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Summary

The purpose of this dissertation is to develop a method to noninvasively
localize the seizure onset zone (SOZ) in patients with drug-resistant
epilepsy based on electroencephalographic (EEG) recordings.

Epilepsy is a neurological disorder characterized by unprovoked and
recurrent seizures. Seizures are caused by abnormal electrical activity
in the brain, which can lead to a wide range of behaviors ranging
from subtle absences to jerking of the whole body. For 60-70% of
the patients, anti-epileptic drugs allow adequate seizure control. The
remainder of the patients have so-called drug-resistant epilepsy. For
them, the most efficient treatment option is epilepsy surgery during
which the brain region responsible for the seizures is removed (resective
surgery) or disconnected (disconnective surgery). Epilepsy surgery can
only be performed when the region responsible for the seizures can be
delineated and when there is no overlap with functional tissue in order
to avoid functional deficits, such as speech or motor problems, after
surgery. Unfortunately, no single modality or unique technique allows
measuring or identifying this epileptogenic focus directly.

Therefore, these patients undergo a presurgical evaluation, during
which a team of experts tries to form a hypothesis about this region,
based on the integration of the results of different investigations. The
cornerstone investigations are long-term video-EEG monitoring and
Magnetic Resonance Imaging (MRI). EEG is a technique which measures
the electrical activity of the brain with sensors or electrodes placed on the
scalp. Since seizures (ictal) are caused by abnormal electrical activity,
they result in abnormal EEG patterns. Yet, also in between seizures
(interictal), short, abnormal EEG patterns can be observed. Based
on these abnormal EEG patterns, epileptologists can get a rough idea
about the SOZ, i.e. the region where the seizures originate from, or the
irritative zone (IZ), i.e. the region where the interictal activity originates
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from. MRI allows imaging the brain to reveal structural abnormalities
such as lesions which could be responsible for the epilepsy. Often these
investigations do not allow forming a solid hypothesis about the exact
epileptogenic focus and extra investigations such as SPECT, PET, MEG
and/or invasive EEG (iEEG, EEG recorded with electrodes placed inside
the brain) are needed.

This whole presurgical process is time-consuming, labor-intensive,
occasionally riskful for the patient (brain surgery is needed for invasive
EEG) and possibly subjective since human interpretation is required.
Furthermore, sometimes unambiguous delineation is still impossible.
Therefore, it would be of high clinical value to have a method that
is able to localize the responsible brain region in a more accurate, faster
or automated, safe, and/or more objective way. In this dissertation,
we aim to develop such a method for SOZ localization. The modality
of choice is EEG since it is simple, safe, relatively inexpensive and the
most important tool to diagnose epilepsy.

Developing such a method is not trivial because several challenges need
to be addressed. The two main problems are the low spatial resolution of
the EEG and the fact that epilepsy is a network disease. The low spatial
resolution of EEG is due to the fact that the brain activity is propagated
through the brain, skull, scalp and other tissues before it reaches the
(often limited amount of) electrodes. The different conductivities of
these tissues, and specifically the low conductivity of the skull, attenuate
and distort the brain signals. As a consequence, the signal at a given
electrode does not necessarily represent the activity of the directly
underlying brain area, but is distorted and mixed with the activity of
other brain areas. In this dissertation, we will tackle this problem in two
ways. First, the number of electrodes can be increased with respect to
standard EEG, resulting in so-called high-density EEG. Second, EEG
source imaging (ESI) will be used. ESI is a technique that estimates
the brain activity that generated the measured EEG. It consists of a
forward model and an inverse problem. The forward model calculates
how a certain source of activity in the brain will translate to an EEG
measurement. In this dissertation, this forward model will be based on
the MRI of the patient. The inverse solution tries to find the generating
sources by minimizing a cost function based on the difference between
the generated EEG by the forward model and the actually measured
EEG.
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By applying ESI on an EEG segment containing ictal activity, the brain
regions active during the seizure can be identified. One way to estimate
the SOZ is to select the most active brain region during the seizure.
However, and this is the second problem, epilepsy is a network disorder
rather than a focal disease. This means that during an epileptic seizure,
different brain regions become active as a part of an epileptic network.
There is no guarantee that the most active region during a seizure is the
one causing the seizure, because a small group of neurons (associated
with a less active region) could be triggering a larger group (associated
with a more active region). To overcome this problem, we will analyze
the epileptic network to find the driving region behind it. This can be
achieved by functional brain connectivity, the study of the interactions
and information flows between brain regions. In this dissertation, the
connections or information flows between the active brain regions found
after ESI are calculated using a time-varying multivariate autoregressive
(TVAR) model in which the brain signals associated with the regions are
modeled as a linear combination of their past samples plus uncorrelated
white noise. This way, it can be investigated how the past samples of
one signal influence the current samples of the other signals to assess the
causality between these signals. The coefficients of the TVAR model are
transformed to the frequency domain which results in a time-varying
transfer matrix from which the spectrum weighted Adaptive Directed
Transfer Function (swADTF) can be calculated. The swADTF is a
measure of the information flow between two brain regions and stresses
connections with high spectral power in both the receiving and the
sending signal. Finally, the region with the highest outgoing information
flow or swADTF values was used as an estimation for the SOZ.

In a first study, we verified this technique using simulations. We
generated an epileptic network consisting of three nodes in the brain,
added background activity to obtain a signal-to-noise ratio of 5 dB and
used a forward model to generate high-density (204 electrodes) EEG
measurements of 3 s. ESI was applied on 1000 of these simulated EEG
segments and the most active brain sources were selected. Connectivity
analysis as explained above was performed on the neuronal correlates
of these selected brain sources and the source with the highest outgoing
information flow was selected as estimation for the SOZ. The distance
between the estimated SOZ and the true driver of the epileptic network,
which we know from the simulation, was used to assess the quality of
the estimation. To make a benchmark comparison, we compared this
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distance to the distance between the most active region after ESI and
the true driver. Our findings were threefold. First, we found that
ESI followed by connectivity analysis (ESI + connectivity) is better
than selecting the most active brain region after ESI (ESI power) to
estimate the SOZ. Second, the median distance to the true driver was
small, 12 mm. Third, when fewer electrodes were used (only a subset of
the high-density EEG was used for ESI and connectivity analysis), the
distances increased, up to a median distance of 21 mm for 32 electrodes.

In the second phase of this study, we validated the method in
retrospective data of 5 patients. These patients ultimately underwent
successful epilepsy surgery, so we know that the true SOZ was inside the
tissue that was resected. In each of these patients, one seizure was pre-
operatively recorded using high-density EEG with 204 electrodes. The
first three seconds of the seizures were analyzed and connectivity analysis
was done in the wide 1 to 30 Hz band, in order to be certain that the
seizure frequency band was included. The estimated SOZ was compared
with the resected zone. We confirmed that ESI + connectivity performs
better than ESI power. ESI + connectivity was able to localize the
SOZ within 10 mm of the border of the RZ in all patients, whereas ESI
power could do this in only 2/5 patients. When lowering the number
of electrodes used for analysis, we found again that the performance
decreased. ESI + connectivity was able to localize the SOZ within
10 mm in only 1/5 patients, using 32 electrodes. We concluded that
the proposed method can correctly localize the SOZ, given that the
seizure is recorded with high-density EEG. Although more validation is
needed, we suggested that it could become a useful tool in the presurgical
evaluation of epilepsy.

Unfortunately, most clinics still lack the equipment to perform high-
density EEG and it is usually not part of the default presurgical
evaluation. Furthermore, long-term high-density EEG recordings are
rare, since they are uncomfortable for the patient. Therefore, the chance
that a patient has a seizure during a high-density EEG recording, is
rather low.

For these reasons, we adapted the proposed method in a second
study. Instead of strictly selecting the first 3 s of the seizure, we
selected, together with an expert epileptologist, a (quasi) artifact-free
epoch during the beginning of the seizure, lasting 1-5 s. Furthermore,
connectivity analysis was limited to the frequency band of the rhythmic
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activity in the EEG generated by the seizure. We validated this adapted
approach retrospectively in 111 seizures of 27 patients (24 temporal lobe
epilepsy, 3 extratemporal lobe epilepsy) who were rendered seizure-free
after surgery. Again, we found that ESI + connectivity outperformed
ESI power, this time statistically significant. ESI + connectivity resulted
in a SOZ estimation within 10 mm of the border of the resected zone in
93.7% of the seizures. We confirmed our conclusion of the previous
study that this method could serve as a useful tool in the presurgical
evaluation, but now the standard long-term EEG monitoring can be
used and seizures recorded with high-density EEG are not necessary.
However, user-dependent input for the initial epoch and frequency
selection is required. Larger studies are needed, notably with more
extratemporal epilepsies and localization correlation with a range of
different surgery outcomes.

In a final study, we investigated the importance of epoch and frequency
band selection. In terms of epoch selection, best results were obtained
when an artifact-free epoch was selected during the electrographic onset
phase of the seizure, before the ictal patterns have evolved. Furthermore,
we found that it is impossible to obtain a trustworthy SOZ estimation
with this method during the preictal or postictal period. In terms of the
frequency band, best results are obtained when the analysis is limited to
the seizure frequency band corresponding to the analyzed ictal epoch.
Although performance was lower when using the 1 to 30 Hz band, the
difference did not reach significance and this band can possibly be used
for analysis whenever the seizure frequency band is unclear.

In conclusion, we developed a method that combines ESI and functional
connectivity analysis to noninvasively localize the SOZ based on ictal
EEG recordings. The method is safe and proved to be accurate.
Given more research, it could be made completely user-independent
and automated. Yet, more validation, certainly in more heterogeneous
population groups is necessary. Altogether, the method could serve as
a useful and accurate tool in the presurgical evaluation of epilepsy.
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Samenvatting

Het ultieme doel van dit proefschrift is het ontwikkelen van een methode
voor de lokalisatie van de epileptische aanvalszone (EAZ) in patiënten
met therapieresistente epilepsie op een niet-invasieve manier op basis
van het elektro-encefalogram (EEG).

Epilepsie is een neurologische aandoening die gekenmerkt wordt door
herhaalde aanvallen die niet uitgelokt worden. Deze aanvallen
worden veroorzaakt door abnormale elektrische activiteit van de
hersenen. Epileptische aanvallen kunnen gepaard gaan met stereotiepe
klinische manifestaties gaande van subtiele bewustzijnsverminderingen
tot ongecontroleerde spiertrekkingen over het hele lichaam. Bij 60-70%
van de epilepsiepatiënten kunnen de aanvallen voldoende onderdrukt
worden met behulp van anti-epileptica. De overige patiënten hebben
zogenaamde therapieresistente epilepsie. Voor hen is epilepsiechirurgie
de beste optie om aanvalsvrij te worden. Tijdens epilepsiechirurgie
wordt de hersenregio die verantwoordelijk is voor de epilepsie verwijderd
(resectieve operatie) of losgekoppeld van de rest van de hersenen
(disconnectieve operatie). Epilepsiechirurgie kan enkel uitgevoerd
worden wanneer voldaan is aan twee voorwaarden. Enerzijds moet
de zone verantwoordelijk voor de epilepsie afgelijnd kunnen worden
en anderzijds mag deze zone niet overlappen met functioneel weefsel
waarvan de verwijdering zou kunnen leiden tot functionele gebreken
zoals spraakproblemen. Helaas bestaat er geen manier om deze zone
rechtstreeks op te meten.

Daarom worden patiënten met therapieresistente epilepsie opgenomen in
de preheelkundige evaluatie waarin een team van experten een hypothese
over deze zone probeert te vormen op basis van de resultaten van
verscheidene onderzoeken. De belangrijkste onderzoeken zijn langdurige
video-EEG registratie en Magnetic Resonance Imaging (MRI). EEG
is een techniek die de elektrische hersenactiviteit opmeet met behulp
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van sensors of elektroden die op de scalp geplaatst worden. Aangezien
aanvallen gepaard gaan met afwijkende elektrische hersenactiviteit,
zullen deze zichtbaar zijn als abnormale patronen in het EEG (ictale
activiteit). Ook tussen aanvallen door zijn bij epilepsiepatiënten korte
afwijkingen te zien in het EEG (interictale activiteit). Door het visueel
inspecteren van het EEG kan een epileptoloog een ruwe schatting maken
over de locatie van de epileptische aanvals- en irritatieve zone. De
EAZ is de regio waar de aanvallen ontstaan en de irritatieve zone is
de regio waar de interictale activiteit ontstaat. Daarnaast laat MRI toe
om de hersenen te visualiseren om zo kleine afwijkingen zoals letsels te
identificeren die de oorzaak van de epilepsie zouden kunnen zijn. Helaas
zijn deze standaard onderzoeken vaak niet voldoende om een degelijke
hypothese over de epileptische zone te maken. Daarom zijn vaak extra
onderzoeken zoals SPECT, PET, MEG en/of invasief EEG (iEEG, EEG
geregistreerd met elektroden die gëımplanteerd worden in de hersenen)
nodig.

Deze hele preheelkundige evaluatie is een langdradig en arbeidsintensief
proces. In het geval iEEG nodig is, is het ook risicovol voor de patiënt
omdat een hersenoperatie nodig is. Daarnaast is het soms subjectief
door de menselijke interpretatie van de resultaten. Tenslotte laat deze
hele procedure niet toe om altijd een goede hypothese op te stellen en/of
te bevestigen. Om deze redenen zou het van klinisch nut zijn om een
methode te hebben die deze epileptische zone kan lokaliseren in een
meer nauwkeurige, sneller of automatische, veilige en/of meer objectieve
manier. Het doel van dit proefschrift is daarom het ontwikkelen van
dergelijke methode. We kozen als basis het EEG, omdat het eenvoudig,
veilig en relatief goedkoop is. Bovendien is het de belangrijkste techniek
om de diagnose van epilepsie te stellen.

Het ontwikkelen van dergelijke methode is niet triviaal, omdat er enkele
moeilijkheden mee gepaard gaan. De twee belangrijkste problemen zijn
enerzijds de lage spatiale resolutie van het EEG en het feit dat epilepsie
een netwerkziekte is, anderzijds. De lage spatiale resolutie van het EEG
is te wijten aan het feit dat de elektrische hersenactiviteit eerst moet
propageren door andere weefsels zoals de hersenen zelf, de schedel en
de hoofdhuid alvorens zij een beperkt aantal elektroden bereikt. De
verschillende elektrische geleidbaarheden van deze weefsels, en de lage
geleidbaarheid van de schedel in het bijzonder, zorgen ervoor dat de
hersensignalen afgezwakt en vervormd worden. Als gevolg hiervan komt
het signaal gemeten aan een bepaalde elektrode niet zomaar overeen met
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de hersenactiviteit van het gebied dat rechtstreeks onder de elektrode
ligt, maar meet men een vervormd gemengd signaal op van verschillende
hersenregio’s. In dit proefschrift zullen we de lage spatiale resolutie van
het EEG aanpakken op twee manieren. Eerst kunnen we het aantal
elektroden sterk verhogen in vergelijking met een standaard EEG om
zo tot een hoge-resolutie EEG te komen. Daarnaast zullen we EEG
bronanalyse toepassen (EEG source imaging, ESI), een techniek die
de onderliggende hersenactiviteit probeert te schatten die aanleiding
geeft tot het gemeten EEG. ESI bestaat uit een voorwaarts model en
een invers probleem. Het voorwaartse model beschrijft welk EEG men
zal meten indien er in de hersenen een zekere, gekende bron actief is
(gegenereerd EEG). In dit proefschrift wordt dit model geconstrueerd
op de MRI van de patiënt. Bij het oplossen van het inverse probleem
zal men een kostenfunctie, opgesteld op basis van het verschil tussen het
gegenereerde en het gemeten EEG, proberen te minimaliseren. Zo kan
men dan tot een schatting komen van de werkelijke hersenactiviteit.

Door ESI toe te passen op een ictaal EEG segment, krijgt men een
idee welke hersenregio’s actief zijn gedurende de aanval. Een manier om
hieruit de EAZ af te leiden is het selecteren van de meest actieve regio.
We weten echter, en dit is het tweede probleem, dat epilepsie eerder een
netwerk- dan een puur focale ziekte is. Dit betekent dat gedurende de
aanval verschillende hersenregio’s actief worden die een deel vormen van
het epileptische netwerk. Men kan niet zomaar besluiten dat de meest
actieve regio tijdens de aanval de regio is die verantwoordelijk is voor de
aanval, omdat een kleinere groep neuronen (geassocieerd met een minder
actieve regio) een grotere groep neuronen kan aansturen (geassocieerd
met een actievere regio). In dit geval willen we in staat zijn de minder
actieve regio die de aanval initieerde aan te duiden als EAZ. Om dit
te realiseren, zullen we het epileptische netwerk analyseren om zo de
aandrijvende regio ervan te vinden. Dit kan gedaan worden met behulp
van functionele connectiviteitsanalyse, de studie van de interacties en
informatiestromen tussen de verschillende hersenregio’s. In dit werk
zullen de connecties of informatiestromen tussen de verschillende actieve
hersenregio’s gevonden door ESI berekend worden door gebruik te maken
van een tijdsafhankelijk multivariaat autoregressief (TVAR) model dat
de hersensignalen horende bij de hersenregio’s modelleert als een lineaire
combinatie van hun verleden plus ongecorreleerde witte ruis. Zo kan
men onderzoeken hoe het verleden van het ene signaal het heden van
een ander signaal bëınvloedt en een idee krijgen over de causaliteit
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tussen deze signalen of regio’s. De coëfficiënten van het TVAR model
worden getransformeerd naar het frequentiedomein, wat resulteert in
de transfermatrix. Op basis van deze matrix kan de spectrum-weighted
Adaptive Directed Transfer Function (swADTF) berekend worden, welke
een maat is voor de informatiestroom tussen twee regio’s. De swADTF
benadrukt connecties met een hoog spectraal vermogen in zowel het
zendende als het ontvangende signaal. Tenslotte zullen we de regio
met de hoogste uitgaande informatiestroom (hoogste swADTF waarden)
selecteren als een schatting voor de EAZ.

In een eerste studie hebben we deze methode geverifieerd met behulp
van simulaties. We simuleerden een epileptisch netwerk in de hersenen
bestaande uit 3 netwerkknopen, voegden achtergrondactiviteit toe om
tot een signaal-ruisverhouding van 5 dB te komen en genereerden op
basis hiervan, met behulp van een voorwaarts model, hoge-resolutie
EEG segmenten van 3 s met 204 elektroden. We pasten ESI toe op 1000
van deze segmenten en we selecteerden de meest actieve hersenregio’s,
waarna we connectiviteitsanalyse deden tussen deze regio’s of bronnen.
De bron met de hoogste uitgaande informatiestroom werd gebruikt
als schatting voor de EAZ. De afstand tussen deze schatting en de
echte aandrijver van het epileptisch netwerk (welke we kennen door de
simulatie) werd gebruikt om de kwaliteit van de schatting te bepalen.
Om een goede vergelijking te maken, vergeleken we deze afstand met de
afstand tussen de meest actieve regio na ESI en de echte aandrijver.
Onze bevindingen waren drievoudig. Ten eerste, ESI gevolgd door
connectiviteitsanalyse (ESI + conn) was beter om de EAZ te schatten
dan de meest actieve bron te nemen na ESI (ESI act). Ten tweede, de
mediaan van de afstand tot de echte aandrijver was beperkt, 12 mm.
Tenslotte vonden we dat de afstand vergrootte wanneer slechts een
subset van de elektroden van het hoge-resolutie EEG gebruikt werden
voor de analyse, tot 21 mm bij 32 elektroden.

In een tweede fase van deze studie, valideerden we de methode in
echte retrospectieve data van 5 patiënten. Deze patiënten ondergingen
uiteindelijk succesvol epilepsiechirurgie, waardoor we weten dat de echte
EAZ zich in het weggenomen weefsel (resected zone, RZ) bevond. In
elke patiënt werd 1 aanval opgenomen tijdens een preoperatieve hoge-
resolutie EEG opname met 204 elektroden. De eerste 3 s van deze
aanvallen werden geanalyseerd. Connectiviteitsanalyse werd gedaan in
de brede 1 – 30 Hz frequentieband, zodat de aanvalsfrequentie zeker in
de band zat. De geschatte EAZ werd vervolgens vergeleken met de RZ.
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We bevestigden dat ESI + conn beter is dan ESI act. Met ESI + conn
lokaliseerden we de EAZ in of binnen de 10 mm van de rand van de RZ in
alle patiënten, terwijl ESI act dit maar in 2/5 patiënten mogelijk maakte.
Wanneer we het aantal elektroden verlaagden, daalde de performantie
van de methode. Wanneer slechts 32 elektroden gebruikt werden, was
ESI + conn in staat om de EAZ binnen 10 mm van de RZ te schatten
in 1 van de 5 patiënten. We besloten dat de voorgestelde methode, ESI
+ conn, de EAZ correct kan lokaliseren indien de aanval met hoge-
resolutie EEG werd opgenomen. Ondanks dat meer validatie nodig
is, concludeerden we dat deze methode nuttig zou kunnen zijn in de
preheelkundige evaluatie van epilepsie.

Helaas hebben veel klinieken de mogelijkheid nog niet om hoge-resolutie
EEG op te nemen en meestal maakt het geen deel uit van de standaard
preheelkundige evaluatie. Verder zijn langdurige hoge-resolutie EEG
opnames zeldzaam, omdat ze oncomfortabel zijn voor de patiënt. Dit
verlaagt uiteraard de kans dat de patiënt een aanval heeft tijdens een
hoge-resolutie EEG opname.

Omwille van deze redenen, hebben we onze methode aangepast in
een tweede studie om deze ook te laten werken voor lage-resolutie
of klinisch EEG. In plaats van strikt de eerste 3 s van de aanval te
analyseren, selecteerden we samen met een expert epileptoloog een
(quasi) artefactvrij stukje EEG rond het begin van de aanval, dat 1
– 5 s duurde. Daarnaast beperkten we de connectiviteitsanalyse tot
de frequentieband van de aanval. We valideerden deze aangepaste
methode retrospectief in 111 aanvallen van 27 patiënten (24 met
temporalekwabepilepsie) die aanvalsvrij waren na operatie. Opnieuw
vonden we dat ESI + conn beter presteerde dan ESI act, en door het
grote aantal aanvallen, konden we dit verschil nu statistisch significant
aantonen. ESI + conn resulteerde in een schatting van de EAZ binnen
de 10 mm van de RZ in maar liefst 93.7% van de aanvallen. We
bevestigden onze conclusie van de vorige studie dat deze methode heel
nuttig zou kunnen zijn binnen de preheelkundige evaluatie van epilepsie,
en dat aanvallen geregistreerd met hoge-resolutie EEG niet absoluut
noodzakelijk zijn. Er is, in dit geval, wel gebruiker-afhankelijke input
nodig om het stukje EEG en de frequentieband te selecteren. Grotere
studies zijn nodig, met meer patiënten met extratemporalekwabepilepsie
en met patiënten met verschillende operatieresultaten (bv. niet
aanvalsvrij na operatie).
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Samenvatting

In een laatste studie onderzochten we het belang van de selectie van
het geanalyseerd stukje EEG en de bijhorende frequentieband. Voor
de selectie van het geanalyseerd stukje EEG, vonden we dat de beste
resultaten bekomen werden wanneer een artefactvrij stukje EEG tijdens
de elektrografische beginfase van de aanval gekozen werd, voor het EEG
evolueert naar een ander patroon. Het was niet mogelijk een goede
schatting van de EAZ te bekomen met deze methode op basis van
EEG voor of na de aanval. Voor de frequentieband vonden we de
beste resultaten wanneer de connectiviteitsanalyse beperkt wordt tot
de frequentieband die geassocieerd wordt met het geanalyseerd stukje
EEG. Hoewel de methode minder presteerde wanneer de brede 1 – 30 Hz
band gebruikt werd, was dit verschil niet significant. Deze band zou
dus gebruikt kunnen worden indien de frequentieband niet eenvoudig of
eenduidig te vinden is.

In conclusie kunnen we stellen dat we een methode ontwikkeld hebben
die ESI en functionele connectiviteitsanalyse combineert om zo op een
niet-invasieve wijze de EAZ te lokaliseren op basis van ictale EEG
opnames. De methode bleek nauwkeurig en is ook veilig. Indien er
meer onderzoek gedaan wordt, zou de methode volledig gebruikers-
onafhankelijk en automatisch gemaakt kunnen worden. Er is echter wel
nog meer validatie nodig in een meer heterogene patiëntenpopulatie.
Alles samengenomen, kan deze methode dienen als een nuttige en
nauwkeurige tool in de preheelkundige evaluatie van epilepsie.
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1
Introduction

1.1 Context

Approximately 1% of the people worldwide are diagnosed with epilepsy
during their lifetime. Epilepsy is a neurological disorder characterized
by recurrent and unprovoked seizures. These seizures are the result
of abnormal electric activity in the brain. Depending on which brain
regions are involved in the seizure, the patients can show a wide range
of behaviors, called the semiology of the seizure, ranging from subtle
absences to rhythmic jerking of the whole body.

The electric activity of the brain can be measured by the
Electroencephalogram (EEG), in which electrodes are placed on the
scalp to measure the potentials generated by the brain. Seizures give
rise to aberrant patterns in the EEG. Also in between seizures, epileptic
patients can have aberrant patterns in their EEG recordings, called
Interictal Epileptiform Discharges (IEDs). EEG is an easy, safe and
relatively inexpensive technique and therefore it serves, together with
the semiology of the seizures, as the most important tool to diagnose,
characterize and follow-up epilepsy.

Once a patient is diagnosed with epilepsy, treatment aimed at seizure
suppression can be started. The first option is treatment with Anti-
Epileptic Drugs (AEDs), which is effective in 60–70% of the patients.
For the other 30–40% of the patients, who have so-called drug-resistant
epilepsy, epilepsy surgery might be an option. During epilepsy surgery,
the brain region that is responsible for initiating the seizures is removed
(resective surgery) or disconnected (disconnective surgery). Of course,
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Chapter 1. Introduction

epilepsy surgery is only possible when the brain region initiating the
seizures can be identified and when this region does not overlap with
functional tissue, whose removal could cause a functional deficit such
as speech or motor problems. If one of these situations occur, other
alternative treatment options could be offered such as neuromodulation
techniques.

To determine whether a patient can benefit from epilepsy surgery, he is
admitted to the presurgical evaluation. During this process, a team of
experts, consisting of neurologists, radiologists, psychologists, etc., try
to identify the Epileptogenic Zone (EZ) (the region that is necessary
and sufficient to remove in order to render the patient seizure-free).
Unfortunately, the EZ is only a conceptual region, meaning that it
cannot be measured directly. The experts form a hypothesis about the
EZ based on the consensus of the results of different investigations which
include EEG, MRI and possibly PET, SPECT, MEG and intracranial
EEG (iEEG) (EEG recorded with electrodes implanted in the brain).
These investigations try to identify epileptic lesions, the Seizure Onset
Zone (SOZ), i.e. the region where seizures originate, and the Irritative
Zone (IZ), i.e. the region where IEDs originate. Only if a solid conclusion
can be formed and there is no overlap with functional tissue, surgery will
be performed.

This whole process is time-consuming, labor-intensive and possibly
subject to human interpretation. Furthermore, iEEG requires brain
surgery associated with possible complications. Therefore, it would be
of high clinical value to have methods that are able to form a hypothesis
about the EZ in a faster, more objective and safe way that can be
applied in a clinical setting. The goal of this dissertation is to develop
and validate such a method.

The technique of interest is EEG, since EEG is noninvasive and is the
most important tool to diagnose epilepsy. It is generally accepted that
epilepsy is a network disease, meaning that during a seizure several
brain regions become active which influence each other in an epileptic
network. During the recording of a seizure, we will identify which
brain regions become active using EEG Source Imaging (ESI). ESI
is a technique that estimates the brain activity that generated the
measured scalp potentials. Once we know which brain regions are
participating, we will map the communication between them using
functional connectivity analysis to reveal the underlying seizure network.
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1.2. Outline

Functional connectivity analysis can reveal the information flow between
the active regions, which allows finding the driver of the epileptic
network, the region that is responsible for initiating the seizures. This
region is then an estimation of the SOZ, which can be used to form a
hypothesis about the EZ.

In this dissertation, this approach will be applied on seizures recorded
with scalp EEG of patients who ultimately underwent resective surgery
to get an estimate of the SOZ. By comparing the estimated SOZ with
the resected region, we can quantify the performance of the developed
method. The performance will be compared to the performance of a
benchmark method based only on ESI.

1.2 Outline

The structure of this dissertation is detailed in what follows. The rest of
this book is divided into 7 chapters using a bottom-up hierarchy, in which
every chapter builds on the concepts, ideas and/or results of the previous
chapter. Nevertheless, every chapter can be read as a standalone entity.

Chapter 2 provides the context for this book with an introduction
to the brain, EEG and epilepsy. First, the anatomy of the brain
is described, both on the macroscopic scale and microscopic (level of
the neuron) scale. Next, the working mechanisms of the brain are
discussed, again on the macroscopic and microscopic level. After this,
we describe how the structure and function of the brain can be imaged
and investigated. One of these neuroimaging techniques is the EEG,
which is explained more elaborately. We explain how it is possible to
measure potentials at the scalp generated by brain activity and how
these potentials are generally acquired and visualized. Typical healthy
and abnormal brain rhythms and artifacts are presented next. We
continue with a discussion about the temporal and spatial resolution of
the EEG and we conclude this section with a list of possible applications.
The most important clinical application of EEG is epilepsy. The next
section defines and characterizes epilepsy as a neurological disorder
before we detail how epileptic activity can be observed in the EEG. We
discuss the several treatment options for epilepsy and give a detailed
description of the presurgical evaluation.

As mentioned above, we will analyze the EEG of recorded seizures using
ESI and functional connectivity to estimate the SOZ. Therefore, we
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introduce these techniques in Chapter 3. ESI consists of a forward
model and inverse solution, which are described separately. Next, we
offer a general introduction to brain connectivity, which is divided into
structural, functional and effective connectivity analysis. After, we
provide more details about functional connectivity with special attention
to Granger causality. Finally, we will link functional connectivity
analysis to graph theory.

In Chapter 4, we review the literature and discuss the importance of
EEG based SOZ localization. This technique is, however, not trivial and
therefore the main challenges are discussed, while possible solutions are
offered.

Chapter 5 details the first study and the first results obtained in
this dissertation. Epochs during the beginning of seizures recorded
with high-density EEG (EEG with 64 or more electrodes) of 5 patients
are analyzed in a broad frequency band using the proposed approach.
We provide a proof-of-concept of the technique and compare it to
a benchmark method that is based only on ESI. Yet, a decrease in
performance is noticed when fewer electrodes are used.

The proposed method is adapted in Chapter 6 in order to achieve
good performance in low-density or clinical setups (no more than 32
electrodes). Epoch selection is done manually to avoid artifacts and we
limit the analysis to the frequency band of the seizure. We validate the
approach in 111 seizures of 27 patients. We prove that the proposed
method can achieve high accuracy for clinical EEG setups as well, and
that it is again better than a method based only on ESI.

In Chapter 7, we investigate whether good performance can also be
achieved when other parts of the seizure, after the initial ictal patterns
have changed, or pre- and postictal data are analyzed. Furthermore, the
influence of the analyzed frequency band is investigated in this chapter
and we propose a technique to determine the frequency band of the
seizure.

Finally, we summarize and discuss our results, future research
perspectives and general conclusions in Chapter 8.
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2
The brain, EEG and epilepsy

2.1 The brain

2.1.1 Introduction

The brain is the most important organ of the human body. It controls
most of our other organs, gives us a consciousness and allows us to think,
feel, sense and move. This is only possible because the brain is extremely
complex and humankind is only beginning to grasp the intricacies of its
functioning. The basic mechanisms are understood and in this section,
we offer an elementary introduction to the anatomy, functioning and
imaging of the brain in order to provide the context to follow the rest of
this dissertation. We discuss the anatomy of the brain on a macro scale
before we proceed to the anatomy on the level of the cell. The chapter
then continues with an explanation of the major brain functions and
how the brain basically works on the micro scale to accomplish these
functions. Finally, we give an overview of techniques to image both the
anatomy and the function of the brain in vivo. This section is mainly
based on [1].

2.1.2 Anatomy

2.1.2.1 On the macro scale

The basic structural anatomy of the brain can be seen in Fig. 2.1.
Together with the spinal cord, the brain forms the Central Nervous
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Figure 2.1: The structural anatomy of the brain. Figure adapted from [2].

System (CNS) of the human body. The CNS integrates the information
it receives from all parts of the body and in turn coordinates and
influences their activity. Whereas the spinal cord is primarily responsible
for basic responses such as reflexes, the brain is in control of all voluntary
actions.

Despite its importance, the brain is a vulnerable organ. Therefore, it is
surrounded by the skull, acting as a case, to protect from injuries such
as shocks, jolts and penetration. Three membranes or meninges form
an extra protective layer between the brain and skull: the dura mater,
attached to the inside of the skull; the blood-rich arachnoid, closely
placed to the dura mater; and the pia mater, firmly adhering to the
brain surface. The tough dura mater has several septa to keep the brain
in place and to provide support for its own weight, like shelves in a book
case.

The space between the arachnoid and the pia mater is called the
subarachnoid space and is filled with Cerebrospinal Fluid (CSF), which
is generated in four cavities more centrally in the brain, called ventricles.
CSF acts as a physical shock absorber, but also provides immunological
protection, supplies nutrients and offers a means to remove metabolic
waste.

The brain itself consists of three major parts. The most inner one, the
brain stem, stands up like a fist on an arm. Next, there is the cerebellum
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at the lower rear of the brain. Finally, the cerebrum, dominating both
physically and mentally, can be found wrapped around the brain stem.
The outer part of the cerebrum consists of the cerebral cortex and deeper
inside we can find some subcortical structures such as the hippocampus,
thalamus, amygdala and basal ganglia.

To be able to fit the large surface (more than 0.23 m
2

[3]) of the cerebral
cortex into the relatively small skull (rouhgly 0.1 m

2
on the outside [4]),

it is folded into a characteristic pattern of bulges (gyri), and shallow and
deep grooves (sulci and fissures, respectively).

The cerebrum can be subdivided into two cerebral hemispheres (left
and right) by the medial longitudinal fissure. The two hemispheres are
not completely separated since they are interconnected via the corpus
callosum. Left and right hemisphere are largely symmetric, however,
a slight torque is present, which makes the right front and the left
back a little more prominent than their contralateral counterparts. The
hemispheres, in turn, can be partitioned into four lobes: the frontal,
temporal, parietal and occipital lobe. Within each lobe, most gyri and
sulci are named based on their relative position in the brain, e.g. middle
temporal gyrus, parieto-occipital sulcus, etc [5]. Others are named based
on their morphology, e.g. the angular gyrus in the parietal lobe, the
cuneus (Latin for ‘wedge’) in the occipital lobe, etc. Some are named
after their relative position with respect to the latter category, e.g. the
precuneus (translates to ‘in front of the wedge’). Fig 2.2 shows a lateral
and medial view of the brain in which the main gyri, sulci and fissures
are indicated.

2.1.2.2 On the micro scale

The basic building block of the brain is the nerve cell or neuron.
In a human brain, around 86 billion of these cells are present [6].
Each of these neurons connects with 5 000 – 200 000 of other neurons,
forming an exceptionally complex network providing the computational
backbone for our functioning from autonomous behavior up to higher-
level cognitive abilities. Three types of neurons can be discriminated:
motor neurons, sensory neurons and interneurons. The first two types
are dedicated to conveying motor and sensory information, respectively.
The interneurons are responsible to transfer information from one
neuron to another neuron.
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Figure 2.2: Lateral and medial views of the brain. Left: indication of the
different lobes, right: indication of the main gyri (g) and sulci (s). Figure
adapted from [1].

The typical anatomy of a brain neuron can be seen in Fig. 2.3. On one
side of the neuron, there is a nucleus with genetic material embedded in
a cell body from which many small dendrites sprout. These dendrites
are very thin (≈ 1µm) and short (typically several 100µm). A single
dendrite can, however, branch several times so that they can reach
a length of several centimeters in total. The cell body also has one
large extension, the axon, which starts in the axon hillock and ends in
several axon terminals. The axon is typically thicker than the dendrites
(≈ 25µm) and can reach lengths of more than 1 m. This way, a neuron
on the left side of the brain can be connected to a neuron on the right
side of the brain through the corpus callosum, or even to a muscle cell
in another part of the body. Yet, most axons are shorter than 1 cm.
The axon is covered by a myelin sheath, which is regularly interrupted
by gaps, called nodes of Ranvier. An axon terminal connects with a
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Figure 2.3: Anatomy of the brain neuron. Figure adapted from [7].

dendrite of another neuron in a synapse. A small gap, the synaptic cleft,
remains between the presynaptic axon terminal and the postsynaptic
dendrite.

In the cerebral cortex and the subcortical structures, mainly cell bodies
reside, giving them their typical gray color. Therefore, these structures
are also referred to as gray matter. On the other hand, the inner part
of the brain primarily hosts axons, providing short and long range
connections between neurons of different brain regions. The myelin
sheath surrounding the axons has a fatty content, giving this inner part
a characteristic white color, hence ‘white matter’.

Not only neuronal cells are present in the brain, approximately the same
amount of non-neuronal cells can be found [6]. These non-neuronal cells
are primarily supporting cells or glia. First of all, cells are needed to form
the myelin sheath around the axons of the neurons. These specific cells
are called oligodendrocytes. On one axon, adjacent myelin segments are
formed by different oligodendrocytes. One oligodendrocyte, however,
can wrap around axons of several neurons [8]. Next, there are star-
shaped astrocytes that maintain the chemical environment in the brain
and that are part of the blood-brain barrier [9]. The oligodendrocytes
and astrocytes are macroglia. Also microglia are present, which mainly
form the immune defense of the brain [10].
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2.1.3 Function

2.1.3.1 On the macro scale

Anatomically, three major parts in the brain can be distinguished: brain
stem, cerebellum and cerebrum. Different functions can be attributed
to these parts. The brain stem is highly involved in low- to mid-
order mental activities. Autonomic control is regulated in this region
and therefore it handles our heart rate, breathing, sleeping and eating
patterns. Moreover, it serves as a gateway between the main part of
the brain and the rest of the body for many motor and sensory systems.
The primary role of the cerebellum is in movement-related functions. It
contributes to the enhancement of coordination, accuracy and timing of
movements. This way, the cerebellum assists the cerebrum to control
all voluntary actions in the body. The cerebrum also plays a key role in
emotions, memory, attention, perception, awareness, thought, language,
higher-order cognitive functioning, etc. Thanks to the cerebrum, we
have a consciousness and a personality. Particular segregated regions of
the cortex and subcortical structures take care of specific functions. In
Fig. 2.4, an overview of how different functions are typically dispersed
over the brain can be seen.

The frontal lobe is mainly responsible for generating action plans based
on the projection of future consequences resulting from current actions.
It provides our conscience or ‘inner speech’ and makes sure that we
behave socially acceptable. Damage to this area can cause a well-
behaved person to become profane and impolite. Next, the primary
motor cortex, the brain region regulating voluntary movement, is also
located in the frontal lobe. Interesting to remark is that the left side of
the brain controls the right side of our body and vice versa. Also, sensory
information coming from taste and smell is processed here. Furthermore,
it allows us to speak through a region that is also called Broca’s area.
This region was one of the first functional regions to be discovered in the
late 19th century by Paul Broca. Broca examined the brain of a patient
only able to say the word “Tan” and found damage to the region which
became Broca’s area.

Sensory information based on touch is processed in the parietal lobe.
Actually, every kind of sensory information is transmitted from the
sense organs to a specific site of the cortex, but all the information
is integrated inside this parietal lobe to build a single multi-sensory
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Figure 2.4: Overview of the location of different functions in the cerebrum.
Figure adapted from [1].

perception. Furthermore, the parietal lobe provides us with spatial
awareness, administering a spatial coordinate system to represent the
world around us.

On the border of the parietal and temporal lobe, Wernicke’s area can
be found. This region is, together with Broca’s area, important for
speech [11]. Damage to this region may cause problems in recognizing
and understanding language, rather than speech problems. Hearing and
sound itself are also processed in the temporal lobe. The temporal
lobe also has an important function in creating new memories, and in
recalling previously encountered events, e.g. recognizing faces.

The occipital lobe is mainly responsible for processing visual
information. It makes possible that we understand what we perceive
through our eyes.

Finally, the subcortical structures play a major role in memory (together
with the associated regions in the temporal lobe) and the formation and
regulation of emotions.

As already mentioned, the left and right hemisphere are largely
symmetric. Nonetheless, some functions are more developed in one
hemisphere, e.g. speech, language and reasoning are mainly located
in the left hemisphere in most people.
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The brain cannot only be mapped by gross anatomy, i.e. the lobes, gyri
and sulci, but also based on microscopic anatomy or cytoarchitecture.
This way, Brodmann identified several brain areas based on the shape
and type of cells and their connections. All these Brodmann Areas (BAs)
can also be linked to neurological function, as can be seen in Fig 2.5.
For example, BA 4 corresponds to the aforementioned primary motor
cortex, BA 44 and 45 form Broca’s area, and BA 39 and 40 constitute
Wernicke’s area.

In modern neuroscience researchers have come to the conclusion that in
spite of the fact that function seems to be anatomically segregated over
the brain, the cortical infrastructure supporting a simple or complex
process typically spans several functionally specialized areas. These
areas are structurally and/or functionally integrated, meaning that
the brain works as a complex interconnected network, rather than as
different focal regions working completely separately.

2.1.3.2 On the micro scale

To achieve the aforementioned functions, neurons need to communicate
with both neighboring and distant neurons. The main function of
a neuron is thus to process and transmit received signals across its
length from dendrite to axon terminal, through the synaptic cleft to
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the dendrites of other neurons or other cells such as muscle cells. In
what follows, we will explain how a neuron achieves this. This section
is mainly based on [12,13].

The environment of the neuron has a certain distribution of sodium
(Na

+
) and potassium (K

+
) ions. In rest, there is a certain imbalance

in this distribution between the inside and the outside of the cell,
maintained by Na

+
and K

+
pumps and voltage-dependent channels

embedded in the cell membrane. More specifically, there is a higher
Na

+
concentration outside the cell than inside and vice versa for the

K
+

concentration. Due to this imbalance, a potential difference of
− 70 mV arises across the cell membrane. The inside of the cell is more
negative than the outside. In what follows, all potentials are referenced
to the outside environment of the cell.

When a neuron receives information via its dendrites, this happens in a
chemical way in the synaptic cleft. The axon terminals of the sending
(presynaptic) neuron release neurotransmitters such as dopamine and
glutamate into the synapse. This synapse can be either excitatory or
inhibitory. Due to the binding of the neurotransmitter to the receptors
of the postsynaptic dendrites in an excitatory or inhibitory synapse, the
Na

+
or K

+
channels will open respectively. In the excitatory case,

when the Na
+

channels open, an inflow of Na
+

will occur due to the
original concentration gradient at rest. As a consequence, the cell will
locally become more positive and the potential difference across the cell
membrane will decrease, resulting in a temporary depolarization called
an Excitatory Postsynaptic Potential (EPSP). In the inhibitory case, K

+

channels open and therefore an outflow of K
+

will happen, rendering
the cell on the inside even more negative than originally in rest. This
temporary hyperpolarization is called Inhibitory Postsynaptic Potential
(IPSP). The EPSPs and IPSPs have a relative amplitude of ±10 mV
and last for about 10 ms [14], during which they will passively spread
inside the neuron and reach the axon hillock. This is the process of
conduction. Due to the influence of different EPSPs and IPSPs that can
originate in the same or different dendrites and that (partially) overlap
in time, the potential at the axon hillock can increase (more EPSPs than
IPSPs) or decrease (vice versa). Whenever the axon hillock reaches a
potential of − 55 mV, the signal will be transported along the axon to
next neuron(s). This process is also called neuronal ‘firing’. EPSPs
enhances the probability that the neuron will fire, hence ‘excitatory’,
whereas IPSPs decrease the change that the neuron will fire, hence
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‘inhibitory’. When the potential difference of − 55 mV is not attained,
the neuron will gradually repolarize to resting state until the inside of
the cell is again − 70 mV lower than the outside. In this case, the signal
is stopped.

When a neuron fires, it generates an Action Potential (AP). An AP
is a large and rapid depolarization up to + 30 mV, followed by a
repolarization. The AP lasts about 1 ms. After repolarization, a short
period of hyperpolarization occurs, the refractory period, during which
the neuron cannot fire again. The AP in relation to the EPSP and
IPSP can be seen in Fig. 2.6. The AP needs to be propagated from the
axon hillock to the axon terminals. Therefore, electrotonic conduction
along the axon happens. Electrotonic conduction is helped by the myelin
sheath that acts as an electrical insulator allowing rapid transmission,
making this a very fast procedure. Moreover, no energy is needed to
sustain this process. Yet, the signal decays rapidly over time. Despite
the fact that the AP has a high amplitude, it would not be able
to reach the end of the axon solely by electrotonic conduction. For
this reason, the myelin sheath is intermitted with nodes of Ranvier,
in which the AP is actively amplified. Although this is a slower
process that requires more energy, it makes sure that signal quality is
maintained throughout transmission. The alternating propagation of the
AP along the myelinated segments (fast, decaying signal) and the nodes
of Ranvier (slow, restoring signal), is also called saltatory conduction
(saltare is Latin for ‘to jump’). When the AP finally reaches the axon
terminals, neurotransmitters are released into the synapses with the next
neurons and the whole process of postsynaptic potentials and AP can
be repeated.

2.1.4 Neuroimaging

Initial brain research was mainly based on post-mortem studies. Brains
of both healthy and abnormal or diseased deceased humans or animals
were taken out and carefully examined. A functional deficit could
possibly be related to anatomical anomalies and this way, an anatomical
area could be linked to a certain function. The areas of Broca and
Wernicke, discussed above, are good examples of this. Anatomy could
be studied very thoroughly this way, however it was harder to map
functional regions since researchers had to rely on a limited amount of
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Figure 2.6: Illustration of EPSP, IPSP and AP. On the x-axis, time is
represented in the order of milliseconds, the y-axis shows the amplitudes of
the potentials.

case studies in which a patient with a well-defined functional disability
died.

Some in vivo experiments were done as well. The lobotomies performed
in the late 19th and the first half of the 20th century are one illustration.
The anterior part of the frontal cortex was removed to reduce symptoms
of mental illnesses such as psychosis. However, it often left people
apathetic. Therefore, this technique was very controversial. The practice
of drilling holes in the head has, however, been used for centuries to cure
a vast array of diseases. Other examples are the use of electrical brain
implants to trigger certain reactions, or the use of electrical stimulation
of certain brain area’s during surgery to elicit their functionality. Due to
the invasive nature of these experiments and growing ethical awareness,
this kind of in vivo experiments was quickly reduced to an accountable
minimum. As a consequence, scientists were unable to find out much
about the workings of the brain for a long time.

Fortunately, the advent of neuroimaging techniques has allowed studying
the brain in vivo in a noninvasive way, giving researchers the opportunity
to investigate large cohorts of healthy and diseased subjects in a safe
way. In this section, we explain the terminology of the different viewing
planes in the brain and we continue with giving an overview of existing
modalities to image both brain anatomy and function. An overview of
these modalities can be seen in Fig. 2.7.
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Figure 2.7: Overview of neuroimaging modalities.
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Figure 2.8: The three primary orthogonal viewing planes in neuroimaging
and illustration of directional terms.

2.1.4.1 Imaging views

Researchers and doctors often look at planes or sections through the
brain. These sections can be made in different ways. Three standard
cuts exist, oriented perpendicular to each other. First, a transverse or
axial slice can be taken, a cut which detaches the upper and lower part
of the brain. The slice is perpendicular to the main length axis of the
human body. Towards the bottom, parts are referred to as inferior,
whether upper parts are superior. Second, a coronal view exists, based
on a section that separates the front of the brain (anterior) from the
back (posterior). Third, a sagittal slice divides the brain into a left
and right plane. This can be done in the middle (between the two
hemispheres), called medial, or more to one side, called lateral. Fig. 2.8
shows these three standard orthogonal planes to visualize the brain and
the corresponding navigational terms. Of course, most modalities are
not restricted to these three standard planes and every desired angle
is possible. Furthermore, often it is possible to acquire or show three-
dimensional images as well.

2.1.4.2 Structural imaging

Two modalities exist to capture head anatomy. Computed
Tomography (CT) creates tomographic images by the use of X-rays.
CT is actually an extension of a classical radiographic image in which
X-ray photons are projected through the subject. Some X-rays are
attenuated by the body, while others will pass through and will be
captured by a detector. Tissues with a higher density (e.g. bone) have a
higher chance of attenuating the X-rays than tissues with lower density
(e.g. soft tissues, such as the brain). This way, a kind of two-dimensional
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density map of the subject is made. In CT, the X-ray beam and detector
rotate around the subject, making images from many angles. This way,
every image incorporates different depth information and by combining
these images with reconstruction algorithms, an image of the inside of
the body can be obtained. CT has many clinical applications, but
most important for the head and brain are the detection of tumors,
calcifications, infarction, hemorrhage and bone trauma. Contrast agents
can be used to study the brain’s blood vessels with CT Angiography
(CTA).

The skull has a high density and will be well delineated on CT. The
different tissues (e.g. white and gray matter) inside the brain itself,
however, have all nearly the same density and therefore it is hard to
image the brain with good contrast between these tissue types and to
reveal subtle anomalies. Another obvious drawback of CT is the fact
that the subject is exposed to ionizing radiation.

The second modality to image brain structures is Magnetic
Resonance Imaging (MRI). Unlike CT, MRI does not require
ionizing radiation and is therefore less harmful for the patient

1
. MRI

makes use of the magnetic properties of the hydrogen atoms in our
body. The nuclei of these hydrogen atoms are able to absorb and
emit radio frequency (RF) signals when placed in a magnetic field.
By placing the subject in an external, strong, static, homogeneous
magnetic field, hydrogen atoms will become aligned with this field.
Next, RF sequences or pulses are applied, which excite the hydrogen
atoms. As a reaction, the excited hydrogen atoms will relax and decay
to their original alignment to the static field and will emit an RF
signal themselves by doing so. These RF signals can then be measured.
With the combination of carefully chosen magnetic gradients to encode
location information and reconstruction software, it is possible to create
an image of the inside of the body, highlighting different aspects of the
scanned tissues. Hydrogen atoms are mainly abundant in water and
fatty tissues. Hence, MRI has excellent soft tissue contrast to image
the brain in a very detailed way. White and gray matter can be clearly
distinguished from each other. Yet, the skull does not contain water nor
fat and cannot be imaged easily with this modality. Nevertheless, a lot
of research is dedicated to generating new gradient sequences in order

1
Note that adverse health effects are possible due to the radio frequency radiation

used in MRI.
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to be able to image bone structures as well. Clinically, MRI is used to
reveal subtle abnormalities such as cortical dysplasia and atrophy, but it
is also used to diagnose tumors, demyelinating diseases, dementia, etc.
Another MRI technique, called MR Angiography (MRA), allows
imaging blood vessels. As opposed to CTA, MRA does not require the
injection of a contrast agent.

2.1.4.3 Functional imaging

CT and MRI can both be used for functional imaging as well. A contrast
agent can be injected into a patient’s venous system shortly before
acquisition allowing to image the brain perfusion with CT Perfusion
(CTP). Whereas the functional imaging possibilities with CT are rather
limited, MRI offers more options by the use of Functional Magnetic
Resonance Imaging (fMRI). With fMRI, it is possible to detect
changes in the ratio of oxygenated and deoxygenated blood in the
brain. These changes are an indirect measure of neuronal activity since
regions that become active will need more oxygen. This technique allows
measuring brain activity with high spatial resolution. The temporal
resolution is however limited because changes in the oxygen levels
happen slower than the neuronal activity itself. In research, fMRI
is often used to unravel working mechanisms of the healthy and the
diseased brain. Clinically, fMRI can be used to map regions linked
to critical functions, such as speaking and moving, and can, therefore,
help planning brain surgery for e.g. tumor resection. Other MRI-
based functional imaging techniques are Arterial Spin Labelling
(ASL) MRI, Dynamic Susceptibility Contrast (DSC) MRI
and Dynamic Contrast Enhanced (DCE) MRI to measure brain
perfusion.

Another way to measure brain perfusion is Single Photon Emission
Computed Tomography (SPECT). In SPECT, the patient is
injected with a radiotracer. This radiotracer is a substitute biologically
active molecule, antibody or other molecule, labeled with a single photon
emitting isotope. The uptake time of the tracer is within 30 to 60
minutes, but the patient can be imaged several hours later. This way,
the e.g. regional cerebral blood flow during time of injection can be
imaged. In epilepsy patients, the tracer can be injected during the
seizure and imaging can happen afterwards when the seizure has passed.
Hyperperfusion may indicate the seizure focus. Other applications are
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tumor and infection imaging. Since the patient is injected with a
radiotracer, SPECT is called a nuclear imaging technique and the patient
is subjected to ionizing radiation.

Another nuclear imaging technique is Positron Emission Tomogra-
phy (PET), used to image the metabolic rate in the brain. Again,
the patient is injected with a radiotracer, now consisting of a molecule
used for metabolism (such as glucose), labeled with a positron emitting
isotope. The half life time of the isotopes used in PET are often much
shorter than in SPECT, hence the time between injection and scanning
is limited. The main application of PET lies in the field of oncology,
where it is used to image tumors and metastases, since these structures
are often growing and therefore very active from a metabolic point of
view. In epilepsy, a local hypometabolic spot can point to the onset of
the seizures.

The aforementioned modalities have two things in common: they create
an image of the inside of the brain, and they measure neuronal activity
indirectly. Yet, there are other ways of recording brain activity. In the
Electroencephalogram (EEG), brain activity is measured directly
with a very high temporal resolution by measuring the electric fields
generated by the neurons. This is done by electrodes that can be
placed on the scalp, on the cortex (Electrocorticography (ECoG)) or
inside the brain (intracranial or stereo EEG (sEEG)). The latter two
are invasive techniques (intracranial EEG (iEEG)). The measurement or
recording consists of a trace of the measured potential for every involved
electrode. When the electrodes are placed on the scalp, the technique
is completely noninvasive. Moreover, EEG is also mobile and relatively
cheap. Though, signal quality is rather low because the electric fields
are influenced (attenuated and distorted) by the skull, which is only low-
conductive. Intracranial EEG with electrodes inside the brain does not
suffer from this drawback, since it measures potentials locally, and offers
excellent signal quality, but the procedure is invasive and associated with
medical risks for the patient such as scarring, infection and functional
loss. Furthermore, it is practically impossible to sample the whole brain.
ECoG is somewhere in between the signal quality - medical risk trade-
off. EEG has a wide application area, both clinically and in research.
The EEG will be discussed more elaborately in the next section.

The Magnetoencephalogram (MEG) is a similar, but complemen-
tary, technique to EEG. It measures the magnetic field generated in
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the brain with very sensitive magnetometers placed close to, but not
touching, the head. This field is, however, several orders of magnitude
smaller than the Earth’s magnetic field. Therefore, recordings have
to take place in special magnetic shielded rooms. Moreover, the
magnetometers need to be cooled with helium to maintain proper
functioning. This makes MEG immobile and it is also quite expensive.
The major advantage of MEG is the fact that the signals are not
distorted due to the propagation through the other tissues such as
skull and CSF, since the magnetic permeabilities of these tissues
are approximately the same as in empty space. Hence, the signal
quality is unhampered. Therefore, it is easier to derive the underlying
brain activity that generated the MEG recording (Magnetic Source
Imaging (MSI)), than deriving the underlying brain activity from EEG
(Electrical/EEG Source Imaging (ESI), see next chapter). EEG is
sensitive to both tangential and radial components of a current source,
allowing it to detect activity both in the sulci and the gyri. MEG,
however, only detects the tangential components, making it more
sensitive to activity originating in sulci. The main clinical application
for MEG is to reveal information about the focus in epilepsy patients.

Finally, a recent non-invasive technique, called Near-Infrared
Spectroscopy (NIRS), uses near-infrared light to measure changes in
the level of oxygenated and deoxygenated blood in the brain, like fMRI.
A near-infrared light bundle is shined locally on the patient’s head, the
bundle will follow a banana-shaped trajectory and will exit the brain
in another place on the head, where a detector is placed. Based on the
spectra of the incoming and outgoing light, changes in oxygenated and
deoxygenated blood levels can be detected. NIRS is very mobile and is
cheaper and less intrusive than fMRI, but is also less sensitive for deeper
sources and has a worse spatial resolution [15].

Structural imaging techniques image anatomy and functional techniques
measure function. However, a combined map is often desired, providing
an anatomical reference for a functional image. A patient undergoing a
PET scan will often get a structural image as well, in order to overlay
both images to get more detailed information. Yet, it can be hard to
register these images since they are of a different nature and because the
patient will be positioned slightly differently in the different scanning
machines. Moreover, extra time is needed to plan the additional
examination. Therefore, a lot of research has been and is still dedicated
to creating multimodal machines, e.g. PET-CT [16], SPECT-CT [17]

21



Chapter 2. The brain, EEG and epilepsy

and PET-MR [18]. Despite the many technical challenges associated
with developing these systems, they slowly find their way to the clinic,
showing promising results to help in diagnosis and treatment [19]. Also,
functional combinations such as EEG-fMRI [20], EEG-MEG [21], NIRS-
fMRI [15] are possible, acquiring complementary functional information
simultaneously. Up to now, this is mainly used in research settings.

2.2 The electroencephalogram

2.2.1 Introduction

In the previous section, we already mentioned that in an EEG recording,
brain activity is measured with electrodes placed on the scalp or inside
the skull. Since EEG recorded on the scalp is the modality of interest
in this dissertation, we will discuss this technique more elaborately in
this section, though the concepts can be easily extended to invasive
EEG. First, we explain how the activity of single neurons translates to
an electrical field that can be measured at the scalp. Next, we give
more details about how scalp EEG recordings are performed and how
the recordings typically look like. To conclude this section, the possible
application areas of EEG are discussed.

2.2.2 From neural activity to electrical potentials on the
scalp

A neuron transmits an electrochemical signal across its length, causing
a very small electric current in the order of femtoamperes (10

−12
A).

The corresponding electric field decays with the square of the distance
(inverse-square law), and therefore the electrical activity of a single
neuron cannot be measured at the scalp. To have an electric field
that is measurable at the scalp, hundreds of thousands neighboring
neurons need to be synchronously active and several conditions need
to be fulfilled.

First of all, the electrical activity needs to overlap in space. Neighboring
neurons need to be aligned in parallel so that their electric fields sum and
do not cancel each other. The pyramidal cells in the cortex meet this
requirement, as they are aligned perpendicularly to the cortical surface,
see Fig. 2.9. Depsite the fact that the cortex is a highly folded structure,
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2.2. The electroencephalogram

Figure 2.9: A picture of the pyramidal neurons in the cortex. They are aligned
perpendicularly to the cortical surface and as a consequence, are parallel to each
other.

it can be seen as locally flat on the level of the cell since there are around
10

5
neurons per 1 mm

2
[22].

Second, the electrical activity needs to overlap in time. APs have a high
amplitude, approximately 100 mV with respect to baseline, but only last
for around 1 ms. It is very unlikely that neighboring neurons will fire
perfectly synchronously, and as a consequence, it is not probable that
APs will overlap in time so that their electrical activity gets summed.
Postsynaptic potentials are typically smaller, around ±10 mV, but they
last for a longer time, around 10 ms, making them more likely to overlap
[14]. When they have the same polarity (EPSPs vs. IPSPs), electric
fields generated by postsynaptic potentials of neighboring pyramidal
neurons can thus sum in both time and space. Therefore, they are
also seen as ‘the generators of the EEG’, since it is their superposition
that can be measured at the electrodes [23]. Before the potentials reach
the electrodes, however, they are smeared and attenuated because the
tissues (brain, skull, scalp, etc.) they are distributed through all have a
different electrical conductivity. Especially the conductivity of the skull
is low, accounting for the large signal quality difference between scalp
and invasive EEG. A typical normal human EEG recording has values
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in the range of 10 – 100µV, while invasive recordings have an amplitude
between 1 – 20 mV.

2.2.3 Recording the EEG

To pick up the potentials at the scalp, highly conductive materials are
used, such as silver/silver chloride electrodes. Electrodes can be glued
to the scalp or can be embedded in a cap or a net that is tied around
the subject’s head. To minimize the impedance between the electrode
and the skin, an electrolytic gel or solution is applied. Often, the aim
is at an impedance below 5 kΩ. In clinical practice, often 19, 21, 27
or 32 electrodes are used, but configurations of 64 electrodes up to 128
or even 256 electrodes exist as well, offering a higher spatial sampling
of the head. These systems are referred to as high-density (hd) or
high-resolution systems. Fig. 2.10 shows a setup with 32, 128 and 256
electrodes.

Figure 2.10: Example of the EEG setups with (a) 32 electrodes, (b) 128
electrodes, (c) 256 electrodes. Figure from [24].

The electrodes can be placed at any position on the head, but mostly
an international standard is followed, depending on the number of
electrodes. E.g. for 19 electrodes, the International 10-20 System can be
applied [25]. In this system, the distance between neighboring electrodes
is either 10% or 20% of the total left-right or front-back distance, as can
be seen in Fig. 2.11. The left-right distance is measured between the
left and right preauricular point and the front-back distance is measured
from the nasion, i.e. the deepest point between forehead and nose, to
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Figure 2.11: Illustration of how electrodes should be placed according to the
International 10-20 system.

the inion, i.e. the lowest point of the skull from the back of the head,
normally indicated by a prominent bump.

Electrodes are labeled with a letter. ‘F’, ‘P’, ‘T’, ‘O’ for electrodes
covering the frontal, parietal, temporal and occipital lobe, respectively;
‘C’ for electrodes on the central area; ‘Fp’ for electrodes on the forehead
(frontal polar area); and ‘A’ for electrodes at the ear lobes (auricular).
Furthermore, the letter is accompanied by an odd number on the left
side of the head and with an even number on the right side, which is the
smallest next to the nasion-inion midline and increases in the direction
of the ears. The electrodes on de nasion-inion midline are accompanied
with the letter ‘z’ from zero. For systems with a higher number of
electrodes, the 10-20 system has been extended to the 10-10 system
and 10-5 system accordingly [26]. Combined letters can be used for the
labels, e.g. ‘FCz’ for the electrode on the midline between the frontal
and central region.

A voltage or a potential cannot be determined absolutely, but is always
measured relatively between a point of interest and a reference. For EEG
recordings, the points of interest are the electrodes discussed above, and
the reference is often an (extra) electrode on the top of the head or
an electrode placed on one or both mastoids (behind the ear). The
measured potential differences are fed to an amplifier and an analog-to-
digital converter before being brought to a computer for visualization
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and storage. Common sampling frequencies range between 250 and
2000 Hz. For common-mode rejection in the amplifier, a separate ground
electrode is added on top of the head, or anywhere on the body.

2.2.4 Visualization of the EEG

The most common way to visualize EEG signals, is to show the measured
voltage traces over time. Typically, the x-axis represents time and the
different channels are labeled and stacked on the y-axis. The traces
can be shown in a referential way, i.e. showing the voltage difference
between every electrode of interest and a reference electrode (mostly
the reference electrode used for recording). An example of a referential
montage is shown in Fig. 2.12(a). Mathematically, an example is given
in Eq. 2.1 for electrodes T3 and T5.

T3(t) = VT3(t) − Vref(t)
T5(t) = VT5(t) − Vref(t)

(2.1)

Another option is to make use of bipolar montages. In a bipolar
montage, the difference between serial pairs of adjacent electrodes in
longitudinal or transversal lines is shown. The ‘double banana’ montage,
schematically shown in Fig. 2.13, is an example of a bipolar montage
often used in clinical practice. The bipolar montage can be derived
from a referential recorded EEG, using the simple formulas in Eq. 2.2.
As can be seen from this equation, the bipolar montage is independent of
the originally chosen reference electrode. An example of EEG visualized
using a ‘double banana’ is depicted in Fig. 2.12(b).

T3 − T5(t) = T3(t) − T5(t)
= (VT3(t) − Vref(t)) − (VT5(t) − Vref(t))
= VT3(t) − VT5(t)

(2.2)

A third option is using a Common Average Reference (CAR), in which
at every time point, the mean of all channels at that time point t is
subtracted from every channel at time point t, see Eq. 2.3 forN channels.
Again, this reference is independent of the original recording reference.
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A CAR is useful to visualize small signals in noisy recordings, though
artifacts in one channel may be spread over different channels.

T3avg(t) = T3(t) −
∑N
i=1Chi(t)
N

= (VT3(t) − Vref(t)) −
∑N
i=1 VChi(t) − Vref(t)

N

= VT3 −
∑N
i=1 VChi(t)

N

(2.3)

Next to EEG traces, two-dimensional scalp topographies are frequently
used to visualize the EEG at a certain time point. At every electrode,
the potential measured at that electrode is shown using a color scale and
between the electrodes, potential values are interpolated using triangular
or spherical splines interpolation in order to create a colored map of
activity [27, 28]. These topographies provide a clear overview of how
the activity is distributed on the scalp and which areas are more or less
active. An example of a topography can be seen in Fig. 2.14.
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Figure 2.14: Example of a scalp topography.
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2.2.5 Observed brain activity in the EEG

In EEG recordings, a distinction can be made between different types of
observable activity, depending on frequency, amplitude and location.
Primarily, there is rhythmical activity with an oscillatory behavior.
Healthy background brain activity is typically rhythmical, but other
events such as seizures (see section 2.3.4) may also display rhythmical
patterns. Depending on the frequency, rhythmical brain activity can be
divided into several bands (see list below), each associated with different
mental states [29]. Abnormal occurrence of these rhythms may reflect a
pathology.

Delta (δ): Frequencies below 4 Hz, high in amplitude. Asso-
ciated with deep sleep and may be present in the waking
state.

Theta (θ): Frequencies between 4 and 7 Hz. Associated with
drowsiness and idle state, creative inspiration and deep
mediation. Important in children, abnormal in the waking
adult when present in larger groups.

Alpha (α): Frequencies between 8 and 13 Hz. Mainly
found over the occipital region, often sinusoidally shaped.
Associated with relaxed awareness, without attention or
focus. Can also be observed when the eyes are closed.

Beta (β): Frequencies between 14 and 30 Hz, low in
amplitude. Usual waking rhythm associated with active
thinking, alertness, focus and concrete problem-solving.
High-level beta may be associated with anxiousness and
panic.

Gamma (γ): Frequencies above 30 Hz, low in amplitude.
Associated with a state of active information processing.

Mu (µ): Frequencies between 8 and 13 Hz. Overlaps with
alpha, but strongly related to movement. Typical rhythm
that gets suppressed during an (imaginary) movement in
the region associated with the body part that moves.
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Figure 2.15: (a) Typical dominant brain rhythms: the delta, theta, alpha and
beta rhythm are shown in black, blue, orange, green and gray, respectively. (b)
Example of transient activity in the form of an event-related potential.

In Fig. 2.15(a), the δ, θ, α and γ rhythm are shown. As can be seen
in this figure, low-frequency rhythms tend to be higher in amplitude.
More specifically, the power spectrum of EEG is typically inversely
proportional to the frequency (1/f behavior).

Next, there are transient events that are not necessarily characterized
by an oscillatory nature. Event-Related Potentials (ERPs) are one
example, shown in Fig. 2.15(b), which are a response to a specific
sensory, cognitive or motor event. Interictal Epileptiform Discharges
(IEDs) are an example of a transient event occurring in epilepsy patients.
This is elaborated in section 2.3.4. Furthermore, there can be signals
with a wide frequency range, or that might be spiky, such a vertex waves
which happen during sleep.

2.2.6 Artifacts

Unfortunately, not only brain activity is recorded by the electrodes,
but a lot of unwanted signals are picked up as well. These undesirable
components are also called ‘artifacts’ and can be of environmental or
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biological origin. The first are obviously caused by the environment,
while the latter are caused by the subject or patient himself. Examples
of environmental artifacts are 50 Hz power line interference, electrical
noise from electronic components, cable defects, impedance fluctuations,
or a malfunctioning or detached electrode. Whereas power line noise will
be visible on most channels, the artifacts due to a detached electrode
will remain limited to the affected channel. Biological artifacts can arise
from body movements such as chewing, biting, sneezing etc. These
artifacts are also referred to as muscle artifacts and have a typical high-
frequency nature (frequencies above 30 Hz). Other possible origins are
eye movements and blinking. These ocular artifacts are mainly visible on
the frontal polar electrodes. An eye blink artifact typically lasts around
200 ms. Furthermore, the beating of the heart (cardiac artifacts) and
sweating of the subject can be visible in the EEG. Some typical artifacts
are shown in Fig. 2.16.
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Figure 2.16: Typical artifacts in the EEG. Only a selection of channels is
shown. Environmental artifacts: (a) 50 Hz power line noise and (b) a detached
electrode (T9). Biological artifacts: (c) high-frequency muscle artifacts and (d)
an eye blink artifact, mainly visible on the frontal polar electrodes.
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To provide good data quality, artifacts should be kept to a minimum. To
minimize power line artifacts during recording, the EEG system is often
supplied with a DC battery. Good electrode contact and application
of the conductive gel/solution can further reduce potential artifacts.
The patient can be asked to sit still to avoid biological noise as much
as possible. In research, subjects will be asked to repeatedly perform
the same task. After the recording, several trials can be averaged, due
to which the random noise will cancel out and the signal of interest
is highlighted (an example can be seen in Fig. 2.15(b)). The signal-
to-noise ratio (SNR) of the recorded EEG can be further enhanced by
reducing or rejecting artifacts that were recorded despite the precautions
during recording. Rejecting artifacts means that artifactual periods
of the EEG will not be taken into account during further analysis or
interpretation. To reduce remaining power line noise, a notch filter
at 50 Hz can be applied. An electrode having a bad signal can be
removed from the recording or can be interpolated, e.g. by the use
of splines [27, 28]. Muscle artifacts can be, to a certain extent, filtered
out with a low-pass filter, given that their frequency content does not
overlap with that of the useful EEG signal. If an Electro-oculogram
(EOG), which records the eye movements and blinking, is recorded
simultaneously with the EEG, this can be used to remove the ocular
artifacts [30]. This can also be done for cardiac artifacts using the
Electrocardiogram (ECG). Another technique to remove artifacts is the
use of decomposition techniques such as Principal Component Analysis
(PCA) [31], Singular Value Decomposition (SVD) [31] or Independent
Component Analysis (ICA) [32]. Decomposition methods decompose the
data into several components. The component containing the artifact
can be removed and the EEG data can be reconstructed without the
artifactual component, resulting in a more clean EEG. To make small
signal changes visible in common noise, CAR can be used, which is
explained in section 2.2.4.

2.2.7 Resolution

The temporal resolution of EEG and iEEG is excellent, in the order of
milliseconds. No single neuroimaging modality performs better. The
spatial resolution of scalp EEG, however, is restricted to centimeters
because of the volume conduction through the different tissues of the
head and the limited sampling by electrodes. It can be improved
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Figure 2.17: The spatial and temporal resolutions of different functional
neuroimaging techniques. EEG and iEEG have superior temporal resolution.
EEG has a poor spatial resolution, that of iEEG is better, but implantation of
electrodes is necessary. Multimodal refers to multimodal imaging techniques
combining two or more of the modalities. Figure adapted from [33].

by using higher-density setups, although the effect is limited. Other
possibilities to improve the spatial resolution in a non-invasive way are
the use of multimodal neuroimaging modalities (see section 2.1.4.3)
and EEG Source Imaging (ESI) (see section 3.1). When recording
iEEG, there is neglectable volume conduction and spatial resolution in
the order of (sub)millimeters is possible. Yet, the spatial sampling is
limited, since implanted electrodes cannot cover the whole brain. The
spatial and temporal resolutions of EEG and iEEG with respect to other
neuroimaging techniques are shown in Fig. 2.17.

2.2.8 Applications

Because EEG is a safe, inexpensive and relatively easy modality to
directly measure neuronal activity, it has become an established tool
in both clinical and research settings.

2.2.8.1 Clinical

In the clinical environment, the EEG is primarily used as a diagnostic
and analytic tool for neurological and psychiatric disorders. In epilepsy,

33



Chapter 2. The brain, EEG and epilepsy

EEG is an indispensable tool to diagnose and characterize the seizures.
Furthermore, it can help to determine the treatment of a patient.
This is further discussed in section 2.3.4. Dyslexia, autism spectrum
disorders, Attention-Deficit Hyperactivity Disorder (ADHD), Attention-
Deficit Disorder (ADD) and depression are examples of psychiatric
disorders that may be accompanied with abnormal brain rhythms that
can be measured by EEG [29]. Though in these cases, the EEG is rather
a possible aid than part of a fixed standard protocol.

Furthermore, abnormal EEG patterns may indicate hemorrhage,
encephalitis (swelling of the brain), tumors or head injury. The deepness
of a coma can be assessed by the level of brain activity in the EEG and
brain death can be confirmed.

Another application is in sleep studies. The EEG is part of
the polysomnogram recorded during sleep and every sleep stage is
accompanied with different typical brain activity. Abnormal sequencing
or duration of the sleep stages, detected from the EEG, can point out
sleep disorders such as sleep related breathing disorders, narcolepsy,
parasomnias, insomnias, etc [34].

2.2.8.2 Research

All clinical applications, of course, trace back to extensive research. Even
now, EEG is still used to learn more about the working mechanisms of
the aforementioned disorders and research continually tries to refine or
develop new analysis techniques and methods in order to increase the
diagnostic and prognostic value of EEG.

Furthermore, the EEG allows studying the working mechanisms of the
healthy brain as well and it is widely used in the field of cognitive
neuroscience. Brain activity is monitored while the subject (or patient
in the case of clinical research) repeatedly performs a certain cognitive
task in response to a certain stimulus. The stimuli and their reaction
to them will evoke a specific brain activity, hence they are also called
Evoked Potentials (EPs). A lot of paradigms to elicit EPs exist, but
one example is the auditory oddball paradigm, during which a subject
gets to hear a sequence of equal tones, occasionally interrupted by a
different or target tone [35]. When the subject hears a target tone, he
should perform a certain task, such as pressing a button, which elicits
the EPs. The EP is a direct result of a specific sensory, cognitive or
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motor event (pressing the button), and is, therefore, an ERP. ERPs
have a distinct transient morphology, but are, however, not larger in
amplitude than regular EEG activity. As a consequence, it can be
very hard to discriminate a single ERP in the EEG. Therefore, the
subject should repeatedly perform the task, so the different trials can
be averaged. Background EEG activity is ‘random’ and will, for that
reason, cancel out by averaging, while the ERP has approximately the
same morphology for every trial and will be kept in the average. Hence,
the SNR of the ERP increases, resulting in a clear transient waveform.
For the case of the auditory oddball paradigm, an averaged ERP can
be seen in Fig. 2.15. ERP studies can show which brain regions are
involved or functionally integrated for specific cognitive tasks, such as
naming objects, visual perception, etc. It should be noted that ERPs
can also be used in a clinical setting to diagnose e.g. dyslexia [36],
Alzheimer’s disease (AD) [37] or head injuries [38, 39]. Yet this is often
still experimental.

Another field of research is in Brain-Computer Interfaces (BCIs). The
purpose of a BCI is to command a device based on brain activity. Brain
activity is captured, processed and translated into a command for the
device. It can restore or replace certain functions for physically disabled
people [40]. Examples are neuroprosthetics [41] to replace e.g. a missing
limb, or thought-controlled wheelchairs [42] and mindspellers [43, 44]
for people who are almost completely paralyzed or who suffer locked-in
syndrome [45]. Furthermore, BCIs can provide environmental control
(switching on the lights by thinking of it) for healthy subjects and
patients [46] or they can enhance gaming experience (controlling a
character with your thoughts in a virtual reality) [47]. In spite of the fact
that a lot of research is already done in the field of BCIs and nice results
have been shown, they are not widely used yet, because of the long
calibration times needed that are exhausting for the user. Therefore,
current research aims at reducing these calibration times [48].

An emerging field of research is in neuromarketing. Based on recorded
EEGs, researchers try to find the driver behind consumer decisions
and the regions that are active when buying something. This
allows companies to adapt their marketing strategies accordingly [49].
Although promising, ethical considerations should be made [50].
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2.3 Epilepsy

2.3.1 Introduction - definition, prevalence and incidence

Most people will associate epilepsy with a neurological disorder
characterized by seizures. But what are seizures? And when exactly does
a seizure become epilepsy? In 2014, the International League Against
Epilepsy (ILAE) provided an updated practical clinical definition of
epilepsy [51]:

“Epilepsy is a disease of the brain defined by any of the
following conditions

1. At least two unprovoked (or reflex) seizures occurring
>24 h apart

2. One unprovoked (or reflex) seizure and a probability of
further seizures similar to the general recurrence risk
(at least 60%) after two unprovoked seizures, occurring
over the next 10 years

3. Diagnosis of an epilepsy syndrome”

An epileptic seizure is defined as “a transient occurrence of signs and/or
symptoms due to abnormal excessive or synchronous neuronal activity
in the brain” [51]. The signs and symptoms may vary, but during
a seizure, a group of neurons in the brain experience a sudden burst
of uncontrolled electrical activity [52]. This abnormal activity can be
measured with EEG (see section 2.3.4). During a seizure, a patient
may present a wide spectrum of behaviors ranging from no abnormal
behavior over subtle absences to general convulsions. That the seizures
need to be unprovoked means that there should be no temporary or
reversible factor that could lower the threshold for a seizure, such as
concussion, fever or alcohol-withdrawal. Most of the time, epilepsy
syndromes are accompanied by typical seizures, but even in absence
of obvious behavioral seizures or if the risk of subsequent seizures is low,
the patient is said to have epilepsy [51].

According to the World Health Organization (WHO) [53], about 10%
of the population will experience a seizure during their lifetime, but not
all of them will develop epilepsy. They report that roughly 50 million
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people worldwide have epilepsy, which corresponds to between 0.5 and
1% of the population, making it one of the most common neurological
diseases. It is estimated that approximately 50 per 100 000 people per
year get epilepsy [54]. Although epilepsy may develop at every age,
the incidence is highest in both young children and older adults [55].
Furthermore, the incidence is higher in lower-income countries [54].

For most epilepsy patients no identifiable cause can be found.
Nonetheless, many factors could possibly cause epilepsy: loss of
oxygen or trauma during birth, congenital abnormalities or genetic
conditions with associated brain malformations, severe head injury,
stroke, infections of the brain such as meningitis and encephalitis, tumors
[53].

2.3.2 Epilepsy subtypes

Epilepsy can be classified depending on the above causes or etiology,
which can be unknown, structural, genetic, infectious, metabolic or
immune [56]. For some epilepsies, it is possible that two categories apply.
For instance, patients suffering tuberous sclerosis, a genetic disease that
causes benign tumours to grow in the brain and/or other vital organs,
both have a structural and a genetic etiology.

Furthermore, there is a multilevel-classification for epilepsy based on
seizure types, epilepsy types and epilepsy syndromes [56]. First, seizures
can have a focal onset, i.e. starting in a specific region of the brain,
a generalized onset, i.e. widespread activity that involve the entire
brain, or an unknown onset. Seizures can be classified further and
this is discussed in the next section. Second, based on the present
seizure types, the epilepsy type can be defined as focal, generalized,
combined generalized and focal, or unknown. Focal epilepsies are
applicable to patients that have unifocal and multifocal seizures, or
seizures that involve only one hemisphere. Obviously, generalized
epilepsies apply to those patients who only suffer generalized seizures
and combined generalized and focal epilepsies on those who suffer both
focal and generalized seizures. Third, an epilepsy syndrome may be
diagnosed. Generally, epilepsy syndromes are organized based on the
co-occurrence of several features such as the (further classified) seizure
types, EEG, imaging, age at onset and possible remission, seizure
triggers, comorbidities (such as intellectual and psychiatric dysfunction),
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and sometimes prognosis [57]. Many syndromes can be recognized,
however there is no formal classification [58]. One clear example is
childhood absence epilepsy, affecting young children with seizures that
are usually periods (around 10 to 20 s) of staring during which the child
is not aware or responsive.

2.3.3 Classification of seizures

The ILAE has very recently proposed the expanded seizure type
classification shown in Fig. 2.18 in which some changes with previous
classification schemes can be found [59].
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Figure 2.18: The expanded classification of seizure types as proposed by the
ILAE in 2017 [59].
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Focal seizures can be optionally classified according to the awareness of
the patient during the seizure. When a patient is aware during a seizure,
this means that he keeps being aware of himself and the environment,
even if he is immobile. This kind of seizure used to be referred to
as a ‘simple partial seizure’, but should now be called a ‘focal aware
seizure’. A ‘focal impaired awareness’ seizure used to be known as
a ‘complex partial seizure’. In this case, partial, simple and complex
have been changed to focal, aware and impaired awareness, respectively.
Furthermore, a focal seizure may be accompanied by motor or nonmotor
(or overlapping) symptoms. A descriptive list of motor and nonmotor
events is given below. Finally, a focal seizure may generalize, i.e. start
in a focal region in the brain, but then spread until the entire brain is
involved. These seizures were formerly known as ‘seizures with partial
onset with secondary generalization’ and are now referred to as ‘focal to
bilateral tonic-clonic seizures’.

Seizures with generalized and unknown onset can also be further
classified according to their (non)motor symptoms. Moreover, a seizure
with unknown onset may be unclassified as long as their onset is
unknown. The classification of an individual seizure can stop at every
level, e.g. from ‘focal onset’ over ‘focal motor seizure’ up to ‘focal aware
tonic seizure’. We end this section with a short glossary of motor and
nonmotor seizure symptoms:

Motor symptoms

automatisms repeated or automatic movements

atonic lapse in muscle tone, (a part of) the body becomes limb

clonic sustained rhythmical jerking of (a part of) the body

epileptic spasms sudden flexion and/or extension of (parts of)
the body

hyperkinetic excessive motor activity, usually directed and
complex

myoclonic brief shock-like jerks of a muscle or a group of muscles
(mostly shorter in duration than spasms)

tonic (a part of) the body becomes stiff or tense

Nonmotor symptoms

autonomic changes in heart rate, breathing or color, etc.
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behavior arrest blank stare, stop talking stop moving

cognitive confusion, slower thinking, and/or problems with
talking and understanding

emotional sudden emotional experience such as anxiety or
pleasure

sensory changes in hearing, vision or taste; or feelings of
numbness, tingling or pain

typical absence loss of awareness, sometimes with staring or
with fluttering eyelids

atypical absence patient stares, but may be able to respond a
little, longer and slower onset and offset than typical absences

Epilepsy is mainly diagnosed and classified based on the semiology of
the seizures, i.e. the clinical symptoms, and by EEG recordings, which
will be explained in the next section. Furthermore, structural epilepsy
is mostly confirmed with MR images.

2.3.4 Epilepsy in the EEG

As already mentioned above, an epileptic seizure arises due to abnormal
neural activity. This abnormal neural activity can be recorded with
the EEG. During a seizure, also called ictal activity, the most obvious
deviations can be measured but the largest part of patients also show
small abnormalities in between seizures, also called interictal activity.
In focal epilepsy, the abnormal activity is often limited to the electrodes
in the neighborhood of the origin of the epilepsy, whereas in generalized
epilepsy it can be measured at electrodes on both sides of the head. In
focal to bilateral tonic-clonic seizures, the activity is first limited to some
electrodes, but later on spreads to electrodes on both sides of the head.
Although the abnormal activity may be limited to a few electrodes, it
can be challenging based on this to delineate where exactly in the brain
the seizure originated from.

During a seizure, usually rhythmical, often sharp, waveforms can
be seen. Yet, the components vary in morphology, frequency and
topography depending on the seizure [60]. Some seizures show very clear
ictal patterns whereas others manifest only subtle changes, an example
of a recorded seizure is shown in Fig. 2.19(a). Sometimes an ictal
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Figure 2.19: (a) 20 first seconds of a seizure originating in the right frontal
lobe of a patient. Right frontotemporal (abnormal) rhythmical theta activity
can be seen. (b) IED with main phase reversal over electrode F7, recorded in
a different patient.

episode is preceded by a decrement which is an abrupt flattening of
the background activity. It is important to remark that some seizures
are visible on the EEG but pass without any clinical symptoms for the
patient. These are also called subclinical seizures.

Interictal abnormalities in the EEG are also referred to as Interictal
Epileptiform Discharges (IEDs) and come in different shapes [60]:

sharp wave transient activity with a pointed peak that is clearly
distinguishable from the background activity, lasting 70 –
200 ms

spike same as sharp wave, however shorter in duration, lasting
20-70 ms (the distinction is, however, arbitrary)
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spike-slow-wave complex spike followed by a slow wave that
is typically higher in amplitude than the spike (Fig. 2.19(b))

polyspike-slow-wave complex Two or more spikes associated
with one or more slow waves

In a bipolar montage, interictal spikes and slow waves show phase
reversal over the electrodes of interest as the traces deflect in opposite
directions.

2.3.5 Treatment

Epilepsy treatment aims at the suppression of the seizures and different
options exist that will be discussed in this section. Sometimes these
treatments allow resolving the epilepsy. The ILAE “define epilepsy
as being resolved for individuals who had an age-dependent epilepsy
syndrome but are now past the applicable age or those who have remained
seizure-free for the last 10 years, with no seizure medicines for the last
5 years” [51].

2.3.5.1 Anti-epileptic drugs

The standard treatment for epilepsy is the administration of Anti-
Epileptic Drugs (AEDs), which selectively try to alter the excitability
of the neurons. They try to block the abnormal synchronous neuron
firing, while not disturbing normal non-epileptic activity [61]. According
to the Epilepsy Society of the UK [62] and the US Epilepsy Foundation
[63], more than 25 different AEDs are currently in use. The choice to
treat a patient with one or a combination of these drugs depends on the
epilepsy and seizure type, the sex and age of the patient, the side-effects
of the drugs, the interplay with other medication, etc. In most patients,
it takes some time to find the correct dose of a suitable AED. The
correct dose is important to have an optimal seizure suppressing effect,
while minimizing possible side-effects such as dizziness, drowsiness,
mental slowing, weight gain, skin rashes, movement disorders, etc. [64].
Approximately 60-70% of epilepsy patient will be rendered seizure-free
when adequately treated with AEDs [65]. 40-60% of these patients
remain seizure-free after withdrawal of the AEDs after a few years. [66].
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2.3.5.2 Drug-resistant epilepsy

Sufficient seizure suppression is not obtained with AEDs in 30–40%
of the patients. These patients have so-called drug-resistant epilepsy.
However, before diagnosing a patient as having drug-resistant epilepsy,
sufficient drug treatment options should have been tried. The ILAE
offers following consensus definition for drug-resistant epilepsy [67]:

“Drug-resistant epilepsy may be defined as failure of
adequate trials of two tolerated and appropriately chosen
and used AED schedules (whether as monotherapies or in
combination) to achieve sustained seizure freedom”

For these drug-resistant patients, alternative therapies such as surgery,
electrical or magnetic stimulation might be the solution and these will
be discussed next.

2.3.5.3 Epilepsy surgery

Epilepsy surgery is an important treatment option, since it offers high
efficacy in selected patients [68, 69]. During epilepsy surgery, a surgeon
tries to remove (resective surgery) or disconnect (disconnective surgery)
the brain area that is responsible for the epilepsy. The area that is
necessary and sufficient to remove to render a patient seizure-free is also
called the Epileptogenic Zone (EZ). This is, however, only a conceptual
region since it cannot be measured directly. Only in patients rendered
seizure-free after surgery, we can conclude that the EZ was part of the
resected tissue or Resected Zone (RZ). Therefore, drug-resistant epilepsy
patients will undergo a presurgical evaluation in which doctors attempt
to get an indirect estimate of the EZ and assess whether the presumed
EZ does not overlap with eloquent tissue, i.e. a region of cortex that is
indispensable for defined cortical functions [70]. The procedures of the
presurgical evaluation will be more elaborately discussed in section 2.3.6.
Only when the presurgical evaluation allows to delineate the EZ and
there is not too much overlap with eloquent tissue, a surgical procedure
will be performed.

Before or during the surgery, ECoG and electrical stimulation mapping
can be used to exactly localize functional tissue. This tissue will be
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spared as much as possible, while completely resecting or disconnecting
the presumed EZ.

Resective surgery can be performed at different scales ranging from
a small focal lesion (lesionectomy) that is removed, over a brain lobe
(lobectomy) to even a complete hemisphere (hemispherectomy). The
spatial extent of the surgery is a delicate trade-off between seizure
freedom, neurological complications and quality of life [71]. Seizure-free
rates between 50 and 85% [72, 73] have been reported for focal, lobar,
multilobar resections, or hemispherectomy, indicating that the volume
of resected tissue is not critical, as long as the entire EZ is excised [65].

Two major types of disconnective surgery exist. On the one hand,
there are Multiple Subpial Transections (MST) in which small vertical
incisions are made in the cortex. The goal of this procedure is
to prevent that seizure activity spreads while preserving function,
making it appropriate when there is (partial) overlap between the
EZ and eloquent cortex [65]. With this procedure, approximately
one-third of the patients are rendered seizure-free [74]. On the
other hand, there is a more palliative procedure in which the
corpus callosum is sectioned (callosotomy). Callosotomy prevents
interhemispheric/bilateral spreading of the seizures. Patients will not
be rendered seizure-free, but their quality of life may be improved [65].

For brain areas that are not easily accessible via conventional surgery,
radiosurgery can be done, in which precise and accurate radiation is
targeted at a volume of interest within the brain (so strictly speaking,
this is not really surgery). MR images serve to identify this volume
beforehand [65]. Finally, focused ultrasound is an emerging incision-less
technique for ablation of tissue that is currently being researched for its
possible application in epilepsy [75].

The ideal outcome of epilepsy surgery is a patient that is completely
rendered seizure-free. Yet, different degrees of success are possible, and
these are often categorized in different classes. One of the most used
classification schemes was proposed by Engel et al. [76], and the Engel
Classes are shown in Table 2.1.

Because “worthwhile improvement” is open for interpretation and
patients with Engel Class I outcome could still experience seizures, the
ILAE proposed a more quantitative classification scheme that overcomes
these problems [77]. This classification scheme also allows discriminating
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Table 2.1: Overview of the Engel Classes for epilepsy surgery outcome [77].

Engel I free of disabling seizures

Ia completely seizure-free since surgery
Ib non disabling simple partial seizures only since surgery
Ic some disabling seizures after surgery, but free of

disabling seizures for at least 2 years
Id generalized convulsions with AED discontinuation only

Engel II rare disabling seizures (“almost seizure free”)

IIa initially free of disabling seizures,
but rare seizures now

IIb rare disabling seizures since surgery
IIc more than rare disabling seizures since surgery,

but rare seizures for the last 2 years
IId nocturnal seizures only

Engel III worthwhile improvement

IIIa worthwile seizure reduction
IIIb prolonged seizure-free intervals amounting to greater

than half the follow-up period, but not <2 years

Engel IV no worthwhile improvement

IVa significant seizure reduction
IVb no appreciable change
IVc seizures worse

between patients rendered seizure-free by AEDs and patients rendered
seizure-free by surgery. The scheme is shown in Table 2.2.

2.3.5.4 Other alternative therapies

For epilepsy patients that cannot be rendered seizure-free with AEDs
and that are not eligible for epilepsy surgery, other alternative therapies
exist. First, there are neurostimulation procedures in which the brain is
electrically or magnetically stimulated to suppress the seizures. These
therapies are, unlike surgery, reversible. One option is Vagus Nerve
Stimulation (VNS), in which an electrode is wound around the
(left) vagus nerve (tenth cranial nerve) and connected to a stimulator
implanted under the left clavicle. Different stimulation paradigms are
possible and the stimulation settings can be adapted to the needs
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Table 2.2: Overview of the ILAE Classes for epilepsy surgery outcome [77].

ILAE 1 completely seizure free; no auras

ILAE 1a completely seizure free since surgery; no auras

ILAE 2 only auras; no other seizures

ILAE 3 1-3 seizure days per year; ± auras

ILAE 4 4 seizure days per year to 50% reduction of baseline
seizure days; ± auras

ILAE 5 <50% reduction of baseline seizure days to
100% increase of baseline seizure days; ± auras

ILAE 6 >100% increase of baseline seizure days; ± auras

of the patient. Researchers are still investigating the exact working
mechanism of VNS, but studies report a seizure reduction of 50% in more
than one-third of the patients while the side-effects remain mild (e.g.
hoarseness) [78]. Next, Deep Brain Stimulation (DBS) can be offered as
a treatment. In DBS, one or more electrodes are placed in one or more
target brain regions, e.g. the hippocampi. These electrodes stimulate
the target regions, which can inhibit seizures. Again, the details of the
working mechanism are still being researched. One study reported a
drop in seizure frequency of 90% in approximately half of the patients
[79]. Other, more recent neurostimulation techniques to treat epilepsy
are emerging such as Transcranial Direct Current Stimulation
(tDCS), in which a low constant current is delivered to the brain
(area of interest) via electrodes on the scalp [80], and Transcranial
Magnetic Stimulation (TMS), in which small electric currents in the
brain area of interest are generated through electromagnetic induction,
by applying a focal magnetic field on the brain area of interest [81,82].

Another group of alternative therapies are dietary treatments. The
ketogenic diet, in which 80% of the diet consists of fat, is reported
to have possible seizure reduction of >90% in one-third of the patients
[83]. For the modified Atkins diet, similar efficacy rates have been
reported [65]. The main drawback of this kind of treatment is that
the dietary restrictions are very strict, making them unpleasant for the
patient and almost impossible to keep up.
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2.3.6 Presurgical evaluation

To assess whether a patient with drug-resistant epilepsy is eligible for
epilepsy surgery or should be referred to other alternative therapies, the
presurgical evaluation is done. A multidisciplinary team of neurologists,
neurosurgeons, psychologists, radiologists, etc will investigate via several
examinations whether surgery could be beneficial for the patient. The
risks of the surgery and possible post-operative neurological deficits
should be balanced by how the quality of life of the patient would be
benefited. Only when the team has fully considered all risks and still
thinks the gain for the patient would be high enough, possible surgery
is discussed with the patient.

The first goal of the presurgical evaluation is to delineate the EZ, the
conceptual region that is necessary and sufficient to render the patient
seizure-free. Ideally, the zone resected at surgery should be identical to
the EZ, but it is often larger due to uncertainty about the localization
and sometimes may exclude some areas of the EZ due to overlap with
eloquent tissue. To overcome the problem that the EZ cannot be directly
measured, the presurgical evaluation team will try to map different
regions related to the EZ [70, 84]. The symptomatogenic zone is the
area in the brain that produces the initial clinical symptoms during a
seizure. The Irritative Zone (IZ) is the region where the IEDs originate,
the Seizure Onset Zone (SOZ) is where the seizures originate. The
epileptogenic lesion refers to a potential structural abnormality in the
brain that directly causes the seizure. Finally, the functional deficit zone
is the area that is functionally abnormal in the interictal period. These
regions describe zones that may or may not (partially) overlap, as can be
seen in Fig. 2.20. For example, a patient could be rendered seizure-free
by only partial resection of the epileptogenic lesion. In this case, the
complete EZ was still resected. Yet, it could also be that a patient who
had a complete lesionectomy will still experience seizures. In this case,
the EZ was probably larger or different than the epileptogenic lesion.

In what follows we will describe the typical protocol that is followed when
a patient is diagnosed with drug-resistant epilepsy, based on [65]. First,
the patient will be admitted to the epilepsy clinic for a long-term visit
during which long-term Video-EEG monitoring (VEM), i.e. ictal and
interictal EEG and time-locked video during several consecutive days to
identify clinical symptoms, and MRI with an optimal epilepsy protocol
will be done. VEM is the cornerstone investigation of any presurgical
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Figure 2.20: Overview of the Seizure-Onset Zone (SOZ), the epileptic lesion,
the Epileptogenic Zone (EZ) and the Irritative Zone (IZ). Figure adapted from
[85]

evaluation since it allows for the accurate diagnosis and subclassification
of the epileptic seizures [86]. If the VEM shows that the patient suffers
generalized epilepsy, curative epilepsy surgery is not an option and the
patient is referred to other alternative therapies such as VNS or palliative
surgery, mostly in combination with AEDs. Patients suffering from focal
or unknown epilepsy are subjected to the actual presurgical evaluation
protocol. In the first phase of this protocol, several investigations are
done:

Phase A

• Identification of the IZ based on interictal EEG (from VEM)

• Identification of the SOZ based on ictal EEG (from VEM)

• Identification of the symptomatogenic zone based on the
seizure semiology (from VEM)

• Identification of the epileptogenic lesion based on structural
MRI

• Identification of a focal hypometabolism on a PET scan

• Identification of a functional deficit zone based on neuropsy-
chological assessment
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When the results of these investigations are congruent, the patients can
continue to Phase B. When tests are normal or incongruent, patients
continue to Phase A+ of which one or more test can be chosen:

Phase A+

• ESI
1

• MEG Source Imaging (MSI)
1

• ictal SPECT

• EEG-fMRI

• Magnetic Resonance Spectroscopy (MRS)

When the team is now able to formulate a hypothesis on the localization
of the EZ, the patients are referred to Phase B followed by Phase C.
When still no hypothesis can be formulated, patients are referred to
other alternative treatment options.

In Phase B, possible overlap between the hypothesized EZ and eloquent
tissue will be assessed. If no functional overlap with the hypothesized EZ
can be illustrated, the patient can continue towards Phase C or directly
to curative surgery. When there is functional overlap, the patient can
be referred to Phase C to fine-tune the overlap or can directly continue
towards non-surgical treatment options.

Phase C consists of invasive video-EEG monitoring with or without
functional mapping. The goal of this phase in the confirmation of
rejection of the hypothesis and the functional mapping of the zone that
needs to be resected. If there is a focal onset without functional overlap,
patients might continue towards resective surgery; when there is overlap,
patients might continue towards disconnective surgery with or without a
resection. When the SOZ is large or the hypothesis cannot be confirmed,
the patient might continue towards an alternative treatment. IEEG is
necessary in approximately 10% of the presurgical candidates.

It is obvious from the above that the presurgical evaluation is a labor-
intensive, time-consuming, often challenging and sometimes subjective

1
We already mentioned that when measuring a spike on EEG, the highest voltage

deflection might be noticed at some electrodes of interest. It is, however, impossible
to determine where exactly in the brain the spike originated based on this electrode
information. ESI and MSI try to estimate the underlying brain activity causing the
measured EEG/MEG, in order to get a more accurate estimate. This is explained in
more detail in the next chapter.
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process (since the procedures require careful human interpretation).
In the case of molecular imaging, the patient is exposed to ionizing
radiation and invasive EEG requires surgery that can have potential
complications such as scarring, functional loss, infection, etc. Moreover,
there is no guarantee that once the evaluation is started, the EZ will be
found. Therefore, a lot of research is dedicated to improving existing
or designing new methods to aid the presurgical evaluation, so that it
eventually can be made less time-consuming, less labor-intensive, less
subjective or less risky (better target or avoid iEEG) for the patient.
This is also the goal of this dissertation, in which we use advanced
signal processing techniques for EEG in order to localize the SOZ. These
techniques will be explained in the next chapter.
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3
EEG source imaging

and brain connectivity

In the previous chapter, we introduced the brain, EEG and epilepsy
to conclude that it would be useful to have a method able to localize
the Seizure Onset Zone (SOZ) in epileptic patients based on EEG
recordings. In this dissertation, we will achieve this by using two main
signal processing techniques which are described in the current chapter.
The first technique is EEG Source Imaging (ESI), which estimates the
neuronal activity that generated the measured scalp EEG potentials.
The result is a three-dimensional map of the brain activity. Second,
brain connectivity studies how brain regions are structurally and/or
functionally interconnected and how they interact with each other.
Combined, these two techniques allow studying the complex networks
underlying the neuronal activity that is measured by EEG. In this
dissertation, this approach will be applied on epileptic seizures. During
a seizure, ictal activity will, often rapidly, spread from one (unifocal)
or several (multifocal) brain regions to other regions in an epileptic
network [87,88]. The combination of ESI and brain connectivity allows
studying this epileptic network and finding its main driver(s) based on
seizures recorded with scalp EEG.
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3.1 EEG source imaging

3.1.1 Introduction

Despite the excellent temporal resolution, the spatial resolution of EEG
is rather limited. Visual inspection and interpretation of EEG signals
can be done on the lobar level. ESI is a technique allowing 3-dimensional
imaging of the brain activity underlying the measured EEG potentials,
with sublobar resolution.

ESI consists of two main parts: the forward model and the inverse
solution. The forward model comprises a source model that represents
the neuronal activity, a biophysical head model and the electrode
positions. It calculates which potentials would be measured at the scalp
electrodes based on an assumed source. This way, it allows generating
EEG signals as a function of source activity. The inverse solution, on
the other hand, tries to estimate the underlying sources of the measured
EEG by optimizing a cost function based on the difference between the
calculated or generated and measured EEG as can be seen in Fig. 3.1.
The next sections will detail the different aspects in this figure.
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Figure 3.1: Illustration of the EEG source imaging technique consisting of
the forward model and the inverse problem. Figure adapted from [24].
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The main challenge of ESI is that the inverse problem is ill-posed,
meaning that there is no unique solution. The activity of millions of
neurons is distributed through the brain and head and is then sampled
by a limited amount of electrodes, which also register noise. An
infinite amount of both physiologically plausible and implausible source
distributions could cause the same EEG measurement. Therefore, a
priori knowledge and/or constraints should be added in order to find a
unique and realistic solution.

3.1.2 Forward modeling

3.1.2.1 Source model

In order to generate EEG signals based on a known neuronal source
distribution, these sources should be modeled first. In section 2.2.2
we already discussed that the pyramidal neurons in the cortex are
the main generators of the EEG. The voltage gradient characterizing
the propagating postsynaptic potentials is accompanied with intra- and
extracellular currents. These currents can be macroscopically modeled
with a current dipole parallel to the neurons, as can be seen in Fig. 3.1 in
red [89–91]. The current dipole consists of a current sink (−I) and source
(+I) with an inter-distance of s and is characterized by 6 parameters:
3 parameters that describe its position (r = [x y z]), 2 parameters for
the orientation (θ = [θ φ]), and 1 parameter to represent its intensity
(I). The orientation and intensity can also be described by the dipole
moment j = [jx jy jz], with ∣∣j∣∣ = sI. The current dipole forms the
basic building block of more complex source models that define the
source space, which will be explained in the next section. Next to
dipoles, source modeling could also be done with e.g. monopoles or
quadrupoles [22], but these configurations are almost never used in
practice.

3.1.2.2 Head model

To know how the neuronal electric activity, modeled by the source model,
gives rise to a specific measurement at the electrodes on the scalp, a
detailed characterization of the head is needed in the form of a head
model that describes both the anatomical and the electrical properties
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of the head. Based on the head and source model, the source space, i.e.
the collection of all possible source locations, can be constructed.

Geometry
Different gradations of complexity can be used to model the geometry
of the human head. Generally, it can be assumed that the more
complex the model is, the more accurate. However, it should be noted
that a too complex head model can lead to numerical inaccuracies or
possibly increased computation times. The most simple approximation
of the human head is a single sphere. Extra (concentric) spheres can
be added to represent different tissue types. Examples are 3-layered
spherical head models in which the inner sphere represents the brain,
the middle sphere (as a layer around the inner sphere) is the skull and
the outer sphere is the scalp, and 5-layered spherical models with white
matter, gray matter, CSF, skull and scalp. The forward model can be
calculated analytically when these spherical head models are used. It
has, however, been shown that more realistic head models provide better
ESI results [92–94]. Individual, realistic head models can be derived from
the whole-head MR image (usually T1 or T2 weighted) of the subject
from which tissue boundaries or tissue volumes are segmented. Different
open source packages exist to achieve this segmentation, such as the
Statistical Parametric Mapping (SPM) software [95], FreeSurfer [96], the
FMRIB Software Library (FSL) [97], and Brainstorm [98]. The number
of tissues that are taken into account can vary from 3 (brain, skull,
scalp) to 6 (white matter, gray matter, CSF, skull, scalp, air cavities) or
7 (eyeballs extra). Especially the incorporation of CSF seems to improve
ESI results [99]. Smaller structures like vessels and nerves are generally
ignored while constructing the head model. Fig. 3.2 shows an individual
realistic head model that incorporates 6 different tissues, based on the
MRI of a patient.

In section 2.1.4.2, we already mentioned that it is hard to image the
skull with MRI. So, if a CT scan of the subject is available, the skull
can be modeled more accurately and it can even be further divided into
compact and spongy bone [100].

When there are no structural brain images of good quality available, a
template can be used, e.g. based on the ICBM152 template, which is a
template based on the average of 152 normal MRI scans [101].
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white matter
gray matter

CSF
skull

scalp
air cavities

Figure 3.2: Sagittal, coronal and axial slice of the MR image of a patient
(top), a head model constructed based on this MR image with incorporation
of white matter, gray matter, CSF, skull, scalp and air cavities (middle), and
the MR image overlaid with the head model (bottom)

Electrical conductivity
In order to model the distribution of the electric fields through the
head, the electrical conductivity of the different modeled tissues should
be known. It is, however, currently impossible to measure all these
conductivities for every patient in vivo. Moreover, some tissues have
a highly anisotropic conductivity. In the case of white matter, the
conductivity along the axons is obviously higher than the transverse
electrical conductivity, since they are made to conduct electrical activity
along their length. Also the skull is anisotropic [100, 102]. Mostly, the
electrical properties of the head are modeled by isotropic conductivity
values based on literature, of which some examples are given in Table 3.1.
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Table 3.1: Overview of isotropic conductivity values used for ESI reported in
literature. Table from [24].

Conductivity (S/m)
[103] [104] [100] [105]

air - - 0 0

scalp 0.33 0.22 0.3279 0.43

skull 0.0041 0.015 0.0041 0.01

compact bone - - 0.0064 0.008

spongy bone - - 0.02865 0.025

CSF - - 1.79 1.79

gray matter 0.33 0.22 0.3333 0.33

white matter 0.33 0.22 0.1428 0.14

Source space
Based on the source model and the geometric properties of the head
model, it is possible to construct a collection of all possible source or
dipole locations, called source space. The pyramidal neurons are mainly
located in the cortex, i.e. the gray matter and therefore, often only
dipoles in the gray matter are allowed. Although the cerebellum and
deep structures such as the thalamus and basal ganglia consist of gray
matter, they are often excluded from the source space since they are
not considered to be generators of EEG. The dipoles can be located in
a mesh on the cortical surface, or also in a 3-dimensional grid inside the
cortical volume. They can be spread irregularly over Regions-Of-Interest
(ROIs) or they can be placed in a regular grid. The number of dipoles in
the source space can vary from a few hundred up to 10 000. Sometimes,
especially in the case of a cortical mesh, the orientation of the dipoles
is fixed perpendicularly to the cortical surface, since this corresponds to
the alignment of the neurons. A source space based on a regular grid
inside the volume of gray matter with a spacing of 4 mm× 4 mm× 4 mm
can be seen in Fig. 3.3.

3.1.2.3 Electrode positions

Based on the geometric and electromagnetic properties of the human
head, it is possible to calculate how the electric field of a modeled source
(dipole or dipole distribution) will be distributed through the head. In
order to be able to generate EEG, we should know where exactly we want
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Figure 3.3: Head model with source space. The dark gray color represents
the gray matter of the brain. Within this structure, the source space can
be seen as a regular grid of white points, which represent the centers of the
different dipoles in the source space. The spacing is 4 mm×4 mm×4 mm. Note:
Although there is gray matter in the cerebellum, the cerebellum is not one of
the main EEG generators and is therefore excluded from this source space.

to know the scalp potentials, i.e. the positions of the electrodes on the
scalp. The electrode positions can be derived from a template based on
several characterizing landmarks such as the nasion, the inion and both
ear tragi. When the EEG was recorded with the International 10-20, 10-
10 or 10-5 system, the electrodes can be correctly localized as soon as the
landmarks are defined on the head model. The standard positions can
be coregistered to the head model and projected on the scalp surface as
can be seen in Fig. 3.4. Another possibility is to measure the actual
electrode positions on the patient’s scalp with dedicated positioning
systems, using electromagnetic tracking (e.g. Polhemus, Colchester,
USA) or special cameras (e.g. GeoScan, Electrical Geodesics, Eugene,
USA). After registration of the electrode positions, they can again be
coregistered to the head model and projected to the scalp surface. A final
approach is to segment electrode positions from a CT or MR scan during
which the subject had the electrodes attached to the scalp. Possibly,
markers are attached to the electrodes in order to make them visible on
these images.

3.1.2.4 Calculation of the forward model

Based on the source model, head model and electrode positions, the
EEG potentials Vgen ∈ RNe×1

at Ne electrodes, generated by a current

dipole source at location r = [x y z] and dipole moment j = [jx jy jz]T ,
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Figure 3.4: Standard electrode positions coregistered to the head model and
warped onto the scalp.

can be mathematically represented as:

Vgen = L(r)j(r) (3.1)

in which L(r) ∈ RNe×3
is the lead field matrix that describes the field

distribution from a unit current dipole at location r = [x y z] to the Ne

scalp electrodes in the x, y and z direction. This lead field matrix is
the mathematical realization of the forward model. Equation 3.1 can be
extended to n active dipole sources with the superposition principle:

Vgen =

n

∑
i=1

L(ri)j(ri) (3.2)

in which L(ri) ∈ RNe×3
is the lead field matrix for a unit current dipole

at position ri = [xi yi zi] and ji = [jxi jyi jzi]
T

represents the intensity
and orientation of the ith dipole.

With the chosen source model, a complete source space covering the
whole brain can be constructed. The influence of all these possible
current dipoles can be taken into account by extending equation 3.2
from n dipoles to all possible dipole locations Nd. In this case, the
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equation can be rewritten as:

Vgen = LJ (3.3)

in which L = [L(r1)L(r2) . . .L(rNd
)] ∈ RNe×3Nd is the lead field matrix,

describing the field distribution of unit dipoles at all possible locations
to the scalp electrodes. J = [j1 j2 . . . jNd

]T is a vector describing
the dipole moment (or intensity and orientation) of all these current

dipoles. In this vector ji = [jxi jyi jzi]
T
, i = 1 . . . Nd, hence J =

[jx1
jy1

jz1 jx2
jy2

jz2 . . . jxNd
jyNd

jzNd
]T ∈ R3Nd×1

. Once the intensities
and orientations of all current dipoles J are known or fixed, the forward
model, embodied by the lead field matrix L, allows to calculate the
potentials Vgen ∈ RNe×1

that would be measured at Ne scalp electrodes.

Equations 3.1–3.3 assumed sources and generated potentials at only one
point in time. The extension to multiple timepoints in order to generate
typical EEG traces is trivial: the lead field matrix remains constant,
whereas the source activity distribution J(t) will vary over time, like
neuronal activity will fluctuate over time, resulting in time-dependent
generated scalp potentials Vgen(t).
Different techniques exist to calculate the lead field matrix based on the
sources and the head model and the electrode positions. For spherical
head models, the lead field matrices can be calculated analytically [91].
For realistic head models, however, numerical solving methods are
required. The most widely used methods are the Boundary Element
Method (BEM) [106–108], Finite Element Method (FEM) [109, 110],
and Finite Difference Method (FDM) [111, 112]. We will restrict
the discussion of these techniques to a short summary. A more
comprehensive overview of these techniques and references to more in-
depth literature can be found in [91].

When BEM is used, the head model is built from different closed
surfaces. Each of these surfaces or layers encapsulates a particular
tissue with its own homogeneous and isotropic conductivity, e.g. the
brain-skull interface, the skull-scalp interface and the outer surface.
In this way, the surfaces offer the boundaries between regions with
different conductivity. Each surface is tessellated with small triangles,
i.e. the boundary elements. The potentials are then only calculated at
the center of every triangle, thus only on the surfaces and not in the
tissue in between. The main advantage of BEM is the relatively low
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computational need, the main disadvantages are the limited modeling
complexity, which prevents highly accurate head models (e.g. the
modeling of CSF is practically impossible since this is a highly complex
structure, hard to model with a closed compartment), and the restriction
to isotropic conductivities.

In FEM, the entire head model is divided into small volume elements,
that do not necessarily have the same size nor shape (usually tetrahedra
or regular polyhedra). Each of these volume elements is characterized
by its own conductivity. The potentials are calculated at all vertices
created by this tessellation. This approach allows to model very complex
structures with high accuracy and flexibility and allows to incorporate
anisotropic conductivities. The computational demand is, however, very
high.

FDM is similar to FEM, with the main difference that the volume
elements are all cubic and of the same size. This allows relatively
high modeling accuracy with a lower computational demand than FEM.
Furthermore, the MRI or CT images used to construct the head models,
are intrinsically cubic, allowing a more direct translation from the
acquired image to an FDM head model. In this dissertation, isotropic
FDM head models incorporating 6 different tissues (white matter, gray
matter, CSF, scalp, skull and air) will be used [112].

3.1.3 Solving the inverse problem

The forward model allows calculating the EEG Vgen that is generated
when the source activity J is known. Solving the inverse problem, i.e.
estimating the underlying sources from measured EEG Vmeas, comes
down to finding the source activity that minimizes (a cost function
of) the difference between the measured and the generated EEG. As
already mentioned, this inverse problem is ill-posed, since an infinite
amount of physiologically possible and impossible source distributions
exist that could generate the measured EEG. Therefore, different inverse
techniques have been designed that make certain assumptions and/or
enforce constraints in order to obtain a unique solution. In the next
sections, we will discuss the two main categories of inverse techniques:
the Equivalent Current Dipoles (ECDs) and the distributed solutions.
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3.1.3.1 Equivalent current dipole(s)

ECD methods assume that the measured EEG signals are generated by
one (Eq. 3.1) or a small number of (Eq. 3.2) focal sources.

Single equivalent current dipole
First, assume that the measured EEG signals are generated by one
source, i.e. one dipole, and that the measured scalp potentials Vmeas ∈

RNe×1
at one time point are known. The inverse solution then tries to

minimize the Relative Residual Energy (RRE):

RRE(r, j) =
∣∣Vmeas −Vgen∣∣

∣∣Vmeas∣∣
=

∣∣Vmeas − L(r)j(r)∣∣
∣∣Vmeas∣∣

(3.4)

with ∣∣ ⋅ ∣∣ the L2-norm. This means that the location (r = [x y z]) and

intensity (j = [jx jy jz]T ) of the dipole that minimizes the RRE, i.e. the
energy that cannot be explained by the model, need to be found. This
is an optimization problem with 6 parameters that can be reduced to
an optimization problem with 3 parameters because the optimal dipole
moment at position r is given by [90,113]:

jopt(r) = L(r)†
Vmeas (3.5)

with ⋅† the Moore-Penrose pseudo-inverse operator. Combining
equations 3.4 and 3.5 renders a minimization problem with respect to
the location parameter r:

RRE(r) = ∣∣Vmeas − L(r)L(r)†
Vmeas∣∣

∣∣Vmeas∣∣
(3.6)

In this case, the number of unknowns (3 location parameters of the
optimally oriented dipole) is smaller than the number of knowns
(voltages at Ne electrodes, typically larger than 20) and the optimal
dipole location can be found with dipole scanning techniques (try every
location) or with optimization algorithms such as the Nelder-Mead
simplex method [114]. The latter is faster but can get trapped in
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local minima. The dipole moment j can be calculated once the optimal
location r is found, using Eq. 3.5.

When the generating dipole of an EEG epoch of Nt time points (Vmeas ∈

RNe×Nt) needs to be found, the EEG epoch can be decomposed using
Singular Value Decomposition (SVD) [115]:

Vmeas = USV
T

(3.7)

in which U represents scalp topographies and V the intensities of these
topographies over time. S is a rectangular diagonal matrix containing
the singular values in decreasing order. This way, the EEG epoch can be
approximately represented with one time point or with one time series
by taking the topography or time series, respectively, corresponding to
the largest singular value. Approximating the EEG epoch by a single
topography gives following equation for the RRE:

RRE(r) = ∣∣U(∶, 1)meas − L(r)L(r)†
U(∶, 1)∣∣

∣∣U(∶, 1)∣∣ (3.8)

for which the same solution strategies can be used.

Multiple equivalent current dipoles
Now assume that the EEG is generated by a small amount n of focal
sources. The RRE can be constructed similarly as for the single dipole
case:

RRE(r, j) = ∣∣Vmeas − L(r1, r2, . . . , rn)j(r1, r2, . . . , rn)∣∣
∣∣Vmeas∣∣

(3.9)

in which L(r1, r2, . . . , rn) are the columns of the lead field matrix L
corresponding to locations r1, r2, . . ., rn. If we incorporate the dipole
orientation θ into the lead field matrix, Eq. 3.9 becomes:

RRE(r,θ) = ∣∣Vmeas −A(r,θ)I(r)∣∣
∣∣Vmeas∣∣

(3.10)

with A(r,θ) the lead field matrix with dipole orientation information,
r = [r1 r2 . . . rn] the locations of the n dipoles and θ = [θ1 θ2 . . . θn]
the orientations. The source vector j(r1, r2, . . . , rn) is then reduced to
the intensity of each of the dipoles: I = [I1 I2 . . . In].
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The optimal intensity of the dipoles is found similar to Eq. 3.5 [116]:

Iopt(r) = A(r,θ)†
Vmeas (3.11)

If this equation is used in Eq. 3.10, we get:

RRE(r,θ) = ∣∣Vmeas −A(r,θ)A(r,θ)†
Vmeas)∣∣

∣∣Vmeas∣∣
(3.12)

Hence, the number of unknowns is 5 per dipole (3 for the location
r = [x y z] and 2 for the orientation θ = [θ φ]), so 5n in total. Due
to this larger number, the optimization algorithm has a higher chance
of getting trapped in a local minimum. Furthermore, the number of
dipoles n needs to be fixed a priori. A wrong estimation of n can
lead to erroneous or meaningless results. Therefore, other algorithms
to solve for multiple equivalent dipoles exist such as the Multiple Signal
Classification (MUSIC) algorithm, Recursive MUSIC (R-MUSIC) [117],
Recursively Applied and Projected MUSIC (RAP-MUSIC) [118], or the
FINES approach [119]. These techniques are based on projections onto
estimated signal subspaces. Others are based on machine learning or
simulated annealing. An overview can be found in [120] and [121].

3.1.3.2 Distributed Solutions

In the previous section, we assumed that the number of sources
generating the EEG was relatively limited, resulting in relatively easy
to solve optimization problems to determine the number of dipoles,
their locations and dipole moments. The number of unknowns
remained limited. In distributed solutions, the influence of all
possible source locations (ranging between 500 to over 10 000) is
considered simultaneously. Although the dipole locations are now known
beforehand, the estimation of their orientation and intensity is a highly
underdetermined problem, since the amount of EEG channels is much
lower than the number of unknowns. A unique solution can be obtained
by optimizing a goodness-of-fit term and a regularization term in a
carefully balanced way. When the noise in source and sensor space
can be assumed to be Gaussian with zero mean, the estimation of the
current distribution can be mathematically expressed as [24,121,122]:

63



Chapter 3. EEG source imaging and brain connectivity

Ĵ = argmin
J

(∣∣Vmeas − LJ∣∣2R + αf(J)) (3.13)

in which the R-norm is used: ∣∣X∣∣2R = tr (XT
R
−1

X), with tr(⋅)
the trace operator and R the covariance matrix of the noise at the
source level which is assumed to be zero mean Gaussian. The first
term in Eq. 3.13 handles the data fit, whereas the second term is the
regularization. f(J) allows to incorporate (mathematical or biophysical)
spatial (anatomical) or temporal priors (a priori constraints) to make
the solution unique, and the regularization parameter α determines the
influence of these constraints. The most simple form of regularization
is the Minimum Norm Estimates (MNE) solution that tries to find the

solution with minimum power. In MNE, f(J) = ∣∣J∣∣2 = tr (JTJ). The
solution of equation 3.13 then becomes:

ĴMNE,α = L
T (LL

T
+ αINe

)−1
Vmeas (3.14)

with INe
the identity matrix of size Ne. The drawback of this approach

is that it has the tendency to favour weak and superficial sources over
deeper sources. Therefore, the Weighted Minimum Norm Estimates
(WMNE) approach was introduced in which the power of the source

signals are weighted with a weighting matrix W ∈ R3Nd×3Nd : f(J) =
∣∣WJ∣∣2. The solution to equation 3.13 is in this case given by:

ĴWMNE,α = (WT
W)−1

L
T (L (WT

W)−1
L
T
+ αINe

)
−1

Vmeas (3.15)

Although it can take different forms, the most straightforward weighting
matrix is based on the norm of the columns of the lead field matrix:
W = Ω ⊗ I3. Ω ∈ RNd×Nd is a diagonal matrix in which the diagonal
elements Ωii are calculated as follows. For every dipole i = 1 . . . Nd

and every channel j = 1 . . . Ne, there is a vector of length 3 in the lead
field matrix (L ∈ RNe×3Nd), to describe the distribution from dipole i to
electrode j in the x, y and z direction. The squared norm of this vector
is taken and for every dipole i it is summed for all channels j. The
diagonal element Ωii is then the square root of this sum. Due to this
column normalization, all sources (deep or superficial) have the same
opportunity of being reconstructed.
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3.1. EEG source imaging

Low Resolution Electromagnetic Tomography (LORETA) offers another
regularization approach that assumes that neighboring neurons are
synchronously active [123]. If one source is active, there is a high
probability that its neighboring sources are also active. Therefore,
LORETA looks for the maximally smooth solution. This is done
by combining column normalisation with the Laplacian operator ∆:
f(J) = ∣∣∆WJ∣∣2. The LORETA solution is:

ĴLOR,α = (WT
∆
T

∆W)−1
L
T (L (WT

∆
T

∆W)−1
L
T
+ αINe

)
−1

Vmeas

(3.16)

Other well-known solution strategies of this kind are Standardized
Low Resolution Electromagnetic Tomography (sLORETA) [124], Local
Auto-Regressive Averages (LAURA) [125] that allows to incorporate
biophysical constraints, and beamformers [126] which are spatial filters
that pass the signal coming from a certain source while attenuating
all signals originating somewhere else. Each of these approaches has
advantages and disadvantages and often the optimal inverse solution
technique depends on the application it is used for. Although LORETA
is criticized to possibly introduce spurious activity (and hence is not
good for focal source estimation), it is the method of choice in this
dissertation because of its relatively low complexity and its ability to
localize multiple hotspots of activity in the brain during seizures.

It is important to mention that the estimation of the source distribution
Ĵ will vary when the regularization parameter α changes. Therefore, a
good value for the regularization parameter is important. An L-curve
approach can be used to estimate the optimal value for α [127].

3.1.4 Quality of ESI

A good forward model is a prerequisite for accurate ESI. A realistic, more
complex model will result in more accurate source estimations, as long as
the user does not make this model too complex due to which unwanted
numerical inaccuracies can arise as well. The optimal choice of inverse
solution technique is highly dependent on the application at hand. If
one expects one or a few very focal sources, dipole fitting algorithms
can be more appropriate. If the expected sources are more diffuse,
distributed approaches might perform better. Generally, a sublobar
to subcentimeter precision or accuracy can be obtained under good
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conditions, with higher precision when a higher number of electrodes
are used.

3.2 Functional brain connectivity

3.2.1 Introduction - a network perspective on the brain

The brain consists of billions of neurons that are highly interconnected,
forming an anatomical highly complex network. The brain is not only
a structural network, but its function is also network-based, meaning
that several brain regions (or anatomical subnetworks) cooperate and
intercommunicate to execute specific tasks. Every part of the brain
has its own dedicated function, but the parts need to work together
to achieve higher-order functioning. This is also called functional
segregation, i.e. the segregation of functionally specialized brain regions,
and functional integration, i.e. the functional interaction between these
widely distributed functionally segregated brain regions [128]. The brain
connectivity research domain aims at investigating the networks in the
brain by examining which and how brain regions are connected and
interact with each other. It can reveal how information is processed,
sent to, received from or shared between these regions. Note that
“regions” can be interpreted on different scales ranging from a small
group of neurons, over larger structures as a gyrus, Brodmann area, or
lobe to a complete hemisphere. In the next section, we will introduce
the different types of brain connectivity and how they can be measured
and studied. Next, we will discuss the connectivity measures of interest
in this dissertation. Finally, when brain networks are mapped, they can
be represented as a graph of which the network and node properties can
be determined with graph theory measures. This will be discussed in
the last section of this chapter.

3.2.2 Brain connectivity

Three types of brain connectivity are discriminated. The first type
is structural or anatomical connectivity and investigates the
anatomical connections between neurons or brain regions. It describes
how groups of neurons are anatomically connected via axonal links.
These axons are bundled into white matter fibers and tracts. Water
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(a) DWI 

(b) DTI/DKI (c) tractography 

Figure 3.5: Investigation of structural brain connectivity shown in a coronal
slice. (a) The diffusion of water molecules is measured with DWI in different
directions (20 in this case). (b) This is combined in a diffusion tensor to
DKI or DTI. The direction of the diffusion is color coded. (c) Tractography
reconstructs the white matter tracts based on DTI/DKI. Here, the tracts
through the corpus callosum are shown.

molecules in the brain diffuse more easily along these tracts than
perpendicular to these tracts. The diffusion of water molecules in the
brain can be measured with specialized gradient sequences on MRI,
called Diffusion Weighted Imaging (DWI) (Fig. 3.5(a)). Applying
this for 6 or 15 directions allows examining the diffusion in these
directions, resulting in a diffusion tensor [129]. This is also called
Diffusion Tensor Imaging (DTI) or Diffusion Kurtosis Imaging (DKI),
respectively, shown in Fig. 3.5(b). Based on the diffusion tensor,
parametric maps can be calculated to give a meaningful interpretation
about the underlying brain structure and connections quantified in
several measures [130]. Furthermore, the obtained directional diffusion
can be used to reconstruct the white matter tracts in the brain in a
process called tractography [131], illustrated in Fig. 3.5(c).

67



Chapter 3. EEG source imaging and brain connectivity

The second type of brain connectivity is functional connectivity,
which is the study of the temporal correlation between spatially distinct
neurophysiological activities [132]. Functional connectivity is mainly
assessed using (i)EEG or fMRI time series that reflect the neuronal
activity of different brain regions and considers dependencies between
these time series. As such it can provide a undirected or directed (causal)
measure for the information flow between two or more brain regions.
This is conceptually illustrated in Fig 3.6. Functional connectivity
measures can be grouped into 4 categories:

1. Correlation and coherence: correlation, cross-correlation,
nonlinear correlation, and coherence and coherency and their
derivatives

2. Phase synchronization measures: phase locking value (PLV)
and phase lag index (PLI)

3. Measures based on information theory: mutual information
(MI) and transfer entropy (TE)

4. Granger causality measures: Granger-causality index (GCI),
directed coherence (DC), partial directed coherence (PDC),
directed transfer function (DTF) and their derivatives

All these functional connectivity measures have their set of properties
that reflect several conceptual distinctions: functional connectivity
measures can be either linear or nonlinear, bivariate (i.e. between
two time series) or multivariate (between more than two time series),
undirected (solely detection of the connection) or directed (also the
directionality of the connection is detected), related to time or frequency
domain, and amplitude or phase-based. Furthermore, they can detect
the direct connections (e.g. signal 1 influences signal 2 and signal 3) or
the indirect connections (e.g. signal 1 influences signal 2 and via signal 2
also signal 3). In the next section, we will discuss the Granger causality
measures more extensively, as they are of interest in this dissertation.
For a nice overview of all categories and their properties, the reader is
referred to [133].

Lastly, effective connectivity in the brain can be studied as the
influence that one neural system exerts over another [134]. Whereas
functional connectivity assesses the correlations between measured time
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??

?

?

Figure 3.6: The concept of functional connectivity, which studies the
interactions between spatially distinct brain regions through the analysis of
temporal correlations between these regions.

series, effective connectivity is measured between hidden neuronal states
that generate the measurements. Fluctuations in the hidden neuronal
states cause changes in others. Effective connectivity depends on an
explicit parametrized model of causal interactions [135]. Dynamic
Causal Modelling (DCM) is the most widely used approach to investigate
effective connectivity, and it uses hidden neuronal states to model brain
activity. In practice, several generative models consisting of a neuronal
(with hidden states) and observational model (what is measured) are
specified and formally compared using variational Bayesian techniques
[136], see Fig 3.7.

3.2.3 Functional connectivity based on Granger causality

3.2.3.1 Granger causality and autoregressive modeling

Granger causality
The concept of Granger causality was developed when Clive Granger
modified the theoretical definition of causality proposed by Norbert
Wiener [138] into a practical form [139]: one time series x1(n)(n =

1 . . . N, 0 < N <∞) is said to Granger cause a second x2(n) if inclusion
of the past values of x1 improves the prediction of x2, compared to the
prediction of x2 based solely on its own past values. Mathematically, this
means that the variance of the modeling error of the second signal x2

decreases when past values of the first signal x1 are incorporated. Note
that this definition allows directed connections, since both the Granger
causality from x1 to x2 and from x2 to x1 can be investigated separately.
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Figure 3.7: Example of dynamic causal modeling. Several models describing
the neuronal activity are formally compared to each other using variational
Bayesian techniques. Figure from [137].

In what follows, we will explain how to examine linear Granger causality.
More information on nonlinear Granger causality can be found in [140].

Autoregressive models
Granger causality can be assessed via autoregressive (AR) models of
the data that represent the signals as a linear combination of their own
past plus additional uncorrelated white noise. For a time series x(n) the
univariate AR model is described as follows:

x(n) =
p

∑
m=1

a(m)x(n −m) + e(n) (3.17)
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in which p is the model order, i.e. the number of past samples that are
taken into account, a(m) are the model coefficients and e(n) are the
residuals. In the bivariate case we get:

x1(n) =
p

∑
m=1

a11(m)x1(n −m) +
p

∑
m=1

a12(m)x2(n −m) + e1(n)

x2(n) =
p

∑
m=1

a21(m)x1(n −m) +
p

∑
m=1

a22(m)x2(n −m) + e2(n)
(3.18)

or in matrix formulation:

[x1(n)
x2(n)

] =
p

∑
m=1

[a11(m) a12(m)
a21(m) a22(m)] [

x1(n −m)
x2(n −m)] + [e1(n)

e2(n)
] (3.19)

where a11(m), a12(m) and a12(m), a22(m) are the model coefficients and
e1(n) and e2(n) are the residuals (uncorrelated white noise) of signals
x1 and x2, respectively.

The AR model can be generalized to incorporate K simultaneously
recorded signals. This results in the multivariate autoregressive (MVAR)
model:

X(n) =
p

∑
m=1

A(m)X(n −m) +E(n) (3.20)

in which X(n) = [x1(n)x2(n) . . . xK(n)]T ∈ RK×1
is the signal matrix

containing all signals at time point n and A(m) ∈ RK×K is the
coefficient matrix for delay m in which coefficient Aij(m) estimates
the influence of past sample xj(n − m) on the current sample xi(n).
E(n) = [e1(n)e2(n) . . . eK(n)]T ∈ RK×1

is the matrix containing the
uncorrelated white noise at time point n.

Estimation of the model parameters
The estimation of the model order p is crucial, since incorporating too
few past samples could prevent that existing connections are actually
detected, whereas including too many samples drastically increases the
necessary computational effort while possibly overfitting the model.
Fortunately, there are some methods to estimate the optimal model
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order, amongst others the Akaike Information Criterion (AIC) [141]:

AIC(p) = ln ∣Σe(p)∣ +
2pK

2

N
(3.21)

where Σe(p) is the covariance matrix of the residuals. The optimal
value for the model order p is then chosen as that for which the AIC is
minimal. Once the model order is fixed, the model coefficients can be
estimated with statistical methods such as the method of least squares
or the method of moments [142].

Transformation to the frequency domain
In order to investigate the spectral properties of the examined process,
Eq. 3.20 can be rewritten and Fourier transformed:

X(n) =
p

∑
m=1

A(m)X(n −m) +E(n)

⇕

E(n) = −
p

∑
m=1

A(m)X(n −m) +X(n)

(3.22)

⇒ E(n) =
p

∑
m=0

A
′(m)X(n −m)

with A
′(m) = {−A(m), 1 ≤ m ≤ p

IK , m = 0

(3.23)

⇕ Fourier transformation

E(f) = A
′(f)X(f)

with A
′(f) = −

p

∑
m=0

A
′(m)e−i2π

f
fs
m (3.24)

with fs the sample frequency and A
′(f) the Fourier transform of

the coefficient matrix A
′(m) in which A

′(0) = −IK (the K × K
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identity matrix). E(f) and X(f) are the Fourier transformation of
the uncorrelated white noise E(n) and signal matrix X(n), respectively.
Eq. 3.24 can again be rewritten as:

X(f) = A
′−1

(f)E(f) = H(f)E(f) (3.25)

in which H(f) is a K × K matrix, also called the transfer matrix of
the MVAR model. Element Hij(f) estimates the information flow from
signal xj to signal xi at frequency f .

The spectral density matrix S(f) of the signals xi, i = 1 . . .K is defined
as:

S(f) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S11(f) S12(f) ⋯ S1K(f)
S21(f) S22(f) ⋯ S2K(f)
⋮ ⋮ ⋱ ⋮

SK1(f) SK2(f) . . . SKK(f)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.26)

in which Sij(f) is the cross spectral density function of the signals xi
and xj , calculated as the Fourier transform of their cross-correlation and
Sii(f) is the spectral density of signal xi. The power spectral density
matrix can be calculated based on the coefficients and residuals of the
MVAR model as follows:

S(f) = ∣X(f)∣2 = X(f)X∗(f)
= H(f)E(f)E∗(f)H∗(f) = H(f)Se(f)H∗(f)

(3.27)

where ⋅∗ denotes the complex conjugate and Se(f) is the spectral density
of the residuals. Since we assume that E(n) are uncorrelated white noise
time series, Se(f) will be the covariance matrix of the noise that can be
approximated by a diagonal matrix with the variances of the noise:

Se(f) = Σe =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ11 σ12 . . . σ1K

σ21 σ22 . . . σ2K

⋮ ⋮ ⋱ ⋮
σK1 σK2 . . . σ

2
KK

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ
2
1 0 . . . 0

0 σ
2
2 . . . 0

⋮ ⋮ ⋱ ⋮
0 0 . . . σ

2
K

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.28)
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This allows following estimation of the spectral density of signal xi:

Ŝii(f) =
K

∑
k=1

Hik(f)σ2
kH

∗
ki(f) =

K

∑
k=1

σ
2
k∣Hik(f)∣2 (3.29)

The spectral density of the signals can thus be estimated based on the
transfer matrix, scaled with the variance of the residuals.

3.2.3.2 Granger causality measures

From the model coefficients and residuals, several linear Granger
causality measures can be derived, both in time domain and frequency
domain and both bivariate and multivariate. In what follows, the most
commonly used measures are discussed.

Granger causality index
The bivariate causality from one time series x2(n) to another x1(n)
can be assessed in the time domain using the Granger Causality Index
(GCI):

GCI12 = ln
Vx1∣x1

Vx1∣x1x2

(3.30)

where Vx1∣x1
is the variance of the residual in the univariate case and

Vx1∣x1x2
is the variance of the corresponding residual in the bivariate

case. Assume that x2 does not Granger cause x1. In this case, Vx1∣x1
≈

Vx1∣x1x2
and thus GCI12 ≈ 0. In the opposite case, assume that x2 does

Granger cause x1. In this case, we know from the definition of Granger
causality that the variance of the residual in the bivariate case will be
smaller than in the univariate case. As a consequence, the fraction in
Eq. 3.30 becomes larger than 1 (a larger number divided by a smaller
number) and GCI12 > 0. The larger the value for GCI12, the larger the
influence of signal x2 on signal x1. The Granger causality from x1 to x2

can be investigated accordingly.

Partial directed coherence
The Partial Directed Coherence (PDC) calculates Granger causality in
the frequency domain from signal xj to signal xi and is designed to show
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only the direct connections [143] and not the indirect connections. The
concept of direct and indirect connections is shown in Fig 3.8 and the
formula for the PDC is:

PDCij(f) =
A
′
ij(f)√

∑K
k=1 ∣A′kj(f)∣2

(3.31)

based on the Fourier transform of the coefficient matrix A
′(f), so

that inversion to obtain the transfer matrix H(f) is unnecessary.
Furthermore, following normalization holds:

K

∑
k=1

∣PDCkj(f)∣2 = 1 (3.32)

meaning that the total outgoing information flow from every signal or
node is 1 at every frequency.

Directed transfer function and its derivatives
In contrast to the PDC, the Directed Transfer Function (DTF) is
designed to track the indirect connections to their origin, as shown in
Fig. 3.8(d) [144]:

DTFij(f) =
Hij(f)√

∑K
k=1 ∣Hik(f)∣2

(3.33)

with normalization:

K

∑
k=1

∣DTFik(f)∣2 = 1 (3.34)

which indicates that the total incoming information flow in every signal
or node is 1 at each frequency. Again, a higher value of the DTF means
more information flow from xj to xi. Notice that DTF and PDC are
independent from the noise covariance. Therefore, possible correlation
of input noises among themselves, manifested in non-zero non-diagonal
elements in Σe do not influence these measures.

The DTF has some well-known derivatives. First, it is possible to
calculate the mean DTF over a predefined frequency band of interest
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x1

x2 x3

x1

x2 x3

x1

x2 x3

Δ1

Δ2

(a) True network (b) PDC based (c) DTF based

direct connections indirect connections

Figure 3.8: Concept of direct and indirect connections. (a) Assume a ground
truth network of three signals x1, x2 and x3. x1 influences signal x2 directly
with a certain delay ∆1. x1 also influences x3 indirectly via x2 with an extra
delay ∆2. This figure shows how the connections will be detected by the (b)
partial directed coherence (PDC) based measures and (c) directed transfer
function (DTF) based measures.

[f1f2], in which every frequency contributes with the same weight [145].
This DTF derivative is called the integrated Directed Transfer Function
(iDTF) and the formula is:

iDTF
2
ij =

1

f2 − f1

f2

∑
f=f1

∣DTFij(f)∣2

=
1

f2 − f1

f2

∑
f=f1

∣Hij(f)∣2

∑K
k=1 ∣Hik(f)∣2

(3.35)

As a consequence of every frequency contributing with the same weight,
i.e. frequencies with low relative power contribute equally to the
resulting measure as frequencies with high relative power, the DTF can
be high in the parts of the spectrum where the relative power of the signal
is very small (small denominator). To overcome this, we can integrate
(or sum) the denominator over all frequencies in the frequency band of
interest so that it does not change with frequency and hence prioritizes
connections at prominent frequencies. This results in the full-frequency
Directed Transfer Function (ffDTF) [146]:

ffDTF
2
ij =

f2

∑
f=f1

∣Hij(f)∣2

∑f2

f ′=f1
∑K
k=1 ∣Hik(f ′)∣2

=

f2

∑
f=f1

∣Hij(f)∣2

∑K
k=1 ∑f2

f ′=f1
∣Hik(f ′)∣2

(3.36)
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Both iDTF and ffDTF are normalized so that the total incoming
information flow in every channel is 1:

K

∑
k=1

∣ ⋅DTFik∣2 = 1 (3.37)

3.2.3.3 Granger causality for non-stationary signals

In the previous section, we assumed that the time series xi, i = 1 . . .K
were stationary and as a consequence, the coefficients of the AR model
remained constant over time. Although baseline EEG segments can be
considered quasi-stationary from segment to segment, a lot of neural
transitions, e.g. the onset of an epileptic seizure, are inherently non-
stationary [147]. Fortunately, it is possible to extend the above methods
to accommodate for non-stationary signals by deriving the Granger
causality measures from a Time-Varying Multivariate Autoregressive
(TVAR) model, which is an autoregressive model that allows the model
coefficients to change over time. Eq. 3.20 for a TVAR model then
becomes:

X(n) =
p

∑
m=1

Am(n)X(n −m) +E(n) (3.38)

in which p is the model order, X(n) = [x1(n)x2(n) . . . xK(n)]T is the
K × 1 signal matrix, E(n) = [e1(n)e2(n) . . . eK(n)]T is the K × 1
matrix containing the residuals, which we still assume to be uncorrelated
white noise, and Am(n) is the time-variant K × K coefficient matrix
for delay m = 1 . . . p and time point n. The estimation of the time-
varying coefficients is now an ill-posed problem, since there are more
unknown parameters than measured data points. The Kalman filtering
algorithm allows estimating the autoregressive coefficients via a state-
space representation of the TVAR model [148, 149]. Two parameters
influence the Kalman algorithm. On the one hand, there is the
model order p, for which the optimal value can again be calculated
via minimizing the AIC (Eq 3.21). On the other hand, the Update
Coefficient (UC) defines how quickly the model will adapt to changes in
the dataset. The lower the value, the more robust the model parameters
will be, but the slower they will adapt to non-stationary transitions, and
vice versa.

77



Chapter 3. EEG source imaging and brain connectivity

In the frequency domain we get for the coefficient matrix:

A(f, n) = −
p

∑
m=0

Am(n)e−i2π
f
fs
m

(3.39)

with fs the sample frequency and A0(n) = −IK , ∀n. Eq. 3.25 remains
valid, but a time-dependent component is added to account for the
changing frequency spectrum over time:

X(f, n) = A
−1(f, n)E(f, n) = H(f, n)E(f, n) (3.40)

in which X(f, n) and E(f, n) are the Fourier transforms of X(n) and
E(n) respectively. H(f, n) is now a time-varying matrix of which every
element Hij(f, n) describes the information flow from signal xj to signal
xi at time point n and for frequency f . The time-variant aspect can be
taken into account into the formulas for the PDC and DTF, which results
in the Adaptive Partial Directed Coherence (APDC) [150], Adaptive
Directed Transfer Function (ADTF) [150, 151], integrated Adaptive
Directed Transfer Function (iADTF) [150, 151] and the full-frequency
Adaptive Directed Transfer Function (ffADTF)

1
[152]:

APDCij(f, n) =
Aij(f, n)√

∑K
k=1 ∣Akj(f, n)∣2

(3.41)

ADTFij(f, n) =
∣Hij(f, n)∣2

∑K
k=1 ∣Hik(f, n)∣2

(3.42)

iADTFij(n) =
1

f2 − f1

f2

∑
f=f1

∣Hij(f, n)∣2

∑K
k=1 ∣Hik(f, n)∣2

(3.43)

ffADTFij(n) =
f2

∑
f=f1

∣Hij(f, n)∣2

∑K
k=1 ∑f2

f ′=f1
∣Hik(f ′, n)∣2

(3.44)

1
Note that we omit the ⋅2 notation here.
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The APDC is normalized so that the total outgoing information flow
from each channel equals 1 at every time point and each frequency. The
⋅ADTF is normalized so that the total incoming information flow at each
channel equals 1 at every time point and each frequency:

K

∑
k=1

⋅ADTFik(n) = 1 (3.45)

Like in the DTF, the ADTF can have low values even in the presence
of a connection if the incoming information flow of the other signals is
high. Vice versa, it can be unreliably high when the relative power of
the signal at that frequency is relatively low. This can lead to biased
results for the iADTF. This is overcome in the ffADTF that prioritizes
frequencies for which the power of the receiving signal xi is high. The
ffADTF does, however, not take the power of the sending signal xj into
account. Therefore, [153] proposed a more complex normalization in
the spectrum-weighted Adaptive Directed Transfer Function (swADTF)
that also takes the power of the sending signal xj into account:

swADTFij(n) =
∑f2

f=f1
∣Hij(f, n)∣2Ŝjj(f, n)

∑K
k=1 ∑f2

f ′=f1
∣Hik(f ′, n)∣2Ŝkk(f ′, n)

=

∑f2

f=f1
∣Hij(f, n)∣2 ∑K

l=1 ∣Hjl(f, n)∣2

∑K
k=1 ∑f2

f ′=f1
∣Hik(f ′, n)∣2 ∑K

s=1 ∣Hks(f ′, n)∣2

(3.46)

with Ŝii(f, n) the time-variant extension of Eq. 3.29 for the estimation of
the spectral density of signal xi. Every element ∣Hij(f0, n0)∣2 is weighted

by the power present in the sending signal (Ŝjj(f0, n0)). This implies
that information flow can only be seen at a certain frequency if the
power in the sending signal at that frequency is large enough. Again,
this measure is normalized to the total incoming information flow in
signal xi at each time point:

K

∑
k=1

swADTFik(n) = 1 (3.47)
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3.2.4 Graph analysis

Once the information flow between the different signals is known, the
(brain) network can be represented in an abstract mathematical way,
called a graph. We already used this representation in Fig. 3.8. A graph
simply comprises a set of nodes or vertices, symbolizing different brain
regions, and a set of edges connecting these nodes. Vertices that are
connected via an edge are called neighbors. The edges can represent the
anatomical connections or the functional or effective information flow,
and can be either undirected (or bidirectional) or directed. Furthermore,
the edges can be unweighted, i.e. every connection has the same
strength, or weighted, i.e. every connection has a strength relative to
the connectivity measure that was calculated. The graph representation
allows to more easily interpret the rather complex network and the study
of these graphs and their properties is called graph theory or graph
analysis.

Next to the network topology, a graph can also be represented by an
adjacency matrix A in which each element Aij represents the edge
from vertex j to vertex i. The value of Aij is the weight of the edge,
which is 0 in case there is no connection and 1 in case of connections in
an unweighted graph. Undirected graphs have a symmetric adjacency
matrix. An example of a weighted directed graph shown as a network
topology and its corresponding adjacency matrix can be seen in Fig. 3.9
and Eq. 3.48, respectively.

1

34

25

25

23
9

6

14
325

7

Figure 3.9: Example of a weighted directed graph, shown as a network
topology. The weight of the edges is indicated with a number. Vertex 2 is
unconnected with the other nodes of the graph, but is still part of the graph.
Edges in two directions between the same vertices are possible (e.g. two edges
between vertex 1 and 5). Loops inside a graph are possible (e.g. between vertex
1, 3 and 5). A vertex can also be connected with itself (e.g. vertex 2).
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3.2. Functional brain connectivity

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 5
0 7 0 0 0
32 0 0 6 0
14 0 0 0 0
25 0 23 9 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.48)

Graphs can be characterized by both node and network-related
properties. The most basic parameters are the graph’s order and size,
which are the number of vertices and the number of edges, respectively.
An important node property is the degree of a node i, which is the
number of edges that connect to that node i. For directed graphs, the
distinction between incoming and outgoing connections can be made,
called the indegree (IDi) and outdegree (ODi), respectively:

IDi =

K

∑
k=1

Aik (3.49)

ODi =

K

∑
k=1

Aki (3.50)

with K the number of nodes in the graph. The higher the indegree of
a node, the higher the incoming information flow and accordingly for
the outdegree. For the example of Fig. 3.9 and Eq. 3.48, the order of
the graph is 5, whereas the size is 7. For the 5 nodes, we find the in-
and outdegrees shown of Table 3.2. Note that the sum of all indegrees
is equal to the sum of all outdegrees, since in both cases every edge is
counted once.

The degrees can be normalized. In case the PDC is used as connectivity
measure, the outdegree of every node is 1. For the APDC, this holds
for every time point. In case of the ⋅DTF, the indegree of very node is
equal to 1 (for every time point).

During an epileptic seizure, different brain regions become simultane-
ously active in an epileptic network. To localize the Seizure Onset
Zone (SOZ) of the seizure, the main driver, influencing all other regions
directly or indirectly, of this network should be found. The network
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Chapter 3. EEG source imaging and brain connectivity

Table 3.2: In- and outdegrees of the graph example.

ID OD

Vertex 1 5 25+14+32=71
Vertex 2 7 7
Vertex 3 32+6=38 23
Vertex 4 14 9+6=15
Vertex 5 25+9+23=57 5

Total 121 121

can also be seen as a graph, with the vertices representing the different
active brain regions and the edges representing the information flow
between these regions. In the graph representation, the main driver of
the network corresponds to the vertex with the highest outdegree, when
indirect connections are taken into account (edges determined based on
⋅DTF values).

Other examples of graph properties that are interesting to investigate
(epileptic) brain networks are the clustering coefficient, a measure for the
tendency of nodes to cluster together; the characteristic path length, the
mean of the shortest path lengths

1
between every pair of nodes; and the

betweenness centrality, the number of shortest paths that pass through
a vertex. More information about this can be found in [154,155].

1
The shortest path length between two nodes is the minimal sum of the weight of

the edges that need to be traversed to get from one vertex to another. For example,
the possible paths from vertex 1 to vertex 5 are 1-5, 1-3-5 and 1-4-5. The path length
of the first option is 25, whereas that of the second is 32 + 23 = 55 and that of the
third is 14 + 9 = 23. The shortest path from vertex 1 to vertex 5 is thus via vertex 4
and the shortest path length is 23.
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4
Review on seizure onset zone
localization from noninvasive

EEG

4.1 Introduction

In Chapter 2, we introduced epilepsy as a disorder of recurrent and
unprovoked seizures that can be either focal (starting in a specific region
in the brain) or generalized (the whole brain starts seizing at once). As
EEG can directly measure the abnormal electrical brain activity during
and in between seizures in a convenient, safe and inexpensive way, it
is the most important clinical technique to diagnose and characterize
epilepsy [156]. It is, however, (mostly) impossible to find the region
responsible for the seizures based on visual inspection of the EEG. In this
dissertation, we, therefore, develop a method to localize this region based
on advanced signal processing of the EEG recordings. The importance
and clinical value of this will be discussed more elaborately in section 4.2.
In the next section, the main challenges encountered in this field of
research are highlighted. Finally, an overview of the pioneering work,
more recent studies and state-of-the-art methodologies to localize the
seizure onset zone from noninvasive EEG will be discussed.
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4.2 Importance

The goal of epilepsy treatment is to suppress seizures. When
antiepileptic drugs (AEDs) cannot offer seizure control, surgery is an
important option due to its high success-rate in selected candidates
[68, 69]. During epilepsy surgery, the brain region that causes the
seizures is disconnected (disconnective surgery) or removed (resective
surgery). Therefore, it is of utmost importance to accurately delineate
the epileptogenic zone (EZ), which is the brain area that initiates the
seizures and of which surgical removal is required and sufficient to
render the patient seizure-free. Unfortunately, no method can localize
this EZ, since it is only a conceptual region. Epileptologists make a
deliberate estimation based on the integration of the results obtained
during the presurgical evaluation protocol. MRI and visual inspection
of the interictal and ictal (video-)EEG with the determination of the
irritative zone (IZ) and seizure onset zone (SOZ), respectively, are
cornerstone investigations in this protocol [65]. However, often extra
investigations such as interictal PET, interictal and ictal SPECT, etc.
are needed to form a solid hypothesis about the EZ. Recently, EEG
and MEG source imaging (ESI/MSI) of interictal EEG or MEG data
offer an estimation of the brain activity underlying the measured data.
Although not widely used yet, these techniques have started to find their
way into the presurgical evaluation [157]. The results are promising,
with reported sensitivity ranging between 70% and 90% for interictal
PET in case of Temporal Lobe Epilepsy (TLE)

1
and between 66% and

97% for ictal SPECT [158, 159]. A study of Brodbeck et al., based
on 152 (102 TLE, 50 Extra TLE (ETLE)) patients, accounted for a
sensitivity of 69% and specificity of 44% for PET; a sensitivity and
specificity of 58% and 47% for SPECT; and 76% and 53% for structural
MRI [160]. They also reported a sensitivity and specificity of 84% and
88% for ESI of spikes marked in high-density (hd) EEG. These numbers
dropped to 66% and 54%, respectively, when using 32 electrodes or less.
Recently, a sensitivity and specificity of 79% and 75% were reported
for ESI of automatically detected spikes in long-term low-density EEG
[161]. For MSI of spikes, a sensitivity ranging between 55 and 80% is
found [162,163].

1
The sensitivity of interictal PET is 30-60% in case of extratemporal lobe epilepsy,

and up to 100% in case of lesions. The specificity, however, is considered significantly
lower.
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Despite these encouraging results, sometimes extra investigations, which
are often time-consuming, labor-intensive and costly, are required. Next
to this, these investigations are often based on interictal data, but it can
be argued that localizing seizures is more informative since they directly
reflect the affliction associated with epilepsy. Additionally, invasive EEG
(iEEG) is still required in 10-25% of the presurgical candidates to localize
the SOZ and define potential overlap with eloquent cortex [65]. The
iEEG monitoring is associated with potential complications, such as
scarring, infection and functional loss [164–167].

Thus, it would be of high clinical value to develop a method that
is able to identify the SOZ in a noninvasive, objective and cost-
effective way with high accuracy. During the last decades, increased
computational power and advanced signal processing techniques have
enabled novel epilepsy research dedicated to this purpose. Methods
based on noninvasive scalp EEG are preferred, not only because EEG
is inexpensive, portable and safe, but also because it corresponds
to the most unambiguous biomarker of epileptic activity. Moreover,
noninvasive EEG is routinely performed during long-term presurgical
investigations. Such methods could, once perfected, allow to:

1. provide more accurate and/or objective interpretation of the EEG
with respect to visual inspection,

2. better target iEEG electrode placement or obviate invasive
monitoring,

3. shorten the presurgical evaluation, as long-term EEG is recorded
in phase 1 of the presurgical evaluation and other investigations
could possibly be bypassed.

We will address the challenges encountered in the development of EEG-
based SOZ localization methods and present pioneering and state-of-
the-art work reported in literature.

4.3 Main challenges and possible solutions

The main challenges encountered while developing methods for EEG-
based SOZ localization are:
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1. the often low quality of ictal EEG data,

2. the low spatial resolution of EEG,

3. the spread of ictal activity in the EEG,

4. the preferred validation strategy to quantify the performance of
the developed method.

In what follows, we will address these four challenges in more detail and
describe how these problems are generally tackled in literature.

EEG recorded during a seizure is generally of low quality, since it is often
accompanied with voluntary or involuntary movements or eye blinks of
the patient that cause muscle, movement and/or eye artifacts in the
EEG, which significantly reduce the signal-to-noise ratio signal-to-noise
ratio (SNR). It is impossible to avoid these artifacts, so researchers
need to find workarounds to cope with or to enhance the low SNR.
The first step in most analyses is the preprocessing of the data, which
mostly involves filtering with a band-pass filter to reduce baseline drift
(low frequency) and the muscle artifacts (high frequency). Additionally,
decomposition techniques can be used to remove eye blink, heartbeat
or other artifacts. Decomposition techniques can also be used to select
the components that correspond to seizure activity and then perform
the further analysis on those components. Another possibility is to
select in the EEG a (quasi) artifact-free epoch that is limited in time.
Some research is based on a single time-point on or in the vicinity
of the seizure onset, taking care to choose a time-point at a point of
high SNR. Sometimes, the analysis is limited to a frequency band of
interest, in which most seizure activity is located to exclude the influence
of artifacts at other frequencies. A final approach is to average ictal
events such as spikes during (the beginning of) the seizure. This can
be challenging because of the often non-uniform morphology of the ictal
events. Moreover, the average is often restricted to a small number and
as a consequence, SNR enhancement could be limited [168].

Second, although EEG has a high temporal resolution in the order of
milliseconds, the spatial resolution at sensor level is low ((sub)lobar
[169]), due to the fact that the recorded potentials are subject to volume
conduction. Neuronal activity is distributed through different tissues
(such as cerebrospinal fluid, skull and scalp) to reach the electrodes.
Because of the different conductivities of these tissues, and certainly the
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low conductivity of the skull, the measured activity at the electrodes is
smeared and distorted. As a consequence, the potential measured at a
given electrode does not necessarily represent the activity of the directly
underlying brain region. One way to overcome the volume conduction
problem and the resulting low spatial resolution is the use of ESI. ESI is
a technique to estimate the brain activity that generated the recorded
EEG and allows to improve the sublobar resolution at sensor level to
centimeter resolution inside the brain (source space) [170]. It consists
of a forward or generative model, which describes how specific brain
activity is distributed to the electrodes, and an inverse problem/solution,
in which a cost function based on the difference between the generated
and measured EEG is minimized in order to provide an estimate of the
brain activity. The forward model is mainly based on a model of the
head, which can be simply spherical, based on a template MRI or based
on the patients individual MRI. In this paper, we will not discuss the
neurophysiological basis and methodological aspects of ESI, since this
has already been widely covered in previous literature [91,120,121,171].

The spatial resolution of EEG can also be improved by including more
electrodes in the recording setup, which also benefits the quality of ESI.
Despite the fact that increasing the number of electrodes does not solve
the distortion of the brain signals, previous research has shown the
benefit of high-density EEG (hd-EEG) on ESI [172,173], with specificity
and sensitivity increasing significantly (20-30%) with the number of
electrodes used [160].

Third, ictal activity rapidly spreads in the brain and therefore it can
be noticeable at many EEG electrodes simultaneously. When applying
ESI to ictal epileptic data, it is intuitive to select the brain region where
the reconstructed brain activity is highest in amplitude/energy/power
to estimate the SOZ, as is usually done in SOZ localization studies
(section 4.4.1). However, it has been generally accepted that epilepsy
is a network disorder rather than a focal disease. This means that
during a seizure, several brain regions become simultaneously active as
part of the patient’s individual epileptic network and it is often hard
to distinguish the main driver(s) of this network at seizure onset from
the secondary activated regions [87,88]. Furthermore, there is no direct
evidence to assume that the brain activity in the SOZ is stronger than
the propagated activity, because a small group of driving neurons could
trigger a larger group of neurons resulting in an area of higher activity
elsewhere. Because of these considerations, researchers increasingly try
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to reconstruct the active regions in the brain and subsequently study
the epileptic network, its interactions and the information flow between
the regions associated with the epileptic network. This can be done by
combining ESI with subsequent connectivity analysis (section 3.2) [174].
These studies, discussed in section 4.4.2, hypothesize that the main
driver of the epileptic network should be associated with an increased
information flow. The usefulness of (functional) connectivity analysis
for the localization of the SOZ has already been shown for iEEG
recordings [133, 153]. ESI allows extending this concept for noninavive
EEG recordings.

Finally, once a method is developed, the final challenge is to find an
optimal way to quantify its performance. Often, validation is based
on lobar or sublobar concordance with or distance to a ‘ground truth’.
Yet, defining the ground truth is often not trivial since the perfect
delineation of the SOZ is not known. Sometimes, it is based on the
results of other investigations such as ictal SPECT or MRI. Other studies
happen retrospectively and the ground truth is based on the outcome
of the complete presurgical evaluation during which the presumed SOZ
is delineated, or the ultimately resected area. This can be linked to
the surgical outcome of the patient. Indeed, if a patient is seizure-free
after surgery, the SOZ was harbored in the resected area, which was
preoperatively delineated during the presurgical evaluation, and vice
versa. An issue with this technique is that the area that was delineated
by the presurgical protocol or that was resected can be and probably is
larger than the true SOZ

1
. Therefore, it is often argued that the optimal

ground truth is based on seizures recorded during iEEG, despite the fact
that iEEG is avoided whenever possible since this invasive technique is
potentially harmful for the patient. Also, it should be guaranteed that
the invasive electrodes sample the true SOZ, since the spatial covering
that can be obtained with iEEG is limited

2
. Furthermore, it is hard to

apply ESI on seizures that were simultaneously recorded with iEEG and
scalp EEG, because of the influence of the intracranial electrodes and the
burr holes and bone flaps on the distribution of the electric field. It has

1
As mentioned in chapter 2, the extent of the tissue to be resected is a compromise

between the risk of functional loss for larger resections and the risk of not being
seizure-free for smaller resections.

2
If the electrodes would be placed close to the SOZ, but not on the SOZ, the

tissue beneath the electrodes closest to the real SOZ will be incorrectly considered to
harbor the SOZ.
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been shown that the non-conductive part of a subdural grid attenuates
scalp potential of generators located under them [175]. The solution to
this is to record the EEG and iEEG separately, but in this case, it cannot
be guaranteed that the seizures originated from exactly the same spot.
The solution to this is to record the EEG and iEEG separately, but in
this case, it cannot be guaranteed that the separately recorded seizures
originated from exactly the same spot. Some studies use simulated EEG
to test and quantify the performance of their methods before applying
them to patient data. The advantage of simulations is that the ground
truth is known exactly. Yet, it is often hard to predict how simulations
translate to real data and therefore a validation step with real data is
indispensable. This review paper will only cover studies (also) using real
data.

4.4 EEG-based SOZ localization

In the next two sections, we offer an overview of the research on localizing
the SOZ from noninvasive EEG. We included all studies up to 2016
working with real ictal EEG data reported in English to which access
was provided and discuss how the authors tackled the aforementioned
challenges and what their findings were. We found 30 studies and the
general trend is that they all apply ESI on the scalp-recorded data.
Five of the studies also used subsequent connectivity analysis. We
will discuss the studies using solely ESI and those that combine it
with connectivity analysis separately. Table 4.1 lists for every study
the number of included patients, the amount of electrodes, the used
head model and inverse method for ESI, the connectivity measures (if
any), the method to estimate the SOZ based on the ESI or connectivity
analysis results, and the validation approach at hand. In summary, 9/30
studies used hd-EEG recordings, while the other 21 relied on low-density
EEG. One of the hd-EEG studies also used low-density subsets to study
the influence of the number of electrodes. 11/30 studies used spherical
head models, 15/30 used individual realistic head models and 4/30 used
a template realistic head model. Finally, 18 different inverse solution
techniques were used.

Fig. 4.1 shows an overview of the number of studies published over the
years. The foundation of this kind of research traces back to over two
decades ago and has known a first plateau around the turn of the century.
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Figure 4.1: The number of studies published on EEG-based SOZ localization
over the years, studies using ESI and studies using ESI with subsequent
connectivity analysis are shown separately.

Yet, it is only in more recent years that it started growing faster with
the emergence of and easier access to more computational power. We
expect that in the coming years this relatively new research field will
continue to grow faster and faster towards maturity.

In contrast, studies trying to localize the IZ based on interictal EEG
data have been more frequent in the past, as can be seen in Fig. 4.2,
which is the result of an exploratory search on the Web of Science
(and is therefore probably an underestimation of the true amount of
studies). As a consequence, EEG-based IZ localization is already a
more mature research field and an established technique. This difference
in growth could be explained by the observation that interictal events
are less subject to artifacts and have a more frequent occurrence than
seizures in the recorded EEG. ESI of interictal data is generally a more
simple concept and easier to process. Often, less computational power is
necessary because very complex or advanced techniques are not always
required (although they could be used for it). However, the IZ may
designate a (partially) different, possibly larger region than the SOZ
and therefore, SOZ localization may potentially be more informative for
surgery guidance [176,177].

We should mention that other epilepsy studies exist using these
signal processing techniques applied to ictal EEG data to uncover
neurophysiological mechanisms of the condition [178]. These studies
were not included, as they did not provide localization information.
Also studies using other noninvasive modalities, such as fMRI and MEG
exist. Whereas fMRI data requires a fundamentally different approach
(e.g. [179]), and is therefore left out of this discussion, MEG can be
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Figure 4.2: The number of studies published on EEG-based IZ localization
over the years. Result of an exploratory search on the Web of Science and
probably an underestimation of the true amount of studies in this research
field.

processed in a similar way as EEG. Therefore, studies exist that apply
source imaging and possibly connectivity analysis on MEG data to
localize the SOZ [180–184]. Yet, ictal MEG data are rare (Badier
et al., 2016). This is because MEG recordings need to take place in
a special shielded room and long-term recordings are still impossible.
Although MEG is also noninvasive, ictal MEG data are rare [184]. This
is because MEG recordings need to take place in a special shielded
room and long-term recordings are still impossible. As a consequence,
the chance that a patient will have a spontaneous seizure during the
recording is limited. Patients with a reflex epilepsy syndrome (such as
musicogenic or photosensitive epilepsy) might be easier to study, as was
done in [185]. Yet, they only represent a very small subpopulation of all
epilepsy patients. Additionally, ictal MEG data suffers even more from
seizure-related movement artifacts, since the electrodes are not fixed to
the scalp of the patient. Finally, MEG is available in only a limited
amount of epilepsy centers, whereas EEG is recorded in every center
during the presurgical evaluation. Therefore, we focus our review on
EEG studies in the field.
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4.4. EEG-based SOZ localization

4.4.1 ESI to localize the SOZ

Pioneering work

One of the first studies to acknowledge the possible use of ESI of ictal
scalp EEG was performed in 1995 by Boon et al., who applied dipole
modeling on epochs of early single ictal discharges, filtered between 1
and 14 Hz, in 15 patients (4 underwent iEEG) with drug-resistant focal
epilepsy and qualitatively described its usefulness for the presurgical
evaluation [190]. They, however, concluded that confirmation and
validation in a larger patient population group with iEEG was necessary
and that ictal ESI is harder than interictal ESI due to the lower SNR
of the data. This was done in a follow-up study in 1997, in which
ictal dipole modeling was performed in 33 patients and consistent and
distinct dipole patterns were found. In 9 patients of the 33, iEEG was
available and the localization of the ictal dipole could be qualitatively
correlated with localization based on the iEEG findings. Furthermore, 8
of the 9 patients studied intracranially underwent resective surgery and
7 of them were rendered seizure-free. The authors concluded that in the
patient that was not seizure-free, the iEEG recording was misleading.

However, the ictal dipole could be correlated to the iEEG and it is not
discussed how this affects the results. Nevertheless, the general results
were promising. These results were also reported in [191] and with one
extra iEEG patient in [192]. Up to now, these studies used the same
dipole modeling strategy using a 3-shell spherical head model. They
argued that the use of realistic, individual head models could improve
the anatomical accuracy of the method. This is what they changed in
their study in 2002, in which they prospectively investigated the clinical
usefulness of ESI on ictal data [193]. In 14% of 100 patients, ictal ESI
proved to be important in the presurgical decision-making process. The
decision was mostly to avoid iEEG because the candidates appeared to
be unsuitable for resection as the initial incongruency of visual inspection
of the ictal EEG and MRI got confirmed by ictal ESI. It is, however,
unknown whether these patients truly could not be helped with epilepsy
surgery.

Assaf and Ebersole are other founding authors of EEG-based SOZ
localization. In their study of 1997, they reconstructed ictal EEG of
40 patients with drug-resistant TLE by 19 fixed dipoles that represent
specific cortical areas [187]. They correlated the most prominent source
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at the first earliest recognizable ictal rhythm with the findings of iEEG,
confirmed by seizure-freedom of the patients after surgery. Sensitivities
between 36% and 66% and specificities between 92% and 96% for
seizures with different onsets were reported. The method could reliably
differentiate temporal lobe seizures of mesiobasal origin from those of
lateral neocortical origin. The resolution of the algorithm was, however,
limited to the 19 fixed locations of the dipoles. In a follow-up study
using the same methodology in 75 patients who underwent anteromesial
temporal lobectomy, they found three different ictal patterns [215]. Type
1 (16 patients) was associated with positive surgical outcome, whereas
for type 2 (51 patients) and 3 (8 patients), this association could not be
made. For type 2, however, the generating sources could be associated
with surgical outcome and so the authors concluded that they could
possibly be used as a predictor of temporal lobectomy.

In 1998, Mine et al. [207] applied dipole fitting using an individual
3-layered head model on the 10 ms around the peak of a spike close
to the seizure onset in 10 or more seizures in two patients. Again,
good correspondence between the localization of the dipoles and seizures
recorded with iEEG was found. The patients were seizure-free after
surgery targeting the SOZ found by iEEG. They confirmed this result
in a follow-up study in 2002 for 9 patients [208].

Merlet and Gotman were the first to offer a more quantitative validation
approach in 2001 [206]. They fitted a dipole to the ascending wave of an
averaged ictal waveform and keeping this dipole fixed, but active, fitted
a second one to the complete averaged ictal waveform. After this, they
determined the distance between the most active dipole of these two
and the most active iEEG contact. The dipole fitting was successful in
6/9 patients, and in 3/6, the distance to the most active iEEG contact
was smaller than 10 mm. However, dipole fitting happened with a 4-
shell spherical head model and the influence of the projection into the
MRI space of the patient on the accuracy of the measured distance is
unclear. Yet, the study proved that quantitative validation is possible
and interesting.

These pioneering studies showed that ictal ESI is possible and that it can
have a potential added value in the presurgical evaluation of epilepsy.
The used methods are rather simple, the spatial resolution limited, and
the validation often solely qualitative or descriptive. They only limitedly
used the vast possibilities that became attainable due to increasing
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computational power, which offered later studies the opportunity to use
more complex methods offering higher spatial resolution and to offer
more quantitative and rigorous validation. This is where we made the
distinction between pioneering work and recent studies.

Recent studies

In more recent studies, authors tried to better tackle the challenges
stated in the previous section. Better head models to improve ESI,
better coping with artifactual data, improving the spatial resolution of
EEG and ESI by including more electrodes in the recording and the
analysis are examples of this. Furthermore, more attention was paid to
evaluate the accuracy of ictal ESI.

More complex head models and/or inverse solutions A
“software probe” for ictal activity was developed in 2000 by Kobayashi et
al. [200]. This was the first study using a more complex inverse solution
to characterize ictal EEG epochs of 2.56 s. The approach was based
on the singular value decomposition of the data into spatiotemporal
components of which a some are recombined into a new component,
still orthogonal to the remaining components. This was applied on 10
seizures of 3 patients with TLE and a source corresponding to the region
of seizure activity in iEEG recordings was found in every case, even when
seizure activity was still not visually identifiable in the scalp EEG. When
using more simple inverse models, seizure activity could not be correctly
detected when it was not apparent in the scalp EEG.

In 2009, Rullmann et al. conducted the first study to show the
possibility of using a complex head model for ictal ESI and to
investigate the influence of more simple head models on several inverse
techniques [210]. They compared dipole scanning, minimum norm
estimation, a rotation dipole fit (fixed location), a moving dipole fit
(fixed orientation), and Standardized Low Resolution Electromagnetic
Tomography (sLORETA) by applying it on the two peak samples of the
average of 9 spikes during a seizure of a patient with a brain tumor.
After resection of the tumor, the patient was rendered seizure-free.
A realistic, anisotropic model was used which modeled scalp, skull,
CSF, white matter, gray matter and a lesion (cavity of a previously
resected brain tumor and the current brain tumor, which resided in
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the cavity, see Fig. 4.3). The source space was limited to gray and
white matter, without the lesion. All methods were able to localize
the SOZ on the border of the lesion (not incorporated in source space)
and on the border of the iEEG electrodes which mainly received ictal
discharges. They also made a comparison with more simple head
models and found that it is most important to correctly model CSF
and skull. Another study that compared different inverse solution was
performed in 2010 by Koessler et al. [201]. They applied a moving dipole
approach, a rotating dipole approach, Multiple Signal Classification
(MUSIC), LORETA and sLORETA on ictal activities lasting from a
few milliseconds up to one second depending on the kind of activity.
Unlike Rullmann et al., they found differing results for the different
inverse techniques, see for example Fig. 4.4. They reported concordance
on the sublobar level with iEEG in 9/10 patients using the dipole fitting
approaches, 7/10 using MUSIC or LORETA and 5/10 using sLORETA.
For every patient, however, at least one of the methods was concordant
with iEEG, stressing the differences between the inverse techniques even
more. No possible explanation for this difference was offered. Also
Kovac et al. used different inverse solutions, but with the purpose to
investigate whether ESI could provide lateralization in 8 frontal lobe
epilepsy patients of whom the ictal scalp EEG was nonlateralizing, as
correct lateralization in these difficult cases could be very informative
for the clinicians [202]. They were able to obtain a clear lateralization
of the seizures that could not be lateralized by visual inspection of the
EEG in 47% using ECD and in 29% using distributed solutions. In these
cases, the lateralization was correct in 75% of the seizures with ECD and
in 60-80% for the distributed solutions.

Previous studies mainly compared equivalent dipole techniques with
distributed solutions using LORETA (like) techniques, Habib et al.
offered a more extensive comparison between distributed solutions, using
Weighted Minimum Norm Estimates (WMNE), dynamic Statistical
Parametric Mapping (dSPM) and sLORETA [197]. In 8 patients, they
applied these techniques to the peak of averaged ictal spikes. WMNE
was concordant on the lobe level with SPECT foci (which were congruent
with the clinical semiology) in 7/8 patients using WMNE and in all
patients using dPSM or sLORETA.
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Figure 4.3: Illustration of the advanced individual head model used by
Rullmann et al., in which a brain lesion is segmented separately. There are
six tissue types: red indicates the lesion, dark gray the gray matter, light gray
the white matter, green the CSF, orange the skull and blue indicates the skin.
Figure from [210].

Figure 4.4: Some patients showed clearly different solutions when different
inverse techniques were used in Koessler et al. [201]
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Decomposition and other techniques to better represent the
ictal data Worrell et al. were the first in 2000 to not apply ESI on
the (averaged) temporal data directly [212]. They applied LORETA
using a simple 3-shell spherical head model on a scalp map determined
by phase-encoded frequency spectral analysis (PEFSA) [213]. Using
PEFSA, they determined the optimal synchronized scalp map that best
describes the measured scalp potentials during an epoch of 3 s at seizure
onset, at the seizure frequency. This offered an opportunity to isolate the
ictal generator from other activity. The LORETA source map maximum
was concordant on the lobar level in 9/10 patients. Lantz et al. offered
another technique which created a new data matrix based on the peaks
in the global field power during the seizure [203]. This new data matrix
was segmented into a limited number of topographies and the most
important (most occurring) topographies were inverted using wMNE
and a template head model. They found one dominant topography
in 7/9 patients and the source map maximum of this topography
corresponded qualitatively with the iEEG in 6 patients out of these 7.

The usefulness of decomposition techniques to clean artifactual EEG
data was first investigated by Hallez et al. in 2009 [198]. Blind
Source Separation based on Canonical Correlation (BSS-CCA) and
Independent Component Analysis with Spatial Constraints (SCICA)
were used to visually remove artifactual (both muscle and eye artifacts)
components from the EEG. This improved the dipoles estimated by
RAP-MUSIC (using a template 4-layered Finite Difference Method
(FDM) head model) in 5 of the 8 patients, meaning that the distance to
ictal SPECT activation became smaller. However, perfect correlation
between the source estimations and ictal SPECT was not obtained,
since the median distance was larger than 20 mm in 7/8 patients.
Moreover, validation was based on ictal SPECT hyperperfusion clusters,
which have low temporal resolution. Therefore, they often display not
only the ictal onset zone but also regions of ictal propagation [216].
Another interesting approach for SOZ localization is to first decompose
the ictal EEG data to isolate seizure components, e.g. with ICA,
and then integrate ESI with a recombination approach. This is done
by Yang et al. (2011), where this Dynamic Seizure Imaging (DSI)
technique (see Fig. 4.5) using LORETA outperformed ESI on the raw
ictal EEG data [214]. DSI identified the SOZ in good correlation with
the epileptogenic zone resected during surgery (with good outcome) or
defined by iEEG/SPECT imaging methods in 17 seizures of 8 patients
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Figure 4.5: Illustration of the Dynamic Seizure Imaging Concept. The
ictal data is decomposed and the components containing seizure activity are
transformed individually to source space, in which they are recombined. Figure
from [214].

recorded with 76 electrodes. The distance to the respective ground truth
remained below 11 mm. Yet, false positives were found in two seizures.
In a follow-up study, Lu et al. applied the same approach (however,
using the cortical current density model and minimum norm estimation
as inverse solution methods) on 32-channel EEG of 9 pediatric patients
[204]. In 7 out of 9 patients, the SOZ was estimated within the resected
zone (RZ) and in the other two patients, the estimation was close to the
RZ. However, 3 patients had outcome Engel IV or V, and one Engel III,
so the value of the RZ as ground truth is questionable. Yet, there was
also good correspondence with iEEG that was recorded in 7 patients.
DSI also localized multiple foci in later seizure propagation that were
also concordant with propagation on iEEG.

While Lu et al. were the first to make the transition to pediatric patients,
Despotovic et al. took it a step further to neonates with perinatal brain
lesions [194]. One challenge in ESI in neonates is the fact that fewer EEG
electrodes fit on a baby’s head (17 in this study), but the main difficulty
is their different head geometry and different tissue conductivity w.r.t.
adults. Therefore, template head models, based on the adult brain, are
not suited. Making individual head models requires the segmentation of
the different tissues in the head based on MRI scans. Brain segmentation
techniques, however, have been mainly developed for adults and are not
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applicable to neonates. Despotovic et al. proposed a technique based on
atlas-free segmentation and a brain extraction algorithm and used it to
construct neonatal head models including scalp, skull (with modeling of
the fontanelle), CSF and brain. ESI was applied using a single dipole fit
on 45 seizures of 10 neonatal patients with clear focal onset. To increase
the SNR, ictal spikes were detected during the seizure and represented
by a single spatial topography using parallel factor analysis (PARAFAC)
[217,218]. In 9/10 patients, most seizures were localized within 5 mm of
the closest lesion border and all seizures were localized within 15 mm.
In one patient, there was no good correspondence with the lesion for all
seizures.

Instead of decomposing the EEG data in sensor space, Pellegrino et al.
applied Principal Component Analysis (PCA) on the spatiotemporal
source maps obtained after inverting epochs starting 3 s before seizure
onset until 5 s after using an inverse approach called wavelet-based
Maximum Entropy on the Mean (wMEM), centered on the frequency
band showing the strongest power change [209]. They selected the
spatial map corresponding to the first PCA component as an estimation
of the SOZ and found sublobar concordance in 9 out of 14 seizures or
6 out of 8 patients. The median distance of the source map maximum
to the clinically defined SOZ based on iEEG was 11 mm in a range
of 0–89 mm. Significantly better results were found for MSI. Yet, as
discussed, ictal MEG data are rare.

High-density EEG Research before 2010 used between 21 and 27
electrodes for EEG recording. In 2010, the first study using high-density
EEG with 256 channels for ictal ESI was reported [199]. Holmes et al.
applied LAURA on the ictal onsets of 10 patients (5 Engel I after surgery,
3 Engel II, 1 Engel III, 1 non-operated patient) and found (sub)lobar
concordance between the ESI result and iEEG electrodes.

The number of electrodes is not always increased to 256. Examples of
studies using 64 electrodes can be found as well. In 2016, Akdeniz used
64-channel EEG to reconstruct the time-point of seizure onset using
LORETA and found that the maximum of the LORETA solution was
concordant with the RZ in 13/13 patients that were seizure-free after
surgery [186]. For two patients with Engel III surgical outcome, the
SOZ estimation pointed at a region adjacent to the RZ. The individual
3-layered BEM head models, however, were based on the post-operative
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MRI of the patients and it is unknown whether this influenced the
head modeling and/or the results. Also Beniczky et al. used 64-
channel EEG to analyze 38 seizures of 22 patients [189]. Several
inverse solutions were applied on the averaged ictal onset waveforms
to investigate their agreement: dipole fitting, Classical LORETA
Recursively Applied (CLARA), CLARA restricted to the cortical surface
and cortex-restrained Minimum Norm Estimates (MNE). In 13/22
patients all inverse methods agreed on the localization on sublobar
level, and in 6/22 there was agreement between all-but-one methods.
Cortical CLARA and dipole fitting yielded the highest accuracy and
were concordant at the sublobar level with the clinically defined SOZ or
the RZ (in 20 operated patients) in 77% of the patients (up to 93% in case
of the 14 seizure-free patients). They noted, however, that agreement
between all methods did not necessarily imply accuracy of localization.

Evaluation of the diagnostic accuracy One study by Beniczky
et al. in 2013 paid special attention to the validation of its diagnostic
accuracy and used the STARD criteria [219] as a guideline to design their
study [188]. ESI was performed in a standardized way in 42 consecutive
patients fulfilling inclusion criteria. A voltage map was created for every
time-point of an averaged ictal waveform of one seizure (per seizure
type) for every patient. An anatomically constrained head model in
combination with LAURA was used to reconstruct the latest time-point
before the voltage maps changed over the course of the waveform; or in
case of a constant voltage map, the peak of the waveform was used. In
33/42 patients, a reference standard, determined by the epilepsy team,
could be determined and sublobar concordance between the source map
maximum and this reference standard was assessed. Sensitivity and
specificity were 69.7% and 75.7%, respectively. 20 patients underwent
surgery and 16 patients became seizure free, resulting in a positive
predictive value (PPV) of 92% and a negative predictive value (NPV)
of 42.8%. They were able to prove the clinical value of ictal ESI in a
blinded study designed following the STARD criteria and were thus the
first to report sensitivity, specificity, PPV and NPV.

4.4.2 ESI and connectivity analysis to localize the SOZ

As already mentioned, the studies in the previous section did not
explicitly take into account that epilepsy is a network disease. In what
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Figure 4.6: Illustration of the concept of combining ESI and connectivity
analysis. ESI is used to identify network nodes inside the brain based on
scalp EEG recordings. ESI also estimates the time-series associated with these
network nodes. Connectivity analysis investigates the network between the
found network nodes. Figure from [211].

follows, we will give an overview of the studies aimed at SOZ localization
using ESI and connectivity analysis. The concept of ESI in combination
with connectivity analysis is shown in Fig. 4.6 [211].

The Department of Biomedical Engineering of the University of
Minnesota was the first to combine ESI and subsequent functional
connectivity analysis to estimate the SOZ in two studies published
in 2007 by Ding et al. [195] and 2012 by Lu et al. [205]. Quasi-
stationary ictal epochs lasting 3 s directly after the onset of a seizure
were selected and were reconstructed using first principle vector
(FINE) spatiotemporal ESI, with individual 3-layered realistic head
models. Functional connectivity between the estimated time-series of the
identified sources was calculated using the Directed Transfer Function
(DTF). Spatiotemporal localized sources having significant directional
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DTF values to other sources were considered as the SOZ. Ding et al. used
EEG recordings with 32 electrodes of 5 patients and analyzed a total
of 20 seizures. They estimated the SOZ within 15 mm of the presumed
EZ, based on a lesion visible on MRI scans or confirmed by SPECT
images. It is, however, unreported whether patients had resective or
disconnective surgery and if so, what the outcome of this procedure
was. There is also no record of intracranial recordings to confirm the
results. As a consequence, it remains unknown whether the MRI lesions
or SPECT images referred to the true SOZ. Lu et al. studied 10 patients,
23 seizures and compared 32 and 76 electrode setups. They found better
localizing results for the higher number of electrodes. In this follow-up
study, patients underwent epilepsy surgery with ILAE 1 or 2 outcome.
Therefore, the resected zone (RZ) as seen on the postoperative MRI was
used to validate the method. The SOZ was estimated within 10 mm of
the RZ in 16/23 seizures, within 20 mm in 22/23 seizures, and within 25
mm in all analyzed seizures.

In another study of this group, Sohrabpour et al. used DSI [214] in
combination with Adaptive Directed Transfer Function (ADTF) analysis
to study 1 patient who had 3 seizures during 76-channel EEG recording
[211]. Good concordance was found between the source with the highest
ADTF values and the RZ, as well as with the SOZ defined by iEEG
recordings. Validation of this technique in more patients is necessary.

Elshoff et al. used ESI to localize active sources during a seizure
and used subsequent connectivity analysis to describe the network
evolvement during the seizure [196]. Eleven patients that had surgery
with Engel class I or IIa outcome were investigated. They selected EEG
epochs (38-50 electrodes) lasting maximally 10 s around seizure onset
and reconstructed these epochs in source space using a beamforming
technique called Dynamic Imaging of Coherent Sources (DICS). The
head of the patients was modeled by a five-layered concentric-spheres
model, of which the layers represented the white matter, gray matter,
cerebrospinal fluid, skull and scalp. In 8/11 patients that were rendered
seizure-free after surgery, the first two sources identified by DICS were
concordant on the sublobar level with the RZ. For 3/11 patients, who
were not seizure-free, the first two sources were not concordant with
the RZ. Next, they applied functional connectivity analysis using the
renormalized Partial Directed Coherence (rPDC) and found that the
network at the onset of the seizure had a star-like topography, with the
SOZ as the main hub, while the network in the middle of the seizure

107



Chapter 4. Review on seizure onset zone localization from noninvasive
EEG

Figure 4.7: Elshoff et al. found a star-shaped network during the onset
of the seizure, while a circular network was found during the middle of the
seizure [196].

was rather circular. This is shown in Fig. 4.7. They provided the first
proof that an epileptic network can dynamically change over the course
of a seizure. Yet, only one seizure per patient was analyzed, so no
information about the robustness of this finding within patients was
offered.

The studies above used functional connectivity to model the information
flow in the brain. Klamer et al. were the first to use effective connectivity
analysis to localize the SOZ in 2015 [185]. They reported a case
study about a patient with musicogenic epilepsy. 256-channel EEG was
simultaneously recorded with MEG, during which seizures were triggered
with rap music. The EEG was reconstructed at three time points:
at the onset, the midpoint of the ascending phase and at maximum
negativity of the initial spike of the seizure. ESI was done using a
locally spherical head model with anatomical constraints (LSMAC, a
spherical head model of which the radius is adapted to the position of
every single electrode) derived from the individual MRI and LORETA.
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Two ROIs, one frontal and one right mesiotemporal, were chosen as
possible SOZ that corresponded with the inverse solution. The seizure
initiating spikes of all recorded seizures were averaged and the segment
between the onset time and the maximum negativity of the averaged
spike was considered for Dynamic Causal modeling (DCM) in SPM8.
The parameters of two models were estimated, each with one ROI as
autonomous input over the other one, with a modulatory effect of the
seizure on the connection of the two ROIs. Bayesian model comparison
selected the model in which the right mesiotemporal region drives the
frontal ROI, and so the right mesiotemporal region was selected as SOZ.
This was confirmed by intracranial recordings, which located the SOZ
in the right hippocampus.

4.5 Outlook

We have shown that current state-of-the-art methodologies can provide
a more accurate and a more objective interpretation of ictal EEG over
visual inspection thanks to research that started over more than 2
decades ago. Despite many promising results, the methods have not
found their way to clinical practice yet (except for one prospective study
of Boon et al. [193]) because of several reasons. The first is that, despite
the general consensus about the need for a good head model for ESI,
there is a remaining discussion about how accurate the head model
should be and which inverse technique is best for the application. Also in
ESI + connectivity analysis studies, it is not clear yet which combination
of methods could serve the goal of SOZ localization best. Next, different
studies use different techniques to deal with the low SNR of ictal EEG
signals and the influence of these different techniques on the performance
is not yet quantitatively compared. While some researchers claim that
it is important to include the seizure onset time in the analyzed epoch,
other studies state data quality is more important than capturing the
start of the seizure. Although most methods are almost completely
objective and some probably need minimal human intervention, some
initial subjective step is often needed to start the analysis, e.g. the
selection of an epoch, spikes to average or the frequency band of interest.
This increases the threshold to be adopted in clinical practice. Even
though there are still many uncertainties and despite the lack of a perfect
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gold standard in the retrospective studies, we believe this research field
is on the right track.

More research is needed to replicate, compare and extend prior findings.
This should be combined with validation in larger patient groups that
are preferably heterogeneous, so that possible links between patient
characteristics and performance of the algorithms can be found and
investigated. Preferably, more prospective studies and studies blinded
to the patient’s clinical data should be performed.

We can conclude that extensive validation and probably standardization
of the methods are key to future research in order to reach clinical
practice.

4.6 Original Contributions

This review chapter is resulted in a paper that has been submitted to
the A1 journal NeuroImage: Clinical [220].
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5
Seizure onset zone localization

from high-density EEG

5.1 Introduction

In the previous chapter, we reviewed noninvasive EEG-based Seizure
Onset Zone (SOZ) localization based on ictal EEG recordings. The
main arguments for the importance of EEG-based SOZ localization were
that SOZ localization is crucial in the presurgical evaluation of epilepsy
and that EEG is a relatively simple, inexpensive and safe technique
to directly measure the abnormal electrical activity during a seizure.
Methods to localize the SOZ based on noninvasive EEG are, however,
not trivial because of the low spatial resolution of EEG, the fact that
epilepsy is a network disease and the often low quality of ictal EEG data.
We discussed how the first challenge can be tackled by incorporating
more electrodes in the EEG recording setup and/or by using EEG Source
Imaging (ESI). The second challenge could be handled using connectivity
analysis and we also offered some possible strategies to deal with the
third challenge.

In this chapter, we investigate a combination of ESI and functional
connectivity analysis to study the added value of using functional
connectivity analysis compared to the more traditional method that
uses power after ESI to localize the SOZ. To assess connectivity, we
will use a Granger causality based measure, the spectrum-weighted
Adaptive Directed Transfer Function (swADTF), which was introduced
in Chapter 3. The swADTF has already been successfully applied on
ictal iEEG [153]. Here, we extend the method to noninvasive ictal EEG.
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First, simulated ictal high-density (hd) EEG data is used to verify the
method. Next, we validate the approach in five patients. Finally, we
perform the analysis on subsets of the electrodes to mimic lower-density
setups to investigate the influence of the number of electrodes on the
performance of the proposed algorithm.

5.2 From EEG to SOZ

An overview of the presented approach to get from the EEG data
to a SOZ estimation is shown in Fig.5.1-5.3. Example data of one
patient is used for illustration purposes. To summarize, we selected
3 seconds of ictal hd-EEG beginning at the marked seizure onset and
reconstructed the sources generating the ictal brain activity with ESI.
In the inverse solution, we selected local hotspots of higher activity.
In the example, this resulted in 8 sources. As no constraints on the
orientation of the sources were applied in the reconstruction, each of
these 8 sources is represented by three time series, for the x, y and z
direction. Therefore, we used Singular Value Decomposition (SVD) to
represent each source with one time series [115]. Using these time series,
functional connectivity analysis was applied with the swADTF [153].
Next, the swADTF values were summed to get the outdegree of every
source as a measure for the total outgoing information flow from a
source. The source with the highest outdegree, source 2 in the example
(Fig. 5.3(g)), was selected as SOZ. This estimated SOZ was compared
to the Resected Zone (RZ) of the patient and also to the source with
highest power after ESI, i.e. source 3 (Fig. 5.3(h)). In the following
sections, we present every step of this method in detail.

5.2.1 EEG preprocessing

The data was common average referenced and band-pass filtered between
1 and 30 Hz, to remove baseline drift and to reduce high frequency noise
resulting from movement artifacts. An extra notch filter at 50 Hz was
applied to filter out remaining power line noise. In patient 4 and 5, ICA
was applied to remove remaining artifact [221].
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(a) Ictal EEG epoch

(b) ESI
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Figure 5.1: Overview of the analysis pipeline (part 1), in which example data
of one patient is used. (a) Selection and preprocessing of an ictal hd-epoch.
(b) Result of EEG source imaging overlaid on MRI.
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Figure 5.2: Overview of the analysis pipeline (part 2). (c) Source selection
after ESI shown in solution space and (d) time series for x, y and z direction
for these sources.
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Figure 5.3: Overview of the analysis pipeline (part 3). (e) SVD to represent
each selected source by one time series. (f) swADTF values over time (summed
in the 3-30 Hz frequency band) for every source to every other source. (g)
Summation of the swADTF values leads to the outdegree. The source with the
highest outdegree is selected as estimation for the SOZ. (h) Another option is
to take the source with highest power as SOZ estimation. (i) Validation by
comparison to the segmented resected zone.
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5.2.2 EEG source imaging

To reconstruct the sources generating the ictal epochs, ESI was
done. For the forward model, patient-specific head models were
constructed based on the Finite Difference Method (FDM) [222]. Air,
scalp, skull, cerebrospinal fluid (CSF), gray and white matter were
segmented from the individual pre-operative T1-weighted MRI of the
patient (resliced to voxels of 1 × 1 × 1 mm

3
) using the Statistical

Parametric Mapping (SPM12) toolbox (http://www.fil.ion.ucl.ac.
uk/spm). The segmented volumes were combined into a single head
model with 6 tissue classes, and following conductivity values were
assigned to the different tissues: 0.33 S/m for gray matter, 0.14 S/m
for white matter, 1.79 S/m for CSF [223], 0.33/25 S/m = 0.0132 S/m
for the skull and 0.33 S/m for scalp [100, 105], and 0 S/m for air. The
solution space was created based on the segmented gray matter. Solution
Points (SPs) were uniformly distributed in the gray matter of the patient
with a grid spacing of 4 mm, which resulted in approximately 8000 SP
for every patient. These SPs formed the central nodes of the dipole
model, so we ensured that at least 2 voxels of gray matter were left open
between the SPs and the boundaries with other tissues in all directions,
in order to keep the dipoles restricted to the gray matter. An in-house
implementation of the Low Resolution Electromagnetic Tomography
(LORETA) algorithm [123] was used to solve the inverse problem. As
explained in section 3.1.3.2, this is a distributed linear method that
is based on the physiological assumption that neighboring neurons are
simultaneously and synchronously activated, which practically means
that the solution should be as smooth as possible. Since we work with
a cortical volume and not with a cortical sheet, perpendicularity to
the cortical surface is rather ambiguous and therefore we did not fix
the orientation of the sources beforehand, as is often done [23, 224].
Because we did not put any constraints on dipole orientation, every SP
is represented by 3 time series, one for each orthogonal spatial direction
(x, y, z) after solving the inverse problem.

5.2.3 Source selection and time series

In a typical LORETA solution, the brain activity is smooth throughout
the volume of the brain with one or more hotspots of higher activity that
vary in intensity and that may overlap partially. During an epileptic
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seizure, several brain regions become active. We assume that some of
the hotspots we obtain after ESI correspond with the active regions
in the network. To determine these hotspots, we calculated the sphere
power of every SP. We defined the sphere power of a certain SP to be the
mean power of all SPs lying in a sphere centred around that certain SP.
We considered the spheres with no neighbors with higher sphere power
to be the center of a hotspot. The SP that had the highest power in
that sphere was selected and called a source. Sources in the cerebellum
were excluded. By varying the radius of the sphere, more or less sources
could be found. Two extreme cases can be distinguished: when the
radius is larger than the largest distance between two SPs, only one SP
will be selected, i.e. the one corresponding with the maximal power, and
connectivity analysis cannot be done. In the other extreme, when the
radius is smaller than the resolution of the grid (here 4 mm), all sources
will be selected. In this case, the subsequent connectivity analysis would
still be computationally feasible with the advent of high-performance
clusters. However, this situation is to be avoided because it might
bias the connectivity analysis since LORETA provides a solution in
which neighboring sources are correlated, and thus possibly introducing
spurious connections. In this study, we want to localize the SOZ and we
are not looking for whole brain functional connectivity patterns at all
spatial scales (from mm to cm), but rather for those in a selected range
of distances. Therefore, we limit the radius to be in a range that does not
make the search area unnecessarily large, while not excluding possible
network nodes (i.e. not excluding possibly relevant local maxima).
We found good correspondence between the LORETA solution and the
selected sources when a radius between 15 and 25 mm was chosen. We
eventually used a radius of 20 mm as this provided overall best results
and for which the number of selected sources varied between 4 and 13
for all patients during the analyzed ictal epoch.

Suppose that K sources were selected. As we did not impose constraints
on dipole orientation, the activity in each source k of the K selected
sources can be represented by a matrix Fk ∈ R3×N

for k = 1 . . .K, with
N the number of time samples of the epoch. Each row of the matrix
corresponds with an orthogonal spatial direction (x, y, z). We used
singular value decomposition (SVD) to represent each source by a single

time series sk ∈ RN , associated with the largest singular value of the
SVD [115]. In SVD, there exists an intrinsic sign indeterminacy and
sign flips might occur over sources. This is, however, not a problem
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because the subsequent connectivity analysis (see section 5.2.4), is
mathematically not dependent on the sign of the signals.

5.2.4 Functional connectivity analysis

Functional connectivity analysis was used to estimate which source is the
most important, i.e. the driver behind the epileptic network. We used
a Granger causality based measure to investigate the network, more
specifically the spectrum-weighted adaptive directed transfer function
(swADTF). The general concepts of this technique have been introduced
by van Mierlo et al. in 2013 [153], and were explained in section 3.2.3.3
of this dissertation. In summary, the source signals sk were modeled
with a time-varying multivariate autoregressive (TVAR) model of which
the coefficients were estimated using the Kalman filtering algorithm
[148, 149]. The Kalman filtering algorithm is mainly influenced by the
update coefficient (UC), which expresses how quickly the TVAR model
coefficients will adapt to changes in the dataset. This way it provides a
balance between the amount of signal and the amount of noise that is
modelled. We chose a low value of 10

−4
for the UC, as we only want to see

connections that are maintained in the data and we are not interested in
modelling abrupt changes. The smoothing factor was set to 100. Based
on the transfer matrix H(f, t) of the TVAR model, the swADTF can
be calculated to investigate the causal relation from source signal sj to
source signal si for a predefined frequency band at time t:

swADTFij(t) =
∑f2

f=f1
∣Hij(f, t)∣2 ∑K

l=1 ∣Hjl(f, t)∣2

∑K
k=1 ∑f2

f ′=f1
∣Hik(f ′, t)∣2 ∑K

s=1 ∣Hks(f ′, t)∣2
(5.1)

5.2.5 SOZ localization

The swADTF values were calculated for every source sj to every other
source si at every time point of the epoch in the frequency band 3-30
Hz, as this band contained the fundamental seizure frequency noticed
in the EEG. For every source sj , we calculated the outdegree (OD) (see
section 3.2.4) as the sum of the swADTF values to all other sources over
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time:

ODj =

K

∑
k=1

T

∑
t=1

swADTFkj(t) (5.2)

in which we defined swADTFjj = 0. The outdegree is a measure for the
total outgoing information flow from a source to all the other sources.
The source with the highest outdegree was assumed to drive the epileptic
network active during the seizure and was selected as SOZ.

5.3 Performance in simulated data

5.3.1 Generation of simulated data

Ictal EEG epochs of 3 s were constructed by forward projection of a
simulated epileptic network in the brain. The details on the forward
models used for this purpose, can be found in section 5.2.2. The epileptic
network consisted of three nodes, of which the configuration can be seen
in Fig. 5.4(a). The seizure originated in node 1 and propagated to node
3 via node 2. In node 1, the driver of the network, epileptic activity was
mimicked by a sinusoid of decreasing frequency from 12 Hz at t = 0 s
to 8 Hz at t = 3 s and its first two harmonics. Gaussian noise with
1/f spectral behaviour was added with a signal-to-noise ratio (SNR) of
5 dB to account for background brain activity. The seizure propagated
to the second node with a delay of 20 ms. Extra Gaussian 1/f noise is
added with an SNR of 5dB. The resulting signal is delayed with 32 ms
to node 3 and again Gaussian 1/f noise is added. The three signals were
constructed with a sample frequency of 250 Hz, and an example can be
seen in Fig. 5.4(b).

Every node corresponded with a patch in the brain, which was
constructed by growing a region in the gray matter around a randomly
chosen seedpoint, until the patch enclosed 100 gridpoints of a uniform
cubic grid with a spacing of 4 mm (see also section 5.2.2). This resulted
in a mean volume of 8.04 cm

3
per patch. A minimal distance of 15 mm

between every two patches was guaranteed. An example of three patches
can be seen in Fig. 5.5(a). The activity in the patches was smoothed
towards the borders in order to obtain a three-dimensional Gaussian-
shaped power distribution to avoid abrupt power level changes, since
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neighboring neurons tend to synchronize [225], giving rise to a smooth
activity distribution. The background brain activity outside the patches
was set to Gaussian 1/f noise with an SNR of 5 dB with respect to the
epileptic signal in the first node. The brain activity in source space was
projected to sensor space to obtain hd-EEG with 204 channels, this can
be seen in Fig. 5.5(b).

Δ1 = 20 ms

Δ2 = 32 ms
2 3

1

Time (s)

0 1 2 3

Signal 3

Signal 2

Signal 1Signal 1

Signal 2

Signal 3

0 1 2 3

Time (s)

(a) (b) 

Figure 5.4: (a) Configuration of the simulated epileptic network. Source 1 is
the overall driver. (b) An example of the signals that mimic epileptic activity
corresponding to the three nodes of the network.
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Figure 5.5: (a) Example of three randomly located epileptic patches in the
brain, corresponding to the nodes of the network. (b) Montage of the resulting
EEG after projection of the epileptic brain activity to sensor space.
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Figure 5.6: The different used electrode setups: (a) original 204 electrode
setup, (b) the electrodes that were subsequently removed to obtain setups of
200-168 electrodes, (c) subset with 164 electrodes (red), (d) 128 electrodes, (e)
64 electrodes and (f) 32 electrodes. L left, R right, A anterior, P posterior.

Subsets of 200, 196, 192, 188, 184, 180, 176, 172, 168 and 164 electrodes
were created by consecutive exclusion of 4 electrodes, while keeping the
electrode distribution as uniform as possible. Additionally, subsets of
128, 64 and 32 electrodes were created to mimic setups that are more
common in clinical practice. The resulting electrode configurations can
be seen in Fig. 5.6.

5.3.2 Evaluation of the simulated data

Using the forward models of 5 patients (see section 5.4, we simulated
200 ictal hd-EEG epochs of 3 seconds, resulting in a dataset of 1000
unique epochs. For all these epochs and all electrode setups, we
tried to localize the driving patch of the simulated epileptic network.
We set the model order of the TVAR model fixed to 10 (= 40 ms),
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P                                 A  
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Other selected sources

LEconn

LEpow

LEmin

(a)

P A  

(b)
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Figure 5.7: Illustration of the different localization errors. LEconn = the
Euclidean distance between the source with the highest outdegree and the
driving patch in the simulated data or the RZ in the patient data, LEpow = the
Euclidean distance between the source with the highest power and the driving
patch/RZ, and LEmin = the Euclidean distance between the source closest to
the driving patch/RZ and the driving patch/RZ. (a) In this case LEpow >

LEconn > LEmin. (b) The localization errors can be equal to each other. In
this case LEconn = LEmin, meaning that our method selected the best possible
source to estimate the SOZ. A = anterior, P = posterior.

to minimize computational demand, following the ranges that are
presented in literature [150, 152, 153, 226]. To evaluate the performance
of the algorithm, the localization error (LEconn) was determined as the
Euclidean distance between the border of the driving patch and the
estimated SOZ, i.e. the source with the highest outdegree. If the
selected SOZ was in the driving patch, the LE was 0 mm. LEconn was
then compared to the shortest distance between the driving patch and
the source with the highest power (LEpow) after ESI, to see whether
connectivity analysis can provide extra information compared to ESI
alone.

Also the distance LEmin between the driving patch and the closest
source of all selected sources to the driving patch was calculated to
provide a measure for the quality of the combination of ESI and source
selection. It offers a lower bound on the error of both the source with
the highest outdegree and the source with the highest power. When
LEconn/pow = LEmin, the respective method achieves the best possible
result, given the reconstructed sources. The different localization errors
are illustrated in Fig. 5.7.
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5.3.3 Results

5.3.3.1 Overall results

The results of the SOZ localization based on 1000 simulated ictal EEG
epochs can be seen in Fig. 5.8. The data is represented in a boxplot, with
the dot indicating the mean and the bar indicating the median of the
errors. The data for 200, 192, 184, 176 and 168 electrodes are not shown,
as they are very similar to their neighboring setups. From the figure,
it is clear that connectivity analysis is better in localizing the epileptic
driving patch than localization based on maximal power. More precisely,
the localization error based on connectivity analysis was smaller than or
equal to that based on power, LEconn ≤ LEpow in 85.5% of all the cases.
LEconn was strictly smaller than LEpow in 58.5% and they were equal
in 26.9% of all cases. Only in 14.5%, power outperformed connectivity
analysis.

When comparing the localization errors based on connectivity and power
with the minimal error that could be achieved, we found that LEconn

equalled LEmin in 66.74% of the cases. This is in contrast with LEpow,
which was equal to LEmin in only 31.64%.

204 196 188 180 172 164 128 64 32
0

10
20
30
40
50
60
70
80
90

100
110
120
130

L
E
 i
n
 m

m

LE
conn

LE
min

LE
pow

Figure 5.8: Overview of (i) the localization errors (LE) of the SOZ estimated
by connectivity analysis, (ii) the LEs of the source with the highest power, and
(iii) the LEs of the closest selected source for the different electrode setups for
the simulated data. The distribution of the LEs is shown as a boxplot, the dot
symbolizes the mean LE, while the bar indicates the median LE.
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5.3.3.2 Influence of the number of electrodes

From Fig. 5.8, it can be seen that the localization errors are not
distributed normally. Therefore, we consider the median to be more
useful than the mean for representing the data over the different
electrode setups. An overview of the different medians can be found
in Table 5.1. The median of the minimal localization error LEmin

was smaller than 10 mm for all setups except for 32 electrodes, for
which it was 12 mm. The upper quartile stayed below 20 mm. For
all electrode setups, it was possible to find a source very close to the
origin of the simulated seizure. The median of the localization error
based on connectivity analysis LEconn was smaller than 15 mm in all
setups, except for 32 electrodes, for which it was 20.78 mm. We notice
an increase in both LEmin and LEconn when we lowered the number
of electrodes, especially in the upper quartile of LEconn. Between 32
and 204 electrodes, the median of LEmin got 5.07 mm larger and the
median of LEconn 8.78 mm, which represented in both cases an increase
of approximately 72%. In contrast, the median of the localization error
based on power was much larger and varied between 40.10 and 44.72 mm
over all electrode setups, which reflected a fluctuation of maximal 11.5%.

Table 5.1: Overview of the medians of the localization error of ESI followed
by connectivity analysis, LEconn, of the source with highest power after ESI,
LEpow, and of the minimal localization error, LEmin. Results are shown for the
different setups (204 down to 32 electrodes) and were obtained after evaluation
of 1000 simulated ictal EEG epochs.

(mm) median LEconn median LEmin median LEpow

204 12.00 6.93 44.72

196 12.00 6.93 44.72

188 12.00 6.93 42.99

180 12.65 8.00 42.99

172 12.65 8.00 44.00

164 12.65 8.00 42.61

128 13.27 8.94 41.95

64 14.97 9.37 40.99

32 20.78 12.00 40.10
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5.4 Performance in patient data

5.4.1 Collection of patient data

Patients were selected from the database of the epilepsy unit of the
Geneva University Hospital with following inclusion criteria: (1) patients
suffering from focal drug-resistant epilepsy; (2) they underwent hd-
EEG (256 channels) monitoring and had at least one seizure during
recording; (3) the patients underwent resective surgery of the supposed
epileptogenic zone; (4) they had only one resection; (5) the surgical
outcome of the patients was Engel Class III or higher; (6) pre- and post-
operative T1-weighted MRI of the patient was available. Five patients (2
male) with mean age of 37.6 years fulfilled all criteria and were included.
Table 5.2 gives an overview of the patients’ age and sex, clinical and MRI
findings, the result of visual analysis of the scalp EEG, the performed
resective surgery, and the outcome of the surgery. The local ethical
committee approved the study and all patients gave written informed
consent. Long term hd-EEG was recorded for approximately 24 hours
in each patient (EGI, Geodesic Sensor Net with 256 electrodes). From
the 256 electrodes, the facial electrodes and the bottom line of the cap
were removed due to major muscle artifacts, resulting in a setup of
204 electrodes. Electrode positions were estimated for every patient
by manually fitting a template cap on the individual MRI. As in the
simulation study, subsets of 200, 196, 192, 188, 184, 180, 176, 172, 168,
164, 128, 64 and 32 electrodes were created, with the configurations
shown in Fig. 5.6.

The sample frequency was either 250 Hz or 1000 Hz (in 1 patient). In the
latter case, the EEG was downsampled offline to 250 Hz for consistency
and to reduce computation time.

For every patient, an epoch of 3 s was selected that started at the seizure
onset time marked by an EEG expert.

5.4.2 Validation in patient data

For all patients, we segmented the RZ from the post-operative MRI,
which we coregistered to the solution space. We used the proposed
approach to try to localize the SOZ for every patient and every electrode
setup.
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5.4. Performance in patient data

The optimal TVAR model order was calculated with the Akaike
Information Criterion (AIC) [141]. Also for the patient data LEconn,
LEpow and LEmin (Fig. 5.7) were calculated, but now with the RZ as a
reference.

5.4.3 Results

We found optimal TVAR model orders between 4 and 8, see also
Table 5.3. For patient 4, we found diverging results and therefore we
set the model order to the maximal value found for the other patients,
i.e. 8.

Table 5.3: Overview of the used model order found with the Aikake
Information Criterion for every patient and every setup

p1 p2 p3 p4 p5

204 8 4 6 8 4

200 8 4 6 8 4

196 8 4 6 8 4

192 8 4 6 8 4

188 8 4 6 8 4

184 8 4 6 8 4

180 8 4 6 8 4

176 8 4 6 8 6

172 8 4 6 8 6

168 8 4 6 8 6

164 8 4 6 8 4

128 8 4 6 8 4

64 6 6 6 8 4

32 8 6 6 8 4

5.4.3.1 Overall results

In Fig. 5.9, an overview of the localization errors (LEs) for all patients
and all electrode setups can be found. A localization error of e.g.
50 mm is considered to be as unfavorable as a localization error of
80 mm, therefore we used different intervals to characterize the errors:
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LE
pow

p1 p2 p3 p4 p5

LE
conn

p1 p2 p3 p4 p5

32 

64 

128

164

168

172

176

180

184

188

192

196

200

204

LE
min

p1 p2 p3 p4 p5

LE(mm)

= 0

∈ ]0, 10]

∈ ]10, 25]

∈ ]25, 45]

> 45

(a) (b) (c)

Figure 5.9: Overview of (a) the localization errors (LE) of the SOZ estimated
by connectivity analysis, (b) the LEs of the source with the highest power, and
(c) the LEs of the closest selected source for the different electrode setups for
the 5 patients.

LE = 0 mm, LE ∈ ]0, 10] mm, LE ∈ ]10, 25] mm, LE ∈ ]25, 45] mm,
and LE > 45 mm.

From the figure, we can see that LEconn was equal to or smaller than
LEpow in 91.4% of the cases, meaning that in these cases our presented
method performed as well as or better than localization based on power.
LEconn was strictly smaller than LEpow in 57.1 % of the cases. In
34.3 %, LEconn = LEpow and, in 8.6 % of the cases, power outperformed
connectivity analysis, LEconn > LEpow. These 8.6 % represent 6 cases
that are mainly located in the low-density setups (3 for 32 electrodes and
1 for 64 electrodes, and two outliers for p1 for 184 and 192 electrodes).

For all setups, ESI and source selection were able to find a source inside
the RZ for 4 patients, and within 10 mm of the border of the RZ or within
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5.4. Performance in patient data

the resection for the other patient. Connectivity analysis was able to find
this optimal solution in 88.6% of the cases, whereas LEpow = LEmin in
38.6% of the cases.

5.4.3.2 Influence of the number of electrodes

Fig. 5.10 shows the result of the connectivity analysis and the source
with the highest power compared to the RZ for all patients for 204
electrodes. For the 204 electrodes setup, we were able to estimate the
SOZ inside the RZ (LEconn = 0 mm in p1, p2, p4, p5) or within 10 mm of
the border (LEconn < 10 mm in p3) of the RZ. In contrast, localization
based on power was only able to estimate the SOZ inside the RZ in
one patient and within 10 mm of the border of the RZ in one other
patient. In these cases, localization based on power and connectivity
found the same source. For the three other patients, the localization
error LEpow was larger than 25 (1/3 patients) or 45 mm (2/3 patients).
The lateralization was, however, correct.

p1 p2

p3 p4

p5

L R    P  A

source with highest outdegree

source with highest power

RZ

Figure 5.10: The selected SOZ based on the source with the highest outdegree
(blue), the source with the highest power (red) and the resected zone (green)
in the solution space for every patient, using the 204 electrode setup. L = left,
R = right, A = anterior, P = posterior.
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Chapter 5. Seizure onset zone localization from high-density EEG

When comparing to the minimal localization error, connectivity analysis
achieved the best possible result after ESI and source selection in every
patient for 204 electrodes. This is also shown in Fig. 5.11, which
displays in how many patients the minimal localization error was found,
for every electrode setup and for both methods. On the contrary,
localization based on power was only able to select the optimal source
in 2 patients. The same results applied when gradually lowering the
number of electrodes to 128, with the exception of three cases: for 192
and 184 electrodes, localization based on connectivity analysis does not
find the optimal source in p1. For 128 electrodes, power localized the
optimal source only in 1 out of 5 patients. For the high-density setups
we can say that the presented approach outperformed localization based
on power consistently.

For 64 electrodes, the performance of the presented approach decreased.
The SOZ was estimated inside the RZ (2/5 patients) or within 10 mm
of the border of the RZ (1/5 patients) in only 3 patients instead of 5.
Yet, this result is better than localization based on power, for which
the optimal source is only found in 2 patients. Only for one patient
LEpow was smaller than 10 mm. This is also reflected in Fig. 5.11
LEconn = LEmin in 3 patients and LEpow = LEmin in one patient. For
the low-density setup of 32 electrodes, the SOZ was estimated inside the
RZ in only one patient. The source with the highest power, was however
inside the RZ in 2 out of 5 patients.

32 64 128 164 168 172 176 180 184 188 192 196 200 204

Number of electrodes
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Figure 5.11: Representation of the number of patients for who the lower limit
of error is achieved for each of the methods for all electrode setups, i.e. in how
many patients does the source with the highest outdegree/the source with the
highest power coincides with the source closest to the RZ for each setup.
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5.5. Discussion

5.5 Discussion

In this Chapter, we proposed an approach that combines ESI and
functional connectivity analysis to localize the SOZ from noninvasive
EEG in patients with drug-resistant epilepsy. We look at the
connectivity instead of the power of the neuronal activity during an
epileptic seizure. The presented method does not require patient-
dependent parameters, which makes it suitable for use in clinical
practice. We compared the localization obtained from connectivity
measures with the maximal power of the electrical activity at the onset
of an epileptic seizure.

We validated our method using simulated ictal EEG epochs and found
that localization based on connectivity analysis had a significantly and
consistently better yield than localization based on maximal power, for
every electrode setup. The localizing potential of the method increased
with the number of electrodes, which is in agreement with literature
[173]. As a result, the performance of connectivity analysis also increased
for high-density setups. The influence of the amount of electrodes was
much smaller when localization was based on maximal power, but the
median localization error was unacceptably high for all setups.

Next to simulations, we validated the method in five patients. For almost
all high-density setups with 128 electrodes or more, we found the best
possible result with the presented method: in four out of five patients
the connectivity analysis selected the best possible source to localize
the SOZ in every setup. For the fifth patient, the connectivity analysis
was able to select the optimal source in all but two setups. The source
with the highest power coincided with this optimal source in only two
out of five patients. These results are better than what we found with
the simulations, but this can be accounted for by the resected zones
of the patients being larger than the patches of the simulated network.
Next, we found equally good or better results with the connectivity
method in 91.4 % of the cases compared to selecting the source with
the highest power. A possible explanation for this could be that there
is some remaining artifact in the selected epochs, and that connectivity
analysis is more robust to artifacts and noise in the EEG than the power
metric. A solution would be to limit the power analysis to a patient-
specific seizure frequency range, to filter out the artifact as much as
possible. This is done by Elshoff et al., where the frequency range
could also change over the course of the seizure [196]. However, given
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Chapter 5. Seizure onset zone localization from high-density EEG

that a patient-specific seizure range could make the method subjective
and less suitable to be directly used in a clinical setting, we opted
not to do this and performed wide-spectrum analysis. In this study,
ictal EEG segments (38-50 electrodes) of max. 10 s in the beginning
and in the middle of seizures were analyzed with Dynamic Imaging of
Coherent Sources (DICS) to determine the SOZ. The source with the
highest power was identified as SOZ. Afterwards, functional connectivity
analysis based on (renormalized) partial directed coherence ((R)PDC)
was applied on the reconstructed sources, however, not to localize
the SOZ, but rather to gain insight into the characteristic underlying
epileptic network. In eight patients that were rendered seizure-free after
surgery, the first two sources identified by DICS were concordant with
the RZ. For three other patients, who were not seizure-free, the first two
sources were not concordant with the RZ.

In the range of 204 down to 128 electrodes, our method generally
estimated the localization of the SOZ inside (4/5 patients) or very
close (< 10 mm) to the boundary of the RZ (1/5 patients). When
lowering the number of electrodes down to 64, the performance of the
method decreased, but it was still capable of localizing the SOZ inside
(2/5 patients) or very close to the border of the RZ (1/5 patients).
For the low-density setup with 32 electrodes, we experienced an extra
reduction in performance. When using only 32 electrodes, there was
correct localization in only one of the patients. Setups with more
electrodes are thus preferred in the current approach. We assume
that the performance goes down with the number of electrodes due
to suboptimal estimation of the time series per source (however the
goodness-of-fit did not decrease significantly) and/or SVD not being
able to represent the three orthogonal time series as one time series. As
a consequence, these errors propagate in the connectivity analysis and
the correct source cannot be selected. Nevertheless, Ding et al. used
only 31 electrodes and they were able to localize the SOZ within 15 mm
of the presumed EZ by evaluating ictal epochs of 3 s by combining
first principle vector (FINE) spatio-temporal ESI and directed transfer
function (DTF) analysis to identify the ictal sources [195]. However, four
out of the five analyzed patients in this study showed clear large lesions
on MRI that were presumed to be epileptogenic and it remains to be
investigated how this influenced the results, as only one patient in this
study had a small lesion. Furthermore, it is not addressed whether the
patients had surgery, and if so, whether surgery was successful. There
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5.5. Discussion

were also no intracranial EEG recordings to validate the results. Lu et
al. performed a similar study with 76 electrodes, and they were able
to localize the SOZ within 10 mm of the border of the RZ in 7 out of
10 patients [205]. This result is comparable with our study for the 64
electrode setup.

To improve results for lower-density setups, some suggestions can be
made. A possible improvement could be to use patient-specific electrode
locations in the forward model. The benefit of this has been investigated
and could improve the estimation of the time series corresponding to
each selected source [227–229]. We chose LORETA as inverse solution
method as it is a simple, clear and easily controllable technique fit for
the reconstruction of non-stationary signals that was ready at hand in
our group. Nevertheless, the influence of other, more advanced inverse
techniques could be investigated, such as the multiple sparse volumetric
priors (MSVP) algorithm [230], the FINE algorithm [195, 231, 232],
dynamic imaging of coherent sources (DICS) [233,234], or the Maximum
Entropy on the Mean (MEM) approach [235, 236]. The investigation
of the potential benefit of such techniques lies, however, beyond the
scope of this study. In our analysis, the inverse solution is estimated for
every time sample separately, but we could take into account other time
samples to improve ESI.

Other functional connectivity analysis techniques, possibly in com-
bination with graph theory measures, could be considered. Some
connectivity measures related to the swADTF were tested, the
integrated ADTF (iADTF) and the full-frequency ADTF (ffADTF)
[152], both resulting in worse results. Another interesting approach for
SOZ localization is to first decompose the ictal data to isolate seizure
components, e.g. with ICA, and then integrate ESI with a recombination
approach. This is done by Yang et al., where this dynamic source
imaging technique identified ictal activity in good correlation with iEEG
and surgical outcomes [214]. It remains to be investigated how functional
connectivity analysis can possibly enhance this method.

In this study, functional connectivity analysis was performed on a limited
set of network nodes, selected based on a measure of local maxima in
power. It might be interesting to look at what happens on the whole-
brain level during a seizure and to compare this to the brain in resting
state. In the past, all-to-all functional connectivity analysis has been
done by reducing the brain space to several regions-of-interest based on
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a brain atlas [237, 238]. This method avoids the problem of possibly
introducing spurious sources due to locally correlated sources in the ESI
solution, as discussed in section 2.3.3. Recently, this has been applied
on epilepsy patients by Coito et al. to investigate interictal and resting
state connectivity [226,239].

ESI resulted in all cases in a source close to the resection, reflected in an
overall low LEmin. The selection of this optimal source was significantly
better using connectivity analysis compared to selecting the source with
the highest power, especially in high-density setups.

When applying functional connectivity analysis to noninvasive record-
ings, the volume conduction problem is a well-known phenomenon.
All sources in the brain are seen by each electrode. We addressed
this problem by demixing the sources, i.e. with ESI, but this
technique does not mitigate the effects of volume conduction completely
and spurious connections can still possibly exist [240]. There is no
technique to completely alter the mixing problem, but it would be
interesting to compare the current framework with other techniques,
e.g. the imaginary part of the coherency [241], designed to undo the
volume conduction problem in combination with functional connectivity
analysis. A clear review of the volume conduction problem in functional
connectivity analysis and different strategies and techniques to solve it,
is given in [242].

Considering the patient data, an important remark to make is that
the method was validated in a dataset limited to only 5 patients in
which each patient had one seizure. Moreover, one of the patients only
had Engel Class III. With this limited validation, we illustrated the
potential of the method and showed its possibilities. The findings were
concordant with simulation results. Extensive validation in a larger and
more heterogeneous (i.e. more types of epilepsy) patient population
is necessary to prove its clinical usefulness and added value in SOZ
localization and to investigate the interpatient variability. This would
also give a more clear view on how many electrodes are minimally needed
to achieve a certain sensitivity and specificity. Besides more patients,
more seizures per patient should be considered in order to validate the
intrapatient robustness. Unfortunately, no other seizures were recorded
in these patients. Not only more seizures per patient, but also more
epochs per seizure could be the subject of future research to study
whether the driver of the network changes during the seizure or not.
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Also, we used a fixed ictal time-frame of 3 s starting at seizure onset,
to have a time frame that is consistently the same for all patients,
while also minimizing the artifacts in the EEG data. It remains to
be investigated how the length of the chosen time window and its point
of onset influences the results.

Validation was done by comparing the estimated SOZ with the RZ
for all patients. The RZ is, however, often an overestimation of the
ground truth, the real seizure onset zone. Therefore it could be useful to
validate the method in simultaneous hd-EEG and intracranial EEG, to
see whether the networks found with both modalities can be correlated.
Even though the sampling area of iEEG is smaller, it could provide a
more precise (smaller) ground truth than the RZ, provided that the SOZ
is sampled.

5.6 Conclusion

We developed a method based on ESI and functional connectivity
analysis to localize the seizure onset zone in a noninvasive, objective
way that can potentially be used in a clinical setting. The approach
consistently outperformed localization based on power, and results
were more accurate for high-density EEG than for standard electrode
configurations. Validation in a larger and more diverse patient group
is warranted. We conclude that our presented approach and in general
ESI combined with functional connectivity analysis can serve as a useful
tool for SOZ localization in the presurgical evaluation of epilepsy.

5.7 Original Contributions

This study was presented at the International Conference on Basic
and Clinical Multimodal Imaging (BaCi) in 2015 [243], at the Annual
Meeting of the American Epilepsy Society (AES) in 2015 [244], and at
the 2nd Annual Meeting of the Organization for Human Brain Mapping
(OHBM) in 2016 [245]. The results of this chapter were published in
the A1 journal Brain Topography [246].
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6
Seizure onset zone localization

from clinical EEG

6.1 Introduction

In chapter 5, we introduced a method based on ESI and functional
connectivity analysis based on Granger causality that was able to
successfully localize the SOZ from ictal hd-EEG data. However, the
performance decreased when less electrodes were used. Unfortunately,
high-density (hd)-EEG systems are often not yet available in clinical
practice, certainly not for long-term monitoring. Therefore, it would
be of high value to be able to localize the SOZ based on low-density or
clinical recordings. In this chapter, we adapt the method of Chapter 5 to
allow for successful analysis of clinical/low-density EEG. We validated
the approach in the clinical scalp ictal EEG recording of 111 seizures
from 27 patients (23 with temporal lobe epilepsy) who were rendered
seizure-free following resective surgery.

6.2 Methods

6.2.1 Patients

27 patients, 18 from Ghent University Hospital and 9 from Geneva
University Hospital, were included based on the following criteria:

1. drug-resistant epilepsy;
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2. availability of EEG recordings of at least one seizure, recorded with
at least 27 electrodes;

3. single resective surgery procedure of the supposed EZ;
4. surgical outcome Engel Class I with a minimal post-operative

follow-up of 12 months;
5. availability of pre- and post-operative T1-weighted MRI.

Table 6.1 lists the main patient characteristics. The local ethical
committees approved the study and all patients gave written informed
consent.

6.2.2 EEG recording

The patients of Ghent University Hospital (PAT1 – PAT18) underwent
long-term video EEG monitoring (Micromed, Treviso, Italy) lasting 3–
8 days. A setup with 27 electrodes was used of which 21 were placed
according to the International 10-20 system. Additionally, 3 electrodes
were placed in zygomatic, preauricular, and mastoid regions on both
sides of the head (F9-F10, T9-T10 and Tp9-Tp10 respectively) [168].
The sampling frequency was 256 Hz. For the 9 patients of Geneva
University Hospital (PAT19 – PAT27), ictal EEG recordings, lasting
at least 24h, with 29–32 electrodes placed according to the international
10-10 system were available with a sampling rate of either 250 Hz or
256 Hz.

6.2.3 EEG preprocessing and ictal epoch selection

EEG preprocessing was done in BrainVision Analyzer (BrainProducts
GmbH, Germany). The patient-data was band-pass filtered between
1 and 30 Hz to remove baseline drift and to reduce high-frequency
muscle artifacts. An extra notch filter at 50 Hz was applied to filter
out remaining power line noise. For all recorded seizures, together with
an experienced epileptologist (prof. K. Vonck, prof. S. Vulliémoz), a
(quasi) artifact-free epoch close to the electrographic onset that was
representative for the seizure was selected. If no clear EEG changes
were observed, the clinical onset was used instead. The epochs were
as long as possible, with a minimum of 1 second and a maximum of 5
seconds.
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6.2. Methods

Additional preprocessing was performed to increase signal-to-noise
ratio: when poor quality channels were present, they were spatially
interpolated using splines instead of removed, allowing to use the same
analysis pipeline for every epoch of each patient. In case of long
lasting muscle artifact, an extra band-pass filter between 1 and 10 Hz
was applied. For eye blink or cardiac artifact removal, ICA [32] was
used using the restricted fast ICA [247] implementation in BrainVision
Analyzer on the available EEG channels. Only components showing
exclusively clear artifactual activity, namely eye blinks with clear frontal
topographic pattern (in 25 seizures) and cardiac artifact (in 1 seizure),
were removed. The selected epochs were common average referenced and
their fundamental seizure frequency band (Frequency band Of Interest
(FOI)) was determined as the band with maximal global field power
using the Fast Fourier Transform (FFT).

6.2.4 From ictal epoch to SOZ

As in the previous chapter, we used two methods to localize the SOZ
from the selected ictal EEG epoch. The first method was based solely
on ESI, and named “ESI power”. The second method was based on
ESI with subsequent functional connectivity analysis and named “ESI
+ connectivity”. Both methods have been extensively described in the
previous chapter. The main difference with the methodology in this
chapter is the variable segment selection (described above) and the fact
that we calculate the power and connectivity values in a FOI rather
than in the broadband spectrum. We summarize the methods below
and highlight the differences.

After the selection and preprocessing of an ictal epoch as described
in section 6.2.3, ESI was applied. For this purpose, realistic finite
difference method (FDM) head models consisting of six different tissues
(air (0 S/m), scalp (0.33 S/m), skull (0.0132 S/m), cerebrospinal fluid
(1.79 S/m), gray matter (0.33 S/m) and white matter (0.14 S/m))
were constructed based on the individual patients pre-operative T1-
weighted MR image [248, 249]. The solution space was constructed as
a uniform grid in the segmented gray matter, excluding the cerebellum,
with a spacing of 4 mm. An in-house implementation of Low Resolution
Electromagnetic Tomography (LORETA) was used as inverse solution
method [123]. LORETA solutions are typically smooth throughout the
brain in which some hotspots of higher activity are apparent and that
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Chapter 6. Seizure onset zone localization from clinical EEG

might partially overlap. We selected K hotspots as nodes or sources as
possible SOZs for the subsequent analyses with the following approach.
We considered the power distribution in the solution space over the
complete duration of the analyzed epoch. For every solution point, we
calculated the sphere power as the mean power of all solution points
in a sphere centered on the considered solution point. Those solution
points that had no neighbors with a higher sphere power than their
own corresponded to local maxima in power and were selected as a
possible sources for the SOZ. By varying the radius of the sphere,
more or less sources can be selected. In one extreme case, the radius
is smaller than the grid resolution (here 4 mm), and all sources will
be selected. In the other extreme case, the radius is larger than the
largest distance between two solution points, and only one source will be
selected, corresponding to the global maximum in power. In this case,
subsequent connectivity analysis is impossible, since there is only one
source. In the former case, subsequent network analysis might be biased
since in a LORETA solution neighboring sources are correlated and
thus spurious connections might be introduced. Therefore, choosing this
radius is a trade-off between not making the search area unnecessarily
large and not excluding possible epileptic network nodes. For a radius
of 15 mm, we found for all seizures an acceptable amount of network
nodes, which ranged between K = 4 and K = 24. Increasing the radius
resulted in the undesirable situation that for some seizures only one
network node was found and decreasing the radius increased the upper
limit of the number of sources, making the search area unnecessarily
large. To continue the analysis, we considered the time series of the
selected sources. No constraints were applied on the orientation of these
sources; so every selected source was represented by three time series,
one for each orthogonal spatial dimension. We used Singular Value
Decomposition (SVD) to represent every selected source by only one
time series, namely the time series associated with the largest singular
value of the SVD [115]. For the ESI power method, we selected the
source with maximal power in the FOI as the estimated SOZ.

For the ESI + connnectivity method, functional connectivity analysis
based on Granger causality was applied on the time series of the selected
sources to reveal the driver of the epileptic network. To this end,
the data was modeled by a Time-Varying Multivariate Autoregressive
(TVAR) model, of which the coefficients were estimated using the
Kalman filtering algorithm [148, 149], with a model order of 10, an
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6.2. Methods

update coefficient of 10
−4

and a smoothing factor of 100, based on
previous research [150,152,153,226,246].

From the time-varying transfer matrix H(f, t) of the model, the
spectrum-weighted Adaptive Directed Transfer Function (swADTF)
[153] was calculated at every time sample t of the selected epoch of
length T and for the FOI = [f1f2] with a resolution of 0.1 Hz, as a
measure for the information flow between every two of the Kselected
sources:

swADTFij(t) =
∑f2

f=f1
∣Hij(f, t)∣2 ∑K

l=1 ∣Hjl(f, t)∣2

∑K
k=1 ∑f2

f ′=f1
∣Hik(f ′, t)∣2 ∑K

s=1 ∣Hks(f ′, t)∣2
(6.1)

Finally, the outdegree of every source j was calculated as the sum of the
swADTF values to every other source:

ODj =

K

∑
k=1

T

∑
t=1

swADTFkj(t) (6.2)

in which we defined swADTFjj = 0. ESI + connectivity selected the
source with the highest outdegree as presumed SOZ.

6.2.5 Validation

6.2.5.1 Localization errors

Since all patients included in this study were seizure-free for at least
one year after surgery, we assume that the SOZ was located inside
the resected tissue. The final result for each of the methods was one
source, i.e. one point in the gray matter of the patient. Therefore, we
defined the localization error of both methods, ESI power and ESI +
connectivity, as the distance between the border of the Resected Zone
(RZ), segmented from the post-operative MRI, and the SOZ estimated
by the corresponding method. The localization errors were named LEpow

and LEconn, respectively. If the selected source was inside the RZ, the
LE was set to zero.
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Chapter 6. Seizure onset zone localization from clinical EEG

6.2.5.2 Seizure level

We calculated LEconn and LEpow for every seizure, and determined the
amount of seizures with LE = 0 mm and LE ≤ 10 mm for both methods,
to account for the spatial resolution of ESI (cm-range), and the brain
shift that can occur after resective surgery.

6.2.5.3 Patient level

For every patient, we calculated the percentage of seizures that were
estimated inside the RZ and within 10 mm of the border of the RZ.
Furthermore, the percentage of patients for who all of their seizures were
localized within the given limits (0 mm and 10 mm) was determined.

6.2.5.4 Intra-patient robustness

When at least two analyzed seizures from one patient were available,
the robustness of both methods against intra-patient variability could be
assessed. For every seizure, a final source was selected as the estimated
SOZ. In the ideal case, we would find a source inside the RZ for all
the seizures of a specific patient. In reality, different sources, both
within and outside (i.e. the algorithm performs wrong, or there are
multiple foci) the RZ, can be found. We quantified the intra-patient
spatial dispersion of patient P by calculating the geometrical centroid
and standard distance SD to this centroid of the finally selected sources:

SD(P ) =

√
∑N
i=1 (xi − µx)

2 +∑N
i=1 (yi − µy)

2
+∑N

i=1 (zi − µz)
2

N
(6.3)

in which N is the number of seizures for patient P , (xi, yi, zi) are
the Cartesian coordinates of the estimated SOZ (finally selected source)
for seizure i and (µx, µy, µz) are the Cartesian coordinates of the
geometrical centroid, based on all N seizures for that patient P . When
the standard distance remains low, the method is robust and the spatial
dispersion could be informative for the epileptologist to find the SOZ.
In contrast, a large standard distance (e.g. 8 cm) within a single patient
may be a marker for a less reliable result.
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6.3. Results

6.2.5.5 Subgroup analysis based on resected volume

We calculated the resected volume in every patient using the convex hull
of the segmented RZ and divided the patient population into a small
RZ subgroup and a large RZ subgroup based on the resected volume.
We determined whether there was a significant difference in LEpow and
LEconn between the two subgroups. To get a more complete insight in
the influence of the resected volume, we repeated this subgroup analysis
based on the distance to the center of the RZ.

6.2.5.6 Statistical testing

In each of the aforementioned validation steps, the results for ESI
+ connectivity and ESI power were statistically compared using a
Wilcoxon sign-rank test for non-normally distributed data. Statistical
analysis between subgroups was done with Wilcoxon rank-sum tests for
independent samples. All significant p-values (p < 0.05) were reported.

6.3 Results

6.3.1 Seizure level

In total, 111 seizures from 27 patients were analyzed (4.1 ± 2.9 seizures
per patient). Table A.1 in Appendix A lists the selected epochs, the
used frequency band of interest (FOI) and the applied preprocessing.
Fig. A.1–A.3 of Appendix A show some examples of selected epochs.
The localization errors for the ESI power and the ESI + connectivity
approach are shown for every patient and every seizure in Table 6.2 and
Table 6.3, respectively. ESI power was able to localize the SOZ inside
the RZ in 30.6% (34/111) of the seizures and within 10 mm of the border
of the RZ in 42.3% (47/111) of the seizures.

ESI + connectivity was inside or within 10 mm of the RZ in 72.1%
(80/111) or 93.7% (104/111) of the seizures, respectively. The
distribution of all the localization errors for ESI power and ESI +
connectivity are shown in Fig. 6.1(a). The median localization error for
ESI power was 15.7 mm in a range of 0–89.4 mm, for ESI + connectivity
this was 0 mm in 0–81.1 mm. The distance to the border of the RZ
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Chapter 6. Seizure onset zone localization from clinical EEG

Table 6.2: Overview of the localization errors for the ESI power method of
all analyzed seizures. Errors smaller than 10 mm (0 mm ≤ LE ≤ 10 mm) are
coloured green, errors larger than 10 mm (LE > 10 mm) are depicted in red.
The percentage of seizures per patient localized inside and within 10 mm of
the RZ is indicated. Percentages ≤ 50% are shown in red, between 50% and
100% are shown in orange and percentages equal to 100% are colored green.
P = Patient number, S = number of the analyzed seizure, RZ = border of
resected zone.

ESI power

%

=0

mm

%

≤10

mm

P\S 1 2 3 4 5 6 7 8 9 10 11 12

1 10 10 10 10 10 38 10 - - - - - 0 86

2 36 36 48 36 48 0 36 - - - - - 14 14

3 5 15 5 5 - - - - - - - - 0 75

4 17 0 0 32 0 - - - - - - - 60 60

5 0 0 0 0 - - - - - - - - 100 100

6 9 9 9 74 50 50 50 - - - - - 0 43

7 49 67 20 - - - - - - - - - 0 0

8 72 0 89 71 72 0 - - - - - - 33 33

9 33 - - - - - - - - - - - 0 0

10 49 17 0 17 - - - - - - - - 25 25

11 0 17 17 17 0 0 - - - - - - 50

12 63 0 13 0 0 0 13 13 - - - - 50 50

13 78 - - - - - - - - - - - 0 0

14 55 13 13 13 - - - - - - - - 0 0

15 20 20 31 - - - - - - - - - 0 0

16 0 0 0 0 - - - - - - - - 100 100

17 78 19 73 - - - - - - - - - 0 0

18 0 0 16 - - - - - - - - - 67 67

19 23 - - - - - - - - - - - 0 0

20 39 39 29 0 39 0 13 29 52 39 75 39 17 17

21 0 47 - - - - - - - - - - 50 50

22 0 6 36 36 20 53 20 20 0 - - - 22 33

23 0 23 0 - - - - - - - - - 67 67

24 0 - - - - - - - - - - - 100 100

25 40 - - - - - - - - - - - 0 0

26 0 - - - - - - - - - - - 100 100

27 0 - - - - - - - - - - - 100 100

% of seizures inside RZ 30.6

% of seizures within 10 mm of RZ 42.3

% of patients correct (100% of seiz. = 0 mm) 18.5

% of patients correct (100% of seiz. ≤ 10 mm) 18.5
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Table 6.3: Overview of the localization errors for the ESI + connectivity
method of all analyzed seizures. Errors smaller than 10 mm (0 mm ≤ LE ≤

10 mm) are coloured green, errors larger than 10 mm (LE > 10 mm) are depicted
in red. The percentage of seizures per patient localized inside and within 10 mm
of the RZ is indicated. Percentages ≤ 50% are shown in red, between 50% and
100% are shown in orange and percentages equal to 100% are colored green.
P = Patient number, S = number of the analyzed seizure, RZ = border of
resected zone.

ESI + connectivity

%

= 0

mm

%

≤ 10

mm

P\S 1 2 3 4 5 6 7 8 9 10 11 12

1 10 10 10 10 10 10 10 - - - - - 0 100

2 0 0 0 0 0 48 0 - - - - - 86 86

3 5 5 5 5 - - - - - - - - 0 100

4 0 0 0 0 0 - - - - - - - 100 100

5 0 0 0 0 - - - - - - - - 100 100

6 9 9 9 9 9 9 9 - - - - - 0 100

7 0 0 0 - - - - - - - - - 100 100

8 0 0 81 35 0 0 - - - - - - 67 67

9 0 - - - - - - - - - - - 100 100

10 0 17 0 17 - - - - - - - - 50 50

11 0 0 0 0 0 0 - - - - - - 100 100

12 0 12 13 0 0 0 0 0 - - - - 75 75

13 0 - - - - - - - - - - - 100 100

14 0 0 0 0 - - - - - - - - 100 100

15 5 0 0 - - - - - - - - - 100 100

16 0 0 0 0 - - - - - - - - 100 100

17 10 0 0 - - - - - - - - - 67 100

18 0 0 0 - - - - - - - - - 100 100

19 0 - - - - - - - - - - - 100 100

20 0 0 0 0 0 0 0 0 0 0 0 0 100 100

21 0 0 - - - - - - - - - - 100 100

22 0 6 6 0 6 6 0 0 6 - - - 44 100

23 0 0 0 - - - - - - - - - 100 100

24 0 - - - - - - - - - - - 100 100

25 0 - - - - - - - - - - - 100 100

26 0 - - - - - - - - - - - 100 100

27 0 - - - - - - - - - - - 100 100

% of seizures inside RZ 72.1

% of seizures within 10 mm of RZ 93.7

% of patients correct (100% of seiz. = 0 mm) 66.7

% of patients correct (100% of seiz. ≤ 10 mm) 85.2
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Chapter 6. Seizure onset zone localization from clinical EEG

was significantly lower for ESI + connectivity than for ESI power
(p = 3.2 × 10

−11
).

The percentage of seizures per patient that was estimated inside the RZ
or within 10 mm of the border of the RZ, is shown in Table 6.2 for ESI
power and in Table 6.3 for ESI + connectivity. For both limits, ESI +
connectivity scored significantly better than ESI power (p = 1.2 × 10

−4

for LE = 0 mm and p = 3.6 × 10
−5

for LE ≤ 10 mm). This can also be
seen in Fig. 6.1(b). ESI power was able to localize all seizures inside
the RZ in only 18.5% (5/27) of the patients. This number stayed the
same for seizures within 10 mm of the RZ. ESI + connectivity localized
all seizures inside the RZ in 66.7% (18/27) of the patients and within
10 mm of the RZ in 85.2% (23/27) of the patients.

6.3.2 Intra-patient robustness

20 out of 27 patients had more than one seizure during recording
(they had 5.2 ± 2.5 seizures on average). In Fig. 6.2, we depict the
spatial dispersion obtained with both methods for three illustrative cases
(2 Temporal Lobe Epilepsy (TLE), 1 Frontal Lobe Epilepsy (FLE))
by a dot on the geometrical centroid and a circle with radius equal
to the standard distance, centered at the centroid. This is overlaid
on the pre-operative MRI of the patient, in which we highlight the
ultimately resected zone in green. Both ESI + connectivity and ESI
power gave a good indication of the SOZ in PAT 17, respectively 100%
and 67% of the seizures were localized correctly. The spatial dispersion
of ESI+connectivity points directly to the RZ with a standard distance
equal to zero. However, the spatial dispersion of ESI power also gives a
good indication where to look for the true SOZ, but less precise. In PAT
12, the standard distance for ESI + connectivity larger than zero, but the
spatial dispersion is still informative, remaining mainly in the temporal
lobe. The spatial dispersion based on ESI power, however, crosses lobe
and even hemisphere borders and could be more difficult to interpret.
For PAT 8, the spatial dispersion based on ESI + connectivity contains
the RZ, whereas the spatial dispersion based on ESI power does not.
Although, ESI + connectivity correctly localized 67% of the seizures, the
standard distance is very high due to two completely wrong localizations,
rendering the spatial dispersion less informative. In the supplementary
material A.2, the figures for all patients can be found.
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Figure 6.1: (a) Boxplot of the localization errors of all analyzed seizures, (b)
percentage of correct localized seizures per patient, for both methods and both
limits (LE = 0 mm and LE ≤ 10 mm).
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Chapter 6. Seizure onset zone localization from clinical EEG

Figure 6.2: Three examples of the spatial dispersion of the estimated SOZs for
ESI+connectivity (blue circle) and ESI power (red circle). The dot represents
the centroid, whereas the circle represents the standard distance. The resected
zone is highlighted in green.
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Figure 6.3: Distribution of the standard distance to the geometrical centroid
within the patients who had more than one seizure during recording.

Fig. 6.3 shows a boxplot of all standard distances for both methods.
ESI power had a median standard distance of 25.3 mm in a range of
0-44.4 mm, for ESI+connectivity this was 0 mm in a range of 0-37.9 mm.
ESI power had a significantly higher standard distance than ESI +
connectivity (p = 2.0 × 10

−4
).

6.3.3 Subgroup analysis based on resected volume

The volumes and division into a small and large RZ subgroup can be
seen in Fig. 6.4. Both for small and for large resections, we found that
ESI + connectivity scored significantly better than ESI power (resp.
p = 3.8 × 10

−6
and p = 1.8 × 10

−6
), shown in Fig. 6.5. ESI power for

small resections had a median localization error of 12.81 mm in a range of
0–89.4 mm. For large resections, this was 17 mm in a range of 0–75.3 mm.
There was no significant difference between small and large resections.
For ESI + connectivity, we found a median localization error of 0 mm
for both small and large resections. The range for small resections
was 0–81.1 mm and for large resections 0–47.9 mm. A small significant
difference was found in favour of large resections (p = 3.3 × 10

−2
). Yet,
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Chapter 6. Seizure onset zone localization from clinical EEG

there was no significant difference for small and large resections in the
percentage of correctly localized seizures per patient. Moreover, when
we repeated the analysis with the distance to the center of the RZ instead
of the distance to the border of the RZ, we found significantly smaller
values for small resections, for both methods, also shown in Fig. 6.6.
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Figure 6.4: The resected volumes for every patient, sorted from small to large.
The boundary for the division between small and large resections is indicated.
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Figure 6.5: Boxplot of the localization errors corresponding to small and large
resected volumes, for both methods.
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Figure 6.6: Distance to the center of the RZ for small and large resected
volumes, for both methods.

6.4 Discussion

6.4.1 Performance

In this Chapter, we found that ESI with subsequent FC is superior to
localize the SOZ from noninvasive ictal EEG recorded using a clinical
setup (≤ 32 electrodes), compared to ESI alone. We were able to indicate
the SOZ inside the RZ and within 10 mm of the border of the RZ in
72.1% and 93.7% of the seizures, respectively. In 66.7% of the patients,
all seizures were localized inside the RZ, and in 85.2% of the patients,
all seizures were localized within 10 mm of the RZ. In contrast, ESI
power was concordant in only 30.6% (0 mm error) or 42.3% (10 mm
error) of the seizures. In 18.5% of the patients, all seizures were localized
inside the RZ. This number stayed the same for the 10 mm tolerance.
We were able to show that, in this framework, FC has a significant
added value compared to ESI alone. The results of ESI power were
comparable to what was found by Pellegrino et al., where for ESI a
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median localization error of 11 mm in a range of 0–87 mm was found,
specifically when looking at small resections [209].

The superiority of ESI + connectivity over ESI power can be explained
by two reasons. First, ESI power summarizes the time series of the
selected network nodes into a single value, whereas ESI + connectivity
investigates the time dynamics of the source signals. As a consequence,
ESI + connectivity is probably better suited to deal with remaining
artifacts and noise than ESI power. Second, ESI + connectivity allows
localizing a driver that is more silent (less power) than the regions it
influences.

Early SOZ localization studies mainly showed the feasibility of ictal
ESI [168, 187, 250, 251] and indicated the potential added value in the
presurgical evaluation of epilepsy [193]. However, in these studies,
validation was performed in a more qualitative way, by assessing
congruency between epilepsy diagnosis/surgery and localized SOZ on
the lobar or sublobar level. During the last decade, with the emergence
of more powerful forward modeling and inverse solution techniques,
the quality and resolution of the solutions has increased to a degree
that more quantitative, rigorous validation of ictal imaging methods is
possible in terms of distance, correlation, spatial dispersion etc. To
our knowledge, the first study reporting quantitative measures of SOZ
localization quality was done by Ding et al. and dates from 2007,
reporting a localization error smaller than 15 mm in approximately
87% of the seizures undergoing 31 electrode EEG recordings [195]. We
found a localization error smaller than 10 mm in more than 90% of
the patients. Other SOZ imaging studies reporting quantitative results
made use of setups with at least 38 electrodes [196, 205, 209, 214, 246].
Several methodological differences between these studies can be found,
such as the used forward model and inverse solution for ESI, the possible
application of FC and the FC measures, the frequency band of interest,
etc. Although all of them show promising results, a drop in performance
was reported when fewer electrodes were used [205, 246]. We were able
to increase the performance when using a lower density EEG setup by
manually selecting and preprocessing adequate EEG epochs and limiting
the analysis to the frequency band of interest of the seizure. Although
this is clinically highly recommended, most clinics unfortunately still
lack the equipment to do (long-term) EEG monitoring with more than
32 electrodes. This study is, to our knowledge, the first to achieve good
performance based on low-density recordings, quantitatively validated
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in a more extensive patient population group than those that were used
before, paving the way for a clinical use of the technique.

6.4.2 Intra-patient robustness

The standard distance to the centroid of the localized seizures was
significantly smaller for ESI + connectivity than for ESI power which
points out that functional connectivity analysis enhances the robustness
against intra-patient variability of ictal imaging. The measure was also
lower than compared to a previous study that assessed spatial dispersion,
both for ESI + connectivity and ESI power [209].

Although spatial dispersion is a good measure for intra-patient
robustness, the example of PAT 8 showed that the useful information
obtained by the spatial dispersion could be limited due to possible
outliers in the data. Using this technique prospectively, we would not be
able to discriminate true outliers from seizures that could possibly have
originated elsewhere. Therefore, careful interpretation of the individual
seizure results is required.

6.4.3 Subgroup analysis based on resected volume

Although we found that the ESI + connectivity method scored
significantly better for large than for small resections, the median
distance for small resections is, like for large resections, 0 mm, indicating
that the method also performs well for small resections. Both the
fact that no significant difference between the percentages of correctly
localized seizures per patient was found and the fact that the distance to
the center of the RZ was smaller for small resections, confirms that there
is no actual difference in performance for small and large resections.

6.4.4 Considerations and limitations

Since interaction with a human expert is needed to select the ictal
epochs, there is some subjectivity left in the methods and it remains
to be investigated how this influences the results and how robust the
method is for changes in epoch/FOI selection. In most patients with
clear data and clear constant ictal discharges, we found that epoch
selection is not critical and results are consistent over time and selected
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fragment. Yet, it is harder to compare with artifactual seizures or
seizures that have a changing pattern over time. Can the SOZ also
be correctly determined once the seizure evolved to another pattern? A
rigorous validation is needed for this epoch selection. One possibility
could be to perform an automated deterministic epoch selection, based
on the temporal and spectral behaviour of the EEG during the seizure.
Such an automatic selection is not trivial because often it is hard
to discriminate between artifact and ictal activity, because they can
have similar morphology and can have an overlapping spectral content.
Nevertheless, the goal of this study was to show that it is possible
to localize or indicate the SOZ based on low-density ictal scalp EEG
data consistently over many seizures, rather than to build a completely
automated pipeline.

A method for SOZ localization should preferably be noninvasive,
objective, fast, and accurate. First, since only scalp EEG and an MR
image of the patient’s head (to generate the individual head model)
are needed, this method is noninvasive. Second, the pipeline is not
completely objective yet, since the initial epoch and FOI selection
require interaction with a human expert, as discussed above. After this
initial input, though, there are no subjective parameters left. Third,
we did not report results on the speed of the algorithm. However, it
would be possible to build a completely automated pipeline, running
calculations in the background (taking approximately one hour for a
new patient and less than a minute for a new seizure of this patient).
This way, only a few minutes of the epileptologist’s time are needed for
initial epoch and FOI selection. Lastly, we have found that the accuracy
of ESI + connectivity is high. All these factors point out that the method
could be a useful aid in the presurgical evaluation of epilepsy.

A limitation of the study is that we compared the selected SOZ and
the resected area in the brain of the patient to test whether the method
worked correctly. However, using the RZ as gold standard provides
a suboptimal validation. First, it is often an overestimation of the
real ground truth. If a patient is seizure-free, we can assume that the
SOZ was somewhere inside the RZ, but we do not know exactly where.
Second, the patient being seizure-free does not prove that a specific
analyzed seizure truly originated in the RZ. Finally, error estimation
using Euclidean distance does not take brain anatomy into account. It
could be that e.g. for a small LE larger than 0 mm, an important fissure
is crossed, possibly making the estimation uninformative. Therefore,
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LE, defined as the Euclidean distance to the border of the RZ, is not a
perfect measure for validation. Fortunately, most of the SOZ estimations
in this study (for ESI + connectivity) were inside the RZ, making this
limitation less of a problem. In future research, validation results could
be correlated to brain anatomy and to findings of intracranial EEG
(iEEG) recordings, which can provide a more precise truth. It needs
to be evaluated whether both methods point to the same brain region,
provided that the (iEEG) samples the SOZ.

The SOZ localized by our method consists of one grid point. This way,
we give an indication of the location of the true SOZ, but not of its
spatial extent. An interesting extension of the current method would be
to also provide a measure for the spatial extent of the SOZ, which might
be based on the power spectrum of the neighboring sources.

In this study, we only included patients that had Engel Class I outcome
at least 1 year after surgery. This allowed for assessing the percentage of
SOZs that are estimated inside or close to the RZ in seizure-free patients.
However, we did not estimate the SOZ and compare this to the RZ in
patients that were not rendered seizure-free (Engel Class II–IV). It is
important, and part of future research, to investigate whether in these
patients a SOZ differing from the RZ is found or not.

Although most included patients suffered from temporal lobe epilepsy,
there were 3 patients with extratemporal epilepsy (PAT1, PAT8,
PAT20). Also in these patients, the presented method performed
generally well (LE 10 mm in 7/7 seizures for PAT 1; LE = 0 mm
in 4/6 seizures for PAT 8 and LE = 0 mm in 12/12 seizures for PAT
20). Albeit not perfect, this indicates that the application domain
of the approach lies beyond temporal lobe epilepsy. Actually, we did
not find any apparent relationship between performance of the ESI +
connectivity algorithm and patient characteristics, ictal patterns or EEG
quality. More validation in a larger, more heterogeneous population
group is required to confirm this, but this finding already points out the
possibly wide application area of the method.

It could be argued that the model order of the TVAR model should
be determined based on e.g. the Akaike Information Criterion (AIC)
or Schwarz Bayesian Criterion (SBC). For some patients, we did
calculate the optimal model order with the AIC for several seizures, and
generally found a value between 4 and 10. Since the computation time
substantially increased to calculate the optimal model order, we opted
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to fix the model order to 10 taking into account the fact that a model
order that is slightly too low (connections cannot be found) is worse
than a model order that is slightly too high (usually insignificant) [252].

The spatial sampling of the grid in source space was 4 mm and the inverse
solution was calculated with LORETA at each of these gridpoints.
However, since LORETA offers a smooth solution, the true spatial
resolution is worse than 4 mm. Yet, we need sufficient spatial sampling
in order to make sure that the true SOZ is sampled. Other inverse
techniques, such as beamformers, could provide more focal solutions
(Russell and Koles, 2007), and thus with a higher spatial resolution.
It would be interesting for future research to investigate the influence
of different inverse solution techniques on the performance of ESI +
connectivity.

6.5 Conclusion

We showed that it is possible to estimate the SOZ from clinical or
low-density scalp EEG with high accuracy using ESI and subsequent
functional connectivity analysis. Moreover, the proposed method is
noninvasive and requires, after initial epoch and frequency selection,
minimal user-dependent input. Altogether, the method could serve
as a useful tool for SOZ localization in the presurgical evaluation of
epilepsy. Larger studies are warranted, notably with more extratemporal
epilepsies and localization correlation with a range of different outcomes.

6.6 Original Contributions

This study was presented in 2017 at the Alpine Brain Imaging
Meeting (ABIM) [253], at the Journées scientifiques Neurochirurgie
of the Geneva University Hospital [254], at the Jahrestagung der
Deutschen und Österreichischen Gesellschaften für Epileptologie und
der Schweizerischen Epilepsie-Liga [255], at the Annual Meeting of
the Organization of Human Brain Mapping (OHBM) [256], at the
International Conference on Basic and Clinical Multimodal Imaging
(BaCi) [257], and at the 32nd International Epilepsy Congress (IEC)
[258]. This chapter resulted in a paper that is published in the A1
journal NeuroImage: Clinical [259].
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7
Influence of epoch selection and

analyzed frequency band on SOZ
localization

7.1 Introduction

In the previous chapters, we found that analysis of the epileptic network
of an EEG epoch carefully selected close to the onset of the seizure
allowed correct SOZ localization with high accuracy. In this chapter,
we analyze the epileptic network before and after the seizure, as well as
during later phases of the seizure. We answer the question whether
network analysis can also provide correct localization during these
other segments. This could be useful in case the seizure onset phase
is completely obscured by artifact. Of course, during these different
epochs, the frequency content changes. Seizures can evolve to faster
or slower patterns and during the pre- and postictal period there is
no apparent rhythmic seizure activity. Therefore, we investigate the
influence of the frequency band in which the network analysis is done on
the performance of the method. Finally, we propose a method to more
objectively determine the frequency band of interest (FOI) of the ictal
onset phase and the other phases of the seizure.
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7.2 Methods

7.2.1 Patients

Patient selection was done from the database of Ghent University
hospital based on following inclusion criteria, corresponding to PAT 1 –
PAT 18 of chapter 6 (see Table 6.1):

1. drug-resistant epilepsy;
2. availability of EEG recordings of at least one seizure, recorded with

at least 27 electrodes;
3. single resective surgery procedure of the supposed EZ;
4. surgical outcome Engel Class I with a minimal post-operative

follow-up of 12 months;
5. availability of pre- and post-operative T1-weighted MRI.

From these patients, 4 ‘clear’ patients were selected that:

1. have distinct ictal EEG patterns that allow lateralization of the
epilepsy based on visual inspection;

2. have seizures which after the onset phase visibly spread or changed
rhythm in the recorded EEG;

3. underwent a selective amygdalohippocampectomy as surgery, to
guarantee a small and clear resection volume

1
.

The details of these 4 patients can be found in Table 7.1. For easy
comparison with chapter 6, we will keep the patient’s numbering.

7.2.2 EEG Recording

The same EEG files as in chapter 6 were used. These were recorded
during a long-term video EEG monitoring (Micromed, Treviso, Italy)
lasting 3 – 8 days, using 27 electrodes. The sampling frequency was
256 Hz. Only seizures during wake were considered for further analysis,
so that sleeping rhythms did not hamper the interpretation of the epoch
selection, explained in the next section. For PAT 11, 6 seizures were
recorded, of which 3 happened during wake and were considered for
further analysis. PAT 14 had 4 seizures during recording, all during

1
These patients are considered as clear-cut cases in clinical practice
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wake. For PAT 15, 3/3 recorded seizures were during the awakened
state and for PAT 17, 2 seizures were during wake, while in total 3
seizures were recorded.

Table 7.1: Patient details. PAT = patient number, Ep. = epilepsy, surg. =
surgery, FU = follow-up, dur. = duration, LE = lobe epilepsy, R = right, L =
left, T = temporal, F = frontal, P = Parietal, rhyt. = rhythmic, act. = activity,
inf = inferior, HEM = hemisphere, elec. = electrodes, HIP = hippocampal,
IED = interictal epileptiform discharges, y = year, m=month.

PAT 11 14 15 17

Ep. type RTLE LTLE RTLE RTLE

Onset
age(y)

24 40 35 4

Surgery
age (y)

50 49 42 18

Interictal
EEG

RFT IED LFT IED RFT IED RFT IED

Ictal EEG
RFT rhyt.
θ act.

LFT rhyt. θ
act.

RFT rhyt.
δ act.

R HEM θ-δ
act.

Invasive
EEG

/

rhyt. low
voltage δ act.
with spiking
on basal ant
T grid elec.
with early
spread to
HIP elec.

/ /

MRI
R HIP
atrophy

LT, L
precentral &
inf P post-
traumatic
atrophy

R HIP
atrophy

R HIP
atrophy

FU dur.
(m)

12 47 26 48

7.2.3 Epoch selection and preprocessing

Together with an experienced epileptologist (prof. K. Vonck), a (quasi)
artifact-free epoch lasting between 1 and 5 s was chosen during the
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... ...
time
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end of seizure

Pre Clin EEG Phase 2 Phase N Post

if present

1st evolvement
of seizure

2nd evolvement
of seizure

last evolvement
of seizure

...

...

20 s
EEGbEEGa

20 s

Figure 7.1: Illustration of the different phases during which an epoch was
selected. Note that not every seizure necessarily evolves to other patterns or
phases. The total number of phases N depends on the seizure.

beginning (within 20 s) of the following consecutive phases in or around
every seizure considered for analysis:

• Pre preictal, i.e. right before the seizure occurs,

• Clin between the clinical and electrographic onset if they
have a different timing,

• EEG after the electrographic onset, but before the ictal
activity evolves,

• Phase n after every change in ictal EEG activity,

• Post postictal, i.e. right after the end of the seizure.

When the seizure onset phase (called EEG) lasted longer than 40 s, a
second quasi artifact-free epoch was chosen during the last 20 s of this
onset phase if the EEG quality was similar. In this case, the first epoch
was called EEGa, while the second was called EEGb. The different
phases are also schematically depicted in Fig. 7.1. Notice that it is
possible that the phases Clin and EEG can be reversed and that not
every seizure will exhibit every phase. It is e.g. possible that the clinical
and EEG onset coincide, or that the initial rhythm of the seizure remains
unchanged during the whole seizure.

The selected epochs were band-pass filtered between 1 and 30 Hz to
remove baseline drift and to reduce high-frequency muscle artifacts

1
.

An extra notch filter at 50 Hz was applied to filter out remaining
power line noise. Bad quality channels were interpolated and eye blink

1
In PAT 14, seizure 4 and PAT 20, seizure 2 an extra filter between 1 and 10 Hz

was applied to remove remaining muscle artifact after initial filtering.
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artifacts were removed using ICA [32], with the restricted fast ICA [247]
implementation in BrainVision Analyzer on the available EEG channels.
Finally, the selected epochs were common average referenced.

7.2.4 From EEG to SOZ

We estimated the SOZ from the different phases of all seizures using
the “ESI + connectivity” methodology explained in the two previous
chapters. To summarize, ESI was applied on the selected epoch based
on an individual 6-tissue head model as forward model and LORETA was
used as inverse solution. The solution space was constructed as a uniform
three-dimensional grid in the gray matter of the patient with a spacing
of 4 mm. From the reconstructed activity, local hotspots were selected as
network nodes for the subsequent connectivity analysis. Each network
node had 3 corresponding time series representing its behavior in the x,
y, and z-direction. These 3 time series were combined into one using the
time-series associated with the largest singular value of Singular Value
Decomposition (SVD) [115]. Next, functional connectivity analysis
based on Granger causality was applied on the time-series of the selected
network nodes. Therefore, the data was modeled by a Time-Varying
Multivariate Autoregressive (TVAR) model, of which the coefficients
were estimated using the Kalman filtering algorithm [148, 149], with a
model order of 10, an update coefficient of 10

−4
and a smoothing factor

of 100, as in chapter 6. From the time-varying transfer matrix H(f, t) of
the model, the spectrum-weighted Adaptive Directed Transfer Function
(swADTF) [153] was calculated in a frequency band of interest (FOI)
[f1 f2] with a resolution of 0.1 Hz. The choice of the FOI will be
discussed in the next section. Finally, the outdegree of every network
node was calculated as the sum of the swADTF values to every other
network node. The node with the highest outdegree was selected as
presumed SOZ.

7.2.5 Analyzed frequency bands

In chapter 5, the connectivity analysis was done in the complete 1 – 30 Hz
frequency band. Since this seemed inappropriate for SOZ localization
from low-density EEG recording setups, we selected a FOI based on the
fundamental seizure frequency in chapter 6.
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In this chapter, we will perform the connectivity analysis in different
frequency bands to investigate the influence of the frequency band on
the performance of the algorithm. The chosen frequency bands are
based on two properties. On the one hand, pre- and postictal EEG do
not have a seizure frequency, and therefore some generic bands should
be investigated. On the other hand, as the EEG evolves throughout
the seizure, the frequency content will possibly change as well, and the
chosen frequency band can be updated based on the new patterns. These
considerations gave rise to following frequency bands which were used
for connectivity analysis:

• 1 – 30 Hz
• δ, θ, α, β and γ

1
band

• FOI of the initial ictal activity, before evolvement; further called
‘ictal onset FOI’,

• every ictal phase (EEG, Phase 2, Phase 3, Phase 4) in the FOI for
this phase; further called ‘own phase FOI’.

In chapter 6, the FOI of the ictal activity was based on the fundamental
seizure frequency identified by visual inspection of the spectrum of
the global field power of all channels. Here, we propose a more
objective method that is not influenced by the possible subjective
interpretation of visual inspection. Since all of the analyzed seizures
showed clear lateralization in the EEG, channels with clear ictal activity
could be selected. A channel for which the ictal activity was (most)
prominent was selected and the power spectral density (PSD) was
estimated using Matlab’s implementation of Welch’s overlapped segment
method between 1 and 30 Hz with a resolution of 0.05 Hz, using the
default 8 segments with an overlap of 50%. The frequencies f1 and
f2 corresponding to the lower and upper limit of the full width at
half maximum of the prominence of the highest peak in this spectrum
were selected to define the FOI [f1f2]. This is shown in Fig. 7.2.
If 1 Hz≤ f1 ≤ 2 Hz, f1 was rounded to 1 Hz, to account for possible
spectrum underestimation due to the previous 1 – 30 Hz filtering. We
did not detrend the data to eliminate the typical 1/f spectrum behavior,
since this resulted in overestimation of the peak widths. However,
in some spectra, the typical 1/f behavior of the EEG obscured the

1
Note that for analysis in the γ band, the 1 – 30 Hz band pass filter was not

applied.
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Figure 7.2: The full width at half maximum (FWHM) of the prominence of
the highest peak is used to define the FOI.

peak corresponding to the seizure frequency. In those cases, the second
highest peak was selected.

7.2.6 Validation

To investigate whether theoretically a correct localization can be
obtained based on the ESI + connectivity analysis of a specific epoch,
we determined the distance between the border of the RZ Resected
Zone (RZ), segmented from the post-operative MRI and coregistered
to the solution space, and the closest selected source after ESI of this
epoch. Executing the subsequent connectivity analysis is only useful
when at least one of the selected sources is inside or close to the border
of the RZ. For the epochs for which this was the case, we carried out
the subsequent connectivity analysis and estimated the SOZ using all
described frequency bands. Each estimation resulted in one point or
network node in solution space. To evaluate the SOZ estimation, we
calculated the distance between the obtained point and the border of
the RZ, called the localization error (LE). If the selected network node
was inside the RZ, the LE was set to zero.

7.3 Results

7.3.1 Epoch selection

Table 7.2 lists the selected epochs in all seizures of every included patient.
In all the recorded seizures, the clinical seizure onset happened before
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Table 7.2: Overview of analyzed epochs. Pre = preictal; Clin = after clinical
onset, but before electrographic onset; EEG = after electrographic onset, before
ictal activity evolves; Phase 2 = spread in same hemisphere or faster ictal
activity; Phase 3 = bilateral; Phase 4 = back to unilateral or slower bilateral
activity; Post = postictal; a, b = EEGa and EEGb epoch were considered.
N.A. = data not available, / = phase was not present, R = right, HEM =
hemisphere.

Pre Clin EEG Phase 2 Phase 3 Phase 4 Post

11.1 x x x / x / x

11.2 x x x / x / x

11.3 x x x / x / x

14.1 x x a, b / x / x

14.2 x x x / x / x

14.3 N.A. x x / x / x

14.4 x x x / x / x

15.1 x x x
spread in

R HEM
x

back to

unilateral
x

15.2 x x x faster / / x

15.3 x / x faster / / x

17.1 x x a, b faster x
slower

bilateral
x

17.2 x x x / x
slower

bilateral
x

or simultaneous with the electrographic onset. We found a maximum
of 3 seizure evolvements, leading to 4 different ictal phases. Phase 2
groups the ictal rhythms that evolved from the initial ictal activity but
remained in the same hemisphere, in phase 3 there is bilateral spread
and phase 4 means that the bilateral activity slowed down or became
unilateral again. The seizure onset phase of the first seizure of PAT 14
and the third seizure of PAT 17 lasted longer than 40 s and the EEG
quality remained similar, so a second epoch was selected, shown by ‘a,
b’ in the table. Not all seizures expressed all phases, this is indicated
with ‘/’. For PAT 14, seizure 3, the preictal data was not available since
the data was cut just prior to the clinical onset to archive.

Fig. 7.3 shows the different phases schematically, together with the
selected epochs for the first seizure of PAT 11 as an example.

168



7.3. Results

...
...

ti
m

e

E
E
G

 o
ns

et
cl

in
ic

al
 o

ns
et

fa
st

er
 E

E
G

/
sp

re
ad

 in
 s

am
e 

he
m

is
ph

er
e

bi
la

te
ra

l
sl
ow

er
 b

ila
te

ra
l/

ba
ck

 t
o 
fir

st
 h

em
is
ph

er
e

en
d 

of
 s

ei
zu

re

P
re

C
lin

E
E
G

P
ha

se
 2

P
ha

se
 3

P
ha

se
 4

P
os

t

C
z-

P
z

Fz
-C

z
P
4-

O
2

C
4-

P
4

F4
-C

4
FP

2-
F4

P
3-

O
1

C
3-

P
3

F3
-C

3
Fp

1-
F3

T
6-

O
2

T
4-

T
6

F8
-T

4
FP

2-
F8

T
5-

O
1

T
3-

T
5

F7
-T

3
Fp

1-
F7

no
 p

ha
se

 2
pr

es
en

t
no

 p
ha

se
 4

pr
es

en
t

1s

F
ig

u
re

7
.3

:
T

h
e

d
iff

er
en

t
p

h
as

es
d

u
ri

n
g

w
h

ic
h

ep
o
ch

s
w

er
e

se
le

ct
ed

a
n

d
a
n

il
lu

st
ra

ti
o
n

o
f

th
is

ep
o
ch

se
le

ct
io

n
fo

r
th

e
fi

rs
t

se
iz

u
re

of
P

A
T

11
.

T
h

is
p

at
ie

n
t

sh
ow

ed
n

o
P

h
a
se

2
o
r

P
h

a
se

4
ev

o
lv

em
en

ts
.

169



Chapter 7. Influence of epoch selection and analyzed frequency band on
SOZ localization

7.3.2 FOI selection

In Table 7.3, the FOI bands, selected like explained in section 7.2.5,
associated with every phase of the ictal activity are shown for every
analyzed seizure. No separate FOI was calculated for the EEGb phases
of PAT 14 and PAT 17, since the ictal pattern remained constant.

Table 7.3: Overview of the FOI calculated for every phase of each analyzed
seizure. ‘/’ indicates that this seizure did not show this phase, * means that
the second highest peak in the spectrum was taken instead of the first (due to
1/f behavior).

EEG Phase 2 Phase 3 Phase 4

11.1 2.4 – 5.7 Hz / 7.5 – 8.3 Hz* /

11.2 1.0 – 5.9 Hz / 1.0 – 3.7 Hz /

11.3 2.0 – 4.8 Hz / 1.0 – 2.4 Hz /

14.1 1.0 – 4.3 Hz / 1 – 5.7 Hz /

14.2 5.1 – 6.8 Hz / 7.5 – 8.5 Hz* /

14.3 5.1 – 6.4 Hz* / 4.9 – 6.4 Hz* /

14.4 1.0 – 4.2 Hz / 6.6 – 7.8 Hz* /

15.1 1.0 – 3.1 Hz 4.9 – 7.0 Hz 1.0 – 3.9 Hz 1.0 – 4.1 Hz

15.2 3.1 – 4.3 Hz 2.5 – 7.8 Hz / /

15.3 1.0 – 4.1 Hz 9.5 – 11.6 Hz* / /

17.1 1.0 – 4.6 Hz 1.0 – 5.0 Hz 3.7 – 5.9 Hz 1.0 – 4.5 Hz

17.2 1.0 – 4.0 Hz / 1.0 – 4.4 Hz 1.0 – 3.3 Hz

7.3.3 Performance

7.3.3.1 Overall performance

For all EEG epochs considered in this study, ESI identified one or more
sources inside the RZ, except for 2 epochs (14.1 PRE and 14.1 POST) for
which the closest source was 13 mm away from the RZ. This indicates
that subsequent connectivity analysis was meaningful for, and hence
applied to, all considered epochs.

The LEs obtained for all selected epochs (EEGa in case of two selected
epochs during the onset phase of the seizure) analyzed in each of the
frequency bands are summarized for all patients in Fig. 7.4 and per
patient in Fig. 7.5.

170



7.3. Results

Pre Clin EEG Phase 2 Phase 3 Phase 4 Post
0

20

40

60

80

100

%
 o

f 
co

rr
ec

tl
y

 lo
ca

liz
ed

 S
O

Z

All Patients

0 00 000 0 00 0 0 0 00 0 00 00/ / /

1 - 30 Hz

δ

θ

α

β

ɣ

ictal onset FOI

own phase FOI

Figure 7.4: A summary of the percentage of correctly localized seizures per
phase and per analyzed frequency band. A ‘0’ indicates that none of the seizures
were localized correctly, a ‘/’ indicates that there was no data for this epoch.

Optimal performance was found when analyzing the onset phase (before
visually identifiable spread of rhythm changes) of the seizure in the
frequency band containing the fundamental seizure frequency. In this
case, 100% of the seizures were correctly localized inside the RZ. This
number dropped to 50% when phase 2 (colateral spread or faster EEG)
or phase 3 (bilateral spread) were analyzed in their own frequency band
of interest. For the other phases, no good localization was found in any
of the frequency bands.

7.3.3.2 Performance per frequency band

The exact LEs can be found in Table B.1 to Table B.8 of Appendix B
for every analyzed frequency band separately. In what follows, we will
detail the results per frequency band.

Connectivity analysis in the complete 1 – 30 Hz during the onset phase
allowed correct localization of the SOZ in 67% of the analyzed seizures
(between 50% and 100% on the patient level) . For the other phases, no
correct localization was found, with some exceptions, mainly in PAT 14.

Connectivity analysis of the δ and θ band resulted in a correct SOZ
estimation in 67% and 50% of the seizures, respectively, during the onset
phase of the seizure. These bands partly overlap with the fundamental
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seizure frequency of the onset of the seizure listed in Table 7.3. The
same effect can be seen in the bilateral part of the seizure (Phase 3)
analyzed in the α band, where an LE of zero occurred (in 40% of the
seizures, mainly for PAT 14) when the FOI of this phase is inside the α
band.

For the other frequency bands and selected epochs, no correct SOZ
localization was found, again with some exceptions. PAT 17 showed
remarkably few correct localizations in the generic EEG bands, except
for the δ band during the onset phase and the β band during Phase 4.

When analyzing the epochs using the FOI for the onset phase of the
seizure, the SOZ was correctly determined during this onset phase in all
analyzed seizures. However this result is better than in the complete 1 –
30 Hz band, the difference is not significant (Wilcoxon signed-rank test,
p = 0.1250). For the other phases, no more than 20% of the seizures
were correctly localized using the FOI of the onset phase.

If every seizure phase is analyzed in its own FOI, we see that the
percentage of correctly localized seizures increases to 50% in Phase 2
(faster EEG or spread in colateral hemisphere) and Phase 3 (bilateral
EEG). It is, however, impossible to correctly estimate the SOZ during
Phase 4 of slower bilateral or unilateral EEG. This is in contrast with
the β band, for which a correct localization during Phase 4 was found
for 1 of the 2 seizures of PAT 17.

7.3.3.3 EEGa vs. EEGb

The LEs of the seizures for which an EEGb epoch was selected (PAT 14,
seizure 3 and PAT 17, seizure 1) are shown in Table 7.4 for all analyzed

Table 7.4: LEs in mm of the epochs selected during the beginning and the
ending of the EEG onset phase in the third seizure of PAT 14 and the first
seizure of PAT 17, for all analyzed frequency bands. The epoch during the
ending of the EEG onset phase has affix b.

1 – 30 Hz δ θ α β γ ictal onset FOI

14.3 51 13 0 46 35 51 0

14.3b 0 0 0 35 78 65 0

17.1 0 0 68 68 68 44 0

17.1b 68 0 68 68 59 57 0
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frequency bands. For comparison, the LEs obtained for the epoch during
the beginning of the EEG onset phase (EEG) are shown as well. Correct
localization is found for both the EEG and EEGb epoch in the ictal
onset band. For PAT 14, analysis of the EEGb epoch resulted in correct
localization in the 1 – 30 Hz and δ band, whereas it did not for the EEG
epoch in the beginning. Both epochs resulted in a correct estimation
in the θ band. For PAT 17, correct localization was found in the 1 –
30 Hz for the epoch in the beginning, but not for the epoch at the end
of the seizure onset phase. Analysis of the δ band resulted in correct
localization in both epochs. For the other epochs, no correct localization
was found.

7.3.4 Patient Example

As an example, we show Fig. 7.6 which depicts for every phase of the
first seizure of PAT 11 the selected network nodes. The size of the
nodes is proportional to their outdegree, calculated in the ictal onset
FOI for the Pre, Clin, EEG and Post phase, and in the own phase FOI
for the bilateral part. As can be seen, during the Clin, EEG onset and
the bilateral phase, the node inside the resected zone is the largest and
hence has the highest outdegree and is correctly selected as estimation
for the SOZ. During the other phases, approximately the same nodes
were selected after ESI, but the one inside the RZ does not have the
highest outdegree and is therefore not selected as estimation for the
SOZ. In this example, the localization error is zero for the phases Clin,
EEG and Phase 3. The outdegrees increased in the EEG onset phase and
increased even more during Phase 3. This observation could, however,
not be made in general for other seizures of this and the other patients.
Nevertheless, for each of the patients, the selected nodes were (quasi)
stable over seizures and epochs.

7.4 Discussion

In this study, we investigated the influence of epoch and frequency band
selection on the performance of SOZ localization using a combination
of ESI and connectivity analysis. Optimal performance was found
when analyzing an epoch during the electrographic onset phase. This
performance declined when later phases were analyzed. No good
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Figure 7.6: Network nodes found during the different phases of seizure 1 of
PAT 11. The size of the nodes is proportional to the outdegree of that node,
normalized to the maximal outdegree found over all phases of this seizure.
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localization was found for the pre- and postictal phases. The fact
that performance decreases in later phases of the seizure can be due
to changes in the epileptic network. Although (quasi) the same nodes
were found for every epoch of the same seizure, the connections, and
as a consequence the outdegree, changed over time. This is suggestive
(though, confirmation for a different range of regularization parameters
is necessary) for a network that is (quasi) stable in its nodes, but
dynamic in its connections. This is supported by Elshoff et al., who
found a star-shaped network topology in the beginning of seizures,
whereas a circular topology of similar sources was found in the middle
of seizures [196]. Other studies, based on iEEG recordings, claimed that
network dynamics change during the course of seizures as well [260–262].
Another possibility is that the initially triggering region stops behaving
abnormally, but that the other regions continue to seize. This way, the
originally driving region cannot be localized correctly, but one of the
regions that is still seizing may be found instead. Furthermore, we found
that it is impossible, with the method used in this study, to estimate
the SOZ with high accuracy based on pre- or postictal EEG data.

Performing the analysis of the onset phase of the seizure in the complete
1 – 30 Hz band gave rise to generally worse results, yet the difference
did not reach significance. Despite this observation, we would advise
performing the analysis in the frequency band of interest, since better
results are obtained. This is probably due because more spurious
connections caused by noise are eliminated. Analysis in other frequency
bands did not add any extra information, it was mostly successful if the
band (partially) overlapped with the band of the fundamental seizure
frequency. This was mainly the case in the δ and θ band.

We proposed an approach to calculate the FOI around the fundamental
frequency band. Since SOZ estimation was correct in 100% of the cases
during the seizure onset phase, we confirmed that this objective method
is valid and could replace the visual selection used in chapter 6. It should
be mentioned, however, that all patients included in this study had clear
ictal rhythms and that EEG channels showing clear ictal activity could
be selected easily. In cases where the ictal rhythms or the FOI are not
easily identifiable, one could still opt for analysis in the complete 1 –
30 Hz band.

We were able to select a second epoch to the end of the EEG onset phase
in two seizures. In both of these seizures, we found correct localization

176



7.5. Conclusion

using the ictal onset FOI. In combination with the other results, this
suggests that it is crucial to select an EEG epoch during the onset phase
of the seizure, but that it is less important when exactly the epoch is
chosen during this phase, as long as the quality of the EEG is reasonable.
This would mean that we can wait some time after seizure onset to
select an epoch with fewer artifacts, given that the ictal pattern did not
change. However, validation in more seizures is necessary to confirm this
hypothesis. By extension, it would be interesting to study epochs in the
beginning, middle and end of seizures of patients who have seizures that
remain constant or do not evolve over the complete course of the seizure.

If we could confirm that the epoch can be chosen anytime during the
onset phase, it still remains important to delineate this phase. Future
research could not only be aimed at seizure detection, but also at
seizure evolvement detection to automatically or objectively delineate
these phases. This could possibly be achieved with help of functional
connectivity measures since we found that the epileptic network changes
throughout the seizure.

Although epoch selection during the onset phase of the seizure is
important, sometimes the complete onset phase of a seizure can be
artifactual. An analysis of the later parts of these seizures could still
be useful for clinical practice if a hypothesis about the SOZ already
exists, in order to confirm it.

7.5 Conclusion

We can conclude that SOZ localization using ESI + connectivity is
optimally performed during the initial phase of the seizure. We proposed
a method to select a frequency band of interest around the fundamental
seizure frequency and results are best when using this band for analysis.
However, whenever necessary, analysis in a broader band and/or of a
later epoch could possibly provide useful information as well.
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8
Conclusions and future

perspectives

In this final chapter, we summarize the work performed in this
dissertation and outline future perspectives. We discuss the main
contributions of our work followed by the conclusions that can be drawn
from them. New research questions inevitably arise when studies are
done, and therefore we discuss some future research possibilities. Finally,
we end this chapter and book with a final conclusion.

8.1 Summary

The goal of this dissertation was to develop a method to localize the
SOZ in focal epilepsy patients in a noninvasive way, using scalp EEG
recordings. Our approach consisted of two main steps. First, ESI was
performed on an EEG epoch to reconstruct the active brain sources
that gave rise to the measured signals. Second, we applied functional
connectivity analysis on the most active brain sources, in order to find
the driver behind the epileptic network. This driver was used as an
estimation of the SOZ. First, this approach was tested in simulations.
Next, retrospective validation was done using real patient data in which
the SOZ estimation was compared to the ultimately resected zone of
the patient. We were able to show that this method can localize the
SOZ with high accuracy, and that functional connectivity analysis has
an added value since this combined approach outperformed localization
based on ESI only. It is, however, important to select an EEG epoch
during the seizure onset phase, before the network has evolved.
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In Chapter 5, we applied the proposed combination of ESI and functional
connectivity analysis on simulated ictal EEG and on ictal high-density
EEG recordings of five patients. The first 3 s of a seizure (simulated
or real) were selected for analysis. Connectivity analysis was done in
the frequency band of 1 – 30 Hz. In both datasets, we found that ESI
followed by connectivity analysis outperformed ESI alone, in which the
source with highest power was selected as SOZ estimation. Performance
of ESI followed by connectivity analysis was high, but it decreased
when fewer electrodes were used for analysis. It was concluded that the
method can serve as a useful, objective tool in the presurgical evaluation,
given that the seizures are recorded with sufficient electrodes.

Yet, a lot of hospitals still lack the equipment to perform high-density
EEG recordings. Moreover, the probability of capturing a seizure during
a high-density EEG recording is rather low, since these registrations
are generally shorter than long-term video-EEG monitorings because
of patient comfort reasons. Therefore, we adapted the method in
order to obtain good performance in seizures recorded with a clinical
EEG setup as well. This was done in Chapter 6. Instead of strictly
selecting the first 3 s of a seizure, we chose a (quasi) artifact-free epoch
lasting 1 to 5 s during the beginning of the seizure. Next, connectivity
analysis was limited to the frequency band of the rhythmic activity in
the EEG generated by the seizure, determined visually. We validated
this adapted approach retrospectively in 111 seizures of 27 patients who
were rendered seizure-free after surgery. Again, we found that ESI
followed by connectivity analysis outperformed localization based on
ESI alone. The large cohort of seizures allowed to make this comparison
statistically significant. ESI followed by connectivity analysis resulted
in a SOZ estimation within 10 mm of the border of the resected zone in
93.7% of the seizures. Furthermore, the spatial dispersion of the SOZ
estimation of different seizures per patient remained low. We confirmed
our conclusion of the preceding chapter that this method could serve as
a useful tool in the presurgical evaluation, but now standard long-term
EEG monitoring can be used and seizures recorded with high-density
EEG are not necessary. However, user-dependent input for the initial
epoch and frequency selection is required.

Finally, we investigated the importance of the epoch and frequency band
selection in Chapter 7 to investigate whether we can also find the driver
of the epileptic network just before, after or during other phases of the
seizure and whether limiting the analysis to a specific frequency band is
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necessary or not. In terms of epoch selection, best results were obtained
when an epoch was selected during the onset phase of the seizure, before
the ictal patterns have evolved. We selected epochs during the beginning
and ending of this phase, and based on the results we suggested that the
epoch can be chosen anytime during the onset phase, as long as the
EEG quality is sufficient. Out of 12 analyzed seizures in this study,
10 evolved to a bilateral pattern. During this bilateral phase, correct
SOZ localization was found in 50% of the seizures. Whenever the data
during the electrographic onset phase is very artifactual and a hypothesis
about the SOZ already exists, analysis of the bilateral phase could still
be used to confirm the hypothesis. Yet, the results should be interpreted
with extra care in this situation. Furthermore, we found that it is
impossible to obtain a trustworthy SOZ estimation with this method
during the preictal or postictal period. In terms of the frequency band,
best results are obtained when the analysis is limited to the seizure
frequency band corresponding to the analyzed ictal epoch. We offered
a technique to calculated this frequency band. Although performance
was lower when using the 1 – 30 Hz band, the difference did not reach
significance and this band can possibly be used for analysis whenever
the seizure frequency band is unclear.

8.2 Future research directions

The future research perspectives for this work are based on three main
questions:

1. How to get this method to clinical practice?

2. How can we improve or gain more information from the method?

3. How can this research contribute to other research fields?

Although the method performed well in our retrospective studies, more
validation steps are needed before it can be adopted in the standard
presurgical evaluation protocol with the same importance as the other
presurgical investigations. Retrospectively, a larger, more heterogeneous
population group should be studied. Especially more extratemporal
lobe epilepsy patients should be included. If possible, links between
performance and patient or EEG characteristics should be detected and
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investigated in order to identify patient groups for whom the analysis
might be (un)useful. Furthermore, extra confirmation is needed for the
influence of epoch/frequency band selection. In this work, validation was
done in patients who benefited from epilepsy surgery and we assessed
in how many patients we could correctly localize the SOZ inside the
resected zone (sensitivity). Future research should also be aimed at
investigating patients that had no benefit from surgery. Is, in these cases,
the SOZ estimation localized outside of the resected zone (specificity)?

Not only retrospective validation should be done, but also a prospective
study could be set up, to investigate the true added value of the
method as a tool in the presurgical evaluation. This should answer
the question as to what extent the proposed method can actually help
in the decision-making process of the presurgical evaluation in terms of
speed, confidence, objectivity and accuracy.

Ideally, a clinical study using the STARD (Standards for Reporting of
Diagnostic Accuracy) criteria for studies on diagnostic accuracy should
be performed [188,219].

Further improvement could be the implementation of automated seizure
and seizure evolvement detection, and by extension completely objective
and/or automated epoch and frequency band selection which would
allow complete automation of the method since no human interaction
is needed anymore. Seizure detection is a wide research area, in which
much progress has already been made [263,264]. To our knowledge, the
detection of seizure evolvement would be new. Since we found evidence
that the epileptic network changes at the beginning and during the
evolvement of the seizure, functional connectivity analysis could possibly
be used for this. Automated and/or objective epoch and frequency band
selection could be achieved with a method that looks both at frequency
content and temporal morphology of the signals, in order to discriminate
ictal activity from artifacts and background activity.

In this dissertation, the method for SOZ localization results in a point
estimation. Future research could aim at adding an estimation of the
extent of the SOZ as well. The three-dimensional power distribution
after ESI or the correlation of the time-series of neighboring solution
points or techniques such as Maximum Entropy on the Mean (MEM)
[236] or Source Imaging based on Structured Sparsity (SISSY) [265]
could be used for this. If it would be possible to estimate the extent of
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the SOZ, it could be studied whether the method could lead to smaller
resections.

The method was validated by comparison with the ultimately resected
zone of the patient. However, this resected zone can be an overestimation
of the true SOZ. Therefore, validation by comparison with iEEG
findings could provide more precise information, both in the single point
estimation and in the spatially extended estimation, although the limited
spatial sampling of iEEG could be an issue.

Finally, it could be assessed how the techniques of this dissertation can
be used in other (epilepsy) research fields. One option is to investigate
how the network nodes and their connections relate to the type of
epilepsy, the location of the SOZ or the performed surgery, in order
to get more profound insights into the pathophysiology of epileptic
networks. A second option is to help the diagnosis of epilepsy. Can
these connectivity measures enhance (automated) diagnosis of several
types of epilepsy, as was done with resting-state EEG for TLE [266]?
A third option would be the use of this method as a biomarker for the
efficacy of AED treatment. Clemens et al. provided first evidence that
the abnormal epileptic brain networks are normalized to a certain extent
when patients are successfully treated with an AED [267]. But is there
a difference in the networks of patients who do and who do not respond
to AEDs? Can this difference be used to predict AED outcome? A
final option would be to take into account the time delays of the found
connections and to integrate this with structural connectivity measures
in order to obtain a delay-resolved connectome [268]. Usually, structural
connections are considered instantaneous and studies are based on all
possible structural connections [269–271]. Yet, the conduction speed
along the axons is finite, so different delays exist between brain regions
that are connected with shorter and longer and/or faster and slower
neuronal fibres. Incorporating the delays as measured with functional
connectivity could allow to clean or prune the connectome in order to
be able to better study the collective dynamics of the (epileptic) brain
at different time points.

8.3 Final conclusion

The method developed in this dissertation consists of a combination
of ESI and functional connectivity analysis and is able to localize the
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SOZ with high accuracy based on high- or low-density ictal scalp EEG
recordings. The method is noninvasive and requires minimal user-
dependent input and no special extra investigations. Therefore, it could
be a useful tool to be included in clinical practice for SOZ localization
in drug-resistant epilepsy patients. It is important to select an epoch
during the onset phase of the seizure, and when fewer electrodes are
available, the epoch and frequency band selection become more crucial.
Given more research, the method could be made completely user-
independent and automated. This kind of methods could eventually
reduce the burden of the presurgical evaluation.
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A
Results of the clinical SOZ

localization study

Fig. A.1–A.3 show some examples of selected and preprocessed seizures
of chapter 6. Table A.1 lists for every seizure of each patient the selected
epoch with respect to the seizure onset time that was selected for further
analysis. Also the frequency band of interest (FOI) and the possible
additional preprocessing steps are shown.

Fig. A.4–A.10 show the spatial spread figures for all patients. In case
that a patient had only one seizure, only the result for that seizure was
shown, i.e. standard distance is 0 mm.

185



Appendix A. Results of the clinical SOZ localization study
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PAT 1 seizure 6, FOI: 4-7 Hz50µV

PAT 2 seizure 4, FOI: 2-6 Hz50µV

PAT 4 seizure 5, FOI: 4-7 Hz150 µV

Figure A.1: Examples of epoch selection. A bipolar montage of the EEG from
5 s before until 20 s after seizure onset is shown. The red rectangle indicates the
chosen time frame. The used frequency band of interest for analysis is shown
in the title. Note that the actual segment selection also happened based on
channels that are not shown in this montage (e.g. the midline electrodes).
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PAT 8 seizure 4, FOI: 8-15 Hz50µV

PAT 10 seizure 4, FOI: 1-7 Hz150 µV

PAT 12 seizure 2, FOI: 4-7 Hz100 µV

Figure A.2: Examples of epoch selection. A bipolar montage of the EEG from
5 s before until 20 s after seizure onset is shown. The red rectangle indicates the
chosen time frame. The used frequency band of interest for analysis is shown
in the title. Note that the actual segment selection also happened based on
channels that are not shown in this montage (e.g. the midline electrodes).
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PAT 15 seizure 2, FOI: 1-5 Hz250 µV

PAT 20 seizure 7, FOI: 15-25 Hz120 µV

PAT 22 seizure 3, FOI: 1-7 Hz200 µV

Figure A.3: Examples of epoch selection. A bipolar montage of the EEG from
5 s before until 20 s after seizure onset is shown. The red rectangle indicates the
chosen time frame. The used frequency band of interest for analysis is shown
in the title. Note that the actual segment selection also happened based on
channels that are not shown in this montage (e.g. the midline electrodes).

188



T
a
b

le
A

.1
:

O
ve

rv
ie

w
of

th
e

an
al

y
ze

d
se

iz
u

re
s

fo
r

ev
er

y
p

a
ti

en
t.

T
h

e
se

le
ct

ed
ep

o
ch

w
.r

.t
.

to
th

e
m

a
rk

ed
se

iz
u

re
o
n

se
t

(t
im

e
of

in
te

re
st

,
T

O
I)

,
th

e
se

iz
u
re

fr
eq

u
en

cy
a
n

d
p

o
ss

ib
le

ex
tr

a
p

re
p

ro
ce

ss
in

g
st

ep
s

a
re

m
en

ti
o
n

ed
.

IC
A

w
a
s

a
p

p
li
ed

o
n

cl
ea

r
ey

eb
li

n
k

ar
ti

fa
ct

s,
u

n
le

ss
m

en
ti

on
ed

o
th

er
w

is
e.

In
te

rp
=

In
te

rp
o
la

ti
o
n

,
H

B
=

h
ea

rt
b

ea
t.

P
A
T

S
e
iz

u
r
e

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1

T
O

I
(
s
)

[1
5
]

[-
1

3
]

[8
.8

1
0
]

[3
8
]

[1
.5

4
]

[5
1
0
]

[0
4
]

F
O

I
(
H

z
)

[4
7
]

[4
7
]

[4
7
]

[1
7
]

[4
1
2
]

[4
7
]

[4
1
2
]

e
x
t
r
a

p
r
e
p
r
o
c
.

-
-

fi
lt

e
r

1
-1

0
H

z
In

te
rp

T
9

In
te

rp
T

9
,

F
T

1
0

fi
lt

e
r

1
-1

0
H

z
In

te
rp

F
p
z

2

T
O

I
(
s
)

[-
2

1
.5

]
[0

3
]

[1
6
]

[-
0
.5

4
.5

]
[0

3
.5

]
[0

2
]

[0
5
]

F
O

I
(
H

z
)

[1
2

1
5
]

[1
8
]

[1
8
]

[2
6
]

[2
8
]

[2
6
]

[1
8
]

e
x
t
r
a

p
r
e
p
r
o
c
.

In
te

rp
T

5
-

IC
A

-
-

-
-

3

T
O

I
(
s
)

[-
2

3
]

[-
2

1
]]

[3
.5

8
]

[0
5
]

F
O

I
(
H

z
)

[4
1
0
]

[4
7
]

[4
7
]

[4
7
]

e
x
t
r
a

p
r
e
p
r
o
c
.

fi
lt

e
r

1
-1

0
H

z
IC

A
In

te
rp

F
T

1
0
,

C
3

-

4

T
O

I
(
s
)

[0
4
]

[3
6
]

[8
1
0
]

[6
1
1
]

[1
1

1
5
]

F
O

I
(
H

z
)

[4
7
]

[4
7
]

[4
7
]

[4
7
]

[4
7
]

e
x
t
r
a

p
r
e
p
r
o
c
.

-
In

te
rp

C
3

In
te

rp
C

5
,

O
1
,

O
z

In
te

rp
T

5
,

O
1
;

IC
A

-

5

T
O

I
(
s
)

[2
.8

4
.8

]
[2

7
]

[5
1
0
]

[1
6
]

F
O

I
(
H

z
)

[4
8
]

[4
8
]

[4
8
]

[4
9
]

e
x
t
r
a

p
r
e
p
r
o
c
.

In
te

rp
P

4
,

T
3

In
te

rp
T

6
-

-

6

T
O

I
(
s
)

[-
5

0
]

[-
5

0
]

[-
4

-2
]

[-
1
.8

0
.5

]
[6

1
0
]

[0
5
]

[1
3
.5

]

F
O

I
(
H

z
)

[8
1
5
]

[8
1
5
]

[8
1
5
]

[8
1
5
]

[4
7
]

[3
1
0
]

[3
1
0
]

e
x
t
r
a

p
r
e
p
r
o
c
.

IC
A

-
IC

A
In

te
rp

F
T

1
0

fi
lt

e
r

1
-1

0
H

z
fi

lt
e
r

1
-1

0
H

z
fi

lt
e
r

1
-1

0
H

z

189



Appendix A. Results of the clinical SOZ localization study
T

a
b

le
A

.1
:

(c
o
n
ti

n
u

ed
)

P
A
T

S
e
iz

u
r
e

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

7

T
O

I
(
s
)

[-
1

1
]

[1
1
.1

1
2
.8

]
[1

8
2
0
]

F
O

I
(
H

z
)

[1
4
]

[1
4
]

[2
7
]

e
x
t
r
a

p
r
e
p
r
o
c
.

fi
lt

e
r

1
-1

0
H

z
fi

lt
e
r

1
-1

0
H

z
-

8

T
O

I
(
s
)

[0
3
]

[-
3

2
]

[-
3

2
]

[1
.7

6
]

[0
3
]

[0
4
]

F
O

I
(
H

z
)

[8
1
5
]

[8
1
5
]

[8
1
5
]

[8
1
5
]

[8
1
0
]

[8
1
0
]

e
x
t
r
a

p
r
e
p
r
o
c
.

IC
A

-
-

-
fi

lt
e
r

1
-1

0
H

z
fi

lt
e
r

1
-1

0
H

z

9

T
O

I
(
s
)

[-
1

1
.9

]

F
O

I
(
H

z
)

[1
3
]

e
x
t
r
a

p
r
e
p
r
o
c
.

In
te

rp
O

z
,

IC
A

1
0

T
O

I
(
s
)

[-
5

0
]

[1
5

2
0
]

[0
5
]

[4
9
]

F
O

I
(
H

z
)

[1
7
]

[1
7
]

[1
0

1
5
]

[1
7
]

e
x
t
r
a

p
r
e
p
r
o
c
.

-
-

-
fi

lt
e
r

1
-1

0
H

z

1
1

T
O

I
(
s
)

[5
1
0
]

[2
.5

7
.5

]
[2

.2
7
.2

]
[4

6
]

[4
7
]

[2
5
]

F
O

I
(
H

z
)

[4
7
]

[4
7
]

[1
7
]

[4
7
]

[1
7
]

[1
5
]

e
x
t
r
a

p
r
e
p
r
o
c
.

In
te

rp
T

1
0
,

IC
A

a
n
d

fi
lt

e
r

1
-1

0
H

z

In
te

rp
T

1
0
,

F
T

1
0
;

IC
A

;
fi

lt
e
r

1
-1

0
H

z

In
te

rp
T

1
0
,

IC
A

a
n
d

fi
lt

e
r

1
-1

0
H

z

IC
A

IC
A

IC
A

1
2

T
O

I
(
s
)

[0
3
]

[-
1

3
]

[0
3
]

[0
2
.5

]
[0

2
.5

]
[-

1
.5

0
]

[0
5
]

[-
1

1
]

F
O

I
(
H

z
)

[4
7
]

[4
7
]

[3
6
]

[3
6
]

[4
7
]

[3
6
]

[4
7
]

[3
6
]

e
x
t
r
a

p
r
e
p
r
o
c
.

In
te

rp
T

1
0
;

IC
A

IC
A

-
-

-
-

IC
A

In
te

rp
O

1

190



T
a
b

le
A

.1
:

(c
o
n
ti

n
u

ed
)

P
A
T

S
e
iz

u
r
e

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

T
O

I
(
s
)

[0
2
]

F
O

I
(
H

z
)

[1
0

1
5
]

e
x
t
r
a

p
r
e
p
r
o
c
.

-

1
4

T
O

I
(
s
)

[1
2
.5

]
[4

7
]

[9
.5

1
4
.5

]
[0

.2
3
.8

]

F
O

I
(
H

z
)

[1
4
]

[3
7
]

[3
7
]

[3
7
]

e
x
t
r
a

p
r
e
p
r
o
c
.

IC
A

In
te

rp
O

1
,

T
9

In
te

rp
O

1

In
te

rp
O

1
,

fi
lt

e
r

1
-1

0
H

z

1
5

T
O

I
(
s
)

[0
5
]

[5
1
0
]

[0
.5

2
.5

]

F
O

I
(
H

z
)

[1
5
]

[1
5
]

[1
5
]

e
x
t
r
a

p
r
e
p
r
o
c
.

IC
A

IC
A

IC
A

1
6

T
O

I
(
s
)

[0
3
.5

]
[-

1
.5

3
.5

]
[0

5
]

[0
5
]

F
O

I
(
H

z
)

[4
7
]

[4
7
]

[4
7
]

[4
7
]

e
x
t
r
a

p
r
e
p
r
o
c
.

-
IC

A
-

In
te

rp
O

z

1
7

T
O

I
(
s
)

[1
7
.5

2
0
]

[0
3
]

[4
7
]

F
O

I
(
H

z
)

[1
4
]

[1
4
]

[1
4
]

e
x
t
r
a

p
r
e
p
r
o
c
.

fi
lt

e
r

1
-1

0
H

z
IC

A
fi

lt
e
r

1
-1

0
H

z

1
8

T
O

I
(
s
)

[3
7
]

[0
5
]

[0
5
]

F
O

I
(
H

z
)

[1
4
]

[1
4
]

[1
4
]

e
x
t
r
a

p
r
e
p
r
o
c
.

-
-

-

191



Appendix A. Results of the clinical SOZ localization study
T

a
b

le
A

.1
:

(c
o
n
ti

n
u

ed
)

P
A
T

S
e
iz

u
r
e

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
9

T
O

I
(
s
)

[2
6
]

F
O

I
(
H

z
)

[1
5
]

e
x
t
r
a

p
r
e
p
r
o
c
.

fi
lt

e
r

1
-1

0
H

z

2
0

T
O

I
(
s
)

[-
3

0
]

[-
5

0
]

[4
7
.5

]
[0

5
]

[0
4
]

[0
4
]

[0
2
]

[3
.5

8
.5

]
[0

5
]

[-
1

4
]

[0
5
]

[0
5
]

F
O

I
(
H

z
)

[1
5
]

[2
5

3
0
]

[2
0

3
0
]

[2
0

3
0
]

[7
1
5
]

[1
5

2
5
]

[1
5

2
5
]

[2
0

2
5
]

[7
1
5
]

[7
1
0
]

[1
5

2
5
]

[7
1
5
]

e
x
t
r
a

p
r
e
p
r
o
c
.

-
-

-
-

-
IC

A
IC

A
-

In
te

rp
F

p
2
,

T
p
1
0

-
In

te
rp

F
p
1

-

2
1

T
O

I
(
s
)

[5
9
.5

]
[4

9
]

F
O

I
(
H

z
)

[1
5
]

[1
5
]

e
x
t
r
a

p
r
e
p
r
o
c
.

fi
lt

e
r

1
-1

0
H

z
fi

lt
e
r

1
-1

0
H

z

2
2

T
O

I
(
s
)

[4
.5

9
.5

]
[0

5
]

[0
4
]

[-
1

1
.5

]
[0

5
]

[-
0
.5

4
.5

]
[3

.8
8
.7

]
[1

.8
6
]

[0
5
]

F
O

I
(
H

z
)

[1
7
]

[1
7
]

[1
7
]

[7
1
2
]

[1
1
2
]

[1
1
2
]

[1
1
5
]

[1
1
2
]

[1
7
]

e
x
t
r
a

p
r
e
p
r
o
c
.

-
-

-
-

-
-

-
-

-

2
3

T
O

I
(
s
)

[0
5
]

[0
2
]

[0
5
]

F
O

I
(
H

z
)

[1
1
0
]

[4
7
]

[3
8
]

e
x
t
r
a

p
r
e
p
r
o
c
.

-
fi

lt
e
r

1
-1

0
H

z
IC

A

2
4

T
O

I
(
s
)

[0
3
.5

]

F
O

I
(
H

z
)

[4
7
]

e
x
t
r
a

p
r
e
p
r
o
c
.

IC
A

2
5

T
O

I
(
s
)

[0
5
]

F
O

I
(
H

z
)

[4
1
2
]

e
x
t
r
a

p
r
e
p
r
o
c
.

-

192



T
a
b

le
A

.1
:

(c
o
n
ti

n
u

ed
)

P
A
T

S
e
iz

u
r
e

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

2
6

T
O

I
(
s
)

[0
5
]

F
O

I
(
H

z
)

[1
7
]

e
x
t
r
a

p
r
e
p
r
o
c
.

-

2
7

T
O

I
(
s
)

[1
5
]

F
O

I
(
H

z
)

[2
4

2
6
]

e
x
t
r
a

p
r
e
p
r
o
c
.

IC
A

(H
B

)

193



Appendix A. Results of the clinical SOZ localization study

Figure A.4: Spatial spread of all patients. The standard distance of patients
that had only one analyzed seizure is shown as zero (no circle). Remark that
the slices shown in the visualization are optimized for the ESI + connectivity
results. As a consequence, some ESI power results may seem to lie outside
source space, but this is not the case. When no blue dot is clearly visible, the
red and blue dot are overlapping.
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Figure A.5: Spatial spread of all patients. The standard distance of patients
that had only one analyzed seizure is shown as zero (no circle). Remark that
the slices shown in the visualization are optimized for the ESI + connectivity
results. As a consequence, some ESI power results may seem to lie outside
source space, but this is not the case. When no blue dot is clearly visible, the
red and blue dot are overlapping.
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Appendix A. Results of the clinical SOZ localization study

Figure A.6: Spatial spread of all patients. The standard distance of patients
that had only one analyzed seizure is shown as zero (no circle). Remark that
the slices shown in the visualization are optimized for the ESI + connectivity
results. As a consequence, some ESI power results may seem to lie outside
source space, but this is not the case. When no blue dot is clearly visible, the
red and blue dot are overlapping.
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Figure A.7: Spatial spread of all patients. The standard distance of patients
that had only one analyzed seizure is shown as zero (no circle). Remark that
the slices shown in the visualization are optimized for the ESI + connectivity
results. As a consequence, some ESI power results may seem to lie outside
source space, but this is not the case. When no blue dot is clearly visible, the
red and blue dot are overlapping.
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Appendix A. Results of the clinical SOZ localization study

Figure A.8: Spatial spread of all patients. The standard distance of patients
that had only one analyzed seizure is shown as zero (no circle). Remark that
the slices shown in the visualization are optimized for the ESI + connectivity
results. As a consequence, some ESI power results may seem to lie outside
source space, but this is not the case. When no blue dot is clearly visible, the
red and blue dot are overlapping.
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Figure A.9: Spatial spread of all patients. The standard distance of patients
that had only one analyzed seizure is shown as zero (no circle). Remark that
the slices shown in the visualization are optimized for the ESI + connectivity
results. As a consequence, some ESI power results may seem to lie outside
source space, but this is not the case. When no blue dot is clearly visible, the
red and blue dot are overlapping.
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Appendix A. Results of the clinical SOZ localization study

Figure A.10: Spatial spread of all patients. The standard distance of patients
that had only one analyzed seizure is shown as zero (no circle). Remark that
the slices shown in the visualization are optimized for the ESI + connectivity
results. As a consequence, some ESI power results may seem to lie outside
source space, but this is not the case. When no blue dot is clearly visible, the
red and blue dot are overlapping.
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B
Results of the epoch and
frequency band selection

In the following sections, the localization errors obtained in chapter 7 for
every analyzed epoch are listed. Table B.1 lists the localization errors
found when the analysis was done in the 1 – 30 Hz band, Table B.2
to Table B.6 list them for the δ, θ, α, β and γ band, respectively. In
Table B.7 the frequency band of the ictal onset phase was used, and in
Table B.8 the different seizure phases are analyzed in their own frequency
band.
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Appendix B. Results of the epoch and frequency band selection

Table B.1: LEs in mm of all selected epochs analyzed in the complete 1 –
30 Hz. Errors equal to zero are colored green, the others are depicted in red.
For each phase, the percentage of correctly localized seizures is indicated.

Pre Clin EEG Phase 2 Phase 3 Phase 4 Post

11.1 43 56 36 / 43 / 75

11.2 0 56 0 / 75 / 37

11.3 17 54 0 / 75 / 54

14.1 46 73 35 / 46 / 49

14.2 55 0 0 / 0 / 64

14.3 N.A. 35 51 / 0 / 29

14.4 35 0 0 / 51 / 0

15.1 31 58 0 59 20 81 36

15.2 58 68 0 36 / / 70

15.3 20 / 0 59 / / 59

17.1 48 78 0 83 83 68 46

17.2 19 65 83 / 73 83 59

0 mm 9% 18% 67% 0% 20% 0% 8%

Table B.2: LEs in mm of all selected epochs analyzed in the δ band. Errors
equal to zero are colored green, the others are depicted in red. For each phase,
the percentage of correctly localized seizures is indicated.

Pre Clin EEG Phase 2 Phase 3 Phase 4 Post

11.1 36 17 36 / 36 / 17

11.2 0 56 0 / 51 / 37

11.3 17 54 54 / 51 / 0

14.1 52 13 0 / 46 / 49

14.2 55 13 31 / 73 / 64

14.3 N.A. 78 13 / 85 / 52

14.4 46 52 0 / 51 / 49

15.1 79 0 0 70 20 81 36

15.2 79 68 0 36 / / 70

15.3 20 / 0 68 / / 0

17.1 44 48 0 46 78 68 46

17.2 19 65 0 / 73 83 59

0 mm 9% 9% 67% 0% 0% 0% 17%
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Table B.3: LEs in mm of all selected epochs analyzed in the θ band. Errors
equal to zero are colored green, the others are depicted in red. For each phase,
the percentage of correctly localized seizures is indicated.

Pre Clin EEG Phase 2 Phase 3 Phase 4 Post

11.1 54 56 17 / 17 / 45

11.2 77 54 0 / 53 / 37

11.3 36 54 53 / 75 / 0

14.1 52 52 46 / 73 / 49

14.2 29 0 0 / 0 / 13

14.3 N.A. 35 0 / 0 / 54

14.4 35 0 0 / 51 / 0

15.1 79 59 0 59 31 79 59

15.2 0 68 0 0 / / 70

15.3 0 / 59 59 / / 59

17.1 48 78 68 83 83 68 39

17.2 78 51 49 / 49 46 51

0 mm 18% 18% 50% 25% 20% 0% 17%

Table B.4: LEs in mm of all selected epochs analyzed in the α band. Errors
equal to zero are colored green, the others are depicted in red. For each phase,
the percentage of correctly localized seizures is indicated.

Pre Clin EEG Phase 2 Phase 3 Phase 4 Post

11.1 43 56 43 / 0 / 45

11.2 56 54 43 / 43 / 56

11.3 37 56 53 / 75 / 56

14.1 46 52 46 / 35 / 71

14.2 54 54 0 / 0 / 13

14.3 N.A. 0 46 / 0 / 65

14.4 35 0 35 / 0 / 0

15.1 31 59 59 59 20 20 81

15.2 59 81 59 55 / / 70

15.3 59 / 59 59 / / 59

17.1 68 68 68 83 83 41 78

17.2 46 39 83 / 58 46 46

0 mm 0% 18% 8% 0% 40% 0% 8%
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Appendix B. Results of the epoch and frequency band selection

Table B.5: LEs in mm of all selected epochs analyzed in the β band. Errors
equal to zero are colored green, the others are depicted in red. For each phase,
the percentage of correctly localized seizures is indicated.

Pre Clin EEG Phase 2 Phase 3 Phase 4 Post

11.1 73 56 73 / 75 / 43

11.2 73 43 42 / 75 / 46

11.3 46 45 45 / 43 / 75

14.1 46 73 29 / 78 / 46

14.2 35 85 78 / 78 / 85

14.3 N.A. 29 35 / 64 / 65

14.4 46 0 46 / 35 / 34

15.1 70 31 59 58 71 36 55

15.2 78 71 58 58 / / 59

15.3 31 / 59 78 / / 58

17.1 80 28 68 48 39 0 44

17.2 60 60 19 / 48 46 51

0 mm 0% 9% 0% 0% 0% 33% 0%

Table B.6: LEs in mm of all selected epochs analyzed in the γ band. Errors
equal to zero are colored green, the others are depicted in red. For each phase,
the percentage of correctly localized seizures is indicated.

Pre Clin EEG Phase 2 Phase 3 Phase 4 Post

11.1 51 51 46 / 73 / 73

11.2 75 36 75 / 75 / 77

11.3 69 36 45 / 73 / 75

14.1 13 0 29 / 78 / 31

14.2 0 0 51 / 0 / 78

14.3 N.A. 65 51 / 65 / 65

14.4 52 65 65 / 73 / 46

15.1 59 31 58 59 59 79 79

15.2 79 58 0 79 / / 55

15.3 79 / 58 58 / / 58

17.1 39 58 44 84 80 39 73

17.2 68 48 68 / 68 68 68

0 mm 9% 18% 8% 0% 10% 0% 0%
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Table B.7: LEs in mm of all selected epochs analyzed in the ictal onset
band. Errors equal to zero are colored green, the others are depicted in red.
The percentage of correctly localized seizures is indicated.

Pre Clin EEG Phase 2 Phase 3 Phase 4 Post

11.1 36 0 0 / 17 / 37

11.2 0 56 0 / 75 / 37

11.3 17 54 0 / 51 / 0

14.1 52 13 0 / 46 / 49

14.2 29 0 0 / 0 / 13

14.3 N.A. 35 0 / 0 / 54

14.4 46 52 0 / 51 / 49

15.1 79 70 0 70 20 81 36

15.2 0 68 0 79 / / 70

15.3 20 / 0 68 / / 0

17.1 44 48 0 83 68 68 46

17.2 19 65 0 / 73 83 59

0 mm 18% 18% 100% 0% 20% 0% 17%

Table B.8: LEs in mm of the epochs selected during the seizure, analyzed in
the corresponding FOI. Errors equal to zero are colored green, the others are
depicted in red. The percentage of correctly localized seizures is indicated.

EEG Phase 2 Phase 3 Phase 4

11.1 0 / 0 /

11.2 0 / 0 /

11.3 0 / 51 /

14.1 0 / 46 /

14.2 0 / 0 /

14.3 0 / 0 /

14.4 0 / 0 /

15.1 0 59 20 81

15.2 0 0 / /

15.3 0 0 / /

17.1 0 83 83 68

17.2 0 / 73 83

0 mm 100% 50% 50% 0%
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S, López JD, Vandenberghe S. Bayesian model selection of template
forward models for EEG source reconstruction. NeuroImage, 93:
11–22, 2014.

[100] Montes-Restrepo V, van Mierlo P, Strobbe G, Staelens S,
Vandenberghe S, Hallez H. Influence of skull modeling approaches
on EEG source localization. Brain Topography, 27(1): 95–111, 2014.

[101] Fonov VS, Evans AC, McKinstry RC, Almli C, Collins D.
Unbiased nonlinear average age-appropriate brain templates from
birth to adulthood. NeuroImage, 47: S102, 2009.

[102] Marin G, Guerin C, Baillet S, Garnero L, Meunier G. Influence
of skull anisotropy for the forward and inverse problem in EEG:
simulation studies using FEM on realistic head models. Human
Brain Mapping, 6(4): 250–269, 1998.

[103] Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip:
open source software for advanced analysis of MEG, EEG, and
invasive electrophysiological data. Computational Intelligence and
Neuroscience, 2011: 1, 2011.

[104] Oostendorp TF, Delbeke J, Stegeman DF. The conductivity of the
human skull: results of in vivo and in vitro measurements. IEEE
Transactions on Biomedical Engineering, 47(11): 1487–1492, 2000.

[105] Vorwerk J, Cho JH, Rampp S, Hamer H, Knösche TR, Wolters
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