histological grade, isocitrate dehydrogenase (IDH) 1 and/or
2 mutation and co-deletion of chromosome arms 1p and 19q. Justification
for the inclusion of these genetic markers is visualised in figure 7.3.
Different tumour types, categorised according to IDH mutation and
1p/19q co-deletion, show distinct overall survival patterns.

In terms of WHO grade, one differentiates between Glioblastoma
multiforme (GBM), the most aggressive type (WHO grade IV) of as-
trocytoma, and lower-grade glioma (LGG) including WHO grade II and
IIT astrocytoma and oligodendroglioma. Glioblastoma is associated with
very poor prognosis and a 5-year survival rate of only 5.6%. Lower-
grade glioma, on the other hand, have more favourable survival rates up
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Figure 7.3: Kaplan-Meier curves showing overall survival for diffuse glioma
classified according to IDH mutation and 1p/19q co-deletion
status. Reproduced with permission from [266], Copyright
Massachusetts Medical Society.

to 81.6% and 57.6% for WHO grade II and III respectively [267].

The first important genetic marker is IDH status playing a key role in
the Krebs cycle and cellular homoeostasis [268]. IDH mutation occurs in
more than 80% of lower-grade glioma cases and approximately 10% of
glioblastoma cases, corresponding closely to so-called secondary glioblas-
toma [269, 270]. Secondary glioblastoma evolve from lower-grade astro-
cytoma whereas primary GBM are immediately formed from healthy
tissue. Gliomas with IDH mutation are less aggressive and demon-
strate better response to temozolomide chemotherapy than IDH wildtype
gliomas. For example, glioblastoma patients with IDH mutation show
a longer overall survival (OS) compared to patients with IDH wildtype
glioblastoma, (see figure 7.3) [270]. Moreover, reported OS of IDH wild-
type LGG is only slightly longer than IDH wildtype glioblastoma [266].
Hence IDH mutation is associated with a significantly better prognosis
and appears to be a more important predictor than WHO grade as Reuss
et al. [271] reported little difference in survival between IDH mutant
WHO grade II and IIT astrocytoma. IDH mutation can be detected
through negative gene sequencing for the IDH1 codon 132 and IDH2
codon 172 gene mutations. Immunohistochemistry (IHC) can also be
used to determine IDH1 mutation. However, a negative IDH status
using IHC does not necessarily mean an IDH wildtype tumour and if no
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sequencing is available the resulting diagnosis suggested by the WHO is
astrocytoma, not otherwise specified (NOS) [3, 272].

The second important genetic marker is combined loss of chromosome
arms 1p and 19q (1p/19q co-deletion). According to the 2016 WHO
classification scheme, diagnosis of oligodendroglioma requires demon-
stration of both IDH mutation and 1p/19q co-deletion. Similarly to IDH
mutation, 1p/19q co-deletion is linked to more favourable outcomes and
oligodendrogliomas respond well to combined procarbazine, lomustine
and vincristine chemotherapy [273].

7.1.3 Epidemiology

Primary brain tumours are a relatively rare type of cancer. A systematic
review and meta analysis by Robles et al. [274] reports a worldwide inci-
dence rate of primary brain tumours of 10.82 (95% CI: 8.63-13.56) people
per 100,000 per year. The incidence varies significantly for different
regions, with the highest rates reported in northern Europe, the United
States, Canada, and Australia [275]. PBTs are, however, a significant
cause of cancer morbidity and mortality [276], especially in children and
young adults where they are the leading cause of cancer deaths. The
most common types of CNS tumours in children are pilocytic astrocy-
toma (17%), malignant gliomas (17%) and embryonal tumours (15%).
In adults, the most occurring CNS tumours are meningiomas (36%),
pituitary tumours (15%), and glioblastoma (15%).

Many potential risk factors for primary brain tumours have been
studied, but only few are well established [276]. The most established
risk factor is ionising radiation linked to inducing primarily meningioma
and glioma. Other identified factors are genetic factors and allergies or
immune-related conditions. Allergies are reported to be inversely corre-
lated with risk of developing CNS tumours [275, 276]. No evidence has
been found of significant association between exposure to non-ionising
radiation from mobile phones and brain tumour incidence.

7.1.4 Symptoms and diagnosis

Depending on the location, growth and size of the tumour, different
symptoms can be present [277]. More general symptoms, not specific
to an anatomical location, are epileptic seizures, headaches and symp-
toms due to increased intracranial pressure such as nausea, vomiting,
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drowsiness and blurred vision. Tumours in certain functional areas of
the brain can cause specific neurological deficits. Frontal lobe tumours,
for example, might result in dysphasia (language disorders). Visual
abnormalities can be caused by tumours that are involved in tracts
that are connected to the primary visual cortex. Tumours located in
the prefrontal or temporal lobe or in the corpus callosum can result in
personality changes and mood disorders.

Tumours that cause obvious neurological deficits are often detected sooner
using medical imaging. Slow growing tumours such as meningioma, on
the other hand, often show no symptoms and are only discovered after
years or by chance after a brain scan performed for other purposes (e.g.
an accident or stroke).

To detect brain tumours, brain MRI is the gold standard, includ-
ing T1-weighted sequences before and after application of a gadolinium
based contrast agent, a T2 sequence and a T2-weighted fluid-attenuated
inversion recovery (FLAIR) sequence [278]. An example of these four
MRI sequences for a patient with an IDH wildtype GBM is included in
figure 7.4. On a T'1 weighted scan (figure 7.4a), fluids such as CSF have
low intensities and white matter has a higher intensity than grey matter.
The tumour appears hypo-intense. The T1 contrast-enhanced (T1ce)
scan shown in figure 7.4b is acquired using the same scanning parameters,
but after administration of a gadolinium based contrast agent. This
contrast agent results in a bright signal in blood vessels and regions
where the blood-brain barrier is disrupted. The ring shaped enhancing
tissue around a necrotic core of the tumour seen in figure 7.4b is typical
for glioblastoma. A T2 weighted sequence figure 7.4c highlights regions
containing a lot of water (e.g. ventricles containing CSF). Now white
matter appears hypo-intense compared to grey matter. In the tumour,
the necrotic core and surrounding oedema, caused by fluid leakage and
invasion of the tumour into healthy tissue, appear bright as they contain
a lot of water. The FLAIR sequence (see figure 7.4d) is T2 weighted
as well and has therefore similar characteristics. However, the signal of
CSF is now attenuated. This improves the contrast between healthy and
pathological tissues.

Diffusion and perfusion MRI and PET can aid to delineate metabolic
hotspots to guide tissue sampling for biopsy or to assess tumour pro-
gression and treatment response.

Tumour type and molecular markers are determined based on tissue
analysis (histological and genetic) extracted through biopsy or resection
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(see next section).

(c) T2 (d) FLAIR

Figure 7.4: Example brain MRI sequences of a patient with an IDH wildtype
Glioblastoma.

7.1.5 Treatment

Several therapy options exist to treat primary brain tumours. Optimal
therapy planning and prognosis depends on tumour type, age, Karnof-
sky performance score and individual risks and benefits [278]. Differ-
ent treatment options are briefly summarised below. For a more com-
plete overview, we refer to the European Association of Neuro-Oncology
(EANO) guidelines on the diagnosis and treatment of diffuse gliomas of
adulthood [278].

Watch-and-wait

In some cases it might be beneficial to postpone (invasive) treatment and
opt for a watch-and-wait approach. The patient is closely monitored with
regular brain scans to evaluate tumour progression. Invasive procedures



7.1. Primary brain tumours 163

involve risks and when there are indications that the tumour is benign
(WHO grade I) or when there are few symptoms, one could choose to
wait with performing surgery until signs of further growth. A study
by Wijnenga et al. [279] reports no difference in survival between early
resection and a wait-and-scan approach in low-grade glioma.

Surgery

The goal of surgery is to remove as much tumour tissue as possible
without damaging healthy tissue and compromising neurological function
(maximum safe resection). Advancements in microsurgical techniques,
surgical navigation systems, medical imaging and awake surgery have
contributed to reduce residual tumour volumes and risks of new neuro-
logical deficits. The extent of resection and remaining tumour volumes
are prognostic factors. However, whether and why extent of resection
matters remains debated. Tumour that are better resectable often have
a different, less malignant biology which complicates the relation between
survival and extent of resection. For this reason, preventing neurological
deficits has a higher priority than extent of resection.

Surgery, if possible, is the primary form of therapy for most PBT
patients [273, 278]. It often results in an immediate relief of symptoms
and allows histological and molecular analysis of the tumour tissue. In
case resection is not possible due to location of the tumour or clinical
condition of the patient, a stereotactic biopsy can be considered. A
needle is used to extract small fractions of the tumour which can then
be used for further diagnosis.

Radiotherapy

In radiotherapy, ionising radiation is used to kill cancer cells. The goal is
to improve local control and increase survival without inducing toxicity
to healthy regions [278]. The radiation can be applied using an external
beam or through internal radiation sources (brachytherapy).

Optimising the location and dose of the radiation delivered to the tumour
while avoiding healthy tissue requires careful planning. Especially sensi-
tive structures such as the eyes, brain stem and optic nerves should be
delineated and protected. The dose, timing and schedule of radiotherapy
is planned based on prognostic factors and extent of resection if applied
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after surgery. Often low doses of 1.8-2 Gy are administered daily until a
certain total dose of 50-60 Gy is delivered. A single, high radiation dose
can be administered as well which is called stereotactic neurosurgery.
Brachytherapy, where a capsule containing a radiation source is placed
near the tumour, can be an alternative to external beam radiation in
children and in adults with deeply localised tumours [273].

Pharmacotherapy

Pharmacotherapy includes the administration of drugs to relieve symp-
toms and chemotherapeutics aiming to destroy cancer cells. In the first
category, corticosteroids can be used to reduce oedema and anti-epileptic
drugs to limit seizures.

The most commonly used drug in glioma treatment is temozolomide,
a DNA alkylating agent that penetrates the blood-brain barrier and has a
favourable safety profile [278]. EANO mainly recommends temozolomide
for high-grade (WHO grade III and IV) astrocytoma and IDH wildtype
glioma with O%-methylguanine-DNA methyltransferase (MGMT) pro-
motor methylation.
For IDH mutant and 1p/19q co-deleted glioma (oligodendroglioma) and
astrocytoma WHO grade II, the use of alkylating agents from the ni-
trosourea class is recommended by EANO. More specifically a combina-
tion of lomustine, procarbazine and vincristine referred to as PCV.

7.2 Non-invasive computer-aided diagnosis

7.2.1 Importance of non-invasive diagnosis

From previous section we can conclude that determination of WHO grade
(glioblastoma versus lower-grade glioma), IDH mutation and 1p/19q
co-deletion status is key for optimal prognosis and therapy planning.
Currently, genetic information of gliomas is derived from the analysis of
tumour tissue obtained through biopsy or resection. However, biopsies
involve risks and are subject to sampling error which can lead to misdiag-
nosis [280, 281]. Moreover, biopsies are related to reduced overall survival
compared to a wait-and-scan approach followed by resection in low-grade
glioma [279]. Tumour resection is standard of care for most glioma
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types but is not always possible depending on tumour location and
accessibility, the patient’s clinical condition or when the patient refuses
a surgical procedure. Therefore, non-invasive assessment of clinically
relevant markers can aid in characterising glioma and guide therapy
and surgery planning, especially when extraction of tumour tissue is
not possible or genetic testing not available.

Correlations between MR phenotypes and glioma subtypes have been
widely investigated. For example, presence of contrast enhancement and
necrosis on T1 contrast enhanced (T1lce) MRI is associated with high-
grade glioma [4]. IDH mutant glioma have been reported to demonstrate
minimal enhancement, sharp tumour margins and homogeneous signal
intensity [5, 6]. This contrasts with IDH wildtype glioma that is corre-
lated with thick, irregular enhancement with necrosis and infiltrative
oedema. Furthermore, increased enhancement, poorly circumscribed
borders and heterogeneous signal intensity are characteristic MRI fea-
tures related to 1p/19q co-deletion [7, 8]. However, visual interpretation
and prediction of tumour properties remains very challenging and inac-
curate. For instance, 40-45% of non-enhancing lesions are subsequently
found to be highly malignant [282]. Conversely, 16% of WHO grade II
glioma show contrast enhancement and this percentage is expected to be
even higher for low-grade oligodendroglioma [283, 284].

To improve speed and accuracy of non-invasive tumour characterisa-
tion, there is an increasing interest to use machine learning techniques for
medical image analysis. Below we provide an overview of existing state-
of-the-art approaches for computer-aided brain tumour segmentation and
diagnosis using Al

7.2.2 Computer-aided segmentation

Brain tumour segmentation is not only an important pre-processing step
to help further diagnosis, especially in radiomics (see section 3.4.1), it
is also necessary for surgery planning, volume estimation and assessing
tumour progression and treatment response. In clinical practice, brain
tumour segmentation is still often done manually. An experienced ra-
diologist delineates the different tumour tissues on multiple slices of a
3D MRI. This process is labour and time intensive and prone to inter-
and intra-observer variability. Menze et al. [285] report a significant
disagreement between delineations of different readers with Dice overlap
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(d) FLAIR (e) Segmentation

Figure 7.5: Example brain MRI sequences of BraTS dataset with manual
annotations delineating different tumour tissues: necrosis (blue),
enhancing (orange) and peritumoural oedema (green).

scores ranging between 74% and 85%.

For these reasons, there is a growing interest in automatic glioma segmen-
tation. Automated delineation of different tumour tissues in multimodal
MRI is challenging due to the large variety in imaging characteristics and
tumour appearance, size, shape and location. A complete review of all
studies in automated brain tumour segmentation is infeasible and out of
the scope of this thesis. We therefore highlight several key approaches.

Encouraged by the annual Brain tumour Segmentation (BraTS) Chal-
lenges [285], a lot of research is performed on automatic glioma segmen-
tation. BraTS provides a large heterogeneous dataset containing pre-
therapy MRI (T1, Tlce, T2 and FLAIR sequences) with corresponding
manual annotations of three tumour tissue types: necrotic core, enhanc-
ing tissue and peritumoural oedema.

Early approaches often used thresholding or abnormality detection
techniques to (semi-)automatically segment brain tumours [286-288|.
For example, through the use of image registration, a pathological scan
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can be aligned with a healthy atlas and abnormal tissues can be detected
based on deviations in tissue appearance. Advantages of these techniques
are that no training dataset with manual annotations is required and that
they generalise well to scans acquired with various imaging characteris-
tics. The accuracy of the segmentations is however often limited and
deteriorates for very small lesions or large lesions that cause significant
deformations that result in incorrect registration.

More successful results were achieved using discriminative, radiomics
based approaches [285, 288—292]. Voxelwise classifiers such as random
forests predict the tissue type of every voxel based on extracted intensity,
texture, morphological and context features. Now annotated training
sets are required which should be large enough to train the classifiers
and, when applied, the scans need to match the characteristics of the
training set to obtain accurate segmentation.

In recent years deep learning techniques, and in particular CNNs,
have surpassed performance of more traditional radiomics methods [293].
Pereira et al. [294] proposed a top performing approach in the 2015
BraTS challenge using two 2D CNNs, one for low grade glioma and
another for high-grade glioma. The CNNs were patch-based classification
networks where 2D patches of 33 x 33 pixels are extracted from all
four sequences and each 2D slice and classified into one of the tissue
classes. Average Dice scores were achieved of 78%, 65% and 73% for the
whole tumour (WT), tumour core (T'C, necrosis+enhancing tissue) and
enhancing regions (ET) respectively.

A multi-scale 3D CNN, called DeepMedic, was presented by Kamnitsas
et al. [295]. DeepMedic consists of two parallel pathways incorporating
local and contextual information and is fully convolutional. This allows
to classify multiple voxels simultaneously. Additionally, post-processing
was applied to the segmentation maps using a 3D conditional random
field model. DeepMedic obtained state-of-the-art segmentation perfor-
mance on the BraTS 2015 challenge data with reported Dice scores of
85% (WT), 67% (TC) and 63% (ET).

In the most recent BraTS challenges, (modified) U-Nets are the top
performing architectures. A 3D U-Net with residual blocks in the encoder
pathway was proposed by Isensee et al. [296]. The network was trained
on patches of 128 x 128 x 128 voxels with extensive data augmentation
and multi-class Dice loss was used as optimisation metric. On the 2017
BraTS test data, the attained mean Dice scores were 86% (WT), 78%
(TC) and 65% (ET).
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The winning approach in the BraTS 2017 challenge was proposed by
Kamnitsas et al. [297] consisting of an ensemble of multiple CNN archi-
tectures including DeepMedic and U-Net. They reached average Dice
scores of 89% (WT), 79% (TC) and 73% (ET).

Myronenko [298] achieved first place at the 2018 BraTS challenge with
dice scores of 88% , 82% and 77% for whole tumour, tumour core and
enhancing tumour volumes respectively. They used an ensemble of 10
encoder-decoder networks. Next to the segmentation decoder, an addi-
tional variational autoencoder branch was added to jointly reconstruct
the input image during training to regularise the shared encoder.

The first place of the 2019 BraT'S challenge was won by Jiang et al. [299]
with Dice scores of 89% (WT), 84% (TC) and 83% (ET). Their approach
consisted of a two-stage cascaded U-Net. The first stage produced a
course prediction. This preliminary segmentation map is concatenated
with the input MRI and fed to the second stage which refines the pre-
diction. Two decoders are used in the second stage U-Net, one with
deconvolution layers for upsampling and one with trilinear interpolation
upsampling. The second decoder branch is only used during training for
regularisation purposes.

Isensee et al. [300] applied the nnU-Net framework (see section 3.4.2) to
the BraTS 2020 challenge and took the first place with Dice scores of
89%, 85% and 82% for whole tumour, tumour core and enhancing tumour
respectively. The baseline configuration was improved through more
data augmentation, region-based learning, post-processing, ensemble of

25 models and model selection based on the ranking scheme used by
BraTS.

We can conclude that state-of-the-art performance is obtained in
automatic brain tumour segmentation using CNNs, and more specifi-
cally U-Nets. The above methods require all four MRI sequences to be
available as input. In clinical practice, however, it is common to have
missing modalities. Due to time constraints, the acquisition of a T2 scan
for example can be omitted. In chapter 9, we will design an automatic
segmentation network based on the state-of-the-art U-Net architecture
with increased robustness to missing modalities.

7.2.3 Computer-aided diagnosis

AT techniques are applied for a large variety of tasks in neuro-oncology
including prediction of grade, molecular markers, survival, therapy re-
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sponse, differentiation between pseudo-progression and tumour recur-
rence etc. [301, 302]. In this dissertation, we focus on non-invasive
diagnosis of diffuse glioma according to the WHO 2016 classification
scheme (see figure 7.2) based on routinely acquired MRI. A selection of
studies on the prediction of grade, IDH mutation and 1p/19q co-deletion
status of glioma is included in table 7.1.

A system for grade identification (low- versus high-grade) of astrocy-
toma from T2-weighted images was designed in the work by Subashini et
al. [303]. Tumours were isolated with fuzzy c-means segmentation from
which shape, intensity and texture features were calculated. A learning
vector quantisation classifier trained on 164 images and evaluated on 36
images achieved an accuracy of 91%.

Hsieh et al. [304] proposed a computer-aided grading system using lo-
cal and global MRI features. The most representative 2D slices from
T1ce MRI were manually selected followed by manual delineation of the
tumour contour. Histogram and texture features were fed to a logistic
regression classifier reaching an AUC score of 0.89. In a follow up study
[305], the same images were graded by three expert radiologists. They
achieved AUC scores of 0.81, 0.87 and 0.84 without the help of the CAD
system. Together with the CAD system, the AUC scores improved to
0.90, 0.90 and 0.88.

Yang et al. [109] differentiated LGG from glioblastoma with high ac-
curacy (AUC of 0.97) based on Tlce MRI. The tumour was manually
segmented followed by slice-level classification through the use of a 2D
convolutional neural network (CNN), pre-trained on ImageNet, fine-
tuned on 90 patients and evaluated on a test set of 23 patients.

An automated grading system on conventional MRI (T1, Tlce, T2 and
FLAIR) was presented by Zhuge et al. [306]. Tumours were segmented
using a U-Net. After segmentation, the tumour ROI was extracted
and classification performance was compared between 2D mask-RCNN
(applied on the slice with largest tumour contour) and a 3D CNN using
a ResNet backbone. The networks were trained and evaluated on data
from 315 patients collected from BraTS and TCIA. An accuracy of 96%
was achieved with the 2D mask RCNN and 97% with the 3D CNN.

State-of-the-art performance on IDH mutation status prediction was
reported by Chang et al. [307]. They predicted IDH mutation based on
pre-operative MRI (T1, Tlce, T2 and FLAIR) of 496 patients. Tumours
were manually delineated and classified by four 2D CNNs (one for each
modality). Through the combination of the four probabilities with age
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and a logistic regression classifier, an AUC of 0.95 was obtained.

Zhang et al. [308] used radiomics features and a random forest classifier to
predict IDH status. Their dataset included pre-operative MRI, including
T1, Tlce, T2, FLAIR and DWI sequences, of 120 patients with WHO
grade I1II and IV. In total 2970 imaging features were extracted. On the
validation cohort of 30 patients, they reached an AUC score of 0.92.
Application of a radiomics pipeline for IDH and 1p/19q co-deletion pre-
diction using only routinely acquired T1lce and FLAIR MRI was investi-
gated by Zhou et al. [309]. They collected a large training dataset of 538
glioma patients from multiple institutions. Imaging features describing
shape, intensity and texture were combined with age and fed to a random
forest classifier. The models were validated on public data from TCIA.
An AUC score of 0.92 was achieved for predicting IDH status and 0.72
for 1p/19q co-deletion status. Age and shape features offered the highest
predictive value.

Choi et al. [310] applied a recurrent neural network on dynamic sus-
ceptibility contrast perfusion MRI. Signal intensity-time curves were
extracted from different tumour subregions that were segmented using
a CNN followed by manual correction. They evaluated their approach
for IDH prediction (AUC of 0.95) and for 1p/19q co-deletion predic-
tion (AUC of 0.78). The 1p/19q co-deletion prediction model was only
trained for IDH mutant glioma.

Yogananda et al. [311] trained a 3D dense U-Net for voxel-level IDH
status prediction which can also be used for whole-tumour segmentation.
Two networks were compared: one is only trained on T2 MRI and
the other is trained on Tlce, T2 and FLAIR. Data from 214 glioma
patients was acquired from the cancer imaging archive. The two networks
attained a similar performance (AUC of 0.98). The same approach is
applied for the 1p/19q co-deletion prediction task [312]. Now a dataset
of 368 patients is used from TCIA for training and evaluation. For
1p/19q co-deletion prediction an AUC score of 0.95 is obtained.

Akkus et al. [313] analysed Tlce and T2 MRI of 159 LGG patients to
predict 1p/19q co-deletion status. The tumour was delineated semi-
automatically and each slice was classified using a multi-scale 2D CNN
achieving an accuracy of 88%.

A radiomics pipeline to predict 1p/19q co-deletion in LGG trained on
a private institutional dataset containing 284 patients and validated on
an external dataset of 129 patients from T'CIA was presented by van der
Voort et al. [314]. Age, sex and imaging features were used to train an
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SVM classifier. The algorithm achieved an AUC of 0.72 on the external
validation dataset.

Table 7.1: Overview of studies on non-invasive prediction of grade, IDH
mutation and 1p/19q co-deletion status of glioma.

Author Task Dataset Method Result
Zacharaki distinguishing 97 patients manual Accuracy =
et al. metastases, T1, Tlce, T2, segmentation 76%
(2011) [315] meningioma FLAIR, DSC age, shape, Sensitivities
grade I and rCBV intensity = 82%
glioma grade II, features (grade II),
III and IV . . 29% (grade
classification 111), 82%
with kNN, ) A0
decision tree (grade
’ V), 96%
SVM
(metastases)
Subashini distinguishing 200 patients Semi- Accuracy =
et al. low-grade from T2 automatic 91%
(2016) [303] high-grade segmentation
astrocytoma shape,
intensity
and texture
features
LVQ classifier
Skogen et predicting 95 patients manual 2D AUC =0.91
al. (2016) WHO grade (grade II, III, segmentation (I1, III vs.
[316] IT, IT1, IV V) texture V)
Tlce features égc :IIOI.)84
. vs.
ROC analysis AUC — 0.73
(III vs. 1IV)
Hsieh et al.  distinguishing 107 patients manual 2D AUC = 0.89
(2017) [304] lower-grade (II, (grade II, III, segmentation
IIT) from high-  IV) histogram,
grade GBM Tlce texture
(V) features
logistic

regression
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Author Task Dataset Method Result
Tian et al. predicting 153 patients Manual Accuracy =
(2018) [317] glioma WHO T1, Tlce, T2 + Segmentation 97% (11, III
grade II, III, IV DWI, PWI histogram vs IV
and texture
features
SVM
Yang et al.  distinguishing 113 patients Manual ROI AUC = 0.97
(2018) [318] lower-grade (II,  (grade II, III, segmentation
III) from high- V) (pre-trained)
grade GBM Tlce 2D CNN:
(Iv) AlexNet,
GoogleNet
Zhuge et distinguishing 315 patients Automatic Accuracy =
al. (2020) lower-grade (II, (grade II, III, segmentation 97%
[306] IIT) from high- V) U-Net
grade GBM T1, Tlce, T2, 2D Mask-
(Iv) FLAIR RCNN or 3D
CNN
Chang et IDH mutant vs. 496 patients Manual ROI AUC = 0.95
al. (2018) IDH wildtype (grade II, III, segmentation
[307] IV) 2D CNN:
T1, Tlce, T2, ResNet34
FLAIR Logistic
regression
combining
age with
probability

output
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Author Task Dataset Method Result
Yu et al. IDH1 mutant 140 patients Automatic AUC = 0.86
(2017) [319] vs. IDH1 (grade II) segmentation
wildtype FLAIR with 2D CNN
Location,
shape, texture
and histogram
features
SVM,
AdaBoost
Zhang et IDH mutant vs. 120 patients Semi- AUC = 0.92
al. (2017) IDH wildtype (grade III, IV) automatic
[308] T1, Tlce, T2, segmentation
FLAIR, DWI Anatomical,
(ADC) shape, texture
and histogram
features
Random forest
classification
Arita et al. IDH mutant vs. 199 patients Manual Accuracy =
(2018) [320] IDH wildtype (grade II, III) segmentation 87%
T1, Tlce, T2, Location,
FLAIR shape, texture
features
LASSO
regression
Chang et IDH mutant vs. 259 patients Automatic AUC =0.91
al. (2018) IDH wildtype (grade II, III, segmentation (IDH)
[321] 1p/19q co- V) with 2D CNN  AUC = 0.88
deleted vs. T1, Tlce, T2, 2D CNN: (1p/19q)
1p/19q Intact FLAIR, residual AUC = 0.81
MGMT network (MGMT)

methylated vs.
unmethylated
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Author Task Dataset Method Result
Choi et al. IDH mutant vs. 463 patients Automatic AUC =0.95
(2019) [310] IDH wildtype (grade II, III, segmentation (IDH)
1p/19q co- V) with CNN AUC =0.78
deleted vs. T1, Tlce, T2, followed (1p/19q)
1p/19q Intact FLAIR, DSC by manual
perfusion MRI correction
2D
convolutional
LSTM
Zhou et al. IDH mutant vs. 744 patients Manual AUC = 0.92
(2019) [309] IDH wildtype (grade II, III, segmentation (IDH)
IDH mutant: IV) Histogram, AUC =0.72
1p/19q co- T1lce, FLAIR shape, texture  (1P/199)
deleted vs. and age
1p/19q Intact features
Random forest
classification
Yogananda  IDH mutant vs. 214 patients 3D Dense AUC = 0.98
et al. IDH wildtype (grade II, III, U-Net
(2019) [311] IV)
T2
Rathore et IDH mutant vs. 473 patients Semi- AUC =0.85
al. (2020) IDH wildtype (grade II, III, automatic (IDH)
[322] IDH mutant: V) segmentation AUC =0.75
1p/19q co- T1, Tlce, T2, histogram, (1p/19q)
deleted vs. FLAIR, DSC- shape, AUC = 0.87
1p/19q Intact MRI, DWI anatomical, (EGFRvIII)
EGFRVIII in and texture
GBM features

SVM
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Author Task Dataset Method Result
Akkus et 1p/19q co- 159 patients Semi- Accuracy =
al. (2017) deleted vs. (grade II, III) automatic 2D 88%
[313] 1p/19q Intact Tice, T2 segmentation
2D CNN
Han et al. 1p/19q co- 277 patients Manual AUC = 0.76
(2018) [323] deleted vs. (grade II, IIT) segmentation
1p/19q Intact T2 shape, size,
intensity
and texture
features
Random forest
Kim et al. 1p/19q co- 167 patients Manual AUC =0.71
(2019) [324] deleted vs. (grade II, III, segmentation
1p/19q Intact V) Texture,
T1, Tlce, T2, topological
FLAIR and pre-
trained CNN
features
Random forest
classification
van der 1p/19q co- 284 patients + Manual AUC =0.72
Voort et al.  deleted vs. 129 from TCIA  segmentation (TCIA)
(2019) [314] 1p/19q Intact (grade II, III) Intensity,
Tlce, T2 texture,
shape, texture,
age and sex
features
SVM classifier
Yogananda  1p/19q co- 368 patients 3D Dense AUC =0.95
et al. deleted vs. (grade II, III, U-Net
(2020) [312] 1p/19q Intact Iv)

T2

Most of the studies included in Table 7.1 used manual or semi-
automatic segmentations which might introduce variability and subjec-
tivity to the classification pipeline and impede clinical adoption. How-
ever, as a lot of research is performed on automatic glioma segmentation
with CNNs, manual delineation could be replaced with recent state-of-
the-art automatic delineation algorithms.

An additional limitation is that existing studies often train and eval-
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uate their models on a single, small dataset, often acquired from one
institution. Hence their robustness to data from other clinical centres
(with large variations in imaging protocols) remains to be evaluated on
a completely independent dataset. Careful evaluation on external data
that is not in any way used to train the algorithms is important to assess
their generalisation performance.

Moreover, due to the limited amount of data, often radiomics methods
are used where hand-engineered features are extracted that depend on
expert opinion and are less robust to variations in image acquisition
protocols. Convolutional neural networks, on the other hand, can au-
tomatically extract and classify features from complex imaging datasets
with increased speed and without requiring human interaction resulting
in a more objective computer-aided diagnosis tool. Several approaches
in table 7.1 that use CNNs already illustrate this by achieving very high
performances.

In this work we investigate the use of deep learning to develop an
accurate, reproducible and fully automatic 3D pipeline to segment glioma
and predict clinically relevant markers according to the most recent
WHO guidelines based on routinely acquired pre-operative MRI. Au-
tomated diagnosis with deep learning remains a challenging task as
large-scale and well-curated datasets of brain tumour scans comparable
to ImageNet are unavailable. Existing datasets often include patients
with missing image modalities and ground truth information on tumour
characteristics.

7.3 Conclusion

This chapter started with explaining the basic anatomy of the brain, nec-
essary to understand the different types of primary brain tumours that
are defined by the World Health Organisation. We focused on the most
common type of PBTs, glioma, and the most recent classification guide-
lines of the WHO to differentiate tumours based on malignancy (WHO
grade) and molecular markers (IDH status and 1p/19q co-deletion). We
then further discussed PBT epidemiology, symptoms, diagnosis, survival
and different treatment options in relation to these important markers.
After introducing the required background knowledge, we provided an
overview of state-of-the-art literature on glioma segmentation and diag-
nosis with artificial intelligence techniques.



8 Glioma grading with
limited data: radiomics

and pre-trained CNN
features

As mentioned in previous chapter, determining the malignancy of glioma
is highly important for initial therapy planning and prognosis. In this
chapter, we investigate two feature extraction methods, radiomics fea-
tures and features extracted using a pre-trained CNN, for the task of
binary brain tumour grading in a limited data setting. This allows to
evaluate whether we can design an accurate binary glioma grading system
with limited data using hand-engineered features or features that are
automatically learned by a convolutional neural network, pre-trained on
natural images. Moreover, we compare the performance of pre-trained
CNN features extracted from different input scales: one or multiple slices
and with or without cropping to the tumour ROI.

Extraction of the radiomics features was performed by Stijn Bonte
[325]. This work investigated the use of radiomics for primary brain
tumour segmentation and classification. The results in this chapter have
been presented during the 2018 Medical Imaging Summer School [326]
and on the Medical Image Computing and Computer Assisted Inter-
vention (MICCAI) 2018 conference, published in Milan Decuyper et al.
“Binary Glioma Grading: Radiomics versus Pre-trained CNN Features”.
In: Medical Image Computing and Computer Assisted Intervention -
MICCATI 2018. Ed. by Alejandro F. Frangi et al. Springer International
Publishig, 2018. por: 10.1007/978-3-030-00931-1_57.
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8.1 Introduction

In previous chapter we have seen that the optimal treatment strategy
and prognosis of newly diagnosed glioma strongly relies on tumour ma-
lignancy (i.e. WHO grade). Whereas a watch-and-wait policy can be
opted in case of low-grade glioma, maximum safe resection combined
with appropriate chemotherapy and radiotherapy is recommended by
EANO for high-grade glioma [273|. Biopsies for histopathological di-
agnosis negatively impact overall survival with a reported hazard ratio
of 2.69 (95% CI 1.19-6.06; p=0.02) compared to wait-and-scan for low-
grade glioma [279]. The invasive procedure involves risks, is subject
to sampling error and the results may be subjective, depending on the
neuropathologist performing the histopathological analysis [280]. Hence
a biopsy to confirm diagnosis and grade of the tumour should be avoided
and accurate non-invasive grading is preferred.

Non-invasive differentiation between low- and high-grade glioma is
usually based on MRI with gadolinium-based contrast agents [4, 282].
The presence of contrast enhancement and necrosis are indicative of
higher tumour malignancy, however 40-45% of non-enhancing lesions are
subsequently found to be malignant (WHO grade III or IV) [282]. This
results in reduced accuracy of non-invasive tumour grading (sensitivities
ranging between 55% and 83%). Moreover, the ever-increasing amount
and complexity of MR image data raises the burden of accurate data
analysis and dramatically increases the workload of radiologists.

Computer-aided diagnosis may provide a way to handle this data
explosion and increase diagnostic accuracy [328]. These systems can au-
tomatically process MR images, calculate quantitative features describ-
ing tumour characteristics and combine them to estimate tumour type
and grade through the use of artificial intelligence. The time required for
diagnosis can be reduced and accuracy and treatment planning enhanced
while avoiding the need for biopsy.

Towards computer-aided brain tumour diagnosis, many studies investi-
gate the use of radiomics [301, 302, 328]. High performances in binary
tumour grading are achieved (see section 7.2.3). In current radiomics
studies, however, often input of domain experts is required, such as
manual segmentation data, making these methods not reproducible and
not fully automatic. Additionally, most CADx methods are trained and
evaluated on data from one clinical centre. Hence these systems are
potentially not robust or applicable to data from other centres due to
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large variations in imaging protocols.

Our goal is to investigate the use of deep learning to develop an
accurate, reproducible and fully automatic CADx system. Training
deep networks from scratch is however often not feasible when only a
limited amount training data is available. In this chapter, we therefore
use hand-engineered radiomics features and features extracted through
a pre-trained CNN to discriminate GBMs from lower-grade glioma using
a small dataset of 285 glioma cases. This allowed us to assess the
predictive value of the radiomics features with pre-trained CNN features
on the same heterogeneous dataset and to gauge the potential of deep
learning for brain tumour diagnosis. Moreover, we investigate whether
best performance is achieved when cropping the MRI to the tumour
region-of-interest, which requires a prior segmentation or detection step,
or if accurate classification can be obtained based on the entire MRI.

8.2 Materials and methods

8.2.1 Data

The data used in this work originates from the BraTS 2017 training
database [285, 329]. It contains multi-institutional routine clinically
acquired pre-operative MRI scans of 210 glioblastoma and 75 lower-
grade glioma (WHO grade II and III) with pathologically confirmed
diagnosis. For each case, multi-modal MRI are available including a T1-
weighted, a post-contrast T1, a T2-weighted and a T2 fluid attenuated
inversion recovery sequence. The MRI scans originate from multiple
(n=19) institutions and were acquired with different clinical protocols
and scanners resulting in a very heterogeneous dataset. All glioma
cases are segmented manually by one to four raters and approved by
experienced neuro-radiologists. Delineated tumour regions are the GD-
enhancing, peritumoural oedema and the necrotic and non-enhancing
tumour tissues. All subject’s sequences are co-registered to the same
anatomical template, interpolated to a 1 mm3 voxel size and skull-
stripped, i.e. only the brain area is preserved.

As non-invasive determination of tumour malignancy is mostly based
on Tlce MRI, we only use this sequence and segmentation data in
the current study to perform binary grade prediction. Example cases
from the BraTS 2017 training dataset are shown in figure 8.1. For the
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glioblastoma, case (figure 8.1a), one clearly observes a necrotic core with
thick, surrounding contrast enhancement. No contrast enhanced tissue
is observed in the lower-grade glioma (figure 8.1b).

(a) Example of a glioblastoma case.

(b) Example of a lower-grade glioma case.

Figure 8.1: Example cases from the BraTS 2017 training dataset [285, 329].
An axial slice is shown from the T1lce sequence and the manual
segmentation map. Blue denotes necrosis + non-enhancing
tissue; orange indicates enhancing tissue and green peritumoural
oedema.

8.2.2 Feature Extraction: Radiomics

In the radiomics feature extraction approach, all scans were first bias
corrected using SPM12 (version 6906, Wellcome Trust Centre for Neu-
roimaging, University College London) [330] running on MATLAB R2017b
(The MathWorks, Inc., Natick, MA). Bias fields are smooth, low-frequency
signals corrupting the MRI intensities and are caused by small inhomo-
geneities in the magnetic field of the MRI scanner. Although they usually
do not impede visual inspection, they can influence the extraction of
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radiomics features.

Next to bias correction, the image intensities were also normalised fol-
lowing the robust white stripe normalisation algorithm [331]. This is
necessary since MRI scans are recorded in arbitrary units resulting in
highly varying intensities across different MRIs. Radiomics features are
extracted that describe the intensities present in the image and therefore
normalisation is required. In white stripe normalisation, the intensities
are normalised by subtracting with the mean and dividing by standard
deviation of the normal-appearing white matter tissue intensities. This
way, healthy white matter has zero mean and unit variance for all pa-
tients and images.

After pre-processing of the MRI, the tumour appearance is quantified
through the extraction of numerous radiomics features as illustrated in
figure 3.10. The manual segmentation labels were used to define five
different tumour regions: total abnormal region, tumour core (necro-
sis+enhancing), enhancing tissue, necrosis and oedema. In every region
207 quantitative features were calculated: 14 histogram, 8 size and shape
and 185 texture features. These features were calculated according to
the definitions in Aerts el al. [332] and Willaime et al. [333].

Histogram features describe the intensity distribution in each region, i.e.
contain information on heterogeneity. Example statistics are mean, me-
dian, standard deviation, minimum, maximum, skewness (asymmetry),
kurtosis (presence of heavy tails) etc.

Shape and size features include volume, maximal diameter, surface,
surface to volume ratio etc.

Texture features further describe tumour heterogeneity and spatial distri-
bution of the different intensities. Different types of texture features are
calculated: 138 grey-level co-occurence, 22 grey-level run-length matrix,
12 neighbourhood grey-tone difference matrix and 13 grey-level size-zone
matrix features.

A complete description of the radiomics feature extraction process
can be found in the work of Stijn Bonte [325].

8.2.3 Feature Extraction: Pre-trained CNN

Instead of extracting hand-engineered features from the segmented tu-
mour volumes, deep features were extracted using a pre-trained convo-
lutional neural network. Hence we employ a transfer learning approach
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as explained in section 2.3.3. We expect that features learned by the
network to classify natural images in ImageNet also hold predictive value
for classification of brain tumours. Through the use of a pre-trained
network, there is no need to train a CNN on the limited dataset used in
this chapter and we can use a more traditional machine learning classifier
as in the radiomics procedure (see next section).

The VGG-11 architecture was used consisting of 8 convolutional and
3 fully connected layers [45]. The architecture is depicted in figure 8.2,
after removing the last two fully connected layers. The model, pre-
trained on the ImageNet dataset, was loaded from the PyTorch torchvi-
sion package. Features were obtained by forward propagating an MRI
slice through the network and extracting the 4096-dimensional output
of the first fully connected layer. The first layer was chosen under the
assumption that earlier layers learn more generally applicable features
than layers deeper into the network. Before being propagated through
the network, the slices were pre-processed to match the expected input
of the pre-trained pytorch models. The image intensities were scaled to
a range between zero and one, the slice was resized to a shape of 224
X 224 through bilinear interpolation and finally normalised with mean
and standard deviation values provided by PyTorch. Because the model
expects RGB images, the MRI slice was provided at the R channel and
the B and G channels were set to zero.

Feature extraction and corresponding grading performance was eval-
uated for four different ways of providing the T1lce scan at the input of
the network. The different approaches are illustrated in figure 8.2.

In a first approach, the manual segmentation labels were used to select
the slice in the T'1ce scan containing the largest tumour contour and crop
this slice to the size of the tumour (figure 8.2: method 1). After applying
the pre-processing steps explained above, the tumour patch was prop-
agated through the network, thereby obtaining one 4096-dimensional
feature vector per patient with a corresponding label indicating LGG or
GBM.

For the second method, all tumour slices were propagated through the
network after being cropped to the size of the tumour (figure 8.2: method
2). Hence, multiple feature vectors are obtained for each patient and
every slice or feature vector was classified into one of three classes: (1)
LGG, (2) GBM where only oedema is visible, (3) GBM with contrast
enhancement and necrosis. In each slice, either a LGG or a GBM is
visible. Additionally, a GBM may in some slices only display oedema
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and no contrast enhancement and necrosis. Because these slices may
have a similar appearance as LGG slices, this could be confusing for the
classifier and therefore a separate class was added for GBM slices only
demonstrating oedema.

In the third method, the same slice was selected as in the first approach,
but now it was not cropped (figure 8.2: method 3). Hence the entire
slice was propagated through the network and again one feature vector
is obtained per patient.

To design a system able to classify a Tlce scan without requiring seg-
mentation information, a fourth method was investigated. Here, every
slice of the Tlce scan was propagated through the network (figure 8.2:
method 4). One entire scan contains 155 slices, so 155 feature vectors
were obtained for each patient and a fourth class, besides the three classes
of the second method, was added for slices containing no tumour. Using
this approach, no segmentation data is required to classify slices from
a Tlce sequence of a new patient resulting in a fully automatic CAD
system. The method used to aggregate results from multiple feature
vectors from one patient is explained in next section.
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Figure 8.2: Feature extraction with the pre-trained VGG-11 CNN. Method
1: Propagate tumour region of the slice containing the largest
tumour contour. Method 2: Propagate tumour region of all
tumour slices. Method 3: Propagate entire slice containing the
largest tumour contour. Method 4: Propagate all slices
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8.2.4 Random Forest classification

After feature extraction, classification was performed with the goal to
predict whether a patient has a glioblastoma or lower-grade glioma. The
feature vectors were first scaled to unit norm and features showing no
variance between different samples were removed.

For classification, the python scikit-learn RandomForestClassifier was
used with 200 decision trees. All Random Forest models were trained for
the binary classification task except for the second and fourth method
of feature extraction with the pre-trained CNN. In those cases, the
RF model was trained to classify a slice into one of 3, respectively 4
classes as explained in section 8.2.3. For each patient, multiple slices
were classified. All predictions were combined by calculating their mean
probability and the sum of the probabilities of the two GBM classes was
used as the final probability value of having a GBM. The performance
of the classifier was evaluated on a separate test set containing 57 (20%)
of the 285 glioma cases. The class ratio of 210:75 was equal in both
training and test set. To enhance sensitivity and specificity of the model,
the probability threshold of classifying a glioma as GBM was optimised
through 5-fold cross-validation applied on the training set. The training
and evaluation process was repeated 50 times with different random splits
in train and test set to estimate average performance and variability of
the model.

8.3 Results

For the radiomics feature extraction and for each of the feature extraction
methods with the pre-trained CNN, a random forest model was trained
and evaluated to asses the predictive value of the resulting feature vec-
tors. The area under the ROC curve, accuracy, sensitivity and specificity
scores are reported in table 8.1.

The RF model trained on the radiomics features achieves the highest
performance with an average AUC score of 96%. The optimal probability
threshold to classify a case as a glioblastoma that balances sensitivity and
specificity was 0.72. In random forest classifiers, feature importances can
be extracted based on where they are used in the trees and how much
they decrease impurity. The most predictive features were volume of
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Table 8.1: Mean(std) (%) area under the ROC curve, accuracy, sensitivity
and specificity classification scores.

Feature Extraction Method AUC Acc. Sens. Spec.
Radiomics 96.4(2.6) 89.6(3.8) 89.9(5.4) 88.8(8.6)
CNN: Method 1 92.2(3.9) 83.8(4.6) 83.3(5.2) 85.2(9.6)
CNN: Method 2 93.5(3.0) 86.1(4.3) 85.4(5.4) 88.5(8.1)
CNN: Method 3 86.8(4.6) 79.1(4.9) 78.6(6.4) 80.7(9.6)
CNN: Method 4 91.1(3.6) 82(5.3) 81.5(7.2) 83(9.6)

contrast enhanced tissue and histogram and texture feature extracted
form the tumour core region.

With features extracted using a pre-trained CNN, best results were
obtained when zooming in on the tumour region and using all tumour
slices (CNN, method 2). When using features extracted from the entire
slice containing the largest tumour contour (CNN, method 3), perfor-
mance is lower with an AUC of 87% compared to 92%. However, when
predicting glioma grade based on all slices of the Tlce scan (CNN,
method 4), performance could be improved to an AUC score of 91%.

Classifying a T'lce scan was possible within 0.3 seconds with CNN:
method 1 and 3, 12 seconds with CNN: method 2 and 30 seconds with
CNN: method 4 on a Macbook Pro with 2.8 GHz Intel Core i7 CPU.
Propagating all slices through the CNN required most of the computation
time.

8.4 Discussion

The results shown in table 8.1 show that the best performance is achieved
with the radiomics features, matching or even outperforming state-of-
the-art accuracies reported today. This proves that hand-engineered
features hold high predictive value to classify brain tumours. Even
though there is a growing trend towards the use of deep learning algo-
rithms, more traditional radiomics approaches can still be very valuable,
especially when dealing with small datasets. They have the additional
benefit of interpretability. Analysis of the feature importances shows
that the RF classifier indeed focuses on the tumour core regions and the
presence of enhancing tissue which is expected based on existing insights
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into non-invasive grading (see section 7.2.1).

The radiomics features were, however, extracted from manually seg-
mented tumour tissues which is time-consuming and introduces subjec-
tivity. A lot of research has been performed towards automatic seg-
mentation algorithms reaching high performances (see section 7.2.2) and
manual segmentation could therefore be replaced with automatic delin-
eation. Automatic segmentation is also more objective and reproducible
resulting in less variation between radiomics features extracted across
different institutions. This can result in more generalisable radiomics
pipelines. The difference in performance between using a state-of-the-
art automatic segmentation algorithm or manual segmentation remains
to be investigated.

In this chapter we only included a brief overview and discussion on the
use of radiomics for brain tumour grading to set a baseline for compar-
ison with deep learning approaches. A more complete analysis can be
found in: Stijn Bonte. “Artificial intelligence in medical imaging for the
diagnosis of primary brain tumours”. PhD thesis. Ghent University,
2018, pp. XVIII, 222. 1SBN: 9789463551687.

Although performance is slightly lower compared to the radiomics
results, accurate grading could be achieved with a pre-trained CNN as
feature extractor as well.

With the first method of feature extraction through a CNN, an AUC is
achieved of 92% while only requiring a bounding box around the tumour
which is considerably less time-consuming than accurate segmentation
of the different tissues.

Furthermore, when estimating grade based on all tumour slices, perfor-
mance could be improved to an AUC of 93.5%. Drawing a 3D bounding
box can easily be performed manually but an automatic segmentation
algorithm could be used as well. We expect that small variations or
segmentation inaccuracies will not have a large influence on the extracted
bounding box and thus the classification performance.

Features extracted from the entire slice were less informative but by
calculating an ensemble prediction from all slices, accurate grading could
still be achieved reaching a performance similar to the first method.
Through the use of all slices, much more samples are created resulting in
a larger training set which can explain the improved performance. More-
over, by aggregating predictions from the entire MRI, a final prediction
can be made based on the entire tumour region instead of just one slice
of the tumour. This way, a binary grading system could be designed that
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is fast, does not require segmentation or manual input to classify new
T1ce sequences and is trained on a very heterogeneous dataset making
it robust to variations in imaging protocols.

These results show that a CNN, trained on an entirely different
image dataset containing natural images, is able to extract informative
features from MRI sequences as well. Their predictive value is lower than
radiomics features extracted from manually segmented tumour volumes,
but we expect that by fine-tuning the network on brain tumour MRI,
results could further be improved. Chapter 9 will focus on gathering
more data, allowing to specialise CNNs on brain MRI and open the path
towards more accurate and automatic brain tumour characterisation.
Best results are achieved when allowing the CNN to focus on the tumour
ROI using segmentation labels. When propagating the entire MRI, a
lot of information is included that is not necessarily informative for
characterising the brain tumour and could lead to overfitting. This is
especially important when training a CNN from scratch. In chapter 10,
we will therefore train a CNN on the 3D tumour region of interest in order
to limit overfitting. To automatically determine the tumour bounding
box, a segmentation algorithm is required which will be designed in
chapter 9.

The performance of the classifiers could further be improved by using
more sophisticated feature selection methods, providing features from
additional MRI sequences, ensembles of different models etc. The main
goal of this study was, however, to compare the performance between
radiomics and pre-trained CNN features and to gain first insights in the
potential of CNNs for non-invasive characterisation of brain tumours. We
therefore did not optimise every possible design parameter. Nonetheless
very high classification performances are already achieved.

8.5 Conclusion

In this chapter, we assessed the predictive value of radiomics features
and features extracted using a pre-trained CNN for binary brain tumour
grading in a limited data setting. Classification results showed that the
best performance is achieved with shape, intensity and texture features
extracted from manually segmented tumour volumes. Features from a
pre-trained CNN, on the other hand, had a high predictive value as well
and allowed to design an accurate, fast, automatic and robust binary
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grading system. These results indicate that CNNs hold the potential
to develop an accurate, reproducible and fully automatic CAD system.
In the next chapters, a large dataset of glioma cases will be collected
and CNNs will be trained from scratch to segment glioma and not only
predict grade but also IDH and 1p/19q co-deletion status.



9 Brain tumour
segmentation

In previous chapters, we already discussed the importance of automatic
segmentation in the diagnosis and management of glioma. On this ac-
count, we design a deep learning algorithm in this chapter that delineates
the different glioma tissues on routinely acquired MRI. The segmentation
network needs to be automatic, accurate, fast and generalisable to data
from different institutions.

This work has been presented on the Medical Imaging with Deep Learn-
ing (MIDL) 2020 conference [334] and published as a part of an Al
publication: Milan Decuyper et al. “Automated MRI based pipeline
for segmentation and prediction of grade, IDH mutation and 1p19q co-
deletion in glioma”. In: Computerized Medical Imaging and Graphics 88
(Mar. 2021). 1SsN: 08956111. DOI: 10.1016/j . compmedimag . 2020 .
101831.

9.1 Introduction

Delineation of the different brain tumour tissues on MRI is not only a
necessary pre-processing step for the radiomics pipeline. The tumour
grading results with the pre-trained CNN in previous chapter showed
that best performance was achieved when cropping the input MRI to
the tumour region of interest. This allowed the network to focus on the
tumour appearance. Moreover, reducing the input size of the CNN also
reduces memory and computational requirements. Using segmentation
as a pre-processing step to detect the tumour and define the 3D bounding
box can therefore also help to improve the subsequent classification

189
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performance with CNNs.

Next to pre-processing, automatic delineation is also important for surgery
planning, volume estimation and assessing tumour progression and treat-
ment response. We can conclude that segmentation plays a crucial role
in computer-aided characterisation and clinical management of brain
tumours and we therefore design an automatic segmentation algorithm
in this chapter.

Existing automatic segmentation algorithms using U-Net architec-
tures already achieve very high performances matching manual segmen-
tations performed by radiologists (see section 7.2.2). These algorithms
require that all four MRI sequences (T1, Tlce, T2 and FLAIR) are
available. This is not always the case in clinical practice. Often there
are some sequences not available because they are not acquired or are
not of sufficient quality due to artefacts, motion blurring, noise etc. In
chapter 10, we use data acquired from multiple public datasets to train
a classification network. Whereas for almost all patients, a good quality
T'1ce scan is available, for some patients, a good quality T1, T2 or FLAIR
MRI is lacking. All four sequences were only available for 60% of the
patients. Only 67% of the cases include a T1 scan, 92% a T2 scan and
65% a FLAIR sequence. As we want to use a dataset that is as large
as possible and be able to accurately segment glioma even when not all
MRI are available, we develop an automatic segmentation algorithm that
is robust to these missing modalities.

9.2 Automatic segmentation

9.2.1 The BraTS 2019 dataset

To train the segmentation network, we used the BraTS 2019 training
dataset [285, 293, 329]. This dataset contains data from the BraTS
2017 dataset with additional data from 50 patients. Accordingly, data
is included from 335 patients (76 glioma WHO grade II, III and 259
glioma grade IV). Routine clinically acquired pre-operative T1, T1ce, T2
and FLAIR MRI are provided from multiple institutions together with
manual segmentation maps denoting the GD-enhancing, peritumoural
oedema and the necrotic and non-enhancing tumour core regions (see
figure 7.5 for an example). The MRI and segmentation maps are provided
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in Neuroimaging Informatics Technology Initiative (NIfTI) format® with
image dimensions of 240 x 240 x 155 voxels.

All MRI were co-registered to the same anatomical template, inter-
polated to 1 mm3 voxel sizes and skull-stripped.
Next to the pre-processing steps performed by BraTS, we independently
normalised each sequence by subtracting the mean and dividing by the
standard deviation. The mean and standard deviation are only calcu-
lated based on the brain (non-zero) voxels to limit the influence of the
amount of background voxels on the normalisation statistics. Further-
more the MRI are cropped to the brain region.

9.2.2 Architecture

In recent BraT$S challenges, U-Nets have shown state-of-the-art perfor-
mance for brain tumour segmentation (section 7.2.2). A U-Net is an
encoder-decoder network that combines semantic and spatial information
through the use of skip connections from the encoder to the decoder
which allows to segment fine structures very well. We therefore imple-
mented a 3D U-Net similar to the architecture proposed by Isensee et
al. [336] as illustrated in figure 9.1. The sizes denoted in figure 9.1 are
shown for an input patch of 112 x 112 x 112 voxels.

The network has four input channels (one for each modality), 32 fea-
ture maps at the highest resolution, five levels (depths in the U shape)
and four output channels (background, necrosis, oedema and enhanc-
ing tissue). Every encoding stage consists of two convolutional blocks
comprising a convolutional layer with kernel size 3, followed by instance
normalisation and leakyReLU activation. Instance instead of batch nor-
malisation was used as the exponential moving averages of mean and
variance within small batches (see next section) are unstable. At each
encoding level the amount of feature maps is doubled and after each
encoding part, the feature map sizes are halved with a max-pooling layer.
The decoding part again comprises two convolutional blocks. The num-
ber of filters is reduced right (by the second convolutional layer) before
upsampling to increase the feature map size. Trilinear upsampling is used
instead of transposed convolutions to limit the number of parameters and
memory consumption. This allows a suitable number of feature maps
while limiting overfitting and not exceeding the GPU memory limit.

Thttps://nifti.nimh.nih.gov
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After the last decoding stage, the network ends with a convolutional layer
with a 1 X 1 x 1 kernel and four output channels followed by softmax
activation to convert the values into class probabilities. The final output
segmentation map has the same size as the input of the network.
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Figure 9.1: Schematic overview of the used U-Net architecture for automatic
segmentation of glioma.

9.2.3 Training

The network is trained on patches of 112 x 112 x 112, randomly sampled
from the MRI brain volume, and a small batch size of two because of the
high memory consumption of 3D convolutions. Patch extraction during
training is necessary as the network cannot be trained on the entire MRI
volumes due to memory limitations. Moreover, it allows to extract many
different data samples from one MRI which helps to reduce overfitting.
The input dimensions should be a power of two and at least 2* = 16 as
the size is halved four times and to preserve the same dimensions after
downsampling and upsampling. After cropping the MRI to the brain
region, the dimensions are on average 136 x 169 x 138. A size of 112
was chosen as it is small enough in order to extract many different patches
and fit into memory during training. Additionally, it is sufficiently large
to contain enough context information on the different tissue intensities
in the image.

The network was trained using the Adam optimiser with an initial
learning rate Irjn;: = 10~ and an L2 weight decay of 10~6. The learning
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rate is halved every time the validation loss did not improve in the last 50
epochs. In case of no improvement for 250 epochs, early stopping is ap-
plied. A combination of cross-entropy and multi-class soft Dice loss was
used as the optimisation metric. Soft Dice loss uses the probabilities for
calculating the Dice overlap score instead of the binary predictions after
thresholding. The network was implemented in Python using PyTorch
and trained on an 11GB NVIDA GTX 1080 Ti GPU.

Sixty patients were held out for validation (40 GBM and 20 LGG
cases) and the network was trained on the remaining 275 patients. To
limit overfitting, data augmentations such as flipping and random axial
rotations were applied on the fly during training before patch extraction
to prevent introduction of boundary effects.

To increase robustness of the segmentation network to missing T1
and T2 or FLAIR modalities, channels dropout was applied to simulate
this. Different input channels were randomly set to zero during training
with a probability of 50%. We made sure that at least the Tlce and
a T2 or FLAIR sequence was available at the input. The T1lce scan is
important to accurately segment the contrast enhancing tissue, whereas
a T2 sequence more clearly shows oedema.

9.2.4 Evaluation

During evaluation, the entire brain volume can be propagated through
the network and no patch extraction is necessary. After cropping to
the brain region, zero padding is added to each dimension to reach a
size that is a power of two. The network is evaluated on the BraTS
2019 validation dataset containing 125 patients. Dice scores and robust
Hausdorff distances are reported as calculated by the online evaluation
platform?. The Hausdorff distance denotes the maximal surface distance
between the predicted and ground truth segmentation surfaces. Robust
Hausdorff distance reports the 95% quantile over all surface distances.

The developed segmentation algorithm needs to be generalisable to
data from different institutions with highly varying image acquisition
protocols. In the next chapter we will train a tumour diagnosis network
on public data from TCIA and evaluate it on data that was retrospec-
tively collected at the Ghent University Hospital (GUH). This was done
with permission from the local ethics committee, and informed consent

2https://ipp.cbica.upenn.edu
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was waived (Belgian registration number: B670201838395 2018/1500).
We will therefore, also qualitatively evaluate wether the network is able
to accurately segment brain tumour MRI from our centre as well.

9.3 Results

9.3.1 Quantitative results

Segmentation results on the BraTS 2019 validation data are summarised
in table 9.1 and table 9.2. Dice scores and Hausdorff distances are
reported for the enhancing tumour (ET), whole tumour (WT) and tu-
mour core (TC) regions and for different available modalities: all four
sequences, only T1lce and FLAIR or only Tlce and T2. To illustrate the
increased robustness to missing modalities, the results are included with
(table 9.1) and without (table 9.2) randomly setting input channels to
zero during training,.

When training with channel dropout, a mean whole tumour dice
score of 90% is achieved which lowers to 89% and 87% when only the
T1lce and FLAIR and Tlce and T2 MRI are available respectively. The
median WT Dice scores are higher: 92%, 92% and 89% respectively.
For the other tumour regions the average Dice scores vary between 74%
and 76% for enhancing tissue and 82%-83% for the tumour core. The
network achieves a high average WT specificity of 99% and a sensitivity
of 92% in case all modalities are available. When only providing T1ce
and T2, the specificity and sensitivity measures are 99% and 88%.
Without randomly removing channels while training, the difference in
performance is larger with mean WT dice scores of 90% based on all
sequences, 83% based on T'lce and FLAIR and 61% based on only T1ce
and T2.

On the Nvidia 1080 Ti GPU, a patient’s MRI can be segmented in
less than one second.
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Table 9.1: Segmentation results on the BraTS 2019 validation data with
randomly setting input channels to zero while training. Metrics

were computed by the online evaluation platform.

Dice Score (%)

Hausdorff distance (mm)

Available modalities ET WwWT TC ET WwWT TC
Mean T1, Tlce, T2, FLAIR 75.71 89.81 83.18 5.08 4.99 6.66
Tlce, FLAIR 74.35 89.37 82.74 4.34 5.12 6.82
Tlce, T2 74.09 86.98 82.20 5.58 7.15 7.37
Median T1, Tlce, T2, FLAIR 85.29 92.08 89.59 2.24 3.16 3.74
Tlce, FLAIR 84.86 92.05 89.75 2.24 3.16 3.32
Tlce, T2 84.49 89.27 89.56 2.24 4.24 3.46

Table 9.2: Segmentation results on the BraTS 2019 validation data without
randomly setting input channels to zero while training. Metrics

were computed by the online evaluation platform.

Dice Score (%)

Hausdorff distance (mm)

Available modalities ET WT TC ET WT TC
Mean T1, Tlce, T2, FLAIR 76.33 90.02 79.68 3.89 5.72 6.97
Tlce, FLAIR 64.37 82.77 69.33 51.88 15.09 26.13
Tlce, T2 62.46 60.98 59.86 9.02 23.03 23.27
Median T1, Tlce, T2, FLAIR 85.84 91.66 88.62 2.12 3.16 3.53
Tlce, FLAIR 82.27 89.25 83.99 3.61 5.74 7.87
Tlce, T2 75.83 69.24 71.82 3.46 13.93 13.40

9.3.2 Qualitative results

Figures 9.2 to 9.6 provide a qualitative overview of the segmentation
performance. To avoid cherry picking, the cases are selected as best (fig-
ure 9.2), 75th percentile (figure 9.3), median (figure 9.4), 25th percentile
(figure 9.5) and worst (figure 9.6) based on whole tumour Dice score.
These Dice scores are 98%, 95%, 92%, 88% and 54% respectively. As
the ground truth segmentation labels are not provided by BraTs for the
validation data, these are not included.

In figures 9.2, 9.3 and 9.5 the predicted segmentations are very similar
when all sequences or only two sequences are provided and therefore only

one segmentation result is shown.
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Figure 9.2:

Figure 9.3:

Tlce T2 FLAIR Segmentation
T1, Tce, T2, FLAIR

Example MRI and segmentation (overlaid on T'lce) of the patient
with best whole tumour Dice score (98%). Blue denotes the
necrotic and non-enhancing tissue, orange, enhancing tissue and
green peritumoural oedema. The predicted segmentations are
included when providing all sequences. Results when only
providing T1ce and T2 or FLAIR are similar.

FLAIR Segmentation
T1, Tce, T2, FLAIR

Example MRI and segmentation (overlaid on Tlce) of the
patient with whole tumour Dice score at 75th quantile (95%).
Blue denotes the necrotic and non-enhancing tissue, orange,
enhancing tissue and green peritumoural oedema. The predicted
segmentations are included when providing all sequences. Results
when only providing T1lce and T2 or FLAIR are similar.

The brain tumour depicted in figure 9.4 possibly demonstrates infil-
trating oedema around the ventricle on the left which is visible on the
FLAIR sequence but much less on the T2 scan. When only providing
the Tlce and T2 sequences, this oedema tissue is not detected. When
the FLAIR scan is available, the segmentation network does delineate
this oedema tissue.
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Tlce

Figure 9.4:

Figure 9.5:

T2 FLAIR Segmentation Segmentation
Tlce, T2 T1, Tlce, T2, FLAIR

Example MRI and segmentation (overlaid on T1ce) of the patient
with median whole tumour Dice score (92%). Blue denotes the
necrotic and non-enhancing tissue, orange, enhancing tissue and
green peritumoural oedema. The predicted segmentations are
included when only providing the Tlce and T2 sequences and
when providing all sequences. Results when only providing T1ce
and FLAIR are similar as when providing all scans

Segmentation
T1, T1ce, T2, FLAIR

Example MRI and segmentation (overlaid on Tlce) of the
patient with whole tumour Dice score at 25th quantile (88%).
Blue denotes the necrotic and non-enhancing tissue, orange,
enhancing tissue and green peritumoural oedema. The predicted
segmentations are included when providing all sequences. Results
when only providing T1lce and T2 or FLAIR are similar.

A similar observation is made in figure 9.6. This example shows
the patient from the validation set with the lowest whole tumour dice
score of 32% (when only providing T1lce and T2). Some of the oedema
surrounding the segmented tumour core is missed. When providing all
four MRI, more oedema is segmented and the WT dice increases to 54%.
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FLAIR Segmentation  Segmentation
Tlce, T2 T1, Tce, T2, FLAIR

Figure 9.6: Example MRI and segmentation (overlaid on Tlce) for two
different slices of the patient with lowest whole tumour dice score
(54%). Blue denotes the necrotic and non-enhancing tissue, green
indicates the peritumoural oedema. The predicted segmentations
are included when only providing the T1ce and T2 sequences and
when providing all sequences (for the bottom slice).

9.3.3 Ghent University Hospital data

Figure 9.7 illustrates the segmentation performance on the Ghent Univer-
sity Hospital data. Example MRI and segmentation maps are included
from four different patients. Two cases with high grade glioma (first
two rows in figure 9.7) and two with lower-grade glioma (bottom two
rows in figure 9.7) are randomly selected. In all cases the brain tumour
was detected by the segmentation network. No manual delineations are
available to compare the obtained segmentation maps with, so we can
only qualitatively assess the segmentation results.

9.4 Discussion

The segmentation results on the BraTS 2019 validation set show that
very good dice scores are achieved. With an average whole tumour
dice score of 90%, our segmentation algorithm matches the performance
of state-of-the art algorithms of the BraTS 2019 challenge with the
top three winning algorithms obtaining a mean WT dice score of 91%
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Tice FLAIR Segmentation

Figure 9.7: Example MRI and segmentation (overlaid on Tlce) of four
different patients from the Ghent University hospital dataset.
Blue denotes the necrotic and non-enhancing tissue, green
indicates the peritumoural oedema.

according to the validation leaderboard [337]. The winning approach
of the most recent BraTS 2020 challenge reports average dice scores
of 89%, 85% and 82% for whole tumour, tumour core and enhancing
tumour respectively [300]. The whole tumour and tumour core results
of the network in this work are very similar. The ET Dice score, on
the other hand, is lower (76% versus 82%). One of the most challenging
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parts in brain tumour segmentation is distinguishing small blood vessels
(that are enhanced in the Tlce scan) from enhancing tumour in the
tumour core region. This is especially the case for lower-grade glioma
patients that have no enhancing tumour. When the network predicts
a few enhancing voxels while these are not segmented in the manual
labels, an ET Dice score of 0 and a large Hausdorff distance is assigned
to that case. So even though the error is not substantial (even for a
single false positive) and can easily be interpreted by a clinician, these
scores have a significant influence on the average metrics. This can also
be observed when comparing the mean with median values in table 9.1
which are significantly higher. In top performing BraTS solutions often
a post-processing step is applied where all enhancing tumour voxels are
set to the tumour core label when the total number of ET voxels is below
a certain threshold [299, 300]. This significantly improves the mean ET
dice score. In a clinical scenario, however, it can be of crucial importance
to detect small enhancing tumours, and applying this post-processing is
not recommended. When comparing the achieved median ET Dice scores
(86% versus 85% in this work), the difference is much smaller.

Additionally, the network shows increased robustness to missing modal-
ities when randomly setting the T1 and T2 or FLAIR sequence to zero
while training. There is only a small decrease in performance when
only providing the T1lce and FLAIR or Tlce and T2 scans compared to
all four MRI as input. Without randomly excluding image modalities
during training, the performance with only two modalities is much lower.
From a WT Dice score of 90% to 83% and 61% respectively. The higher
scores when the T2 scan is missing compared when the FLAIR MRI is
absent reveals that the FLAIR contains more discriminative information
(especially for oedema). Indeed, the abnormal tissue contrast is better
on FLAIR than on standard T2-weighted MRI. This can also be noticed
in figures 9.4 and 9.6, discussed below.

Robustness to missing T1, T2 and FLAIR sequences is especially useful
as not all four MRI modalities are available for all patients in both our
public dataset and the Ghent University Hospital dataset that will be
used in chapter 10. This way an accurate segmentation and tumour ROI
extraction can still be obtained for these patients.

Other works that try to increase robustness to missing modalities use
multiple encoders and decoders with correlation representations, feature
fusion and attention mechanisms [338, 339]. Still large gaps in Dice scores
are reported when a T2 or FLAIR sequence is missing. This shows that
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channel dropout is a quite simple, yet effective way to increase robustness
to absent input modalities.

Example segmentations shown in figures 9.2 to 9.6 demonstrate that
the segmentation quality is high overall, even for the cases with the worst
WT Dice scores. The very high specificity and slightly lower sensitivity
of the network indicates that segmentation inaccuracies are due to parts
of the surrounding oedema that are not detected. This is illustrated by
the examples shown in figures 9.4 and 9.6 with the median and lowest
WT dice score.

In figure 9.4, some of the FLAIR hyper-intensities around the left ven-
tricle, that could be due to infiltrating oedema, are not segmented when
only providing the T1lce and T2 scans. The network does detect this
oedema when the FLAIR sequence is added.

A comparable observation is made in figure 9.6. Based only on the T1ce
and T2 MRI, the network is able to segment the tumour core but misses
the surrounding oedema which is not clearly visible on the T2 sequence.
When adding the FLAIR sequence where the oedema is more evident,
the network is able to detect more of the oedema tissue.

Segmentation results on the Ghent University Hospital data displayed
in figure 9.7 show that the network also works on data from our private
institution. In the GBM cases (top two rows) the different tissues being
necrosis, surrounding enhancing tissue and peritumoural oedema appear
well delineated. For the LGG cases (bottom two rows), which demon-
strate no enhancing tumour tissue, the tumour core and oedema are well
identified. Small hyper-intensities in the tumour core on the T1lce scan
due to blood vessels are correctly not classified as enhancing tissue by

the U-Net.

We believe that the obtained performance with the implemented
U-Net is sufficiently high to be useful in a clinical setting. Similar
to the BraTS top performing solutions, the segmentation performance
could also further be improved through the use of ensembles (e.g. by
training multiple networks on different random splits). In this work,
we wanted to design a segmentation algorithm that is fully automatic,
accurate, fast and generalisable to data from different institutions. It has
to be taken into account that the segmentation results of the network
are compared with manual segmentations. Manual delineations suffer
from inter- and intra-reader variability and are also not 100% accurate.
It can therefore be debated whether further improving the Dice scores
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with a few percentages is clinically relevant. Objectivity and robustness
could be more important when analysing brain tumour volumes and
progression over time.

In next chapter, we will use the segmentation network to extract the
tumour region of interest from the MRI. This will allow the classification
network to focus on the relevant tumour region. We expect that the
achieved performance is adequate for this task, as small variations be-
tween manual and predicted segmentations won’t have a strong influence
on the tumour ROI. Moreover, the segmentation network also works on
the GUH data which will be used in the following chapter.

9.5 Conclusion

In this chapter, we developed an automatic, accurate and fast segmenta-
tion deep learning algorithm based on the U-Net architecture. Segmen-
tation requires only one propagation of the entire brain MRI through
the network that produces a segmentation map, accurately delineating
necrosis, enhancing tissue and peritumoural oedema. Through channel
dropout, i.e. randomly excluding input MRI during training, robustness
to missing input modalities could be increased. This is useful a clinical
setting where often some sequences are not available or of insufficient
quality, which is also the case in our retrospectively acquired dataset
that will be used to train and evaluate a diagnosis network in the next
chapter. Finally, the segmentation quality was assessed on data from our
private institution, demonstrating the generalisability of the segmenta-
tion network.



10 Automatic glioma
characterisation

In this chapter, we propose a non-invasive fully automatic 3D pipeline
to predict clinically relevant markers according to the most recent WHO
glioma classification guidelines based on routinely acquired pre-therapy
MRI. We collected a large dataset from multiple public databases and
an independent dataset from the Ghent University Hospital to test the
generalisation performance.

The work in this chapter has been presented on the Medical Imaging with
Deep Learning (MIDL) 2020 conference [334] and published as a part of
Milan Decuyper et al. “Automated MRI based pipeline for segmentation
and prediction of grade, IDH mutation and 1p19q co-deletion in glioma”.
In: Computerized Medical Imaging and Graphics 88 (Mar. 2021). ISSN:
08956111. pOI: 10.1016/j.compmedimag.2020.101831.

10.1 Introduction

In chapter 8 we have discussed the binary brain tumour grading problem
and compared performance of hand-engineered radiomics features with
features extracted using a pre-trained CNN. Although best results were
achieved with the radiomics features, the performance achieved with the
pre-trained CNN features was already very close. The used network was
pre-trained on ImageNet, containing natural images, and is therefore not
optimised to process medical imaging data. We believe that when train-
ing a network specifically on medical images, classification performance
could even be improved. Training a convolutional neural network from
scratch to predict glioma markers from pre-therapy MRI is the topic of
this chapter.

203
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Next to tumour grade, the WHO has put increased emphasis on the
integration of molecular markers for brain tumour differentiation (see sec-
tion 7.1.2). Gene expression profiles have shown to be a better predictor
of survival and therapy response compared to histopathology alone. As
discussed in section 7.1, IDH mutation and 1p/19q co-deletion status
play a crucial role in the classification of diffuse glioma (see figure 7.2).
Glioma with IDH mutation demonstrate better prognosis and response
to temozolomide chemotherapy. Combined loss of chromosome arms 1p
and 19q is also linked to more favourable outcomes and response to
PCV chemotherapy. Demonstration of both IDH mutation and 1p/19q
co-deletion is required for diagnosis of oligodendroglioma.

We can conclude that determination of WHO grade (glioblastoma
versus lower-grade glioma), IDH mutation and 1p/19q co-deletion sta-
tus is necessary for prognosis and optimal therapy planning of diffuse
glioma. Genetic markers are currently derived through tissue analysis af-
ter biopsy or resection. As already mentioned, these invasive procedures
involve risks and are not always possible to perform depending on loca-
tion of the tumour and clinical condition of the patient (section 7.2.1).
Moreover, genetic testing is expensive and time consuming. New genetic
alterations, relevant in oncology, are continuously identified and current
oncology workflows are not accustomed to incorporate huge amounts of
tests [234, 340]. Therefore, non-invasive assessment of clinically relevant
genetic markers can aid in characterising glioma and guide initial therapy
and surgery planning, especially when extraction of tumour tissue is not
possible or genetic testing not available.

In chapter 8 we used manual segmentation labels to extract ra-
diomics features and define the 3D bounding box around the tumour
region of interest, similar to many current studies on computer-aided
glioma classification (see table 7.1). To improve objectivity and repro-
ducibility, we will use the automatic segmentation network developed in
chapter 8 to extract the tumour ROL.

Additionally, existing work is often trained and evaluated on a small
dataset acquired from one clinical centre. To train a CNN from scratch,
a lot of data is required and for evaluation preferably an independent
dataset from a different institution should be used to test the generali-
sation performance. Collecting a large and well-curated dataset of brain
tumour MRI is challenging. Included cases often have unavailable or low
quality input MRI modalities or missing ground truth labels describing
tumour characteristics. Initiatives such as The Cancer Imaging Archive
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try to resolve these issues by hosting a large archive of publicly available
medical image datasets.

In this chapter, we collected a large dataset from multiple collections
available on TCIA and an independent dataset at the Ghent University
Hospital for evaluation of the generalisation performance. In chapter 9
on segmentation we have seen that robustness to missing modalities can
be improved by applying channel dropout during training. We will
additionally employ multi-task learning to train a CNN from scratch
on the entire collected dataset while dealing with missing labels and
restricting potential overfitting. The goal is to develop an accurate and
automatic pipeline to segment glioma and subsequently predict WHO
grade, IDH mutation and 1p/19q co-deletion status based on pre-therapy
MRI.

10.2 Dataset

To acquire a large dataset, we gathered data from multiple databases
available on The Cancer Imaging Archive. Additionally, data was col-
lected at the Ghent University Hospital for final evaluation of the gen-
eralisation performance.

10.2.1 The Cancer Imaging Archive

The Cancer Imaging Archive hosts a large archive of medical images of
cancer that are available for public download [51]. We collected data
from multiple collections: The Cancer Genome Atlas [266] glioblastoma
[341] and lower-grade glioma [342] collections (TCGA-GBM and TCGA-
LGG) and the LGG-1p19gDeletion collection [343]. Furthermore, we also
included data form the BraTS 2019 dataset which partially overlaps with
patients in TCGA-GBM and TCGA-LGG.

Inclusion criteria were: a histologically proven glioma of WHO grade
I1, ITI or IV, the availability of at least a pre-operative T1lce MRI together
with a T2 and/or FLAIR sequence of sufficient quality and information
on WHO grade, IDH mutation and 1p/19q co-deletion status. In total
628 patients were included: 164 patients from TCGA-GBM, 121 from
TCGA-LGG, 141 from 1p19gDeletion and 202 from BraTS 2019 (only
patients that were not already included in the TCGA collections).
For the cases in BraTS all four MRI sequences (T1, T1ce, T2 and FLAIR)
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were available. In the TCGA collections, all four MRI were available for
74% of the patients. A T1 scan was included in 86% of the cases, a
T2 sequence in 98% and a FLAIR in 83%. The LGG-1p19gDeletion
collection only includes a Tlce and T2 sequence. Hence the required
robustness of the segmentation network to lacking T1, T2 and FLAIR
MRI.

For all patients, WHO grade information was available (337 GBM vs. 291
LGG). IDH mutation status was known for 380 patients (212 mutated
vs. 168 wildtype) and 1p/19q co-deletion status for 280 LGG patients
(133 co-deleted vs. 147 intact). The 1p19gDeletion collection included
biopsy proven 1p/19q status, determined through fluorescence in-situ
hybridisation (FISH). Molecular data of patients in the TCGA-GBM
and TCGA-LGG collections were obtained from Ceccarelli et al. [344]
where they performed molecular analysis through gene sequencing after
tumour resection for the majority of the cases in TCGA.

The collected dataset from T'CIA contains data from many different
centres with imaging systems from different vendors (both 1.5T and 3T)
and differing scanning parameters. This results in a very heterogenous
dataset with variability in voxel size, resolution, slice gap, contrast etc.

10.2.2 Ghent University Hospital

Additionally, data was retrospectively acquired at the Ghent University
Hospital. Permission was granted by the local ethics committee and in-
formed consent was waived (Belgian registration number B670201838395
2018/1500).

Using the same inclusion criteria as for the TCIA data, we collected
data from 110 patients with known WHO grade (61 GBM vs. 49 LGG).
For 86 patients IDH status was determined (32 IDH mutant vs. 54
IDH wildtype) through immunohistochemistry and for 40 LGG patients
(12 co-deleted vs. 28 intact) 1p/19q co-deletion status was known by
fluorescence in-situ hybridisation.

Of these 110 patients, 79 included all four pre-therapy MRI sequences.
For 15 patients, the T1 scan was missing. Two cases did not include a
FLAIR sequence and for 17 cases the T2 was absent.
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10.2.3 Pre-processing

The collected scans are pre-processed in a similar way as the BraT'S seg-
mentation data. The different pre-processing step were performed fully
automatically using SPM12 (version 7219, Wellcome Trust Centre for
Neuroimaging, University College London) [330] and MATLAB R2018b
(The MathWorks, Inc., Natick, MA).

All scans are first converted from standard Digital Imaging and Com-
munications in Medicine (DICOM) format to NIfTI format.
Subsequently, the T1, T2 and FLAIR scans were co-registered to the
T1ce scan as this sequence was always available and typically had the
highest resolution.

After co-registration, the scans are spatially normalised to MNI space,
interpolated to 1 mm? voxel sizes and bias corrected.

Finally, the MRI are skull-stripped such that only the brain region is
preserved. This effectively removes information from the MRI that is
not relevant for the tumour diagnosis.

10.3 Architecture and training

The pipeline designed in this study consists of a segmentation stage
and a subsequent classification stage as illustrated in figure 10.1. The
brain tumours are first delineated using the segmentation network from
chapter 9. The obtained segmentation map is then used to extract the
tumour region of interest from the MRI. Finally, the obtained tumour
ROI is classified using a classification network which is explained in this
section.

10.3.1 ResNet

Using the segmentation mask, a tumour region of interest is extracted
from the MRI and subsequently fed into the classification network as
illustrated in figure 10.1. A similar architecture design is used as de-
scribed in the original ResNet paper [46]. The network is modified to
a 3D CNN and several modifications were applied to reduce complexity
(number of parameters) and thereby limit the risk of overfitting.

The architecture starts with a convolutional layer with 64 7 x 7 x 7
filters and stride of two followed by four residual blocks. Each residual
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Figure 10.1: Schematic overview of the two-stage pipeline presented in

this study. Both the segmentation and classification network
architectures are illustrated.
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block consists of two convolutional layers with kernels of size 3 x 3 x 3
and a skip connection via addition. The convolutional layers in the first
block have 64 filters without downsampling of the feature maps. In the
following three residual blocks the number of filters are doubled and
downsampling is directly performed by the first convolutional layer that
has a stride of two. This results in 512 features maps after the last
convolutional layer. To allow identity shortcuts, input and output of a
residual block must have the same dimensions. This is not the case in
the last three residual blocks where the input is matched to the output
dimensions through a 1 x 1 x 1 convolutional layer with stride two. Every
convolutional layer is succeeded with instance normalisation and Leaky
ReLU activation (negative slope of 0.01). The adaptive average pool
layer after the last convolutional layer allows the network to process
different ROI input sizes hence no resizing to a fixed shape is required.
In the end the network splits into three separate fully connected layers
to simultaneously predict WHO grade, IDH mutation and 1p/19q co-
deletion.

10.3.2 Training and evaluation

As seen in figure 10.1, the classification network shares the main con-
volutional part across the three tasks and only splits in the last fully
connected layers. This so-called multi-task learning helps the network
to learn features that are relevant for multiple tasks, reduces the risk
of overfitting and allows a better generalisation (see section 2.3.3). As
explained in section 7.2.1, MRI features describing enhancing regions
and tumour margins are important to predict grade, IDH and 1p/19q
status which shows that these tasks are very much related and that
knowledge on one characteristic is informative for the other markers as
well. Moreover, not all ground truth labels are available for every patient
in our dataset. Multi-task learning allows us to deal with missing labels
and train one network on all data instead of training separate networks
for each task on a smaller dataset.

The 1p/19q co-deletion classifier (fully-connected layer) is only trained
for LGG patients as all GBM patients in the dataset are 1p/19q intact
and the 2016 WHO classification system does not include 1p/19q status
for GBM cases (see figure 7.2).

The network is trained with AdamW optimisation (Irjn;: = 107%),
L2 weight decay of 1072, a batch size of eight and focal binary cross-
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entropy loss. Focal loss weighs the contribution of each sample based on
the classification error and thereby reduces the contribution of already
correctly classified samples. This is especially useful to deal with class
imbalance. The loss is calculated for each task separately on all samples
in the batch with known ground truth labels and averaged to a global loss
which is backpropagated through the network. If the validation loss did
not improve in the last 10 epochs, the learning rate is halved and early
stopping occurs after no improvement for 30 epochs. In the last fully
connected layer, dropout is applied with a probability of 10% to help
reduce potential overfitting. Different hyperparameters of the network
were tuned based on the validation set (see below). The network was
implemented in Python and the PyTorch deep learning framework and
trained on an 11GB NVIDIA GeForce RTX 2080 Ti GPU.

To artificially generate more training samples and further reduce the
risk of overfitting, data augmentation was applied during training. The
augmentations are visualised in figure 10.2 and include:

e Randomly making the 3D tumour bounding box larger within
a range of 10 voxels along each dimension (figure 10.2a). This
simulates potential variations in segmented tumour borders and
includes more or less surrounding (healthy) tissue

e Random left-right flipping along brain midline (figure 10.2b)

e Random axial rotations with an angle between -10° and 10° (fig-
ure 10.2d)

e Random intensity scaling with a factor within a range of 0.8 and
2 (figure 10.2¢)

e Elastic transformations which slightly change the shape of the
brain (figure 10.2c)

e Randomly setting input channels to zero as was done to train the
segmentation network (see section 9.2.3)

These augmentations were randomly applied resulting in a lot of
different combinations and accordingly, many additional data samples.
Furthermore, they are performed on the MRI and segmentation maps
before cropping to the tumour ROI to prevent introduction of boundary
effects.
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(a) Bounding box size. (b) Flipping. (c) Elastic transform.

(d) Axial rotation -10° and 10°. (e) Intensity scaling.

Figure 10.2: Visualisation of different data augmentations applied during
training.

The 628 patients are split into a training set of 458 patients (264
GBM vs. 194 LGG, 123 IDH mutant vs. 87 IDH wildtype and 83
1p/19q co-deleted vs. 100 1p/19q intact), a validation set of 70 cases
(27 GBM vs. 43 LGG, 41 IDH mutant vs. 29 IDH wildtype and
20 1p/19q co-deleted vs. 23 1p/19q intact) and a test set of 100 (46
GBM vs. 54 LGG, 48 IDH mutant vs. 52 wildtype and 30 1p/19q co-
deleted vs. 24 1p/19q intact) patients. For patients in the validation
and test set, all ground truth labels were available. Furthermore we
made sure that test patients were not used in the training set of the
segmentation network (as the BraTS dataset partially overlaps with the
TCGA collections) in order to evaluate the system on new cases that both
the segmentation and classification stages have never seen before. Data
from the Ghent University Hospital was used to evaluate the performance
of the classification pipeline on an entirely independent dataset.
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10.4 Results

In table 10.1 the results are presented of the multi-task classification
network. For each task (WHO grade, IDH mutation and 1p/19q co-
deletion status) the AUC, Matthews Correlation Coefficient, accuracy,
sensitivity and specificity scores are included. The sensitivity scores in-
dicate the percentage of GBM, IDH mutant and 1p/19q co-deleted cases
that are correctly classified as such when using a probability threshold
of 0.5. The receiver operating curves are visualised in figure 10.3 for the
three tasks and on both evaluation sets.

The results on the unseen TCIA test data show high classification
performances with AUC scores of 93% and 94% for grade and IDH status
respectively. Predicting 1p/19q co-deletion status for lower-grade glioma
is harder but still an AUC of 82% is achieved.

The performance was also evaluated on the completely independent data
from the Ghent University Hospital. The resulting AUC scores on the
GUH data are 94%, 86% and 87% for grade, IDH and 1p/19q status

respectively.

Training the network took around 15 hours and once trained, a
tumour ROI could be classified in less than one second on the GPU.

Table 10.1: Classification performance on the TCIA and Ghent University
Hospital test data. AUC, Matthews Correlation Coefficient,
accuracy, sensitivity and specificity scores are reported for all
three tasks: WHO grade, IDH mutation and 1p/19q co-deletion
status. A case is classified as Glioblastoma (WHO grade IV),
IDH mutant and 1p/19q co-deleted respectively if the predicted
probability is higher than 0.5.

Dataset Task AUC MCC Acc. Sens. Spec.
TCIA test data GBM vs. LGG 93.28 80.26 90.00 93.48 87.04
IDH mutation 94.03 78.00 89.00 89.58 88.46
1p/19q co-deletion 82.08 66.16 83.33 86.67 79.17
GUH data GBM vs. LGG 93.98 79.81 90.00 90.16 89.80
IDH mutation 86.23 5292 75.58 84.38 70.37

1p/19q co-deletion 86.61 40.48 75.00 58.33 82.14
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Figure 10.3: Receiver operating characteristic curves for predicting WHO
grade, IDH mutation and 1p/19q co-deletion status.

10.4.1 Nearest neighbour visualisation

To probe the network’s visual knowledge, we look at the feature activa-
tions induced by an input ROI at the last, 512-dimensional hidden layer.
For a patient that is classified into a certain class with a high probability,
the tumour ROIs of other patients in the dataset were selected that
have the smallest Fuclidean distance between their feature vectors of
length 512, extracted after the average pooling layer. In other words,
we visualise the nearest neighbours in feature space. If tumour ROIs
produce feature activations within a small Euclidean distance, we can
suspect that the higher levels of the network consider these ROIs as
similar.

For three types of glioma, a 2D slice of the tumour ROI of a patient in
the GUH dataset is shown in figure 10.4 and the four nearest neighbours
from the TCIA dataset are presented. The three included types are oligo-
dendroglioma (LGG, IDH mutant and 1p/19q co-deleted, figure 10.4a),
astrocytoma (LGG, IDH mutant and 1p/19q intact, figure 10.4b) and
glioblastoma (GBM, IDH wildtype and 1p/19q intact, figure 10.4c).
Only the T1ce and T2 sequence is shown for the oligodendroglioma case
as the nearest neighbours were from the LGG-1p19gDeletion collection
which only contains those two sequences.
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GUH
Tumour ROI NNT1

(a) LGG, IDH mutant and 1p/19q co-deleted (oligoden-
droglioma)

GUH
Tumour ROI

~, @

(c) Glioblastoma, IDH wildtype

Figure 10.4: Nearest neighbour visualisation for three cases from the GUH
dataset and three types of glioma.
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10.5 Discussion

With the segmentation network of chapter 9, a 3D tumour ROI is ex-
tracted and used as input to the subsequent 3D CNN that predicts binary
tumour grade, IDH mutation and 1p/19q co-deletion status.

For binary grade prediction, very high accuracies of 90% on both the
TCIA and GUH test data are achieved. This shows that the network is
able to accurately distinguish glioblastoma from lower-grade glioma and
generalises well to unseen data from different institutions.

The IDH mutation prediction performance is high on the TCIA test set
(AUC of 94%). On the GUH data, the performance is lower with an
AUC of 86%. Especially a lower specificity of 70% compared to 88% is
observed. This difference in performance might be because immunohisto-
chemistry was used to determine IDH status for the GUH data while for
the TCGA data IDH status was assessed using gene sequencing [344].
However, a negative IDH status using IHC does not necessarily mean
an IDH wildtype tumour and if no sequencing is available the resulting
diagnosis suggested by the WHO is astrocytoma, not otherwise specified
(NOS) [3]. The GUH database contains 14 IDH wildtype astrocytoma
while this diagnosis should be very rare according to the WHO. Hence
some IDH mutant astrocytoma might be missed with THC resulting
in more false positives of the model and thus a lower specificity. An
additional limitation to the dataset is that there are only two IDH mutant
glioblastoma in the TCIA training set making it very unlikely that the
network will predict this combination of classes. Therefore, the four
GBM with IDH mutation in the GUH database were predicted as GBM,
IDH wildtype.

In terms of 1p/19q co-deletion status prediction of lower-grade glioma,
a good performance is achieved on both the TCIA and GUH datasets
(AUC of 82% and 87% respectively). Although 1p/19q status was known
for the GBM cases in the TCGA-GBM collection (all 1p/19q intact), we
only included LGG patients as this marker is only considered for those
patients according to the WHO guidelines (see figure 7.2). Including
the GBM cases would increase the overall prediction accuracy of 1p/19q
status but would introduce a large data imbalance and thereby decrease
the performance for LGG cases. Results on the GUH dataset show a
lower sensitivity compared to the results on the more balanced TCIA test
set. In the GUH dataset, 1p/19q status was only available for 40 LGG
patients with just 12 1p/19q co-deleted cases which might be too small to
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obtain reliable performance estimations. Depending on the classification
threshold, the sensitivity can also be optimised. For example, with a
threshold of 0.45 the sensitivity on the GUH dataset increased to 75%
with the same specificity.

In figure 10.4, we visualised the nearest neighbours in feature space
for several test patients from the GUH dataset. For the LGG, 1p/19q
co-deleted case illustrated in figure 10.4a we see common characteristics
between the nearest neighbours such as ill-defined tumour borders and
heterogeneous signal intensity on the T2 sequence. This corresponds to
imaging features found in existing literature 7, 8§].

A very interesting result is the LGG, IDH mutant and 1p/19q intact case
shown in figure 10.4b. In all nearest neighbours, a shared imaging feature
is observed. Certain tumour regions show a hyperintense signal on T2
but a hypointense signal on FLAIR. Indeed, this T2-FLAIR mismatch
is reported as a highly specific imaging marker for non-enhancing LGG,
IDH mutant astrocytoma [345, 346]. Similarly, in figure 10.4c, thick,
irregular enhancement with necrosis are common characteristics in the
found nearest neighbours which is attributed to GBM, IDH wildtype
glioma [6].

Although this is not a statistically sound proof that the network has
learned to recognise these features, it can give a first hint to the network’s
visual knowledge. Further research is still necessary to explain and
interpret the network.

In this work, we trained a 3D classification network to make a pre-
diction based on the entire tumour ROI. Current applications of CNNs
for brain tumour classification are mostly 2D, taking only a small part of
the tumour into account while brain tumours have a very heterogeneous
appearance with strong variations between different slices. Furthermore,
extracting only the tumour ROI allows the network to focus on this
region. It was shown in chapter 8 that this improved the classification
performance with a pre-trained CNN. On the other hand, context infor-
mation on surrounding tissues and location is excluded. Including this
information in the input may further improve diagnostic performance
when training a CNN from scratch.

The clinical translation potential of the developed pipeline is strong
as only routinely acquired MRI are necessary as input and no further
human interaction is required. Data pre-processing is minimal, and the
entire segmentation and classification pipeline takes less than 5 seconds
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on an NVIDIA GeForce RTX 2080 Ti GPU.

10.6 Conclusion

In conclusion, we developed a fully automatic 3D pipeline to segment
glioma and non-invasively predict important (molecular) markers ac-
cording to the WHO classification guidelines with high diagnostic perfor-
mance. Through the use of multi-task learning to handle missing labels,
one classification network could be trained on a large multi-institutional
database. Evaluation on an independent private dataset demonstrated
the generalisability of the algorithm. The non-invasive assessment of
clinically relevant genetic mutations can help to characterise glioma and
thereby guide initial therapy and surgery planning.
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11 Combined
segmentation and
classification: Y-Net

In this chapter, a network is presented, called Y-Net, that is able to
process full brain MRI and concurrently perform glioma segmentation
and prediction of important tumour markers. This approach does not
require prior segmentation before classification and tumour markers can
be predicted based on a complete view of the brain. Different techniques
are be presented that allow to train a complex 3D network with lim-
ited GPU memory and on a heterogenous dataset with missing labels.
Segmentation and classification performance is evaluated on the same
datasets as in chapters 9 and 10 and visualisation techniques are em-
ployed to interpret the trained network and examine the learned imaging
features.

11.1 Introduction

In chapter 10 we employed a two-stage pipeline for automatic glioma
segmentation and prediction of WHO grade, IDH status and 1p/19q
co-deletion status. Although high segmentation and classification per-
formances are achieved, there are several potential downsides to this
approach.

Extraction of the tumour region of interest before the classification
stage allows the network to focus on this region but could also remove
potentially relevant information on surrounding (healthy) tissues and

219
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tumour location. Several studies have shown significant correlation be-
tween IDH mutation and 1p/19q co-deletion status and tumour location
[6, 7]. IDH mutant tumours are mostly located in a single lobe such as
frontal lobe, temporal lobe or cerebellum. IDH wildtype tumours, on
the other hand, often occur in combined lobes such as diencephalon and
brain stem. Tumours that are 1p/19q co-deleted most commonly occur
in the frontal lobe. It could therefore be beneficial to train a network that
predicts tumour markers based on a complete view of the brain. Training
such a network is however challenging in terms of memory requirements
and potential overfitting to non-relevant information contained in the
entire MRI.

Furthermore, possible errors in the segmentation stage could propagate
and influence the performance of the classification network. Small re-
gions that are detected as tumour tissue, far from the actual tumour,
can result in an ROI that is too large. Conversely when parts of the
tumour such as oedema, tissue is not delineated, this can lead to an ROI
that is much smaller than the true tumour ROI and an incomplete view
of the tumour appearance.

In this chapter, we investigate whether it is possible to train one
convolutional neural network for simultaneous glioma classification and
segmentation of the different tumour tissues. We extend the U-Net
architecture with additional classification layers and call this architecture
Y-Net. The goal is that Y-Net receives the full pre-therapy brain MRI
as input and concurrently produces an output segmentation map and
predicts Grade, IDH mutation and 1p/19q co-deletion status.

This approach has the advantage that the entire MRI and therefore
all available information is provided as input. No prior segmentation
step is required which could influence the subsequent classification.
Moreover, training a network to simultaneously segment and classify
glioma can also improve the performance as this takes the multi-task
learning strategy applied in chapter 10 even further. Features learned by
the U-Net to segment enhancing, necrosis and oedema tissue are relevant
for prediction of the different tumour markers as well. Consequently,
adding the segmentation task can help the classification part to focus on
the relevant tumour regions and act as a regulariser.

Training this network on the brain tumour dataset of chapter 10 is
challenging due to missing labels and GPU memory constraints.
Ground truth segmentation labels are only available for patients that are
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part of the BraTS dataset. At the same time, many cases in BraTS and
other used public collections do not include information on IDH mutation
and 1p/19q co-deletion status. Consequently, there are only few patients
for which all labels are available. The segmentation network of chapter 9
could be trained with a maximum batch size of two on an 11GB RAM
GPU. A batch size of two is too small when training with missing labels
as in many training updates, segmentation and classification labels would
only be available for one or no patients in the batch. This can lead to very
erratic training behaviour. To enable efficient training of the network,
labels are necessary for every task of at least a few patients in most
training updates.

Furthermore, for the network to learn features describing tumour loca-
tion and surrounding tissues with respect to classification, this informa-
tion has to be included during training. In chapter 9, the U-Net is trained
on patches, randomly extracted from the brain MRI. Random patch
extraction allows to generate many different training samples from the
MRI of one patient and limits the risk of overfitting. When only training
the network on small patches, however, information on tumour location
could be lost. The network will not learn to extract this information
even though the entire MRI is provided at test time. Additionally,
when extracting random patches, it is possible that this patch does not
include any tumour tissue or only a small fragment of the tumour. In
that case, the classification part cannot be trained as this would confuse
the network. Hence patches need to be extracted that contain enough
tumour to perform classification which requires knowledge on tumour
location for every patient. Training the network on the entire brain
region, on the other hand, further increases memory requirements. More-
over, training without random patch extraction significantly reduces the
amount of training samples which can lead to overfitting. Hence for
optimal performance, the network should be trained on patches that are
sufficiently large to contain all relevant information and enough tumour
while being not too large to allow enough differentiation between training
samples of one patient.

In section 11.3, the Y-Net architecture and training procedure will
be explained with the different techniques that are used to deal with
the above challenges. Performance will be evaluated on the same TCIA
and UZ test sets as in chapters 9 and 10 and compared with previous
results. Finally, we investigate several visualisation techniques that are
used to understand and interpret convolutional neural networks (see
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section 11.4).

11.2 Data

The same dataset is used as in chapter 10, extended with an additional
collection from TCIA: the Ivy Glioblastoma Atlas Project (GAP) col-
lection [51, 347, 348]. This collection contains 35 glioblastoma cases
for which pre-therapy MRI of sufficient quality were available. For one
patient, IDH status was not known, three GBM cases are IDH mutant
and the remaining 31 glioblastomas are IDH wildtype. IDH status was
assessed through gene sequencing.

Furthermore, we loosen the requirement of including at least a T2 or
FLAIR sequence. Hence, also patients are included for which only T1lce
sequence was available. Although a T2 sequence contains highly relevant
information for segmentation and classification and performance will
be optimal when including those sequences, we also aim to maximise
accuracy based on T1lce alone to improve clinical applicability. All data
is pre-processed in the same way as explained in section 10.2.3.

This results in a total dataset collected from TCIA of 701 glioma
patients. The dataset is split in the same way as in chapter 10 and all
additional patients are added to the training dataset. Consequently, the
following split is used: a training set of 531 patients (327 GBM vs. 204
LGG, 136 IDH mutant vs. 143 IDH wildtype and 84 1p/19q co-deleted
vs. 109 1p/19q intact), a validation set of 70 cases (27 GBM vs. 43
LGG, 41 IDH mutant vs. 29 IDH wildtype and 20 1p/19q co-deleted vs.
23 1p/19q intact) and a test set of 100 patients (46 GBM vs. 54 LGG,
48 IDH mutant vs. 52 wildtype and 30 1p/19q co-deleted vs. 24 1p/19q
intact). The same data from the Ghent University Hospital is used
for final evaluation of the classification performance on an independent
dataset (see section 10.2.2). The segmentation accuracy is evaluated on
the BraTS 2019 validation data through the online evaluation platform
as in chapter 9.

11.3 Architecture and training
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11.3.1 Y-Net architecture

The Y-Net architecture used in this chapter is an extension of the U-
Net from section 9.2.2 with classification layers after the last (middle)
encoding stage. Figure 11.1 illustrates the architecture with sizes shown
for an input patch of 128 x 128 x 128. We only discuss the differences
with the architecture in section 9.2.2 here.

The number of feature maps at the highest resolution is reduced to 24
to limit GPU memory usage. Hence the maximum amount of feature
maps is equal to 384. In the last encoding stage, the feature maps are
reduced to 192 by the second convolutional layer before upsampling. The
network then splits into the segmentation (decoding) and classification
part. For classification, the 192 feature maps are average pooled with an
adaptive average pooling layer and fed to three separate fully connected
layers to predict WHO grade, IDH status and 1p/19q co-deletion status.
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Figure 11.1: Schematic overview of the Y-Net architecture for simultaneous
glioma segmentation and classification.

11.3.2 Training procedure

The network is trained with the AdamW optimisation algorithm and
L2 weight decay set to 1072. The initial learning rate is set to 0.00005
for the U-Net part (encoding end decoding branches) of the network.
For the fully connected classification layers, the initial learning rate is
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set to 0.00001. During initial training runs, it was noticed that the
classification tasks converged and started to overfit sooner than the
segmentation task. For this reason, the learning rate of the classification
layers is reduced. A batch size of six samples is used. Larger batch sizes
resulted in out-of-memory errors even after application of mixed precision
training and gradient accumulation (see below). Losses are calculated
for each sample and available label in the batch. The segmentation loss
includes soft Dice and cross-entropy loss. The classification tasks are
trained using focal cross-entropy loss. The average loss is calculated
over all tasks with available ground truth labels and back-propagated
through the network. Learning rate is halved in case of no improvement
in overall validation loss for 50 epochs. After no improvement in the last
200 epochs, training is stopped and the optimal epoch is chosen based on
the validation loss. One epoch is defined as an iteration over all patients
in the training set. In the fully connected classification layer, dropout
was applied with a 20% probability of dropping units.

The different hyperparameters of the network and training procedure
were tuned based on performance on the validation set. The network

was implemented in Python and the PyTorch deep learning framework
and trained on an 11GB NVIDIA GeForce RTX 2080 Ti GPU.

In what follows, different techniques are explained that are employed
to deal with the challenges mentioned in the introduction of this chapter.

Automatic mixed precision training

Traditionally, deep learning uses single-precision (floating-point 32, FP32)
to represent parameters. With the growing complexity of neural net-
works, there has been an interest in reduced precision or FP16 training.
This allows to significantly increase training speed and reduce memory
consumption. However, the range of values that can be represented with
FP16 is smaller and precision decreases for small numbers. This can
result in a lower accuracy of the model. In 2017, researchers at NVIDIA
introduced a methodology to train networks using half-precision without
losing accuracy, called mixed precision training [349]. They maintain
a single-precision copy of the network weights which are converted to
FP16 during each training iteration. Forward and backward passes are
computed in half-precision and the resulting gradients are first converted
back to FP32 precision before multiplication with the learning rate and
updating the weights. More details and additional methods that are
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applied to improve mixed precision training can be found in Narang et
al. [349]. The automatic mixed precision training methodology has been
implemented in the PyTorch framework! which allows easy conversion
of existing models and code to mixed precision.

Gradient accumulation

An additional technique that is used to reduce memory requirements
during training is gradient accumulation. Instead of forward propagating
all samples in the batch, calculating the average loss and performing
back-propagation over all samples, each sample can be forward and back-
propagated one at a time. The gradients are accumulated during each
back-propagation step and the weights are only updated after all samples
in the batch have been processed. As the gradients do not have to be
calculated for every sample at once, this significantly reduces memory
consumption.

Patch extraction

During training, patches are randomly extracted from the brain volume
to increase the number of training samples and thereby limit overfit-
ting. As discussed in the introduction, patches should be large enough
to contain enough context information and tumour volume to make a
prediction on the different tumour markers. To this end, a training
strategy is devised where either the entire brain volume or a random
patch is propagated through the network.

The patch dimensions can vary between a size of 128 or 144 voxels, inde-
pendently for each axis. This introduces additional variability between
patches. Taking into account that the average size of the brain region
is 136 x 169 x 138, larger patch sizes than 144 are not included. A
minimal patch dimension of 128 is chosen to include a large part of the
brain volume and enough context information on surrounding healthy
tissue and tumour location. In initial training runs, experiments were
performed with smaller patches as well and a dimension of at least 128
proved to be optimal. During patch extraction it is verified that the patch
contained at least 50% of the total tumour volume. This was assessed
through the use of segmentation labels obtained with the segmentation

Ihttps://pytorch.org/docs/stable/amp.html
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network of chapter 9.

With a probability of 20%, no patch is extracted and the entire brain
volume is used as a training sample. This way, the network also sees full
brain volumes during training.

Data augmentation

To further increase the amount of training samples, data augmentations
are applied similar to the augmentations in section 10.3.2. Included
augmentations are:

e Random flipping along each axis

Random axial, sagittal and coronal 360° rotations

Contrast augmentation

Elastic transformations

Channel dropout while always maintaining the T'lce sequence

Each of these augmentations are randomly applied with a probability
of 30% resulting in many different combinations of augmentations.

11.4 Interpretation

Several visualisation techniques will be explored to investigate what
the network has learned. Deep learning models are often seen as a
block box where it is difficult to understand how and why they make
certain predictions. We will therefore plot the features that are fed
to the classification layers after feature reduction to two dimensions.
Furthermore, we will try to visualise which pixels in a certain input MRI
have the most influence on the output of the network. Finally, gradient
ascent is used to synthesise an input sample which the network strongly
attributes to a certain glioma type.
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11.4.1 t-SNE visualisation

To further validate whether the features learned by the model are mean-
ingful with respect to the different glioma markers, the features vectors
of length 192, extracted after the last encoding stage, can be visualised
after dimensionality reduction. The feature vectors are reduced to 2
dimensions for visualisation through t-Distributed Stochastic Neighbour
Embedding (t-SNE) [350] using the Python Scikit-learn package [351].
By plotting the obtained feature embeddings as a scatter plot, different
patterns and groups can be identified and compared with the ground
truth class labels. This way, we can verify whether the different struc-
tures and groups in the scatter plot correspond with different tumour
subtypes and thus whether the extracted features are meaningful with
respect to the different glioma markers. Moreover, by visualising the
MRI of tumours positioned close to each other, we can discover common
characteristics that can be associated with the corresponding tumour
markers.

11.4.2 Saliency maps

A saliency map visualises the influence of every input pixel to the output
that is produced by the network [45]. The influence of an input pixel to
the output can be described using gradients. An input image is forward
propagated through the network and the output logit with the largest
value is identified. The gradient is then calculated of this dominant logit
with respect to the input image pixels through back-propagation. The
saliency map visualises the absolute value of these gradients to highlight
which input pixels had the strongest influence. This method is also called
gradient visualisation.

Advantages of this technique are the easy calculation and detailed infor-
mation on what input regions the network focused on. A downside is
that these saliency maps can be visually noisy. Therefore, often median
filtering is applied.

Other techniques to visualise saliency maps exist as well such as Grad-
CAM [352] and guided backprop [353]. A recent study by Adebayo et
al. [354] compared different techniques for generating saliency maps and
subjected them to sanity checks. They investigated whether randomising
the model parameters or data labels influences the obtained saliency
maps. Of the tested techniques, gradient visualisation was one of the
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few techniques to pass all tests which is why we have opted to use this
technique.

11.4.3 Gradient ascent

The gradients of the output with respect to the input can also be used to
adapt the input image. Starting from an image containing random noise,
this image can be adapted such that the output score of a certain class is
maximised. Hence a synthetic image is generated that is representative
for the chosen class according to the network [45]. More formally, we
start with input image containing randomly generated noise, which is
forward propagated through the trained network. The output logit is
then back-propagated and the gradients are calculated with respect to
the input pixels. Similar to the training procedure a of network, the
obtained gradients are now used to update the input pixels while the
network weights are fixed. This process is repeated for many iterations
until the output class score reaches a certain stable maximum.

For optimisation of the image, the AdamW algorithm is used with a
learning rate of 0.1 and L2 weight decay (now of the image pixels) set
to 0.01. At each iteration the input image is normalised to zero mean
and unit variance. To further regularise the image generation process,
we start with a small input image with a size of 32 x 32 x 32 pixels and
4 channels. The size is increased every 50 updates with a scale of 1.2
until an image size of 128 x 128 x 128 pixels is reached. Furthermore,
the image is Gaussian blurred every 5 iterations to reduce high frequency
patterns. Using this procedure, we will try to synthesise input images
that the network attributes to certain glioma types such as glioblastoma,
IDH wildtype or lower-grade glioma, IDH mutant and 1p/9q co-deleted.

11.5 Results

11.5.1 Segmentation

Segmentation performance of Y-Net on the BraTS 2019 validation data
is summarised in table 11.1. Mean and median Dice scores and robust
Hausdorff distance are reported for the different brain tumour regions:
enhancing tumour, whole tumour and tumour core. Similar to table 9.1,
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the results are also included when a T1 and T2 or FLAIR sequence is
not available.

A mean whole tumour Dice score is achieved of 89% based on all four
sequences. When only the T1ce and FLAIR or Tlce and T2 scans are
provided, the mean Dice scores lowers to 88% and 85% respectively. The
obtained median WT Dice scores are 92%, 91% and 88%. The median
ET Dice scores are around 86% and TC Dice scores around 89-90%.
The segmentations are highly specific (WT specificity of 99%) with a
sensitivity of 90% when all sequences are provided. The lowest, 25th
percentile, 75th percentile and best WT Dice scores are 42%, 88%, 94%
and 98% respectively and are visualised in figure 11.2.

Table 11.1: Segmentation results on the BraTS 2019 validation data. Metrics
were computed by the online evaluation platform.

Dice Score (%) Hausdorff distance (mm)
Available modalities ET WwT TC ET WwT TC
Mean T1, Tlce, T2, FLAIR 75.30  89.23 84.10 3.66 6.07 6.51
Tlce, FLAIR 72.41 88.17 82.95 4.34 6.57 6.98
Tlce, T2 74.83 85.08 83.23 4.55 8.03 7.86
Median T1, Tlce, T2, FLAIR 85.61 91.73 90.19 2.00 3.32 3.16
Tlce, FLAIR 85.53 91.31 89.36 2.12 3.32 3.16
Tlce, T2 85.94 87.62 89.87 2.00 5.10 2.83

11.5.2 Classification

Table 11.2 presents the classification performance of the Y-Net. In
figure 11.3, the receiver operating characteristic curves are illustrated
for both the TCIA test set as the GUH test data. A binary threshold
probability of 0.5 is used to calculate the MCC, accuracy, sensitivity and
specificity scores.

On the TCIA test data, high performances are reported with AUC
scores of 98%, 96% and 87% for WHO grade, IDH mutation and 1p/19q
co-deletion prediction respectively.

An additional evaluation on the independent dataset acquired at the
Ghent University Hospital illustrates the generalisation performance of
the network. WHO grade can be predicted with an AUC of 96%, IDH
mutation with an AUC of 83% and 1p/19q co-deletion with 90% AUC.

Training the Y-Net network took multiple days, where a lot of CPU
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..

Tlce FLAIR Segmentation

Figure 11.2: Example MRI and segmentations (overlaid on Tlce) of the
patients with worst (top), 25th percentile, median, 75th
percentile and best (bottom) WT Dice scores. Segmentations
are obtained when providing all four MRI sequences.
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computation time was spent on on-the-fly data pre-processing and aug-
mentation. Applying random augmentations on-the-fly significantly in-
creases the computation time, but allows to produce the largest variety
in training samples. Once trained, however, propagating a patient’s MRI
through the network only takes a few seconds.

Table 11.2: Classification performance on the TCIA and Ghent University

Hospital (GUH) test data.

AUC, Matthews Correlation
Cocflicient (MCC)}, accuracy, sensitivity and specificity scores are
reported for all three tasks: WHO grade, IDH mutation and
1p/19q co-deletion status. A casc is classified as Glioblastoma,
(WHO grade IV), IDH mutant and 1p/19q co-deleted respectively
if the predicted probability is higher than 0.5.

Dataset Task AUC MCC Acc. Sens. Spec.
TCIA test data GBM vs. LGG 08.23 86.45 93.00 97.83 88.89
IDH mutation 96.23 80.06 90.00 91.67 88.46
1p/19q co-deletion 86.94 62.50 81.48 83.33 79.17
GUH data GBM vs. LGG 096.19 83.95 91.82 8852 95.92
IDH mutation 83.08 56.17 76.74 87.88 69.81
1p/19q co-deletion 89.88 71.05 87.50 83.33 89.29
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Figure 11.3: Receiver operating characteristic curves for predicting WHO
grade, IDH mutation and 1p/19q co-deletion status.
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11.5.3 Interpretation

Several visualisation techniques are now investigated to interpret what
the classification part of the Y-Net network has learned.

t-SNE visualisation

All data samples from the entire dataset (public data from TCIA and
data from GUH) are propagated through the network and the features
are extracted that are fed to the final classification layers. These features
vectors, with a length of 192, are reduced to 2 feature values with t-
SNE and visualised with a scatter plot, colour labelled according to the
ground truth labels. Three scatter plots are produced, one for each
glioma marker, and presented in figures 11.4 to 11.6. In every plot,
examples are included of MRI tumour slices at several locations in the
scatter plot to visualise associated features with different clusters.

Figure 11.4 shows the scatter plot for WHO grade. One can clearly
identify two clusters (left - right) that strongly correspond with the
grade labels GBM (left, red) and LGG (right, green). Lesions in the left
cluster show clear enhancing tumour tissue. Two tumours are displayed
which are diagnosed as LGG but attributed to the GBM cluster. These
examples also present clear enhancing tumour tissue. The right, LGG
cluster contains tumours that do not demonstrate enhancing tissue. This
is also the case for the two expanded GBM cases that are in the LGG
cluster.

For IDH mutation, the clusters are very similar as for WHO grade as
shown in figure 11.5. Most of the GBM cases are IDH wildtype and
contrast enhancing tissue is an imaging feature for IDH wildtype as well.
Within the LGG cluster, one can observe that most LGG, IDH wildtype
tumours are positioned towards the left. The expanded examples also
demonstrate more enhancing tumour tissue.

In figure 11.6, the scatter points are colour labelled according to 1p/19q
co-deletion status for LGG. Two groups can be identified (top - bottom)
within the LGG cluster. The cases positioned at the top are mostly
1p/19q co-deleted, whereas the majority of the lesions at the bottom are
LGG, 1p/19q intact. Tumour examples in the top cluster are smaller
and located in the frontal lobe. At the bottom, the lesions are generally
much larger. At the bottom right many tumours demonstrate T2-FLAIR
mismatch (see also the example in figure 11.4 in the same region).



11.5. Results 233

Feature 2

Figure 11.4: Visualisation of feature embeddings using t-SNE with colour
labels indicating WHO grade: glioblastoma (red) and lower-
grade glioma (green).

® Unknown
® IDH wildtype
® IDH mutant

Feature 2

Feature 1

Figure 11.5: Visualisation of feature embeddings using t-SNE with colour
labels indicating IDH status: wildtype (red) and mutated

(green).
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® Unknown
® 1p/19q co-deleted

® 1lp/19q intact
30 p/19q

20 A

Feature 2

Figure 11.6: Visualisation of feature embeddings using t-SNE with colour
labels indicating 1p/19q co-deletion status: intact (red) and
deleted (green).

Saliency Maps

Figures 11.7 to 11.9 shows example brain tumour cases from the TCIA
test set en GUH data that are correctly classified by the network. Saliency
maps are included and overlaid on the T1ce sequence to visualise where
the network focused attention to determine the predicted classes. To
calculate these saliency maps, the brain tumour MRI are forward prop-
agated through the network. Next, the maximum output logits are
identified for each classification task and back-propagated. This way the
gradients are computed with respect to the input MRI. The absolute
value and maximum over all four sequences is average filtered (with
kernel of 3 x 3 x 3) to reduce noise and visualised as a heatmap on
the T1ce scan.

In figure 11.7, examples are shown of glioblastoma, IDH wildtype
tumours. One can see that the network mainly focuses on the enhancing
tumour core region.
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Tice FLAIR Saliency

Figure 11.7: Example MRI and saliency maps (overlaid on T1ce) of correctly
classified glioblastoma, IDH wildtype tumours.

Examples of LGG, IDH mutated and 1p/19q intact cases are de-
picted in figure 11.8. Again, the most relevant brain tumour regions
are highlighted by the network. For the middle case, some attention is
also put slightly below the tumour. The tumours also demonstrate T2-
FLAIR intensity mismatch in regions that overlap with main hotspots
in the saliency map, although it is difficult to precisely identify the exact
tumour regions with the noisy saliency maps.
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Tice T2 FLAIR Saliency

Figure 11.8: Example MRI and saliency maps (overlaid on T1ce) of correctly
classified astrocytoma: LGG, IDH mutant, 1p/19q intact.

Figure 11.9 includes examples of correctly classified LGG, IDH mu-
tated, 1p/19q co-deleted brain tumours (oligodendroglioma). The net-
work focuses on the appropriate tumour regions. In the first example,
main focus is put on the small contrast enhancing tumour tissue that is
visible in the T'lce sequence.
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Tice FLAIR Saliency

Figure 11.9: Example MRI and saliency maps (overlaid on T1ce) of correctly
classified oligodendroglioma: LGG, IDH mutated, 1p/19q co-
deleted.

Figures 11.10 to 11.12 illustrate several wrongly classified examples
from the TCIA and GUH test datasets. The GBM, IDH wildtype tu-
mours in figure 11.10 are classified as LGG, IDH mutated. In all three
cases the network appears to focus on the relevant tumour regions. In the
first example, the tumour is hard to identify and little enhancing on T'1ce
and hyperintensity on FLAIR is observed. The predicted probabilities
are 65% and 63% for LGG and IDH mutation respectively. In the second
example, main attention is put on the small enhancing lesion. The
network does, however, predict this case as an LGG with a probability
of 92% and IDH mutated with a probability of 80%. The last example
is classified as LGG, IDH mutated with probabilities of 74% and 59%.
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Tice T2/FLAIR Saliency

Figure 11.10: Example MRI and saliency maps (overlaid on Tlce) of
glioblastoma, IDH wildtype tumours wrongly classified as
LGG, IDH mutated.

Example LGG, IDH mutated, 1p/19q intact (astrocytoma) cases that
are wrongly classified are depicted in figure 11.11. In the first example,
the network focuses on the contrast enhancing tissue that is visible in
the T1lce sequence. This tumour is classified as GBM, IDH wildtype,
1p/19q intact with respective probabilities of 90%, 79% and 81%. The
middle case is correctly classified as LGG, IDH mutated but incorrectly
as 1p/19q co-deleted with a probability of 73%. For the last example, no
T2 sequence was available and the network only puts a bit of attention
on the tumour region and mainly focuses on a region in the occipital
lobe as shown in the additional saliency map slice that is included. This
tumour is also classified as LGG, IDH mutated and 1p/19q co-deleted
with probabilities: 94%, 88% and 69%.
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Tice T2 FLAIR Saliency

Figure 11.11: Example MRI and saliency maps (overlaid on Tlce) of
astrocytoma: LGG, IDH mutated, 1p/19q intact tumours
wrongly classified as GBM, IDH wildtype (top) and LGG, IDH
mutated, 1p/19q co-deleted (middle and bottom).

Finally, figure 11.12 includes examples of incorrectly classified oligo-
dendroglioma (LGG, IDH mutated, 1p/19q co-deleted). In all three
cases, the network again focuses on the correct tumour region. The
top lesion demonstrates ring enhancement on T1lce and is classified as
a glioblastoma, IDH wildtype with respective probabilities of 95% and
92%. The middle case shows some enhancing tissue, but not ring shaped,
surrounding a necrotic core. This lesion is predicted as GBM (probability
65%), IDH mutated (probability 56%), 1p/19q intact (probability 76%).
For the bottom case, the predicted probabilities for LGG, IDH mutation
and 1p/19q co-deletion are 90%, 81% and 28% respectively.
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Tice T2 FLAIR Saliency

Figure 11.12: Example MRI and saliency maps (overlaid on Tlce) of
oligodendroglioma: LGG, IDH mutated, 1p/19q co-deleted
tumours wrongly classified as GBM, IDH wildtype (top),
GBM, IDH mutated (middle) and LGG, IDH mutated, 1p/19q
intact (bottom).

Gradient Ascent

Starting from a random noise 3D matrix, we updated the input with
gradient ascent to maximise the output scores towards certain glioma
types. This way, imaging features could appear that the network strongly
associates with these markers. A synthetic MRI input is generated for
a glioblastoma, IDH wildtype, 1p/19q intact brain tumour and shown
in figure 11.13. It is interesting to observe that a ring enhancing tu-
mour with necrotic core is generated in the Tlce sequence channel.
The tumour core appears surrounded with oedema like tissue that is
hypointense on T1 and T1lce and hyperintense on the T2 and FLAIR
channels.

Synthetic MRI were also generated for astrocytoma (LGG, IDH mu-
tant, 1p/19q intact) and oligodendroglioma types (LGG; IDH mutated,
1p/19q co-deleted). However, no distinctive features could be clearly
identified and are therefore not included.
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(c) T2 (d) FLAIR

Figure 11.13: Synthesised MRI sequences using gradient ascent for a GBM,
IDH wildtype, 1p/19q intact brain tumour.

11.6 Discussion

The segmentation performance reported in section 11.5.1 indicates an
overall delineation accuracy that is similar to the performance achieved in
chapter 9. Median dice scores are obtained between 85-86%, 88-92% and
89-90% for ET, WT and TC regions, depending on the provided input
sequences. This shows that the trained Y-Net is also robust to missing
T1 and T2 or FLAIR MRI. The examples in figure 11.2 demonstrating
segmentation results with worst, 25th percentile, median, 75th percentile
and best dice score also present an overall high delineation accuracy. The
tumour with the worst Dice score visually appears well delineated, with
potentially some oedema that is missed.

We can conclude that adding the classification tasks and slightly reducing
network complexity from 32 to 26 initial feature maps at the highest
resolution does not reduce the achieved segmentation performance.

In terms of classification accuracy, the obtained AUC scores appear
to be slightly better than in chapter 10. Now, AUC scores are attained
on the TCIA test set of 98%, 96% and 87% versus 93%, 94% and 82% in
table 10.1 for WHO grade, IDH mutation and 1p/19q co-deletion status
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respectively. With a probability threshold of 0.5, a slightly higher sensi-
tivity was obtained for 1p/19q co-deletion with the two-stage pipeline
versus the Y-Net approach for the same specificity. Sensitivity and
specificity can however be optimised by varying the probability threshold
as illustrated in figure 11.3.

On the GUH data, better AUC scores are reached for WHO grade (96%
versus 94%) and 1p/19q co-deletion prediction (90% versus 87%) with Y-
Net. Especially for 1p/19q co-deletion, a better sensitivity and specificity
are achieved. As tumour location is an important feature for 1p/19q co-
deletion (more located in the frontal lobe), it is possible the the Y-Net
is better able to extract this information from the entire brain MRI. For
IDH mutation, AUC is slightly lower (83% versus 86%). On the other
hand, sensitivity is higher (88% versus 84%) with only a minor reduction
in specificity (difference of 0.56%). The lower specificity compared with
TCIA can again be explained by the different method that is used to
determine IDH status (see section 10.5). The most difficult cases remain
the rare GBM, IDH mutant tumours as only a few of these cases are
present in the training dataset. This could be improved by adding
additional patients with this tumour type to the dataset.

These results illustrate that high segmentation and classification per-
formances are achieved with the Y-Net architecture and designed train-
ing procedure that matches of even outperforms the two-stage approach
proposed in chapter 10. Segmentation and classification is done simul-
taneously on the full brain MRI with only one network. In contrast
to most existing approaches (see section 7.2.3), no prior segmentation
step is required that could influence the classification performance. The
multi-task learning approach applied in chapter 10 is extended with the
segmentation task which allowed to train a network from scratch that
is able to process entire brain volumes and predict WHO grade, IDH
mutation and 1p/19q co-deletion status. Training such a network on
the available dataset is challenging due to data heterogeneity, missing
labels, missing input modalities and GPU memory constraints. These
challenges were tackled by optimising the training procedure through
automatic mixed precision training, gradient accumulation, appropriate
patch extraction and data augmentations. As a result, high tumour
delineation and classification accuracies could be achieved that match
state-of-the-art performances reported in existing work (see section 7.2).
Moreover, the additional evaluation on an independent dataset acquired
at the Ghent University Hospital demonstrated the generalisation capa-



11.6. Discussion 243

bility of the trained network.

To the author’s knowledge no other work has been published that uses
one network to perform simultaneous glioma segmentation and predic-
tion of multiple markers. Two other works have been found that use a
similar architecture as Y-Net proposed in this chapter. McManigle et al.
[355] proposed a Y-Net architecture based on the VGG11 architecture
for chest X-ray geometry classification and segmentation of radiographic
annotations. A single CNN based on U-Net to segment structures as
lung and heart across different modalities and to simultaneously detect
the provided input modality was proposed by Harouni et al. [356].

In chapter 10, a first technique (nearest neighbour visualisation) was
already applied to gain some insights into the network’s visual knowledge.
In this chapter, several additional techniques were applied such as t-SNE
visualisation, saliency maps and gradient ascent.

Visualisation of the feature embeddings after t-SNE feature reduc-
tion, reveals different clusters that strongly correspond with the ground
truth tumour labels of grade, IDH mutation and 1p/19q co-deletion.
Expanded examples in the glioblastoma cluster demonstrate more (ring-
Jenhancing tissue with a necrotic core compared to examples in the
LGG cluster (see figure 11.4). These are typical features for GBM,
IDH wildtype tumours and are also observed in LGG cases that are
attributed to the GBM cluster based on the network’s extracted features.
Conversely, glioblastoma cases that are attributed to the LGG cluster do
not show this characteristic.

As contrast enhancement is also a specific feature for IDH wildtype
tumours, the IDH clusters strongly overlap with grade. Within the
LGG group one can also observe that LGG, IDH wildtype tumours are
positioned closer towards the GBM cluster on the left compared to LGG,
IDH mutated tumours (see figure 11.5).

Furthermore, two groups can also be distinguished within the LGG
cluster corresponding to 1p/19q co-deletion status (see figure 11.6). Ex-
panded examples a the top show small lesions located in the frontal lobe
with potentially some slight enhancement. These are indeed character-
istic features of 1p/19q co-deleted glioma (see section 7.2.1). At the
bottom right, lesions are larger and demonstrate T2-FLAIR mismatch
which is highly specific for IDH mutant, 1p/19q intact glioma (see sec-
tion 10.5).

The above visualisations give additional confidence on the relevance of
the features extracted by the network with respect to glioma diagnosis.
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Indeed, different cases are grouped that show visually similar character-
istics that also correspond with existing knowledge on the correlation
between tumour phenotype and genetic markers.

Additionally, saliency maps are produced that visualise which input
pixels had the most influence on the network’s prediction. Examples are
included for correctly classified glioma in figures 11.7 to 11.9 and wrongly
classified glioma in figures 11.10 to 11.12. Overall, the network focuses
on the relevant tumour regions which gives additional confidence on the
network’s predictions.

Glioblastoma that are not predicted as such (figure 11.10) show small
lesions with little enhancement and not the typical ring-enhancement
surrounding a necrotic core which can be a reason why these are classified
as LGG, IDH mutated.

In the last example in figure 11.11, illustrating incorrectly classified LGG,
IDH mutated, 1p/19q intact cases, the network puts most attention
to the wrong region which does not contain tumour tissue. Hence,
saliency maps can also be used to verify whether the network indeed looks
at the correct region and identify possibly incorrect predictions. The
top example demonstrates clear enhancing tumour tissue. The network
focused on this region which can explain why this lesion is classified as
GBM, IDH wildtype.

The first oligodendroglioma example in figure 11.12 is classified as a
GBM, IDH wildtype possibly due to the ring shaped enhancing tissue
surrounding a hypo-intense core on T1lce MRI which is more character-
istic for glioblastoma, IDH wildtype. In all three examples, the network
again focuses on the appropriate tumour regions. The middle is predicted
as GBM, IDH mutated, but with low certainty (probabilities close to 0.5).
The last example is correctly identified as LGG, IDH mutated but not
as 1p/19q co-deleted.

The synthetic MRI of a glioblastoma, IDH wildtype tumour that is
generated using gradient ascent (starting from a random noise image)
is a neat visualisation that indeed the network learned to associate a
ring-enhancing tumour with necrotic core to this glioma type. This
imaging characteristic is only clearly visible in the T1lce channel and
not in the T1 and T2 or FLAIR channels. Moreover, this pattern is
not generated for other LGG, IDH mutant glioma showing that this is
not always synthesised and only associated with GBM, IDH wildtype
tumours.
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Deep learning networks are often seen as a black box that reveal little
information on how and why they make certain predictions. The above
techniques allow to gain some first insights into the trained deep learning
model. This can give additional confidence in the network’s predictions
and checks to verify where it might go wrong or which predictions could
be incorrect (e.g. when focusing on the wrong region). The visualisation
results indicate that the network was able to learn several imaging fea-
tures that are characteristic of certain tumour types and correspond with
existing knowledge (see section 7.2.1) such as the presence of contrast
enhancing tissue and T2-FLAIR mismatch. To gain more and deeper in-
sights, network visualisation techniques could be applied to visualise and
interpret feature maps inside the network. Furthermore, bayesian deep
learning techniques could be added to obtain uncertainty information
on the classification and segmentation predictions and allow to identify
uncertain and potentially incorrectly classified cases that require further
attention.

11.7 Conclusion

In this chapter, we developed an architecture, called Y-Net, for simulta-
neous segmentation and classification of glioma. Based on pre-therapy
MRI, the network is able to automatically and accurately delineate dif-
ferent tumour tissues and predict WHO grade, IDH mutation and 1p/19q
co-deletion status. This approach is beneficial as it operates on the entire
brain MRI and no prior segmentation step is required. Through the use
of multi-task learning and techniques to reduce GPU memory consump-
tion, one network could be trained on a large multi-institutional and
heterogeneous database containing many cases with missing labels. Fur-
thermore, performance was validated on an entirely independent dataset.
Finally, insights into the network’s visual knowledge and extracted imag-
ing features were obtained using visualisation techniques such as t-SNE
feature embedding, saliency maps and synthesising input patterns that
are typical for certain glioma types according to the network. These tech-
niques provide first steps towards opening the black box and interpreting
deep neural networks for computer-aided diagnosis.
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12 Conclusions and future
perspectives

In this final chapter, we summarise the main conclusions drawn from each
part of this thesis. Based on these findings, we formulate some remaining
limitations and possibilities for future work and research directions.

12.1 Summary

This work examined the use of artificial intelligence throughout the
medical imaging chain. Specifically, two applications were explored sit-
uated at the beginning, acquisition, and at the end, analysis, of medical
imaging.

As this dissertation is located at a crossroad between artificial intelli-
gence and medical imaging, these research domains were first introduced
in chapters 2 and 3.

Chapter 2 presented an overview of artificial intelligence. We explained
how Al concepts have been around for decades but are only recently
implemented into real applications, driven by the ever increasing com-
putational power and amount of data. The relation between AI and
its subfields machine learning and deep learning as techniques to realise
intelligent machines was clarified. Furthermore, the basic concepts of
machine learning were explained and the elemental ML algorithms, linear
and logistic regression, were discussed in more detail. These algorithms
and the way their parameters are optimised using gradient descent form
the foundation of artificial neural networks. The main challenge of devel-
oping machine learning algorithms, being the generalisation performance
on new, unseen data was explained together with possible regularisation
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techniques to prevent overfitting on training data. Next, the concept of
(deep) artificial neural networks was elucidated, starting from the basic
building block, the artificial neuron as a graphical representation of a
linear regression function. We focused on how the parameters of deep
neural networks can be optimised based on labelled training examples
together with regularisation techniques to improve the generalisation
performance of complex networks. Finally, a special type of neural
networks, called convolutional neural networks, were discussed in detail
as this type of network is most used in medical imaging and computer
vision in general.

Chapter 3 covered the role and state-of-the-art of Al in medical imaging.
The potential and need for AI to cope with the growing amounts of
healthcare data, increase efficiency and enable precision and person-
alised medicine was discussed. The elemental principles were explained
behind the most common medical imaging modalities including X-ray,
ultrasound, computed tomography, magnetic resonance imaging and nu-
clear medicine. Positron emission tomography, the topic of the first Al
application in this work, was covered in more detail with a focus on
detector design and requirements. We explained the advantages of using
a monolithic crystal instead of a pixelated crystal design to stop incoming
gamma rays in terms of sensitivity and spatial, temporal and energy
resolution. Monolithic PET detectors do, however, require lengthy cal-
ibration procedures and complex positioning algorithms to determine
the exact position of interaction inside the crystal. Hence the potential
of Al in PET detector calibration. The remaining part of chapter 3
included an overview of state-of-the-art Al applications throughout the
entire medical imaging chain. Starting with image formation we saw
how Al can improve the quality of the raw acquisition data, advance the
image reconstruction process and further enhance image quality through
post-processing. Furthermore, Al can transform medical image analysis,
helping radiologists meet the rising demand for imaging examinations
and leverage these large amounts of data towards precision medicine.
While challenges remain regarding training data availability, variability
of image quality and interpretability, Al systems already achieve high
performances in segmentation, detection and diagnosis across numerous
anatomical application areas that match or even outperform human
radiologists.
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12.1.1 PET detector calibration

In chapter 4, we performed a comprehensive evaluation on the use of
neural networks for 3D gamma interaction positioning in a monolithic
PET detector using optical simulation data. Spatial resolution was
assessed as a function of network complexity (by varying the number of
layers and neurons in each layer), amount of training data and training
and validation procedure. It was concluded that network complexity
should be tuned to the calibration setup and not be too complex to
avoid overfitting. Through the use of validation data, acquired at inter-
mediate positions that are not in the training set, potential overfitting
on the training grid could be identified. Based on the validation loss,
training can be stopped before strong overfitting and thus non-uniform
positioning starts to occur. Optimal performance was achieved with a
network containing three hidden layers of 256 neurons trained on 1000
events per training grid position. Results showed that a very high spatial
resolution was obtained of around 0.50 mm FWHM across the entire
detector. Comparison with an established positioning algorithm, called
mean nearest neighbour, demonstrated superior performance both in
spatial resolution as in computational efficiency.

Two factors that could degrade the positioning accuracy of neural
networks are intra-crystal Compton scatter and calibration source beam
width. These effects are investigated in chapter 5.

Around 60% of the arriving gamma rays first undergo one or multi-
ple Compton interactions before final photoelectric absorption. Con-
sequently the first Compton interaction position, which is the required
position that needs to be estimated, is different from the final interaction
position. Estimation of the first interaction position from the measured
electronic signal is difficult as often only a small amount of energy is
released when Compton scattering. Evaluation of spatial resolution with
and without Compton scattered events revealed that Compton scatter
has a significant degrading effect on the overall positioning accuracy
(mean 3D positioning error of 2.29 mm versus 0.49 mm). However,
the positioning error depends on the scatter distance and only a small
fraction of events scatters very far (10% more than 8 mm). A network
specifically trained to position Compton scattered events did not result
in an improvement in performance. We therefore investigated whether
networks can identify far scattered events and could help to improve
performance. To this end, a network was trained to predict 3D scatter
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distance. This network could be used to filter out far scattered events in
order to improve spatial resolution with a tradeoff in sensitivity which
can be justified in certain applications. Considering the limited practical-
ity of training a scatter prediction network in an experimental setup (no
available labels), a different approach was investigated using a Bayesian
neural network. This method allows to train one network to predict both
the position as the positioning uncertainty related to Compton scatter
without requiring additional information on Compton scattering. When
filtering out 10% most uncertain events, the mean positioning error could
be reduced from 1.54 mm to 1.23 mm.

A calibration source with a certain beam width can introduce differences
between the ground truth position label and the actual first interaction
position. These errors in the ground truth data could influence the
training process of neural networks. Comparison between a network
trained on data acquired with a perfectly narrow beam versus a calibra-
tion source with a realistic beam width of 0.6 mm showed no significant
difference in achieved intrinsic spatial resolution. The beam diameter
does, however, influence the measured spatial resolution (0.74 mm versus
0.52 mm FWHM) which should be taken into account when evaluating
and comparing spatial resolution of different PET detectors.

Chapters 4 and 5 evaluated the positioning performance of neural net-
works on simulation data which does not take all possible non-idealities
into account that can be present in an experimental setup. Validation
of the developed methodology in chapters 4 and 5 on experimental data
was performed in chapter 6. Similar to the results on simulation data,
high spatial resolutions (around 1 mm FWHM in detector centre) could
be achieved with neural networks, superior to the mean nearest neigh-
bour positioning algorithm (1.14 mm FWHM in centre region). Neural
networks are trained on individual events and directly learn to infer the
interaction position from the measured light distribution. This leads to
an improved positioning accuracy of Compton scattered events and less
degradation near the detector edges. Moreover, neural networks produce
continuous coordinate outputs, not restricted to a discrete calibration
grid. Improved spatial resolution of PET detectors with neural networks
can help reach the physical limits of PET and a better detection of small
tumours. Furthermore, when achieving better spatial resolutions than
required, there is room to trade resolution for other parameters e.g.: less
readout channels, inexpensive materials with less light output, detector
thickness, etc. Lastly, positioning events with the network is fast and
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parallelisable, especially when using powerful hardware like GPUs.

12.1.2 Computer-aided primary brain tumour diagnosis

The second part of this work focused on the application of Al in medical
image analysis, specifically for primary brain tumour segmentation and
diagnosis. Chapter 7 introduced the basic anatomy of the brain which is
necessary to understand the different types of primary brain tumours
that are defined by the World Health Organisation. We focused on
the most common type of PBTs, glioma, and the most recent classifi-
cation guidelines of the WHO to differentiate tumours based on malig-
nancy (WHO grade) and molecular markers (IDH status and 1p/19q
co-deletion). We then further discussed PBT epidemiology, symptoms,
diagnosis, survival and different treatment options in relation to these
important markers. The importance of non-invasive tumour character-
isation based on pre-therapy MRI was described. This allows to avoid
biopsy or resection which involve risks and are not always possible to
perform. Moreover, early determination of tumour markers can guide
initial therapy and surgery planning. After introducing the required
background knowledge, an overview was provided of recent literature on
glioma segmentation and diagnosis with artificial intelligence techniques.

Primary brain tumour malignancy has strong prognostic and thera-
peutic implications. Therefore, we investigated the task of non-invasively
distinguishing high-grade glioblastoma from lower-grade glioma in chap-
ter 8. The BraTS 2017 dataset comnsisting of 210 GBM and 75 LGG
cases was used for this study. For every patient, four MRI sequences
(T1, Tlce, T2 and FLAIR) were provided with manual tumour segmen-
tation labels. Predictive performance was assessed of hand-engineered
radiomics features that describe tumour shape, texture and intensity and
features extracted using a pre-trained CNN. Moreover, we compared
the performance of pre-trained CNN features extracted from different
input scales: one or multiple slices and with or without cropping to the
tumour ROI. Classification of the features was done using a Random
Forest classifier. Best performance was achieved with shape, intensity
and texture features extracted from manually segmented tumour volumes
(AUC of 96%). Features from a pre-trained CNN, on the other hand, had
a high predictive value as well and allowed to design a fast and automatic
binary grading system reaching an AUC score of 91%. These results
indicate that CNNs hold the potential to develop accurate, reproducible
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and fully automatic CAD systems and when training them from scratch
to process medical imaging data, performance could possibly even be
improved.

In chapter 8, and many other existing studies on brain tumour di-
agnosis, manually obtained segmentation maps are used to extract tu-
mour features. Manual brain tumour delineation on medical images is,
however, time-consuming and can suffer from inter- and intra-observer
variability. Existing automatic segmentation algorithms using CNNs and
more specifically U-Nets achieve high performances but mostly require
all four MRI modalities to be available. This is not always the case
in clinical practice and in the brain tumour dataset that is collected
in this work. We therefore developed an automatic, accurate and fast
segmentation deep learning algorithm based on the U-Net architecture
that is robust to missing input modalities. The network was trained
using the BraTS 2019 training dataset and evaluated on the BraT$S
2019 validation set. Accurate delineation of different tumour regions
was achieved with average Dice scores of 90%, 83% and 76% for the
total abnormal, tumour core and enhancing tumour regions respectively.
Through channel dropout, i.e. randomly excluding input MRI during
training, robustness to missing input modalities could significantly be
increased. These scores match state-of-the-art results reported in the
most recent BraTS challenges and we believe that the obtained perfor-
mance is sufficiently high to be useful in a clinical setting. It has to
be taken into account that the segmentation results of the network are
compared with manual segmentations. Manual delineations suffer from
inter- and intra-reader variability and thus not 100% accurate. It can
therefore be debated whether further improving the Dice scores with a
few percentages is clinically relevant. Objectivity and robustness could
be more important when analysing brain tumour volumes and progres-
sion over time. Qualitative evaluation on independent data acquired at
the Ghent University Hospital showed good generalisation performance.

In order to train a brain tumour classification network from scratch
in chapter 10, a large dataset of 628 patients was collected from mul-
tiple public databases available on The Cancer Imaging Archive. To
be included in the dataset, at least a pre-operative T1lce MRI together
with a T2 and/or FLAIR sequence of sufficient quality was required
together with information on WHO grade, IDH mutation and 1p/19q co-
deletion status. The segmentation algorithm from chapter 9 was applied
to this data to extract the 3D tumour region of interest from every
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MRI sequence. Subsequently a classification 3D CNN was trained to not
only predict tumour grade but also the important molecular markers:
IDH mutation and 1p/19q co-deletion status. One network was trained
to simultaneously predict these three markers based on the 3D tumour
ROI extracted from the four MRI sequences. This was possible through
the use of multi-task learning which also allowed to deal with missing
ground truth labels in the dataset and reduce the risk of overfitting. On
a test dataset of 100 patients, not used during training, the network
achieved AUC scores of 93% for WHO grade, 94% for IDH mutation
and 82% for 1p/19q co-deletion prediction. We additionally evaluated
the classification performance on an entirely independent dataset of 110
patients retrospectively acquired at the Ghent University Hospital. On
this dataset, AUC scores were reported of 94%, 86% and 87% for the
three tasks respectively.

The two-stage approach proposed in chapter 10 (segmentation fol-
lowed by classification) can have some downsides as the classification net-
work only operates on the tumour region of interest which excludes po-
tentially relevant information on location and surrounding tissue. More-
over, possible errors in the prior segmentation step could also influence
the subsequent classification performance. As an alternative, a network
that performs simultaneous segmentation and classification based on the
full brain MRI was explored in chapter 11. The U-Net architecture from
chapter 9 was extended with a classification branch and called Y-Net.
Through the use of multi-task learning, techniques to reduce GPU mem-
ory consumption and appropriate patch extraction, one network could
be trained on the large multi-institutional and heterogeneous database
containing many cases with missing labels.

A similar segmentation performance was achieved with average Dice
scores of 89%, 84% and 75% for the whole tumour, tumour core and
enhancing tumour regions respectively. In terms of classification perfor-
mance, WHO grade could be predicted with 98%, IDH mutation with
96% and 1p/19q co-deletion with 87% AUC on the TCIA test dataset.
On the independent GUH test data, the AUC scores were 96%, 83% and
90%. Overall, a slightly better performance was achieved as in chapter 10
which is possibly because Y-Net is able to process the full input MRI
instead of only the tumour ROI and the addition of the segmentation
task could provide additional regularisation to the training process.

Finally, insights into the network’s visual knowledge and extracted imag-
ing features were obtained using several visualisation techniques. The
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feature embeddings of the network were plotted for every brain tumour
case in the dataset after t-SNE feature reduction. This revealed different
clusters of brain tumour cases with similar imaging characteristics that
strongly corresponded with the ground truth labels on WHO grade,
IDH mutation and 1p/19q co-deletion. Glioblastoma, IDH wildtype
tumours that show ring-enhancing tumour tissue with a necrotic core
were grouped together. Within the lower-grade glioma cluster, different
groups could be identified depending on IDH mutation (IDH wildtype
closer to the GBM cluster) and 1p/19q co-deletion. Small lesions located
in the frontal lobe were seen as typical for LGG, IDH mutant and 1p/19q
co-deleted tumours. On the other hand, LGG, IDH mutant and 1p/19q
intact cases that demonstrated larger lesions with T2-FLAIR mismatch
were grouped at the other side of the LGG cluster. These are indeed
known imaging features that are correlated with these tumour markers.
Saliency maps, that visualise where the network places the most atten-
tion in the input MRI to make a certain prediction, showed that the
network indeed looks at the relevant tumour regions. This allows an
additional check to gain confidence in the network’s predictions.

Lastly, a synthetic input was generated that maximises the output scores
for a glioblastoma, IDH wildtype tumour. Starting from random noise, a
ring-enhancing tumour pattern appeared with a hypo-intense core in the
T1ce channel and surrounding hyper-intense tissue on the T2 channels.
This indicates that the network learned to attribute these features to
this tumour type.

12.2 Future directions

12.2.1 PET detector calibration

To bring the use of neural networks for gamma ray positioning into
practice, their adoption in a complete PET scanner setup should first
be investigated. In this work, a network was trained and evaluated on
one detector. A complete PET scanner contains many detectors and the
question remains whether a network trained for one detector is applicable
to the other detectors as well. Although all detectors in the scan-
ner share the same design, small differences in crystal inhomogeneities,
surface finish, connection with the SiPM array, variable SiPM gains,
electronic noise etc., could lead to differing measured light distributions
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and therefore reduced positioning performance. Acquiring calibration
data and training a separate network for every detector would be very
time-consuming. It should therefore be investigated how much spatial
resolution degrades when a network is applied to a different detector.
To reduce calibration time for other detectors, a network trained for
one detector could be fine-tuned on data from the new detectors. This
way, only a few events, possibly acquired at less calibration positions,
would be required instead of a full calibration when training a network
from scratch. An other, more efficient approach could be to train a
network on a combined calibration dataset of many detectors. Overall
spatial resolution could slightly decrease as the network has to cope
with variations across all these detectors, but positioning performance
would be more stable and similar for every detector. Moreover, only one
network needs to be trained that can be applied to all detectors in the
scanner and even to the detectors in other PET scanners with the same
design. This could significantly reduce the calibration time.

In this context, it could also be examined whether a network trained on
simulation data can be used for an experimental PET detector setup with
the same design and geometry. Using a network trained on simulation
data would eliminate the need to acquire experimental data. Moreover,
estimation of the depth-of-interaction could potentially improve as the
exact DOI information is available in simulation but not in experimental
data. Training and evaluation of algorithms to predict DOI remains
challenging in an experimental setting. A preliminary evaluation of
2D resolution, not included in this book, with the simulation and ex-
perimental data used in this work, showed a significant reduction in
spatial resolution, especially at the edges. But overall, the positioning
performance was still acceptable, particularly in the detector centre,
with limited bias but a broader spread (larger FWHM). To improve
performance, additional noise and non-idealities could be incorporated
in the simulation setup to more closely match a realistic setting and make
the network more robust to these variations. Furthermore, the network
could be fine-tuned on a small amount of experimental data and it could
be investigated how much additional data is required.

To further improve spatial resolution, we investigated whether (far)
Compton scattered events, associated with the worst positioning per-
formance, could be filtered out, thereby sacrificing some sensitivity. A
scatter distance prediction network was implemented which worked well
on simulation data. Application of this methodology on experimental
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data was, however, more challenging as no ground truth scatter distance
information is available. The Bayesian neural network approach does
not require additional labels but mostly filtered out events in the corner
as the background filtering applied to the training data already filtered
many scattered events. Without scattered data in the training set, the
network is not able to learn uncertainty related to Compton scatter.
The bayesian deep learning approach to extract uncertainty measures
related to scatter distance could further be examined by using different
background filtering techniques that remove no or less scattered events
or by using a different crystal without background activity such as BGO.
An additional approach could be to use a scatter distance prediction or
bayesian network trained on simulation data.

The required rate and used hardware to process events with neural
networks should also be further examined. Events can be positioned very
fast on powerful GPUs which would require all events (SiPM signals) to
be transferred from the detectors to a central processing unit of the PET
scanner, equipped with a GPU. This can be feasible in small (pre-clinical)
PET scanners with a limited amount of detectors but could become
unattainable in large (total body) PET systems. Very high bandwidth
and storage capacity would be required if no realtime positioning is
possible. The neural network positioning could also be implemented
on detector level on an FPGA. The network complexity might have to
be reduced to fit the memory and processing speed of the FPGA with
possibly a small reduction is spatial resolution.

Finally, next to positioning, the use of neural networks could also be
investigated to estimate timing information and improve time-of-flight
resolution. Digitised detector waveforms would have to be processed
instead of total SiPM energies and convolutional neural network archi-
tectures could be more optimal [86]. Accurate TOF estimation could
further improve PET resolution and image quality.

12.2.2 Computer-aided primary brain tumour diagnosis

First of all, before clinical application, the performance of the brain
tumour segmentation and diagnosis networks would further have to be
clinically validated on a larger cohort of patients. The networks in this
dissertation were already validated on an independent dataset of 110 pa-
tients, but for 1p/19q co-deletion for example, only 12 co-deleted patients
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were included which might be too small to obtain reliable performance
estimates.

This work should also not be viewed as a standalone tool that would
replace radiologists. Supervision and final decision of expert clinicians
that can take the full patient context into account remains of vital
importance. The tools developed in this work should be viewed in light
of computer-aided brain tumour characterisation. The models provide
segmentations and probabilities for several tumour markers that can be
interpreted by the radiologist in order to determine the initial diagnosis,
prognosis and therapy planning. An additional interesting study is to
assess how well the models can aid the radiologist and how they affect
diagnosis, prognosis and therapy planning.

To advance clinical applicability, one could also include the prediction
of more molecular markers. There are many more markers that hold
clinical significance and implications on optimal therapy such as MGMT
promoter methylation, PTEN, ATRX and TP53 mutations, EGFR am-
plification etc. [3].

Furthermore, the models developed in this work are trained to segment
and predict important markers for glioma. This requires a prior diagnosis
of the brain lesion as glioma which is not always straightforward. To
maximise clinical relevance, the CAD tools should also be extended for
additional primary brain tumour types and even other brain lesions.
Examples of other important primary brain tumours are meningioma,
medulloblastoma, CNS lymphoma, ependymoma and pituitary tumours.
Additional brain lesions could be metastatic tumours, infections, multi-
ple sclerosis lesions, traumatic lesions and hemorrhagic lesions.

To further improve diagnostic performance and add the prediction of
additional markers and lesion types, a much larger curated dataset would
have to be collected, preferably from many different centres. Moreover,
the dataset could be expanded with other functional imaging modalities
such as PET and diffusion and perfusion MRI. Existing literature has
already shown the added value of these imaging methods for several brain
tumour classification tasks [357].

An additional possible research track is to improve the techniques
that are used in this work.
The pre-processing steps applied to the brain MRI were performed with
SPM12. Although the pre-processing is fully automatic, the efficiency
and accuracy of different steps as co-registration and skull-stripping
could also be further improved by using deep learning algorithms.
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To deal with missing input modalities, image translation techniques (see
section 3.3.3) could be used to generate the missing scans from the
available sequences. For example, generative adversarial networks could
be trained that translate the available T2 sequence to a FLAIR MRI and
vice versa [358]. Using the the translated image instead of setting the
corresponding channel to zero could further improve performance.
With more data and GPUs with more memory, increasingly complex
neural networks can be trained that are able to predict numerous char-
acteristics and lesion types. Other network architecture and layers can
be explored such as Dense U-Nets, attention layers, multi-scale networks,
strided convolutions etc.

When applying multi-task learning, the global loss is calculated as an
average of the individual losses from the different tasks. Some tasks
are, however, potentially easier than others and converge faster. It
could therefore be beneficial to assign different weights to each task and
use a weighted average to calculate the global loss metric that is back-
propagated. Manually tuning these weights would be cumbersome and
the different task weights could be automatically learned by the network
using homoscedastic uncertainty estimation [359, 360].

In this work, a first step was made into interpreting the features that were
learned by the CNNs through several visualisation techniques. However,
more research is required towards interpretability of deep neural networks
to fully understand how and why they make certain predictions and
their reliability. Bayesian deep learning techniques were also not yet
implemented in the brain tumour characterisation networks of this work.
Extraction of uncertainty estimates is important to inform the clinician
when a model is certain on its prediction or when it is merely guessing,
e.g. when feeding a brain lesion type that the network has never seen
before.

12.3 Integration of AI in radiology

This section highlights several key remaining challenges to the integra-
tion of Al in the radiological workflow and its impact on radiologists. For
other works containing more thorough discussions on practical, ethical
and legal aspects of Al in healthcare, we refer the reader to Ranschaert
et al. [361], Allen et al. [362], Geis et al. [363], and Gerke et al. [364].

The current Al systems that are developed for numerous applications
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in radiology are examples of ‘narrow AI’. Algorithms are trained for one
specific well-defined task, often in image interpretation, and are able to
reach performances that match or are even better than humans. Since
the radiologist’s work is mainly known for image interpretation tasks,
which in some cases can be considered as narrow and well-defined, the
recent successes of Al algorithms outperforming radiologists has led to
the misconception that Al will replace the entire radiological profession.
The radiological work, however, goes beyond just image interpretation,
including discussion with a multidisciplinary team of physicians, selec-
tion of the right imaging methods, performing image-guided invasive
procedures, integration with other data from the electronic health record,
taking the full patient context into account, interaction with patients,
quality control and education etc. Performing these tasks automatically
will not be possible in the short term and would require ‘general AT’
which is still far from being a reality. Current ‘narrow AI’ systems can
replace certain image reading tasks and serve as tools to help radiologists
in improving the quality and efficiency of image reading. This can pro-
vide extra time for other essential tasks, although the growing workload
and demand for imaging examinations could limit the freed time and Al
could be indispensable.

There remain, however, several practical, ethical and legal challenges
that need to be overcome to enable integration of Al into the radiological
workflow.

To motivate routine use of Al applications by radiologists, smooth inte-
gration of Al into the existing PACS interface is required. The necessary
infrastructure should be available that enables big data handling and
facilitates seamless interaction between all hardware, software and data
services (PACS and electronic health records). Furthermore, exchange
of health data between different sites should be facilitated while safe-
guarding data security and patient privacy. In this context, blockchain
technology has been proposed to allow decentralised health data sharing
[365]. Exchanging data is necessary to build large curated and high-
quality datasets. Deep learning algorithms require large amounts of data
for training and testing which should be properly managed. Not only
the amount, but also the quality of the data and the ground truth labels
is primordial. Moreover, training dataset should be representative and
free of unintended bias against subsets of individuals related to ethnic,
gender, socioeconomic status etc.

Next to ethical questions related to patient data safety and privacy, there
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are also ethical issues concerning algorithm safety and transparency.
There are ongoing discussions on regulatory approval, standards of care
and liability of Al systems, not only in healthcare but also in many
other contexts such as autonomous vehicles. In the context of narrow Al
tools, most likely radiologists will remain accountable. Al tools should
be rigorously tested and evaluated through clinical validation studies to
obtain regulatory approval and human supervision and monitoring of
performance in the clinical workflow remains vital. Additionally, the
algorithms should be sufficiently transparent in how and why certain
decisions are made to optimally help radiologists in making the ultimate
decision.

Solving the above practical, ethical and legal question requires col-
laboration between all involved parties including developers, physicians
and governmental agencies. Especially radiological and medical societies
should play a leading role to define clear use cases of Al, develop and
manage large and high quality datasets and defining policies for the
development and usage of Al applications while guarding patient privacy
and ethical principles. To cope and take part in this changing radiological
landscape, a basic knowledge of AI should be incorporated into the
radiologist’s training curriculum. Radiologists should be trained to safely
use Al tools to improve their radiological workflow while maintaining
critical thinking and not become overly reliant on automated decisions.

12.4 Conclusion

In this dissertation, we have shown that artificial intelligence can be
applied to and advance the entire medical imaging chain. We have
demonstrated that neural networks can improve the image acquisition
process on detector level which eventually results in better image quality
and affects the entire remaining imaging pipeline. Furthermore, an image
analysis application was researched on primary brain tumour characteri-
sation resulting in non-invasive and accurate brain tumour segmentation
and diagnosis tools. Although challenges remain regarding standardised
datasets and understanding of AI, both by experts and the general public,
we can conclude that Al will have a profound impact on radiology. It
will improve efficiency, perform routine tasks and enable personalised
and precision medicine, thereby liberating time of radiologists to focus
on aspects of the medical profession that can never be automated such
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as empathy, care, patient and family support, expertise and integration
of full clinical and emotional context.
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