
Artificiële intelligentie met medische beeldvorming
voor de diagnose van primaire hersentumoren

Artificial Intelligence in Medical Imaging
for the Diagnosis of Primary Brain Tumours

Stijn Bonte

Promotoren: prof. dr. R. Van Holen, prof. dr. I. Goethals
Proefschrift ingediend tot het behalen van de graad van

Doctor in de ingenieurswetenschappen: biomedische ingenieurstechnieken

Vakgroep Elektronica en Informatiesystemen
Voorzitter: prof. dr. ir. K. De Bosschere

Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2018 - 2019



ISBN 978-94-6355-168-7
NUR 954, 984
Wettelijk depot: D/2018/10.500/86



Medical Image and Signal Processing (MEDISIP)
Department of Electronics and Information Systems
Faculty of Engineering and Architecture
Ghent University

Department of Radiology and Nuclear Medicine
Faculty of Medicine and Health Sciences
Ghent University

Corneel Heymanslaan 10
Entrance 36, floor 5
9000 Ghent
Belgium

Promotors
prof. dr. Roel Van Holen
prof. dr. Ingeborg Goethals

Examination board
prof. dr. ir. Paul Kiekens, Ghent University, chairman
prof. dr. Karel Deblaere, Ghent University, secretary
prof. dr. ir. Wesley De Neve, Ghent University
dr. Mathieu Hatt, French Institute of Health and Medical Research
prof. dr. Michel Koole, KU Leuven





Acknowledgements

“Good judgement is the result of experience,
experience the result of bad judgement.”

Mark Twain

Doing a PhD is - rather than a quest for good scientific output - a
learning experience. It not only teaches you how to perform a thorough
scientific study, but also to set up your own project, how to deal with the
inevitable problems, how to present your work to experts and peers, and
how to cooperate with colleagues from different fields of expertise. This
book, which is considered the end product of my PhD, can therefore only
contain a fraction of the results I’ve obtained during these four years. I
want to thank many people who have guided and supported me through
this process.

First of all, a most sincere thanks goes out to my promotors, prof.
dr. Roel Van Holen and prof. dr. Ingeborg Goethals, without whose
help my PhD would not have been successful. Roel, thank you for the
weekly meetings and the ever-constructive feedback. You were always
able to ask the right questions in order to improve my work. With your
help, we have given shape to this project and this dissertation. Ingeborg,
thank you for believing in this topic and in me. I could always come to
you with medical questions, you have provided me with a good insight
in the biological background and clinical management of brain tumour
patients. You have also given me the opportunity to present and discuss
my work to the medical experts in the Ghent University Hospital on



iv

multiple occasions. I would also like to thank you for the nice time we
had during our conference trips to Mannheim, Vienna and Stockholm.

Next, I would like to thank the co-authors and jury members for
reading my manuscripts and providing feedback that has significantly
improved the final version of my papers and this thesis. Furthermore,
my gratitude goes out to dr. Giorgio Hallaert, dr. Caroline Van den
Broecke, dr. Marjan Acou, prof. dr. Tom Boterberg and the other
members of the multidisciplinary neuro-oncological staff of the Ghent
University Hospital for helping me collecting the data and for the very
interesting discussions.

For the last four years, MEDISIP has been my second home. There-
fore, I would like to thank prof. dr. ir. Stefaan Vandenberghe, prof.
dr. ir. Christian Vanhove, prof. dr. ir. Pieter van Mierlo, dr. Bene-
dicte Descamps and dr. ir. Vincent Keereman for shaping the group
into a multidisciplinary team with a broad range of different research
projects. Also, all of my many colleagues deserve to be mentioned here,
it’s you who make the living heart and the great atmosphere of our
group. Mariele and Marek, thank you for the bike rides in the Vlaamse
Ardennen, the nice evenings and the silly conversations. Paulo, Prakash,
Charlotte and Gwennaëlle, thank you for the great times we’ve spent
in the office. Milan, thank you for the advice on machine learning.
Jens, Kim, Tim, Emma, thank you for the research coffee breaks (one
of our better ideas). I wish you all the best of luck with your PhD
projects! Thibault, thank you for introducing me to artificial intelli-
gence. Willeke, thank you for all the advice and for allowing me to use
your (and Thibault’s) PhD book source code. Nathalie, Carmen, Karen,
Ester, Margo and Radek, thank you for being so inspiring.

Saskia and Inge, you make our PhD lives so much easier. Your good
care allows us to focus on our research activities. I also want to thank
the administrative staff from the nuclear medicine department for their
help. Yves and Johan, your Statler-and-Waldorf-wise discussions made
the long hours of data collection more pleasant. Pieter Devolder, many
thanks for all your efforts in collecting the MGMT-data. Michaël and
Sam, your help significantly reduced the time I had to spend in collecting
the PET database.

I also want to thank prof. dr. ir. Patrick Segers for his sincere inter-



v

est and for being so involved with all the IBiTech PhD students. Also
a big thank you to all the bioMMeda colleagues for the often hilarious
lunch time discussions.

Muziek is al vele jaren mijn grootste uitlaatklep. Daarom wil ik in
het bijzonder Elly en Geert bedanken voor de mooie kansen met Jong
Symfonisch Gent. Ik hou veel goede vrienden over aan dit orkest. Ook
Kevin, het bestuur en de muzikanten van Continuo wil ik bedanken
voor de vele mooie muzikale en niet-muzikale momenten. Reinout en
Alexander wil ik hier graag vermelden voor de PCM-sessies, dringend
tijd om nog eens een nieuwe barbecue te organiseren!

Ten slotte wil ik hier uitdrukkelijk mijn ouders bedanken. Jullie
onvoorwaardelijke steun bij alles wat ik onderneem (zelfs het zotte idee
om drie benefietconcerten te organiseren) betekent bijzonder veel voor
mij. Het is al te makkelijk dit als een evidentie te beschouwen, maar
zonder jullie hulp was ik onmogelijk zo ver gekomen. Ook Sofie en
David, Iluna en Andreas, mijn grootouders, schoonouders en familie wil
ik bedanken voor de liefde, de leuke reisjes en gezellige momenten. En
dan blijft de belangrijkste persoon in mijn leven nog over: Valérie –
liefje. Jij bent mijn steun en toeverlaat, en ik ben er zeker van dat we
nog hele mooie tijden tegemoet gaan.

Bedankt!

Stijn
Gent, 21 november 2018





Summary

The goal of this PhD dissertation is to develop a computer-aided di-
agnosis system for primary brain tumours based on medical imaging
using techniques from artificial intelligence. We will focus on two tasks:
the automated delineation of the tumour on medical images, and tumour
classification, with special emphasis on distinguishing between low-grade
and high-grade gliomas.

Primary brain tumours are a complex class of neoplasms originat-
ing in the brain. With an estimated 10.8 people per 100 000 diagnosed
with a form of primary brain tumour per year, they are relatively rare.
However, they contribute significantly to the number of cancer-related
deaths, mainly because the brain itself is an extremely complex and vital
organ. Determining the optimal treatment strategy strongly depends on
the accurate diagnosis of the tumour. In the 2016 classification scheme,
the World Health Organisation defines over 150 different types of pri-
mary brain tumours, based on both histological and genetic findings.
Therefore, tumour samples need to be analysed, requiring an invasive
and potentially risky surgical procedure. However, in some cases such a
radical intervention is not possible, e.g. due to medical co-morbidities,
when the tumour is difficult to reach or located in eloquent regions, or
when the patient refuses surgery. In contrast, medical imaging forms a
non-invasive and repeatable tool towards brain tumour diagnosis.

State-of-the-art imaging procedures are able to map a wealth of both
anatomical tumour structures and biological processes. They are how-
ever not able to visualise information on the cellular or genetic level,
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necessary for an accurate diagnosis. Nevertheless, processes on the mi-
croscopic level might be translated into signals on the macroscopic level
which can be picked up by dedicated computer algorithms. This is the
hypothesis of radiomics. In this work, we apply the radiomics workflow
to magnetic resonance imaging (MRI) and positron emission tomogra-
phy (PET) scans of primary brain tumour patients, collected at the
Ghent University Hospital and from online repositories.

In a first study, we investigate the problem of automatically dis-
tinguishing lower-grade from high-grade gliomas, as this has important
consequences for both prognosis and therapy-planning. We use an online
dataset consisting of 75 lower-grade and 210 high-grade glioma patients,
for which structural MRI scans and a manual tumour delineation are
provided. Per patient, 2097 quantitative features are calculated, cap-
turing the appearance of the tumour on the images. These features are
then fed to a classification model based on machine learning. We com-
pare different models and obtain an optimal accuracy of 88% correctly
classified patients using random forests.

Since manual tumour delineation is a time- and labour-intensive task
prone to inter- and intra-performer variability, we next investigate differ-
ent approaches towards automated tumour segmentation. A first tech-
nique models the healthy brain tissues based on prior anatomical knowl-
edge. Locations with a different intensity profile compared to the ex-
pected value are considered as abnormal tissue. This algorithm is tested
on a dataset consisting of 274 patients, obtaining a median Dice score
of 73.3%. The main advantage of this approach is that it is very flexible
regarding the number and type of input images, since it is not trained
on an annotated dataset. However, the algorithm requires an excellent
estimation of the healthy tissues, a task that might not be straightfor-
ward when the deviation from the normal anatomy is large. Moreover,
the outlier detection method only distinguishes between normal and ab-
normal appearing tissue, and is therefore not suitable for discriminating
between different tumour tissues such as necrosis, contrast-enhancing
tumour or oedema.

Therefore, we implement a second tumour segmentation algorithm,
where a machine learning model learns to recognise the appearance of
different tumour tissues based on an annotated training set of 30 pa-
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tients. For every voxel (= volume pixel, smallest element of a 3D picture)
in the image, we calculate 52 features capturing the local texture, as well
as several measures of abnormality. Based on these features, the voxel
is classified into one of five healthy and four tumour tissues. Mainly for
high-grade gliomas, the algorithm obtains good results, with Dice scores
of 74.8%, 75.0% and 80.1% for segmenting the contrast-enhancing tu-
mour, tumour core and total abnormal region, respectively.

This segmentation method is then applied to MRI scans of 352 pa-
tients, collected in eight different centres. Since distinguishing low-grade
from high-grade tumours is not sufficient to determine the optimal ther-
apy, the patients are divided into six different tumour classes. We again
extract quantitative features in order to classify them in a multiclass
fashion, in contrast to the binary problem that was discussed before. In
a first approach, we model two classification algorithms: one for tumour
grade (grade I–IV) and one for tumour type (meningioma, astrocytoma,
oligodendroglioma, glioblastoma). The first model achieves an over-
all accuracy of 60.3%, while the model predicting grade achieves 65.6%.
However, both models show poor performance for one out of four classes,
hampering the applicability in clinical practice.

In general, physicians will already have a good idea about the di-
agnosis based on the medical images and clinical status. They might
however doubt between a few specific possible tumour types. Therefore,
in a second approach, we again split up the multiclass problem in a series
of fourteen binary classifiers, comparing different tumour groups. Every
binary problem can be solved with high accuracy, ranging from 75% to
95%. Afterwards, the binary classifiers are combined in four decision
schemes or using machine learning. This yields a best overall accuracy
of 52.8%.

In the last part of this dissertation, we aim to improve the perfor-
mance of the binary grade classifier by complementing the MRI scans
with 18F-FET PET scans. This amino acid radiotracer shows an ex-
cellent tumour-to-background contrast. Moreover, the dynamic uptake
profile of this radiotracer is a well-known biomarker of malignancy in
gliomas. This however requires a long scanning protocol of about 40–60
minutes. In order to increase the patient’s comfort, we only use static
18F-FET images obtained during a 10-minutes protocol. The tumour
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masks that are previously segmented on MRI are transferred to the PET
scans, and we again extract quantitative features capturing the intensity
distribution, shape, texture and environment on both MRI and PET.
Validated on 30 patients, we predict a correct tumour grade in 29 pa-
tients (accuracy of 96.7%) using only one MRI and four PET features.
Further validation on an independent dataset is however necessary to
confirm this result.

In conclusion, we have investigated several techniques from artificial
intelligence to aid in the diagnosis of primary brain tumours. An au-
tomated tumour segmentation algorithm is presented, able to delineate
several tumour tissues on MRI scans. Applying this algorithm to clinical
scans, we show several approaches towards a computer-aided diagnosis.
In particular, fourteen binary classifiers achieving a high accuracy can
aid the physician in decision-making. When combining MRI with amino
acid PET, the discrimination between low-grade and high-grade gliomas
is further improved.



Samenvatting

Het doel van deze doctoraatsthesis is een computer-geassisteerd diagnose-
systeem voor primaire hersentumoren te ontwikkelen gebaseerd op me-
dische beeldvorming en aan de hand van technieken uit artificiële intelli-
gentie. We zullen ons toeleggen op twee taken: het automatisch aflijnen
van tumoren op medische beelden, en tumorclassificatie, met bijzondere
nadruk op het onderscheid tussen laag- en hooggradige gliomen.

Primaire hersentumoren vormen een complexe klasse van neoplasia
die ontstaan in de hersenen. Gezien de incidentie geschat wordt op 10.8
personen per 100 000 per jaar, zijn ze vrij zeldzaam. Ze dragen nochtans
sterk bij tot aan kanker gerelateerde sterfte, voornamelijk omdat de her-
senen zelf een gecompliceerd en vitaal orgaan zijn. Het bepalen van de
optimale behandelingsstrategie hangt sterk af van de accurate diagnose
van de tumor. De Wereldgezondheidsorganisatie definieert meer dan
150 types primaire hersentumoren in het classificatiesysteem uit 2016.
Dit is gebaseerd op zowel histologische als genetische bevindingen. Om
een diagnose te stellen dient tumorweefsel geanalyseerd te worden, wat
een invasieve en potentieel riskante chirurgische ingreep vereist. Een
dergelijke ingrijpende operatie is echter niet altijd mogelijk, denken we
bijvoorbeeld aan andere aandoeningen die een ingreep verhinderen, wan-
neer de tumor moeilijk te bereiken is, wanneer de tumor zich in eloquente
hersengebieden bevindt, of als de patiënt een operatie weigert. Medi-
sche beeldvorming daarentegen vormt een niet-invasieve methode om
een diagnose te stellen, die bovendien meermaals kan herhaald worden.

Beeldvormingsprocedures zijn tegenwoordig in staat om een grote
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verscheidenheid aan zowel anatomische structuren als biologische pro-
cessen in kaart te brengen. Ze zijn nochtans niet in staat om informatie
op cel- of genetisch niveau te visualiseren, wat nodig is voor een accu-
rate diagnose. Processen op de microscopische schaal kunnen zich echter
wel vertalen in signalen op macroscopisch niveau die opgepikt kunnen
worden door gespecialiseerde computeralgoritmen. Dit is de hypothese
van radiomica. In deze dissertatie zullen we de workflow van radiomica
toepassen op beelden van magnetische resonantie (MRI) en positrone-
nemissietomografie (PET) van patiënten met primaire hersentumoren,
verzameld in het Universitair Ziekenhuis Gent en in online databases.

In een eerste studie onderzoeken we het probleem van het automa-
tisch onderscheiden van lagergradige en hooggradige gliomen, aangezien
dit belangrijke consequenties heeft voor de prognose en therapie. We
maken gebruik van een online dataset bestaande uit 75 lagergradige en
210 hooggradige glioompatiënten, waarvoor anatomische MRI scans en
een manuele tumorsegmentatie voorhanden zijn. Per patiënt worden
2097 kwantitatieve parameters of features berekend, die het voorkomen
van de tumor op een beeld in kaart brengen. Deze features worden ver-
volgens gebruikt in een classificatiemodel gebaseerd op machinaal leren.
We vergelijken verschillende modellen en behalen een optimale accuraat-
heid van 88% correct voorspelde patiënten gebaseerd op random forests.

Aangezien manuele tumordelineatie een tijds- en arbeidsintensieve
opdracht is, die bovendien gevoelig is aan variabiliteit tussen verschil-
lende uitvoerders, onderzoeken we vervolgens strategieën om deze taak
automatisch uit te voeren. Een eerste techniek modelleert de gezonde
hersenstructuren op basis van eerdere anatomische kennis. Zones die een
afwijkend intensiteitsprofiel vertonen in vergelijking met de verwachte
waarde, worden beschouwd als abnormaal weefsel. Dit algoritme wordt
getest op een dataset van 274 patiënten, waarbij we een mediane Dice
score van 73.3% bereiken. Het grootste voordeel van deze aanpak is dat
het zeer flexibel is qua aantal en type ingevoerde beelden, aangezien het
niet getraind is op een geannoteerde dataset. Het algoritme dient echter
te beschikken over een uitstekende schatting van de gezonde structu-
ren, wat niet evident is wanneer er een sterke afwijking van de normale
anatomie is. Bovendien maakt de methode enkel onderscheid tussen
schijnbaar normale en abnormale weefsels, wat het niet geschikt maakt
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om tumorgerelateerde structuren als necrose, contrastcapterend weefsel
of oedeem te identificeren.

Om die redenen implementeren we een tweede tumorsegmentatie-
algoritme, waarin een machinaal leren model het uitzicht van verschil-
lende tumorweefsels leert te herkennen, gebaseerd op een geannoteerde
trainingset van 30 patiënten. Voor elke voxel (=volume pixel, kleinste
element in een 3D beeld) in het beeld worden 52 features berekend die
naast de lokale textuur ook meerdere abnormaliteitswaarden vastleggen.
De voxel wordt geclassificeerd in één van de vijf gezonde weefsels of vier
tumorklassen op basis van deze features. Dit algoritme behaalt goede
resultaten, voornamelijk voor hooggradige glioma, met Dice scores van
74.8%, 75.0% en 80.1% voor het aflijnen van respectievelijk het contrast-
capterend weefsel, de tumorkern en de volledige abnormale zone.

Vervolgens wordt deze segmentatiemethode toegepast op MRI beel-
den van 352 patiënten, verzameld in acht verschillende centra. Aange-
zien het onderscheid tussen laag- en hooggradige tumoren niet volstaat
om de optimale therapie te plannen, worden de patiënten onderverdeeld
in zes tumorklassen. Opnieuw worden de kwantitatieve features bere-
kend om op basis hiervan de patiënten te classificeren in een multiclass
systeem, in tegenstelling tot de binaire problemen die voorheen bespro-
ken werden. In een eerste studie modelleren we twee classificatiemodel-
len: een voor tumorgraad (I–IV), een ander voor tumortype (meningi-
oom, astrocytoom, oligodendroglioom, glioblastoom). Het eerste model
behaalt een accuraatheid van 60.3%, het model voor type een accuraat-
heid van 65.6%. Beide modellen vertonen echter een zwak resultaat voor
één van de vier klassen, wat de klinische toepasbaarheid beperkt.

Artsen hebben vaak een gegrond vermoeden over de diagnose geba-
seerd op de medische beelden en de klinische status van de patiënt. Het
kan echter voorvallen dat ze nog twijfelen tussen een aantal mogelijke
tumortypes. Daarom splitsen we in een tweede studie het multiclass pro-
bleem opnieuw op in een reeks van veertien binaire classificatiemodellen
die elk verschillende tumorgroepen vergelijken. Elk binair probleem kan
opgelost worden met een hoge precisie, gaande van 75% tot 95%. Nadien
worden de binaire modellen ook gecombineerd aan de hand van beslis-
singsschema’s of met machinaal leren. Dit levert een beste accuraatheid
van 52.8% op.
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In het laatste deel van deze thesis proberen we het resultaat van het
binaire tumorgraadmodel te verbeteren door, naast MRI beelden, 18F-
FET PET beelden te incorporeren. Deze aminozuur radiotracer vertoont
een uitstekend tumor-achtergrondcontrast. Bovendien is het dynamische
opnameprofiel van deze speurstof een gekende biomerker van maligniteit
in gliomen. Hiervoor is echter een lang scanprotocol nodig van ongeveer
40–60 minuten. Om het comfort van de patiënt te optimaliseren gebrui-
ken we hier enkel statische 18F-FET beelden bekomen gedurende een
protocol van 10 minuten. De tumormaskers die eerder gesegmenteerd
waren op de MRI-beelden worden toegepast op de PET-scans, en op-
nieuw extraheren we kwantitatieve features die de intensiteitsverdeling,
vorm, textuur en omgeving van de tumor bevatten op zowel MRI als
PET. Deze methode wordt gevalideerd op 30 patiënten, waarvan 29 cor-
rect voorspeld worden (accuraatheid van 96.7%), uitsluitend op basis
van 1 MRI en 4 PET parameters. Dit resultaat dient echter gevalideerd
te worden op een onafhankelijke dataset.

Samenvattend hebben we verschillende technieken uit de artifici-
ele intelligentie onderzocht om te assisteren in de diagnose van pri-
maire hersentumoren. We stellen een automatisch tumorsegmentatie-
algoritme voor dat in staat is om verschillende tumorweefsels af te lij-
nen op MRI. Vervolgens tonen we verschillende strategieën voor een
computer-geassisteerde diagnose waarbij dit algoritme wordt toegepast
op klinische beelden. In het bijzonder kunnen veertien binaire modellen
met een hoge precisie de artsen helpen bij de therapeutische besluitvor-
ming. Wanneer MRI gecombineerd wordt met aminozuur beeldvorming
op basis van PET kan het onderscheid tussen laag- en hooggradige gli-
omen verder verbeterd worden.
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1
Problem and goal

1.1 Context

On Saturday June 30, 2018, a remarkable competition took place in
the Chinese capital Beijing. A team of 15 elite physicians was asked
to diagnose patients with brain tumours based only on medical images.
Every radiologist, specialised in neuroimaging, received a set of state-of-
the-art imaging protocols from 15 patients, and they had to write down
the diagnosis they deemed most probable within 30 minutes. Their op-
ponent: a computer with a dedicated artificial intelligence (AI) system
called BioMind [1, 2]. Similar to the physicians, it had learned to detect
abnormalities, extract features and classify them accordingly based on
seeing thousands of images before. The computer scored all 225 images
in 15 minutes, thereby achieving an accuracy of 87% correctly diag-
nosed cases. The radiologists, although performing better than average
achieving a 63% accuracy, were outperformed by far.

Primary brain tumours are a complex class of neoplasms. Even
though they are relatively rare, they are often difficult to treat as the
brain is a extremely complex and important organ itself. Therefore,
many types of primary brain tumours are not curable today.

Recent advancements in genetic and molecular research have led to
new insights in tumour biology. Based on these parameters, patients
can receive a better, more detailed diagnosis, which in turn leads to
a personalised treatment. This procedure, called precision medicine,
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provides the patient with significantly better survival perspectives.
However, in order to obtain an accurate diagnosis, tumour tissue

needs to be removed and analysed. This requires an invasive and poten-
tially risky surgical procedure. For many patients, removing the tumour
as much as possible while preserving vital structures is a first and crucial
step in the treatment, providing sufficient tissue for diagnosis. However,
when clinical symptoms and prior imaging do not yield enough evidence
to justify such a radical intervention, physicians might opt for a biopsy.
In this case, small tumour samples will be removed using a needle. But as
tumours can be heterogeneous, small zones of malignancy can be missed,
or there might be not enough tissue available for a detailed diagnosis.
Furthermore, in some cases a surgical procedure can be impossible, for
example due to medical co-morbidities, when the tumour is difficult to
reach or located close to vital structures, or when the patient refuses
surgery.

In these cases, medical imaging forms a non-invasive and repeatable
tool towards tumour diagnosis. State-of-the-art imaging is able to map
both the anatomy and several biological processes in vivo of the tumour
and the surrounding tissues, thereby delivering a wealth of information
which can be interpreted by a trained radiologist. Still, no medical
scanner is able to display the tumour on the cell level, let alone on the
genetic and molecular level.

Nevertheless, recent progress in medical image analysis has shown
that processes on a microscopic level might be translated on the macro-
scopic level. Although not always perceivable to the naked eye, specific
patterns in medical images can be picked up by computer algorithms
that lead to an improved tumour classification. This is the hypothesis
of radiomics.

For these and other applications, dedicated computer programs are
increasingly being developed and used in the clinical practice. As not
only the amount of clinical data, but also their complexity, is rapidly in-
creasing, software aiding clinicians in detecting the right signals will play
an ever-increasing role in medical diagnostics. For example, the Wat-
son Oncology system, designed by IBM in collaboration with clinicians
from the Memorial Sloan Kettering Cancer Center, scans the medical
record of the patient and recommends specific cancer therapy options.
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This is based on different treatments that were prescribed by physicians
before [3]. Similarly, the London-based company DeepMind worked in
close collaboration with the UK National Health Service on a mobile
app called Streams. This app monitors the health status of patients
with acute kidney injury, and sends out warning signals directly to the
treating physicians when urgent assistance is necessary.

By using these tools, physicians do not longer need to spend time on
routine tasks. Instead they can turn their focus to more complex and
important jobs. As professor Paul M. Parizel, former president of the
European Society of Radiology and one of the jury members during the
Chinese competition, said:

Personally, I believe that AI will become integrated into exist-
ing medical work flow environments, more or less like a GPS
navigation system guiding the driver of a car. AI software
will give proposals and help the doctor to make an accurate
diagnosis, thus providing a roadmap towards correct patient
management and follow-up. But it will be the doctor who
ultimately decides, as there are a number of factors that a
machine cannot possibly take into consideration, such as a
patient’s state of health and family situation. [2]

1.2 Outline

In this PhD dissertation, we will investigate different techniques from
AI that can help physicians to obtain a better diagnosis of primary
brain tumours based on medical images. We will thereby focus on the
most common types of tumours. Moreover, the goal is to enhance the
interpretability of the models, by providing probabilities for different
possible outcomes and minimising the number of features a decision is
based on.

This work is located at the crossroad of five research domains: computer-
aided diagnosis, neuro-oncology, medical imaging, radiomics and ma-
chine learning. These topics will be introduced in Chapter 2.
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In Chapter 3, we will investigate the important task of discrimi-
nating low-grade from high-grade gliomas. Tumour grade does not only
serve as a predictor of prognosis, it also plays a major role in determining
the optimal therapy. Different features, being quantitative parameters
describing the tumour appearance on the scan, will be presented. Next,
these features will be incorporated into several classification models, and
we will compare their performance. This is done on a public dataset
where a delineation of the tumour is provided.

As tumour delineation is a time-consuming task, we will elaborate
on automatic solutions in Chapter 4. In a first method, the algorithm
detects healthy tissue, and regions with abnormal intensities will there-
fore be regarded as tumour. A second algorithm uses a training set to
learn the appearance of different tumour tissues.

The latter method will be applied to clinical scans in Chapters
5, 6 and 7. Since brain tumours can be divided into many different
categories, we will focus here on multiclass classification problems. In
particular, two models will be developed in Chapter 5: one for tumour
grade and one for tumour type.

In many cases, radiologists have a good idea on the diagnosis, but
might doubt between a small number of specific tumour types. To aid
in these situations, we develop 14 binary models in Chapter 6. These
models will each time give probabilities for two possible tumour classes.
Afterwards, we try to combine these probabilities again in a multiclass
decision scheme.

In the previous chapters, the input of our models are features cal-
culated on anatomical imaging techniques (MRI). In Chapter 7, we
complement this with a functional imaging modality, mapping the up-
take of amino acids in the tumour (18F-FET PET).

Finally,Chapter 8 concludes this dissertation and offers some future
perspectives.



2
Introduction

In this chapter, several topics that will be adressed throughout the course
of this thesis will be introduced. The purpose of this chapter is not to
give an in-depth study of all subjects, but rather to provide the reader
with enough background knowledge to understand the topics that will be
studied later on. We start with the concept of computer-aided diagnosis,
combining techniques from artificial intelligence with medical imaging.
This is followed by an introduction to primary brain tumours, the main
topic of this thesis. Next, a short summary of medical imaging modali-
ties will be given, followed by an introduction to radiomics. This term
is a composition of radiology (science of medical imaging) and omics
(neologism often used in biology describing a collective characterisation
and quantification of a sample). It therefore refers to the quantification
of the appearance of a structure (often a tumour) in a medical image.
Since artificial intelligence is only possible when a computer is able to
learn from past experience, this chapter is concluded with a section on
machine learning, explaining the techniques that will be used for data
analysis in this dissertation.

2.1 Computer-aided diagnosis

In this thesis, we investigate techniques for AI used in medicine, and par-
ticularly in computer-aided diagnosis (CAD) of primary brain tumours.
Therefore, some definitions are in place:
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Artificial intelligence “The ability of a digital computer or computer-
controlled robot to perform tasks commonly associated with in-
telligent beings. The term is frequently applied to the project of
developing systems endowed with the intellectual processes charac-
teristic of humans, such as the ability to reason, discover meaning,
generalize, or learn from past experience” - Encyclopaedia Britan-
nica [4]

Computer-aided diagnosis “Class of computer systems that aim to
assist in the detection and/or diagnosis of diseases through a “sec-
ond opinion”. The goal of CAD systems is to improve the accuracy
of radiologists with a reduction of time in the interpretation of
images. CAD systems are classified into two groups: Computer-
Aided Detection (CADe) systems and Computer-Aided Diagnosis
(CADx) systems. CADe are systems geared for the location of
lesions in medical images. Moreover, CADx systems perform the
characterization of the lesions, for example, the distinction be-
tween benign and malignant tumours” - Firmino et al. (2016) [5]

This definition of CAD clearly stresses the importance of the “sec-
ond opinion”. The system is used as a tool by the clinician to aid in
decision making, in contrast to “automated computer diagnosis”, where
the computer is regarded as an independent reader of the data. The
increasing importance of both CAD and AI in medicine can be clearly
seen in figure 2.1, where the number of publications in recent years is
shown. Since the late 1980s, the field has known a spectacular increase
in the number of published papers, showing the rapid development and
increasing interest in the field. For example, since 2015 more than 500
articles per year are accepted regarding computer-aided diagnosis.

2.1.1 History

Probably the very first paper discussing computer-aided diagnosis was
published in 1958 by Lipkin et al. [6]. In this article, the use of punch-
cards is suggested to store and retrieve medical information to aid in
the differential diagnosis of hematological diseases. In these early days,
CAD systems mainly consisted of guiding the clinician through a se-
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Figure 2.1: Articles published on Web of Science with top-
ics related to computer-aided diagnosis or artificial intelligence in
medicine and radiology.

ries of steps where the user manually inputs the patient’s symptoms or
imaging findings [7, 8, 9]. These patterns are evaluated by a statistical
algorithm that suggests a diagnosis. Ever since, the interest in CAD
and consequently the performance has increased drastically. A main
breakthrough was made in the 1980s with the advent of digital imag-
ing systems [10] and the Picture Archiving and Communication System
(PACS). This allowed computers to directly process images, rather than
the manual input of a human interpreter. Initially, CAD was mainly
focussed on the domains where the largest clinical impact was possible,
such as the detection of abnormalities on mammography [11, 12, 13] or
lung nodules on chest radiography [14, 15, 16]. Already from the 1990s
on, commercial systems for CAD-purposes became available for very
specific tasks. Their success caused the investments in these systems
to rapidly increase, which in turn resulted in a major improvement in
performance [10].

In the last decades, the use of medical imaging has sky-rocketed
[17, 18]. Moreover, since many of these procedures have become more
complex, with an increasing number of 3D images, better image resolu-
tions leading to larger images, and more scans per protocol, the workload



8 2 Introduction

for radiologists has significantly increased [19]. This leads to a need for
automated techniques able to assist the radiologist or even take over
some routinely performed jobs. In recent years, the availability of large
amounts of medical images that can be used as training data and the
ever-increasing computing performance has led to the development of
dedicated and robust CAD systems that are increasingly being used in
clinical practice. Some applications of CAD will be discussed in the next
section.

2.1.2 Applications

Research on CAD is currently being conducted on a broad range of
applications in medicine. Covering them all is nearly impossible and is
not the purpose of this thesis. Therefore, a selection of CAD applications
is discussed here, which either have a very high medical importance, or
have led to successful results in the shape of a commercially available
product.

Screening mammographies

The largest application of CAD software is in screening mammography
[20]. Already in 1998, the US Food and Drug Administration (FDA)
approved CAD software for this purpose. Ten years later, 74% of all
mammograms in the USA were inspected using CAD [21, 22], by 2016
this number exceeded 90% [23]. A wide variety of techniques is available,
both for detection and diagnosis of suspicious lesions (see e.g. [24, 25]
for an overview). However, the use of CAD in mammography is also
controversial, since it might lead to a higher number of false-positives
and therefore the need for a second reading of the images [26, 22]. Fur-
ther technological progress will probably aid in improving these issues
[27, 28].

Chest radiography

A chest radiograph is the most commonly performed radiologic proce-
dure worldwide [18]. While providing a lot of information about the
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health of the patient, due to the 2D nature and the inherent superpo-
sition of different tissues, it is extremely challenging to interpret. CAD
methods are applied to enhance the image quality and therefore nod-
ule detection, to detect temporal changes from subsequent radiographs
using image subtraction techniques or segment the lungs, rib cages or
small nodules [29]. These systems have shown to improve the detection
rate by radiologists, but do not yet qualify for a stand-alone standard
of diagnosis [30, 31]. Another important application of CAD on chest
radiography is the diagnosis of tuberculosis. This disease ranks among
the top 10 causes of death worldwide, with over 10 million people being
affected every year, mainly in low- and middle-income countries [32].
However, good diagnostic accuracies obtained using CAD on low-cost
chest radiography systems might improve this situation [33, 34].

Bone age

A common way to assess physical development in children is the bone
age method, usually evaluated by performing a radiography of the left
hand and wrist. It can be used to diagnose growth and endocrine disor-
ders, delayed or advanced stages of puberty and predict the final height
of patients presenting with short stature [35]. The images are usually
compared to a standard atlas [36], from which the bone age can be
estimated [37, 38]. Other methods are possible as well, scoring the ma-
turity level [39, 40]. These manual methods are time-consuming, require
a large degree of expertise and might be subjective. A successful exam-
ple of CAD software for bone age estimation is BoneXpert [41], which is
CE-labelled. Several studies show that this automated method performs
the bone age estimation with a similar accuracy as manual readers, but
with reduced variability and a shorter processing time [42, 43].

Brain lesions

In the follow-up of Multiple Sclerosis (MS) patients, frequently repeated
magnetic resonance imaging (MRI) scans are taken to assess white mat-
ter lesions in the brain. Changes in lesion volume, lesion extent and
brain volume (atrophy) are meaningful outcomes for disease prognosis.
These parameters can be assessed manually, but this requires a time-
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consuming segmentation step, suffering from intra- and inter-observer
variability. The Belgian company Icometrix [44] provides automated
software for lesion segmentation [45] and brain atrophy assessment [46].
Moreover, the software icobrain provides tools for the follow-up of de-
mentia [47] and the assessment of traumatic brain injury [48]. Icobrain
is both CE- and FDA-approved, and as a result over 100 hospitals world-
wide are using the program.

2.2 Primary brain tumours

This dissertation will be dedicated to a specific application of CAD,
namely in neuro-oncology, which is the study of neoplasms (tumours) in
the brain and spinal cord. More specifically, the main focus will be on
the segmentation and diagnosis of primary brain tumours (PBTs) based
on medical images. In contrast to secondary brain tumours or metas-
tases, which have spread from primary tumours elsewhere in the body,
PBTs originate in the brain itself. In this section, some background
information on this type of tumours is given. Since brain tumours are
historically named after the cells or structures from which they arise, we
start with a brief overview on neuroanatomy.

2.2.1 Neuroanatomy

A schematic overview of the human central nervous system (CNS), con-
sisting of the spinal cord and the brain, is given in figure 2.2. The main
components of the CNS are neurons or nerve cells. They are responsible
for transmitting and processing information. Neurons are composed of
a cell body or soma, dendrites and an axon or nerve fiber. Communica-
tion between neurons occurs by transferring chemical compounds called
neurotransmitters, usually from the axon of one neuron to the dendrites
of the next. The somas process these signals and transmit an electrical
signal along the axons. Macroscopically, the brain consists of two tissue
types called grey and white matter. Neuronal cell bodies are mainly
found in the grey matter, while white matter consists of axons wrapped
in the insulator myelin. The brain and spinal cord are surrounded by
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cerebrospinal fluid (CSF), which is produced in the cavities or ventricles
in the brain. The brain and spinal cord are enveloped by the protective
meninges.

Figure 2.2: Schematic overview of the structure of the central
nerve system, adapted from [49, 50, 51, 52].

Next to neurons, the CNS consists of glial cells or glia. The most
abundant type is astrocytes. They have a star-like appearance, hence
the name. Astrocytes have a number of functions, as they are involved in
maintaining the blood-brain barrier (BBB) and the neuronal signalling.
Oligodendrocytes are responsible for wrapping myelin around the axons.
Ependymal cells are involved in secreting and circulating CSF. Finally,
microglia are responsible for repairing brain damage and removing cell
debris [53].

2.2.2 The 2016 WHO classification

The World Health Organisation (WHO) defines more than 150 different
types of primary brain tumours. We limit our discussion here to some
of the most common forms, as can be seen in figure 2.3.

In the classification scheme of 2016, the WHO prescribes an inte-
grated approach for the diagnosis of primary brain tumours. The histo-
logical findings, based on light microscopic features, eosin-stained sec-
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Diffuse astrocytic and oligodendroglial tumours
Diffuse astrocytoma, WHO grade II
Anaplastic astrocytoma, WHO grade III

Oligodendroglioma, WHO grade II
Anaplastic oligodendroglioma, WHO grade III

Glioblastoma, WHO grade IV

Other astrocytic tumours
Pilocytic astrocytoma, WHO grade I

Ependymal tumours
Subependymoma, WHO grade I
Ependymoma, WHO grade II or III
Anaplastic ependymoma, WHO grade III

Neuronal and mixed neuronal-glial tumours
Ganglioglioma, WHO grade I
Anaplastic ganglioglioma, WHO grade III
Rosette-forming glioneuronal tumour, WHO grade I
Central or extraventricular neurocytoma, WHO grade I

Embryonal tumours
Medulloblastoma, WHO grade IV
CNS neuroblastoma, WHO grade IV

Meningiomas
Meningioma, WHO grade I
Atypical meningioma, WHO grade II
Anaplastic (malignant) meningioma, WHO grade III

Lymphomas
Diffuse large B-cell lymphoma of the CNS

Germ cell tumours
Germinoma, WHO grade II

Tumours of the sellar region
Craniopharyngioma, WHO grade I

Figure 2.3: Selection of the WHO classification of tumours of the
central nervous system. Adapted from [54].

tions and immunohistochemical (IHC) expression of proteins, are now
complemented with molecular and genetic parameters.

Histopathological features

Histologically, brain tumours are divided into a set of different cate-
gories, among which gliomas and meningiomas are the most important
ones. Gliomas arise from glial cells, and were until 2016 also called after
the cell type they share histological features with. Astrocytoma, oligen-
droglioma and ependymoma are the most common gliomas. They are
in general heterogeneous and invade healthy brain tissue. Meningiomas
arise from the meninges and rarely invade the brain, but rather com-
press surrounding tissue. They are also more homogeneous compared
to gliomas. Since they are slowly growing, meningiomas may become
very large before presenting with clinical symptoms. Figure 2.4 shows
autopsy slices of a malignant glioma and a meningioma, where the dif-
ference in brain invasion and heterogeneity is clear.

Primary brain tumours are further classified into WHO grades, in
order of increasing malignancy, according to histological characteristics
such as cellularity, mitotic activity, pleomorphism, endothelial prolif-
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(a) Glioblastoma [55] (b) Meningioma [56]

Figure 2.4: Coronal slices of gross pathology of patients with
different primary brain tumours.

eration (neoangiogenesis) and necrosis [57, 58]. WHO grade I and II
tumours are called low-grade glioma (LGG), the more malignant grade
III and IV tumours are called high-grade glioma (HGG). LGGs have a
low proliferative activity, but whereas WHO grade I tumours might be
cured with surgical resection alone, WHO grade II tumours are generally
more infiltrative and therefore prone to recurrence. They can also evolve
into more malignant types. WHO grade III tumours show evidence of
malignancy, such as nuclear atypia and anaplasia. The worst prognosis
is linked to patients with WHO grade IV tumours. These are prone to
necrosis (premature cell death), show a large degree of heterogeneity, are
rapidly evolving and have a fatal outcome. The most malignant form of
PBT is a WHO grade IV astrocytoma, also called glioblastoma (GB) or
glioblastoma multiforme (GBM). This type of tumour can either evolve
from a lower-grade astrocytoma (secondary glioblastoma, about 10%),
or de novo, meaning that it immediately forms as a primary glioblastoma
from healthy tissue (about 90%) [54].

Genetic features

Histopathological diagnosis of primary brain tumours suffers from inter-
observer variation, as some degree of the reporting is based on experience
and subjective findings [59, 60, 61]. Moreover, several studies show that
gene-expression analysis is able to correlate better with survival than
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the histological diagnosis [62, 63].
Therefore, in the 2016 classification scheme, the WHO has added

genetic features next to the histopathological findings [54]. Since a com-
plete discussion of the nomenclature would lead us to far, we will fo-
cus here on the important example of the diffusely infiltrating gliomas
(WHO grade II and III astrocytic tumours, grade II and III oligoden-
drogliomas and glioblastomas), as illustrated in figure 2.5.

Histology

IDH status

1p/19q and other
genetic parameters

Astrocytoma Oligoastrocytoma Oligodendroglioma Glioblastoma

IDH mutant IDH wildtype IDH mutant IDH wildtype

ATRX loss*
TP53 mutation*

1p/19q 
codeletion

Diffuse astrocytoma, 
IDH mutant

Oligodendroglioma, 
IDH mutant and 1p/19 codeleted

Glioblastoma, 
IDH mutant

Glioblastoma, 
IDH wildtype

After exclusion of other entities:
Diffuse astrocytoma, IDH wildtype
Oligodendroglioma, NOS

Diffuse astrocytoma, NOS
Oligodendroglioma, NOS
Oligoastrocytoma, NOS
Glioblastoma, NOS

Genetic testing
not done or 
inconclusive

* Characteristic but not required for diagnosis

Figure 2.5: Classification of the diffuse gliomas based on histo-
logical and genetic features. Adapted from [54].

Two genetic parameters play a crucial role in the classification of
diffuse gliomas. The first one is the enzyme isocitrate dehydrogenase
(IDH), coded in the IDH1 and IDH2 genes, playing an important role in
the Krebs cycle of glucose metabolism [64]. The great majority (60–90%
[65, 66, 67]) of grade II and III gliomas are IDH-mutant. IDH-wildtype
astrocytomas are rare, and are considered as being glioblastoma-like [68].
They can be detected with a negative sequencing for the IDH1 codon
132 and IDH2 codon 172 gene mutations. The prognosis of IDH-mutant
glioma patients is favorable over IDH-wildtype cases, and IDH-status
seems a more important predictor than WHO grade [69, 70]. A neg-
ative IHC for the mutant R132H IDH1 protein is also an indicator of
IDH-wildtype astrocytoma, but is not sufficient for diagnosis without se-
quencing, as about 10% of IDH-mutated tumours are missed when rely-
ing on a negative IHC staining [71]. Astrocytoma or oligodendroglioma
cases without the availability for IDH-sequencing should be classified
as not otherwise specified (NOS). This is not a separate category, but
indicates that the required tests for a specific diagnosis cannot be per-
formed. Glioblastomas are also divided into IDH-wildtype (about 90%),
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mostly corresponding to primary glioblastomas, and IDH-mutant (about
10%), frequently secondary glioblastomas with a history of lower-grade
glioma. When full IDH evaluation is not possible, the diagnosis would
be glioblastoma, NOS.

The second important genetic parameter is the combined whole-arm
losses of the chromosome arms 1p and 19q (1p/19q codeletion). This
can be detected using fluorescence in situ hybridisation (FISH). When a
IDH gene family mutation and 1p/19q codeletion is present, the tumour
is classified as oligodendroglioma. This type is linked to a favourable
outcome, in particular since these tumours have a better response to
chemotherapy [72, 73, 74].

When glioma patients are classified according to molecular subtypes,
they show a distinct overall survival pattern, as illustrated in figure
2.6. This justifies the 2016 WHO classification scheme. IDH-wildtype
(primary) glioblastomas show the worst prognosis, whereas oligoden-
drogliomas (LGG with IDH mutation and 1p/19q codeletion) present
the most optimistic survival changes. It is remarkable that lower-grade
gliomas with a wildtype IDH-status show a similar clinical course as
glioblastomas.

2.2.3 Epidemiology

Primary brain tumours are a relatively rare disease. A recent systematic
review and meta-analysis showed that worldwide 10.82 (95% confidence
interval (CI): 8.63 - 13.56) people per 100 000 are diagnosed with a form
of primary brain tumour per year [75]. However, they contribute sig-
nificantly to cancer mortality, especially in children and young adults,
where they are the leading cause of cancer deaths [76]. In children (age
0-14), the most common type of CNS tumour is pilocytic astrocytoma
(WHO grade I, 18%), followed by malignant glioma (14.3%) and embry-
onal tumours (mainly medulloblastoma, 13.8%). In adults, meningiomas
account for about 36.6% of all CNS tumours, followed by tumours of the
pituitary (15.9%) and glioblastomas (14.9%) [77].

Ionising radiation is the only established risk factor linked to an
increased incidence of both meningeal and glial tumours [78]. Concern
about the use of mobile phones (emitting non-ionising radiation) seems
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Figure 2.6: Kaplan-Meier plot showing overall survival when
gliomas are classified according to molecular subtype. Reproduced
with permission from [67], Copyright Massachusetts Medical So-
ciety.

unfounded, as a large study with over 5000 patients was not able to
show a causal relation between mobile phone use and PBTs [79]. Other
factors, such as genetic susceptibility, hereditary syndromes, allergies or
immune-related conditions have not been established [76].

2.2.4 Symptoms

The symptoms of PBTs are strongly dependent on the type, location and
size of the tumour. In general, there are four kinds of symptoms. The
first one is epileptic seizures [80], which is more frequently the case for
low-grade and slowly growing tumours. Secondly, intracranial pressure
might lead to headache, nausea, vomiting, drowsiness or visual abnor-
malities. This is mainly the case for rapidly growing tumours showing
a disruption in the blood-brain barrier, leading to a leakage of oedema,
or when the CSF circulation is obstructed. A third type of symptoms
are focal neurological deficits such as hemiparesis or aphasia. These
symptoms can often indicate the tumour location. Lastly, mental-status
abnormalities are common in frontal brain tumours or diffuse brain in-
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filtration. However, many PBTs, e.g. meningiomas, are slowly growing
and show no clinical effects. They are often incidentally discovered, for
example after a brain scan due to an accident or stroke.

2.2.5 Treatment

There are several therapy options for primary brain tumours. Planning
the optimal treatment protocol strongly depends on the tumour type
and the presurgical evaluation. Survival is however more dependent on
pretreatment variables than treatment itself [80]. The main factors for
a good prognosis are, next to the type of tumour, young age and a good
performance status.

Watch-and-wait

It might sound counter-intuitive, but the first option for some brain
tumour patients is not to treat the tumour. When there are clear in-
dications that the lesion is benign (e.g. meningioma WHO grade I) or
when there are little to no symptoms, clinicians might opt to postpone an
invasive procedure. The patient will however be closely monitored with
frequent brain scans to gauge the tumour growth dynamics. A recent
study showed that there is no difference in overall survival (OS) when
surgery was delayed until signs of growth on follow-up scan compared
to early resection in low-grade glioma [81].

Surgery

For most PBT patients however, surgical tumour resection is the first
form of treatment. This not only enables the characterisation of the
tumour using histopathological and molecular analysis, it frequently al-
lows immediate relief of symptoms [80]. Most meningiomas can be cured
with surgery alone, particulary patients with WHO grade I tumours in
favorable locations [82].

The aim of surgery for all PBT patients is the complete tumour re-
moval, also called gross total resection. Since this is not always feasible,
maximum safe resection (MSR) is the goal [83]. An extent of resection
(EOR) of at least 78% should be achieved to have a survival benefit
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in GBM, and this trend continues with more complete surgical resec-
tions [84]. Still, the prevention of neurologic deficits is more important
than EOR. Since glioma are infiltrative, tumour cells can be found be-
yond the lesion, causing these tumours not being curable with resection.
Microsurgical techniques and improved imaging modalities, presurgical
evaluation and intraoperative techniques for tumour delineation, as well
as awake brain tumour surgery have contributed to low failure rates and
excellent long-term functional outcomes [85].

If brain imaging is suggestive of a low-grade glioma, but tumour re-
section is not possible (e.g. due to a deep-seated lesion, located within
the eloquent cortex or when other medical co-morbidities obstruct cran-
iotomy), a biopsy might be considered. In this case, small tumour frac-
tions will be extracted using a needle under local anaesthesia [86]. The
role of biopsy is however debatable, since analysing small fractions of a
heterogeneous tumour might lead to misclassification due to sampling
bias [87, 88, 89]. Moreover, biopsy is related to a decreased OS com-
pared to wait-and-scan and resection, as a recent study showed [81].
The authors suggest two possible reasons for this controversial finding.
Physicians might be more biased towards a biopsy when suspecting a
worse prognosis. Another option is a negative effect of the biopsy itself,
such as an acute inflammatory response, or an increased glioma aggres-
siveness induced by the surgery. In this study, it is recommended to
avoid biopsy when possible.

Radiotherapy

Radiation therapy (RT) consists of a set of different techniques using ion-
ising radiation for the treatment of cancer. These can be divided into
external beam radiotherapy (EBRT) or internal radiotherapy. EBRT
uses externally applied beams of high-energy particles such as photons,
electrons or protons to irradiate the patient. Careful planning is nec-
essary to optimise the radiation dose delivered to the lesion while pro-
tecting healthy tissue, especially sensitive regions such as the brainstem
or optic nerves. This can be done using intensity-modulated radiation
therapy (IMRT), where the particle beams are administered from differ-
ent angles around the patient, while modifying the shape and intensity
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of the beams, as is illustrated in figure 2.7. In fractional radiotherapy, a
low administered dose to the tumour is repeated several times (e.g. 30
fractions of 2 Gy), whereas in stereotactical neurosurgery, a very high
dose (e.g. 18 Gy) is focused on the lesion once.

Figure 2.7: Example of radiation planning to optimise the de-
livered dose while protecting sensitive areas such as the eyes and
brainstem, in this case for stereotactic radiosurgery [90].

Internal radiotherapy or brachytherapy uses small sealed radiation
sources that contain unstable nuclei emitting high-energy photons. The
radioactive container is placed next to the tumour, such that the target is
radiated locally [91]. Brachytherapy is mainly considered in children or
in adults with deeply localised tumours. Studies comparing brachyther-
apy with conventional techniques using randomised trials are yet to be
conducted [83].

In gliomas, radiotherapy is used after surgery to improve local con-
trol, preserve function and increase survival at a reasonable risk benefit
ratio. The dose and timing will depend on a number of factors, such
as type and grade, as well as age, performance score and extent of re-
section. In meningioma, radiotherapy achieves similar results as far as
disease control and survival rates are concerned to gross total resection.
Mainly in WHO grade II or III (atypical or anaplastic meningiomas),
radiotherapy will play a more important role [82].
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Systemic treatment

Therapy using pharmacological drugs can roughly be divided into three
categories. The first type are drugs that do not offer therapeutic benefit,
but are able to reduce or relieve the symptoms. These include corticos-
teroids to decrease cerebral oedema, antiepileptic drugs, anticoagulants
(blood thinners) or antidepressants.

In the second category are cytotoxic chemotherapeutics, aiming to
destroy fastly reproducing cancer cells. In Europe, temozolomide is the
agent of choice for glioma treatment and is part of the standard of care
for most patients. It is an oral DNA alkylating agent with limited side ef-
fects and good blood-brain barrier penetration potential. The European
Association for Neuro-Oncology (EANO) recommends the use of temo-
zolomide (combined with radiotherapy) in IDH-mutant glioblastoma and
IDH-wildtype gliomas with O6-methylguanine DNA methyltransferase
(MGMT) promotor methylation [83]. A second type of chemotherapeu-
tics are nitrosoureas, most commonly PCV. This is a combination of
three agents: procarbazine, lomustine and vincristine. These are mostly
administered to patients with anaplastic oligodendrogliomas. A last
type of chemotherapy are monoclonal antibodies such as bevacizumab
with anti-angiogenic capabilities. This agent is approved for recurrent
glioblastoma, albeit outside the European Union.

Other pharmacotherapeutic approaches are targeted and immuno-
logical therapies, such as immune checkpoint inhibitors and vaccines.
Their efficacy is however to be established in clinical trials.

The standard care of glioma patients is very briefly summarised in
table 2.1. For a more detailed overview, we refer to the EANO guide-
lines on the diagnosis and treatment of astrocytic and oligodendroglial
gliomas [83] and meningiomas [82].

2.3 Medical imaging

Medical imaging plays an increasing role in the diagnosis and follow-up
of brain tumour patients. In this section, a short description of the two
main imaging modalities in neuro-oncology will be given, being magnetic
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Table 2.1: Standard of care in gliomas, adapted from [61, 83].
Tumour type Standard of care
Astrocytoma grade II Resection followed by RT (45-55 Gy) and mainte-

nance PCV chemotherapy

Astrocytoma grade III Resection followed by RT (60 Gy) and maintenance
temozolomide

Oligodendroglioma Resection followed by RT plus PCV chemotherapy,
regardless of tumour grade

Glioblastoma Resection followed by radiotherapy (60 Gy) and 6
cycles of concomitant and maintenance temozolo-
mide chemotherapy

resonance imaging (MRI) and positron emission tomography (PET). To
introduce the different modalities, we start by giving a brief overview of
the history of medical imaging, inspired by [92].

2.3.1 Brief history

In figure 2.8 some important events that have marked the history of
medical imaging are illustrated.

1900 2000

1895
Radiography

(W.C. Röntgen)

1903
Discovery of radioactivity

(H. Becquerel, M. & P. Curie)

1924
Electroencephalography

(H. Berger)

1938
Nuclear magnetic resonance

(I. Rabi)

1940’s
Medical ultrasound

1950’s
Nuclear medicine

1957
Gamma-camera 

(H. Anger)

1963
Principle of single-photon emission computed tomography

(D. Kuhl, R. Edwards)

1969
Computed tomography

(A. Cormack, G. Houndsfield)

1973
Magnetic resonance imaging

(R. Damadian, P. Lauterbur, P. Mansfield)

1973
First positron emission tomography system

(M. Phelps)

1989
Helical CT

1998
Multislice CT

1998
PET/CT

(D. Townsend, R. Nutt)

2010
PET/MRI

Figure 2.8: Important historical events in medical imaging.
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Radiography and Computed Tomography

The very first picture of the interior of the human body, without need-
ing to cut through skin, was made by the German professor Wilhelm
Röntgen. He was experimenting with a Crookes tube, a system gener-
ating electron beams, when he noticed fluorescence on a nearby barium
platinocyanide screen. The invisible radiation coming out of the tube
was of an unknown nature, and was therefore called X-ray. The pro-
jection of an object could however be recorded through a fluorescent
material on a photosensitive film. The first image Röntgen made of his
wife’s hand (figure 2.9) amazed the scientific community, and the medi-
cal potential became soon clear. Since materials with a different density
have a different X-ray absorption coefficient, a radiograph shows the
mean density along the path between the source and every point of the
detector. Radiography, which is the use of X-rays to view inside a body,
was soon commercialised. A remarkable story from the early days of
radiography is that Marie Curie, who had received the Nobel Prize in
Physics in 1903 together with Henri Becquerel and her husband Pierre
Curie for the discovery of radioactivity, invented and operated a mobile
X-ray vehicle during World War I able to image bullets, shrapnel and
fractures inside the body of soldiers.

Figure 2.9: First medical X-ray by Wilhelm Röntgen of his wife
Anna Bertha Ludwig’s hand (1895) [93].
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In 1917, the Austrian mathematician Johann Radon proved that a
function can be reconstructed from its projections along different an-
gles [94]. This laid the foundation for Allan Cormack to develop the
mathematics behind Computed Tomography (CT) in the early 1960’s.
In short, by rotating the source-detector geometry around the patient,
a three-dimensional representation of the interior of the body can be
formed. On October 1, 1971, the first patient, a woman with a right
frontal lobe brain tumour, was scanned on a system designed by Sir
Godfrey Hounsfield. The scanner took about 5 minutes for every slice,
with 2.5 hours needed to process the data, resulting in a 80× 80 pixels
image, illustrated in figure 2.10. Cormack and Houndsfield received the
1979 Nobel Prize in Physiology and Medicine.

Figure 2.10: First clinical CT scan, Atkinson Morley’s Hospital,
October 1971, adapted from [95].

Ever since, CT technology has dramatically improved, starting with
the first full body scanner coming soon after [96]. More recently, heli-
cal CT, multislice CT and dual-energy systems have aided in reducing
scanning time and patient dose while optimising image quality.

Nuclear medicine

Ever since radioactivity was discovered at the end of the nineteenth cen-
tury, scientist have tried to use the energy emitted by unstable nuclei
for medical treatment purposes, both inside and outside the body [97].
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Whereas in the beginning nuclear medicine experiments were on a small
scale, the Atomic Age following the Second World War marked the in-
troduction of its applications to a broader audience. In 1946, a patient
was cured of a thyroid cancer with an “atomic cocktail” [98], gaining
immense publicity.

Energy from isotopes can not only be used for treatment purposes,
since radiation (photons, electrons, positrons or alpha particles) emit-
ted by unstable nuclei can also be detected, and therefore lead to an
improved diagnosis. A radioactive atom linked to the right molecule
will be taken up by a specific organ, which can be scanned. In the
beginning, this was done by positioning a Geiger counter near the or-
gan of interest. The advent of the Anger scintillation camera in 1957
ensured that images of the distribution of the radionuclide within the
body could be made. This technique is up to now still used and is known
as scintigraphy. Tomographic nuclear imaging, being the reconstruction
of the distribution in a cross-sectional plane of the body, was made pos-
sible with single-photon emission computed tomography (SPECT) and
positron emission tomography (PET) systems, based on the work of
David E. Kuhl and Roy Edwards from the 1950’s [99]. The concept of
annihilation coincidence detection applied in positron emission tomog-
raphy (PET) was developed in 1973 by Phelps and Hoffman [100], who
also built the first PET scanner with a spatial resolution of about 1.2 cm
full width at half maximum (FWHM) [101]. After developing 2-deoxy-
2-(18F)fluoro-d-glucose (18F-FDG), the same group performed the first
human PET scan to visualise cerebral glucose consumption [102], illus-
trated in figure 2.11.

The next big step in nuclear medical imaging was the hybridisation
of PET or single-photon emission computed tomography (SPECT) with
Computed Tomography (CT). Since both nuclear imaging modalities
suffer from a limited resolution in the range 4–6 mm for PET and 8–
12 mm for SPECT, the exact localisation of the radioactivity is hard to
trace. When combined with a structural imaging modality in a PET/CT
[103] or SPECT/CT system, both functional and anatomical information
can be obtained simultaneously. This has caused oncology to become
the main application field of nuclear imaging. The last decade has also
seen rise to hybrid PET/MRI scanners.
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Figure 2.11: First human 18F-FDG PET scan (1979), reproduced
with permission from [102].

Magnetic resonance imaging

Magnetic resonance imaging (MRI) is the most modern imaging modal-
ity we will discuss here, with the first clinical scan performed in 1980,
illustrated in figure 2.12. However, the theory behind this medical device
dates back to 1938, when Rabi discovered nuclear magnetic resonance
(NMR) [104]. The real invention of MRI is to be attributed to Paul
Lauterbur and Peter Mansfield who suggested to encode spatial informa-
tion in the NMR signals by varying a large magnetic field with smaller
gradients. Some years prior to that, Raymond Damadian already re-
ported that tumours and healthy tissue could be distinguished based on
their NMR signal. He also designed a hypothetical MRI machine.

The technological advances in MRI followed rapidly in the 1980’s
and 1990’s. These include improvements to better map the anatomy
of the patient, such as the use of contrast agents or fluid-attenuation
inversion recovery (FLAIR), both very important techniques in neuro-
oncology. But next to anatomical imaging, advanced techniques made it
possible to make an image of certain biological processes inside the body,
such as the diffusion of water using diffusion-weighted imaging (DWI)
or the perfusion of tissues by blood using perfusion-weighted imaging
(PWI). Similar techniques allowed to visualise white matter tracts in-
side the brain using diffusion tensor imaging (DTI) and tractography.
Lastly, tracking changes in the blood oxygen-level when the patient is
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Figure 2.12: The very first useful clinical MRI scan showing an ab-
dominal transverse image of malignant deposits in the liver. Copy-
right IOP publishing, adapted from [105].

performing a certain task, allows to identify specific regions in the brain
responsible for this task, a technique called functional magnetic reso-
nance imaging (fMRI).

Other medical imaging techniques

The aforementioned imaging modalities require large and expensive in-
stallations. Two other medical imaging devices used in neuro-oncology
are much smaller, and can therefore be used in a mobile set-up. The
first one is electroencephalography (EEG), a technique that was applied
for the first time in humans in 1924 by Hans Berger. Several electrodes
are positioned on the scalp of the patient, measuring the small electric
signals related to neuronal activity. In this way, abnormal spikes such
as epileptic seizures can be recorded, and using advanced techniques,
these can be allocated to a specific seizure onset zone inside the brain.
The second modality is medical ultrasound. This method is related
to the radar, which had known large technical improvements during
World War II. In contrast to radar, that makes use of radio-frequent
electromagnetic waves, ultrasound uses high-frequency sound waves. In
neuro-oncology, this method is both used therapeutically [106] and intra-
operatively [107].
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2.3.2 Magnetic Resonance Imaging

The previous section discussed the history of medical imaging. Two of
the most important modalities in neuro-oncology, being MRI and PET
will now be elaborated on. We start with the principle of MRI followed
by important neuro-oncological applications.

Principle

The main component of an MRI scanner is a very large superconduct-
ing magnet, cooled with liquid helium and producing a homogeneous
magnetic field. Most commonly found are 1.5T (Tesla) systems, which
is about 60 000 times stronger than the earth magnetic field, although
3T systems are increasingly being used. Next to this static magnet, the
scanner has coils in three orthogonal directions that can be switched
off an on, producing small variations, called gradients, upon the main
magnetic field (see figure 2.13a). Furthermore, there is a set of coils
working as an antenna able to emit or receive radio-frequent (RF) waves.
For most applications there exist designated receiver coils which can be
brought very close to the body part being examined, such as the head
coil illustrated in figure 2.13b.

(a) MRI scanner design,
adapted from [108]

(b) Receiver head coil, copy-
right Siemens Healthineers
[109]

Figure 2.13: Magnetic Resonance Imaging: scanner design and
head coil.
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The principle of NMR is based on the quantum mechanical property
spin of subatomic particles. This can be regarded as a rotating motion of
the charged particle, creating a tiny magnetic moment. When subatomic
particles are combined into nuclei, they can have a zero or non-zero net
magnetic moment. Hydrogen nuclei, consisting of one proton, have a
non-zero magnetisation. Since soft tissue contains a lot of water and
therefore many hydrogen atoms, MRI is ideally suited to visualise it.

Hydrogen nuclei have two independent spin states, called spin-up
and spin-down. In the absence of a magnetic field (thermal equilib-
rium), both states have the same energy. However, inside the strong
magnetic field B0 of the MRI scanner, an interaction will occur between
the external field and the nuclear magnetic dipole moment. As a result,
a small energy difference between the spin states will arise, and there
will be a bias towards the lower energy state. A group of spins, also
called isochromat, will therefore create a net magnetisation M aligned
with the external field.

The RF coil will now emit a pulse carefully tuned to the frequency
with which the magnetisation precesses around the magnetic field, also
called the Larmor frequency. The isochromat will absorb the energy from
this pulse, which is the nuclear magnetic resonance (NMR) effect. As a
result of this excitation phase, spin flip will occur, as the magnetisation
starts precessing in a wider arc around the static magnetic field. The
flip angle will depend on the duration of the excitation pulse, but this
is often chosen to be 90°, illustrated in figure 2.14a.

When the excitation pulse is switched off, the magnetisation is al-
lowed to return to its equilibrium state, a process called relaxation,
illustrated in figure 2.14b. While relaxing, the nuclei emit energy in the
shape of RF photons, which can be picked up by the receiver coils. The
signal in these coils is called free induction decay (FID), a sine-wave at
the Larmor frequency but damped with a time constant T2*. Relaxation
is not an immediate process, as the nuclei will gradually return to equi-
librium, depending on the local environment of the particle. The time
at which 63% (= 1− 1/e) of the net longitudinal magnetisation (paral-
lel to the static magnetic field) is recovered is called T1, spin-lattice or
longitudinal relaxation time. While the longitudinal magnetisation is in-
creasing during relaxation, the transverse magnetisation (perpendicular
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(a) excitation (b) relaxation (c) T1 and T2 time

Figure 2.14: Illustration of the RF excitation and relaxation
processes, the related longitudinal (MZ) and transverse (MXY)
magnetisation and the definition of T1 and T2 relaxation times.
Adapted from [110].

to the static magnetic field) is decreasing. During the excitation phase,
some nuclei will be phase-locked, meaning that their perpendicular com-
ponent is rotating with the same phase, creating a net magnetisation in
the transverse plane. This phase-locking is however quickly lost during
relaxation. The time to fall to 37% (= 1/e) of the maximum transverse
magnetisation is called T2, spin-spin or transverse relaxation time. The
previously mentioned T2* relaxation time is related to T2, but whereas
T2 is the “true” transversal relaxation time, the shorter T2* is the “ef-
fective” or observed transversal relaxation time:

1
T2∗ = 1

T2 + 1
Ti

,

where Ti is a term related to inhomogeneities in the main magnetic field,
caused by local distortions, small magnet imperfections, chemical shift
or magnetic susceptibility.

The relaxation times T1 and T2 depend on the local environment of
the nucleus. Typical values at 1.5T are given in table 2.2.

As a result, different tissues will show a different value on an MRI
scan. The precise contrast is determined by two parameters: the time
between the excitation pulse and the acquisition of the signal in the
receiver coils, called echo time (TE), and the time between two excitation
pulses, the repetition time (TR). The latter determines the remaining
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Table 2.2: Approximate T1 and T2 relaxation times at 1.5 T.
T1 (ms) T2 (ms)

grey matter 920 100
white matter 780 90
CSF 4200 2100
fat 240 70

magnetisation before applying a new excitation pulse. Short TR and
TE will result in T1-weighted images, long TR and short TE in proton
density (PD) weighted images, and long TR and TE in T2-weighted
images.

Localisation of the received signal is possible by using small gradients
in the magnetic field, induced by the gradient coils. By applying small
variations in the x, y and z direction within the static magnetic field,
the exact position of a voxel can be encoded in the k-space or Fourier
domain of the acquired signal. The 3D image can now be obtained by
reconstruction of this signal.

In the last decades, hundreds of different MRI protocols have been
proposed with different scanning parameters, each time yielding a unique
image contrast or highlighting a different biological tissue. Examples
are fluid suppression, fat suppression, highlighting blood vessels in mag-
netic resonance angiography (MRA) or blood perfusion in arterial spin
labelling (ASL). Quantitatively comparing images obtained with differ-
ent acquisition parameters is very difficult, and structural imaging with
MRI therefore mainly remains a qualitative rather than a quantitative
tool. In the next section, we will discuss the most important sequences
in neuro-oncology.

Applications in brain tumour imaging

MRI is the principle method of choice when diagnosing the presence of a
brain tumour. The EANO recommends four different structural images,
illustrated in figures 2.15a–2.15d.

In this example several scans obtained during the same imaging pro-
tocol are shown of a patient with a glioblastoma, IDH-wildtype. In
figure 2.15a a T1-weighted scan is shown. This imaging type shows



2.3 Medical imaging 31

(a) T1 (b) T1ce (c) T2

(d) FLAIR (e) ADC (f) rCBF

Figure 2.15: MRI scans of a patient with a glioblastoma.

in general a very high resolution and good contrast between the dif-
ferent anatomical structures. The tumour is slightly hypo-intense. In
figure 2.15b a contrast-enhanced T1 (T1ce) scan is shown. The same
scanning parameters as a T1-scan are used, but the image is obtained
after administration of a gadolinium-based contrast agent. This shows a
bright signal in the blood vessels, as well as in regions with a disrupted
BBB. Typical for GBM is the ring-like contrast enhancement with a
necrotic core. The T2-weighted scan of figure 2.15c shows a high in-
tensity in regions containing a lot of water, such as the ventricles and
sulci containing CSF. The necrotic tumour-core is highlighted as well.
Compared to the T1-weighted scans, T2 shows better the peritumoural
oedema, caused by fluid-leakage and tumour invasion into healthy tis-
sue. The fluid-attenuation inversion recovery (FLAIR) scan of figure
2.15d is a T2-weighted scan as well, but the signal of CSF is removed,
thereby providing excellent contrast between healthy and pathological
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fluids. This sequence is also used for detection of white-matter abnor-
malities such as MS-plaques.

Next to the four anatomical MRI techniques, figure 2.15 also shows
two more advanced scans providing biological information. Figure 2.15e
maps the apparent diffusion coefficient (ADC) obtained with diffusion-
weighted imaging (DWI). We observe a high degree of water diffusion
in the necrotic and oedematous regions, whereas in the heterogeneous
contrast-enhancing tissue, diffusion is obstructed. Diffusion MRI is fre-
quently used for brain tumour diagnosis [111] as well as for the early
assessment of treatment response [112, 113]. Lastly, a regional cerebral
blood flow (rCBF) map is given in figure 2.15f. In this scan, we see that
the contrast-enhancing region shows an increased blood flow, evidence
for angiogenesis typical for a malignant tumour. Usually, rCBF-maps
are obtained using dynamic susceptibility contrast (DSC) imaging which
requires exogenous contrast agents, although several studies show the
use of ASL, an imaging technique without the need for contrast agents,
with similar results [114, 115, 116].

2.3.3 Positron Emission Tomography

Next to MRI, positron emission tomography (PET) is used in neuro-
oncology to detect metastases, to define metabolic hotspots for biopsy,
for post-surgical evaluation and radiotherapy planning. PET is a func-
tional nuclear imaging technique. We will first briefly introduce the
principle, illustrated in figure 2.16.

Principle

In contrast to an MRI-scanner, a PET-scanner is relatively simple. The
most important part is a cylinder with a diameter of approximately 80
cm and a width of about 20–25 cm, consisting of detectors able to detect
high-energy photons. A patient coming for a PET-scan is first injected
with a radioactive tracer. This tracer consists of a specific biological
molecule (e.g. glucose), to which a radioactive atom, most often 11C,
18F or 68Ga, is attached. Depending on the nature of the molecule, the
radiotracer will be taken up in specific tissue.
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Figure 2.16: The principle and workflow of positron emission
tomography. Adapted from [117].

When the unstable nucleus of the radioactive molecule decays, it
emits a positron. This particle travels typically 1–2 mm through the
surrounding tissue, until it annihilates with an electron. This annihi-
lation process creates two photons with an energy of 511 keV that are
emitted in opposing directions. Modern PET scanners work in listmode:
they save a list of all the detected photons. When two events occur in co-
incidence (e.g. less than a nanosecond apart), they are assumed to come
from the same decay. The position of this decay can now be traced back
to the line of response (LOR) between the two detector positions. In
this way, the tracer distribution can be reconstructed.

Image reconstruction can happen in two ways. A first option is a
static image acquisition, creating a map of all the decays that occurred
during a fixed period of time. For example, the radiotracer is first admin-
istered intravenously to the patient, who is brought to the PET-scanner
45 minutes later. He is then scanned for 15 minutes to obtain an image
of the average distribution of the molecule. The second option is called
dynamic scanning. In this case, the tracer is administered to the patient
while already positioned in the scanner. The image acquisition starts
from the moment of injection and continues for 40–60 minutes. After-
wards, the scan is reconstructed in multiple short time frames. In this
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way, the tracer kinetics can be analysed with time-activity curves.
Most modern PET-scanners are hybrid PET/CT scanners. The CT-

component serves two purposes. Firstly, the excellent resolution offers
anatomical details which help to localise the PET signal. Furthermore,
the CT-image can be used during the PET reconstruction algorithm, as
it gives an estimate of the attenuation of the emitted photons. More
recently, hybrid PET/MRI scanners are being installed. As MRI gives
little to no information on bone structures, different techniques have to
be used for attenuation correction [118, 119].

The radiotracer principle

The radiotracer principle was invented in 1913 by George de Hevesy,
for which he received a Nobel Prize in 1943 [120]. The use of radioac-
tive tracers must fulfil two properties [121]. First of all, the unaltered
molecule and the radioactive version should be undistinguishable for
the body, such that they follow the same physiological processes. The
concentration of radioactive molecules should also be low enough (typi-
cally nanomolar amounts) not to alter the normal biology. Secondly, it
should be feasible to detect the radiation emitted by the radiotracer and
thereby report on the properties of the system. Since PET has a very
high sensitivity, it is ideally suited to image metabolic processes in vivo.

Radiotracers in neuro-oncology

Many different radiotracers can be used to image brain tumours. In the
discussion below, we limit ourselves to the three main molecules, and
briefly mention some of the other options.

2-deoxy-2-(18F)fluoro-d-glucose (18F-FDG) is a glucose analog
where one hydroxyl group is replaced with a radioactive 18F atom. Since
malignant tumours show an increased glucose metabolism, 18F-FDG is
the most commonly used radiotracer in oncology. In the healthy brain,
18F-FDG shows a high uptake in grey matter, showing the metabolic
demands of neurons and glial cells. It therefore does not show specific
uptake in brain tumour tissue, and interpreting an 18F-FDG PET scan
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Figure 2.17: Representative images of PET scans with different
radiotracers. Parts A-B-C-D belong to one patient, parts E-F-
G to another. Both patients are diagnosed with a glioblastoma,
IDH-wildtype. A&E: FLAIR MRI; B&F: T1ce MRI; C: 18F-FDG
PET, acquired approximately 3 weeks before MRI; D: 18F-FET
PET, acquired approximately 3 weeks after MRI; G: 18F-cho PET,
acquired 1 week after MRI.

without knowledge of the tumour location, e.g. using an MRI scan, is
very difficult (see figure 2.17c).

O-(2-[18F]fluoroethyl)-l-tyrosine (18F-FET) is a radiolabeled
amino acid tracer and the most commonly used PET tracer in brain tu-
mours. Malignant tumours use amino acids for energy, protein synthesis
and cell division [122]. A clear advantage of 18F-FET is that healthy
brain tissue shows a low uptake, whereas the vast majority of high-
grade glioma show an increased 18F-FET uptake (see figure 2.17d). The
sensitivity to detect these tumours is therefore very high. The EANO
recommends using 18F-FET over 18F-FDG when assessing patients with
a newly diagnosed brain tumour [123]. Moreover, the kinetic behaviour
of this tracer offers additional information, and it can therefore be used
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to differentiate between recurrent or progressive glioma from treatment-
related nonneoplastic changes with higher accuracy than conventional
MRI [124, 125, 126].

18F-fluoromethyl-choline (18F-cho) is a radiolabeled version of
choline, an important molecule involved in cell membrane synthesis. In
cancer, there is an increase in the cellular transport and phosphoryla-
tion of choline, resulting in an increased uptake of 18F-cho. This tracer
therefore offers an excellent discrimination between tumour and healthy
tissue (see figure 2.17g). However, there are also some drawbacks, such
as the very fast kinetic behaviour, and the fact that the uptake of 18F-cho
is influenced by BBB damage and inflammation [127].

Others Apart from the previously mentioned radiotracers, others are
being used in neuro-oncology as well. A detailed discussion of these trac-
ers is beyond the scope of this thesis, but we briefly mention some of
them here. 11C-methionine is an amino-acid tracer, yielding similar im-
ages as 18F-FET [128]. However, due to the longer half-life (109 minutes
for 18F versus 20 minutes for 11C), 18F-FET is often preferred. 18F-
fluoro-L-phenylalanine (18F-DOPA) is also an amino-acid tracer, but
in contrast to 18F-FET, it shows a high uptake in the healthy stria-
tum [129]. Hypoxia, a shortage of oxygen in tissue, is a typical fea-
ture of aggressive tumours. There exist several PET hypoxia radiotrac-
ers, such as 18F-fluoromisonidazole (18F-MISO) or 18F-fluoroazomycin
arabinoside (18F-FAZA). 18F-fluorothymidine (18F-FLT) assesses DNA-
synthesis and therefore tumour proliferation. Lastly, the 18-kDa mito-
chondrial translocator protein (TSPO) is overexpressed in glioma. Spe-
cific TSPO-radiotracers are therefore being proposed, such as 18F-GE-
180 [130], but the discrimination between tumour and inflammatory
processes using this radiotracer is to be examined.

2.4 Radiomics

Technological improvements in the last decades have optimised the qual-
ity of medical images for visual inspection. However, as stated by Gillies
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et al., “images are more than pictures, they are data” [131]. Conse-
quently, there might be a lot of information in scans that is difficult
to assess with the bare eye. Examples are detecting changes in tu-
mour volume and structure on subsequent scans of the same patient,
or analysing a large database of scans of different patients, and looking
for correlations between imaging findings and tumour phenotype. The
recently developed technique radiomics can offer help for these applica-
tions. Possible definitions are given below.

Radiomics

• high-throughput extraction of quantitative imaging features with
the intent of creating mineable databases from radiological images
[132]

• the automated quantification of the radiographic phenotype [133].

In other words: by transferring qualitative 2D or 3D images into large
vectors of quantitative features, the scans can be analysed by dedicated
computer algorithms, which makes it possible to assess large databases.
By doing this, hidden correlations between abstract features and tumour
biology have been uncovered, paving the way for precision medicine.
This means that by examining large groups, patients can be divided into
clusters with similar quantitative image feature profiles, often called the
radiomics signature. Ideally, these clusters correlate well with one or
more biological outcome parameters, such as tumour type, treatment
response, or survival. Recently, the associations between image-based
phenotype data with genomic patterns are being investigated as well.
This will give insight in how biological processes are reflected in the
image, a technique called radiogenomics [134, 135].

All malignant tumours exhibit intra-tumour heterogeneity, caused
by variations in cellularity, angiogenesis, extracellular matrix and necro-
sis. High intra-tumour heterogeneity plays an important role in tumour
behaviour, treatment response and drug resistance [136]. Because of lim-
ited spatial resolution, none of the available imaging modalities is close
to displaying microscopic substructures in tumour tissue. However, the
underlying hypothesis of radiomics is that microscopical or even genetic
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heterogeneity is translated into macroscopic heterogeneity assessed on
medical images [137]. Although not necessarily visually observable, this
might be discovered by calculating complex texture features. In this
way, medical imaging makes it possible to quantify the heterogeneity
of the entire tumour as a whole. In contrast, histological and genetic
analysis is usually performed on very small tumour samples, such that
small zones of distinctly different tissue might be missed.

As imaging is non-invasive, it can be often repeated for treatment
monitoring. On every follow-up scan, changes in the tumour pheno-
type can be quantified. In this way, treatment response can be assessed
early, and with minimal cost and burden to the patient. In conclusion,
radiomics can offer a non-invasive and presurgical tool towards an au-
tomated diagnosis, prediction of therapy outcome and early treatment
response monitoring.

2.4.1 Principle

The workflow of radiomics consists of four steps, illustrated in figure
2.18. These steps will now be further discussed.

Figure 2.18: The workflow of radiomics.

Imaging

The first step of radiomics is the acquisition of high-quality medical im-
ages. Depending on the application, different modalities such as CT,
MRI and PET can be taken into account. Standard clinical imaging
protocols are preferred, as this allows to obtain large datasets. Conse-
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quently, many hospitals already own a wealth of data that can be used
for radiomics analyses.

Segmentation

In the second step, the macroscopic tumour volume is defined on the
images. This can be done manually by an experienced radiologist, or
using a (semi-)automatic segmentation algorithm. Also different tumour
masks per patient might be used, e.g. to analyse different tissues within
the same tumour. This will be the topic of chapter 4.

Feature extraction

In the third step, the previously defined tumour masks are used to ex-
tract many (typically more than 200) quantitative features. These fea-
tures involve descriptors of the intensity distribution (by analysing the
histogram), of the heterogeneity and spatial relationships between inten-
sity levels (texture analysis) or of the tumour volume and shape. This
list can even further be complemented by including spatial frequency
patterns discovered with wavelet analysis or by looking for relations
between the tumour and the surrounding tissues. Feature extraction
algorithms will be discussed in chapter 3.

Analysis

The last step of the radiomics workflow is the analysis of the extracted
features. This mostly starts with removing the noisy or redundant fea-
tures. Usually, the goal is to select a minimal dataset of highly predic-
tive features. This will of course depend on the specific task one seeks
to perform. Examples are: classifying tumours into different classes,
predicting therapy respons and survival, or early treatment response
monitoring. Several machine learning algorithms can be used for fea-
ture analysis, as will be discussed in section 2.5.

2.4.2 Challenges

There are several issues that should be taken into account when per-
forming a radiomics study. We list some challenges involved with every
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step below.

Imaging

Many image properties influence the extracted features. It is therefore
very important to obtain standardised imaging protocols when compar-
ing different scans. However, different vendors have optimised their own
scanning parameters, which results in different image qualities. For all
imaging modalities, properties such as slice thickness, resolution, con-
trast and noise can vary significantly. For CT and PET, the intensity
is expressed in normalised units, being Houndsfield unit (HU) and stan-
dardised uptake value (SUV) respectively. Even then, the observed value
might depend on the reconstruction algorithm [132]. For MRI, the image
intensities strongly depend on a complex interplay of tissue properties
and acquisition parameters. Conventional MRI image signal intensities
are therefore very hard to interpret in a quantitative manner.

When performing a radiomics study, standardised acquisition proto-
cols (reconstruction, resolution, acquisition parameters) should be pre-
ferred. When data from different sources are used, it is good practice to
normalise the images both spatially (common voxel size) and intensity-
wise. In this thesis, we will apply the white-stripe normalisation method
for MRI, where intensities are normalised to the normal-appearing white
matter (NAWM) [138]. Furthermore, one can expect that large numbers
of images may be able to overcome some of the heterogeneities inherently
present in clinical imaging.

Segmentation

Since the extracted features are based on the tumour masks, the segmen-
tation step is crucial in the radiomics process. Depending on the specific
task, both manual or (semi-)automatic approaches are possible. How-
ever, the goal is to find accurate and reproducible tumour boundaries
in a time-efficient way. Manual segmentation performed by experienced
readers suffers from high inter- and intra-reader variability and is very
time- and labour-intensive. For large databases, this approach might
therefore be infeasible.
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(Semi-)automatic segmentation algorithms should be carefully tested
for their accuracy, reproducibility and consistency. To this end, they are
often compared to manual performance, which is variable, as mentioned
before. Obtaining a gold-standard segmentation mask can therefore only
be obtained with “virtual” tumours, where scans of healthy subjects
are manipulated to mimic tumour structures. These techniques how-
ever often underestimate realistic tumour complexity, leading to over-
optimistic segmentation performances [139]. Assessing accuracy is there-
fore difficult, and reproducibility and consistency might be more impor-
tant properties of a good segmentation algorithm. To accomplish this,
user-interference should be minimised.

Feature extraction

The third step consists of extracting a large number of features. Most
researchers limit themselves to features based on histogram, texture or
shape analysis. This list could in theory be expanded unlimitedly. One
should however keep in mind that models based on features with an
intuitive meaning are easier to explain, and therefore more accepted
in a clinical setting. When different segmentation masks are available,
robustness of the features should also be tested for. For the sake of
reproducibility, the exact definition of all features should be given, since
multiple names are being given to the same feature, and conversely,
features with the same name are sometimes calculated in a different
way.

Feature analysis

In many cases, the number of extracted features is higher than the
amount of samples in a particular study. This increases the probability
of overfitting the data, meaning that models are less able to distinguish
the important relations in the data from the noise. Moreover, many
features will inherently contain the same data and are consequently re-
dundant. Dimensionality reduction and selection of task-specific features
are therefore important requirements before modelling the relations with
the biological parameters. Machine learning models should always be
thoroughly validated, as will be discussed later on.
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2.4.3 Applications

The main application of radiomics lies in oncology, although other ar-
eas such as pneumonitis [140] or neurological disorders [141, 142, 143]
are possible as well. In 2014, Hugo Aerts and colleagues published the
first study using the radiomics workflow in Nature Communications
[144]. The results were groundbreaking, in the sense that they built
a model based on the analysis of CT scans from non-small cell lung can-
cer (NSCLC) patients, and applied this model successfully to head and
neck (H&N) tumour patients. In total, 1019 subjects were included, and
for every patient 440 features were calculated. In a first step, unsuper-
vised clustering (see section 2.5.3) was applied on the raw features of
the training set, consisting of 422 patients with NSCLC. This clustering
was associated with primary stage, overall stage and histology.

In the second part, test/retest and multiple delineation was used
to identify robust features in a subset of 31 and 21 patients, respec-
tively. Next, the previously mentioned training set was used to select
four features as radiomics signature. These include the best features
from histogram, texture, shape and wavelet analysis. The weights of
the signature were optimised in a Cox proportional hazards model for
survival. Based on this signature, two distinct survival groups were
identified in the independent NSCLC group (225 patients) and, more
surprisingly, in the 231 H&N patients. Furthermore, significant asso-
ciations between signature features and gene-expression patterns were
found in a group of 89 H&N patients.

Ever since, the number of radiomics-based publications has sky-
rocketed, as illustrated in figure 2.19a. The technique is being used
in a broad range of pathologies, see figure 2.19b.

2.4.4 Radiomics in primary brain tumours

Techniques from radiomics are being used for a number of different tasks
in neuro-oncology. The discussion below gives examples of different ap-
plications, based on the review paper from Zhou et al. [145]. A more
detailed review on the current state-of-the-art in literature will be given
in the following chapters.
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Figure 2.19: Literature study on Web of Science, articles on
radiomics.

Glioma subtype classification

A first application of radiomics in neuro-oncology is the automated clas-
sification of brain tumours according to their grade and/or type. This is
mostly done in a binary fashion, where a computer model tries to distin-
guish between two classes, e.g. low-grade versus high-grade glioma, or
metastases versus glioblastoma. However, PBTs can be subdivided into
more than hundred different classes, meaning that automated classifica-
tion is inherently a multiclass problem. This can be solved in several
ways: either by combining binary classifiers, or by building a multiclass
predictor able to give the probabilities for all classes that are taken into
account. Since enough samples per class are needed, most studies are
limited to a small number (typically less than 10) of classes. In chap-
ter 3, the automated discrimination between lower-grade glioma and
glioblastoma, a binary problem, will be discussed. In chapters 5 and 6,
the multiclass problem will be tackled.

Therapy prediction and survival estimation

Medical scans might contain information that can predict therapy re-
sponse and survival. An example is a study from 2017 by Zhou et al.
[146], where imaging findings could distinguish between glioblastoma pa-
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tients with short-term and long-term survival chances. Similarly, several
studies were performed to predict the treatment response to antiangio-
genic therapy with bevacizumab in recurrent glioblastoma [147, 148].

Prediction of molecular markers

As the WHO 2016 classification scheme of CNS tumours is both based
on histological and molecular parameters, non-invasive determination
of these genetic and molecular features could give an early diagnosis
of the tumour type. Examples are determining the 1p/19q codeletion
status [149, 150, 151], IDH-status [152, 151, 153] or MGMT promotor
methylation in glioblastoma [154, 155].

Discriminating radiation necrosis from tumour recurrence

Amajor difficulty in neuro-oncology is the differentiation between radiation-
induced necrosis from true recurrence of the tumour. Traditional visual
inspection of the contrast enhancement on MRI is in most cases not
sufficient to discriminate between these phenomena, but quantitative
radiomics features have shown to be helpful [156, 157, 158].

2.5 Machine learning

The last step of radiomics consists of modelling the extracted features
in a model able to detect relations in the data or predict biological
parameters for unseen patients, a task where machine learning (ML) is
perfectly suited for. ML is a set of statistical techniques designed to learn
from data without the underlying relations being explicitly programmed,
and to use the newly gained knowledge to make predictions about unseen
data.

There are several types of machine learning. In supervised learning,
for all samples in the dataset both the input features and the output
labels are known. The goal is then to find relations between the data
and the labels. In contrast, in unsupervised learning the output labels
are unknown or hidden to the computer. In this case, the task is to find
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structure or clusters in the data. A variation on these methods is semi-
supervised learning, where only a (small) part of the samples is labelled.
Finally, reinforcement learning is based on trial-and-error. In this way,
a computer can for example be taught how to win a game without being
instructed on the best strategies.

Furthermore, all ML problems can be divided into two categories:
regression or classification. In regression problems, the output label is a
continuous variable (e.g. height in centimetres, percentage decrease of
tumour volume, ...), while in classification tasks, the output consists of
a limited and discrete number of classes (e.g. benign versus malignant,
mutated or wildtype, tumour grade I-IV, ...).

In the next section, we will briefly explain the important concepts
of generalisation. This will be followed by a discussion on some of the
techniques used in this thesis.

2.5.1 Principle of generalisation

Consider the following example: assume we planted 30 trees in a period
of ten years. Now, we measure the tree height, plotted in figure 2.20a.
This information can be used to predict how tall a new tree will become.
The easiest model we can think of, is assuming that all trees have the
same height, e.g. the average of the measurements (model 1 in figure
2.20a). This model clearly does not explain all the observed variation
in the data, and we say that the bias of the model is too high, also
called underfitting. In a second attempt, we assume a linear dependency
between the height and age of the tree (model 2 in figure 2.20a), a so-
called linear regression problem:

height = α+ β × age .

The parameters α and β can be estimated from the data. The most
popular way to do this is by minimising the summed square of the resid-
uals (i.e. the difference between the measurements and the predicted
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Figure 2.20: Machine learning: example and concept of general-
isation.

values):

α̂ = height− β̂ × age

β̂ =
∑30

i=1(agei − age)(heighti − height)∑30
i=1(agei − age)2

with α̂ and β̂ the estimated parameters of the model, and age and height
the average age and height. We clearly see that linear regression achieves
a good prediction of the measurements, and we say that this model gen-
eralises well for this problem. Therefore, generalisation can be described
as the ability to correctly predict the output values of new, unseen data.

However, we could think of more complex than linear functions to
model the influence of tree age. Moreover, other parameters could de-
termine the height as well, e.g. type of soil, amount of water, amount of
light, ... . These parameters can be taken into account in the model to
achieve even better prediction accuracies. When adding enough features
to the model, it will be possible to explain all variation in the training
set and in this way reduce the residual error to zero (model 3 in figure
2.20a). But assume that in our limited dataset trees that were planted
on a Tuesday incidentally happen to be a bit taller than trees planted
on a different day. Incorporating the day of the week into the model will
therefore result in a reduced training error. However, we do not expect
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that this trend will be true in general. The higher level of complexity
in the model will therefore lead to an increased error when predicting
an unseen sample. We say that the variance is too high, also called
overfitting.

For every ML-based problem, it is important to estimate the optimal
model complexity (bias-variance tradeoff), illustrated in figure 2.20b.
Since we can only use the training set to optimise the model, it is difficult
to gauge the generalisation capacity to unseen data. A technique to
solve this issue, is called cross-validation. For example, in five-fold cross-
validation the data is distributed into five equal parts. Four parts are
used for training the model, which is validated on the remaining dataset.
This experiment is repeated five times as each part is left out once.
The average error over the validation sets is then obtained and used to
optimise the model parameters. After training the optimal model, its
performance should be validated on an independent test set that was
not involved in the training process.

In the remainder of this chapter, we will introduce some machine
learning techniques that will be used in the following studies. We will
focus on classification problems, starting with some supervised learning
methods.

2.5.2 Supervised learning

As mentioned before, in supervised learning we have obtained a training
set with known output labels. Many different algorithms exist to model
the relations between input features and output labels, but we limit our-
selves here to three techniques: support vector machine (SVM), random
forests (RF) and artificial neural network (ANN). We will also briefly
discuss a special class of ANNs, namely convolutional neural networks
(CNNs), a type of deep learning.

Support vector machine

Suppose we have two classes that are linearly separable. This means
that we can find a hyperplane such that all points of the first class
lie on one side of the hyperplane, and all points of the second class
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on the other side. The goal of a support vector machine (SVM) is to
find the hyperplane that maximises the distance (or margin) between
said hyperplane and the points that lie closest to it, called the support
vectors. This is illustrated in figure 2.21. When evaluating an unseen
sample, we only need to calculate on which side of the hyperplane it
resides.

𝑥
2

𝑥1

Figure 2.21: Example of a support vector machine.

When the data are not separable, it is impossible to find a hard mar-
gin as before, and the goal is therefore to find a soft margin between the
two classes. In this case, SVM will look for a hyperplane that separates
many, but not all data points. Moreover, some classes are not linearly
separable, but can be distinguished when using another separation cri-
terion. This is the motivation behind using the kernel method. In this
case, the data points are mapped into a feature space using a nonlinear
function, followed by the previously explained linear algorithm. Popular
kernels are multinomial functions, or the Gaussian kernel (radial basis
function).

SVMs are designed as binary classifiers, discriminating between two
classes. They can however be used for multi-class problems as well, by
combining several one-vs-all models. The computational cost of an SVM
rises quadratically with the number of training samples. Therefore, it
might not be the ideal technique for very large datasets.

Random forests

Random forests (RF) is a bagging (bootstrap aggregating) technique.
This means that an ensemble of weak learners, in this case decision
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trees, is trained, where every learner sees only a subset of the available
training data. In this way, noisy and unbiased models are averaged to
decrease the variance of the final model. The method is invented by
Breiman [159] in 2001, and is illustrated in figure 2.22.

…

Output class

Random sampling

class A class B class A

Input

Majority voting

N

Figure 2.22: Principle of random forests.

First, a random subset of samples is selected to train a decision tree.
This is a structure with a series of nodes, starting with the root node
which receives the chosen subset of training samples. In a node, the data
are split up in two parts according to a certain test, e.g. if x2 < 5 follow
the left branch, else follow the right branch. Which question is asked at
a specific node is determined by the information gain, meaning that all
possible decisions are tried, and the decision yielding the best discrimi-
nation between different classes is chosen. To increase the randomness,
only a random subset of features is considered at every node. In this
way, the entire tree is built until no further splits are possible. This last
node becomes a leaf with a corresponding output class. Several stopping
criteria can be applied as well to abort growing of the tree. Examples are
a maximum number of layers, or similarly a minimal number of samples
per leaf. A fully-grown tree can also be pruned, meaning that irrele-
vant branches can be cut off. This process is repeated to build a high
number N (typically more than one hundred up to several thousands)
of classification trees, forming the forest.

When predicting an unseen sample, every tree in the forest is evalu-
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ated from root to leaf, yielding N corresponding classes. Majority voting
is then applied to decide on the final output class. Moreover, the out-
put of the N trees can also be used to estimate the probabilities of the
output classes.

There are a number of advantages related to random forests. First
of all, in contrast to SVM, which is inherently designed for binary prob-
lems, random forests handle multi-class datasets very well. Furthermore,
because many decision trees that are trained on subsets of the data are
combined, random forests do not have the tendency to overfit, even when
using many features. Random forests can also be visually inspected to
learn on which properties a certain decision is based. This is of course
harder when building large and complex forests. Lastly, random forests
can be used to estimate the predictor importance. This will be explained
in section 3.4.1.

Artficial neural networks

At the core of many applications in AI is an artificial neural network
(ANN), illustrated in figure 2.23. The principle is based on the human
neural network, where neurons are communicating with each other by
transmitting signals over the axons and synapses. Similarly, an ANN
consists of a set of connected nodes called neurons that are organised
in layers. Starting from the input layer, every neuron receives signals
from neurons in the previous layer. These signals are weighted differ-
ently and added up, before being processed in a non-linear way using
an activation function. The resulting value is then forwarded to the
next neuron. During the training phase, the weights are optimised us-
ing back-propagation. Different layers typically perform different tasks.
In the last layer, the output is given, such as the corresponding class
label in classification tasks, or an estimate of the outcome in regression
problems.

Since the use of ANNs is limited in this thesis, we will not go further
into detail in the underlying mechanisms. However, a very interesting
application of ANNs is discussed in the next section.
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input layer hidden layers output layer

Figure 2.23: Principle of artificial neural networks. In this exam-
ple, the fully-connected network consists of three input nodes, two
hidden layers each comprising four nodes, and a output layer with
two nodes.

Deep learning

When the number of hidden layers in a neural network becomes very
large, we speak of a deep neural network or deep learning. This has many
applications, such as natural language processing, but it is most widely
used in computer vision, where the machine is trying to understand the
content of digital images. A convolutional neural network (CNN) is
highly suitable for this task. The input of this network is not comprised
of individual features, but of a 2D or 3D image. This image is passed
through a series of layers, mostly starting with a convolutional layer
(hence the name). Here, a set of filters or convolutions are applied to
the image. Next, pooling layers reduce the dimensions of the image and
fully connected layers apply non-linear operations on the input from
previous layers, like normal ANNs. In this way, different layers will
correspond to different levels of abstraction of the images: starting with
the original image, the first layers will for example focus on edges, that
are combined in following layers into different shapes (e.g. noses, ears or
tails) resulting in object recognition (e.g. cats or dogs) in the last layers.
An important difference with the traditional ANN is that features do not
need to be hand-engineered, as the network learns the optimal features
for a specific task.

An example of a CNN is given in figure 2.24. This is the famous
AlexNet architecture by Alex Krizhevsky et al. [160]. This network won
the ImageNet Large Scale Visual Recognition Challenge in 2012 with a
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margin exceeding 10% over its competitors. The goal of this challenge
is to classify a large number of natural images. Currently, the datasets
consists of over 14 million pictures, labelled into more than 21000 classes.
In 2015, teams from both Microsoft [161] and Google [162] outperformed
the human error rate of 5.1% using a CNN. Therefore, the applications
of CNNs in medical imaging has gained a lot of attention, both for
classification and segmentation tasks. However, because deep neural
networks are in general very complex with many weights to optimise,
a very large dataset (typically several tens of thousands) of labelled
images needs to be available during the training phase. This also requires
specific computational hardware such as powerful graphics processing
units (GPUs).

Figure 2.24: Illustration of the famous AlexNet CNN architecture
[160].

2.5.3 Unsupervised learning

Labelling a large dataset is often a very expensive task. When sample
labels are not available, we can still look for certain structures in the data
using unsupervised methods. These are mainly clustering techniques,
trying to separate the data into different classes. The main difficulties
are that the number of classes is in general not known, and that a
sample can belong to more than one class. Two clustering techniques
will be discussed in the last section of this introduction, starting from
the following example. Consider the dataset of figure 2.25, where two
features (x1 and x2) are measured for 1080 samples. By observing the
data, or from background knowledge about the experiment, we assume
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that there are three distinct clusters.
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Figure 2.25: Example dataset for unsupervised learning. Two
values x1 and x2 are measured for 1080 samples. We assume that
the data can be divided into three clusters.

k-means clustering

The k-means algorithm was proposed by MacQueen et al. [163] and gives
an easy solution to dividing data into clusters with similar properties. It
is an iterative algorithm, starting with an initial guess of cluster centres
(e.g. random seeds). Next, all points are assigned to the cluster with the
nearest centre, after which the centre is updated to the centroid of the
newly chosen cluster points. This process is repeated until convergence.
The result on the example dataset is displayed in figure 2.26a.

Gaussian mixture model

When fitting a Gaussian mixture model (GMM) to a dataset, we as-
sume that every sample belongs to one of k clusters and every cluster is
defined by a multivariate normal distribution with a specific mean and
covariance matrix. The sample label, as well as the cluster parameters
are unknown or latent. Methods such as the Expectation Maximisation
algorithm can be used to estimate the cluster parameters. Here, we ini-
tialise the clusters by assigning a class to every point, either randomly
or using an easy algorithm such as k-means. Next, we calculate the
cluster mean and covariance matrix and determine for every point the
probability to belong to all classes given the current estimates of the
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(b) Gaussian mixture model

Figure 2.26: Results obtained on example dataset with two dif-
ferent unsupervised learning techniques.

class parameters (the E-step). Finally, we assign the class with maxi-
mal probability to the data (the M -step). This process is repeated until
convergence. The resulting clustering on the example data is given in
figure 2.26b.

The unsupervised learning techniques are here illustrated in two di-
mensions, but this can of course be generalised to higher dimensions. An
issue with both k-means clustering and GMM is that they do not always
generate a unique solution, as they depend on the (random) initialisation
of the process.
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Radiomics using manual

tumour delineation

In this chapter, we will discuss the important binary problem of dis-
tinguishing lower-grade gliomas (astrocytoma and oligodendroglioma,
WHO grade II or III) from glioblastomas. Tumour grade has both prog-
nostic and therapeutic consequences. We will investigate a non-invasive
method using the radiomics workflow on an online dataset where a man-
ual tumour delineation is provided. This will give insights in feature
selection, dimensionality reduction and classification. These techniques
will then be used in the more complex problems that will be tackled in
the following chapters.

Parts of this work have been presented during the 2016 Medical
Imaging Summer School [164] and the 2016 EANO meeting [165].

3.1 The importance of primary brain tu-
mour grading

As mentioned in the introduction, primary brain tumour grading has im-
portant therapeutic consequences. For glioblastomas, surgical resection
followed by combined chemotherapy according to the so called “Stupp
protocol” (6 weeks of radiotherapy for 60 Gy in total + temozolomide
both during and post-radiotherapy) [166] is the current standard-of-care,
with the only exception of patients older than 70 with a negative MGMT
promotor methylation status, where surgery plus radiotherapy alone is
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recommended by the EANO [83]. These patients might also benefit
from a 3-week shortened course of combined chemoradiation, although
this debate is still ongoing [167].

For lower-grade gliomas (WHO grade II and III), different treatment
options according to the histopathologic and molecular profile of the tu-
mours should be considered, as illustrated in figure 3.1. For suspected
low-grade (WHO grade II) tumours with limited clinical complaints for
the patient, a watch-and-wait strategy can be taken into account. In
this case, the surgical resection can be delayed until signs of tumour
growth or enhancement on follow-up imaging, without limiting the over-
all survival (OS) [81]. However, one should take into account that dif-
fuse low-grade glioma are slowly growing and invasive. Therefore, early
and maximal surgical resection using advanced techniques (functional
mapping-guided resection) is currently the gold-standard to preserve or
even improve the quality of life [168, 169].

Figure 3.1: Therapeutic approaches for diffuse glioma according
to the EANO guidelines. Reprinted from [83], Copyright (2017),
with permission from Elsevier.
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Visual assessment of tumour grade on MRI scans is a very challenging
task. High-grade tumours are mostly associated with contrast enhance-
ment on T1ce images, but this is not a perfect predictor, since approxi-
mately one third of all nonenhancing gliomas are malignant [170, 171].
Conversely, low-grade gliomas show contrast enhancement in about one
out of six cases [172]. This number is expected to be even higher in
low-grade oligodendrogliomas [173, 174].

Therefore, in clinical practice the diagnosis is always based on anal-
ysis of tumour fragments obtained during biopsy or resection. However,
this might not be possible for patients refusing a surgical procedure,
when other medical comorbidities obstruct anaesthesia or when the tu-
mour can not be reached without harming the normal functioning of the
patient. Moreover, a biopsy suffers from sampling bias, where analysing
small fragments of a heterogeneous tumour might lead to an underes-
timation of the tumour aggressiveness. Compared to a wait-and-scan
procedure, biopsy is also related to a reduced OS [81].

For these reasons, non-invasive PBT grading based on medical imag-
ing has gained a lot of attention. Some recent studies on automated
brain tumour grading are listed in table 3.1.

Table 3.1: Overview of recent studies on automated brain tumour
grading.

author task images method result
Zacharaki
(2009) [175]

distinguishing grade II
(n=22), grade III (n=18)
and grade IV (n=34) gliomas

T1, T1ce, T2,
FLAIR, DSC
rCBV

linear
discriminant
analysis,
k-nearest
neighbour, SVM

sensitivities:
90.9% (grade II),
33.3% (grade
III), 41.2%
(grade IV)

Zöllner
(2012) [176]

low-grade (n=38) vs
high-grade (n=63) gliomas

DSC rCBV SVM 87% accuracy

Skogen
(2016) [177]

distinguishing grade II
(n=27), grade III (n=34)
and grade IV (n=34) gliomas

T1ce ROC analysis on
individual
features

AUC=0.91 (LGG
vs HGG);
AUC=0.84 (II vs
III), AUC=0.73
(III vs IV)

Hsieh (2017)
[178]

lower-grade gliomas (n=73)
vs glioblastomas (n=34)

T1ce logistic regression 88% accuracy

Zhou (2017)
[151]

grade II (n=35) vs grade III
(n=49) gliomas

T1, T1ce, T2,
FLAIR

logistic
regression,
random forests

AUC=0.86

Zacharaki et al. [175] designed a multiclass machine learning model
to discriminate between five tumour classes, among which 22 grade II,
18 grade III and 34 grade IV gliomas. They extracted 161 quantitative
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features from three manually drawn region-of-interests (ROIs) on five
different MRI sequences. Using binary SVMs, they achieved accuracies
of 75.0% (grade II versus grade III), 96.4% (grade II versus grade IV)
and 90.4% (grade III versus grade IV). Afterwards, the binary models
were combined into a multiclass scheme with excellent sensitivity for
low-grade gliomas (90.9%), but lower sensitivities for high-grade gliomas
(33.3% and 41.2% for grade III and grade IV gliomas, respectively).

Zöllner et al. [176] used a binary SVM classifier to distinguish be-
tween low-grade and high-grade gliomas. As input to the model, the
histogram of the relative cerebral blood volume (rCBV) map was used.
This yielded an accuracy of 87%.

Skogen et al. [177] extracted texture parameters on different spa-
tial scales from T1ce images and tested these using receiver operating
characteristic (ROC) curves. Their approach reached an area under the
curve (AUC) of 0.910 to discriminate low-grade from high-grade gliomas,
and lower values to identify individual grades.

Hsieh et al. [178] selected two-dimensional slices of T1ce images.
Twenty texture features per scan were fed to a binary logistic regression
classifier, achieving an accuracy of 88% in distinguishing between lower-
grade gliomas and glioblastomas. Interestingly, this system was used
in a follow-up study [179] where three radiologists were asked to grade
the same images. Without help from the computer, they independently
achieved accuracies of 72%, 73% and 74%. Subsequently, the computer
prediction was revealed to them and the radiologists were allowed to
revise their decision. This resulted in an improved accuracy with 4% to
9%. Nonetheless, the CAD system outperformed the manual diagnosis.

Zhou et al. [151] investigated radiomics features and machine learn-
ing algorithms for a number of tasks, among which grading of lower-
grade gliomas. They achieved an AUC score of 0.86.

In the remainder of this chapter, a similar approach as the previously
mentioned studies will be followed. Based on the central problem of
distinguishing lower-grade gliomas from glioblastomas, we will explain
in more detail the different steps of the radiomics workflow. The main
focus will be on different feature extraction, dimensionality reduction
and classification methods. This will be done on the publicly available
BraTS 2017 dataset.
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3.2 The multimodel BraTS challenge

3.2.1 Purpose

The brain tumour segmentation (BraTS) challenge [139, 180] is an an-
nual competition organised since 2012. The goal is to bring together and
harmonise the research being conducted on automated brain tumour seg-
mentation on medical images. This field has known a large variability
in technical approaches, each time optimised on a specific patient pop-
ulation with its particular imaging characteristics, making it very hard
to compare different methods. Therefore, the organisation of the BraTS
competition has released several large datasets of preoperative glioma
MRI images. Chapter 4 will focus on the actual segmentation problem,
for now we will only focus on the data.

3.2.2 Data

The most recent version of the BraTS dataset, edition 2017, consists of
MRI scans of 75 lower-grade glioma and 210 glioblastoma patients. For
every patient, four sequences are provided: T1, T1ce, T2 and FLAIR.
The data are obtained in 19 different clinical centres, on different imag-
ing systems and with variable imaging parameters. All scans are co-
registered to the T1ce scan and resampled to a uniform 1mm× 1mm×
1mm voxel size with linear interpolation. They are also skull-stripped,
meaning that only the brain area is visible on the images. Moreover,
for every patient gold standard segmentation labels are provided, as
illustrated in figure 3.2.

In the 2012 edition of the competition, contenders only needed to
delineate the tumour core and surrounding oedema. From 2013 on,
more detailed gold standard labels were given in the training data. To
obtain these, four radiographers manually outlined different structures
on the scans and the corresponding labels are:

1 necrotic or fluid-filled core

2 oedema
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(a) T1 (b) T1ce (c) T2

(d) FLAIR (e) gold standard (2013) (f) gold standard (2017)

Figure 3.2: Example of a high-grade glioma in the BraTS dataset.
For every patient, four MRI sequences are given, as well as gold
standard segmentation labels. Colour code: blue = necrosis
(2013) or necrosis + non-enhancing tumour (2017); yellow = non-
enhancing tumour (2013); orange = enhancing tumour; green =
oedema.

3 non-enhancing or solid core

4 contrast-enhancing core

The final labels are obtained using a hierarchical majority voting scheme,
assigning a voxel to the highest class to which at least half of the
raters agree on [139]. Since 2017, the tumour core is only divided into
two parts: contrast-enhancing tumour (label 4), and necrotic and non-
enhancing tumour core (label 1). The label 2 for peritumoural oedema
remained unchanged.

As mentioned in the introduction, conventional MRI is not a quan-
titative, but a qualitative imaging modality. Therefore, some prepro-
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cessing techniques need to be applied before we can extract quantitative
features.

3.2.3 Preprocessing

In this thesis, the Multi-image Analysis GUI (MANGO, ric.uthscsa.
edu/mango) is used for visualisation of medical images. This software
is also used to convert clinical scans from the standard Digital Imaging
and Communications in Medicine (DICOM) format to Neuroimaging
Informatics Technology Initiative (NIfTI) 1-1 format [181], thereby re-
moving sensitive patient-related information in order to anonymise the
images.

Bias field correction

Small inhomogeneities in the magnetic field of the MRI scanner can
cause a slight error in the images, called the bias field. This takes the
shape of a smooth, low-frequency signal corrupting the image intensities.
These artefacts, although not usually a problem for visual inspection,
can impede automated processing of the images. Fortunately, many
methods exist to correct for this phenomenon. In this thesis, all images
are bias field corrected using SPM12 (version 6906, Wellcome Trust Cen-
tre for Neuroimaging, London) [182], running on MATLAB R2017b (The
MathWorks, Inc., Natick, MA).

Intensity normalisation

Image intensities on MRI are difficult to interpret, and highly variable
between patients and even between scans, as is clear from 3.3a. Intensity
as such can therefore not be used as a quantitative predictor, unless it
is carefully modified. In the following studies, the MRI intensities are
normalised using the white-stripe normalisation technique, developed by
Shinohara et al. [138]. For this method, we first use the segmentation
module of SPM12 to estimate tissue probability maps (TPMs) for the
grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF),
based on the T1-weighted image. Next, the largest peak in the WM
histogram is assumed to belong to the normal-appearing white matter

ric.uthscsa.edu/mango
ric.uthscsa.edu/mango
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(NAWM). The normalised intensity is then given by (I − µ)/σ, where
µ and σ are the mean and standard deviation of the intensity of the
NAWM, respectively.

As a result of this operation, the healthy white matter will have zero
mean and unit variance for all images and for all patients. The intensities
of other tissues can then be related to the intensity of the NAWM and
become interpretable in this way. This is illustrated in figure 3.3b.

(a) Before normalisation (b) After normalisation

Figure 3.3: Example of the white-stripe normalisation technique
on the histogram of five randomly selected T1ce scans from the
high-grade BraTS dataset.

Intensity discretisation

For the calculation of some texture features, the intensities of an image
need to be discretised to a limited number of values, typically a power
of 2. An additional advantage of intensity discretisation is that the
noise will be suppressed. Different techniques are possible, which cause
a slight variability in the resulting features. In this thesis, intensity
discretisation is performed using the following formula:

Idiscr =
⌈
(Ng − 1) I −min(I)

max(I)−min(I) + 1

⌉
,

where Ng is the number of grey-levels (usually 64), and I and Idiscr are
the original and discretised images, respectively.



3.3 Feature extraction 63

3.3 Feature extraction

The appearance of a tumour on an image can be quantified using a
myriad of different features, each one highlighting a different aspect of
the tumour. Here, we will only focus on four feature sets: histogram,
shape, texture, and localisation and environment features. A list of all
features and their definition is given in appendix A.

3.3.1 Histogram features

The histogram describes the intensity distribution within a ROI. Its
shape therefore contains a lot of information on the heterogeneity: a
homogeneous region (many voxels with similar grey-level) will have a
narrow shape, whereas heterogeneous tissue (many different grey-levels)
will have a broader appearance. Typical histogram features (sometimes
called first-order statistics (FOS)) are minimal, maximal, mean and me-
dian value, range, standard deviation and variance. More advanced fea-
tures include energy (sum of the squared intensities), uniformity (sum of
the squared probabilities in the normalised histogram), root mean square
(square root of the energy divided by the number of voxels), skewness
(measure of asymmetry) and kurtosis (measure for the presence of heavy
tails in the histogram).

3.3.2 Shape and size features

A second set of features is based on the size and shape of the tumour.
The easiest parameters are volume (number of voxels times voxel vol-
ume) and maximal 3D diameter (the largest distance between any two
points belonging to the tumour). Other features are based on the tu-
mour area, which is calculated by triangulating the volume surface and
summing the triangle areas. Surface to volume ratio and several vari-
ants (such as compactness = V/(

√
πA2/3)) can be used as predictors of

tumour infiltration, as smaller area to volume ratios will correspond to
more spherical tumours (e.g. low-grade meningioma). An example of a
3D-rendered high-grade tumour is given in figure 3.5.
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(a) T1ce with tumour mask (b) Corresponding histogram in different tis-
sues

Figure 3.4: Example of a T1ce scan and corresponding histogram
of a high-grade glioma from the BraTS dataset. The histogram
is calculated on the entire 3D tumour masks, not on this exam-
ple slice. Colour code: blue = necrosis + non-enhancing tumour;
orange = enhancing tumour; green = oedema; grey (on the his-
togram) = entire tumour.

Figure 3.5: 3D-rendering of the tumour of figure 3.4a, obtained
by triangulating the surface.

3.3.3 Texture features

Although the histogram contains information on the distribution of grey-
levels and therefore provides insights in tumour heterogeneity, it does
not take into account the spatial distribution of these grey-levels. A
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region with gradually increasing intensities could for example result in
a similar histogram as a very heterogeneous region. As different spatial
distributions of grey-levels can provide valuable biological information,
it is important to quantify the heterogeneity with a technique called
texture analysis. This usually starts with the calculation of different
texture matrices, which will be explained with the following four types.

Grey-level co-occurrence matrix

The use of the grey-level co-occurrence matrix (GLCM) was published
for the first time by Robert Haralick in 1973 [183]. It describes the
occurrence of pairs of specific voxel intensities: the element (i, j) of the
GLCM equals the number of times intensity j occurs at a distance d
in direction θ from intensity i. The shape of the GLCM is therefore
Ng × Ng, with Ng the number of grey-levels present in the image, for
every d and θ. This is illustrated in figure 3.6 for an 8 × 8 matrix
with five grey-levels. For two-dimensional images, the GLCM is usually
calculated for four angles (θ = 0°, 45°, 90°, 135°), while in 3D thirteen
spatial directions are customary.

1 2 1 1 3 4 5 2

3 2 4 1 2 2 3 1

1 1 1 2 3 3 5 4

4 4 1 1 2 2 5 3

2 2 1 2 2 4 3 2

5 5 5 1 2 2 3 3

4 5 2 2 2 1 1 2

4 4 2 1 1 1 1 2

(a) Example matrix

j

1 2 3 4 5

i

1 8 8 1 0 0

2 4 7 3 2 1

3 1 2 2 1 1

4 2 1 1 2 2

5 1 2 1 1 2

(b) Corresponding GLCM

Figure 3.6: Example matrix and corresponding grey-level co-
occurrence matrix (GLCM) for distance d = 1 and θ = 0°: every
element (i, j) of the GLCM depicts the number of times intensity
j occurs to the right of intensity i.

Starting from the GLCM, many different texture features can be cal-
culated. Some easy examples are contrast, which is defined by

∑
i

∑
j |i−

j|2GLCM(i, j). This feature will be large when the GLCM contains large
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values at positions far from the diagonal, or in other words, when voxels
with a large intensity difference often occur close to each other. Con-
versely, the feature homogeneity 1, defined as

∑
i

∑
j GLCM(i, j)/(1 +

|i − j|) will be large when the GLCM is mainly focussed around the
diagonal, or indeed when the region mostly contains similar grey-levels
close to each other.

Some features are based on variants of the GLCM, such as the sum
or difference matrices: px±y(k) =

∑
i

∑
j P (i, j) , |i ± j| = k, and are

therefore less intuitively clear. For a fixed distance d, every parameter
is calculated for every possible direction θ, and the mean and standard
deviation are stored as features.

Grey-level run-length matrix

The grey-level run-length matrix (GLRLM) [184] quantifies runs of grey-
levels, being consecutive voxels with the same intensity along a straight
line, in an image. In other words, every element (i, j) of the GLRLM
contains the number of times j voxels with equal intensity i are found
along a straight line defined by the angle θ. An example is given in
figure 3.7. The size of the GLRLM is Ng × Nr with Ng the number of
grey-levels and Nr the length of the longest run in direction θ.

1 2 1 1 3 4 5 2

3 2 4 1 2 2 3 1

1 1 1 2 3 3 5 4

4 4 1 1 2 2 5 3

2 2 1 2 2 4 3 2

5 5 5 1 2 2 3 3

4 5 2 2 2 1 1 2

4 4 2 1 1 1 1 2

(a) Example matrix

j

1 2 3 4

i

1 5 3 1 1

2 8 5 1 0

3 5 2 0 0

4 5 2 0 0

5 4 0 1 0

(b) Corresponding GLRLM

Figure 3.7: Example matrix and corresponding grey-level run-
length matrix (GLRLM) for θ = 0°: every element (i, j) of the
GLRLM depicts the number of runs in horizontal direction with
length j and intensity i.

Texture features based on the GLRLM are in general easily inter-
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pretable. Typical parameters emphasise the run-length of specific grey-
levels. For example, the feature short run low grey-level emphasis:

SRLGLE =
∑

i

∑
j

(
GLRLM(i,j)

i2j2

)
∑

i

∑
j GLRLM(i, j) ,

will be large when the image mainly contains short runs (small j) of low
grey-values (small i). Again, every feature is calculated for GLRLMs
defined in 4 (in 2D) or 13 (in 3D) different directions, and the mean and
standard variance are stored.

Grey-level size-zone matrix

In contrast to the GLCM and GLRLM, the grey-level size-zone matrix
(GLSZM) [185] is not dependent on a specific direction. Its definition is
similar to the GLRLM, as the element (i, j) of the GLSZM contains the
number of times a zone with size j and intensity i is found in the image,
as illustrated in figure 3.8. A zone is a cluster of connected voxels with
equal intensity. The size of the GLSZM is Ng×Nz, where Nz is the size
of the largest zone.

1 2 1 1 3 4 5 2

3 2 4 1 2 2 3 1

1 1 1 2 3 3 5 4

4 4 1 1 2 2 5 3

2 2 1 2 2 4 3 2

5 5 5 1 2 2 3 3

4 5 2 2 2 1 1 2

4 4 2 1 1 1 1 2

(a) Example matrix

j

1 2 3 4 … 6 … 10

i

1 3 0 1 0 … 2 … 0

2 3 4 0 0 … 0 … 1

3 4 1 1 0 … 0 … 0

4 4 1 1 0 … 0 … 0

5 1 1 0 1 … 0 … 0

(b) Corresponding GLCM

Figure 3.8: Example matrix and corresponding grey-level size-
zone matrix (GLSZM): the element (i, j) contains the number of
times a cluster with size j of intensity i occurs in the image.

Features based on the GLSZM have a comparable definition as those
based on the GLRLM, as they emphasise the size of zones with specific
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grey-levels. For example, the small zone low grey-level emphasis:

Szonelogl =
∑

i

∑
j

(
Szpcent2 GLSZM(i,j)

i2j2

)
∑

i

∑
j GLSZM(i, j) ,

will be large when many small zones (small j) of low intensity (small
i) are present in the image. Szpcent is here a normalisation constant,
defined by the total number of zones divided by the number of voxels.

Neighbourhood grey-tone difference matrix

The neighbourhood grey-tone difference matrix (NGTDM) [186] is a
one-dimensional vector containing information on the local differences
between intensities, which is constructed in the following way. For ev-
ery voxel, we first calculate the mean Āi of the intensities in a local
neighbourhood (excluding the voxel itself). The size of the neighbour-
hood is determined by a parameter d. Next, the element i of the
NGTDM equals the sum of the absolute difference between i and Āi

for all voxels with intensity i: NGTDM(i) =
∑
|i − Āi|. To further

clarify this, consider the example matrix of figure 3.9 and assume we
want to calculate the NGTDM for d = 1, resulting in a 3 × 3 vox-
els environment. This means that we can only use the inner matrix
with size 6× 6 for the calculation of the NGTDM, since we cannot de-
fine the environment for voxels at the edge. Inside the inner matrix,
there are three voxels with i = 4. The mean intensity of their neigh-
bourhood (the 8 adjacent voxels) is 1.375, 2.625 and 1.625. Therefore,
NGTDM(4) = |4− 1.375|+ |4− 2.625|+ |4− 1.625| = 6.375.

Typically, only four features are calculated based on the NGTDM:
coarseness, contrast, complexity and strength. For example, coarseness
is defined as:

fcos =

ε+
Ng∑
i=1

pi NGTDM(i)

−1

,

where pi is the fraction of voxels with intensity i and ε a small number
(to avoid this feature becoming infinite for a perfectly uniform image).
Coarseness can be regarded as homogeneity on a local level: when an
image is more coarse, we can expect that the difference between a voxel



3.3 Feature extraction 69

1 2 1 1 3 4 5 2

3 2 4 1 2 2 3 1

1 1 1 2 3 3 5 4

4 4 1 1 2 2 5 3

2 2 1 2 2 4 3 2

5 5 5 1 2 2 3 3

4 5 2 2 2 1 1 2

4 4 2 1 1 1 1 2

(a) Example matrix

NGTDM

i

1 9.5

2 7.5

3 2.125

4 6.375

5 9.25

(b) Corresponding NGTDM

Figure 3.9: Example matrix and corresponding neighbourhood
grey-tone difference matrix (NGTDM) for distance d = 1.

and its direct neighbourhood is small. Therefore, the contributions of
the NGTDM will be small, and fcos will be large.

3.3.4 Localisation and environment features

We can not only extract information from the isolated tumour, but also
from its environment. For example, meningiomas will always stem from
the meninges, and will therefore be mainly found near the border of
the brain rather than in central areas. Moreover, the contrast between
the intensities inside and outside the tumour can have predictive power.
Meningiomas will for example be well-defined with a distinct tumour
border, whereas glioma have a more infiltrating border, causing the in-
tensities inside and outside the tumour to be similar.

3.3.5 Construction of feature matrix

Now that we have explained all the features, we will return to our ra-
diomics problem. For every ROI, we calculate 207 features:

• 14 histogram features

• 8 shape and size features

• 185 texture features:
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– 138 GLCM-based features (d = 1, 2, 3, mean and standard
deviation over 13 directions)

– 22 GLRLM-based features (mean and standard deviation over
13 directions)

– 13 GLSZM-based features

– 12 NGTDM-based features (d = 1, 2, 3)

Moreover, for every patient, we define five tumour ROIs:

• necrosis + non-enhancing tumour (BraTS label 1)

• oedema (BraTS label 2)

• enhancing tumour (BraTS level 4)

• tumour core (BraTS labels 1 and 4)

• total abnormal region (BraTS labels 1, 2 and 4).

Finally, we calculate the features on two images per patient: the
T1ce and FLAIR scans, as these provide complementary information.
Moreover, these scans are available for most patients in the Ghent Uni-
versity Hospital, which is an important prerequisite since we will apply
this methodology to clinical scans collected in our centre in chapters 5
and 6. Therefore, we obtain 207 × 5 × 2 features, to which we add 27
localisation and environment features. In total, we have 2097 quantita-
tive features per patient. However, some features are not calculated for
all patients (not all patients have necrotic and/or contrast-enhancing
tissue). These parameters can be removed a priori. One lower-grade
patient has no oedema label in the groundtruth segmentation, and this
patient was also removed. In this way, 1908 features are remaining.
Since this number still largely exceeds the total number of patients in
the dataset (74 lower-grade glioma and 210 glioblastoma patients), we
need to reduce the number of parameters for further analysis. This is
the topic of the next section.
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3.4 Dimensionality reduction

Reducing the number of parameters is possible in roughly three ways. A
first option are feature ranking methods (paragraph 3.4.1). This means
that all features are ranked according to a certain criterion, and the top
ranked features are then simply selected to build a predictive model.
These methods are often preferred for large datasets due to their compu-
tational feasibility. However, in feature ranking methods no interactions
between different features are taken into account, which might lead to
the selection of redundant parameters.

Feature subset selection methods are designed to incorporate interac-
tions between parameters and therefore select an ideal subset of features
for a specific task. However, as typically many feature combinations need
to be analysed, this method comes with a high computational cost for
high dimensional problems. Therefore, this is often combined with a
feature ranking method to reduce the number of possible features. We
will discuss the sequential forward selection method in paragraph 3.4.2.

Lastly, feature transformation methods apply a function to a set of
features in order to obtain new parameters with higher predictive power.
A typical example is principal component analysis (PCA) (paragraph
3.4.3), where the features are transformed into orthogonal components
in decreasing order of variance. A disadvantage of this method is that
the principal components are linear combinations of the original features
and are therefore difficult to interpret.

As different features often have a strongly divergent value range, it
is difficult to compare them. Therefore, it is good practice to transform
the feature values to their standard score:

z = x− µ
σ

,

where x is the original value, and µ and σ are the mean and standard
deviation of the feature, respectively.
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3.4.1 Feature ranking methods

Many criteria can be used to obtain a ranking of the features. In the
next discussion, we will focus on three methods.

Two-sample t-test

An easy way to check if the mean of two distributions is significantly
different, is the two-sample t-test. Without loss of generality, we can as-
sume that the variance of a feature is different for lower-grade and high-
grade glioma patients, and we can therefore use Welch’s t-test by setting
the ‘variance’ setting to ‘unequal’ in MATLAB’s implementation
of the ttest2 function. This function returns a p-value for every fea-
ture, which gives the probability that the feature values are observed
under the null hypothesis that the mean of the feature distribution is
the same in both classes. In other words, a high p-value corresponds with
a lower discriminative power to separate the two classes, since there is a
higher probability that the feature mean is equal. Features are therefore
ranked according to increasing p-value.

Relief

The relief algorithm was proposed by Kira and Rendell in 1992 [187].
It is an easy and fast method which calculates weights for every feature
in an iterative way. Suppose our dataset is split up in two classes,
and initialise the weight vector ~W 0 to zero. Then we randomly pick
one sample ~x from our dataset, and select two instances, each from one
class, closest to it. The instance from the same class is called the near-hit
sample, the instance from the other class the near-miss sample. Next,
we update the weight-vector as follows:

W j+1
i = W j

i − (xi − near-hiti)2 + (xi − near-missi)2 ,

where i runs over the entire feature-space. This process is repeated m
times, where m is smaller than the number of samples. Ultimately, the
most predictive features will have the largest weights, since the distance
to near-miss samples will be larger according to this feature.
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The relieff implementation in MATLAB uses the adaptation of
the original algorithm by Kononenko et al. [188]. Instead of a quadratic
distance function, this algorithm uses the absolute difference as update
parameter. The main difference with the original algorithm is however
that not one but k nearest-miss and nearest-hit samples are selected,
where k is a tunable parameter. Moreover, the process is repeated over
all, instead of m, samples in the dataset.

OOB-error

As mentioned in the introduction, Random Forests can be used to es-
timate the predictor importance. To accomplish this, every tree is
evaluated by the samples that were not used to train this particu-
lar tree, called the out-of-bag (OOB) samples. The corresponding er-
ror (OOB-error) is then averaged over all trees in the forest. To test
the importance of the j-th feature, we permute the values of this fea-
ture over all samples and again calculate the error. Features with a
large difference between the original and the permuted OOB-error are
more important. In MATLAB, this parameter is appropriately called
OOBPermutedPredictorDeltaError, accessible via the TreeBagger
function.

3.4.2 Sequential forward selection

Sequential forward selection (SFS) is a bottom-up search strategy, mean-
ing that we start from an empty feature vector, and gradually add fea-
tures that minimise a certain cost function. In classification problems,
this is generally the misclassification error using k-fold cross-validation.
In other words: starting with the first candidate feature, we build a clas-
sification model and evaluate it with the cost function. This is repeated
for all possible features, and we select the feature that minimises the
error. Next, we build a new model with two features: the previously se-
lected one combined with a new candidate, selected from the remaining
parameter set. Again, the feature with minimal cost is selected. This
process is repeated until a certain criterion is met, such as an increasing
cost function, or when a specific number of features is selected.
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Using SFS, we make sure that only features with complementary
information are selected. However, since in every iteration k models need
to be built and validated for every feature in the remaining parameter
set, this is a computationally expensive technique. Therefore, we often
first limit the candidate feature set using a feature ranking method.

3.4.3 Principal component analysis

Suppose we have a n × p data matrix X consisting of n samples with
p features. The principal component decomposition [189] of X is then
given by:

T = X W ,

where the columns of T are the principal components. The number of
components is given by min(n, p). The first component has the largest
possible variance. Each following component has the largest possible
variance under the condition that it is orthogonal to all previous com-
ponents. Therefore, the principal components form an orthogonal basis
set. Since the first components are able to explain most of the variabil-
ity in the data, these can be used as a reduced feature set. For a new
patient, we can simply multiply the features with the values of the ith

column of W and sum them to obtain the ith principal component.
By default in MATLAB’s pca function, the algorithm is imple-

mented using singular value decomposition of X. This means the data
matrix is first decomposed as:

X = U Σ WT ,

where Σ is a rectangular diagonal matrix, and the columns of U and W
contain orthogonal unit vectors. It follows that

T = X W = U Σ WT W = U Σ .

Since the singular value decomposition of a matrix can be calculated
very efficiently, this method is often preferred for PCA.

Since PCA calculates a linear combination of features, this can be
difficult to interpret. Therefore, the use of PCA is rather limited in
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clinical applications. Moreover, the patient classes are not taken into
account when calculating the components, and consequently there is no
guarantee that they contain the relevant variability in the data. This is
illustrated in figure 3.10.
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Figure 3.10: Example of a training set with 59 lower-grade glioma
(top half) and 59 glioblastoma patients (bottom half). Before
PCA, the features are clustered using k-means clustering for visual
purposes. After PCA, it is clear that the first features contain most
of the variance in the data and gradually lose importance, but the
distinction between the two classes seems less noticeable.

3.5 Binary classification model

We now have all the tools at our disposal for the radiomics study aiming
to predict tumour grade based on features extracted from T1ce and
FLAIR MRI scans. To this end, we will test the performance of five
classification algorithms:

• linear SVM (SVM-1)

• SVM with quadratic kernel (SVM-2)

• SVM with gaussian kernel (SVM-3)

• Random Forests (200 trees per forest)
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• simple artificial neural network with one hidden layer with 10 neu-
rons

Every classifier is combined with six previously discussed feature selec-
tion methods:

• two-sample t-test

• relief (with k = 5 or k = 20)

• OOB-error

• sequential forward selection

• principal component analysis

This yields a total of 30 different tests. For every test, we first randomly
select 55 patients (about 20% of the data), and use the remaining pa-
tients to select the features and train the model. Since there are many
more glioblastoma patients in the training set compared to lower-grade
gliomas, the model might be biased towards this larger class. There-
fore, we sub-sample the high-grade class by randomly selecting an equal
number of patients for every class to build the model. This model is
next applied to the previously selected 55 patients to validate the per-
formance. To avoid any bias that might be present due to the random
selection of the patients, we repeat this process 100 times for every test.
The average and standard deviation are given in table 3.2.

The best result is obtained when combining the relieff feature selec-
tion method with Random Forests classification, including 700 features.
The accuracy, defined as the number of correct predictions divided by
the total number of patients, reaches 88.0% using this model. Overall,
many tests achieve a similar performance, with accuracies close to the
results reported in literature (table 3.1).

Influence of classification algorithm

When observing the accuracies in table 3.2, it is clear that the Random
Forests classification algorithms achieves the best results. However, it
is only slightly better than linear SVM, which outperforms the kernel-
based variants. The version with the radial basis function (SVM-3) only
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Table 3.2: Result of the radiomics study to distinguish lower-grade gliomas from glioblastomas based on T1ce and
FLAIR MRI. Five classifications algorithms are combined with six different feature selection algorithms. Maximally
allowed number of features: 1000 for the ranking methods (except for ANN: 250), 25 for SFS, all for PCA.

classification algorithm
feature
selection

SVM-1 SVM-2 SVM-3 RF ANN
acc n acc n acc n acc n acc n

t-test (85.8±4.8)% 1000 (83.1±4.6)% 350 (80.4±6.0)% 10 (87.8±4.3)% 700 (82.1±6.9)% 70

relieff k = 5 (86.8±4.7)% 1000 (84.7±4.7)% 500 (82.4±6.6)% 6 (88.0±4.5)% 700 (82.8±5.9)% 250

relieff k = 20 (87.0±4.7)% 1000 (83.8±4.9)% 200 (82.8±6.2)% 5 (87.9±4.7)% 500 (82.9±6.5)% 200

OOB-error (83.8±5.0)% 1000 (78.9±5.5)% 400 (73.6±1.2)% 20 (84.0±5.3)% 900 (73.8±7.7)% 200

SFS (84.2±5.4)% 25 (82.6±6.9)% 3 (83.5±5.3)% 9 (85.7±5.4)% 24 (81.9±6.7)% 4

PCA (86.9±4.5)% 80 (81.7±5.1)% 85 (73.6±1.0)% 4 (85.3±5.2)% 35 (80.4±8.3)% 53
acc = accuracy (number of correctly classified samples), expressed as mean ± standard deviation;

n = number of features (or principal components) with best performance
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performs well with a low number of features, suggesting that is is more
prone to overfitting. For all future studies in this thesis, Random Forests
will be used. It not only achieves the best results, it also has the added
value of giving probabilities for every decision that was made, a feature
that is not standard available when using SVMs.

Influence of feature selection method

In general, the relieff feature ranking method achieves the best results,
although many features are necessary for best performance. Ranking the
features based on OOB-error can not compete with the other dimension-
ality reduction techniques, even when combined with Random Forests.
Sequential forward selection yields the lowest number of features with
similar accuracy as the other selection methods, but is computationally
costly. In figure 3.11 the progress of the error when adding features to
the classification model is illustrated.
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Figure 3.11: Progress of training and testing error during the
sequential forward selection (SFS) algorithm. The testing error
is still decreasing after 25 features, suggesting that the optimum
is not yet found, but adding even more features will make the
algorithm computationally too costly.

Most predictive features

When using the sequential forward selection (SFS) algorithm, we can
assess which features are most predictive using a certain classification
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algorithm. In the previous experiment, different sets of 25 features were
found for 100 repetitions with slightly different training and test sets.
We can combine these to find the best features. Therefore, we appoint
25 points to a feature if it select first in the SFS algorithm, 24 points if
it is selected second, and so on. Then we add all the points for a specific
feature, yielding a ranking of best features for the entire dataset. The
top-10 for SVM-1 and Random Forests are listed in table 3.3.

Table 3.3: Top-10 best performing features obtained with SFS
combined with SVM-1 or Random Forests for the entire dataset.

SVM-1 Random Forests
1 T1ce: tumour core - histogram: mean T1ce: total - histogram: mean
2 T1ce: tumour core - histogram: median T1ce: tumour core - histogram: mean
3 volume enhancing tumour volume enhancing tumour
4 T1ce: total - histogram: mean T1ce: ratio core / surrounding (5 voxels)
5 T1ce: tumour core - GLCM: difference

entropy (d = 1, mean)
T1ce: tumour core - histogram: median

6 T1ce: tumour core - GLCM: difference
entropy (d = 2, mean)

T1ce: tumour core - GLCM: entropy
(d = 3, mean)

7 T1ce: tumour core - GLCM: entropy
(d = 1, mean)

FLAIR: necrosis + non-enhancing core -
NGTDM: complexity (d = 2)

8 T1ce: tumour core - GLCM: difference
entropy (d = 3, mean)

T1ce: tumour core - GLCM: difference
entropy (d = 3, mean)

9 FLAIR: necrosis + non-enhancing core -
NGTDM: complexity (d = 2)

T1ce: tumour core - GLCM: inverse dif-
ference normalised (d = 3, mean)

10 FLAIR: necrosis + non-enhancing core -
NGTDM: complexity (d = 1)

T1ce: tumour core - GLCM: entropy
(d = 1, mean)

For both classification methods, the volume of the contrast enhance-
ment (a clear radiological parameter) is an important predictor. How-
ever, more advanced features including histogram and texture parame-
ters are present as well, mainly based on the T1ce scan. Furthermore,
many closely related parameters are selected in this top-10 (e.g. mean
and median of the same parameters, different distances for the same
texture parameter), showing that they have a similar predictive power.
These will however rarely be selected simultaneously for a single training
test.
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Example

Table 3.4 gives the confusion matrix obtained for the relieff (k = 5)
feature selection method combined with Random Forests classification.
This gives an overview of the predictions for patients of different classes,
averaged over 100 repetitions. We observe a high-grade specificity of
90.6% (true positive rate, probability that a high-grade patient is pre-
dicted high-grade) and sensitivity of 81.4% (true negative rate, proba-
bility that a lower-grade patients is predicted lower-grade). These num-
bers are quite balanced, since we selected equal amounts of samples from
both classes during the training phase. Moreover, the algorithm is more
certain when making a correct decision than when picking the wrong
choice.

Table 3.4: Confusion matrix for Random Forests combined with
relieff feature ranking (k = 5), averaged over 100 iterations. A
confusion matrix shows for every class how many samples are cor-
rectly and falsely predicted. Also given is the average certainty p̄
with which the decision was made. Notice that for the test set, a
representative sample of the dataset is taken, and therefore more
high-grade than lower-grade patients are present.

predicted
lower-grade high-grade

true lower-grade 11.8±1.5 (p̄ = 79.7%) 2.7±1.5 (p̄ = 67.5%)
high-grade 4.0±2.1 (p̄ = 64.5%) 36.6±2.1 (p̄ = 81.6%)

In figure 3.12 two examples are given of wrongly predicted patients:
one lower-grade glioma and a glioblastoma. They share some common
characteristics, such as a large tumour core and distributed contrast
enhancement. Both samples are predicted with a low certainty by the
algorithm: 52.2% and 59.5%, respectively. This suggests that a user
could interpret these results, and manually make the right choice.

3.6 Conclusion

In this chapter some building blocks for a radiomics study are explained
in detail, with an emphasis on feature extraction and dimensionality
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(a) T1ce (b) FLAIR (c) tumour segmentation

(d) T1ce (e) FLAIR (f) tumour segmentation

Figure 3.12: Representative slices of wrongly predicted patients,
using relieff feature selection (k = 5) and Random Forests. Upper
row: lower-grade patient predicted as high grade with probability
p = 52.5%. Bottom row: high-grade patient predicted as lower-
grade with probability p = 59.5%.

reduction. This yields excellent results to automatically distinguish be-
tween lower-grade gliomas and glioblastomas, based on only two scans
(T1ce and FLAIR MRI). Chapter 7 will further elaborate on this prob-
lem and a suggestion will be offered to further improve the performance.





4
Brain tumour segmentation

In the previous chapter, we elaborated on the last two steps of radiomics:
feature extraction and analysis. However, before we can calculate fea-
tures, we first need to define the tumour borders on the image. There-
fore, we investigate different approaches to perform this task automati-
cally in this chapter.

This work has been presented during the 18th Symposium of the
Belgian Society of Nuclear Medicine (2017) [190] and the European
Congress of Radiology 2018 [191].

4.1 Introduction

In clinical practice, segmentation is mostly performed manually, as an
experienced radiologist delineates the tumour on several slices of a 3D
brain scan. Apart from being time and labour intensive, manual delin-
eation is prone to inter- and intra-observer variability. In order to obtain
groundtruth labels for the BraTS 2013 database, four manual performers
segmented scans from 10 low-grade and 20 high-grade glioma patients
[139]. The authors report average inter-rater Dice scores of 67% and 93%
for segmenting the low-grade and high-grade tumour core, respectively.
Delineating the entire tumour region, including oedema, was considered
easier, with inter-rater Dice scores of 84% and 88% for low- and high-
grade glioma respectively. The Dice score - also called Dice similarity
coefficient (DSC) or Sörensen index - is a measure of overlap between
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two sets X and Y :
D = 2|X ∩ Y |

|X|+ |Y | .

If X and Y are perfectly overlapping, their Dice score equals 1.
The tumour masks of the individual expert performers were next

fused to obtain the gold standard labels. The individual contributions
were again compared to the fused result. yielding significantly higher
rater-versus-fused Dice scores. This could be expected, since the masks
of individual experts are used to obtain the gold standard. This is
illustrated in figure 4.1.

Figure 4.1: Inter-rater and rater-versus-fused Dice scores when
creating the BraTS 2013 gold standard labels. Here, 10 low-grade
(LG) and 20 high-grade (HG) gliomas were manually segmented
by four expert raters. Figure adapted from [139], © 2015 IEEE.

For these reasons, a lot of research has been conducted in recent
years to automate brain tumour delineation on medical images. Giving
a complete overview on the state-of-the-art in automated brain tumour
segmentation has almost become infeasible, and is not the goal of this
dissertation, but in the following discussion some important examples
are given. Pardillo et al. [192] provided us with a good overview on this
topic until 2013, but a more recent review paper is unfortunately lack-
ing. However, since 2013 the field has seen an exponential increase in
proposed methods, mainly due to two reasons: the annual brain tumour
segmentation (BraTS) competition, and the increased performance of
computational models such as deep learning. Still, the automated de-
lineation of tumour tissue remains a challenging task due to the large
variety in tumour shape, position, appearance, scanning modalities and
scanning parameters.

Automated brain tumour segmentation algorithms can be roughly
divided into three broad categories, which are in chronological order
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generative, discriminative and deep learning approaches.

4.1.1 Generative methods

In generative methods, prior knowledge about the appearance of the
brain and brain tumours is used to discriminate between healthy and
abnormal tissue. For example, in the approach of Khotanlou et al. [193],
it is assumed that the healthy brain shows a large degree of symmetry
between both hemispheres. Deviations from this symmetry, detected us-
ing histogram analysis, can then be attributed to tumour tissue. After-
wards, the segmentation is refined using a deformable model, which can
be regarded as deforming an inflated balloon around the tumour, where
the deformations are driven by intensity differences between the tumour
and its environment. The authors report a mean Dice score of 92% for
delineating both full-enhanced, ring-enhanced and non-enhanced cases.

Another generative approach is published by Prastawa et al. [194].
Starting from the approximate location of healthy GM, WM and CSF,
the algorithm distinguishes between healthy and abnormal tissue by de-
tecting intensity outliers. The original implementation is based on T1-
and T2-weighted MRI images. The algorithm can however be extended
to any number and type of scans, as we will demonstrate in section 4.2.

Generative methods have a number of advantages. Since they do
not need a pre-trained model, they are easily generalisable as they learn
the optimal parameters based on the given images themselves. This
means that they can also be used when a large annotated dataset is
lacking. However, it is not always possible to encode all the necessary
prior information, such as mass effect or the number of tumour tissues.

4.1.2 Discriminative methods

Discriminative methods learn to identify the appearance of different
tissues based on an annotated training set. This means that such a
large set needs to be available in order to yield robust segmentation re-
sults. Moreover, thorough tuning of every scan is necessary to match the
characteristics of the images in the training set, making discriminative
methods more rigid than generative methods. Still, excellent results are
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obtained in literature using these algorithms. They generally consist
of the same workflow: a preprocessing step is followed by transforming
the brain scans into high-dimensional feature vectors for every voxel.
These vectors are now fed to a pre-trained machine learning algorithm,
such as Random Forests, which calculates voxel-based probabilities to
belong to tumour tissue or the healthy brain, from which the tumour
masks are deduced. Zikic et al. [195] use local and distant intensity dif-
ferences between the four MRI-sequences, as well as Gaussian Mixture
Model (GMM) based tissue probabilities as input to classification forests.
They achieve average Dice scores of 70% and 71% for segmenting oedema
and tumour core in high-grade cases, 44% and 62% for segmenting low-
grade cases. Menze et al. [196] use channel-specific tumour and tissue
probabilities combined with intensity differences and distance measures
between voxels of interest as input of a Random Forests classification
model. They achieve mean Dice scores of 71% and 70% for segmenting
the tumour core and oedema of high-grade glioma, and 23% and 49%
in low-grade cases. Festa et al. [197] extract MRI intensities, neigh-
bourhood information, context information and texture features. Their
Random Forests approach achieves average Dice scores of 83% and 70%
for segmenting the complete abnormal region and the tumour core in
high-grade glioma, and 72% and 47% in low-grade glioma. Reza et
al. [198] use intensities and intensity differences combined with texture
features as input for the Random Forests classification. These authors
report average Dice scores of 92% and 91% for segmenting the entire
tumour region and the tumour core for both low-grade and high-grade
glioma.

In section 4.3, we will demonstrate a similar approach towards au-
tomated brain tumour segmentation. This method is only based on a
minimal dataset consisting of a T1ce and FLAIR MRI scan.

4.1.3 Deep learning

Deep learning using a convolutional neural network (CNN) can be re-
garded as a discriminative approach, in the sense that it relies on a train-
ing set to be able to discriminate between different tissues. However, in
contrast to the previously mentioned methods, the algorithm itself de-
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termines the optimal local features. Most state-of-the-arts methods are
therefore based on CNNs, such as the BraTS 2016 [199] and 2017 [200]
competition winners. They achieve Dice scores approaching 90% for
segmenting the tumour core and total abnormal region. These methods
surpass the inter-rater variability, and are therefore already more robust
than manual segmentation.

Although offering superior performance, CNNs only work for images
with the exact same characteristics as the training set. Methods based
on the BraTS dataset always make use of four MRI sequences: T1, T1ce,
T2 and FLAIR. However, in clinical practice, these four images are not
always available for every patient. For instance, a T2-weighted scan
might be omitted due to timing constraints. We retrospectively col-
lected preoperative structural MRI-scans of 253 patients with low-grade
meningioma and astrocytic or oligodendroglial glioma in the Ghent Uni-
versity Hospital. Only 76.3% of the patients received a T2-weighted
scan, whereas in 96.9% of the cases a T1ce scan was available. All
four scans were collected for 68.9% of the patients, while in 87.9% T1ce
and FLAIR was available. In this thesis, we therefore focus on flexible
methods regarding the number and type of input scans (section 4.2), or
methods where a minimal dataset is necessary (section 4.3).

4.2 Flexible segmentation algorithm us-
ing outlier detection

In this section, we demonstrate a segmentation algorithm which fulfils
three conditions: it is fully automatic, there is no need for annotated
training data, and most importantly, the algorithm is flexible regarding
the amount and type of input scans. The method will be illustrated and
validated on the BraTS 2015 dataset, consisting of 54 low-grade and 220
high-grade glioma patients. The algorithm consists of four steps: 1. pre-
processing, 2. estimating the abnormal regions using outlier detection,
3. isolating the largest abnormal region using morphological operations,
4. obtaining the final tumour mask by clustering the neighbouring vox-
els with similar intensities. Each step is illustrated in figure 4.2 and will
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now be explained in more detail.
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Figure 4.2: Illustration of the workflow of the automated seg-
mentation algorithm using outlier detection. In this example, the
obtained Dice score was 0.827.

4.2.1 Preprocessing

Since the different scans in the BRATS 2015 database are already aligned
and interpolated to a uniform 1×1×1 mm3 voxel size, coregistration of
the images is not necessary. For bias field correction and brain tissue seg-
mentation SPM12 (Wellcome Trust Centre for Neuroimaging), running
on MATLAB R2017b (The MathWorks Inc., Natick, MA, 2000), is used.
This results in bias field corrected images and personalised probability
maps for GM, WM, CSF, bone and soft tissue (together: “non-brain”)
and background or air. By default, SPM12 fits two Gaussian distribu-
tions to the CSF-class. We therefore also propose to model the CSF as
two different classes, by fitting a Gaussian mixture model (GMM) to the
CSF datapoints.

To distinguish between normal and pathological tissue, we also coreg-
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ister normal tissue probability maps (available in SPM12) to the T1
scans. This is done in two phases: first, an affine transformation is ap-
plied using SPM12. Next, the tissue maps are slightly adapted to the
individual anatomy using a non-rigid registration with mutual informa-
tion, implemented in the Medical Image Registration Toolbox (MIRT
[201]) for MATLAB. We used 2 hierarchical levels with an initial mesh
window size of 8 voxels and maximum 200 iterations.

4.2.2 Outlier Detection

The second and most crucial step is estimating the abnormal regions
using outlier detection, based on the method by Prastawa et al. [194].
We considerN image channels (usuallyN = 4 i.e. T1, T2, T1ce, FLAIR;
but in general any set of coregistered images can be considered).

Detection of normal tissue

First, we construct training samples for the different tissues (GM, WM,
CSF, non-brain, outside) by assigning to each voxel the tissue with the
highest probability according to the non-rigidly coregistered tissue maps.
Next, we determine a subset of normal samples for the different brain
tissues (GM, WM, CSF) using the Minimum Covariance Determinant
estimator. This algorithm is implemented with a series of C-steps: first,
given an N -dimensional subset of the samples, calculate the mean ~µ and
covariance ~Σ; next, calculate for all the voxels belonging to the tissue,
the Mahalanobis distance:

D(~I(~x)) =
√

(~I(~x)− ~µ)′ ~Σ−1 (~I(~x)− ~µ) ,

where ~I is the N -dimensional intensity at position ~x. Finally, select
half of the points, which have the shortest distance, as the new subset.
Iterating these steps several times (in our case 10 times), lowers the
determinant of covariance. Using different random subsets as starting
point, iterating the C-steps and choosing the subset with the minimal
determinant of covariance, yields a robust estimate of the healthy po-
sitions of GM, WM and CSF. This step is illustrated for the GM and
WM classes in figure 4.3.
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Figure 4.3: Illustration of the result of C-steps in two dimensions
(intensity on T1ce and FLAIR). All the data points inside the gray
and white matter are plotted. The C-steps estimate the ellipses
which contain half the data points with minimal variability. These
voxels will be used as training points for the healthy tissues.

Non-parametric model

Next, we use a non-parametric model to determine probability density
functions for the classes Γ = {GM, WM, CSF, non-brain, background,
abnormal}, which consists of an Expectation Maximisation loop of three
steps. In the first step, voxels belonging to the GM or WM classes that
exceed a certain threshold on the Mahalanobis distance to the respective
normal tissue subset are assigned to the abnormal class. We chose not to
use a fixed threshold, but rather the first local minimum exceeding four
standard deviations of the Mahalanobis distance histogram. Secondly,
we randomly select a subset of 300 voxels belonging to each class in Γ
and construct the 300 × N -dimensional training sets ~Ti (i ∈ Γ). For
every voxel at location ~x with vector of intensities ~I(~x) we now calculate
the probability density function for class label Γi:

pdf
(
~I(~x)|Γi

)
= mean

j=1...300

(
1

(2π)N/2

N∏
n=1

1
λn

exp
(
−(In(~x)− Ti,j,n)2

2λ2
n

))
,
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where λn is chosen as 4% of the intensity range for each channel. The
posterior probability for class Γi is now calculated as:

P (Γi|~I(~x)) =
pdf

(
~I(~x)|Γi

)
Pr (Γi, ~x)∑

j pdf
(
~I(~x)|Γj

)
Pr (Γj , ~x)

,

where the spatial priors Pr are given by the non-rigidly coregistered
tissue maps. For the abnormal class, we chose the prior to be the sum
of GM and WM, since the tumour usually only occurs in these regions.
In the third and last step of each iteration, we assign the class with
maximal probability to each voxel. We iterate these steps six times.

4.2.3 Morphological Operations

After the abnormality detection, we select the largest abnormal region
and assume this is the tumour. Therefore we first construct a mask
consisting of all voxels attributed to the abnormal class. We apply
an erosion operation of 5 voxels, followed by a dilation with 5 vox-
els. This removes all loosely-connected parts. Now we consider all the
disconnected parts and isolate the cluster with the highest cumulative
Ptumour = P (Γi = abnormal).

4.2.4 Voxel Clustering

In the last step, voxels with similar intensities are clustered to yield
the final tumour boundaries. This is done in a similar fashion as the
construction of fuzzy levels in Hatt et al. [202], combined with the
multi-channel approach of Doyle et al. [203]. Therefore we consider
the initial segmentation by SPM12 as input. Voxels that are assumed
to be tumour after the morphological operations are initially clustered
in four classes using k-means clustering. These classes can for a high-
grade tumour represent enhancing core, non-enhancing core, necrosis
and oedema. This results in a total of nine classes: GM, WM, CSF,
non-brain, background and four tumour classes. These classes are now
iteratively improved assuming a multivariate Gaussian distribution for
each class and taking into account the local neighbourhood. In each
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iteration four steps are performed. First, for each class Γi, calculate
the mean ~µi and covariance-matrix ~Σi. Next, compute the probability
density function for each class in each voxel:

pdf
(
~I(~x)|Γi

)
= (2π)−N/2

∥∥∥~Σi

∥∥∥−1/2
exp

(
−1

2(~I(~x)− ~µi)′ ~Σ−1
i (~I(~x)− ~µi)

)
.

In the third step, we incorporate the prior information using the neigh-
bourhood for every voxel. For every class Γi and voxel at position ~x,
we calculate the linear neighbourhood function Nb(Γi, ~x) which is zero
if none of the 26 surrounding voxels were assigned the same class in the
previous iteration, and equals 1 if all neighbouring voxels have class Γi.
In the last step, the posterior probability is calculated:

P (Γi|~I(~x)) = pdf(~I(~x)|Γi) Nb(Γi, ~x)∑
j pdf(~I(~x)|Γj) Nb(Γj , ~x)

,

and to each voxel the class with maximal probability is attributed. After
20 iterations the largest connected region with tumour labels is chosen
as the final tumour segmentation.

4.2.5 Results

We validated this method on the BRATS 2015 dataset for different com-
binations of input images: all images (T1, T2, T1ce, FLAIR) and com-
binations of three images (without T2, T1ce or FLAIR). The results of
these analyses, expressed in Dice scores, are given in the boxplots of fig-
ure 4.4. The corresponding median Dice scores are 73.3% if all images
are considered, 56.2% for all images without T2, 64.4% for all images
without T1ce, and 65.8% for all images without FLAIR. The algorithm
completely failed to detect the tumour (Dice score lower than 1%) in 5
out of 274 cases when all scans are considered, in 19 cases for all scans
without T2 or T1ce, and in 26 cases for all images without FLAIR.

4.2.6 Examples

Apart from the quantitative validation, we can also assess the perfor-
mance in a qualitative way. Therefore, in figure 4.5, the result of the
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Figure 4.4: Results obtained on the BraTS 2015 dataset using
the outlier detection based segmentation algorithm.

segmentation algorithm for four different pathologies is illustrated. In
this figure, the resulting classes from the voxel clustering part are dis-
played in different colours, which can however not be directly linked
to specific tumour tissues. From these images, it is clear that the tu-
mour is well delineated, although both under-segmentation (i.e. tumour
classified as healthy tumour) as over-segmentation (i.e. healthy tissue
classified as tumour) are present.

4.2.7 Discussion

In this study, we develop a segmentation algorithm that is fully auto-
matic, and provides reproducible results without the need for a large
training dataset. More importantly, it is very flexible regarding the
number and type of input images, as we have shown with four differ-
ent set-ups. We achieved median Dice scores around 70%, which is
comparable to other generative methods validated on the same dataset
[204, 205].

The main drawback of this method is the strong dependency on the
initial segmentation into healthy tissues. This especially is problematic
when a large tumour causes the ventricles to shift, or in the case of
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(a) astrocytoma, WHO gr. II
FLAIR, T1ce, segmentation

(b) meningioma, WHO gr. I
FLAIR, T1ce, segmentation

(c) glioblastoma
FLAIR, T1ce, segmentation

(d) oligodendroglioma, WHO gr. III;
FLAIR, 18F-FET PET, segmentation

Figure 4.5: Qualitative results of the segmentation algorithm,
performed on scans showing different pathologies. The different
colours have no direct meaning, apart from being clusters with
a similar intensity profile. Regions with under-segmentation are
indicated with a red arrow, regions with over-segmentation with a
green arrow.
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expanded ventricles due to CSF-obstruction. When the deviation from
the normal anatomy is large, the TPMs obtained with SPM12 become
unreliable. Conversely, when a large fluid-filled part of the tumour is
present next to the ventricles, SPM12 will consider this structure to
be part of the ventricles. In these cases, it is very hard for the outlier
detection method to distinguish between healthy and abnormal tissue,
since normal intensities will be present in abnormal regions and vice
versa. However, if the TPMs can be accurately estimated, our method
can easily achieve Dice scores of 80% and higher.

In chapter 3, we showed that features calculated on subregions of
the tumour can accurately determine the tumour grade. However, our
implementation of the segmentation method based on outlier detection
yields only a single tumour mask comprising the entire abnormal region.
During the last step of the algorithm, tumour voxels with a similar
intensity profile are clustered into four classes. But since the method is
not trained on an annotated dataset, it is impossible to assign a specific
tumorous tissue to every class.

Moreover, compared to pre-trained machine learning algorithms this
approach is quite slow. The outlier detection, morphological operations
and voxel clustering steps finish in about 15 minutes per patient, but the
preprocessing steps, especially the non-rigid coregistration with MIRT,
take up to 40 minutes per patient. The entire pipeline was implemented
in Matlab R2017b, running on a Intel Xeon CPU E5620 with 4 cores,
2.40GHz and 64.0 GB of installed physical memory. Because of these
limitations, a new approach towards brain tumour segmentation is im-
plemented, as will be explained in the following section.
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4.3 Segmentation based on local texture
and abnormality features

In this section, the goal is to implement an automated brain tumour
segmentation algorithm able to delineate multiple tumour tissues on a
minimal dataset. In our case, this is a T1ce and FLAIR scan, since these
MRI sequences provide complementary information and are simultane-
ously available for many patients in the Ghent University Hospital. This
study was published as “Machine learning based brain tumour segmen-
tation on limited data using local texture and abnormality”, Computers
in Biology and Medicine 98 (2018): 39-47 [206].

4.3.1 Principle and implementation

The workflow of our segmentation method consist of the following steps:
preprocessing of the images, feature calculation, Random Forests classi-
fication and voxel clustering, as is shown in figure 4.6. First, we describe
our training and validation data. Next, each of these steps in the seg-
mentation process will be explained in more detail.

4.3.2 Training and validation data

Training and validation set

The BraTS 2013 dataset [139] is used for optimising and training our
model. This dataset can freely be downloaded from the Virtual Skele-
ton Database [207] and consists of 10 lower-grade and 20 high-grade
glioma patients. The larger BraTS 2017 dataset is used for validating
the method. In this collection, 75 lower-grade and 210 high-grade pa-
tients are included. These datasets are already discussed in detail in
section 3.2.2.

Ghent University Hospital database

In the BraTS databases, only astrocytomas and oligodendrogliomas with
WHO grade II, III or IV (glioblastomas) are included. However, we
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preprocessed images voxelwise feature extraction

Random Forests
classification

voxel clusteringcomparison with
groundtruth

Figure 4.6: Illustration of the workflow of our method. A detailed
illustration of the voxelwise texture and abnormality features is
given in figure 4.7.

also want to perform our segmentation method on other primary brain
tumour types, such as meningioma, ependymoma or medulloblastoma.
Therefore, we retrospectively collected preoperative brain MRI from 257
patients in our centre. This was done with permission from the local
ethics committee, and informed consent was waived (Belgian registration
number B670201524727 2015/0521).

4.3.3 Preprocessing

The BraTS images are already coregistered and resliced. To mimic these
preprocessing steps for the scans acquired in our centre, SPM12 running
on MATLAB R2017b is used for co-registering the FLAIR image to the
T1ce scan of the same patient. Next, the scans are spatially normalised
to MNI-space (Montreal Neurological Institute [208]) and trilinearly in-
terpolated to a 1mm× 1mm× 1mm voxel size. Furthermore, for both
the BraTS and Ghent University Hospital scans, the segmentation mod-
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ule in SPM12 is applied to the T1ce scan to calculate tissue probability
maps (TPMs) for five healthy tissues (GM, WM, CSF, skull and soft
tissue). This technique is based on a Gaussian mixture model and prior
spatial probabilities. These TPMs will later on be used as normality
features. During the SPM segmentation, bias field correction is applied
to correct for magnetic field inhomogeneities, and the corrected images
are also saved and used for all following analyses.

4.3.4 Feature extraction

For every patient, 275 feature maps are calculated based on the T1ce
and coregistered FLAIR scans, showing the local value for every voxel
of a certain textural or (ab)normality property. To capture the local
texture, 30 features are calculated on both the T1ce and the FLAIR
scan and on four different spatial scales, contributing a total of 240
features. Next, there are 5 normality features capturing the healthy
regions of the brain, and 30 abnormality features showing the deviation
from normality. An overview of all image features is given in Appendix
B. A graphical illustration of some of these is also given in figure 4.7.

Texture features

We calculate three types of texture parameters for a total of 30 different
features. Every feature contains for a certain voxel information from
the 3× 3× 3 voxels environment surrounding this voxel. To account for
distant interactions, the scans are also downsized with a factor 2, 4 or
8 using MATLAB’s imresize3 function. The same texture features
are again calculated on the smaller images, followed by upscaling with
cubic interpolation to the original matrix size. For the calculation of the
texture parameters, we first discretise all images to 64 grey-levels using

Idiscr =
⌈
(Ng − 1) I −min(I)

max(I)−min(I) + 1

⌉
,

where I is the original image, Idiscr the discretised image and Ng is
the discretisation level, here chosen to be 64. This discretised image is
chosen as the first, and most simple, texture map.
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(1) (2) (3) (4) (5) (6) (7) (8)

(b)

(c)

(d)

(e)

(a)

Figure 4.7: Illustration of the transformation of the scans into
feature maps. (a) original images (left: T1ce, right: FLAIR);
(b) homogeneity; (c) low grey-level run emphasis (LGLRE); (d)
high grey-level zones emphasis (ZnHiGL); (e) abnormality features.
For the texture features: (1,5) downsizing level (DS) 1; (2,6) DS
2; (3,7) DS 4; (4,8) DS 8. For the abnormality features: (1,5)
Ptumour; (2,6) Z-map; (3,7) symmetry; (4,8) abnormal zones with
low grey-levels (aZnLoGL).

GLCM features The grey-level co-occurrence matrix (GLCM) [183]
describes the occurrence of pairs of voxel intensities. We only consider
a distance of 1 voxel to determine a voxel pair. More distant interac-
tions are accounted for using the downsizing step. In 3D, voxel pairs can
be determined in 13 directions. We determine 9 GLCM-based features,
which are the averages over these 13 directions: autocorrelation, clus-
ter tendency, correlation, dissimilarity, energy, homogeneity, maximum
probability, sum average and variance, according to the definitions in
[144].
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GLRLM features The grey-level run-length matrix (GLRLM) quan-
tifies one-dimensional runs, being a set of consecutive, collinear voxels
having the same grey level, in the image [184]. Again, these runs can
be calculated in 13 different directions, such that the GLRLM-based
features are the averages over these 13 directions. We calculate 10 fea-
tures: short/long run emphasis, grey level non-uniformity, run-length
non-uniformity, low/high level run emphasis and short/long run with
low/high grey levels emphasis, based on the definitions from [144].

GLSZM features The grey-level size-zone matrix (GLSZM) quanti-
fies zones or clusters of a certain grey level in the image, and is therefore
independent of direction [185]. Again, we calculate 10 features follow-
ing the definitions in [209]: small/large zone emphasis, grey-level non-
uniformity, size-zone non-uniformity, low/high grey-level emphasis and
small/large zones with low/high grey-levels emphasis.

Normality and abnormality features

Next to the texture features, where only local information is included, we
also include normality and abnormality features. In this way anatomical
information can be incorporated in the model.

Tissue probability maps The five TPMs calculated during the seg-
mentation step in SPM12 give the probability for every voxel to belong
to GM, WM, CSF, skull or soft tissue using prior anatomical probabil-
ities and assuming a healthy intensity distribution. These TPMs can
therefore identify normal appearing regions in the brain.

Abnormality features An MRI scan presenting a brain tumour
will in general show strong deviations from the normal appearing inten-
sities. Therefore, we also calculate abnormality maps starting from the
TPMs. These include five probability maps for GM, WM, CSF, non-
brain regions and tumour using outlier detection [194], as explained in
section 4.2.2. Moreover, we include Z-maps for T1ce and FLAIR: the
image I is divided into GM, WM and CSF according to the maximal
probability in the TPMs, and the Z-score Z = (I − µ)/σ is calculated,
where µ and σ are the mean and average values in the respective tissues.
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Similarly, we look for abnormal zones of low or high grey-levels in T1ce
and FLAIR. Here, the starting point is the GLSZM-features low/high
grey-level emphasis. The parameters µ and σ are chosen as the mean
and standard deviation of the largest peak in the feature histograms in
GM or WM. In this way we obtain six more maps: abnormal zones of
low/high grey-levels compared to normal appearing GM/WM based on
FLAIR, and abnormal zones of low grey-levels compared to normal ap-
pearing GM/WM based on T1ce. We do not calculate abnormal zones
of high grey-levels based on T1ce, since the highest intensities in this
image will in general belong to either blood vessels or heterogeneous
contrast enhancing tumour tissue. In both cases, we do not expect to
see large zones of high intensities on T1ce.

The aforementioned features are all based on either the T1ce or
FLAIR scan. We can however also use information from both scans
simultaneously to calculate six more abnormality features. These are
the probability maps for GM, WM, CSF, non-brain regions and tumour
using outlier detection [194], and the multivariate distance in different
tissues:

d =

√(
I1 − µ1
σ1

)2
+
(
I2 − µ2
σ2

)2
,

where the indices 1 and 2 refer to the T1ce and FLAIR scan respectively.

Symmetry The healthy brain shows a large degree of symmetry, and
deviations from this symmetry can therefore be a marker of abnormality,
as is used in several brain tumour segmentation approaches [193, 210].
We use a robust intensity-based method to estimate the midsagittal
plane [211]. Next, we calculate three symmetry-based features on both
T1ce and FLAIR scans: the original intensity difference between the
image and the mirrored version, the intensity difference after intensity
discretisation, and after intensity discretisation and downsizing with a
factor 4.

4.3.5 Random forests classification

The goal of the Random Forests classification algorithm is to estimate
the probability of a voxel belonging to a tissue type based on the calcu-
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lated features in that voxel. We consider 9 different classes, divided into
5 normal and 4 tumour types: GM, WM, CSF, non-brain, background,
necrosis, oedema, non-enhancing tumour and enhancing tumour. Dur-
ing the training phase, 1000 voxels per tissue (or if less voxels are present
in a certain tissue, we chose the size of the smallest class) are randomly
selected per patient in the training set, and the feature values are stored
together with the corresponding tissue class. The training matrix is
balanced since there is an equal amount of training samples for every
class, which implies that there is no bias towards a certain class when
predicting an unknown voxel.

Since calculating and storing 275 feature maps is both time and
memory consuming, and to reduce overfitting, we try to find an optimal
subset of features. For this, we apply sequential forward selection (SFS)
using three-fold cross-validation on the training set. This algorithm
starts from an empty feature set, and predictors are sequentially added
to the model until no further improvement is obtained. As indicator for
the model performance, we apply two criteria: total accuracy over all
classes, and accuracy of the tumour classes. Finally, we combine these
two feature sets in the final model.

Next to feature selection, the number of trees and tree depth in-
fluence the model performance. As we use MATLAB’s TreeBagger
implementation of Random Forests, the tree depth can indirectly be
controlled using the MinLeafSize option, being the minimal number
of samples in every leaf. We empirically find that a MinLeafSize equal
to 20 yields the best results in our model. We use 100 trees per forest,
since we found that increasing the forest size above 100 trees does not
improve the classification accuracy.

4.3.6 Post processing

After estimating the tissue probabilities using the Random Forests model,
voxels are assigned to the tissue with highest probability. The final tu-
mour masks are obtained using the morphological operations explained
in section 4.2.3 and the voxel clustering explained in section 4.2.4.
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4.3.7 Results

Feature selection

Our final model takes into account 52 features after feature reduction.
There are 3 TPM’s (for GM, CSF and non-brain), 16 FLAIR texture
features, 7 FLAIR abnormality features, 19 T1ce texture features, 5
T1ce abnormality features and 2 combined T1ce/FLAIR abnormality
features. The final features are depicted in bold in Appendix B.

Random Forests performance

In figure 4.8, the performance of the Random Forests model is graph-
ically illustrated using a confusion matrix, obtained using three-fold
cross-validation. It is clear that for healthy tissues, there is a high prob-
ability of being correctly classified, with a minimal accuracy of 90.0%
for GM. This performance decreases however for tumour tissues, with
accuracies of 35.0%, 47.8%, 23.6% and 61.3% for necrosis, oedema, non-
enhancing tumour and enhancing tumour tissue, respectively. It is clear
that to improve the segmentation accuracy a dedicated post-processing
step is required.

Segmentation result

We applied the segmentation procedure, including preprocessing, feature
extraction, Random Forests classification and post processing, to all
scans in the training and test set. The results for different segmentation
tasks is given in table 4.1.

Table 4.1: Obtained Dice scores on the BraTS 2013 training set
and the BraTS 2017 test set for different tumour tissues.

ncr oed n-enh oed+n-enh ncr+n-enh enh core total

BraTS 2013
low-grade

median 0.0% 61.7% 55.7% 77.7% 75.2% 0.0% 75.0% 80.2%
average 9.8% 61.3% 62.5% 75.4% 67.0% 18.9% 66.6% 78.4%

BraTS 2013
high-grade

median 71.2% 73.5% 28.2% 75.0% 59.6% 83.5% 83.3% 85.8%
average 68.7% 73.3% 25.7% 75.6% 59.5% 81.2% 84.4% 86.1%

BraTS 2017
low-grade

median 12.2% 45.7% 45.1% 29.2% 13.5% 40.9% 68.4%
average 17.3% 46.2% 44.9% 30.8% 24.8% 40.1% 65.6%

BraTS 2017
high-grade

median 52.9% 66.1% 65.9% 47.1% 74.8% 75.0% 80.1%
average 46.8% 61.0% 61.5% 42.1% 70.4% 69.0% 76.2%

ncr = necrosis, oed = oedema, n-enh = non-enhancing tumour, enh = enhancing tumour, core = tumour
core, total = total abnormal region
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Figure 4.8: Illustration of the performance of the Random Forests
model, using 3-fold cross-validation on the training set. This con-
fusion matrix shows the probability of correct (diagonal) and in-
correct (off-diagonal) predictions.

Training data

First, we evaluate the final model on the 30 patients in the BraTS 2013
training set. This gives us an upper boundary of the performance of the
technique, since a model will in general perform better on the dataset
on which it was trained than on independent data. The obtained Dice
scores in several tumour compartments are given in figure 4.9.

Tumour core and entire abnormal region For low-grade glioma,
we obtain median Dice scores of 75.0% and 80.2% for segmenting the
tumour core and the entire tumour region, respectively. For high-grade
glioma, these scores are 83.3% and 85.8%.

Tumour sub-regions For low-grade glioma, good scores are obtained
for segmenting the combination of oedema and non-enhancing tumour
tissue, with a median Dice score of 77.7%. For necrosis and enhancing
tissue however, the method does not perform well. This can be explained
by acknowledging that low-grade glioma in general do not present necro-
sis nor contrast enhancement. For high-grade glioma, we obtain median
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(a) Low-grade glioma (b) High-grade glioma

Figure 4.9: Dice scores obtained on the BraTS 2013 dataset used
for training the model.

Dice scores of 73.5%, 83.5% and 75.0% for oedema, enhancing tissue and
the combination of oedema and non-enhancing tissue, respectively. The
worst results are obtained for segmenting the non-enhancing tumour,
with a median Dice score of 28.2%. This can be expected from the Ran-
dom Forests performance (see figure 4.8), where we also observe poor
results for non-enhancing tumour tissue.

Test data

The manual segmentation masks in the BraTS 2017 dataset do not
longer contain separate labels for non-enhancing tumour. These vox-
els are combined with the necrotic region. Being trained on the BraTS
2013 dataset, our model will however still predict non-enhancing tumour
voxels, which is why we choose to calculate Dice scores on the combi-
nation oedema + non-enhancing tumour and necrosis + non-enhancing
tumour. The obtained Dice scores of the segmentation result on the
BraTS 2017 dataset are graphically given in figure 4.10. As can be ex-
pected, the method does not perform as well on this dataset compared
to the training set.
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(a) Low-grade glioma (b) High-grade glioma

Figure 4.10: Dice scores obtained on the BraTS 2017 dataset
used for testing the model.

Tumour core and entire abnormal region The median scores
scores for low-grade glioma are 40.9% and 68.4% for the tumour core
and total tumour region, respectively. These values increase to 75.0%
and 80.1% in high-grade cases.

Tumour sub-regions We discover unsatisfying results for segment-
ing separate tumour tissues in low-grade glioma, with no median Dice
scores exceeding 50%. Again, the algorithm performs better for high-
grade glioma. We obtain median Dice scores for oedema, enhancing tis-
sue and the combination of oedema and non-enhancing tissue of 66.1%,
74.8% and 65.9%, respectively.

Clinical scans

To conclude the results section, we illustrate the segmentation perfor-
mance obtained on scans of other than astrocytic and oligodendroglial
tumours collected in our institution. This shows the versatility of our
approach, since the model is only trained on these types of primary
brain tumours. In figure 4.11 we show results for four non-astrocytic
and non-oligodendroglial tumour types. We do not have a manual de-
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lineations for these tumours to compare with, so we can only gauge the
segmentation result in a qualitative way.

(a) Fibrous meningioma, WHO grade I (b) Central neurocytoma, WHO grade II

(c) Anaplastic ependymoma, WHO
grade III

(d) Medulloblastoma, WHO grade IV

Figure 4.11: Illustration of the segmentation performance on
four non-astrocytic and non-oligodendroglial primary brain tu-
mours. For every patient a T1ce MRI, FLAIR MRI, segmenta-
tion result fused with T1ce and segmentation result fused with
FLAIR are shown on two different slices. Colour code: orange
= contrast-enhancing tumour, yellow = non-contrast enhancing
tumour, green = oedema, blue = necrosis.

In general, we can see that most tumour tissues are well delineated.
However, despite the morphological operations, still isolated healthy re-
gions are marked as tumour, such as the enhancing blood vessels poste-
rior in the ependymoma case, or oedema in the right medial temporal
lobe in the meningioma case. On the other hand, secondary tumour
regions not connected to the main tumour will not get segmented due to
these morphological operations, such as the small enhancing lesion in the
cerebellum of the neurocytoma case. Moreover, some tumour labels get
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mixed up, such as the oedema spot in the center of the necrotic voxels
in the ependymoma case. For this patient, the FLAIR-hyperintensities
posterior to the lesion, as well as adjacent to the right frontal and right
occipital horn of the lateral ventricles, might also be due to infiltrating
low grade tumour. Therefore, for further research, we chose to combine
the oedema and non-enhancing tumour labels into one class.

4.3.8 Discussion

In this study, we have evaluated a new Random Forests based segmen-
tation method for delineating different brain tumour compartments,
starting from texture and abnormality features on contrast-enhanced
T1-weighted and FLAIR MRI. To the best of our knowledge, no brain
tumour segmentation method is available using only these two MRI se-
quences. The complementary of T1- and T2-weighted scans for brain
tumour segmentation has been shown in several studies. Prastawa et
al. [194] use outlier detection on T1 and T2 scans. Liu et al. [212]
use a fuzzy connectedness framework on T1, T1ce and FLAIR scans.
Iftekharuddin et al. [213] segment pediatric tumors on T1ce, T2 and
FLAIR using texture and image features in a Self-Organizing Map. A
combination of T1 and FLAIR scans has also been used for delineating
other brain lesions, such as white matter lesions [45, 214].

We start from an initial feature set of 275 features, but after se-
quential forward selection, only 52 are incorporated in the final model.
We can expect the texture features to mainly help in detecting hetero-
geneous structures such as enhancing tissue, whereas the abnormality
features provide information on homogeneous regions such as low-grade
tumours and oedema. We incorporate distant interactions by down-
sizing the images, calculating texture features and again interpolating
these maps. However, no features of subsample level 2 are present in
the final model, which suggests they do not provide added value over
the local features and downsampled images with factor 4 or 8. Only one
FLAIR texture feature is present on the local scale, whereas 14 FLAIR
texture features from downsizing scales 4 and 8 are incorporated, sug-
gesting that the local texture on FLAIR contains less information than
local texture on T1ce. This might be explained by the lower resolution
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of the T2-weighted FLAIR scan. Moreover, neither the original MRI
scans nor the discretised versions are included. MRI scans are recorded
in arbitrary units, such that image intensities cannot be directly com-
pared. Previous methods often use single scan intensities or intensity
differences between different scans as features [195, 196, 197, 198], but
this requires a robust intensity normalisation step such as histogram
matching or white stripe normalisation [138].

We obtain similar results as the previously mentioned studies, with
Dice scores around 75% for segmenting the tumour core and approaching
80% for segmenting the whole tumour region of high-grade tumours.
However, we train our method only on two MRI sequences, being T1ce
and FLAIR. Moreover, we have only one model for segmenting both
low-grade and high-grade tumours, whereas previous studies often train
a separate model on low-grade cases. In clinical practice, it will however
not always be known a priori what tumour type is analysed. Moreover,
we applied our method to other than astrocytic or oligodendroglial brain
tumour types. A qualitative analysis shows satisfying results, such that
the method can be used for advanced image processing techniques such
as radiomics or radiogenomics.

State-of-the-art methods on brain tumour segmentation mostly use
deep learning approaches such as CNNs [215, 216, 217]. Many of these
studies obtain Dice-scores approaching 90%, using four MRI sequences
(T1, T1ce, T2, FLAIR). These methods require a huge annotated data
set, as well as powerful hardware for training. CNNs take an image as
input and return a label or segmentation mask as output. In between is a
complex network of hidden layers. These can be convolutional, pooling,
activation or fully connected layers, with a large number of weights that
need to be tuned during training. Deep learning for segmentation can
roughly be divided into two different approaches. In the first approach,
features are extracted from a local patch for every voxel using convolu-
tional layers. These features are then classified with a fully connected
neural network to obtain a label for every voxel. The second approach
uses fully convolutional networks such as U-Net [218], where the local in-
formation is incorporated using up- and downsizing steps. Our method
applies similar steps as the first approach, albeit with hand-engineered
features: the texture features simulate the convolutional transforma-
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tions, we use downsizing of the images instead of pooling layers, and
Random Forests is used as a non-linear classifier instead of the fully-
connected layers. This enables a less complex training scheme, such
that a lower amount of training data is necessary.

Visual inspection of our results often shows oversegmentation, being
healthy tissue assigned a tumour label, which causes the Dice score to
decrease. A more advanced post-processing step, for instance able to
remove enhancing blood vessels, might improve the delineation. Fur-
thermore, we see a lower performance on the test set compared to the
training set. This shows overfitting of the Random Forests, although
measures have been taken to avoid this, such as feature selection and
limiting the tree depth.

Furthermore, our method might be improved by modelling the larger
spatial context of a single voxel in a more advanced way. Now we calcu-
late texture features on downsized versions of the image, but in this way
some information is lost. Calculating the texture matrices on a larger
neighbourhood of every voxel (e.g. 5 × 5 × 5 or 7 × 7 × 7 voxels)
might yield better results. However, this was not considered due to the
increased computational complexity. Another limitation of our method
is the strong dependency on the SPM segmentation when calculating the
abnormality features. In large tumours or when a large degree of mass
effect is present, this might give rise to unsatisfying results. However, as
we see a better performance in high-grade tumours, this effect is limited.

4.4 Conclusion

In this chapter, we discussed different approaches towards the automated
segmentation of brain tumours on medical images. A first method, based
on outlier detection, is flexible regarding the number and type of input
images, but yields only a single tumour mask for the entire abnormal
region. A second method, where texture and abnormality maps are used
as input for a Random Forests classification method, requires a minimal
dataset of a T1ce and FLAIR MRI and returns tissue maps for different
tumour subcompartments. A third approach using deep learning was
also mentioned, but this method was not implemented in the course of
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this thesis. The Random Forests based segmentation algorithm will in
the following chapters be applied to clinical scans in several radiomics
problems.





5
The multiclass problem of

primary brain tumour
diagnosis

In chapter 3 we discussed a binary classification problem for a dataset
where manual tumour segmentation labels were available. In clinical
practice however, we come across more difficult situations, as the tu-
mour delineation is not routinely performed for all patients. Therefore,
we will apply the automated Random Forests based segmentation al-
gorithm developed in chapter 4 to clinical scans. Moreover, classifying
patients into lower-grade or high-grade glioma is not sufficient to deter-
mine the optimal treatment strategy, as was discussed in the introduc-
tion. Primary brain tumours are a heterogeneous group of neoplasms,
and in order to obtain a more detailed diagnosis, we will here discuss
the multiclass problem.

This study has been presented during the 2017 IEEE Nuclear Science
Symposium and Medical Imaging Conference [219].

5.1 The importance of the multiclass prob-
lem

Few studies in literature perform a multiclass classification of primary
brain tumours based on medical imaging. The most important articles
are listed in table 5.1.

Herlidou-Meme et al. [220] applied texture analysis on 2D slices
from T1 and T2 weighted MRI, aiming to differentiate between several
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Table 5.1: Overview of the literature on multiclass classification of brain tumours.

Author Task Images Segmentation Method Result
Herlidou-Meme et
al. (2003) [220]

Discriminating texture of healthy brain,
solid tumour, kystic/necrotic tumour, whole
tumour and oedema in healthy volunteers
(n=10) and meningioma (n=15), lymphoma
(n=10) and glioma (n=38) patients

T1, T2 Manual Correspondence factorial
analysis, hierarchical
ascending classification

no discrimination between
different types of tumours

Luts et al. (2007)
[224]

Classifying voxels of 4 healthy volunteers
and 25 patients, divided into 10 classes

T1, T1ce, T2,
PD, MRSI

Manual (selection
of voxels)

Support vector machine,
linear discriminant
analysis

98.3% overall accuracy

Georgiadis et al.
(2008) [221]

Distinguishing metastases (n=21),
meningiomas (n=19), gliomas (n=27)

T1ce Manual Probabilistic neural
network

71.4% accuracy
(metastases), 72.2%
accuracy (gliomas), 81.3%
accuracy (meningiomas)

García-Gómez et
al. (2009) [225]

Distinguishing between glioblastoma
(n = 84 + 28), meningioma (n = 57 + 17),
metastasis (n = 37 + 32) and LGG
(n = 33 + 20)

MRS Manual (selection
of voxels)

Ten classification methods Accuracies of 78 - 94% for
binary problems in
independent test set

Zacharaki et al.
(2009) [175]

Distinguishing metastases (n=24),
meningiomas (n=4), grade II gliomas
(n=22), grade III gliomas (n=18) and
glioblastomas (n=34)

T1, T1ce, T2,
FLAIR, DSC
rCBV

Manual Linear discriminant
analysis, k-nearest
neighbour, Support vector
machine

63.3% global accuracy;
Sensitivities: 90.9%
(grade II), 33.3% (grade
III), 41.2% (grade IV),
91.7% (metastases)

Zacharaki et al.
(2011) [222]

Distinguishing metastases (n=24),
meningiomas (n=4), grade II gliomas
(n=22), grade III gliomas (n=17) and
glioblastomas (n=34)

T1, T1ce, T2,
FLAIR, DSC
rCBV

Manual Three feature selection
methods, three search
methods, five
classification algorithms

76.3% global accuracy,
Sensitivities: 81.8%
(grade II), 29.4% (grade
III), 82.4% (grade IV),
95.8% (metastases)

Skogen et al.
(2016) [177]

Distinguishing grade II (n=27), grade III
(n=34) and grade IV (n=34) gliomas

T1ce Manual ROC analysis on
individual features

AUC=0.91 (LGG vs
HGG), AUC=0.84 (II vs
III), AUC=0.73 (III vs
IV)

Sachdeva et al.
(2016) [223]

Distinguishing LGG (n=118), glioblastoma
(n=59), meningioma (n=97),
medulloblastoma (n=88), metastases
(n=66); In total: 55 patients, different
2D-slices are considered independent

T1ce Semi-automated Support vector machine,
artificial neural network

94% global accuracy,
Sensitivities: 96.6%
(LGG), 86.6% (GBM),
93.3% (medulloblastoma),
97% (metastasis)
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healthy and pathological regions. However, no discrimination between
different tumour types was obtained. Skogen et al. [177] were able to
make a significant distinction between grade II, grade III and grade IV
tumours based on a single intensity-based parameter. They included 95
patients and manually segmented the tumour on a single slice of T1ce
scans. Georgiadis et al. [221] proposed a two-level hierarchical decision-
tree structure to first distinguish between metastases and primary brain
tumours, and in a second step between gliomas and meningiomas. ROIs
were manually placed on a post-contrast T1-weighted magnetic reso-
nance imaging scan. Including 67 patients, they achieved accuracies
of 71.4%, 72.2% and 81.3% for metastases, gliomas and meningiomas
respectively. Zacharaki et al. [175] examined 98 patients divided into
five tumour classes (metastases, meningiomas, and gliomas of WHO
grade II, III and IV). Six different MRI sequences were used and man-
ual segmentation masks for four tumour tissues were acquired. Binary
classification tasks were combined with majority voting for multiclass
problems. They obtained excellent results for identifying metastases
and low-grade glioma, with accuracies of 91.7% and 90.9% respectively,
while distinguishing high-grade glioma was considered more difficult. In
a follow-up study [222], the same authors tested ten pairwise problems
using different feature selection methods and classification algorithms.
The best results were obtained when combining a forward feature se-
lection method with voting feature intervals classification, achieving
an overall multiclass accuracy of 76.3%. Sachdeva et al. [223] anal-
ysed 428 T1ce MRI slices of 55 patients with astrocytoma, glioblas-
toma, meningioma, medulloblastoma and metastases. The tumour was
delineated semi-automatically. Their multiclass neural network based
method achieved an overall accuracy of 94%. This result might however
be over-optimistic, since they considered different slices from the same
patient as independent samples.

In contrast, Luts et al. [224] tried to classify individual voxels into
ten different classes (ranging from healthy tissue to grade IV glioma)
using both MRI and magnetic resonance spectroscopy (MRS) data from
25 patients and 4 healthy volunteers. They first constructed 45 pairwise
classifiers, and afterwards combined this information for multiclass pre-
diction. Similarly, García-Gómez et al. [225] designed multiclass classi-
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fiers to distinguish between meningioma, low-grade glioma, glioblastoma
and metastases based on single-voxel MRS acquired in multiple centers.
All pairwise discriminations could be made with accuracies of around
90%, except for distinguishing between glioblastoma and metastases.

Most previous studies use either manual or semi-automatic delin-
eations of the tumour region. This might however introduce a certain
degree of variability in the classification results, as the BraTS reference
paper showed [139]. Furthermore, Parmar et al. [226] proved that quan-
titative features extracted from (semi-)automatic segmentation have a
significantly higher reproducibility and robustness compared to manual
delineation.

Therefore, in this chapter we propose a fully automatic pipeline for
the quantification of structural MRI scans, with the purpose of a non-
invasive and multiclass classification of primary brain tumours. To max-
imize the clinical applicability, we only use routinely acquired T1ce and
fluid-attenuation inversion recovery (FLAIR) MRI scans. Moreover, we
collected data from a large number of patients acquired in eight different
centres. In this way, the aim is to find features able to overcome the
heterogeneity inherently present in the data due to different imaging
systems and scanning parameters. In this way, our method can be used
not only in a research setting, but also in clinical practice.

5.2 Data

To acquire a maximum number of images, patient scans from the Ghent
University Hospital are combined with data from online repositories.

5.2.1 The Ghent University Hospital data

The local ethics committee of the Ghent University Hospital granted
permission for a retrospective study, and informed consent was waived
(Belgian registration number: B670201524727, local registration num-
ber: 2015/0521). This made it possible to search the PACS and the
electronic patient files. To get a notion of the available images in the
centre, the PACS was scanned with specific queries such as “MR brain
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(stereotaxy-neuronavigation)”, “MRS brain (tumour)” or “F-18 FET
PET brain oncology”. This yielded an initial list of 1331 patients in the
period January 2005 – May 2017. For every patient, we browsed the
electronic patient file for the presence of the anatomical pathological
diagnosis, verified by a senior neuropathologist. Next, patients were in-
cluded if they had a primary brain tumour status at the time of scanning,
and a structural MRI protocol before the initial surgery. In this way, we
obtained a list of 347 patients with different primary brain tumours, as
is shown in figure 5.1.
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Figure 5.1: Verified diagnosis of patients in the Ghent University
Hospital primary brain tumour dataset.

Furthermore, we only selected patients with a preoperative T1ce and
FLAIR MRI of sufficient quality available, and belonging to a tumour
class with at least 25 patients. Since this would mean that only four
classes (glioblastoma, meningioma grade I and astrocytoma grade II-
III) could be included, we complemented our data with images from
online repositories.

5.2.2 Additional data: The Cancer Imaging Archive

The Cancer Imaging Archive (www.cancerimagingarchive.net)
[227] is a continuously growing database of public datasets of cancer-
related medical images. We included images from two studies. The

www.cancerimagingarchive.net
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Repository of Molecular Brain Neoplasia Data (REMBRANDT) [228,
229] is a large database consisting of 874 glioma patients aimed to cor-
relate clinical and genomic characterisation data. Presurgical MRI scans
are available for 130 patients. As a follow-up study, the VASARI (Visu-
ally AcceSAble Rembrandt Images) feature set was developed [230, 231].
This is a set of 24 (qualitative) observations familiar to neuroradiologists
to describe the morphology of brain tumours. Examples of such features
are “thickness of enhancing margin” or “cortical involvement”.

The second database we included is The Cancer Genome Atlas Low
Grade Glioma (TCGA-LGG) data collection [232, 233, 67]. This is part
of a larger project bringing together genome sequencing data from a
large variety of different cancer types. In this database, MRI scans from
199 patients with lower-grade gliomas are included.

In total, we selected 352 patients: 162 patients from the Ghent Uni-
versity Hospital database, 84 cases from the REMBRANDT collection,
and 106 patients from the TCGA-LGG database. All patients belong to
one of six tumour classes, being meningioma (WHO grade I, n = 43),
astrocytoma (WHO grade II, n = 81; or WHO grade III, n = 79), oligo-
dendroglioma (WHO grade II, n = 29 or WHO grade III, n = 29) or
glioblastoma (WHO grade IV, n = 91), see also table 5.2.

Table 5.2: Distribution of the patients into different classes.
grade

I II III IV

type

M 43 43
A 81 79 160
O 29 29 58
G 91 91

43 110 108 91
M = meningioma, A = astrocytoma,

O = oligodendroglioma, G = glioblastoma

The distinction between astrocytoma and oligodendroglioma is made
retrospectively based on 1p/19q-codeletion status, according to theWHO
2016 guidelines [54]. However this information was not available for
the REMBRANDT collection. For these patients, the histopathological
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findings are followed to make the distinction between astrocytoma and
oligodendroglioma. In total, patients are acquired in eight different cen-
ters, on different imaging systems (different vendors, both 1.5T and 3T
scanners) and with different scanning parameters. This causes a large
degree of variability in image resolution, voxel size, slice spacing and
contrast.

5.3 Tumour segmentation and feature ex-
traction

Let us look back at the workflow of radiomics, depicted in figure 5.2.

Figure 5.2: The workflow of radiomics.

We have already discussed the clinical imaging data, so the next step
is segmenting the tumour for all patients. To this end, the scans are first
preprocessed in order to match the characteristics of the BraTS dataset.
Using SPM12 running on MATLAB 2017b, the FLAIR scans are coreg-
istered to the T1ce images. Next, the scans are spatially normalized to
MNI-space, trilinearly interpolated to a 1mm× 1mm× 1mm voxel size,
and corrected for magnetic field inhomogeneities using bias field correc-
tion. Afterwards, the tumour is segmented using the Random Forests
based software, validated in chapter 4. All segmentation results are vi-
sually inspected and manually adjusted if necessary. For this purpose, a
dedicated graphical user-interface (GUI) was built in MATLAB which
enables the user to manually draw a ROI inside the tumour on several
slices, as shown in figure 5.3. This step replaces the morphological op-



120 5 The multiclass problem of primary brain tumour diagnosis

erations, as the tissue probabilities calculated by the Random Forests
model are again used as input for the voxel clustering step. Manual
adjustment (83 patients, 23.6% of the cases) can therefore aid to avoid
healthy tissue such as large blood vessels being considered as tumour.

Figure 5.3: Screenshot of the MATLAB graphical user-interface
for manual tumour contouring. In this example, a zoomed-in slice
of T1, T1ce and FLAIR MRI of a glioblastoma patients is shown.
The user can draw a contour inside the hyperintense region on
FLAIR, which replaces the morphological operations. Afterwards,
the tissue probabilities obtained by the Random Forests model are
used to cluster the voxels into tumour masks.

Afterwards, we extract features for five tumour masks:

• oedema

• enhancing tumour

• non-necrotic/non-enhancing tissue

• tumour core

• total abnormal region including oedema

on both the T1ce and FLAIR scan. The same 207 features as explained
in chapter 3 are obtained: 14 histogram features, 8 shape and size fea-
tures and 185 second-order (texture) features, consisting of 138 grey-level
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co-occurrence matrix parameters, 22 grey-level run-length matrix pa-
rameters, 12 neighbourhood grey-tone difference matrix parameters and
13 grey-level size-zone matrix parameters. Before calculating the his-
togram features, we apply the robust white-stripe normalization method
[138], where the intensities are normalised to the normal appearing white
matter. For the texture features, the intensities are discretised to 64
grey-levels. Additionally, there are 27 features containing information
about the location of the tumour and the difference between the intensi-
ties of the tumour and the surrounding tissues. This adds up to a total
of 2097 quantitative features per patient. An illustration of the result-
ing feature matrix, normalised to have zero mean and unit variance for
every feature, is given in figure 5.4.

Figure 5.4: Structure of the extracted feature matrix. Patient di-
agnosis code: type + grade; M = meningioma, A = astrocytoma,
O = oligodendroglioma, G = glioblastoma.

5.4 Multiclass random forests

Now, the extracted features can be analysed using machine learning
algorithms. Two multiclass models are trained: one for tumour grade,
another for tumour type. For every model, we first hold out a random
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subset of 35 patients as test set. On the training set, we first rank
the best performing features using the relief algorithm. Next, we train
a multiclass Random Forests classifier with 200 trees on the highest
ranked features. Since the number of training samples per class is highly
variable, a cost matrix is applied to avoid bias towards the larger classes.
Suppose we train a model to predict grade, then the cost matrix C is
calculated as follows:


nI

nII

nIII

nIV
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,

where ni is the number of training samples from grade i. In MATLAB’s
TreeBagger function, classes with a high penalty will be oversamples
when training the Random Forests, and in this way the bias towards
larger classes is reduced. However, when the penalty becomes too large,
bias towards the small classes might occur, which is why we added the
additional averaging with 1.

The trained model is now evaluated on the 35 independent samples
from the test set, and the confusion matrix is stored. We repeat this
process 50 times to avoid selection bias. The results for grade prediction
are given in table 5.3. We observe a mean accuracy of (60.3±5.7)% with
400 features included in the model.

The results for tumour type prediction are given in table 5.4, where
a mean accuracy of (65.6±8.5)% is obtained using the best 800 features.
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Table 5.3: Performance of multiclass Random Forests to predict
tumour grade. A random subset of 35 patients is selected as test
set over 100 iterations. Also given is the mean certainty p̄ with
which every decision is made.

predicted
I II III IV

tr
ue

I 3.94±0.77 0.08±0.27 0.16±0.42 0.24±0.43
(p̄=62.1%) (p̄=33.0%) (p̄=30.8%) (p̄=35.4%)

II 0.38±0.60 7.30±1.47 2.34±1.29 0.46±0.54
(p̄=41.3%) (p̄=49.9%) (p̄=44.4%) (p̄=44.2%)

III 0.06±0.24 4.82±1.51 2.88±1.41 2.76±1.04
(p̄=30.5%) (p̄=47.7%) (p̄=45.7%) (p̄=49.7%)

IV 0.64±0.80 0.82±0.75 1.12±0.92 7.00±1.41
(p̄=41.8%) (p̄=41.8%) (p̄=42.1%) (p̄=57.3%)

Table 5.4: Performance of multiclass Random Forests to predict
tumour type. M = meningioma, A = astrocytoma, O = oligoden-
droglioma, G = glioblastoma.

predicted
M A O G

tr
ue

M 4.10±0.76 0.20±0.40 0.04±0.20 0.24±0.48
(p̄=62.7%) (p̄=39.0%) (p̄=34.3%) (p̄=38.1%)

A 0.32±0.51 10.72±1.96 1.72±1.53 2.70±1.54
(p̄=41.9%) (p̄=50.8%) (p̄=38.3%) (p̄=50.3%)

O 0.0±0.0 2.78±1.36 1.64±1.31 0.96±0.97
(p̄=0.0%) (p̄=48.5%) (p̄=47.7%) (p̄=46.3%)

G 0.78±0.84 1.78±1.22 0.52±0.86 6.35±1.66
(p̄=38.7%) (p̄=44.3%) (p̄=35.1%) (p̄=57.9%)

From these confusion matrices, it is clear that the algorithm is more
certain when correctly predicting the meningioma/grade I and glioblas-
toma/grade IV classes than when predicting one of the lower-grade
gliomas. Moreover, we see that most classes are predicted rather well,
with the exception of grade III gliomas, which show a very high bias to-
wards grade II and to a lesser extent grade IV, and oligodendrogliomas,
which are often being predicted as astrocytomas.

Although confusion matrices offer a very detailed view on the perfor-
mance of a model, they can be difficult to interpret. This is why in table
5.5 the sensitivities (true positive rate) and specificities (true negative
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rate) for every class are given.

Table 5.5: Detailed analysis of the two multiclass analyses.

(a) grade

sensitivity specificity
I 89.1% 96.5%
II 69.7% 76.7%
III 27.4% 85.2%
IV 73.1% 86.4%

(b) type

sensitivity specificity
M 89.5% 96.4%
A 69.3% 75.6%
O 30.5% 92.3%
G 67.9% 84.7%

From these tables, we again see that both models perform well for
three out of four classes, and show poor performance for the fourth
class (grade III gliomas and oligodendrogliomas, respectively). This
however makes that this method cannot be directly be used for CAD.
Suppose the models predict a grade II astrocytoma, then we have little
certainty about this result, since grade III gliomas will more often be
predicted grade II than grade III, and oligodendrogliomas have a very
high probability of being predicted as astrocytomas.

5.5 Discussion and conclusion

In this chapter, the goal was to predict tumour grade and histology
of primary brain tumour patients based on quantitative features de-
termined on structural MRI scans. Compared to the previous studies
mentioned in the introduction of this chapter, we obtain lower classifi-
cation performances, even though our dataset is much larger than these
studies. Three factors may play in a role in the reduced performance.

First of all, some errors might be due to the high degree of hetero-
geneity in the data. We obtained scans from three different sources,
with a high variability in scanning protocols and imaging parameters.
Although all images are normalised to have equal voxel size, differences
in scanning resolution and slice thickness will lead to variability in some
of the texture features [234, 235].

A second source of variability may lie in the gold standard labels.
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As mentioned in the introductory chapter, histopathological diagnosis
is prone to inter- and intraobserver variability. Furthermore, we based
the difference between the oligodendroglioma and astrocytoma labels on
1p/19q status rather than on histological findings. As this information
was not available for the 55 lower-grade glioma patients from the REM-
BRANDT collection included in our study, several might have got an
incorrect tumour label.

Lastly, our study shows that the hardest task is distinguishing be-
tween the different lower-grade glioma labels (astrocytoma and oligo-
dendroglioma WHO grade II and III). This can be partly explained by
the variability in the pathological diagnosis, but also due to the very
nature of this classification. IDH-status is not taken into account in this
analysis, and IDH-mutant (or glioblastoma-like) lower-grade gliomas will
therefore have got a lower-grade glioma label, although showing a sig-
nificantly different clinical course. Moreover, IDH-mutant astrocytomas
show only a little difference in survival [70] between grade II and grade
III, suggesting that they are similar entities. In the Ghent University
Hospital, IDH-status is assessed using immunohistochemical (IHC) anal-
ysis. However, a negative IDH-status using IHC analysis of a lower-grade
tumour does not necessarily mean an IDH-wildtype (or glioblastoma-
type) tumour [54]. Sequencing for IDH gene mutations is not routinely
performed, so we cannot confidently identify IDH-wildtype glioma.

In conclusion, we have tried to solve the multiclass diagnosis problem
by splitting it up into two models: for grade (mean accuracy: 60.3%)
and for type (mean accuracy: 65.6%). Since patients are evaluated by
the two classification models independently, this can lead to undesired
results, such as a patient having a high probability of being both grade I
and having a glioblastoma. As this offers only a limited source of infor-
mation, a more elaborated solution will be given in the next chapter.





6
Transforming multiclass to
multiple binary problems

In the previous chapter, we have built multiclass models to predict tu-
mour grade and type of primary brain tumours based on medical images.
However, in many situations a clinician will already have an idea on the
diagnosis based on clinical parameters or the radiological appearance of
the tumour. For example, when the clinical symptoms are highly sug-
gestive of a glioma, clinicians might be mostly interested in determining
whether the tumour is low-grade or high-grade, making meningioma
probabilities irrelevant. Therefore, in this chapter we try to solve the
multiclass diagnosis problem by providing answers to fourteen binary
problems, which together can lead to the correct diagnosis.

This work has been presented during the 2018 European Conference
on Clinical Neuroimaging [236].

6.1 The advantage of binary classifica-
tion problems

Consider the example scans of figure 6.1. This patient (TCGA-FG-5964
from the TCGA-LGG dataset) shows diffuse contrast enhancement and
a clear hyperintense tumour region on FLAIR. Histopathological anal-
ysis showed a diffuse oligodendroglioma, WHO grade II at the time of
scanning. If we evaluate this patient by the two models from the previ-
ous chapter then we obtain the following probabilities for grade: 11.5%



128 6 Transforming multiclass to multiple binary problems

grade I, 42.0% grade II, 24.5% grade III and 22.0% grade IV; and for
type: 25.5% meningioma, 34.0% astrocytoma, 15.0% oligodendroglioma
an 25.5% glioblastoma. This would suggest a low-grade astrocytoma,
although we know from last chapter’s analysis that oligodendroglioma
cases are often predicted as astrocytoma. Assuming that this patient is
indeed a low-grade glioma case, it would therefore be interesting to have
a specific model able to distinguish between astrocytomas and oligoden-
drogliomas.

(a) T1ce (b) FLAIR

(c) T1ce + segmentation (d) FLAIR + segmentation

Figure 6.1: Example of scans from a diffuse oligodendroglioma,
WHO grade II patient (TCGA-FG-5964). The T1ce scan shows
diffuse contrast enhancement, with a clear FLAIR hyperintense
tumour region. Also given are the automatically generated tumour
regions.

In chapter 3, we have shown that a binary classification problem
can be solved with high accuracy. Therefore, we split up our multiclass
problem into fourteen binary classifiers, with the additional purpose of
minimising the number of features per model, according to the workflow
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of figure 6.2.
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Figure 6.2: Workflow of the multiple binary classification. After
acquiring the feature matrix and feature selection, fourteen binary
models are created, which can afterwards be combined into deci-
sion schemes. A more detailed view on the four multiclass decision
schemes is given in figure 6.4.

The same data are used as in the previous chapter, resulting in the
same feature matrix. Now, patients are first grouped into smaller, not
mutually exclusive subsets such as “grade II gliomas”, “astrocytomas” or
“meningioma and glioblastoma”. Every subset consists of tumour types
with similar properties, such as an equal grade, histological type or a
mutual appearance (for example: both meningiomas and glioblastomas
show a large degree of contrast enhancement). Relevant subsets are
pairwise compared in binary classification problems. For every model,
we test the individual predictor performance using a two-sample t-test
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with unequal variance. We rank all predictors according to increasing p-
values and select only the first 200 for every task. Next, these parameters
are used to train a Random Forests classification model, implemented in
MATLAB’s TreeBagger function. Only complementary features are
used, found by sequential forward selection. This is done using five-fold
cross-validation on a balanced dataset, meaning that equal amounts of
samples from both classes in each binary problem are randomly selected.
This step is repeated 100 times with random selection of the samples.
Performance is assessed by the total accuracy of the model and the AUC
of the ROC curve, as is given in table 6.1.

Table 6.1: Performance of the individual binary problems, ranked
according to accuracy. For every problem, the most predictive
feature is given as well. Every classification task takes 15 features
into account.

Name binary problem Most predictive feature acc. AUC
1 Meningioma vs. glioblastoma T1ce - ratio core/surrounding (5

voxels)
95.0% 0.989

2 Meningioma vs. glioma T1ce - ratio core/surrounding (5
voxels)

92.6% 0.976

3 Gr. II/III vs. gr. IV/meningioma T1ce – total abnormal –
histogram: mean

90.7% 0.952

4 Gr. III vs. gr. IV T1ce - ratio core/surrounding (5
voxels)

88.8% 0.944

5 Gr. III vs gr. IV/meningioma T1ce – total abnormal –
histogram: mean

88.5% 0.937

6 Gr. II/III vs. gr. IV T1ce - ratio core/surrounding (3
voxels)

88.0% 0.934

7 Oligodendroglioma gr. II vs.
oligodendroglioma gr. III

T1ce – oedema – histogram:
median

87.8% 0.937

8 Astrocytoma gr. II vs. astrocytoma
gr. III

T1ce – tumour core – histogram:
uniformity

84.3% 0.919

9 Gr. II vs. gr. III/IV/meningioma T1ce - ratio core/surrounding (5
voxels)

83.5% 0.901

10 Gr. II vs. gr. III FLAIR - enhancing tumour –
GLCM: difference entropy (d=1),
mean

83.1% 0.907

11 Gr. II vs. gr. III/IV T1ce - ratio core/surrounding (3
voxels)

83.0% 0.906

12 Astrocytoma gr. II vs.
oligodendroglioma gr. II

FLAIR - total abnormal – GLCM:
difference entropy (d=3), std

80.5% 0.883

13 Astrocytoma vs. oligodendroglioma y-coordinate centre of mass 80.3% 0.892

14 Astrocytoma gr. III vs.
oligodendroglioma gr. III

T1ce – oedema – histogram: mean 75.1% 0.829

We identify the optimal model parameters using grid search (see
Appendix figure C.1). This shows that optimal results are obtained by
incorporating only 15 out of 2925 features for every binary model. An
overview of these features is given in Appendix C. The model complex-
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ity is indirectly controlled by the MinLeafSize parameter, being the
minimal amount of samples in every leaf of individual classification trees
in the Random Forest. Only a modest regularisation is required to opti-
mise the classification result fixing this parameter to 2, while the number
of trees per forest is 200. We see that mainly features calculated on the
entire abnormal region, the tumour core and the enhancing tissue are
taken into account. This can be explained by acknowledging that the
most robust segmentation results are obtained on these tumour masks.

In table 6.1, the performance of the fourteen binary problems is
given. Every classification task takes 15 predictors into account, and the
best performing feature is also given. It is clear that all classification
tasks can be performed with good results, with accuracies exceeding 75%
and AUC-scores exceeding 0.82. For distinguishing between lower-grade
gliomas and glioblastomas, we obtain an accuracy of 88.0%, which is
slightly higher than the 85.7% accuracy obtained using the same method
but on different data in chapter 3.

The easiest problems are automatically distinguishing meningioma
from glioma, while discriminating astrocytoma from oligodendroglioma
is considered harder. The ratio of the T1ce-intensities of the tumour
core and the surrounding tissue is the most predictive feature for six
binary problems. Moreover, there are five histogram features and two
texture features, both GLCM-based on FLAIR images, in the list as most
predictive features. Remarkable is that the most important predictor for
distinguishing astrocytoma from oligodendroglioma is the y-coordinate
of the tumour centre of mass, meaning that oligodendroglioma have a
slightly higher probability of being located more anterior in the brain
compared to astrocytoma (p = 0.0068).

Looking back at the example patient from the beginning of this sec-
tion, we obtain the probabilities for the fourteen binary problems of
figure 6.3. Based on these probabilities, we can exclude a meningioma
diagnosis with a probability of 91.5%, in favour of a glioma. Taking
this into account, there is a high probability (93%) that it concerns a
lower-grade glioma instead of a glioblastoma. Finally, the tumour is
most probably (87.5%) from the oligodendroglioma type, with again a
high probability (86%) of being a diffuse low-grade oligodendroglioma,
WHO grade II. In this way, the probabilities from the binary models
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Figure 6.3: Probabilities for fourteen binary classification prob-
lems obtained for the example patient.

can be used to obtain the right diagnosis. In the next section, we will
try to automatically perform this multiclass problem.

6.2 Brain tumour classification as a se-
quence of binary problems

In a second step, we concatenate the binary problems in a hierarchi-
cal way to obtain four different decision trees, as displayed in 6.4. The
probabilities for every binary step are multiplied to obtain the final prob-
abilities per tumour class. The tumour type with highest probability is
then chosen as the final prediction.

This is validated by randomly selecting seven patients from each of
the six tumour classes and training balanced Random Forests models
using the others patients and the previously found features. This proce-
dure is repeated 100 times to minimise bias from the random selection
procedure.
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Figure 6.4: Concatenation of binary classifiers into four multiclass
decision schemes.

In table 6.2 the results are presented for the different decision schemes
of figure 6.4. These are obtained by averaging over 100 iterations, to
avoid bias by the random selection of training and testing samples. For
every method, the results are displayed in confusion matrices, where the
real tumour classes are displayed in horizontal and the predicted classes
in vertical direction.

Not all decision schemes lead to an equally good result, and some
schemes perform better in detecting specific tumour types. Decision
scheme 4, where grade II and III tumours are first divided from menin-
gioma and glioblastoma, and next astrocytoma from oligodendroglioma,
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Table 6.2: Confusion matrices giving the performance of the
four concatenated decision schemes of figure 6.4. To validate this
method, seven patients from each class are held out as test sam-
ples while the method is trained on the remaining patients. The
results are displayed as the average over 100 iterations.

(a) decision scheme 1:
accuracy = 45.2%

predicted
M1 A2 A3 O2 O3 G4

tr
ue

M1 6.32 0.01 0.01 0.01 0.00 0.65
A2 0.47 3.05 0.82 1.27 0.32 1.07
A3 0.73 1.58 1.29 0.46 0.44 2.50
O2 0.43 1.18 0.93 2.82 0.83 0.81
O3 0.63 1.18 0.83 0.57 0.69 3.10
G4 1.68 0.19 0.19 0.04 0.07 4.83

(b) decision scheme 2:
accuracy = 46.5%

predicted
M1 A2 A3 O2 O3 G4

tr
ue

M1 6.44 0.05 0.01 0.00 0.00 0.50
A2 0.50 3.91 0.36 1.67 0.20 0.36
A3 0.86 2.73 0.88 1.06 0.38 1.09
O2 0.36 1.87 0.57 3.50 0.64 0.06
O3 0.78 2.50 0.62 0.96 0.67 1.47
G4 1.94 0.52 0.16 0.19 0.07 4.12

(c) decision scheme 3:
accuracy = 47.9%

predicted
M1 A2 A3 O2 O3 G4

tr
ue

M1 6.01 0.08 0.23 0.08 0.03 0.57
A2 0.11 4.11 0.45 1.67 0.20 0.46
A3 0.01 2.91 0.77 1.30 0.39 1.62
O2 0.00 1.90 0.72 3.56 0.67 0.15
O3 0.19 2.47 0.57 1.00 0.73 2.04
G4 0.55 0.68 0.38 0.29 0.17 4.93

(d) decision scheme 4:
accuracy = 52.8%

predicted
M1 A2 A3 O2 O3 G4

tr
ue

M1 6.12 0.10 0.01 0.03 0.01 0.73
A2 0.13 3.47 1.00 1.06 0.48 0.86
A3 0.02 1.39 1.76 0.83 0.48 2.52
O2 0.01 1.18 0.76 3.64 0.84 0.57
O3 0.21 0.85 0.69 1.13 1.59 2.53
G4 0.57 0.30 0.23 0.08 0.24 5.58

leads to the best results, with an overall accuracy of 52.8%. Using
this model, we can automatically detect meningioma with a sensitivity
of 87.4% and specificity of 97.3%, and glioblastoma with a sensitiv-
ity of 79.7% and specificity of 79.4%. Lower accuracies are obtained
for the lower-grade glioma (astrocytoma and oligodendroglioma WHO
grade II-III). Astrocytoma and oligodendroglioma WHO grade III are
particularly difficult to identify, since these will mostly be predicted as
glioblastoma.

Let us return one last time to the oligodendroglioma example of
figure 6.1. In figure 6.5 the output of the binary decisions are combined
with the decision schemes. Three out of four models correctly classify
the tumour, while the fourth model predicts a grade III astrocytoma
(42.5%), followed by the correct diagnosis of grade II oligodendroglioma
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Figure 6.5: Example of decision schemes. Three out of four
models correctly classify the tumour type in this case.

(34.2%).

6.3 Machine learning

Instead of designing decision schemes to solve the multiclass problem,
we can also let the computer decide what the best way is to combine the
probabilities from the binary models. Therefore, we will test the perfor-
mance of two machine learning models: multinomial logistic regression
and Random Forests.

Multinomial logistic regression can be regarded as a generalisation
of linear regression into a multiclass classification method. This means
that a linear combination of the scores for the different binary models
is calculated which can best predict the tumour class. To train this
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model, we evaluate the training data by the fourteen binary classifiers.
The output probabilities, combined with the known tumour labels of
the training data, is now used to estimate the coefficients of the logistic
regression model.

As a second technique, we use Random Forests once more to combine
the output scores from the binary problems into a multiclass classifier.
Again, the probabilities from the binary classifiers on the training set are
used as input for the model, and by randomly selecting equal numbers
from each class, we avoid bias towards a certain label.

The results of these techniques are displayed in table 6.3. We obtain
accuracies of 49.4% and 52.0% for multinomial logistic regression and
Random Forests, respectively. This is comparable to the performance
of the concatenated decision schemes. An important remark however is
that the scores on which these models are trained could be significantly
different from the scores of the test set. After all, the binary classification
models are evaluated on the data on which they are trained, possibly
giving overly optimistic scores.

Table 6.3: Confusion matrices giving the performance of machine
learning approaching combining the output of the binary classifiers.

(a) multinomial logistic regression:
accuracy = 49.4%

predicted
M1 A2 A3 O2 O3 G4

tr
ue

M1 5.52 0.21 0.20 0.00 0.03 1.04
A2 0.10 4.15 1.44 0.43 0.23 0.65
A3 0.00 2.05 2.74 0.33 0.41 1.47
O2 0.01 1.82 2.36 1.99 0.60 0.22
O3 0.13 1.63 1.63 0.51 1.24 1.86
G4 0.26 0.65 0.73 0.02 0.22 5.12

(b) Random Forests:
accuracy = 51.3%

predicted
M1 A2 A3 O2 O3 G4

tr
ue

M1 6.00 0.12 0.14 0.01 0.02 0.71
A2 0.10 3.73 1.45 0.83 0.47 0.42
A3 0.01 1.74 2.72 0.60 0.74 1.19
O2 0.00 1.42 1.69 2.84 1.05 0.00
O3 0.23 1.22 1.48 0.82 1.66 1.59
G4 0.51 0.38 0.76 0.06 0.38 4.91

6.4 Discussion

In this chapter, we have approached the multiclass primary brain tumour
diagnosis problem in an alternative way. Instead of directly modelling
the tumour grade and type, we have transformed the automated diag-
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nosis into a series of binary problems, which can be solved with great
accuracy. Our best method reaches an accuracy of 52.8%, which seems
unsatisfying. However, for every patient the probabilities for fourteen
separate binary problems are calculated, which can guide manual diag-
nosis. We achieve accuracies exceeding 85% for all binary problems that
do not distinguish between the four lower-grade glioma labels (see table
6.1). The multiclass classification is much harder than binary problems
due to propagation of errors. As an additional test, we used MATLAB’s
ClassificationLearner, an easy tool to quickly test a large number
of supervised machine learning methods, to evaluate the multiclass per-
formance on our data. This did not yield an improved result, suggesting
that the features we calculated do not contain enough information for a
better classification.

Our results confirm the finding of the previous chapter, that it is
difficult to distinguish between the lower-grade gliomas (astrocytoma
and oligodendroglioma WHO grade II and III). The same three possible
reasons might explain this finding: data heterogeneity, variability in
the gold standard labels, and a large degree of similarity between the
different lower-grade gliomas.

An improved segmentation algorithm (e.g. using deep learning ap-
proach) might result in a better classification accuracy. However, a deep
learning method based on T1ce and FLAIR scans does not yet exist. The
segmentation method we applied might yield unsatisfying results for low-
grade glioma, since manual interaction was required for some patients
to guide the tumour delineation. This was followed by automatic voxel
clustering to yield tumour masks with similar properties as the fully au-
tomatically obtained segmentations. Still, some enhancing blood vessels
might be regarded as enhancing tumour tissue, which can explain the
bias towards glioblastoma for the grade III glioma. Moreover, cystic
structures will be regarded as necrotic tissue.

For clinical purposes, more tumour types should be incorporated in
the model. We collected scans from pilocytic astrocytoma (n = 13),
ependymoma grade II (n = 8) and grade III (n = 8), neuronal-glial
tumours grade I (n = 7) and grade II (n = 10), high-grade meningioma
(n = 12) and medulloblastoma (n = 14) in our centre. However, we
deemed these numbers too low to be included in this study.
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6.5 Conclusion

In conclusion, we have further elaborated on a method to non-invasively
asses the diagnosis of primary brain tumour patients, based on two rou-
tinely acquired medical images. This maximises the clinical applicabil-
ity. Quantitative features, calculated in different tumour sub-regions
are used as input for fourteen binary model achieving a high accuracy.
The output probabilities of these binary problems can furthermore guide
classification into six different primary brain tumour classes. This can
be done using decision schemes or with machine learning models, both
yielding a similar total accuracy.

In the last two chapters, we have only included structural MRI scans
as information source. In the next chapter, we will try to improve the
performance by incorporating a different imaging modality.
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The added value of 18F-FET

PET for primary brain tumour
diagnosis

In the previous chapters, we addressed a non-invasive tool towards au-
tomated primary brain tumour diagnosis based on structural magnetic
resonance imaging (MRI) scans. This led to the conclusion that low-
grade meningioma and aggressive glioblastoma could be identified with
high accuracy, but discriminating between the lower-grade tumour labels
was considered more difficult. One of the possible explanations for this
finding is that these tumours might have a similar appearance on struc-
tural MRI, such that quantitative features calculated on these images do
not possess enough discriminative power. Therefore, we now incorpo-
rate information from a different imaging modality: 18F-FET positron
emission tomography (PET). The goal is to improve the diagnostic accu-
racy for one binary problem, namely the important distinction between
low-grade glioma (LGG, WHO grade II) and high-grade glioma (HGG,
WHO grade III-IV).

This work has been presented during the 2018 EANO conference
[237] and is being prepared for publication.

7.1 Introduction

In chapter 2, we briefly introduced 18F-FET for PET. It is the most fre-
quently used radiotracer in neuro-oncology due to its excellent tumour-
to-background contrast, practical half-life of 110 minutes and efficient
chemical synthesis process [238]. A 2D representation of the structure
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is displayed in figure 7.1.

Figure 7.1: 2D representation of the chemical structure of O-(2-
[18F]fluoroethyl)-l-tyrosine (18F-FET). Reprinted from [239], with
permission from Elsevier.

7.1.1 The biology of 18F-FET

O-(2-[18F]fluoroethyl)-l-tyrosine (18F-FET) is an analogue of tyrosine,
an important amino acid involved in protein synthesis and signal trans-
duction processes. 18F-FET is not metabolised and not incorporated
into proteins [240]. Its uptake in tumour cells is mediated by the l
(leucine preferring) amino acid transport system. The “large neutral
amino acid transporter” or “l-system amino acid transporter” LAT1,
a membrane transport protein, is responsible for the accumulation of
18F-FET in tumour cells [241]. Since these amino acid transporters
are overexpressed in glioma, 18F-FET is highly specific in brain tumour
imaging. As an additional advantage, disruption of the blood-brain bar-
rier (BBB) appears not to be required for 18F-FET uptake [240].

Another popular radiolabelled amino acid is l-[methyl-11C]methionine
(11C-MET). This amino acid is incorporated into proteins, and its imag-
ing specificity is therefore caused by a high rate of protein synthesis in
fast dividing tumour cells. Both 18F-FET and 11C-MET show a sim-
ilar tumour-to-background contrast, but 11C-MET has a more rapid
uptake [240, 128]. However, due to the short half-life of 11C (20 min-
utes), 18F-FET is often preferred, especially when an on-site cyclotron
for radiotracer synthesis is not available.

7.1.2 18F-FET PET in neuro-oncology applications
18F-FET PET is recommended for a number of different tasks by the
European Association for Neuro-Oncology (EANO) [123], which can
roughly be divided into the following categories.



7.1 Introduction 141

Diagnosis and classification

18F-FET PET is in the first place used for the diagnosis of cerebral
tumours. Gliomas show mostly an increased uptake compared to healthy
tissue [242], although uptake below the background level might also be
sign of malignancy [243]. Hot spots on 18F-FET PET provide an added
value over MRI for biopsy guiding and can therefore lead to an improved
histological and genetic tumour diagnosis [244, 245]. 18F-FET is also
preferred over 18F-FDG for biopsy guidance and treatment planning
[246].

A large deal of research has been conducted on non-invasive and
presurgical grading and classification of primary brain tumours based
on 18F-FET PET. Table 7.1 provides an overview on recent articles
addressing grading of untreated patients.

Most studies agree on a number of findings. By analysing static PET
scans, they often find significantly higher uptake in HGG compared to
LGG, but with considerable overlap due to interindividual differences,
hampering predictions on the individual level. In dynamic PET, the
dynamic behaviour is generally different between LGG and HGG. In
the low-grade patients, the 18F-FET signal is continuously increasing
until the end of acquisition, while in HGG patients the uptake shows an
early peak (around 10–20 min p.i.) followed by a decrease. This trend
is illustrated in figure 7.2.

(a) Low-grade gliomas (b) High-grade gliomas

Figure 7.2: Examples of the kinetic uptake pattern of 18F-FET in
glioma. Whereas low-grade glioma typically show a continuously
increasing signal, high-grade glioma display an early peak followed
by tracer wash-out. Reprinted with permission from [124], Copy-
right Springer 2007.
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Table 7.1: Overview of the literature on tumour grading of untreated glioma patients based on 18F-FET PET.
Author Static/

dynamic
Patients Findings

Weckesser et al.
(2005) [242]

Static +
dynamic

44 patients, 22 gliomas (5 LGG, 17 HGG) Significant difference between LGG and HGG in first image frame (0–10 min p.i.), different
kinetic behaviour

Pöpperl et al.
(2007) [124]

Static +
dynamic

54 patients (20 LGG, 34 HGG) Significant increase in SUVmax/BG (20–40 min p.i.) from LGG to HGG, but with marked
overlap; different kinetic behaviour: 94% sensitivity, 100% specificity

Calcagni et al.
(2011) [248]

Dynamic 32 patients (17 LGG, 15 HGG) Identification of three types of time-activity curves (TACs): always ascending, midway peak
followed by plateau or slow descent, early peak followed by steep descent (87% accuracy);
identification of two parameters with high accuracy: early-to-middle ratio and Tpeak (both
94%); logistic regression with early SUV and SumOfDifferences shows accuracy of 97%

Jansen et al.
(2012) [243]

Static +
dynamic

127 patients (71 LGG, 47 HGG, 9
others), non-contrast-enhancing MRI
lesions suspicious for LGG

No statistically significant differences in static parameters between LGG and HGG, unless
excluding oligodendroglioma; decreasing TAC: PPV 74.1% HGG, increasing TAC: NPV
94.7% HGG

Rapp et al.
(2013) [249]

Static 174 patients (77 LGG, 66 HGG, 31
others)

Significant differences between gliomas and non-neoplastic lesions, significant differences
between LGG and HGG, but not sufficient to justify clinical decision

Dunet et al.
(2014) [250]

Static +
dynamic

38 patients (16 LGG, 22 HGG) Poor accuracies for individual grading based on single parameters (ADC, magnetic
resonance spectroscopy (MRS), PET); combination of decreasing TAC and bimodal ADC
histogram yields best predictor of HGG

Albert et al.
(2016) [251]

Static +
dynamic

314 patients (131 LGG, 183 HGG) Static: best discrimination in 5–15 min time frame (accuracy 77.4%); dynamic: decreasing
TACs yields accuracy of 79.7%

Pyka et al.
(2016) [252]

Static 113 HGG patients (26 WHO III, 87
WHO IV)

Linear combination of texture parameters and MTV yields grading accuracy of 85%; three
texture parameters significantly correlated with OS and progression-free survival (PFS)

Verger et al.
(2017) [253]

Static +
dynamic

72 patients (22 LGG, 50 HGG) Significant differences between LGG and HGG based on static (AUC=0.80–0.83) and
dynamic parameters (AUC=0.78); similar accuracies on PWI rCBV parameters
(AUC=0.80–0.81)

Röhrich et al.
(2018) [254]

Static +
dynamic

44 patients (10 WHO II, 13 WHO III, 21
GBM)

Better correspondence between kinetic behaviour of 18F-FET and methylation-based
diagnosis than histological tumour classification; SUV significantly higher in GBM
compared to lower-grade; no difference in SUV between IDH wildtype or mutant but TTP
significantly shorter in IDH-mutant gliomas; significantly different K1 between GBM and
lower-grade gliomas, both histologically and methylation-based
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The higher uptake in HGG compared to LGG is probably due to a
higher regional blood volume, resulting from hypervascularisation, in-
creased angiogenesis and intratumoural microvessel density, and facili-
tated amino acid transport in malignant glioma [247, 124]. The exact
reasons for the difference in tracer kinetics are still not fully understood,
and a detailed discussion is outside the scope of this thesis. A disrup-
tion in the blood-brain barrier (BBB) might play a role, but is probably
not the only factor, since tracer washout is also observed in high-grade
patients without contrast-enhancement on MRI [243]. With increasing
malignancy, tumour cells could lose their ability to take up and retain
18F-FET [248]. Another mechanism could be the changed transport be-
tween intra- and extracellular amino acids, leading to a loss of unbound,
non-metabolised 18F-FET [124].

Similarly to tumour grading, Jansen et al. [149] showed that oligo-
dendrogliomas (with loss of heterozygosity on chromosomes 1p and 19q)
show a significantly higher 18F-FET uptake compared to astrocytomas,
especially in the WHO grade II gliomas. Moreover, they showed that
tracer uptake was independent of grade in oligodendroglioma, while in
astrocytoma a positive correlation between 18F-FET uptake and tumour
grade was seen. However, there was a significant overlap in uptake values
from oligodendroglial tumours and high-grade astrocytomas, and low-
grade oligodendroglioma often showed a decreasing uptake curve mim-
icking high-grade tumours, making it difficult to provide a PET-based
prediction of tumour type.

Finally, 18F-FET PET can be used to detect progression to malig-
nancy of low-grade glioma, as was shown by Galldiks et al. [255]. Com-
pared to MRI, where a change in contrast enhancement is an indication
of tumour progression, PET achieves a significantly higher accuracy to
identify malignant progression. Therefore, repeated 18F-FET PET can
be considered for low-grade glioma patients for whom a watch-and-wait
strategy was opted.

Treatment planning and prognosis

Due to the specificity of 18F-FET imaging of glioma, it can play an im-
portant role in radiotherapy planning. Several authors compared the
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biological tumour volume (BTV) based on 18F-FET PET with the con-
ventional gross tumour volume (GTV) based on MRI [256, 257], showing
the added value of amino acid imaging over MRI. On the other hand,
differences between BTVs on early and late 18F-FET PET images might
be an indication of IDH-status, as was shown recently [258].

Next to treatment planning, 18F-FET imaging can be used for prog-
nosis. Floeth et al. [259] were able to stratify 33 low-grade glioma
patients into three prognostic subgroups based on MRI and 18F-FET
PET features: patients with no malignant transformation (n = 11), pa-
tients with tumour progression but a low probability of death (n = 13),
and patients with tumour progression to malignancy and a high risk of
death (n = 9). Jansen et al. [260] evaluated 18F-FET PET scans of
low-grade astrocytoma patients. Their analysis showed that decreasing
time-activity curves are highly prognostic for shorter PFS and time to
malignant transformation. This finding was confirmed by Suchoska et
al. [261] for the overall survival (OS) in glioblastoma patients. More-
over, they showed that a smaller BTV prior to radiochemotherapy is
related to a longer PFS and OS in glioblastoma.

Therapy response assessment and tumour recurrence

Amino acid imaging can also play an important role during and after
therapy. A decrease in 18F-FET uptake in the early days after comple-
tion of chemoradiotherapy is a highly significant predictor for a longer
PFS and OS in glioblastoma patients [262]. Also in patients with recur-
rent high-grade gliomas treated with antiangiogenic drugs such as be-
vacizumab, 18F-FET PET can be used to assess the treatment response
better than MRI, both using static [263] and dynamic [264] parameters.

One of the main problems in the follow-up of glioma patients is dis-
tinguishing between treatment-related changes and tumour recurrence
or progression. On conventional MRI this distinction is hard to make.
Increased mass effect or changing contrast enhancement are typical fea-
tures of tumour recurrence or progression, but can also occur as a side-
effect (e.g. radionecrosis) to radio(chemo)therapy. These symptoms can
happen in the early stage (within the first three months, i.e. pseudopro-
gression), but also later on, even up to several years after finishing the
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therapy [265, 266, 125].
In 2004, Pöpperl et al. [267] showed that focally increased uptake of

18F-FET could confidently distinguish between benign therapy-induced
changes and tumour recurrence/progression. However, there was a large
signal overlap between the different tumour grades, making a differential
diagnosis not possible based on static parameters alone. On a different
patient cohort, they achieved a positive predictive value of glioma recur-
rence after treatment of 84% using the previously established 18F-FET
criteria [268]. The same authors [247] showed that dynamic 18F-FET
PET has an added value in pretreated patients with a suspicious MRI.
Similarly as in untreated cases, tumour-free or low-grade tumour pa-
tients show an increased PET signal until the end of acquisition. How-
ever, in high-grade glioma patients, the uptake showed a peak around
5–15 minutes after injection and then decreased.

In a large study, Galldiks et al. [125] showed that a mean tumour-to-
background ratio larger than 2 and a time-to-peak less than 45 minutes
achieves an accuracy of 93% in identifying tumour recurrence or progres-
sion. A more recent study showed that static 18F-FET PET parameters
can be used in the discrimination of tumour recurrence and treatment-
related changes in glioblastoma patients treated with tumour-treating
fields [269]. This is a recent technique applying low intensity alternating
electric fields to the tumour, thereby inhibiting tumour growth [270].

Finally, Lohmann et al. [158] achieved an increased accuracy in dis-
tinguishing radiation injury from tumour recurrence in brain metastases
when performing textural analysis. They showed that texture features
calculated on standard static scans have an added value over conven-
tional intensity-based and dynamic parameters.

7.1.3 Goal

The goal of our study is to accurately predict the tumour grade (low-
grade or high-grade) of untreated glioma patients. Therefore, we will
apply the methodology developed in the previous chapters to static 18F-
FET PET images. This is preferred over dynamic scanning to maximise
the patients’ comfort due to the shorter scanning time. Inspired by the
texture analysis approach of Pyka et al. [252], we will extract quan-
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titative features and analyse them using machine learning. However,
instead of delineating the tumour on the PET scan, we will automati-
cally segment the tumour into several compartments on structural MRI
images, and apply these masks to the PET scans.

7.2 Materials and methods

We start this section with an overview of the patient data that are
used for the analyses. Afterwards, the preprocessing steps, automated
tumour segmentation and feature extraction are explained. Finally, the
quantitative features are analysed using machine learning techniques.

7.2.1 Data

We included thirty patients in this retrospective study. Inclusion cri-
teria were the availability of both a 18F-FET PET and a structural
MRI scan prior to surgery or treatment, and a histologically proven
primary brain tumour. Fourteen patients were diagnosed with a low-
grade glioma, among which 11 diffuse low-grade astrocytoma (WHO
grade II), 1 low-grade ependymoma (WHO grade II), and 2 grade I
neuronal-glial tumours (1 ganglioglioma and 1 rosette-forming glioneu-
ronal tumour). From the 16 patients in the high-grade glioma class,
there were 4 anaplastic astrocytomas (WHO grade III), 4 anaplastic
oligodendrogliomas (WHO grade III) and 8 glioblastomas.

All patients fasted for at least 6 hours before an intravenous 18F-FET
bolus injection (dose expressed in MBq) of 2.7–2.8 times the body weight
(expressed in kg). Dynamic image acquisition started at the moment of
tracer injection and lasted for 50 minutes. A summed image of the last
10 minutes of acquisition is saved as static scan.

For three patients, the PET scans were performed on an Allegro PET
imaging system (Philips Co., Cleveland, Ohio, USA), which consists of a
gadolinium oxyorthosilicate (GSO) full-ring PET scanner with a spatial
resolution of about 5mm (centre field-of-view (FOV): 4.65mm verti-
cal, 5.00mm horizontal full width at half maximum (FWHM); 10 cm
transverse offset Y: 5.47mm vertical, 5.25mm horizontal; 10 cm trans-
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verse offset X: 5.26mm vertical, 5.66mm horizontal according to inter-
nal acceptance report). The system also includes 137Cs rods for trans-
mission scanning, used for attenuation and scatter correction purposes.
Scans are acquired in high-resolution mode (matrix 128× 128× 90 and
voxel size 2mm× 2mm× 2mm). Image reconstruction was performed
using the row-action maximum likelihood algorithm (RAMLA) in 3D,
with two iterations and using generalized Kaiser-Bessel window func-
tions (“blobs”) as basis functions. Blob- and reconstruction parameters
were optimized for brain PET imaging.

All other patients were scanned on a Biograph mCT Flow system
(Siemens Healthcare, Erlangen, Germany), consisting of four lutetium
oxyorthosilicate (LSO) detector rings of 842 mm in diameter [271]. The
resolution is about 4.5mm (centre FOV: 4.5mm axial, 4.4mm trans-
verse; at 10 cm offset: 5.9mm axial, 4.9mm transverse, according to in-
ternal acceptance report). The ordered subset expectation maximization
(OSEM) algorithm was used for image reconstruction with CT-based
attenuation and scatter correction, using two iterations and 21 sub-
sets including time-of-flight information and resolution recovery, and a
Gaussian post filter of 3mm. The resulting image matrix with UHD set-
tings contains 400× 400× 400 voxels with a size of 1.018mm× 1.018mm
× 3mm.

7.2.2 Preprocessing

As before, the T1ce scans were normalised to MNI-space, trilinearly in-
terpolated to a 1mm× 1mm× 1mm voxel size and bias field corrected
using SPM12 (version 6906, Wellcome Trust Centre for Neuroimaging,
London) [182], running on MATLAB R2017b (The MathWorks, Inc.,
Natick, MA). SPM12 was also used to coregister the FLAIR scans, if
available, to the T1ce images. The 18F-FET PET scans were coregis-
tered to the T1ce scans using PMOD (PMOD Technologies, Switzer-
land, www.pmod.com). This software was preferred over SPM12 since
it yielded visually better results.

The intensities on the MRI scans were normalised using the white-
stripe method [138]. Since the parameters necessary for conversion to
standardised uptake value (SUV) were removed during the conversion

www.pmod.com
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of the PET scans to NIfTI-format, we simply divided the intensities by
the maximal value to obtain normalised images.

7.2.3 Segmentation and feature extraction

The automated Random Forests based segmentation algorithm devel-
oped in chapter 4 was applied to the T1ce and FLAIR scans. However,
for 5 patients only a presurgical T1ce optimised for neuronavigation was
available. Therefore, the workflow of chapter 4 was repeated in order
to create a segmentation algorithm able to work on T1ce scans alone.
Although achieving a lower performance than the version incorporating
both T1ce and FLAIR scans, the method is still able to delineate the
contrast-enhancement, tumour core and total abnormal region with rea-
sonable accuracy [191]. The segmentation masks were transferred to the
PET scans, as is illustrated in figure 7.3.

(a) T1ce (b) FLAIR (c) 18F-FET PET

(d) T1ce
+ segmentation

(e) FLAIR
+ segmentation

(f) 18F-FET PET
+ segmentation

Figure 7.3: Patient with a large lesion in the cerebellum showing
high focal 18F-FET uptake diagnosed as glioblastoma. The au-
tomated segmentation method developed in chapter 4 is applied
to the T1ce and FLAIR scans, and transferred to the PET scan.
The segmentation process was not entirely successful, as the small
contrast-enhancing regions in the middle of the tumour are missed,
and blood vessels are assigned a contrast-enhancing tumour label.
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Next, we calculated the 207 features introduced in chapter 3 in four
tumour masks on both T1ce and 18F-FET PET scans:

• oedema

• non-enhancing, non-necrotic region

• tumour core

• total abnormal region.

These are complemented with 27 features capturing the location of the
tumour and the contrast between the tumour intensities and the sur-
rounding tissue. In this way a total of 1683 features were extracted for
every patient. Since a FLAIR scan was not available for all patients, we
did not calculate features on this scan type.

7.2.4 Feature reduction and machine learning

Every feature is first transformed to have zero mean and unit variance.
Then, we hold out one patient as test set and use the other patients to
train on. A two-sample t-test with the assumption of unequal variance is
performed to select features with a significantly different mean between
the LGG and HGG classes, and the 150 features with smallest p-value
are retained. Next, sequential forward selection is applied using five-fold
cross validation on the training set, assessed using Random Forests. In
this way, 15 features with complementary predictive power are selected.
This process is repeated for every patient.

For every left out patient, a different set of 15 features can be found,
making it difficult to assess the global accuracy. Therefore, we combine
the different feature sets in order to yield a ranked set of features valid
for all patients. When a feature is selected first in the SFS algorithm,
we accredit it with 15 points, when selected second 14 points, and so on.
Then the scores for all features are summed up and ranked to yield the
most predictive features.

Finally, the previously ranked features are used to train a Random
Forests model. Since the class sizes are not equal, we train four different
Forests, each time on random subsets of LGG and HGG patients with the
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smallest class size. In particular, when evaluating a low-grade patient,
we use the remaining 13 LGG samples, and randomly sample 13 of the
16 HGG patients to train a first model. When evaluating a high-grade
patient, we use all 14 LGG samples, and sample 14 of the remaining 15
HGG samples. This procedure is repeated four times, as this reduces the
probability for a patient not being selected to less than 0.1% ((3/16)4).
The output of these four models is then combined to yield the final
prediction.

Due to the small sample size, we assess the accuracy of this method
using leave-one-out validation. This experiment is repeated three times:
using only T1ce-based features, only 18F-FET PET-based features, or
the combination of both.

7.3 Results

7.3.1 Feature ranking

The best performing features for every model are shown in table 7.2.
Many of the most predictive features are based on infiltrating or oede-
matous tissue rather than the tumour core (7/10 on T1ce, 6/10 on 18F-
FET, 6/10 on the combination). Moreover, the GLCM-based feature
“informational measure of correlation 2”, a very complex texture pa-
rameter (see feature definition in Appendix A), is found seven times in
the top-10 most predictive features on the combination of 18F-FET PET
and T1ce.

In the combination list, only one out of ten features is based on
T1ce. This feature also ranked first in the T1ce-based list. Moreover,
most highly ranked texture features are based on a distance of 2–3 mm
on both modalities. This demonstrates that relevant texture occurs at
larger spatial scales than the 1 mm3 voxel size.
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Table 7.2: Best feature for distinguishing LGG from HGG pa-
tients.

based on T1ce based on 18F-FET PET combination
1 non-enh/non-necr: GLCM -

Informational measure of cor-
relation 2 (d=2, std)

non-enh/non-necr: GLCM -
Informational measure of cor-
relation 2 (d=3, std)

FET - total abnormal: his-
togram - Range

2 non-enh/non-necr: GLRLM -
High gray level run emphasis
(std)

non-enh/non-necr: GLCM -
Informational measure of cor-
relation 2 (d=2, std)

FET - non-enh/non-necr:
GLCM - Informational mea-
sure of correlation 2 (d=3,
std)

3 core: GLCM - Variance (d=2,
std)

total abnormal: GLCM - In-
formational measure of corre-
lation 2 (d=2, std)

T1ce - non-enh/non-necr:
GLCM - Informational mea-
sure of correlation 2 (d=2,
std)

4 core: GLSZM - Zonelogl non-enh/non-necr: GLCM -
Correlation2 (d=2, mean)

FET - non-enh/non-necr:
GLCM - Informational mea-
sure of correlation 2 (d=2,
std)

5 oedema: GLRLM - Run length
non-uniformity (mean)

oedema: GLCM - Informa-
tional measure of correlation 2
(d=2, std)

FET - total abnormal: GLCM
- Informational measure of
correlation 2 (d=3, std)

6 oedema: GLCM - Correla-
tion2 (d=3, mean)

total abnormal: GLCM - Max-
imum probability (d=1, std)

FET - total abnormal: GLCM
- Informational measure of
correlation 2 (d=2, std)

7 non-enh/non-necr: Shape -
Maximum 3D diameter

non-enh/non-necr: GLRLM -
Run percentage (std)

FET - non-enh/non-necr: his-
togram - Range

8 non-enh/non-necr: GLRLM
- Gray level non-uniformity
(std)

core: GLRLM - Short run low
gray level emphasis (std)

FET - oedema: GLCM - In-
formational measure of corre-
lation 2 (d=2, std)

9 non-enh/non-necr: GLSZM -
Glnonunif

total abnormal: GLCM - Cor-
relation2 (d=2, mean)

FET - core: GLCM - Informa-
tional measure of correlation 1
(d=1, mean)

10 total abnormal: GLCM - Au-
tocorrelation (d=3, std)

oedema: GLRLM - Long
run low gray level emphasis
(mean)

FET - oedema: GLCM - Cor-
relation2 (d=2, mean)

7.3.2 Model parameters leading to best perfor-
mance

The optimal model parameters (number of trees and number of fea-
tures) are determined using grid search, where different combinations of
parameters are tested. The accuracies and corresponding AUC values
for the different models are visually given in figure 7.4.

From these graphs, it is clear that the best performance is obtained
when 3–6 features are included in the model combining 18F-FET PET
and T1ce features. However, as including five features is most robust
when changing the number of trees in the model, this setting was chosen.
Similarly, we chose the optimal parameters for the individual PET and
MRI models. Using T1ce alone, the best accuracy (27/30) is obtained
when including 3–4 features and a low number of trees, but since this was
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(a) T1ce: accuracy (b) T1ce: AUC

(c) 18F-FET: accuracy (d) 18F-FET: AUC

(e) T1ce + 18F-FET: accuracy (f) T1ce + 18F-FET: AUC

Figure 7.4: Grid search showing the prediction performance, val-
idated by leave-one-out, of Random Forests classification model
in function of the number of features and the number of trees.
The total number of trees is four times higher, since the model is
trained on four slightly different, balanced subsets, and the pre-
diction scores are averaged. Optimal results for every model are
given in table 7.3.

not reproducible when increasing the forest size, this result is probably
not robust. Therefore, we chose to include 8 features instead. The
corresponding accuracies and AUC-values are given in table 7.3.

Using 6 PET-based features, the model correctly classifies 25/30 pa-
tients, while using 8 T1ce-based features, the accuracy reaches 26/30.
When combining both scans, the accuracy increases to 29/30 patients
correctly classified. The one misclassified patient was diagnosed with a
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Table 7.3: Model parameters leading to the best performance in
the discrimination of LGG and HGG patients.

no. features no. trees accuracy AUC
based on T1ce MRI 8 25 86.7% 0.953

based on 18F-FET
PET 6 50 83.3% 0.839

combination 5 25 96.7% 0.964

diffuse low-grade astrocytoma, WHO grade II, but was predicted with
85.5% probability to be high-grade by the model. Scans of this pa-
tient are displayed in figure 7.5. Visually, there are no signs of a high-
grade glioma, as it is a small temporal lobe lesion showing no contrast-
enhancement or increased 18F-FET uptake. However, errors during the
coregistration step (obvious when comparing the size of the cerebellum
on the MRI and PET images) might lead to the poor prediction perfor-
mance of this patient.

7.4 Discussion

In this chapter, we conducted a study based on quantitative features
calculated on static 18F-FET PET and T1ce MRI in order to discrim-
inate low-grade glioma from high-grade glioma patients. We achieve a
near-perfect prediction of 29/30 correctly classified patients, which is
matching the best performance in literature (Calcagni et al. [248]: 97%
accuracy using logistic regression on two dynamic features including 32
patients).

The main difference between this study and studies in literature is
the delineation of the tumour on the scan. Usually, the tumour is defined
by an intensity threshold on the 18F-FET PET scan, such as a factor
(e.g. 1.4) of the background uptake or a percentage of the maximal
value in the tumour. Alternatively, a more robust tumour segmentation
algorithm on the PET scan can be used (see e.g. the results on the
first MICCAI challenge on PET tumour segmentation for a thorough
comparison of different methods [272]). However, since gliomas do not
always show an increased 18F-FET uptake compared to the background,
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(a) T1ce (b) FLAIR (c) 18F-FET PET

(d) T1ce
+ segmentation

(e) FLAIR
+ segmentation

(f) 18F-FET PET
+ segmentation

Figure 7.5: Patient with a lesion in the left temporal lobe, show-
ing hypointensity on T1ce, hyperintensity on FLAIR, but no clear
18F-FET uptake. Again, the segmentation process was not entirely
successful, as blood vessels are assigned a contrast-enhancing tu-
mour label. The patient was diagnosed as diffuse low-grade as-
trocytoma, WHO grade II, but misclassified as high-grade by the
Random Forests model.

such an approach was not possible in our study. We therefore chose
to automatically delineate the tumour on MRI scans into several com-
partments. This has the added advantage of using the high-resolution
anatomical information, instead of the much lower resolution obtained in
PET imaging. Still, as the GTV seen on MRI does not always agree with
the BTV seen on PET [256, 257], relevant information on the tumour
visible on PET might not be included. Moreover, good performance of
the coregistration step of the PET image to the T1ce scan is required.

The only study up to now evaluating the role of texture analysis
in 18F-FET imaging with the goal of tumour grading is performed by
Pyka et al. [252]. They only included grade III and grade IV glioma,
and calculated textural features based on the neighbourhood grey-tone
difference matrix (NGTDM). Combined with the tumour volume, their
model achieved an accuracy of 87%. This is slightly higher than the per-
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formance we achieved when only including PET-based features (83.3%).
A significantly larger patient population (113 patients: 22 grade III, 87
grade IV) might explain the better result. Although we also included
the same NGTDM features, there are only features based on the GLCM
in our best performing model. A possible explanation for this diverg-
ing finding might be that the NGTDM retains the units of the original
data, being SUV in the study of Pyka et al. Since we were lacking
the necessary information to transform the data into SUV due to the
anonymisation process, we had to apply a different intensity normali-
sation procedure. This might also cause the histogram features to be
less robust. There are indeed no histogram features in the selected list
based on 18F-FET PET alone. However, the feature “range” on the total
abnormal region was selected first in the combined feature list.

Our grid search analysis shows that the best results are obtained
when using a relatively low number of trees per forest (either 4× 25 or
4×50), and that increasing the number of trees does not lead to a better
performance, but to a more computationally costly procedure. This is in
line with the results of Oshiro et al. [273]. They applied Random Forests
for classification on 29 different datasets, and concluded that using 64–
128 trees in a model shows the optimal trade-off between computational
cost and performance.

In chapters 3 and 6 we also performed binary classification between
different tumour grades, based on structural MRI parameters. For dis-
tinguishing between lower-grade tumours and glioblastoma, we achieved
accuracies of 88.0%, while for distinguishing between LGG and HGG
the accuracy was 83.0%. From these analyses, it was clear that the
best performing features are based on the T1ce scan. In this chapter,
we obtain a performance of 86.7% when only including T1ce features in
the discrimination of LGG and HGG samples. However, when including
18F-FET PET features as well, the accuracy increases with 10%, prov-
ing the added value of amino acid imaging for glioma grading. To the
best of our knowledge, this is the first study to combine MRI and PET
features for this purpose.

There are some limitations to our study. First of all, the feature
selection procedure is not independent from the test set, which might
cause overfitting. This leads to features that are best suited to describe
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our dataset, but we have little certainty that this will also be the case on
an independent dataset. Therefore, our method should be thoroughly
validated on a large and independent dataset in order to gauge the real
performance. However, since we only had data of 30 patients, this was
not possible.

Secondly, we did not use dynamic data, nor did we have information
on the molecular diagnosis of our patients. A recent study by Röhrich
et al. [254] showed that dynamic 18F-FET PET is very well suited
to predict the methylation status of gliomas, while a worse prediction
performance is obtained when the tumours are classified according to the
standard histological parameters. Specifically, a significant difference in
time-to-peak was noted when the IDH-wildtype lower-grade glioma were
included in the glioblastoma group, whereas this was not the case based
on histology. Moreover, all the histological grade II/III gliomas which
were clustered in the GBM methylation group showed a HGG-like TAC.
As was shown by Jansen et al. [260], patients with a typical high-grade
uptake profile show a highly significant worse prognosis. It is therefore
not unthinkable that in future updates of the WHO classification of
gliomas, both tumour methylation status and dynamic 18F-FET PET
behaviour will be taken into account for the distinction between low-
grade and high-grade tumours.

In our dataset, IDH-status is only based on immunohistochemical
(IHC) analysis for mutant R132H IDH1 protein. Nine LGG grade II
and two grade III patients had a negative IHC result, but according to
the WHO guidelines, this is not sufficient for the diagnosis of a IDH-
wildtype tumour [54], as sequencing is not available. Moreover, one
glioblastoma had a positive IHC and is therefore IDH-mutant. This pa-
tient should therefore be rearranged to a high-risk IDH-mutant glioma
without 1p/19q codeletion subgroup. More crucially however, the diag-
nosis of 16 patients was based on a biopsy sample, whereas the remaining
14 patients received a tumour resection. This might lead to several er-
roneous groundtruth grade labels [274, 89].

In a follow-up study, it would be very interesting to learn how well
texture parameters, calculated on a static image and possibly comple-
mented with MRI-features, compare to dynamic 18F-FET behaviour in
predicting the tumour status of patients who are fully stratified accord-
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ing to their molecular profile. Since for static images a much shorter
scanning protocol is needed (e.g. 10 minutes compared to 40 minutes
for dynamic acquisition), this increases the comfort of the patient, and
makes it possible to scan more patients per day.

7.5 Conclusion

In this chapter, we showed that amino acid imaging by means of 18F-
FET PET can complement MRI for the grading of primary brain tu-
mours. Automatically segmented tumour regions on MRI were trans-
ferred to the PET images, and from both modalities we calculated quan-
titative features. In a Random Forests classification model, 29 out of
30 patients were correctly predicted. A thorough validation on a large
and independent dataset with full molecular tumour characterisation is
however necessary to confirm this result.





8
Conclusion and future

perspectives

In this final chapter, we look back at each part of this thesis and sum-
marise the main conclusions that can be drawn from them. Based on
these results, we formulate possibilities for future research directions.
Finally, we end this book with a conclusion.

8.1 Summary

In chapter 2 we introduced five research domains related to this PhD
dissertation. Computer-aided diagnosis was defined as a class of com-
puter systems that aim to assist in the detection and/or diagnosis of
diseases through a “second opinion”. Different CAD systems are already
routinely used in clinical practice, such as in screening mammography or
chest radiography. Next, we focused on neuro-oncology, and mainly on
primary brain tumours. In the 2016 classification of the WHO, for the
first time genetic and molecular parameters are integrated, complement-
ing the histological findings. This leads to a more objective diagnosis,
which is also better able to describe the patient’s prognosis. This section
was followed by explaining the working principles and neuro-oncological
applications of MRI and PET. These imaging modalities provide struc-
tural and functional information on the tumour and its environment.
They are however not able to directly map the important genetic and
molecular features. The radiomics hypothesis is that distinct microscop-
ical patterns might be translated into imaging signals that can be picked
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up by dedicated computer algorithms. Therefore, techniques from ma-
chine learning are applied to analyse feature vectors extracted from the
medical images. We explained several techniques from both supervised
and unsupervised learning.

Primary brain tumour grading has important prognostic and thera-
peutic implications. Therefore, we studied a non-invasive tool in order
to distinguish between lower-grade gliomas and glioblastomas in chap-
ter 3. The BraTS 2017 dataset, consisting of 75 lower-grade and 210
high-grade glioma patients, was used for this experiment. For every
patient, four different MRI scans and a manual tumour delineation are
provided. We explained different types of quantitative features, includ-
ing histogram, shape, texture and environment parameters. In total,
2097 features were extracted per patient, capturing the appearance on
two MRI sequences and in different tumour regions. Since this number
is much larger than the amount of patients, we discussed several dimen-
sionality reduction methods. Finally, we compared the performance of
five binary classifiers combined with six feature reduction techniques.
The best result was obtained when using a Random Forests classifier
including 700 features, achieving an accuracy of 88.0%. When combin-
ing Random Forests with SFS, an accuracy of 85.7% was obtained with
only 24 features.

Brain tumour segmentation on medical images is a time-consuming
job and can give rise to inter- and intra-observer variability when per-
formed in a manual fashion. Moreover, results in literature have shown
that quantitative features are more robust when calculated on (semi-)
automatically segmented tumour masks. Therefore, we examined differ-
ent automated approaches towards brain tumour segmentation in chap-
ter 4. These can roughly be divided into three categories: generative
methods, discriminative methods, and deep learning. We developed a
flexible, generative algorithm based on outlier detection. This method
is able to accept any number and type of scans. Without requiring a
training set, it achieves a median Dice score of 73.3% on the BraTS
dataset. However, as it relies on the detection of healthy tissue, an ex-
cellent coregistration of healthy tissue probabilities maps is necessary.
Moreover, although segmenting the tumour into different classes, only a
reliable label for the entire abnormal region is provided.
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Therefore, we developed a second, discriminative approach. For ev-
ery voxel, texture and abnormality features are calculated and classified
by a pretrained Random Forests model. This method requires a T1ce
and FLAIR MRI scan, and recognises the appearance of different tu-
mour tissues. Especially for high-grade glioma, this method provides
good results, with median Dice scores of 74.8%, 75.0% and 80.1% for
segmenting the enhancing tumour, tumour core and total abnormal re-
gion, respectively. However, discriminating between oedema and non-
enhancing tumour proved to be difficult.

This segmentation algorithm was applied to clinical scans in chapter
5. We collected 352 patients from 8 different centres, divided into 6
tumour classes. For every patient, we extracted a total of 2097 features,
divided over two MRI scans and five tumour regions. These features
were implemented into multiclass Random Forests classification mod-
els for grade and tumour type. Using these classifiers, tumour grade
can be predicted with an overall accuracy of 60.3%, and tumour type
with 65.6%. However, the models show a poor performance for grade
III gliomas and oligodendrogliomas, respectively, hampering the use in
clinical practice.

Therefore, we investigated 14 specific binary models in chapter 6.
These can provide answers when previous knowledge on the tumour
is available. Suppose for example that the radiologist suspects a lower-
grade glioma based on the images, then the models are able to accurately
predict probabilities for binary questions such as “grade II versus grade
III”, or “astrocytoma versus oligodendroglioma”. For every one of the
14 classifiers accuracies exceeding 75% are obtained. In a second part,
we designed four decision schemes combining the binary classifiers into
a multiclass model. Our best result was obtained when first distinguish-
ing between the lower-grade gliomas and meningiomas/glioblastomas,
followed by splitting the lower-grade gliomas according to type, and
finally by grade, yielding an overall accuracy of 52.8%. Letting the com-
puter decide how to best combine the scores from the binary models did
not improve this result.

Finally, in chapter 7 we were able to optimise the automated distinc-
tion between low-grade and high-grade glioma based on features calcu-
lated on 18F-FET PET. In literature, there is sufficient evidence towards
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using the dynamic uptake of amino acid radiotracers as a biomarker of
tumour grade. In this dissertation, we showed that a Random Forests
classifier trained on static 18F-FET PET and T1ce MRI texture features
achieve a near-perfect accuracy of 29/30 correctly predicted patients.
This would mean that the scanning time can be significantly reduced,
thereby increasing the patient’s comfort. However, validation on a larger
and independent dataset is necessary to confirm this result.

8.2 Research possibilities

First of all, this work should be viewed in the light of computer-aided
diagnosis. We have stressed that all our models provide probabilities for
different possible classes, which can be interpreted by a radiologist in
order to lead to the correct diagnosis. An interesting study is therefore
to measure in fact how well the computed models can aid the radiolo-
gist. A possible study design to perform this experiment consists of three
branches. As a first task, one or preferably more radiologists are asked to
look at brain tumour scans, and subsequently write down the diagnosis
they deem most probable. In the second step, the same physicians look
at scans from different patients, but they simultaneously receive the out-
put probabilities from all machine learning models. In the last part, the
radiologists again get a different set of images and are asked to give their
most probable diagnosis, after which they can reveal a selection of their
choice of the computer predictions and adapt their diagnosis if wanted.
This experiment will not only allow to gauge the human performance,
but also if this improves when using the computer models. Moreover,
the last section will show which classifiers are deemed necessary, and to
which extent this influences the decision of the physician.

As a second future perspective, a larger amount of more detailed
patient data could significantly impact the performance. Combining
datasets from different centres would for example not only yield more
patients, but would also further increase the heterogeneity of imaging
settings. A careful analysis of the extracted feature vectors will result
in features that are able to overcome this heterogeneity, and are there-
fore stable across imaging systems, increasing the clinical applicability.
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Moreover, we could further expand the datasets with, next to 18F-FET
PET, images from diffusion and perfusion weighted MRI. These imaging
techniques provide a detailed view on the tumour biology. Results in lit-
erature convincingly show the added value for several classification tasks
using these advanced MRI methods. When collecting a large database,
one should also pay attention to the full molecular and genetic character-
isation of the patients. This will allow to non-invasively predict some of
these biomarkers, such as IDH-status, MGMT promoter methylation, or
proliferation with ki-67. This is the research domain of radiogenomics.

A final possible research track is the improvement of the techniques
we used. Most of the current applications of AI are based on deep learn-
ing. In a first step, the segmentation can be improved using CNNs, as
this is the method of choice of the winners of the last few editions of
the BraTS competition. A better segmentation result will also result in
more robust extracted features, and therefore an improved classification
result. In a second phase, the segmentation phase can even by bypassed
using deep learning, and CNNs can be learned that are directly able to
predict tumour grade, type or molecular parameters based on the scans
themselves instead of extracted features. However, when trained from
scratch, these models need a very large training set, typically consisting
of tens of thousands patients. A transfer learning approach can reduce
the need for these large amounts of data. In this case, the network is
first learned on a large labelled database such as ImageNet, contain-
ing millions of images in thousands of categories such as “balloon” or
“strawberry”. In this way, the model learns to extract robust features
which contain a large amount of information. Afterwards, the pretrained
network parameters are further optimised for the specific tumour clas-
sification task.

8.3 Conclusion

In this dissertation, we have shown several applications of artificial in-
telligence that can aid in the diagnosis of primary brain tumours based
on medical images. We have developed an automated brain tumour
segmentation algorithm using Random Forests classification. The de-
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lineated tumour regions can be used to extract quantitative features
describing the appearance of the tumour on different scans. Based on
these features, we were able to solve 14 binary problems with high accu-
racy using structural MRI scans. When combined with texture features
calculated on static PET scans of the amino acid radiotracer 18F-FET,
we achieve a near-perfect prediction of tumour grade, a finding with
important prognostic and therapeutic consequences for brain tumour
patients. These techniques can thus aid physicians in non-invasively
predicting the diagnosis prior to surgery.



A
Radiomics features

In this appendix, we provide formal definitions for the quantitative fea-
tures that we used in this dissertation. Most formulas are identical to
those by Aerts et al. [144], except for the features based on the GLSZM
and NGTDM, where we used the definitions from Willaime et al. [209].

Histogram

Assume that the 3D image is given by the matrix X. The tumour ROI
consists of N voxels, all other voxels are set to not-a-number (NaN).
We calculate the histogram P with Nl discrete intensity levels. The
histogram features are then given by:

energy =
N∑

i=1

X(i)2

entropy = −
Nl∑
i=1

P(i) log2 P(i)

mean = X̄ = 1
N

N∑
i=1

X(i)
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kurtosis =
1
N

∑N

i=1

(
X(i)− X̄

)4(√
1
N

∑N

i=1

(
X(i)− X̄

)2
)4

minimum = minimum intensity value of X
maximum = maximum intensity value of X
median = median intensity value of X

mean absolute deviation = 1
N

N∑
i=1

|X(i)− X̄|

range = maximum−minimum

root mean square =

√∑N

i=1 X(i)2

N

skewness =
1
N

∑N

i=1

(
X(i)− X̄

)3(√
1
N

∑N

i=1

(
X(i)− X̄

)2
)3

standard deviation =

(
1

N − 1

N∑
i=1

(
X(i)− X̄

)2

) 1
2

uniformity =
Nl∑
i=1

P(i)2

variance = 1
N − 1

N∑
i=1

(
X(i)− X̄

)2

Shape and size

volume = V = number of voxels in the ROI multiplied
with the voxel size

area = A = surface area, calculated by triangulation

=
N∑

i=1

1
2 |aibi × aici|

where a, b and c are edge vectors of the N triangles

surface to volume ratio = A

V
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compactness 1 = V
√
πA

2
3

compactness 2 = 36πV
2

A3

spherical disproportion = A

4πR2

with R =
(3V

4π

) 1
3

the radius of a sphere

with the same volume as the ROI

sphericity = π
1
3 (6V ) 2

3

A

maximum 3D diameter = largest pairwise Euclidean distance
between voxels on the surface of the ROI

Texture

GLCM

If GLCM is the grey-level co-occurrence matrix of the ROI with N

voxels, in direction θ with distance d and Ng the number of discrete
intensity levels, then we first define:

p(i, j) = GLCM(i, j)∑
i,j

GLCM(i, j)
px(i) =

Ng∑
j=1

p(i, j)

µ = 1
N

∑
i,j

p(i, j) py(j) =
Ng∑
i=1

p(i, j)

µx = mean of px σx = standard deviation of px

µy = mean of py σy = standard deviation of py

px+y(k) =
Ng∑
i=1

Ng∑
j=1

p(i, j) ; i+ j = k ; k = 2, ..., 2Ng

px−y(k) =
Ng∑
i=1

Ng∑
j=1

p(i, j) ; |i− j| = k ; k = 0, ..., Ng − 1



168 A Radiomics features

HX = −
Ng∑
i=1

px(i) log2 (px(i)) (= entropy of px)

HY = −
Ng∑
j=1

py(j) log2 (py(j)) (= entropy of py)

HXY = −
Ng∑
i=1

Ng∑
j=1

p(i, j) log2 (p(i, j)) (= entropy of p)

HXY 1 = −
Ng∑
i=1

Ng∑
j=1

p(i, j) log2 (px(i) py(j))

HXY 2 = −
Ng∑
i=1

Ng∑
j=1

px(i) py(j) log2 (px(i) py(j))

µx2 =
Ng∑
i=1

i px(i) σx2 =

√√√√ Ng∑
i=1

(i− µx2)2px(i)

µy2 =
Ng∑
j=1

j py(j) σy2 =

√√√√ Ng∑
y=1

(j − µy2)2py(j)

We can now calculate the following features. Every GLCM feature
is calculated as the mean of the feature calculations for each of the 13
directions.

autocorrelation =
Ng∑
i=1

Ng∑
j=1

ij p(i, j)

cluster prominence =
Ng∑
i=1

Ng∑
j=1

[i+ j − µx − µy]4 p(i, j)

cluster shade =
Ng∑
i=1

Ng∑
j=1

[i+ j − µx − µy]3 p(i, j)

cluster tendency =
Ng∑
i=1

Ng∑
j=1

[i+ j − µx − µy]2 p(i, j)
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contrast =
Ng∑
i=1

Ng∑
j=1

|i− j|2 p(i, j)

correlation =
∑Ng

i=1

∑Ng

j=1 (ij p(i, j))− µxµy

σxσy

correlation 2 [275] =
∑Ng

i=1

∑Ng

j=1(i− µx2)(j − µy2) p(i, j)
σx2σy2

difference entropy = −
Ng∑
i=0

px−y(i) log2 (px−y(i))

dissimilarity =
Ng∑
i=1

Ng∑
j=1

|i− j| p(i, j)

energy =
Ng∑
i=1

Ng∑
j=1

(p(i, j))2

entropy = −
Ng∑
i=1

Ng∑
j=1

p(i, j) log2 (p(i, j))

homogeneity 1 =
Ng∑
i=1

Ng∑
j=1

p(i, j)
1 + |i− j|

homogeneity 2 =
Ng∑
i=1

Ng∑
j=1

p(i, j)
1 + (i+ j)2

informational measure of correlation 1 = HXY −HXY 1

max[HX , HY ]

informational measure of correlation 2 =
√

1− exp (−2(HXY 2 −HXY ))

inverse difference normalised =
Ng∑
i=1

Ng∑
j=1

p(i, j)
1 +

( |i−j|
N

)
inverse variance =

Ng∑
i=1

Ng∑
j=1

p(i, j)
|i− j|2 , i 6= j

maximum probability = max [p(i, j)]

sum average =
2Ng∑
i=2

(i px+y(i))
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sum entropy = SE =
2Ng∑
i=2

px+y(i) log2 (px+y(i))

sum variance =
2Ng∑
i=2

(i− SE)2px+y(i)

variance =
Ng∑
i=1

Ng∑
j=1

(i− µ)2 p(i, j)

GLRLM

If p=GLRLM is the grey-level run-length matrix of the ROI consisting
of N voxels, in direction θ with Ng the number of discrete intensity
levels and Nr the longest run-length, then we can calculate the following
features, and again average them over 13 directions.

short run emphasis =
∑Ng

i=1

∑Nr

j=1
p(i,j)

j2∑Ng

i=1

∑Nr

j=1 p(i, j)

long run emphasis =
∑Ng

i=1

∑Nr

j=1 j
2p(i, j)∑Ng

i=1

∑Nr

j=1 p(i, j)

grey-level non-uniformity =

∑Ng

i=1

[∑Nr

j=1 p(i, j)
]2

∑Ng

i=1

∑Nr

j=1 p(i, j)

run-length non-uniformity =
∑Nr

j=1

[∑Ng

i=1 p(i, j)
]2∑Ng

i=1

∑Nr

j=1

run percentage =
Ng∑
i=1

Nr∑
j=1

p(i, j)
N

low grey-level run emphasis =
∑Ng

i=1

∑Nr

j=1
p(i,j)

i2∑Ng

i=1

∑Nr

j=1 p(i, j)

high grey-level run emphasis =
∑Ng

i=1

∑Nr

j=1 i
2 p(i, j)∑Ng

i=1

∑Nr

j=1 p(i, j)

short run low grey-level emphasis =
∑Ng

i=1

∑Nr

j=1
p(i,j)
i2j2∑Ng

i=1

∑Nr

j=1 p(i, j)
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short run high grey-level emphasis =
∑Ng

i=1

∑Nr

j=1
i2 p(i,j)

j2∑Ng

i=1

∑Nr

j=1 p(i, j)

long run low grey-level emphasis =
∑Ng

i=1

∑Nr

j=1
j2 p(i,j)

i2∑Ng

i=1

∑Nr

j=1 p(i, j)

long run high grey-level emphasis =
∑Ng

i=1

∑Nr

j=1 i
2j2 p(i, j)∑Ng

i=1

∑Nr

j=1 p(i, j)

GLSZM

If p=GLSZM is the grey-level size-zone matrix of the ROI consisting
of N voxels, with Ng the number of discrete intensity levels and Nz the
largest size-zone, then we first define:

µgl = 1
Ng ×Nz

Ng∑
i=1

Nz∑
j=1

i× p(i, j)

µNz = 1
Ng ×Nz

Ng∑
i=1

Nz∑
j=1

szpcent× j × p(i, j)

We can now calculate the following features.

szpcent =
∑Ng

i=1

∑Nz

j=1 p(i, j)
N

smallzone =
∑Ng

i=1

∑Nz

j=1

( szpcent
j

)2
p(i, j)∑Ng

i=1

∑Nz

j=1 p(i, j)

largezone =
∑Ng

i=1

∑Nz

j=1(j × szpcent)2 p(i, j)∑Ng

i=1

∑Nz

j=1 p(i, j)

glnonunif =

∑Ng

i=1

[∑Nz

j=1 p(i, j)
]2

∑Ng

i=1

∑Nz

j=1 p(i, j)

sznonunif =
∑Nz

j=1

[∑Ng

i=1 p(i, j)
]2∑Ng

i=1

∑Nz

j=1 p(i, j)

zonelogl =
∑Ng

i=1

∑Nz

j=1
p(i,j)

i2∑Ng

i=1

∑Nz

j=1 p(i, j)
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zonehigl =
∑Ng

i=1

∑Nz

j=1 i
2 p(i, j)∑Ng

i=1

∑Nz

j=1 p(i, j)

szonelogl =
∑Ng

i=1

∑Nz

j=1

( szpcent
i j

)2
p(i, j)∑Ng

i=1

∑Nz

j=1 p(i, j)

szonehigl =
∑Ng

i=1

∑Nz

j=1

(
i×szpcent

j

)2
p(i, j)∑Ng

i=1

∑Nz

j=1 p(i, j)

lzonelogl =
∑Ng

i=1

∑Nz

j=1

(
j×szpcent

i

)2
p(i, j)∑Ng

i=1

∑Nz

j=1 p(i, j)

lzonehigl =
∑Ng

i=1

∑Nz

j=1 i
2j2 × szpcent2 × p(i, j)∑Ng

i=1

∑Nz

j=1 p(i, j)

glvariance =

(
1

Ng ×Nz

Ng∑
i=1

Nz∑
j=1

(i× p(i, j)− µgl)2

)1/2

szvariance =

(
1

Ng ×Nz

Ng∑
i=1

Nz∑
j=1

(j × szpcent× p(i, j)− µNz)2

)1/2

NGTDM

IfM =NGTDM is the neighbourhood grey-tone difference matrix of the
ROI consisting of N voxels, with Ng the number of discrete intensity
levels, Ni the number of voxels of intensity i, pi = Ni/N the probability
of occurrence of intensity i, Nt the number of different grey-levels present
in the ROI, and ε a small number, then we can calculate the following
features.

coarseness =

[
ε+

Ng∑
i=1

pi M(i)

]−1

contrast =

[
1

Nt(Nt − 1)

Ng∑
i=1

Ng∑
j=1

pipj(i− j)2

][
1
N2

Ng∑
i=1

M(i)

]
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complexity =
Ng∑
i=1

Ng∑
j=1

[
|i− j|
Ni +Nj

]
[pi M(i) + pj M(j)]

strength =
∑Ng

i=1

∑Ng

j=1(pi + pj)(i− j)2

ε+
∑Ng

i=1 M(i)
, pi 6= 0, pj 6= 0

Localisation and environment features

For the tumour core and the total abnormal region, we also calculate
features capturing the localisation and the contrast between the ROI
and surrounding tissue. These are:

x-coordinate centre of mass

y-coordinate centre of mass

z-coordinate centre of mass

distance to centre coordinate system (d =
√
x2 + y2 + z2)

ratio average intensity inside ROI and average intensity in region 3mm
outside ROI (on original image)

ratio average intensity inside ROI and average intensity in region 5mm
outside ROI (on original image)

ratio average intensity inside ROI and average intensity in region 3mm
outside ROI (after intensity normalisation)

ratio average intensity inside ROI and average intensity in region 5mm
outside ROI (after intensity normalisation)





B
Features used in

segmentation algorithm

On the next page, a table is given with all the 275 feature maps cal-
culated for the Random Forests based segmentation algorithm. The
52 features selected for the final model are depicted in bold. (DS =
downsizing level)
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Table B.1: Overview of the features used in Random Forests based segmentation method (DS = downsizing level).
T1ce FLAIR

texture
features

DS 1 DS 2 DS 4 DS 8 DS 1 DS 2 DS 4 DS 8
Idisrc Idisrc Idisrc Idisrc Idisrc Idisrc Idisrc Idisrc

G
L
C
M

autoc autoc autoc autoc autoc autoc autoc autoc
ClT ClT ClT ClT ClT ClT ClT ClT
corr corr corr corr corr corr corr corr
dissim dissim dissim dissim dissim dissim dissim dissim
energy energy energy energy energy energy energy energy
homog homog homog homog homog homog homog homog
MaxP MaxP MaxP MaxP MaxP MaxP MaxP MaxP
SumAvg SumAvg SumAvg SumAvg SumAvg SumAvg SumAvg SumAvg

var var var var var var var var

G
L
R
L
M

SRE SRE SRE SRE SRE SRE SRE SRE
LRE LRE LRE LRE LRE LRE LRE LRE
GLN GLN GLN GLN GLN GLN GLN GLN
RLN RLN RLN RLN RLN RLN RLN RLN

LGLRE LGLRE LGLRE LGLRE LGLRE LGLRE LGLRE LGLRE
HGLRE HGLRE HGLRE HGLRE HGLRE HGLRE HGLRE HGLRE
SRLGLE SRLGLE SRLGLE SRLGLE SRLGLE SRLGLE SRLGLE SRLGLE
SRHGLE SRHGLE SRHGLE SRHGLE SRHGLE SRHGLE SRHGLE SRHGLE
LRLGLE LRLGLE LRLGLE LRLGLE LRLGLE LRLGLE LRLGLE LRLGLE
LRHGLE LRHGLE LRHGLE LRHGLE LRHGLE LRHGLE LRHGLE LRHGLE

G
L
SZ

M

SmZone SmZone SmZone SmZone SmZone SmZone SmZone SmZone
LgZone LgZone LgZone LgZone LgZone LgZone LgZone LgZone
GLnonu GLnonu GLnonu GLnonu GLnonu GLnonu GLnonu GLnonu
SZnonu SZnonu SZnonu SZnonu SZnonu SZnonu SZnonu SZnonu

ZnLoGL ZnLoGL ZnLoGL ZnLoGL ZnLoGL ZnLoGL ZnLoGL ZnLoGL
ZnHiGL ZnHiGL ZnHiGL ZnHiGL ZnHiGL ZnHiGL ZnHiGL ZnHiGL
SZLoGL SZLoGL SZLoGL SZLoGL SZLoGL SZLoGL SZLoGL SZLoGL
SZHiGL SZHiGL SZHiGL SZHiGL SZHiGL SZHiGL SZHiGL SZHiGL
LZLoGL LZLoGL LZLoGL LZLoGL LZLoGL LZLoGL LZLoGL LZLoGL
LZHiGL LZHiGL LZHiGL LZHiGL LZHiGL LZHiGL LZHiGL LZHiGL

(ab)norm
ality

TPM1 TPM2 TPM3 TPM4 TPM5
PGM PWM PCSF Pnon-brain Ptumour PGM PWM PCSF Pnon-brain Ptumour

aZnLoGLGM aZnLoGLWM aZnHiGLGM aZnHiGLWM aZnLoGLGM aZnLoGLWM
Z-map symmetry Z-map symmetry

symmetrydiscr (DS 1) symmetrydiscr (DS 4) symmetrydiscr (DS 1) symmetrydiscr (DS 4)
PGM PWM PCSF Pnon-brain Ptumour Z-map



C
Optimal parameters for

multiple binary classification

Grid search

We assessed the optimal hyperparameters for the multiple binary clas-
sification algorithm by calculating the accuracy of decision scheme 4
(the best method) for different combinations of the MinLeafSize pa-
rameter and the number of features included in the Random Forests
models, averaged over 200 iterations with 80 trees per Random For-
est. Optimal accuracy is obtained when 15 features are included with
MinLeafSize=2. These settings are also applied for the other decision
schemes. This is illustrated in figure C.1.

Figure C.1: Multiple binary classification: grid search.
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Optimal features for binary problems

In the following tables, the best 15 features for all binary problems
are given. Also included are the p-values for a two-sample t-test with
unequal variance and AUC values for the individual features.

Table C.1: Meningioma versus glioblastoma. Model performance:
accuracy = 95.0%, AUC = 0.989.

Feature name p-value AUC
1 ratio core / surrounding total T1ce (5 voxels) 3.7e-18 0.899
2 T1ce: enhancing tumour - histogram: Median 3.2e-13 0.840
3 T1ce: tumour core - GLRLM: Short run high gray level emphasis (std) 2.2e-17 0.879
4 T1ce: tumour core - GLCM: Autocorrelation (d=3, mean) 4.2e-13 0.888
5 T1ce: oedema - GLCM: Correlation2 (d=1, mean) 1.1e-13 0.889
6 ratio core / surrounding core T1ce (5 voxels) 1.2e-11 0.828
7 T1ce: total abnormal - GLCM: Informational measure of correlation 2

(d=3, std)
1.6e-11 0.828

8 T1ce: tumour core - GLCM: Autocorrelation (d=1, mean) 2.2e-12 0.835
9 T1ce: enhancing tumour - GLSZM: Glvariance 5.2e-06 0.851
10 T1ce: enhancing tumour - histogram: Skewness 7.6e-17 0.876
11 ratio core / surrounding total T1ce (3 voxels) 2.5e-15 0.811
12 T1ce: total abnormal - GLCM: Informational measure of correlation 2

(d=2, std)
3.8e-10 0.758

13 T1ce: total abnormal - histogram: Mean absolute deviation 1.9e-09 0.858
14 T1ce: tumour core - GLRLM: Long run high gray level emphasis (mean) 1.1e-14 0.718
15 FLAIR: tumour core - GLCM: Correlation2 (d=3, mean) 2.9e-08 0.730

Table C.2: Meningioma versus glioma. Model performance: ac-
curacy = 92.6%, AUC = 0.976.

Feature name p-value AUC
1 ratio core / surrounding total T1ce (5 voxels) 1.4e-36 0.949
2 T1ce: total abnormal - GLCM: Informational measure of correlation 2

(d=3, std)
1.2e-19 0.873

3 T1ce: enhancing tumour - histogram: Skewness 6.9e-22 0.877
4 ratio core / surrounding total T1ce (3 voxels) 8.1e-33 0.946
5 T1ce: total abnormal - histogram: Mean 8.6e-34 0.943
6 FLAIR: enhancing tumour - NGTDM: Complexity (d=1) 2.0e-30 0.881
7 T1ce: enhancing tumour - NGTDM: Complexity (d=1) 1.7e-29 0.881
8 T1ce: total abnormal - GLCM: Informational measure of correlation 2

(d=2, std)
3.6e-16 0.870

9 T1ce: tumour core - histogram: Mean 2.7e-19 0.881
10 T1ce: enhancing tumour - GLRLM: Short run high gray level emphasis

(std)
3.1e-35 0.890

11 ratio core / surrounding core T1ce (3 voxels) 2.7e-19 0.885
12 FLAIR: enhancing tumour - NGTDM: Complexity (d=3) 1.5e-16 0.843
13 FLAIR: enhancing tumour - Shape: Sphericity 3.6e-20 0.870
14 T1ce: total abnormal - GLCM: Dissimilarity (d=3, mean) 5.1e-19 0.788
15 T1ce: total abnormal - GLCM: Contrast (d=2, std) 9.8e-24 0.823
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Table C.3: Lower-grade glioma versus meningioma/glioblastoma.
Model performance: accuracy = 90.7%, AUC = 0.952.

Feature name p-value AUC
1 T1ce: total abnormal - histogram: Mean 2.3e-23 0.848

2 ratio core / surrounding core T1ce (5 voxels) 1.6e-21 0.684

3 ratio core / surrounding core T1ce (3 voxels) 5.0e-24 0.677

4 T1ce: enhancing tumour - Shape: Surface to volume ratio 2.1e-23 0.842

5 ratio core / surrounding total T1ce (5 voxels) 1.3e-29 0.875

6 FLAIR: enhancing tumour - GLRLM: Long run emphasis (std) 2.4e-16 0.769

7 FLAIR: enhancing tumour - GLRLM: Long run emphasis (mean) 8.7e-18 0.759

8 FLAIR: enhancing tumour - Shape: Surface to volume ratio 2.1e-23 0.695

9 T1ce: total abnormal - GLCM: Inverse difference moment normalized
(d=3, std)

2.3e-15 0.772

10 T1ce: total abnormal - GLCM: Dissimilarity (d=3, std) 2.4e-16 0.678

11 T1ce: total abnormal - GLCM: Difference entropy (d=3, mean) 3.9e-12 0.824

12 T1ce: total abnormal - GLCM: Inverse difference moment normalized
(d=2, std)

6.7e-15 0.782

13 T1ce: enhancing tumour - GLRLM: Run length non-uniformity (mean) 3.2e-13 0.659

14 FLAIR: tumour core - Shape: Surface to volume ratio 6.8e-15 0.708

15 FLAIR: enhancing tumour - NGTDM: Complexity (d=2) 6.2e-18 0.759

Table C.4: Grade III versus grade IV. Model performance: accu-
racy = 88.8%, AUC = 0.944.

Feature name p-value AUC
1 ratio core / surrounding core T1ce (5 voxels) 8.7e-07 0.724

2 T1ce: total abnormal - histogram: Mean 1.2e-08 0.578

3 ratio core / surrounding core T1ce (3 voxels) 1.3e-07 0.587

4 T1ce: total abnormal - histogram: Median 5.4e-08 0.721

5 FLAIR: enhancing tumour - GLSZM: Szpcent 6.2e-08 0.775

6 T1ce: total abnormal - GLRLM: High gray level run emphasis (std) 3.7e-09 0.680

7 T1ce: total abnormal - GLCM: Entropy (d=3, std) 4.1e-05 0.659

8 T1ce: total abnormal - GLCM: Difference entropy (d=2, std) 6.5e-06 0.594

9 ratio core / surrounding total T1ce (5 voxels) 3.3e-08 0.699

10 FLAIR: enhancing tumour - GLRLM: Long run emphasis (std) 3.5e-07 0.584

11 FLAIR: enhancing tumour - GLCM: Difference entropy (d=2, mean) 0.00023 0.739

12 FLAIR: enhancing tumour - GLCM: Homogeneity 1 (d=1, mean) 8.3e-06 0.697

13 FLAIR: enhancing tumour - GLCM: Correlation2 (d=1, std) 6.5e-05 0.575

14 FLAIR: enhancing tumour - Shape: Surface to volume ratio 1.6e-08 0.635

15 T1ce: total abnormal - GLCM: Informational measure of correlation 1
(d=2, std)

0.018 0.691



180 C Optimal parameters for multiple binary classification

Table C.5: Grade III versus meningioma/glioblastoma. Model
performance: accuracy = 88.5%, AUC = 0.937.

Feature name p-value AUC
1 T1ce: total abnormal - histogram: Mean 2.6e-15 0.801

2 ratio core / surrounding total T1ce (5 voxels) 4.5e-17 0.677

3 FLAIR: enhancing tumour - Shape: Surface to volume ratio 5.8e-14 0.682

4 T1ce: enhancing tumour - NGTDM: Complexity (d=3) 8.0e-10 0.799

5 T1ce: total abnormal - GLRLM: High gray level run emphasis (std) 1.7e-09 0.835

6 T1ce: enhancing tumour - GLSZM: Szpcent 1.0e-10 0.750

7 ratio core / surrounding core T1ce (5 voxels) 8.7e-14 0.736

8 T1ce: total abnormal - GLCM: Contrast (d=3, std) 4.6e-08 0.688

9 T1ce: tumour core - histogram: Median 8.2e-11 0.763

10 T1ce: enhancing tumour - Shape: Surface to volume ratio 5.8e-14 0.688

11 ratio core / surrounding core T1ce (3 voxels) 1.1e-14 0.790

12 T1ce: total abnormal - histogram: Median 2.4e-12 0.749

13 T1ce: total abnormal - histogram: Kurtosis 4.6e-09 0.675

14 T1ce: enhancing tumour - GLRLM: Short run high gray level emphasis
(std)

1.5e-06 0.690

15 T1ce: enhancing tumour - GLRLM: Run percentage (mean) 2.4e-09 0.742

Table C.6: Grade II/III versus glioblastoma. Model performance:
accuracy = 88.0%, AUC = 0.934.

Feature name p-value AUC
1 ratio core / surrounding core T1ce (3 voxels) 3.4e-12 0.790

2 FLAIR: enhancing tumour - GLRLM: Long run emphasis (mean) 5.6e-16 0.588

3 T1ce: total abnormal - histogram: Mean 3.0e-10 0.581

4 ratio core / surrounding core T1ce (5 voxels) 2.9e-10 0.782

5 T1ce: total abnormal - GLRLM: High gray level run emphasis (std) 7.1e-16 0.833

6 T1ce: total abnormal - histogram: Median 5.3e-09 0.704

7 T1ce: tumour core - Shape: Surface to volume ratio 1.1e-10 0.689

8 T1ce: enhancing tumour - Shape: Surface area 4.5e-09 0.605

9 FLAIR: tumour core - Shape: Surface to volume ratio 1.1e-10 0.715

10 FLAIR: enhancing tumour - GLRLM: Run percentage (std) 1.5e-11 0.574

11 FLAIR: enhancing tumour - GLRLM: Long run emphasis (std) 6.4e-15 0.780

12 FLAIR: enhancing tumour - GLCM: Autocorrelation (d=3, std) 1.3e-06 0.736

13 FLAIR: enhancing tumour - Shape: Compactness 1 9.8e-21 0.555

14 T1ce: total abnormal - GLCM: Contrast (d=3, std) 7.2e-08 0.656

15 T1ce: tumour core - Shape: Compactness 1 5.9e-11 0.710
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Table C.7: Oligodendroglioma grade II versus oligodendroglioma
grade III. Model performance: accuracy = 87.8%, AUC = 0.937.

Feature name p-value AUC
1 T1ce: oedema - histogram: Median 2.0e-05 0.706

2 T1ce: oedema + non-enhancing tumour - histogram: Mean 2.0e-05 0.502

3 FLAIR: oedema - GLCM: Correlation2 (d=3, mean) 0.0018 0.617

4 T1ce: total abnormal - histogram: Median 1.1e-05 0.677

5 T1ce: oedema - histogram: Mean 1.9e-05 0.834

6 T1ce: total abnormal - histogram: Mean 7.3e-06 0.504

7 FLAIR: oedema - GLCM: Informational measure of correlation 1 (d=2,
mean)

0.0043 0.496

8 FLAIR: enhancing tumour - GLCM: Homogeneity 2 (d=3, mean) 0.0008 0.492

9 FLAIR: enhancing tumour - GLCM: Homogeneity 2 (d=2, mean) 0.00061 0.663

10 FLAIR: enhancing tumour - GLCM: Difference entropy (d=2, mean) 0.00046 0.644

11 FLAIR: enhancing tumour - GLCM: Difference entropy (d=1, mean) 0.00044 0.625

12 FLAIR: oedema - GLCM: Correlation2 (d=2, mean) 0.00079 0.575

13 ratio core / surrounding total T1ce (5 voxels) 0.002 0.595

14 FLAIR: total abnormal - GLCM: Autocorrelation (d=3, mean) 0.0013 0.572

15 FLAIR: total abnormal - GLCM: Sum variance (d=1, mean) 0.0022 0.548

Table C.8: Astrocytoma grade II versus astrocytoma grade III.
Model performance: accuracy = 84.3%, AUC = 0.919.

Feature name p-value AUC
1 T1ce: tumour core - histogram: Uniformity 0.0032 0.610

2 T1ce: oedema + non-enhancing tumour - histogram: Kurtosis 0.00029 0.533

3 FLAIR: non-enhancing tumour - GLCM: Inverse difference normalized
(d=2, mean)

0.00077 0.545

4 z-coordinate center of mass 0.005 0.613

5 FLAIR: enhancing tumour - GLCM: Inverse difference moment normalized
(d=3, std)

0.00093 0.611

6 FLAIR: enhancing tumour - GLCM: Difference entropy (d=2, mean) 3.2e-05 0.565

7 FLAIR: non-enhancing tumour - GLCM: Inverse difference moment
normalized (d=3, mean)

0.00042 0.570

8 T1ce: total abnormal - Shape: Spherical disproportion 0.035 0.537

9 T1ce: tumour core - GLCM: Energy (d=1, std) 0.0057 0.559

10 T1ce: tumour core - histogram: Entropy 0.0069 0.534

11 FLAIR: tumour core - GLRLM: Long run emphasis (mean) 0.0091 0.610

12 FLAIR: tumour core - GLCM: Inverse variance (d=3, mean) 0.033 0.564

13 FLAIR: tumour core - GLCM: Difference entropy (d=3, mean) 0.0054 0.478

14 FLAIR: tumour core - GLCM: Difference entropy (d=2, mean) 0.0091 0.533

15 FLAIR: enhancing tumour - GLCM: Inverse difference moment normalized
(d=3, mean)

8.1e-05 0.536
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Table C.9: Grade II versus grade III/glioblastoma/meningioma.
Model performance: accuracy = 83.5%, AUC = 0.901.

Feature name p-value AUC
1 ratio core / surrounding total T1ce (5 voxels) 3.6e-13 0.778

2 FLAIR: enhancing tumour - Shape: Volume 1.1e-09 0.616

3 T1ce: enhancing tumour - GLSZM: Sznonunif 6.8e-11 0.594

4 ratio core / surrounding core T1ce (5 voxels) 9.2e-11 0.771

5 ratio core / surrounding total T1ce (3 voxels) 1.5e-12 0.805

6 FLAIR: enhancing tumour - GLCM: Homogeneity 2 (d=1, mean) 3.5e-13 0.681

7 T1ce: enhancing tumour - GLCM: Informational measure of correlation 2
(d=3, mean)

4.0e-13 0.680

8 T1ce: enhancing tumour - GLCM: Informational measure of correlation 2
(d=2, mean)

1.1e-10 0.625

9 T1ce: enhancing tumour - Shape: Surface to volume ratio 8.6e-11 0.692

10 FLAIR: enhancing tumour - GLRLM: Run length non-uniformity (std) 1.9e-09 0.589

11 FLAIR: enhancing tumour - GLCM: Difference entropy (d=1, mean) 1.4e-14 0.748

12 FLAIR: enhancing tumour - Shape: Compactness 1 2.5e-13 0.707

13 T1ce: total abnormal - histogram: Mean 5.7e-10 0.561

14 T1ce: enhancing tumour - Shape: Compactness 1 2.5e-13 0.644

15 FLAIR: enhancing tumour - GLSZM: Smallzone 3.0e-08 0.669

Table C.10: Grade II versus grade III. Model performance: accu-
racy = 83.1%, AUC = 0.907.

Feature name p-value AUC
1 FLAIR: enhancing tumour - GLCM: Difference entropy (d=1, mean) 3.7e-06 0.635

2 FLAIR: enhancing tumour - histogram: Entropy 4.7e-05 0.524

3 T1ce: oedema + non-enhancing tumour - histogram: Kurtosis 0.0027 0.504

4 FLAIR: enhancing tumour - GLCM: Inverse difference normalized (d=3,
mean)

1.9e-07 0.629

5 FLAIR: enhancing tumour - GLCM: Difference entropy (d=2, mean) 1.0e-07 0.668

6 FLAIR: enhancing tumour - Shape: Compactness 1 0.0002 0.545

7 FLAIR: total abnormal - GLCM: Inverse difference normalized (d=1, std) 0.0063 0.552

8 T1ce: tumour core - GLCM: Sum entropy (d=3, mean) 0.015 0.530

9 T1ce: oedema + non-enhancing tumour - GLRLM: Gray level
non-uniformity (mean)

0.00047 0.583

10 T1ce: enhancing tumour - GLCM: Informational measure of correlation 2
(d=3, mean)

1.6e-06 0.513

11 T1ce: enhancing tumour - Shape: Compactness 1 0.0002 0.613

12 T1ce: non-enhancing tumour - GLCM: Dissimilarity (d=2, std) 0.00051 0.568

13 FLAIR: total abnormal - Shape: Surface area 0.0012 0.544

14 FLAIR: tumour core - GLCM: Difference entropy (d=2, mean) 0.0027 0.543

15 FLAIR: tumour core - GLCM: Homogeneity 1 (d=1, mean) 0.0089 0.537
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Table C.11: Low-grade glioma versus high-grade glioma. Model
performance: accuracy = 83.0%, AUC = 0.906.

Feature name p-value AUC
1 ratio core / surrounding core T1ce (3 voxels) 8.9e-08 0.736

2 T1ce: total abnormal - histogram: Mean 5.9e-06 0.558

3 T1ce: enhancing tumour - Shape: Volume 1.1e-09 0.532

4 ratio core / surrounding total T1ce (3 voxels) 1.2e-07 0.726

5 FLAIR: enhancing tumour - GLRLM: Run length non-uniformity (std) 1.7e-09 0.769

6 FLAIR: enhancing tumour - histogram: Uniformity 1.9e-06 0.629

7 T1ce: enhancing tumour - GLCM: Entropy (d=2, mean) 1.9e-06 0.629

8 FLAIR: enhancing tumour - GLSZM: Szpcent 9.3e-12 0.569

9 FLAIR: enhancing tumour - GLRLM: Long run emphasis (mean) 5.6e-12 0.650

10 FLAIR: enhancing tumour - GLCM: Inverse difference normalized (d=3,
mean)

1.4e-15 0.478

11 FLAIR: enhancing tumour - GLCM: Homogeneity 1 (d=3, mean) 1.4e-13 0.708

12 FLAIR: enhancing tumour - GLCM: Informational measure of correlation
2 (d=2, std)

5.2e-08 0.663

13 FLAIR: enhancing tumour - GLCM: Difference entropy (d=2, mean) 1.4e-15 0.508

14 T1ce: total abnormal - GLRLM: High gray level run emphasis (std) 2.2e-06 0.604

15 T1ce: tumour core - GLCM: Sum entropy (d=3, mean) 2.1e-06 0.625

Table C.12: Astrocytoma grade II versus oligodendroglioma grade
II. Model performance: accuracy = 80.5%, AUC = 0.906.

Feature name p-value AUC
1 FLAIR: total abnormal - GLCM: Difference entropy (d=3, std) 0.0052 0.592

2 T1ce: tumour core - GLRLM: Gray level non-uniformity (std) 0.016 0.582

3 z-coordinate center of mass 0.0011 0.646

4 FLAIR: oedema - GLCM: Autocorrelation (d=3, mean) 0.065 0.620

5 FLAIR: oedema - GLCM: Correlation2 (d=2, mean) 0.0013 0.543

6 T1ce: tumour core - GLSZM: Glvariance 0.023 0.526

7 T1ce: tumour core - GLSZM: Largezone 0.0078 0.563

8 T1ce: tumour core - GLCM: Energy (d=2, std) 0.0089 0.590

9 T1ce: enhancing tumour - GLCM: Sum average (d=1, mean) 0.021 0.514

10 FLAIR: total abnormal - GLCM: Sum variance (d=2, std) 0.0066 0.586

11 FLAIR: total abnormal - GLCM: Correlation (d=2, mean) 0.73 0.477

12 FLAIR: total abnormal - GLCM: Sum variance (d=1, std) 0.0079 0.464

13 FLAIR: oedema + non-enhancing tumour - GLCM: Difference entropy
(d=3, std)

0.011 0.531

14 FLAIR: oedema + non-enhancing tumour - GLCM: Sum variance (d=2,
mean)

0.27 0.506

15 FLAIR: oedema + non-enhancing tumour - GLCM: Inverse variance (d=2,
std)

0.099 0.489
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Table C.13: Astrocytoma versus oligodendroglioma. Model per-
formance: accuracy = 80.3%, AUC = 0.892.

Feature name p-value AUC
1 y-coordinate center of mass 0.0068 0.599

2 FLAIR: non-enhancing tumour - GLCM: Homogeneity 2 (d=3, std) 0.072 0.609

3 FLAIR: total abnormal - GLSZM: Zonehigl 0.062 0.573

4 T1ce: tumour core - GLSZM: Largezone 0.0016 0.612

5 T1ce: oedema + non-enhancing tumour - GLCM: Homogeneity 1 (d=1,
std)

0.028 0.548

6 FLAIR: total abnormal - GLCM: Difference entropy (d=3, std) 0.022 0.493

7 FLAIR: total abnormal - histogram: Entropy 0.11 0.527

8 FLAIR: oedema - GLCM: Correlation2 (d=3, mean) 0.17 0.607

9 T1ce: total abnormal - GLCM: Informational measure of correlation 2
(d=2, std)

0.0045 0.483

10 T1ce: tumour core - GLCM: Informational measure of correlation 1 (d=3,
std)

0.022 0.504

11 T1ce: tumour core - GLCM: Informational measure of correlation 1 (d=2,
mean)

0.041 0.492

12 T1ce: tumour core - GLCM: Entropy (d=1, mean) 0.1 0.518

13 T1ce: oedema + non-enhancing tumour - GLCM: Homogeneity 1 (d=2,
std)

0.036 0.498

14 T1ce: enhancing tumour - GLCM: Homogeneity 1 (d=3, std) 0.011 0.516

15 T1ce: oedema - GLCM: Homogeneity 1 (d=2, std) 0.077 0.521

Table C.14: Astrocytoma grade III versus oligodendroglioma
grade III. Model performance: accuracy = 75.1%, AUC = 0.829.

Feature name p-value AUC
1 T1ce: oedema - histogram: Mean 0.0076 0.614

2 FLAIR: tumour core - GLCM: Entropy (d=3, std) 0.15 0.629

3 FLAIR: necrosis - GLCM: Correlation (d=3, mean) 0.086 0.487

4 FLAIR: total abnormal - GLCM: Dissimilarity (d=1, mean) 0.12 0.612

5 FLAIR: tumour core - GLCM: Entropy (d=2, std) 0.2 0.651

6 FLAIR: oedema + non-enhancing tumour - GLSZM: Zonehigl 0.046 0.538

7 FLAIR: oedema + non-enhancing tumour - GLRLM: High gray level run
emphasis (mean)

0.021 0.511

8 FLAIR: oedema + non-enhancing tumour - GLCM: Cluster Prominence
(d=3, mean)

0.034 0.617

9 FLAIR: oedema + non-enhancing tumour - GLCM: Cluster Tendency
(d=2, mean)

0.028 0.554

10 FLAIR: enhancing tumour - GLCM: Variance (d=1, mean) 0.097 0.587

11 FLAIR: non-enhancing tumour - GLCM: Correlation2 (d=3, mean) 0.0029 0.502

12 FLAIR: oedema - GLCM: Cluster Prominence (d=3, mean) 0.014 0.507

13 FLAIR: oedema - GLCM: Cluster Shade (d=2, mean) 0.015 0.538

14 FLAIR: oedema - GLCM: Informational measure of correlation 1 (d=1,
mean)

0.14 0.538

15 FLAIR: oedema - GLCM: Cluster Prominence (d=1, mean) 0.01 0.528
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