


Laser-Doppler Vibrometry as Non-Invasive Technique for the Real-Time 
Assessment of Cardiovascular Health

Simeon Beeckman

Doctoral dissertation submitted to obtain the academic degree of
Doctor of Biomedical Engineering

Prof. Patrick Segers, PhD - Prof. Nilesh Madhu, PhD
Department of Electronics and Information Systems
Faculty of Engineering and Architecture, Ghent University

Supervisors



Wettelijk depot: null
NUR 954
ISBN null



Members of the Examination Board

Chair

Prof. Sabine Wittevrongel, PhD, Ghent University

Other members entitled to vote

Danilo Babin, PhD, Ghent University
Kasper Claes, PhD, imec

Prof. Yanlu Li, PhD, Ghent University
Prof. Jef Vandemeulebroucke, PhD, Vrije Universiteit Brussel

Supervisors

Prof. Patrick Segers, PhD, Ghent University
Prof. Nilesh Madhu, PhD, Ghent University





Man Is as Old as His Arteries

Thomas Sydenham (1624–1689)





PREFACE

iii



TABLE OF CONTENTS

Preface iv

Table of contents iv

Abbreviations and symbols xi

Graphical Abstract xvii

Summary xxiv

Samenvatting xxx

1 Introduction 1

1.1 Background and clinical rationale . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 List of peer-reviewed publications . . . . . . . . . . . . . 5

I Clinical Rationale and State-of-the-Art in Pulse Wave

Velocity Estimation 7

2 Clinical rationale 9

2.1 Physiology of the arterial system . . . . . . . . . . . . . . 9

2.1.1 The heart anatomy and function . . . . . . . . . . 9

2.1.2 Arterial function, anatomy and modelling . . . . . 12

2.1.2.1 The windkessel model . . . . . . . . . . 12

2.1.2.2 Arterial wall composition . . . . . . . . 15

2.1.2.3 Compliance and distensibility for arterial

stiffness assessment . . . . . . . . . . . 16

2.1.2.4 Pulse wave propagation . . . . . . . . . 18

2.1.3 Arterial stiffening and associated cardiovascular

disease risk . . . . . . . . . . . . . . . . . . . . . 22

iv



2.2 State-of-the-art in measuring arterial stiffness and its chal-

lenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Arterial tonometry . . . . . . . . . . . . . . . . . 25

2.2.2 MRI . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Laser Doppler vibrometry . . . . . . . . . . . . . . . . . . 29

2.3.1 The InSiDe project and CARDIS device . . . . . . 31

2.4 Biomedical signal processing . . . . . . . . . . . . . . . . 33

2.4.1 The 1D biomedical digital signal . . . . . . . . . . 33

2.4.2 Pattern recognition . . . . . . . . . . . . . . . . . 35

2.4.2.1 Matrix profile . . . . . . . . . . . . . . 35

2.4.2.2 Template matching . . . . . . . . . . . 36

2.4.3 The stochastic nature of biomedical signals . . . . 37

2.4.3.1 Beamforming . . . . . . . . . . . . . . 38

2.4.3.2 Independent component analysis (ICA) . 40

2.4.4 Machine learning . . . . . . . . . . . . . . . . . . 42

2.4.4.1 Supervised learning and logistic regression 42

2.4.4.2 Deep learning . . . . . . . . . . . . . . 45

II Laser-Doppler Vibrometry Carotid-Femoral Signal-

Quality Enhancement and Pulse Transit Time

Estimation 51

3 Laser Doppler Vibrometry Signal Quality for Carotid-

Femoral Pulse Wave Velocity 53

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Materials and methods . . . . . . . . . . . . . . . . . . . 56

3.3.1 The CARDIS device . . . . . . . . . . . . . . . . 56

3.3.2 Study population and available database . . . . . . 57

3.3.3 Visual scoring of the data . . . . . . . . . . . . . . 58

3.3.4 Template matching . . . . . . . . . . . . . . . . . 58

3.3.4.1 Constructing the templates . . . . . . . 60

3.3.4.2 Template matching and beat selection . . 61

3.3.4.3 LDV traces classification based on tem-

plate matching - finding threshold values 63

3.3.4.4 LDV traces classification based on tem-

plate matching - defining quality score

and testing on the CARDIS dataset . . . 65

3.3.4.5 A logistic regression model for signal

classification based on template matching 66

3.3.5 Matrix profile . . . . . . . . . . . . . . . . . . . . 67

v



TABLE OF CONTENTS

3.3.5.1 Signal classification based on the matrix

profile . . . . . . . . . . . . . . . . . . 67

3.3.5.2 A logistic regression model based on the

matrix profile . . . . . . . . . . . . . . 69

3.3.6 Relation between signal quality and physiological

variables . . . . . . . . . . . . . . . . . . . . . . 69

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4.1 Visual scoring . . . . . . . . . . . . . . . . . . . . 69

3.4.1.1 Carotid-carotid measurements . . . . . . 69

3.4.1.2 Carotid-femoral measurements . . . . . 70

3.4.2 Template matching . . . . . . . . . . . . . . . . . 70

3.4.2.1 Carotid-carotid (CC) measurements . . . 70

3.4.2.2 Carotid-femoral (CF) measurements . . 73

3.4.3 Matrix profile . . . . . . . . . . . . . . . . . . . . 74

3.4.3.1 Quality metric results . . . . . . . . . . 74

3.4.3.2 Logistic regression models performance 74

3.4.4 Signal quality vs. physiological variables . . . . . 75

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 Beamforming Laser Doppler Vibrometer Sensor Arrays 81

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Materials & baseline method . . . . . . . . . . . . . . . . 84

4.2.1 The CARDIS database . . . . . . . . . . . . . . . 84

4.2.2 Brute-force PTT estimation . . . . . . . . . . . . 85

4.3 Beamforming for PTT estimation . . . . . . . . . . . . . . 87

4.3.1 Signal model . . . . . . . . . . . . . . . . . . . . 87

4.3.2 Time alignment of the sm(n) . . . . . . . . . . . . 88

4.3.3 Compensating for αm . . . . . . . . . . . . . . . . 89

4.3.4 Estimating wm and the enhanced signal y(n) . . . . 90

4.3.5 Beamformer-driven ICA . . . . . . . . . . . . . . 92

4.4 Experimental results and discussion . . . . . . . . . . . . 93

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.6 Addendum . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.6.1 Premise of the expanded analysis . . . . . . . . . 98

4.6.2 Expanded results and discussion . . . . . . . . . . 98

5 Real-Time Pulse Wave Velocity Estimation 101

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 Materials and methods . . . . . . . . . . . . . . . . . . . 104

5.2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . 104

5.2.2 LDV device . . . . . . . . . . . . . . . . . . . . . 105

vi



5.2.3 Automatic algorithm for PTT and PWV estimation 106

5.2.3.1 Identification of the fiducial points . . . 107

5.2.3.2 Automatic quality control . . . . . . . . 109

5.2.3.3 PTT estimation . . . . . . . . . . . . . 111

5.2.4 Validation and Ablation Analysis . . . . . . . . . 114

5.2.4.1 Validation of cfPWV estimation . . . . . 114

5.2.4.2 Confidence level of the cfPWV estimation 114

5.2.4.3 Ablation analysis . . . . . . . . . . . . 115

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3.1 Validation of the algorithm . . . . . . . . . . . . . 116

5.3.1.1 Validation of cfPWV estimation . . . . . 116

5.3.2 Threshold tuning and ablation analysis . . . . . . . 117

5.3.3 Beat-to-beat analysis . . . . . . . . . . . . . . . . 119

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 122

III Investigating Heart-Carotid Pulse Transit Time for Ar-

terial Stiffness Assessment 125

6 Heart-Carotid Pulse-Transit Time 127

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.1.1 Carotid-femoral pulse-wave velocity . . . . . . . . 129

6.1.2 Heart-carotid pulse-wave velocity . . . . . . . . . 129

6.2 Materials & methods . . . . . . . . . . . . . . . . . . . . 131

6.2.1 The LDV-prototype specifications . . . . . . . . . 131

6.2.2 Study population and data collection . . . . . . . . 131

6.2.3 Analysis of heart-carotid LDV data . . . . . . . . 132

6.2.3.1 Data properties & preprocessing . . . . 132

6.2.3.2 Heart-carotid pulse-transit time calculation133

6.2.3.3 Heart-carotid PTT with age and blood

pressure . . . . . . . . . . . . . . . . . 136

6.2.3.4 Intra- and inter-operator variability . . . 136

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.3.1 Correlation with clinical parameters and sphygmo-

cor cfPTT . . . . . . . . . . . . . . . . . . . . . . 137

6.3.2 Relation between hcPTT methods . . . . . . . . . 138

6.3.3 Intra- and inter-operator variability . . . . . . . . . 140

6.3.4 Sphygmocor cfPTT agreement with clinical para-

meters . . . . . . . . . . . . . . . . . . . . . . . . 142

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.4.1 Feasibility of LDV-based hcPTT . . . . . . . . . . 145

vii



TABLE OF CONTENTS

6.4.2 hcPTT as biomarker of arterial stiffness? . . . . . 146

6.4.3 LDV-based hcPTT compared to other techniques . 148

6.4.4 Study limitations . . . . . . . . . . . . . . . . . . 149

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 149

7 Deep-Learning Based ECG-free Heart-Carotid Pulse Transit

Time Estimation 151

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.1.1 Pulse transit time estimation . . . . . . . . . . . . 152

7.1.2 Automated PTT estimation . . . . . . . . . . . . . 154

7.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.2.1 Applied principle for PTT calculation . . . . . . . 156

7.2.2 Manual PTT estimate (reference method) . . . . . 156

7.2.3 ECG-based automated PTT estimation . . . . . . . 157

7.2.4 Template matching-based PTT estimation . . . . . 158

7.2.5 Data-driven PTT approach . . . . . . . . . . . . . 160

7.2.5.1 ECG-proxy as learning target . . . . . . 160

7.2.5.2 DNN structure and training . . . . . . . 161

7.2.5.3 Application to PTT calculation . . . . . 163

7.2.6 Experiment . . . . . . . . . . . . . . . . . . . . . 166

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.4.1 DNN-model validation for heartbeat onset prediction 169

7.4.2 TM- vs DNN-based PTT estimation . . . . . . . . 171

7.4.3 Future applications . . . . . . . . . . . . . . . . . 172

7.4.4 Remaining challenges . . . . . . . . . . . . . . . 173

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 173

IV Conclusions 175

8 Conclusions and Perspectives 177

8.1 Signal quality . . . . . . . . . . . . . . . . . . . . . . . . 177

8.2 The potential of heart-carotid PWV . . . . . . . . . . . . 179

8.3 Deep learning application and findings . . . . . . . . . . . 180

8.4 Alternative tools for arterial pulse detection . . . . . . . . 181

8.5 The InSiDe-alpha device . . . . . . . . . . . . . . . . . . 184

8.6 Final thoughts . . . . . . . . . . . . . . . . . . . . . . . . 184

V Appendices 187

viii



A Appendix 189

Acknowledgements 192

Bibliography 193

ix





ABBREVIATIONS AND SYMBOLS

The following list summarizes the most commonly used abbreviations and

symbols in this dissertation.

Abbreviations

1D One-Dimensional

3D Three-Dimensional

CVD Cardiovascular Disease

LDV Laser Doppler Vibrometry

SNR Signal-to-Noise Ratio

ECG Electrocardiography

PCG Phonocardiography

SCG Seismocardiography

PPG Photoplethysmography

EEG Electroencephalography

MRI Magnetic Resonance Imaging

PC-MRI Phase-Contrast Magnetic Resonance Imaging

DNN Deep Neural Network

ICA Independent Component Analysis

AI Artificial Intelligence

ReLU Rectified Linear Unit

ROC Receiver Operating Characteristic

AUC Area Under Curve

BMI Body Mass Index

CC Carotid-Carotid

CF Carotid-Femoral

HP1 Handpiece One

HP2 Handpiece Two

CCT Cross-Correlation Threshold

BQT Beat-Quality Threshold

RQT Recording-Quality Threshold

SD Standard Deviation

xi



ABBREVIATIONS AND SYMBOLS

DN Dicrotic Notch

PAT Pulse Arrival Time

Base LDV probe positioned at the base of the heart

Apex LDV probe positioned at the apex of the heart

MC Mitral Valve Closure

IVC Isovolumic Contraction

AO Aortic Valve Opening

RE Rapid Ventricular Ejection

AC Aortic Valve Closure

MO Mitral Valve Opening

RF Rapid Ventricular Filling

S2 Second Heart Sound

DBP Diastolic Blood Pressure

SBP Systolic Blood Pressure

OP Operator

CV Coefficient of Variation

SE Standard Error

US Ultrasound

PEP Pre-Ejection Period

TM Template Matching

MSE Mean Squared Error

MP Matrix Profile

Symbols

dx Distance between LDV measurement sites [m]

CA Area compliance [mm2/mmHg]

∂A Change in cross-sectional area [mm2]

∂P Change in intra-arterial pressure [N]

DA Distensibility [1/mmHg]

C Capacitance [mL/mmHg]

Tsys Duration of systole [s]

PP Pulse pressure [mmHg]

SV Stroke volume [mL]

TAC Total arterial compliance [mL/mmHg]

np,i Sample index of the i-th R-peak [/]

δ (n) Kronecker delta function [/]

E ′(n) Target signal derived from convolved ECG pulse train [a.u.]

g(n) Gaussian filter function [/]

QR R-peak score: ratio of correctly predicted R-peaks to total R-

peaks [/]

xii



ABBREVIATIONS AND SYMBOLS
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SUMMARY

SHORT ABSTRACT

BACKGROUND: Cardiovascular disease (CVD) is the leading cause of

death in economically developed countries, of which a significant subset is

untimely. Additionally, the socio-economic impact of non-fatal cardiovas-

cular events such as stroke or myocardial infarction, highlights the need

for accessible screening tools. Existing technologies are often costly, re-

quire operator expertise, and are confined to dedicated medical facilities.

The InSiDe-project aims to introduce a novel, user-friendly cardiovascular

screening technique using laser Doppler vibrometry (LDV), which meas-

ures skin displacement caused by cardiac pulses. By assessing pulse transit

time (PTT) between the carotid and femoral artery measurement sites, the

system estimates pulse wave velocity (PWV) – a key biomarker of arterial

stiffness and CVD risk. This thesis explores the potential applications of

LDV in enhancing arterial stiffness assessment.

PART II: LDV enables a fast and non-invasive (potentially even non-

contact) acquisition of cardiovascular signals but suffers from the com-

plexity and interpretability of the measured signals and inconsistent signal

quality, both across and within subjects. To address this, a real-time signal-

quality metric was developed using features of recurring heartbeat related

patterns, exploring two distinct signal pattern detection techniques: matrix

profile and template matching. This can guide operators during measure-

ments to improve overall signal quality. Algorithms were then created to

compute PTT using these patterns. It was found that both methods allowed

for reliable pattern detection leading to indicative quality metrics.

Besides detecting patterns, we also explored a method to en-

hance the quality of the signals to process. Using ’beamforming’,

we exploited the availability of multiple LDV-channels (6 signals per

handpiece/measurement site) to enhance signal quality. Signals were

time-aligned and combined using weights based on signal-to-noise ratios.

It was found that analysis based on beamformed signals yielded a more

robust PTT estimate than benchmark methods.

xix



SUMMARY

PART III: While carotid-femoral PWV is a clinically feasible and well-

accepted standard method to assess arterial stiffness, it cannot measure the

stiffness of the most compliant segment of the aorta. Therefore, we ex-

plored an alternative PWV-pathway from the heart to the carotid artery,

which includes the ascending aorta. A feasibility study assessed four ways

to estimate heart-carotid PTT using two measuring positions on the heart

and two different features on the signals measured on the heart and carotid

artery, associated with opening and closure of the aortic valve. The most

effective method used the second heart sound (aortic valve closure) and

carotid dicrotic notch, with the LDV probe aimed at the base of the heart

where the most consistent signals could be recorded.

During the development phase, we always co-registered the ECG sig-

nal to support signal processing and to provide a reference indication of

the onset of cardiac contraction. Future LDV technology, however, should

not include ECG. We therefore developed a deep neural network (DNN)

to infer heartbeat timings from carotid LDV signals alone. This enabled

ECG-free segmentation of heartbeats and automated heart-carotid PTT cal-

culation with a stronger agreement to ground-truth.

CONCLUSION: This work presents algorithmic enhancements to an

LDV prototype for improved cardiovascular assessment. Real-time signal

quality metrics and beamforming techniques support carotid-femoral PTT

estimation, while a deep learning model enables ECG-free heart-carotid

PTT measurement. The heart-carotid pathway shows potential as a com-

plementary biomarker to carotid-femoral PWV. Despite promising results,

broader clinical adoption requires improved hardware and signal stability

to overcome current limitations.

LONG ABSTRACT

BACKGROUND

Cardiovascular disease (CVD) is responsible for about one-third of

all deaths in economically developed countries, with many considered

untimely. Non-fatal events like stroke, heart attacks, and heart failure

also have major personal and societal consequences. To assess CVD risk,

especially in people with hypertension, clinicians often use the SCORE2

and SCORE2-OP models. These tools estimate the 10-year risk of fatal

and non-fatal cardiovascular events in individuals aged 40 and older.

The 2024 European Society of Cardiology guidelines recommend using

additional risk assessment tools for people under 40 with risk factors like

high blood pressure, smoking, or obesity. These tools are also useful

for those with borderline clinical indicators. Supplementary diagnostics

xx

Jef Vandemeulebroucke



such as ECG, vascular ultrasound, and arterial stiffness measurements are

advised in these cases.

Arterial stiffness, which increases with age, is a strong predictor of car-

diovascular disorders. It is commonly measured using pulse wave velocity

(PWV), which reflects how fast a pulse wave travels through the arteries.

PWV is typically derived from the pulse transit time (PTT), defined as the

temporal delay between the arrival of the pulse wave at two anatomically

distinct measurement sites, divided by the distance separating these sites.

Higher PWV indicates stiffer arteries and greater cardiovascular risk. Tra-

ditional PWV measurement methods like MRI, ultrasound, and applanation

tonometry are often expensive, require expert operators, and are typically

limited to specialized medical facilities. These limitations have driven in-

terest in alternative approaches to assess PWV.

One promising method is laser Doppler vibrometry (LDV), which uses

laser light to infer vibrations – originating from cardiac contraction and

the propagating pulse – on the skin surface with minimal contact. When

applied to the neck and groin simultaneously, LDV can measure carotid-

femoral PWV. This technique has been developed and tested in EU-funded

projects (CARDIS and InSiDe), resulting in a working prototype used in

two clinical studies (named CARDIS and InSiDe) and each involving 100

patients. To support the development of the device, parallel development

of algorithms to extract clinically relevant information from LDV measure-

ments was necessary.

The PhD pursued three primary objectives. First, it aimed to develop

a real-time signal quality index to enhance the reliability and efficiency of

pulse wave velocity (PWV) measurements by enabling the identification

of high-quality signal segments during acquisition. Second, a pseudo real-

time algorithm for estimating carotid-femoral PWV was to be implemen-

ted, allowing for near-instantaneous analysis and feedback suitable for clin-

ical settings. Third, the feasibility of heart-carotid PWV as an alternative

biomarker for arterial stiffness was investigated, with the goal of expanding

the diagnostic toolkit for vascular health assessment.

PART II: Laser-Doppler vibrometry carotid-femoral signal-quality

enhancement and pulse transit time estimation

LDV offers a non-invasive and relatively rapid method for assessing arter-

ial stiffness, but its effectiveness can be limited by variable signal quality.

This variability is observed both across subjects, within a subject over the

duration of the measurement and over the six sensors within a single LDV

handpiece. To address this, a real-time signal quality metric was developed,

designed to enhance measurement reliability by guiding the operator during
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acquisition. The metric was based on features extracted from automatically

detected recurring patterns in the LDV signals, presumed to correspond to

heartbeat-induced perturbations. Two algorithms – matrix profile analysis

and template matching – were employed for pattern detection. This quality

metric was integrated into the measurement interface to provide real-time

feedback.

Building upon insights gained from the signal quality analysis, ded-

icated algorithms were developed for PTT estimation, utilizing the previ-

ously identified waveform patterns to enable robust and automated feature

extraction. The resulting algorithm, termed CAPE (Continuous Automatic

PWV Estimation), employs template matching for the automated selection

of fiducial points and facilitates beat-to-beat analysis of LDV signals in

near real-time. CAPE was evaluated using a multichannel LDV database

comprising 100 patients (CARDIS: 50 male, 50 female). By incorporat-

ing real-time signal quality control, the framework selectively analyzed

high-quality data segments. In the subset of patients meeting these qual-

ity criteria, CAPE demonstrated strong concordance with reference meas-

urements obtained via applanation tonometry, confirming its potential for

reliable and efficient carotid-femoral PWV estimation in clinical settings.

To further improve signal fidelity, a beamforming approach was in-

troduced, exploiting the multidimensional nature of the LDV data. This

method aligned the six sensor signals in time and combined them into a

single trace with enhanced signal-to-noise ratio (SNR), using a segment-

wise weighted sum based on blind SNR estimation. Template matching

performed on the resulting beamformed signals yielded more robust PTT

estimates compared to conventional methods. This was tested on a high-

quality subset of the CARDIS database.

PART III: Investigating heart-carotid pulse transit time for arterial

stiffness assessment

Although carotid-femoral PWV remains the clinical reference standard due

to its extensive validation, alternative measurement pathways may provide

complementary insights into arterial stiffness, particularly in vascular re-

gions not encompassed by the standard route. One such alternative is the

heart-carotid pathway, which includes the proximal ascending aorta, con-

tributing most to the buffering capacity of the aorta due to its high com-

pliance. A feasibility study was conducted using LDV data from the IN-

SIDE clinical trial, comprising 100 participants (55 male, 45 female), to

evaluate the potential of this pathway. The study investigated two heart

measurement sites – specifically, LDV probe placement at the right second

intercostal space (close to the base of the heart) and the fifth left intercostal
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space (close to the apex of the heart) – in combination with two heart-

carotid fiducial point combinations for PTT estimation: (i) the first heart

sound paired with the foot of the carotid pulse wave, and (ii) the second

heart sound paired with the carotid dicrotic notch. This resulted in four

heart-carotid PTT estimation strategies. The derived PTT values were ana-

lyzed for correlation with established markers of arterial stiffness, including

age and systolic blood pressure. The most robust method, demonstrating

the highest statistically significant correlations and the lowest inter- and

intra-operator variability, involved targeting the base of the heart and using

the second heart sound in conjunction with the carotid dicrotic notch for

PTT calculation.

During the development phase, ECG was measured in parallel with

LDV as support for algorithmic validation. As future LDV systems are

not expected to incorporate electrocardiography (ECG) functionality, an

alternative approach was required to enable automated segmentation of

cardiac cycles for heart-carotid PTT estimation. To address this, a deep

neural network (DNN) architecture was developed and trained on carotid

LDV signals to predict the onset of cardiac cycles, thereby enabling ECG-

independent heartbeat segmentation. During training, the target output was

not the raw ECG signal but a simplified proxy signal encoding only the

relevant temporal markers for heartbeat onset detection. This abstraction

facilitated effective learning of the underlying cardiac rhythm from LDV

data alone. The resulting DNN-based method enabled fully automated

heart-carotid PTT estimation, demonstrating strong correlation with ref-

erence values obtained in the heart-carotid feasibility study. Notably, this

approach proved more inclusive than traditional template-matching tech-

niques, yielding valid PTT estimates for a significantly larger proportion of

the patient cohort.

CONCLUSION

This work introduced several algorithmic advancements to enhance the per-

formance of an existing LDV prototype. Real-time signal quality metrics

support optimal device positioning, while beamforming improves the ro-

bustness of PTT estimation. The heart-carotid pathway was validated as

a potential complementary biomarker to carotid-femoral PWV. Finally, a

deep learning-based method was developed to enable automated, ECG-free

heart-carotid PTT estimation, with the potential to broaden the applicability

of the methodology to scenarios involving sparse physiological signals.

LDV has demonstrated its potential for accurate arterial stiffness assess-

ment in patients exhibiting high SNR measurements. However, despite the

integration of a real-time signal quality index, the technique remains sus-

ceptible to signal degradation, which can limit applicability across broader
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patient populations. To position LDV as a competitive alternative to current

state-of-the-art arterial stiffness assessment technologies, further advance-

ments in hardware design and signal acquisition stability are essential.
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SAMENVATTING

KORTE SAMENVATTING

ACHTERGROND: Cardiovasculaire aandoeningen vormen de belangrijk-

ste doodsoorzaak in economisch ontwikkelde landen, waarvan een aanzien-

lijk deel als voortijdig overlijden wordt beschouwd. De socio-economische

gevolgen van niet-fatale cardiovasculaire gebeurtenissen, zoals beroertes en

hartinfarcten, zijn bijzonder groot en hadden mogelijk kunnen worden ver-

meden mits toegankelijke screeningsmethoden. Bestaande technologieën

voor screening zijn vaak duur, vereisen gespecialiseerde vaardigheden van

de gebruiker en worden enkel gehanteerd in gespecialiseerde medische

centra. Het InSiDe-project beoogt een innovatieve, gebruiksvriendelijke

screeningstechniek te introduceren op basis van laser-Doppler vibromet-

rie (LDV). LDV laat toe om kleine huidverplaatsingen, veroorzaakt door

het kloppende hart en de arteriële puls in slagaders, op te meten. Door

de pulstransittijd (PTT) tussen de meetlocaties op de arteria carotis (hals)

en arteria femoralis (lies) te bepalen, kan het systeem de polsgolfsnelheid

(PWV) schatten, die een belangrijke biomarker voor arteriële stijfheid en

cardiovasculair risico is.

DEEL II: LDV laat toe om op een snelle en niet-invasieve manier

cardiovasculaire signalen te registreren, maar wordt beperkt door de

complexiteit en moeilijke interpretatie van de gemeten signalen alsook

door een inconsistente signaalkwaliteit, wat leidt tot een grote variabiliteit

van signalen en signaalkwaliteit zowel tussen als binnen proefpersonen.

Om dit probleem aan te pakken werd een realtime signaalkwaliteitsindex

ontwikkeld, gebaseerd op kenmerken van terugkerende hartslaggerelat-

eerde patronen in het signaal. We onderzochten hierbij twee verschillende

patroonherkenningstechnieken: matrixprofielanalyse en template match-

ing. Deze kwaliteitsindex helpt de operator tijdens de meting om de

algehele signaalkwaliteit te verbeteren. Vervolgens werden algoritmen

ontwikkeld om PTT te berekenen op basis van deze herkende patronen.

Beide methoden bleken betrouwbare patroonherkenning mogelijk te

maken, wat leidde tot kwaliteitsmetingen die indicatief waren voor het

kwaliteitsniveau van inkomende meetdata.
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Naast patroonherkenning werd ook onderzocht hoe de signaalkwaliteit

zelf verbeterd kon worden (na de metingen), waarbij gebruik kan worden

gemaakt van het gegeven dat op één enkele meetlocatie 6 parallelle kanalen

worden geregistreerd. Met behulp van ‘beamforming’ kunnen deze kanalen

in de tijd worden uitgelijnd en gecombineerd via gewichten gebaseerd op

signaal-ruisverhoudingen, om tot één samengesteld en kwalitatiever sig-

naal te komen. Analyse op basis van deze beamformed signalen leverde

robuustere PTT-schattingen op dan de betrokken referentiemethoden.

DEEL III: Hoewel hals-lies PWV momenteel een klinisch haalbare en

goed geaccepteerde standaard is voor het beoordelen van arteriële stijfheid,

kan deze methode geen inzicht verschaffen in de eigenschappen van de

meest elastische segmenten van de aorta. Daarom werd een alternatieve

PWV-route onderzocht, rechtstreeks van het hart naar de halsslagader,

die wél het meest elastische segment (de opstijgende aorta) omvat. In

een haalbaarheidsstudie werden vier methoden voor het schatten van de

hart-hals PTT geëvalueerd, gebaseerd op twee meetposities op het hart en

twee verschillende signaalkenmerken gemeten ter hoogte van het hart en

de halsslagader. Deze twee kenmerken waren gerelateerd aan het openen

en sluiten van de aortaklep. De methode waarbij gebruik werd gemaakt

van het tweede hartgeluid (sluiting van de aortaklep) en de dicrotische

notch in het carotissignaal, met de LDV-sonde gericht op de basis van het

hart, bleek meest effectief met de meest consistente signalen.

Tijdens de ontwikkelingsfase werd het electrocardiografie-signaal

(ECG) steeds mee geregistreerd ter ondersteuning van de signaalver-

werking en als referentie voor het identificeren van het begin van de

hartcontractie. Aangezien toekomstige LDV-systemen geen ECG-

functionaliteit zullen bevatten, werd een diep neuraal netwerk (DNN)

ontwikkeld om het begin van de hartcontractie rechtstreeks uit de

carotis-LDV-signalen af te leiden. Op die manier kunnen LDV-signalen

eenduidiger worden gesegmenteerd, onafhankelijk van het ECG, wat beter

toelaat om hart-hals PTT op een geautomatiseerde manier te berekenen,

met een sterke overeenkomst met manueel bepaalde referentiewaarden.

CONCLUSIE: Dit doctoraatsonderzoek leverde meerdere verbeterin-

gen op voor LDV-gebaseerde metingen van arteriële stijfheid en verhoogt

het potentieel voor klinische toepassing van LDV in cardiovasculaire op-

volging.

LANGE SAMENVATTING

ACHTERGROND

Cardiovasculaire aandoeningen (CVD) zijn verantwoordelijk voor

ongeveer een derde van alle sterfgevallen in economisch ontwikkelde
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landen, waarvan een aanzienlijk deel als voortijdig overlijden wordt

beschouwd. Niet fatale gebeurtenissen zoals beroertes, hartinfarcten en

hartfalen hebben eveneens ingrijpende persoonlijke en maatschappelijke

gevolgen. Om het risico op CVD te beoordelen, vooral bij personen met

hypertensie, maken artsen vaak gebruik van de SCORE2- en SCORE2-OP

modellen. Deze modellen laten toe om het 10-jaarsrisico op zowel fatale

als niet fatale cardiovasculaire gebeurtenissen te schatten bij personen van

40 jaar en ouder. Voor personen jonger dan 40 jaar met risicofactoren

zoals hoge bloeddruk, roken of obesitas heeft de European Society of

Cardiology in 2024 een nieuwe richtlijn opgesteld, waarbij ze aanbeveelt

om aanvullende risicobeoordelingsinstrumenten te gebruiken om het

CVD risico correcter te kunnen inschatten. Deze instrumenten zijn ook

nuttig voor patiënten met klinische grenswaarden voor bijvoorbeeld de

bloeddruk. In dergelijke gevallen worden aanvullende diagnostische

technieken zoals ECG, vasculaire echografie en metingen van arteriële

stijfheid aanbevolen.

Arteriële stijfheid, die toeneemt met de leeftijd, is een sterke voor-

speller van cardiovasculaire aandoeningen. Arteriële stijfheid wordt door-

gaans onrechtstreeks gemeten via de polsgolfsnelheid (PWV), die de snel-

heid weergeeft waarmee een drukgolf zich door de slagaders voortplant.

PWV wordt meestal afgeleid uit de pulstransittijd (PTT), gedefinieerd als

de tijdsvertraging tussen de aankomst van de puls op twee anatomisch ver-

schillende meetlocaties, gedeeld door de afstand tussen deze locaties. Een

hogere PWV duidt op stijvere slagaders en een verhoogd risico op cardi-

ovasculaire aandoeningen. Traditionele methoden om PWV te meten zoals

MRI, echografie en applanatietonometrie zijn vaak duur, vereisen gespe-

cialiseerde vaardigheden van de gebruiker en zijn doorgaans beperkt tot

gespecialiseerde medische centra. Deze beperkingen hebben geleid tot een

toenemende interesse in alternatieve methoden voor het meten van PWV.

Een veelbelovende methode is laser-Doppler vibrometrie (LDV), waar-

bij laserlicht wordt gebruikt om trillingen op het huidoppervlak, veroorz-

aakt door het samentrekken van het hart en de propagerende arteriële puls,

met minimale contactbelasting te detecteren. Wanneer LDV gelijktijdig

wordt toegepast op de hals en lies, kan de carotis-femorale PWV worden

gemeten. Deze techniek werd ontwikkeld en getest in twee aansluitende

door de EU gefinancierde projecten (CARDIS en InSiDe), wat resulteerde

in een werkend LDV-prototype dat werd ingezet in twee klinische stud-

ies (verder CARDIS en InSiDe genoemd) met in totaal elk 100 patiën-

ten. Ter ondersteuning van de ontwikkeling van het apparaat was paral-

lelle ontwikkeling van algoritmen nodig om klinisch relevante informatie

uit LDV-metingen te extraheren.

xxvii



SAMENVATTING

Het doctoraatsonderzoek, uitgevoerd binnen de context van het InSiDe

project, had drie hoofddoelstellingen. Ten eerste werd beoogd een realtime

signaalkwaliteitsindex te ontwikkelen om de betrouwbaarheid en efficiëntie

van PWV-metingen te verbeteren door het identificeren van hoogwaardige

signaalsegmenten tijdens de meting. Ten tweede was het de doelstelling om

een pseudo realtime algoritme te implementeren voor het schatten van de

hals-lies PWV, met als doel onmiddellijke analyse en feedback mogelijk te

maken in een klinische context. Ten derde werd de haalbaarheid onderzocht

van hart-hals PWV als alternatieve biomarker voor arteriële stijfheid, met

als doel het uitbreiden van het diagnostisch arsenaal voor de beoordeling

van vasculaire gezondheid.

DEEL II: Verbetering van signaalkwaliteit en schatting van

pulstransittijd met Laser-Doppler Vibrometrie voor de

carotis-femorale route

Laser-Doppler Vibrometrie (LDV) biedt een niet invasieve en relatief snelle

methode voor het beoordelen van arteriële stijfheid, maar de effectiviteit

ervan wordt beperkt door een sterk variabele signaalkwaliteit. Deze vari-

abiliteit doet zich zowel voor tussen verschillende proefpersonen, binnen

de meting van één proefpersoon en tussen de zes verschillende sensoren

binnen één enkele LDV-meetkop. Om dit probleem aan te pakken, werd

een realtime signaalkwaliteitsindex ontwikkeld die de betrouwbaarheid van

de metingen verhoogt door de operator tijdens de meting te begeleiden.

Deze index is gebaseerd op kenmerken die worden geëxtraheerd uit auto-

matisch gedetecteerde terugkerende patronen in de LDV-signalen, waar-

van wordt aangenomen dat ze overeenkomen met hartslaggerelateerde ver-

storingen. Twee algoritmen, matrixprofielanalyse en template matching,

werden toegepast voor patroonherkenning. De kwaliteitsindex werd geïn-

tegreerd in de meetinterface om realtime feedback te bieden.

Vervolgens werden specifieke algoritmen ontwikkeld voor de schatting

van de pulstransittijd (PTT), waarbij de eerder geïdentificeerde golfvorm-

patronen werden benut voor een robuuste en geautomatiseerde extractie

van kenmerkende punten op de gemeten golfvormen. Het resulterende al-

goritme, CAPE (Continuous Automatic PWV Estimation), maakt gebruik

van template matching voor de automatische selectie van kenmerkpunten

en maakt beat-to-beat analyse van LDV-signalen in quasi realtime mo-

gelijk. CAPE werd geëvalueerd op basis van de CARDIS LDV-databank

(50 mannen, 50 vrouwen). Integratie van realtime signaalkwaliteitscontrole

laat toe om een meer selectieve analyse uit te voeren, op basis van hoog-

waardige signaalsegmenten. Binnen de subset van patiënten die aan min-

imale kwaliteitscriteria voldeden, toonde CAPE een sterke overeenkomst
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met referentiemetingen verkregen via applanatie tonometrie, wat de bet-

rouwbaarheid en klinische toepasbaarheid van het systeem bevestigt voor

het schatten van hals-lies PWV.

Om de signaalintegriteit verder te verbeteren, werd een ’beamforming’

benadering geïntroduceerd die de beschikbaarheid van data gemeten lang-

sheen 6 parallelle kanalen optimaal benut. Deze methode synchroniseert

de zes sensorkanalen in de tijd en combineert ze tot één verbeterd signaal

met een verhoogde signaal-ruisverhouding (SNR), via een segmentgewo-

gen som gebaseerd op blinde SNR-schatting. Template matching toegepast

op deze beamformed signalen resulteerde in robuustere PTT-schattingen

dan conventionele methoden. Deze aanpak werd gevalideerd op een subset

van hoge kwaliteit binnen de CARDIS-database.

DEEL III: Onderzoek naar hart-carotis pulstransittijd voor de

beoordeling van arteriële stijfheid

Hoewel hals-lies PWV de klinische referentiestandaard blijft vanwege de

uitgebreide validatie, kunnen alternatieve meetposities aanvullende in-

zichten bieden in arteriële stijfheid, met name in vaatsegmenten die buiten

het bereik van de standaardmethode vallen, zoals het meest elastische

deel van de aorta. Een van deze alternatieven is de hart-hals route, die

wel de proximale opstijgende aorta omvat. Dit deel van de aorta draagt

het meest bij aan de bufferfunctie van de gehele slagader vanwege haar

hoge compliantie. In het kader van een haalbaarheidsstudie werd hart-hals

PWV geëvalueerd aan de hand van LDV-data uit de InSiDe klinische

studie, bestaande uit 100 deelnemers (55 mannen, 45 vrouwen). Er werden

hierbij twee meetlocaties op het hart onderzocht, namelijk plaatsing van de

LDV-sonde op de tweede intercostale ruimte rechts (dicht bij de hartbasis)

en de vijfde intercostale ruimte links (dicht bij de apex van het hart). Deze

twee locaties werden elk gecombineerd met twee combinaties van fiduciale

punten voor PTT-bepaling: (i) het eerste hartgeluid gecombineerd met het

begin van de carotispuls, en (ii) het tweede hartgeluid gecombineerd met

de dicrotische notch in het carotissignaal. Dit resulteerde in vier strategieën

voor het schatten van de hart-hals PTT. De verkregen PTT-waarden werden

geanalyseerd op correlatie met bekende determinanten van arteriële

stijfheid, waaronder leeftijd en systolische bloeddruk. De meest robuuste

methode, met de hoogste statistisch significante correlaties en de laagste

inter- en intra-operatorvariabiliteit, betrof de meting aan de basis van het

hart en gebruik van het tweede hartgeluid in combinatie met de dicrotische

notch.

In de haalbaarheidsstudie werd het electrocardiogram (ECG) mee

opgemeten als referentie voor het identificeren van de start van de
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hartcontractie. Aangezien toekomstige LDV-systemen naar verwachting

geen ECG zullen bevatten, was een alternatieve aanpak nodig om auto-

matische segmentatie van hartcycli voor hart-hals PTT mogelijk te maken.

Hiervoor werd een diep neuraal netwerk (DNN) ontwikkeld en getraind op

carotis-LDV-signalen om het begin van hartcycli te voorspellen, waardoor

ECG-onafhankelijke segmentatie van hartslagen mogelijk werd. Tijdens

de training werd niet het ruwe ECG-signaal gebruikt als doeluitvoer,

maar een vereenvoudigd proxiesignaal dat enkel de relevante temporele

markers voor het detecteren van de start van de hartcontractie bevatte.

Deze abstractie maakte effectieve training mogelijk op basis van LDV-data

alleen. De resulterende DNN-gebaseerde methode maakte volledig geauto-

matiseerde hart-hals PTT-bepaling mogelijk, met een sterke correlatie met

de referentiewaarden uit de haalbaarheidsstudie. Opmerkelijk is dat deze

aanpak inclusiever bleek dan traditionele template-matching technieken,

doordat ze bij een aanzienlijk groter deel van de patiëntengroep geldige

PTT-schattingen opleverde.

CONCLUSIE

Dit werk introduceerde verschillende algoritmische verbeteringen om

de prestaties van een bestaand LDV-prototype voor het meten van

arteriële stijfheid te optimaliseren. Realtime signaalkwaliteitsmetingen

ondersteunen een optimale positionering van het apparaat, terwijl

beamforming de robuustheid van de PTT-schatting verhoogt. De hart-hals

route werd gevalideerd als een potentiële aanvullende biomarker naast de

hals-lies PWV. Ten slotte werd een op deep learning gebaseerde methode

ontwikkeld om geautomatiseerde, ECG-vrije hart-hals PTT-schatting

mogelijk te maken, met het potentieel om de methode uit te breiden naar

alternatieve klinische toepassingen van LDV.

LDV heeft zijn potentieel aangetoond voor nauwkeurige beoordeling

van arteriële stijfheid bij patiënten met metingen met een hoge signaal-

ruisverhouding. Desondanks blijft de techniek, zelfs met de integratie van

een realtime signaalkwaliteitsindex, gevoelig voor signaaldegradatie, wat

de toepasbaarheid bij een bredere populatie kan beperken. Om LDV te

positioneren als een volwaardig alternatief voor de huidige geavanceerde

technologieën voor het meten van arteriële stijfheid, zijn verdere verbe-

teringen in hardwareontwerp en stabiliteit van signaalacquisitie essentieel.
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1
INTRODUCTION

1.1 BACKGROUND AND CLINICAL RATIONALE

Cardiovascular disease (CVD) accounts for approximately one-third of all

deaths in Western countries, of which a subset is generally considered to

be premature [1, 2]. Also non-fatal cardiovascular events, such as such as

stroke, myocardial infarction and heart failure, have significant individual

and societal impact and come with a high socio-economic cost [3, 4].

To evaluate an individual’s risk of developing CVD, particularly among

patients with hypertension, clinicians commonly employ the SCORE2 and

SCORE2-OP (Older Persons) risk stratification models [5, 6]. These tools

estimate the 10-year probability of both fatal and non-fatal cardiovascular

events, incorporating various biophysical parameters, and are validated for

use in individuals aged 40 years and older.

According to the 2024 guidelines from the European Society

of Cardiology on hypertension management, additional risk assess-

ment tools should be considered for individuals who fall outside the

SCORE2/SCORE2-OP eligibility criteria, such as those under 40 years of

age with elevated blood pressure, smoking habits, or obesity [2]. Early

risk evaluation in these populations aims to support timely preventive

interventions. This recommendation also extends to patients with border-

line clinical indicators, such as blood pressure readings near diagnostic

thresholds or intermediate SCORE2/SCORE2-OP risk estimates (5–10%).

In such cases, supplementary diagnostic modalities are advised to enhance
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cardiovascular risk profiling and guide clinical decision-making. These

modalities include electrocardiography (ECG), vascular ultrasound and

arterial stiffness measurements.

Arterial stiffness is a biomarker that is a known predictor of cardiovas-

cular complications and increases with chronological age [7–10]. The met-

ric most commonly used to assess arterial stiffness is pulse wave velocity

(PWV) [11]. It is measured as PWV = dx/PT T from a pulse transit time

(PTT), the time delay between the arrival of a pulse wave at two different

points on the arterial tree, and the distance dx between those two points.

PWV quantifies the speed with which a pulse wave, generated by the con-

tracting heart, travels through the arteries. It increases for increasingly stiff

arteries. Particularly the large arteries and their characteristic elastic beha-

viour is indicative of vascular age, as it deteriorates with increasing indic-

ators of cardiovascular disease risk [12–14].

A plethora of technologies and their derived devices to measure PWV

exist already, such as magnetic resonance imaging [15], ultrasound [16] or

applanation tonometry [17], to name the most prominent. However, these

methods suffer from some common drawbacks, namely that they are typic-

ally expensive due to the required high-end equipment, expert staff and/or

time-consuming nature of the technique, resulting in them being used in

dedicated medical facilities only. Another challenge is the required oper-

ator expertise of the state-of-the-art. Further issues such as patient comfort

could additionally be an incentive for the search for alternative methods.

One such novel alternative is the application of laser Doppler vibro-

metry (LDV) to assess arterial stiffness [18, 19]. LDV measures the dis-

placement of a vibrating surface over time using laser light, with high tem-

poral and spatial resolution [20–22]. LDV can also detect skin vibrations

that have been induced by underlying cardiac contractions and propagation

of the arterial pulse over the arterial tree, generating mechanical waves that

propagate to the skin. When simultaneously applied to the neck and groin

of a patient, it can measure the time of pulse wave arrival in the carotid and

femoral artery respectively, leading to carotid-femoral PWV [23].

Within 2 successively EU-funded projects, CARDIS (H2020, Grant

agreement ID: 644798, 2015 to 2019, doi: 10.3030/644798) and InSiDe

(H2020, Grant agreement ID: 871547, 2020 to 2024, doi: 10.3030/871547),

a consortium led by Medtronic and imec developed multi-beam LDV proto-

types aimed to measure arterial stiffness. At the start of this PhD, a working

LDV prototype existed (the CARDIS device, see Figure 2.13) [18, 19, 24],

which was also used in a clinical study where LDV data was acquired in

100 patients [23, 25, 26].
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1.2 OBJECTIVES

The research performed within this PhD thesis was done within the context

of the InSiDe project, with as the general objective to enhance the LDV

signal acquisition and processing and explore alternative PWV assessment

methods.

First, the prototype developed with the preceding CARDIS project did

not include any form of intuitive real-time signal-quality control. Measure-

ments were conducted with a fixed length at 20 seconds and signal quality

assessment was at the mercy of the operators device positioning according

to their expertise (or lack thereof) with other, similar probe-based techno-

logies. From inspection of the data measured by this device, it was found

that the average quality was subpar [27]. In order to get a robust estimate

of PTT, and consequently PWV, signal features associated with the arrival

of the pulse wave have to be discernible. The features get hampered by

noise from motion artefacts, or lack of physiologically sound signal. Nat-

urally, this means that for a noisy signal, no reliable PWV values could be

estimated. This issue seemed to occur especially for measurements at the

femoral artery and for subjects with an elevated BMI. A quality metric that

could inform the operator in real-time, suggesting a repositioning if neces-

sary, would strengthen the case for LDV applied to arterial health. The

first objective of this thesis is therefore to: develop algorithms that assess

signal quality for real-time feedback.

Secondly, following an improvement to average signal quality in ca-

rotid and femoral LDV measurements, PTT and PWV should be be derived

from the data in an automated manner. Ideally, the operator performs a

measurement, with little to no delay between the end of the measurement

and the returning of a reliable PWV value. The second objective is there-

fore: the development of a pseudo-real-time carotid-femoral PWV es-

timation algorithm.

Third, the advantage of an LDV device that it can measure very small

displacement (nanometer range), may open up other avenues of assessing

arterial stiffness. A major drawback of carotid-femoral PWV is its arterial

pathway. While extensively researched and proven to be a robust metric

for arterial stiffness [28, 29], carotid-femoral PWV does not infer the as-

cending part of the aortic arch, which accounts for a large part of the elastic

capabilities of the arterial stiffness [30]. Subsequently, arterial stiffening

should have the highest impact on this part of the aorta, but is not appar-

ent from carotid-femoral PWV. The proposed corollary biomarker is heart-

carotid PWV, which aims to assess PWV along the path from the aortic

valve to the carotid artery. However, since heart-carotid PWV has not been
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1. INTRODUCTION

investigated thoroughly, little is known on conventions surrounding PTT,

dx and PWV. Hence, a third objective is to explore the potential of heart-

carotid PWV as an additional biomarker to carotid-femoral PWV.

1.3 STRUCTURE

This dissertation is structured according to 4 distinct parts:

1. Part I – Clinical Rationale and State-of-the-Art in Pulse Wave

Velocity Estimation. The first part of this book introduces the ra-

tionale behind the widespread clinical investigation of arterial stiff-

ness. Its association with cardiovascular disease will be explained as

well as the underlying anatomical structures that influence the stiff-

ness of human vasculature. The concept of PWV will be introduced

as a metric for arterial stiffness, and several ways of estimating PWV

will be derived theoretically. Next, state-of-the-art technologies for

the measurement of PWV will be discussed. Specifically an over-

view of LDV will be provided as a potential solution for some of the

pitfalls of the other technologies in the field.

2. Part II – Laser-Doppler Vibrometry Carotid-Femoral Signal-

Quality Enhancement and Pulse Transit Time Estimation.

Part II will address the efforts made in regards to the design,

construction and validation of LDV-signal quality metrics. First,

this is done via two pattern recognition techniques in matrix profile

and template matching, both of which detect recurring waveforms

that correspond with the arrival of the pulse wave at the associated

LDV-measurement site. These methods will be validated using

a logistic regression model. Next, signal-to-noise ratio will be

improved by leveraging the multi-beam build of the CARDIS device.

This beamforming will combine multiple signals per handpiece in

a smart, piecewise manner and return a single, enhanced signal

from which arterial stiffness will be assessed and compared with

benchmark methods. Finally, a real-time implementation of a PWV

estimation algorithm will be discussed. The determined heuristics

of the algorithm are largely based on insights gained from the

signal-quality analysis using pattern recognition methods.

3. Part III – Exploring Heart-Carotid Pulse Transit Time for Arter-

ial Stiffness Assessment. While carotid-femoral PWV is standard,

alternative arterial pathways for PWV assessment like heart-carotid

may offer complementary insights, especially into the stiffness of the
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CLINICAL RATIONALE

2.1 PHYSIOLOGY OF THE ARTERIAL SYSTEM

First a broad summary is given on the anatomy and function of the hu-

man cardiovascular system, with an emphasis on the arterial system. The

concept of arterial stiffness and its relation to hemodynamic functionality

and cardiovascular disease is next. This is followed by a brief overview of

several state-of-the-art solutions for measuring arterial stiffness with the ad-

ded rationale behind laser Doppler vibrometry as an alternative technology

in development.

2.1.1 The heart anatomy and function

The heart is in essence an organic pump that sustains the circulatory sys-

tem, carrying oxygenated blood and nutrients throughout the rest of the

cardiovascular system, shown in Figure 2.1 [31]. Oxygen gets transferred

from inspired air in the lungs to oxygen-poor blood in the lungs. Oxygen-

ated blood is then transported via the pulmonary vein to the heart. It is

then pumped into the aorta (about 2 cm in diameter close to the heart), fur-

ther down the large arteries leading to smaller arteries, arterioles (diameter

30-100 µm) and capillaries (diameter 8 µm) where, finally, the oxygen

diffuses into the surrounding tissue, along with exchange of nutrients and

waste products [32]. The total blood volume is compartmentalised by this

branching tree-like structure, whose branches gradually decrease in caliber

with successive generations.
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After the blood loses its oxygen content and picks up CO2, it travels

back to the heart via the veins that coincide into the vena cava. The heart

then completes the circulatory system by pumping this received blood to

the lungs via the pulmonary artery.

In brief, the heart itself consists of two distinct sides, each with an at-

rium and a ventricle. Blood flows into the atria first, then to the ventricles

from where it is ejected into either the aorta for the left side or the pul-

monary vein for the right side. Figure 2.2 shows the anatomy of a healthy

heart. Going forward, we will focus on the left side of the heart, respons-

ible for the receiving and projection of oxygen-rich blood into the aorta and

systemic arteries.

Through evolution, the heart had to become a self-regulating and self-

sustaining entity [33, 34]. This means that no external energy can drive

its mechanism, as is the case with human-made electrically-driven pump-

ing devices. This forces the heart to operate into two distinct phases. One

is where it delivers energy outwards in the form of mechanical work and

where it ejects blood into the vasculature (systole). The other phase requires

the heart to relax and take in (chemical) energy via oxygenated blood that is

circulated through the coronary arteries, delivering oxygen to the myocar-

dial fibers in the left ventricle (diastole). This energy is then converted into

potential and kinetic energy when the heart contracts, at the time where the

cardiac muscle receives an electric starting signal in the form of an R peak

in electrocardiagram (ECG) signals. Of the whole cardiac cycle duration,

about 30% amounts to systole in resting conditions; the remaining 70% is

diastole. Figure 2.3 provides a graphical overview of these two phases.

Valves such as the mitral and aortic valves play a critical role in main-

taining the heart’s pulsatile flow by ensuring unidirectional blood move-

ment between chambers and into the systemic circulation. The mitral valve,

located between the left atrium and left ventricle, opens during diastole to

allow ventricular filling and closes at the onset of systole to prevent back-

flow. The aortic valve, situated between the left ventricle and the aorta,

opens during systole to permit ejection of blood into the aorta and closes

during diastole to maintain arterial pressure.

These valves operate in a tightly coordinated sequence, and their func-

tion is audibly reflected in the heart sounds heard during auscultation. The

first heart sound corresponds primarily to the closure of the mitral and tri-

cuspid valves, marking the beginning of systole, while the second heart

sound is generated by the closure of the aortic and pulmonary valves, sig-

naling the end of systole and the onset of diastole. A low-pitched third

heartsound can be observed during early diastole, signaling the rapid-filling
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2.1. Physiology of the arterial system

Figure 2.1: Schematic representation of the human cardiovascular system. Blood

vessels containing oxygen-rich blood are marked in red, while oxygen-poor blood

travels through the blue vessels. Several arteries and veins that are relevant to

future chapters are indicated. Created in Biorender.
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Figure 2.2: The anatomy of the human heart. The main components are indicated.

Those that correspond to the left side of the heart are highlighted in red. Created

in Biorender.

phase of the ventricles. These acoustic events are not only diagnostic mark-

ers but also physiological indicators of the mechanical integrity and timing

of valvular function.

2.1.2 Arterial function, anatomy and modelling

2.1.2.1 The windkessel model

Aside from their function as conduits, (large) arteries also act as a buffer-

ing reservoir for blood [32, 35, 36] and they enable continuous blood flow

through the systemic vasculature. The aorta and large elastic arteries ex-

pand during ventricular systole, storing blood volume which is released

during diastole, ensuring continuous flow down the arterial tree. Their

branching structure constitutes an eventual drop in blood flow in the micro-

circulatory beds as opposed to the high pulsatility closer to the heart. This

inherent degree of distensibility of these vessels will determine storage ca-

pacity, something that is commonly referred to as (local) vessel compliance

or area compliance CA (units in mm2/mmHg). CA is defined as the ratio of

the change in cross-sectional area ∂A and the change in intra-arterial pres-

sure ∂P that drives ∂A. Area compliance normalized for cross-sectional

area (the diastolic area is commonly used) gives distensibility DA (units in

1/mmHg).
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Figure 2.3: Aortic and ventricular pressure expressed in time for an example,

healthy subject. Systole and diastole are distinctly indicated as well as the

timepoints at which the mitral and aortic valve close (MC & AC respectively).

When observing the complete arterial system with parameters such as

the total arterial compliance (TAC, units in mL/mmHg) and stroke volume

(SV), we get to PP = SV/TAC [37, 38]. PP refers to pulse pressure, which

is the difference between peak systolic and diastolic arterial pressure. For a

healthy individual 120/80 mmHg is the desired readout on state-of-the-art

blood-pressure measurement devices, yielding a PP of 40 mmHg [2].

Arterial stiffness determines the degree of expansion in large blood ves-

sels which accommodates increases in blood volume. In general, arterial

stiffness is inversely proportional to CA and DA, and is directly proportional

to pulse pressure. Arterial stiffening typically manifests itself in an in-

creased pulse pressure in the elderly [39, 40], as arterial stiffness increases

with age following a loss of compliance [41, 42].

The volume buffering effect of large arteries can be modeled using

a windkessel-model (Figure 2.4). It borrows its name from a closed-

volume water tank with a certain capacitance C (modeling TAC; units in

mL/mmHg), used by fire brigades where the intermittent water volume
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arriving in the tank, due to an oscillating pump, fills the volume to a degree

making the water flow rate out of the actual firehose with resistance R

(units in
mmHg
mL/s

) be constant. The rough outline of the mechanism can

easily be fit to what is observed in the (left) cardiovascular system. The

windkessel represents the storage capacity for blood of the large arteries,

with the resistance representing the bifurcations and narrowing of the

peripheral blood vessels.

Figure 2.4: A schematic overview of the windkessel model with its oscillating

inlet flow, storage capacitance in the windkessel and resistance. Physiological

parallels are provided in addition. Figure made in Biorender.

Because stroke volume is a function of instantaneous changes over the

duration of systole Tsys, it can be expressed as an integral of ventricular

outflow rate Q(t), commonly expressed in units of mL/s.

SV =
∫ Ts

0
Q(t)dt (2.1)

Qvent(t) can then be decomposed as:

Qvent(t) = Qr(t)+Qc(t) (2.2)

Qr(t) is the part of the flow rate that is associated with R, the total res-

istance to blood flow under pressure. This resistance is attributed to the

bifurcations and narrowing of blood vessels in the peripheral vasculature –

something that follows from Poiseuille’s law where flow resistance of a ves-

sel is inversely proportional with its diameter to the fourth power. The flow

rate Qc(t) is the component of Qvent(t) which is stored following the elastic

expansion of the arterial wall due to the arterial compliance. Furthermore,

the windkessel model constitutes the following equation, from volume con-

servation in a resistive-compliant system and with the assumption that no

inflow occurs during diastole:
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Pd(t) = P0 · e−t/τ (2.3)

In the equation above, P0 refers to the end-systolic arterial pressure.

(2.3) is also dependent on a time constant τ = R ·C, which has units in

seconds. It determines the diastolic pressure decay over time for a sys-

tem with specific arterial resistance and compliance, dictating that for a de-

creased C, and consequently increased arterial stiffness, the diastolic pres-

sure will drop faster since the time to release the stored blood in the arterial

wall will be shorter as well. This leads to τ being a major determinant in

pulse pressure, and by association also arterial stiffness [39, 40, 43].

While the windkessel model explains the concepts of arterial stiffness

and peripheral resistance, with their effects on blood pressure and flow, it

can still be expanded upon by adding several more elements. A limiting

factor is that it is a so-called ’lumped-parameter model’, meaning that each

parameter is a mathematical scalar without taking any physical dimensions

into account. More in-depth approaches model each parameter as time and

space variant values, yielding pressure and flow waves travelling along the

axial dimension of the modelled vessels [44, 45].

2.1.2.2 Arterial wall composition

Arteries are distensible conduits that expand, storing blood during systole,

as well as elastic energy in the arterial wall, and consequently recoil us-

ing that elastic energy to squeeze the stored blood during diastole. During

heavy resistance exercise, intra-arterial blood pressures can reach extreme

values, with measurements up to 480/350 mmHg reported in healthy indi-

viduals [46]. These values reflect acute physiological responses, including

the Valsalva maneuver and vascular compression, rather than baseline car-

diovascular mechanics. It follows that specialised tensile properties are

required to withstand these pressure gradients. The two main components

that contribute to this are the proteins elastin and collagen, as they are about

30 and 50% respectively of the dry weight of the aortic wall [47, 48].

Viewing a typical cross-section of a large elastic artery, elastin and col-

lagen are built in concentric layers, or lamellae, in the arterial media, see

Figure 2.5. For the human aorta, this amounts to ± 60 lamellae [49]. This

number decreases with the vessel dimensions in peripheral arteries, which

also switch to more muscular-type arteries, losing the concentric organiza-

tion. Elastin is by far the most distensible, carrying the load on the arterial

wall at low resting stresses. Conversely, collagen is much less distensible

but has a significantly higher yield strength, which is the stress at which the

tissue begins to irreversibly deform [50, 51].
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It follows then that for an increasing wall stretch, first elastin distends

until progressively more of the helical collagen fibers start to carry the load

[52, 53]. The vessel stops expanding and starts recoiling due to the more

resilient elastin. Since collagen is distinctly more stiff than elastin, arterial

stiffness will be higher during systole, as the vessel is distended more [54].

Arteries proximal to the heart have material properties that make them

highly distensible [30], as discussed previously. Subsequently, distal ar-

teries change in geometric (reduced dimensions) and material (less elastin,

more collagen) ways [55]. By extent, these more distal arteries are stiffer,

have reduced storage capacities and will have an associated increased pulse

pressure. Since these arteries have more smooth muscle cells in their me-

dia, they are referred to as muscular arteries, as in Figure 2.5 [56, 57].

The reduced compliance of the vasculature along the axial direction due to

geometric and elastic material changes also affect the speed at which the

travelling pulse waves propagate.

This description of the arterial wall composition is ultimately a sim-

plified one. From various ex-vivo studies, it has become clear that arterial

tissues are anisotropic, meaning that material properties differ along dif-

ferent directions due to fiber structure [58]. They also exhibit viscoelastic

behaviour, where internal friction causes heat loss during vessel wall expan-

sion and contraction [59]. Finally, it is also the non-linear relation between

stress and strain for these tissues that challenges biomechanical modelling

of the arterial wall beyond classic material science [60].

2.1.2.3 Compliance and distensibility for arterial stiffness assessment

The relation between arterial pressure and lumen cross-sectional area is

non linear, following from what was explained previously. The relation can

be described using different mathematical expressions, but a way to phe-

nomenologically capture the non-linear relation over a wide pressure range

is an arctan function which was fitted to experimental data [61]. Lange-

wouters et al. applied pressures ranging from 0 to 200 mmHg to thoracic

and abdominal aortic segments. This can be observed in the top panel of

Figure 2.6. Of interest to us is the physiological pressure range of 80 to 120

mmHg. From this empirically found expression, area compliance CA and

distensibility DA can be derived, leading to PWV.

Local arterial compliance CA coincides with the local slope of

the pressure-area curve in the physiological pressure range. From the

experimentally-found arctan function [61], it can also be expressed as a

function of pressure, see the second panel in Figure 2.6. The maximum

value for CA is reached for sub-physiological pressures. When observing
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Figure 2.5: A schematic cross section of the ascending, descending and abdom-

inal aorta is given, alongside two cross sections of a distinctively elastic part of

the aorta, and a more muscular part situated more downstream. The layers and

components of the arterial wall are indicated. Made in Biorender.
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physiological ranges, CA is (non-linearly) reduced with increasing pressure,

which is pressure-dependent stiffening.

CA normalised for cross-sectional area, yielding DA can be observed

from the third panel in Figure 2.6. It follows from the definition of CA that

DA = δA/A

δP
, which is the ratio of the relative change in cross-sectional area

and change in arterial pressure.

DA and CA are inherently localised parameters that depend on wall tis-

sue properties and vessel dimensions and describe the mechanical proper-

ties of the vessel wall. To compute them local pressures are ideally used

as well, something that can prove to be difficult when it comes to the large

vessels of interest e.g. the ascending aorta. While technologies such as ul-

trasound and MRI can, in theory, assess this [16, 62], they have limitations.

In general, while of interest for phenotyping specific arterial sites, getting

the required pressure and area values to compute local stiffness CA and DA,

is too tedious for large-scale clinical use.

From these expressions of DA and CA, a measure for pulse wave velo-

city (PWV) can be derived. But in order to get there, the Bramwell-Hill

equation is needed. In the next section we will derive this in a stepwise,

intuitive manner.

2.1.2.4 Pulse wave propagation

For blood flow in an elastic artery, the famous Bramwell-Hill equation is

noted as follows [63, 64]:

PWV =

√
V ·dP

ρb ·dV
(2.4)

With pulse wave velocity (PWV) the term used to describe the speed

of the traveling pulse wave, V the volume of the accelerated blood, dP the

instantaneously applied pressure on the vessel with cross-sectional surface

area A, ρb as the density of blood and dV as the volume expansion of the

elastic tube. Another expression derived from (2.4) is the Moens-Korteweg

equation [65, 66].

PWV =

√
E ·h

2ρb · r
(2.5)

Here, wave speed is expressed in terms of wall thickness (h), internal

vessel radius (r), ρb and the Young’s modulus of the vessel wall E (Pa).

The latter characterizes the linear relationship between applied stress and
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resulting strain in an idealized linear elastic material. However, this model

can be extended to better capture the inherently nonlinear mechanical be-

havior of the arterial wall during expansion, replacing E with Einc [51, 67].

Einc denotes the incremental modulus of elasticity, representing the rate of

change in stiffness from a reference situation as collagen fibers progress-

ively engage and bear a greater proportion of the applied load during ar-

terial wall deformation. The expression assumes a thin, homogeneous and

isotropic vessel wall and that the blood behaves as a Newtonian, incom-

pressible fluid.

From (2.4), (local) PWV can be expressed as a function of distensib-

ility; PWV =
√

1
ρb·DA

. This implies that PWV is indeed also a pressure-

dependent metric, as seen in the bottom panel of Figure 2.6 [68, 69]. Be-

cause PWV is measured over a larger segment of the vasculature, contrary

to the local PWV derivations of (2.4) and (2.5), it has the potential for en-

capsulating more global indicators for cardiovascular disease risk.

There is a clear distinction between the theoretical mechanics of pulse

wave propagation in an idealized, long, uniform tube, as described by Equa-

tions 2.4 and 2.5, and the complex behavior observed in the in-vivo arterial

system. In reality, arteries exhibit branching, variations in diameter and

wall composition, and are subject to wave reflections. These anatomical

and physiological complexities introduce significant challenges in accur-

ately estimating pulse wave velocity (PWV). Hence, PWV is measured in

practice by estimating the pulse transit time (PTT), the time it takes for the

pulse wave to travel the distance dx between two points on the arterial tree

[8].

PWV =
d

PTT
(2.6)

The most commonly used PWV measurement is between the carotid

and femoral arteries. This metric has some obvious limitations. For one,

dx being measured on the surface level of subjects, albeit with an added

correction factor [29]. Another one is the fact that (2.4) makes assumptions

that are not valid in a real setting e.g. no wave and/or flow reflections [70].

The primary limitation, however, lies in the fact that the two measurement

sites are not situated along the same arterial pathway; instead, the pulse

waves recorded at each location propagate through anatomically distinct

but parallel vascular routes (see Figure 2.7). Still, through extensive and

exhaustive clinical trials investigating this matter, it was found that carotid-

femoral PWV is a robust predictor for cardiovascular disease risk [8, 29,

71].
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Figure 2.6: A schematic representation of the pressure-area relationship expressed

as an arctan function in the top panel. The second panel shows area compliance

as a function of pressure. Am, P1 and P0 are all empirically found parameters

based on experimental data. Am is the max cross-section at high pressures, P0 the

pressure at the point of maximum compliance and P1 is a measure the steepness

of the pressure-area relation. From panel 1 and 2, distensibility and PWV (via

the Bramwell-Hill equation) can be derived as seen in panel 3 and 4 respectively.

Figure adapted from [31].
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Figure 2.7: Schematic representation of the two principal arterial pathways along

which pulse waves propagate toward the carotid and femoral measurement sites,

as assessed in techniques such as applanation tonometry or LDV. The black arrow

traces the segment from the aortic valve to the brachiocephalic trunk, representing

an arterial portion not included in the conventional carotid–femoral PWV path-

way. The gray arrow indicates the route toward the right common carotid artery,

while the white arrow delineates the descending path toward the femoral artery,

highlighting the directional divergence of these vascular trajectories.
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Crucially for this work, PWV increases with increased arterial stiffness

[72]. Assuming that the ratio of vessel wall thickness and radius stays

constant for large arteries [49], an increased PWV can then be related to

a change in wall composition, its intrinsic properties and consequently its

Einc, see 2.5. More specifically, changes in the vessel wall media, which

holds the bulk of composite material that determines the wall elasticity and

hence, stiffness.

It is of note that arterial stiffness, and by extent also its associated meas-

ured PWV, can be determined by more factors besides the passive interpret-

ation of stiffness due to aging [73]. Smooth muscle cell stiffness and tone,

calcification of the media and atherosclerosis, changes in the cross-linking

between collagen and elastin, thickening of the vessel wall through fibrosis

and endothelial cell dysfunction all can have profound effects on (local)

arterial stiffness [7].

So, while PWV is not the only metric for arterial stiffness, it has become

clinical routine for in-vivo state-of-the-art medical technology [7, 8, 74–

76]. It contains information on potential remodelling of the vessel wall,

if controlled for the pulsatile pressure dependence of arterial stiffness in

general [77, 78]. To fully understand the potential of PWV as a biomarker,

it behoves understanding the associated pathological spectrum.

2.1.3 Arterial stiffening and associated cardiovascular disease risk

Increased chronological and biological age is associated with an increase

in arterial stiffness due to elastin degradation in the large elastic arteries

[31, 79]. When elastin starts to degrade (it has an estimated half-life of

40 to 50 years), the collagen patterns dispersed in this joint-protein matrix

progressively carries more of the applied wall stress [80]. Being the less

resilient of the two causes these vessels to start to lose their windkessel

function over time [41]. Aside from the loss of elastin, the vessel walls

also experiences growth and remodeling with aging and disease, affecting

arterial stiffness [77, 78, 81, 82].

Exasperating the gradual elastin decrease is the fact that elastin, is

mainly synthesized in the arterial media during fetal and infantile growth,

making the protein quite literally irreplaceable [83, 84]. As an individual

grows, this elastin deposition stretches along, introducing permanent in-

tramural stresses. Later in life, the wear on elastin manifests into vessel

dilation, elongation and increased tortuosity [85].

Elevated large artery stiffness in turn leads to several detrimental ef-

fects on cardiovascular health. It causes an increase in systolic blood pres-

sure [86], and consequently pulse pressure, which increases shear stress
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in the arterial wall leading to wall degradation, dilation and aneurysms [7,

87]. Arterial stiffening also reduces coronary artery perfusion pressure [88–

90]. This happens because of reflected waves arriving back at the heart

more rapidly for stiffer arteries [91–93]. For low PWV values, these waves

arrive during diastole, augmenting diastolic pressure needed for coronary

perfusion. For high PWV’s the reflected waves arrive during late systole,

constructively interfering with systolic pressure, increasing pulse pressure

and lowering diastolic pressure. Such a reflected wave is an accumulation

of smaller reflections from many individual reflection sites e.g. changes in

wall diameter, bifurcations [94, 95].

Next, it promotes left ventricle remodeling due to an increased systolic

load, which causes ventricular dysfunction and can lead to heart failure

[96–100]. Finally, an increased pulse pressure leads to an increase in pulsat-

ility at the level of the microvasculature close to organs that require high

blood flow and have low resistance vascular beds e.g. the kidneys, brain

and placenta [101–106].

Elevated pulsatile blood pressure and flow result in barotrauma and in-

creased shear stresses respectively, damaging microvasculature in low res-

istance organs [50]. This may be followed by target organ failure (e.g.

kidney and cerebrovascular disease), and further stiffening of the vessel

wall [107, 108]. All of these cardiovascular events can be predicted in-

dependently by carotid-femoral pulse wave velocity [7, 96, 109–111]. To

make these predictions requires knowledge of PWV ranges associated with

cardiovascular risk.

Reference values for normal and abnormal PWV values were obtained

and set in a large-scale multicenter study [112]. Normal average PWV

ranges were found starting from 6.2 m/s for < 30 year olds up to 10.9 m/s

for > 70 year olds. Average PWV values for people of that same age range

increase to 7.7-14.0 m/s when investigating patients with grade II or III

hypertension, showing a leap in PWV with increased blood pressure. It

was also shown that this increased PWV with blood pressure is not simply

attributed to increasing blood pressure with age.
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Figure 2.8: The central illustration presents two representative aortic phenotypes.

The aorta on the left is compliant, demonstrating effective Windkessel (buffer-

ing) function, which corresponds to a low PWV and PP. In contrast, the aorta on

the right is characterized by increased stiffness, dilation, and tortuosity. These

pathological features are associated with elevated PWV and PP, which may impair

coronary perfusion and contribute to end-organ damage. Figure adapted from [7].

Figure 2.9: Mean PWV values according to age and blood pressure in the mul-

ticenter study to establish reference values for carotid-femoral PWV; Figure cited

from [112].
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2.2 STATE-OF-THE-ART IN MEASURING ARTERIAL STIFFNESS AND

ITS CHALLENGES

Over the last years, many devices have been released that measure pulse

wave velocity [113]. The work presented in the following chapters of this

book is based on data measured by an LDV-device that is intended to join

this cohort of medical technology. First, two existing, validated technolo-

gies will be discussed here whose measurement data are considered ground

truth for the experiments performed in this thesis.

2.2.1 Arterial tonometry

Arterial pressure waveforms can be measured non-invasively via applana-

tion tonometry applied to subcutaneous peripheral arteries e.g. the radial,

carotid or femoral artery [114–116]. A probe, installed with piezoelec-

tric sensors, is pressed onto the skin and perpendicular to the underlying

artery of interest. If possible, the compression exerted by the probe pushes

(and partially flattens) the artery against neighbouring stiffer tissues such as

bone, cartilage or muscle, fixing the artery in place. In doing this, tangential

forces are eliminated and the sensors couple to the intra-arterial pressure,

yielding high-quality recordings.

While central aortic blood pressure can be derived from these peripheral

waveforms through mathematical transformations [117, 118], the applica-

tion of interest to this work remains arterial stiffness and PWV. To allow

for the estimation of transit times via consecutive measurements at 2 arter-

ial sites, the ECG is typically co-recorded such that time delays, relative to

the R-peak of the ECG, can be obtained as with e.g. the Sphygmocor sys-

tem [75, 109, 119]. When taking a carotid measurement for a sufficiently

large number of heartbeats, leading to several clean pressure waveforms,

the time delay between start of systole and arrival of the pulse wave in

the carotid can be derived together with the R peaks in the ECG signal.

This is referred to as carotid pulse arrival time, which could lead to a PWV

metric describing aortic pressure, but will be an underestimation of the real

PWV in that arterial segment due to the isovolumic contraction period (time

between start of systole and opening of the aortic valve) being included in

the time delay.

Following this, a second measurement can be performed at the femoral

artery. Including ECG, femoral pulse arrival time can be calculated, given

enough qualitative pressure waveforms were measured. At this point, the

carotid-femoral pulse transit time is then calculated from the difference of

femoral and carotid pulse arrival times. From here, only a tape measure is

required to measure the distance between carotid and femoral measurement

sites to get carotid-femoral PWV. This methodology is commonly accepted

25



2. CLINICAL RATIONALE

as a highly reliable manner of assessing arterial stiffness and will be con-

sidered a reference for carotid-femoral PWV throughout this thesis [17].

Drawbacks to this method are: (i) it has a significant learning curve.

Especially at the femoral artery, measurements can be difficult to conduct

in a qualitative manner, in particular for individuals with a femoral artery

situated deep in the tissue of the inner thigh. (ii) It can become uncomfort-

able for the patient when the probe is being pressed with excessive force

(either through necessity to guarantee qualitative measurements or user in-

experience) and (iii) the device setup is dependent on the inclusion of ECG

and the taking of separate carotid and femoral measurements, increasing

the duration of the average measurement protocol, making it less suited for

adoption by first responders e.g. at the general practitioner (GP) level.

Note that the most recent version of the Sphygmocor system

(Sphygmocor XCEL) has replaced the femoral tonometer measurement by

a thigh cuff-based measurement of the femoral waveform, which allows

for simultaneous measurements and discarding the ECG.

2.2.2 MRI

Magnetic resonance imaging (MRI) is a widely accepted medical imaging

technology. Its phase-contrast variant (PC-MRI) is a specialized MRI tech-

nique used primarily to quantify and visualize the velocity of moving flu-

ids, most commonly blood flow in vessels or cerebrospinal fluid in the brain

and spine. [88, 120–122]. From these data, estimation of PWV on a longer

segment of the aorta is feasible as well i.e. aortic PWV [15, 123–129].

Crucially, aortic PWV includes the proximal, ascending part of the aorta

(the most distensible part) in its considered pathlength, something that is

excluded when working with carotid-femoral PWV.

In order to measure aortic PWV, flow wave profiles at multiple points on

the aorta are required. Transit time between the ascending and descending

aorta is to be derived. Phase-contrast MRI provides the user with images

taken at several points on the aortic arch, perpendicular to the aortic center-

line. From this, flow profiles for the entire cross section at every considered

point, for one cardiac cycle, are derived and transit time can be calculated.

The timepoints of the foot of these flow waves is compared between the

waves of the different points on the aortic arch. From the time delays found

in this way, transit time can be calculated in a reliable fashion as this avoids

the effect of early reflected waves.

The biggest drawback of this technique is the limited temporal resolu-

tion of the flow curves. In Figure 2.11, the curves span 50 points, over an

averaged cardiac cycle of 870 ms, resulting in a temporal resolution of 17.4
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Figure 2.10: Working principle for arterial tonometry exemplified for the carotid

artery in the neck. The probe is pressed against the skin, locking the carotid artery

in place between it and a rigid region of tissue e.g. bone. The transducers in the

probe then pick up pressure gradients following the arrival of pulse waves. This

results in arterial pressure profiles being measured, of which an example is drawn

in the top left corner. Figure made in Biorender.

ms. Especially for short path lengths or subjects with stiff aortas, leading

to short transit times, this proves to be a challenge. The analysis presented

in chapter 6 was impacted because of this temporal resolution limitation.
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Figure 2.11: An example of phase-contrast MRI images in 3D and over time (4D-

flow MRI), with several planes indicated where flow is measured, is displayed

in the left panel. From those images flow profiles are derived as seen in the right

panel. One plane on the brachiocephalic artery (BCA) is also drawn to illustrate the

difference in flow profiles with the aorta. The data presented herein originates from

one of the MRI acquisitions performed in conjunction with LDV measurements,

as part of the experimental protocol detailed in Chapter 6.
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2.3 LASER DOPPLER VIBROMETRY

Laser Doppler vibrometry (LDV) was developed and applied to aerospace

and mechanical engineering first in the 1970s [130]. Its non-contact prin-

ciple was deemed ideal for the precise modus operandi required for meas-

uring vibrations on moving, hot or fragile components. In the follow-

ing decades, as the technology improved, LDV was extrapolated to other

fields such as civic infrastructure (e.g. bridge health), automotive indus-

tries, micro-electromechanical systems and finally: biomedical diagnostics

[131].

The basic configuration of LDV is an optical interferometer, where one

laser is reflected on a vibrating target, moving with velocity v(t) and con-

sequently captured again. The technology is based on the Doppler effect, a

photonic principle relating the out-of-plane velocity of the illuminated tar-

get to a phase shift fD picked up by the laser due to reflection. λ0 is the

laser wavelength, and f0 = 1/λ0 its frequency.

fD(t) =
2 · v(t)

λ0

(2.7)

To extract the Doppler shift fD, the reflected signal is coherently mixed

with a reference signal prior to detection by a photodiode. The photodi-

ode then converts the received optical power into a current from which the

amplitude and direction of the vibrating target can be extracted. The prac-

tical execution comes in the form of a Mach-Zehnder interferometer, as

illustrated in Figure 2.12. Panel A shows the theoretical principle of the

interferometer for a single-point LDV. Two laser beams are generated. The

measurement beam is lead towards the vibrating target, which it hits, con-

sequently reflects on and is then received again. The second beam, known

as the reference beam, does not illuminate any vibrating surfaces but is in-

stead first split from and later combined again with the measurement beam.

The recombined signal is picked up by a detector, the photodiode in our

case.

Panel B shows a schematic of the practical build of an LDV device con-

taining six parallel interferometers [18, 19, 24, 132], resulting in a multi-

beam LDV. The system is homodyne, meaning that the reference and meas-

urement beams both have the same frequency f0, resulting in a less complex

configuration. The Figure also indicates that lasers are coupled into the sys-

tem using optical antennas (or grating couplers) before being split into the

separate beams. The measurement beam is also transmitted and received

through transmitter-receiver optical antennas. This part of the system, en-

capsulating the interferometers is referred to as the photonic package of the
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LDV device. Additionally, panel B shows the inclusion of an optical sys-

tem, equipped with an array of lenses that determine the depth of focus for

the measurement beams.

Figure 2.12: Panel A illustrates the theoretical operation of a Mach-Zehnder

interferometer. In this setup, a laser source emits two coherent beams of fre-

quency f0: a measurement beam directed toward a vibrating target and a reference

beam. Upon reflection from the moving surface, the measurement beam acquires

a Doppler-induced phase shift, resulting in a frequency component fD. The in-

terference between the measurement and reference beams at the detector yields

phase-sensitive information about the target’s motion. Panel B presents a schem-

atic of the practical implementation, consisting of a six-sensor array integrated

on a photonic chip. Laser light is coupled into and out of the chip via optical

transmit/receive (T/R) antennas. The measurement beam is directed to the moving

surface through a lens system, while both the reference and reflected measurement

beams are guided to photodetectors. These generate electrical quadrature signals

Q(t) and I(t), which encode both displacement and direction of motion.
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2.3.1 The InSiDe project and CARDIS device

Figure 2.13 shows the LDV device of Figure 2.12 at work. In panel A, the

operator points the two handpieces of the device at the neck of the subject.

One handpiece is equipped with a handle, resulting in a pistol-like grip. The

second handpiece is mounted on top of the first one, but can be uncoupled

and pointed at other regions of the body while the first handpiece remains.

In this way, neck-groin (panel B) or chest-neck (panel C) measurements

can be conducted, something that will result in carotid-femoral and heart-

carotid LDV data from which different measures of pulse wave velocity are

endeavoured to be estimated in the later chapters of this thesis.

Figure 2.13: The CARDIS device measuring skin displacement via LDV. Panel A:

the device measures carotid-carotid. Panel B: example of a carotid-femoral meas-

urement. Panel C: A heart-carotid measurement with one of the two handpieces

pointed at the second right intercostal space on the thorax.

The device in panel C of Figure 2.12 is the LDV prototype designed and

constructed within the scope of the H2020 project called CARDIS (Grant

agreement ID: 644798). The prototype will be referred to as the CARDIS

device. The main result from CARDIS that is of relevance for this thesis is

the existence of this device with proven carotid-femoral PWV assessment

capabilities as well as the availability of an LDV database [19–23].

Naturally, since the CARDIS device was an early prototype, many

points for improvement were apparent. The CARDIS device is heavy and
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wired, making it difficult to handle. It also requires the application of

retroreflective tape to the measurement site to ensure ample reflected laser

light, adding to the measurement duration and potentially interfering with

the vibrations of the skin. By the time of project completion, the associ-

ated software did not yet provide intuitive feedback to the operator both

during and after the measurement. Still, CARDIS was promising enough

to validate a follow-up H2020 project.

The project goals of InSiDe (Grant agreement ID: 871547) were many.

Over the entire consortium, ranging from industrial, technical to clinical

and investigational partners, the main objectives could be summarized as:

1. Development of a new photonic package with a four-beam LDV chip

for 4 sensing locations (opposed to the previous 6).

2. 1310 nm solid-state laser assembly on a micro-optical bench (previ-

ously: λ0 = 1550 nm).

3. Development of imaging optics capable of measuring vibrations on

bare skin by implementing an auto-focus element in the optical sys-

tem.

4. Development of electronics for control of the laser interferometer

with onboard real-time signal processing capability.

5. Development of algorithms for translation of the interferometer sig-

nals to measurement results relevant for monitoring and diagnosis of

selected cardiovascular risk factor (e.g. carotid-femoral PWV).

6. Development of a new clinical investigational device that can be used

for clinical feasibility studies.

7. Validation of the updated technology for several cardiovascular con-

ditions (i.e. vascular aging, carotid stenosis and cardiac arrhythmia).

8. Outline a path to industrialization and manufacturability.

In short, a handheld, battery-operated split device was to be engineered,

which can be operated as one unit, as well as two separate units and can

conduct timed recordings in order to measure arterial stiffness and cardiac

contraction patterns. All data used in the presented analyses was measured

by the CARDIS device.
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2.4 BIOMEDICAL SIGNAL PROCESSING

To better understand the later chapters, key concepts of signal processing

and statistical signal analysis are presented. This is not meant as an exhaust-

ive introduction to biomedical signal processing but more as a refresher of

the concepts exploited in the later chapters.

2.4.1 The 1D biomedical digital signal

In nature, biomedical signals x(t) are analogue i.e. continuous over time,

with time index t. However, digital technology necessitates that any con-

tinuous signal is represented as an array of discrete points sampled from the

original signal [133]. The sampling frequency fs =
1
Ts

, which describes the

number of samples taken per second, plays a crucial role in accurately cap-

turing the original signal in the sampled, discrete-time signal x(n) = x(nTs),
with n the discrete sample index. While a high sampling frequency can

closely approximate the original signal, it may not always be practically

feasible and could be considered excessive in certain contexts.

Deciding on the appropriate sampling frequency involves examining

the original signal and estimating its frequency content. A signal can be de-

composed into a combination of different sinusoids with varying frequen-

cies, a process known as Fourier decomposition [133–135]. To preserve

the frequency content, the sampling frequency must be sufficiently high.

According to the Nyquist theorem [136], the sampling frequency must be

at least twice the highest frequency component present in the signal ( fm) to

avoid information loss due to aliasing.

fs ≥ 2 · fm (2.8)

Figure 2.14 illustrates an example ECG signal sampled under two con-

ditions: once at a rate satisfying the Nyquist criterion, and once at a sub-

Nyquist rate. The latter demonstrates how insufficient sampling frequency

leads to aliasing, distorting the representation of the original signal.

The information embedded within biomedical signals is of critical im-

portance, necessitating the use of optimal signal representation techniques

to facilitate its extraction. The Fourier transform is a widely employed

method that enables the analysis of signals in the frequency domain, provid-

ing insights into their spectral composition . Given that biomedical sig-

nals exhibit variability in amplitude ranges, noise characteristics, and fre-

quency content, attributable to differences in physiological origin, acquis-

ition resolution and application context, the selection of appropriate ana-

lytical methodologies must be tailored to the specific requirements of each

application.
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Figure 2.14: Panel A: An example of an analog biomedical signal (ECG) exhibit-

ing three recurring waveforms over a 2.5-second interval, shown as a continuous-

time signal. Panel B: The same signal sampled at a frequency of fs = 10,kHz. The

red dots represent individual sample points, which are sufficiently dense to accur-

ately capture the shape and content of the original analog waveform. Panel C: The

signal sampled at a lower frequency of fs = 10,Hz, which violates the Nyquist

criterion (ECG frequencies typically fall in the range of 0.5 to 150 Hz [137]). As

a result, the red-dotted sampled signal fails to preserve the essential features of the

original waveform, demonstrating the effects of aliasing.
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For instance, electroencephalograms (EEG) contain different frequen-

cies that correspond to various brain activities at specific times. Electro-

cardiograms (ECG) display stationary, rhythmic waveforms related to heart

rhythms, with frequency content and temporal morphology that change dur-

ing certain cardiac events or conditions related to the electrical activity of

the myocardium. Electromyograms reflect the electrical activity and activa-

tion of muscle fibers, showing distinct frequency and time domain changes

during muscle contractions. In the analysis of such signals, primary object-

ives often include the identification of recurring temporal patterns or the

detection of anomalies.

2.4.2 Pattern recognition

When analyzing LDV skin vibration signals, a key challenge lies in identi-

fying recurring waveform patterns that correspond to physiological events,

such as heartbeats. Detecting these patterns is essential for assessing sig-

nal quality and for enabling accurate physiological measurements, such

as PWV. Pattern matching techniques are well-suited to this task, as they

allow for the retrieval of similar waveform segments across time-series

data. Within the scope of this dissertation, two techniques, matrix profile

and template matching, are particularly relevant to Parts II and III. These

methods facilitate the detection of heartbeat-related patterns, which in turn

provide insights into the quality of the LDV signal and the reliability of

derived PWV estimates. A brief overview of both techniques is provided

below, along with illustrative examples.

2.4.2.1 Matrix profile

The matrix profile is a powerful tool for time series analysis for identi-

fying patterns as well as anomalies [138–142]. It borrows its name from

the matrix profile structure, a 1D array which annotates the signal it is ap-

plied to. This structure is constructed by calculating the distance between

a subsequence of the signal at time index n, and with a length of m, and

all other subsequences of equal length in the signal using a sliding window

approach. The value of the matrix profile at that index n becomes the min-

imum of the all calculated distances, and this for every n for the signal with

a total length of N. The ’distance’ calculated for the matrix profile can be

any measure of similarity between two sequences, with the one most often

used being the Euclidean distance [142]. The result can indicate how sim-

ilar the closest match of the subsequences of the signal is and where it can

be found.

Regions with low values in the matrix profile indicate the presence of

closely matched subsequences in the original signal segment. Conversely,

high values in the matrix profile suggest the presence of anomalies, also

35



2. CLINICAL RATIONALE

called discords. This dual purpose, together with the lack of predefined

field-specific knowledge are the definite strengths of the matrix profile tech-

nique. The method only depends on the hyper-parameter ’m’, the length of

subsequences investigated, and the choice of a suitable distance metric.

Building on the matrix profile structure, algorithms have been

developed that search for complete motifs i.e. collections of similar

waveforms containing more than two subsequences of the original signal

[141–143]. In other words, motifs can be found that indicate all points in

a given signal where a similar waveform is located. Figure 2.15 shows an

example of the matrix profile being constructed for an LDV measurement,

of which three seconds are highlighted. For an extended application of this

technique to LDV data, we refer to chapter 3.

Figure 2.15: Example of the matrix profile technique performed on a skin-

acceleration signal measured by the LDV prototype introduced in section 2.3. The

top graph shows this LDV signal. The bottom graph is the annotating matrix pro-

file on which the best recurring motif is indicated by red dots. The equivalent

recurring pattern in the LDV signal is indicated and highlighted in red. m = 200

in this example.

2.4.2.2 Template matching

Template matching is a technique used to identify segments of a signal that

match a predefined template [27, 144–147]. This method involves sliding

the template across the signal and calculating a similarity measure at each

position, often a cross-correlation function. The segments with the highest

similarity scores are considered matches. This is determined by a threshold
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value set for the cross-correlation function. The magnitude of this threshold

has an immediate impact in the number and quality of the detected matches.

For the application of template matching to LDV signals, see chapters 3, 4,

5 and 7. Further details and figures regarding the construction of the carotid

and femoral templates are provided in chapter 3.

Both matrix profile and template matching are capable of identifying

recurring patterns in time-series data; however, they differ in their method-

ological requirements and susceptibility to error. Template matching neces-

sitates the manual construction of a representative template and the tuning

of multiple hyperparameters, such as similarity thresholds, often requiring

iterative refinement. In contrast, matrix profile relies primarily on the se-

lection of a single parameter, the subsequence length m, which is informed

by domain knowledge. While matrix profile offers a more automated and

parameter-efficient approach, it may occasionally prioritize patterns that

are statistically conserved yet clinically irrelevant. In such scenarios, the

use of a well-constructed template can make template matching the more

suitable technique, as it enhances the specificity and clinical relevance of

the detected patterns.

2.4.3 The stochastic nature of biomedical signals

A stochastic signal is one that exhibits inherent randomness and cannot be

predicted exactly, even with complete knowledge of its past values. Un-

like deterministic signals, which can be described by explicit mathematical

functions and fully determined at any point in time, stochastic signals are

better characterized by their statistical properties, such as their mean, vari-

ance, and autocorrelation structure. In biomedical applications, many sig-

nals – such as ECG, EEG or LDV – exhibit stochastic behavior due to the

complex, composite and dynamic nature of physiological processes [133,

134].

Several factors contribute to the stochastic nature of biomedical signals.

First, intrinsic physiological variability results from the complex, nonlin-

ear interactions among biological subsystems. For example, even under

resting conditions, the intervals between heartbeats vary due to autonomic

nervous system modulation [148, 149]. Second, measurement noise, in-

cluding electronic noise, quantization error, and motion artifacts (especially

true for LDV), introduces random perturbations into recorded signals [150,

151]. Third, environmental influences such as temperature fluctuations and

electromagnetic interference further contribute to variability, making the

observed signal a noisy and often incomplete reflection of the underlying

physiological activity [152, 153].
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Biomedical signals with a stochastic nature, such as LDV measure-

ments of skin vibrations, can be modeled as combination of deterministic

signal s(n) and additive noise components v(n) as

x(n) = s(n)+ v(n) (2.9)

To extract s(n) from x(n), thereby separating s(n) from v(n), we en-

counter a fundamental challenge in the broader field of signal processing:

source separation. This challenge is often modeled as the well-known

’cocktail party problem’ [154].

The cocktail party problem involves separating individual sources of

sound from a mixture of sounds, analogous to distinguishing different bio-

medical signals from a composite signal [133]. This problem is named

after the challenge of focusing on a single conversation in a noisy envir-

onment, such as a cocktail party, where multiple people are speaking sim-

ultaneously. In biomedical signal processing, the cocktail party problem

is highly relevant. For example, separating EEG signals from background

noise [155, 156] or isolating heart sounds from lung sounds in phonocar-

diogram (PCG) signals are critical tasks [157]. These applications require

distinguishing the signal of interest from various overlapping signals.

Several techniques can be employed to address the cocktail party prob-

lem: (i) Beamforming uses spatial filtering, involving arrays with multiple

sensors, to enhance the signal from a specific direction while suppressing

signals from other directions [158–160]. It is particularly useful in scen-

arios where the spatial location of the signal sources is known. An applic-

ation of beamforming to LDV data is presented in chapter 4. (ii) Blind

source separation involves separating a set of signals into their individual

components without prior knowledge of the source characteristics. Meth-

ods like independent component analysis (ICA) are commonly used for this

purpose [161]. ICA has also been applied to LDV measurements in chapter

4.

2.4.3.1 Beamforming

Beamforming is a signal processing technique that functions as a spatial

filter, analogous to spectral filters, but operating across sensor arrays dis-

tributed in space. Its primary objective is to enhance signals arriving from

specific directions of interest while attenuating interference and noise from

other directions. This is achieved by coherently combining the signals

(xm(n)) captured by the M array sensors in a directionally selective manner,

resulting in an output signal y(n):
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Figure 2.16: Conversations of two groups (s1 and s2 at a cocktail party are being

recorded using two microphones, leading to two mixture measurements x1 and x2.

y(n) =
M

∑
m=1

wmxm(n) (2.10)

In this formulation, the weights wm represent either scalar gains (in the

time domain) or complex coefficients (in the frequency domain, e.g., when

using the short-time Fourier transform). In the time domain, wm may also

represent finite impulse response filters applied to each sensor signal. The

weights are designed to constructively combine signals from the desired

direction and destructively interfere with signals from other directions.

In many practical scenarios, especially in acoustics and biomedical ap-

plications, the observed signals are the result of convolutive mixing in the

time domain, meaning that each sensor receives a delayed and filtered ver-

sion of the source signals:

xm(n) =
J

∑
j=1

hm j(n)∗ s j(n) (2.11)

With s j(n) the j-th source signal, hm j(n) the impulse response from

source j to sensor m, ∗ denoting the convolution operation and J the total

number of sources.

To simplify this complex mixing model, beamforming is often per-

formed in the frequency domain using a Fourier transform expressed using

Xm( f ), Hm j( f ) and S j( f ) as the Fourier transforms of xm(n), hm j(n) and

s j(n) respectively. In this domain, the convolutive mixture is approxim-

ated as an instantaneous linear mixture with complex-valued coefficients at
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each frequency bin. This transformation reduces the problem to a simpler

form, where signal enhancement can be achieved through matrix operations

rather than deconvolution, significantly reducing computational complexity

as

Xm( f ) =
J

∑
j=1

Hm j( f )S j( f ) (2.12)

The beamformed output in frequency domain becomes

Y ( f ) = wH( f )X( f ) (2.13)

where wH( f ) is the conjugate transpose of the complex weight vector

and X( f ) is the vector of sensor signals at frequency f .

Beamforming techniques have been successfully applied in various do-

mains, including EEG, where the assumption of instantaneous mixing is

often valid even in the time domain. In such cases, spatial filtering can be

used to isolate neural sources of interest, improving signal-to-noise ratio

and aiding in source localization tasks [162]. While beamforming suggests

spatial information, it can generally be applied to models that assume an

instantaneous mixing even in time domain like x(n) = As(n)+ v(n) where

A is the "steering" vector. In these cases, beamforming estimates a filter

w such that y(n) = wT x(n) to maximize the contribution of the source of

interest while minimizing the influence of sources considered interference.

2.4.3.2 Independent component analysis (ICA)

ICA is a computational technique used to decompose a multivariate signal

into a set of additive components that are statistically independent and ex-

hibit non-Gaussian distributions [161, 163]. The method enables the recov-

ery of underlying source signals from observed mixtures without requiring

prior knowledge of the source characteristics or the mixing process. ICA is

particularly effective in blind source separation tasks, where the goal is to

disentangle latent signals based solely on their statistical independence.

For example, in a scenario where multiple people are speaking sim-

ultaneously, ICA can help isolate each person’s voice from the combined

audio recording (if the mixtures are instantaneous). The relevance is ex-

plained via an example. Starting from Figure 2.16, Let the original source

signals be denoted as:

s(n) =

[
s1(n)
s2(n)

]
(2.14)

40



2.4. Biomedical signal processing

Assume that the microphones record two linear mixtures of the two

sources:

x(n) = A · s(n) (2.15)

where x(n) =

[
x1(n)
x2(n)

]
is the observed signal vector and A is a 2× 2

unknown instantaneous mixing matrix (for convolutive mixtures a Fourier

transform is required as previously illustrated with beamforming) contain-

ing mixing coefficients that are combined with the original source signals.

The goal of ICA is to estimate a demixing matrix W such that:

u(n) = W ·x(n) (2.16)

where u(n) ≈ s(n) are the estimated independent components. The

steps of the general ICA algorithm start with centering and whitening the

observed signal data. The mean of each observed signal is subtracted from

it for the centering step, yielding x̃(n). Whitening means applying a lin-

ear transformation to x̃(n) to make the components uncorrelated and their

variance becoming equal to 1, which can be expressed as:

z(n) = V · x̃(n) (2.17)

where V is a whitening matrix such that E[z(n) · zT (n)] = I, where I is

the identity matrix and E refers to the expected value operator.

To get the unmixing matrix W from u(n) = W · z(n), with maximally

independent components in u(n), the non-Gaussianity needs to be maxim-

ized. This is because the central limit theorem dictates that a linear mixture

of independent non-Gaussian variables (such as two individuals speaking)

tends to be more Gaussian than the original variables. This optimization

procedure is most often done by maximizing kurtosis or negentropy [161,

163, 164].

The recovered signals u(n) approximate the original sources s(n), up to

permutation and scaling:

u(n)≈ P ·D · s(n) (2.18)

where P is a permutation matrix and D is a diagonal scaling matrix.
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Figure 2.17: ICA applied to a noisy mixture of an LDV-measurement segment s1

and Gaussian noise s2. From top to bottom, first the original signal is portrayed.

The second graph shows one of the two mixture signals in this experiment (x1 and

x2), followed by the two independent ICA components (u1 and u2). From these two

components, first the noise and then the recovered clean signal can be recognized.

2.4.4 Machine learning

With the surge in capabilities of artificial intelligence (AI) in recent years,

especially for generative AI, an understanding of the broad scope of these

methods is required. Especially for a sensitive field such as healthcare,

optimized tools such as diagnostic AI assistants are in constant demand

[165, 166]. AI in general aims to build intelligent systems that mimic hu-

man cognition for reasoning, learning and problem-solving while often be-

ing specialized and optimized for specific applications like image recogni-

tion [167]. Machine learning is a subset of AI. It specifically encapsulates

systems that learn from data as opposed to being explicitly programmed

(which is the case with knowledge-based systems). For the scope of this

dissertation, we will focus on the supervised-learning branch of machine

learning.

2.4.4.1 Supervised learning and logistic regression

A machine learning model can learn trends and properties present in data,

given labels that represent them. This form of machine learning is super-

vised learning, referring to the requirement of said training labels during the

model training. In general, the model learns to map input features x to the

target output label y that they correspond to. During training, a loss func-

tion measures the error between the model’s prediction at a given point and
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the target output. Optimization at that point adjusts the model to minimize

the error going forward. This process takes place over the entire training

dataset. When generalized correctly, the model will be able to predict an

accurate output given new, ’unseen’ data (referring to data not present in

the training dataset).

The model output and target labels are continuous values for regression

models. When they are discrete values, the model performs classification.

A popular classifier is the logistic regression model which (contrary to its

name suggests) is a supervised learning algorithm for binary classification

problems [168–170]. Some examples of binary classification are distin-

guishing healthy from diseased, qualitative from not qualitative etc. The

main reason for its popularity is its interpretability, with its coefficients dir-

ectly linked to individual feature influence, helping identify which features

are useful or redundant for a specific application. Logistic regression was

used for a part of the analysis in chapter 3.

Any logistic regression model output is interpreted as a probab-

ility (value between 0 and 1) that a given input, with feature vector

x = [x1,x2, . . . ,xN ]
T (e.g. x1: systolic blood pressure, x2: age, etc.), belongs

to class 1 (e.g. ’Diseased’) as:

hθ (x) = P(y = 1 | x;θ) = g(θ⊤x) (2.19)

with g(z) = 1
1+e−z the sigmoid function and θ = [θ1,θ2, . . . ,θN ]

T the

weight vector. The sigmoid function guarantees an output between 0 and 1,

monotonic behaviour (steady evolution) and if x moves towards character-

istic features of class 1: hθ (x)→ 1 with hθ (x)→ 0 as x moves away from

characteristic features of class 1. hθ (x) indicates probability y = 1 given x

and parametrized by θ . Consequently P(y = 0 | x;θ) = 1−hθ (x), leading

to a compact representation (with y either 1 or 0):

P(y | x;θ) = hθ (x)
y(1−hθ (x))

1−y (2.20)

Given I feature vectors xi and corresponding class labels yi, the likeli-

hood P(y | x;θ) (also noted as: Lθ ) is

Lθ =
I

∏
i=1

P(yi | xi;θ) (2.21)

To find an optimal θ the log likelihood L L θ is maximized by gradient

ascent [168–170]. The iterative process towards an optimum is training the

classifier.
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The trainable weights reflect the power of the N included features in the

feature vectors xi. b is the bias term. The threshold value on the likelihood

is 0.5, meaning that should P(y = 1 | x;θ) > 0.5, then for class 0 (e.g.

’Healthy’) it holds that: P(y = 0 | x;θ)≤ 0.5.

Usually a learnable bias term θ0 is added to the definition of hθ (x):

hθ (x) =
1

1+ e−θ0−θ⊤x
(2.22)

A visual aid is given with Figure 2.18. The horizontal axis represents

values resulting from the combination of the features in x with the trained

weights w and bias b. The sigmoid function maps these resulting values

onto a 0− 1 space shown on the y-axis. With 0.5 as the threshold value

between class 0 and class 1, two regions are created for binary classification

purposes.

Figure 2.18: Working principle of the sigmoid function in logistic regression.

Input features that result in a y-value smaller than or equal to 0.5 are classified as

’class 0’, indicated in red. y > 0.5 gets classified as ’class 1’, indicated in black.

Classifier model performance (such as logistic regression models) can

be assessed by calculating its sensitivity and specificity, see chapter 3.

These concepts take into account the number of correct and incorrect clas-

sifications the model makes for both class 0 and 1. A visual tool that is

often used for this purpose is the confusion matrix of which an example is

shown in Figure 2.19. A model is considered accurate if the rate of correct

classifications (true positives and true negatives) is much higher than the

rate of incorrect ones (false positives and false negatives).
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Figure 2.19: Example of a confusion matrix constructed to evaluate the perform-

ance of a logistic regression model. Going from left to right and top to bottom, the

first cell shows the number of true positives. Here, the model classifies an input

datapoint as belonging to class 0, while its real class does indeed belong to that

class. Second, there is the number of false negatives, followed by the number of

false positives. Finally there is the number of true negatives.

2.4.4.2 Deep learning

Deep learning is a subset of machine learning that employs neural net-

works with multiple layers, known as deep neural networks (DNNs), to

model complex, non-linear patterns in data. At its core, a neural network is

composed of interconnected layers of units called neurons, each of which

performs a computation similar to logistic regression. Specifically, each

neuron computes a weighted sum of its inputs, adds a bias term, and passes

the result through a non-linear activation function, such as the sigmoid or

ReLU (Rectified Linear Unit) function.

In fact, logistic regression can be viewed as a single neuron in a neural

network: it takes input features, applies weights and a bias, and outputs a

probability via the sigmoid function. Deep learning extends this concept by

stacking many such neurons across multiple layers. These models are typ-

ically trained using supervised learning, where the training dataset includes

both input features and corresponding target labels. While deep networks
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can also be used in unsupervised or self-supervised settings, supervised

learning remains the most common paradigm.

An example of supervised deep learning is U-Net and U-Net inspired

networks – relevant for chapter 7 – that are popular for biomedical image

and signal processing [171–174]. U-Net was introduced by Ronneberger

et al. in 2015 to address the challenge of segmenting biomedical images

with limited annotated data, a common constraint in medical imaging tasks

[175]. The U-Net architecture is particularly effective for biomedical im-

age segmentation due to its ability to capture both global context and fine

details.

U-Net is a convolutional DNN architecture, shown in Figure 2.23, char-

acterized by its use of convolutional layers where the learnable ’weighted

sum’ computed by individual neurons includes a convolution operation,

analogous to digital filtering, exemplified in Figure 2.20. In this context,

these filters are often called kernels with typically small dimensions e.g.,

a 3× 3 matrix. Convolutional layers, characterized by fewer parameters

than fully connected neural networks, generate feature maps that emphas-

ize distinct patterns such as edges, textures, and other pertinent features in

two-dimensional biomedical images. These layers are integral components

of the U-Net architecture, which consists of two primary sections.

Figure 2.20: Example of one convolution operation in a convolutional layer with

a 3× 3 kernel. The operation returns a feature map with altered dimensions ac-

cording to: Output size =
⌊

N+2P−K
S

⌋
+ 1, going from 6× 6 for the input to 4× 4

for the output. N = 6 is the size of the input, K = 3 the size of the kernel, P = 0

the amount the input is zero padded and S = 1 is the stride of the convolution. ⌊x⌋
is the ’floor’ operation. Figure implemented from [176].

First, there is the contracting path or encoder. This part captures con-

text through successive convolutional and pooling layers, which progress-

ively reduce the spatial dimensions of the feature maps while increasing

the depth, i.e. creating more feature channels. Each convolutional layer

46



2.4. Biomedical signal processing

is typically followed by a ReLU activation function and a max-pooling

layer that downsamples the feature maps. The ReLU activation function:

ReLU(x) = max(0,x) introduces nonlinearity which allows for learning of

more complex patterns in data that are not possible with just linear trans-

formations. An example of a pooling operation is given in Figure 2.21.

Figure 2.21: Example of a max pool operation. This example utilizes a 2×2 filter

operation with stride (the number of pixels by which the convolutional filter moves

across the input image or feature map) equal to two. The input is a 4× 4 feature

map. The output has dimensions 2×2.

Second is the expansive path or decoder. It aims to recover spatial in-

formation through upsampling and concatenation with high-resolution fea-

tures from the contracting path. The upsampling is usually performed using

transposed convolutions (also known as deconvolutions) to reconstruct an

output from the feature maps that has the same dimensions as the input. An

example is provided in Figure 2.22. The concatenation step (also referred

to as skip-connections) ensures that the network retains fine-grained details

that are crucial for accurate processing of the model output for medical

purposes e.g. the preservation of edges for image segmentation. The skip

connections between the encoder and decoder merge feature maps from

the contracting path directly with the expanding path. In this way, U-Net

combines low-level detail information with high-level contextual informa-

tion across the network. This helps recover spatial hierarchies lost during

pooling operations in the contracting phase.

A DNN is trained using a designated training dataset, which must be

sufficiently large and representative of the target application domain to en-

sure effective generalization. The size of the training dataset should scale

proportionally with the complexity and capacity of the network architec-

ture. During training, the model iteratively processes the entire training

dataset over multiple epochs. Training involves minimizing a loss function

that quantifies the difference between predicted and true labels. Common
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Figure 2.22: An example of a transposed convolution (or deconvolution) with a

kernel of size 3× 3. The input feature map has been zero-padded to achieve a

higher-dimensional output. Figure adapted from [177]

choices include mean-squared error or cross-entropy loss and Dice coeffi-

cient loss, the latter two being particularly suited for segmentation tasks.

Optimization is typically performed using stochastic gradient descent or

adaptive methods such as Adam (Adaptive Moment Estimation).

At regular intervals, the models performance is evaluated using a separ-

ate validation dataset. This dataset consists of previously unseen examples

and serves to provide an intermediate assessment of its accuracy and helps

in tuning hyperparameters or implementing early stopping. Upon comple-

tion of the training phase, the model is evaluated on a third dataset, the test

set, which also comprises unseen data. This final evaluation provides an

unbiased estimate of the model’s performance and generalization capabil-

ity on new, real-world data.

U-Net can be adapted to 3D or 1D applications where the architecture

is also of significant interest when the objective is to learn both short and

long-range dependencies in the input data. This is particularly relevant in

tasks such as heart rhythm analysis from ECG or PCG data [178–181],
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where capturing temporal patterns at multiple scales is crucial for accurate

interpretation and diagnosis. Performance metrics used to evaluate a model

vary depending on the specific task and the nature of the input-output data.

Figure 2.23: The original U-Net architecture with an added example of input

medical image and output segmentation. The encoder and decoder parts of the

network are indicated. The individual operations are colour-coded. Figure adapted

from [174, 175]
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ABSTRACT

Background: Laser-Doppler Vibrometry (LDV) is a laser-based technique

that allows measuring the motion of moving targets with high spatial and
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temporal resolution. To demonstrate its use for the measurement of carotid-

femoral pulse wave velocity, a prototype system was employed in a clinical

feasibility study. Data were acquired for analysis without prior quality con-

trol. Real-time application, however, will require a real-time assessment

of signal quality. In this study, we (1) use template matching and matrix

profile for assessing the quality of these previously acquired signals; (2)

analyze the nature and achievable quality of acquired signals at the carotid

and femoral measuring site; (3) explore models for automated classification

of signal quality.

Methods: Laser-Doppler Vibrometry data were acquired in 100 sub-

jects (50M/50F) and consisted of 4–5 sequences of 20-s recordings of skin

displacement, differentiated two times to yield acceleration. Each record-

ing consisted of data from 12 laser beams, yielding 410 carotid-femoral and

407 carotid-carotid recordings. Data quality was visually assessed on a 1–5

scale, and a subset of best quality data was used to construct an accelera-

tion template for both measuring sites. The time-varying cross-correlation

of the acceleration signals with the template was computed. A quality met-

ric constructed on several features of this template matching was derived.

Next, the matrix-profile technique was applied to identify recurring fea-

tures in the measured time series and derived a similar quality metric. The

statistical distribution of the metrics, and their correlates with basic clinical

data were assessed. Finally, logistic-regression-based classifiers were de-

veloped and their ability to automatically classify LDV-signal quality was

assessed.

Results: Automated quality metrics correlated well with visual scores.

Signal quality was negatively correlated with BMI for femoral recordings

but not for carotid recordings. Logistic regression models based on both

methods yielded an accuracy of minimally 80% for our carotid and femoral

recording data, reaching 87% for the femoral data.

Conclusion: Both template matching and matrix profile were found

suitable methods for automated grading of LDV signal quality and were

able to generate a quality metric that was on par with the signal quality as-

sessment of the expert. The classifiers, developed with both quality metrics,

showed their potential for future real-time implementation.

3.1 INTRODUCTION

The aorta and large central arteries fulfil key physiological functions in the

circulation, whereby their structure is apt to their function. They consist of

complex composite soft tissues, concentrically organized in lamellar units,

where sheets of elastin intertwine with layers of vascular smooth-muscle
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cells in a matrix of collagen and other proteins composing the extra-cellular

matrix [49]. This allows the aorta and large arteries to distend when the

heart contracts and blood is ejected into the aorta and store elastic energy

in the arterial wall, which is used during the relaxation phase of the heart

to maintain blood pressure and drive the perfusion of organs and tissues.

This function is also referred to as the “windkessel” or buffering function

of the large arteries, and ensures that the pulsatile blood flow generated by

the heart is transformed into a near steady flow when reaching the smaller

arteries [35]. It prevents excessive maximal (systolic) and too low minimal

(diastolic) blood pressure. Arterial stiffening leads to a loss of this buffering

function with detrimental effects on nearly all organ systems, and especially

low resistance organs such as the brain, the kidneys and the heart itself

[7]. Arterial stiffening has received large attention over the past 3 decades,

and there is a consensus that assessment of arterial stiffness is especially

relevant in the assessment of an individual’s risk for cardiovascular disease

and death [8, 75].

Because of the distensible nature of arteries, cardiac contraction gener-

ates a wave (detectable as a change in pressure, flow or arterial diameter).

This wave initially propagates from the heart to the periphery, but increases

in complexity as it interacts on its way with the branching arterial tree and

gets shaped because of wave reflection and transmission [7, 9, 182, 183].

The wave speed, or pulse wave velocity (PWV), is directly linked with the

distensibility of the arteries (the stiffer the artery, the higher PWV) [63],

and the current clinical standard method to measure arterial stiffness is by

measuring the pulse wave velocity [11]. In essence, the method is simple

and straightforward: one detects the pulse at two locations a distance dx

apart, and from the time delay, PTT, between the signals, one gets PWV =

dx/PTT. Despite the simplicity of the concept, there are still many hurdles

in measuring PWV in practice, mainly related to the non-availability of sites

to directly measure the pulse along the path of the aorta in a non-invasive

way and without the need of clinical scanners [11]. Accessible sites closest

to the aorta are the neck (carotid artery) and groin (femoral artery) and

carotid-femoral PWV is considered the best possible proxy for aortic PWV

[8].

Several sensors can be used to detect the pulse in the neck and groin

[11, 184], including applanation tonometry, ultrasound (pulsed Doppler re-

cordings) or accelerometers. Motivated by the relatively high cost of equip-

ment, the required level of expertise by the operator or contact-based nature

of the measurement, we and others have explored the use of laser Doppler

vibrometry to detect the motion of the skin atop the carotid and/or femoral

arteries in response to the passage of the arterial pulse [20–22, 185, 186].
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To eliminate motion drift and amplify the fast displacements associated

with the arrival of the foot of the pulse [186], we have been using skin ac-

celeration as the basic signal from which to derive time delays between the

neck and groin for measuring carotid-femoral PWV.

The feasibility of the method has been shown using industrial-type

LDV sensors [22], and we have been working on the design and develop-

ment of a multi-beam handheld device. The core of the device is a silicon

photonics chip integrated in a micro-optical system which allows for flex-

ible and compact multi-array designs [18, 19]. A first prototype (consisting

of 2 connected yet separable handheld pieces to measure in the neck and

groin with each 6 laser beams) was developed within the context of the

H2020-funded project CARDIS and included a clinical feasibility study

whereby carotid-femoral PWV was assessed in 100 patients and compared

with a reference method based on applanation tonometry [25]. Measure-

ments were performed with a minimal visual feedback during the measure-

ments and and all the analyses were carried out in off-line modality.

A next generation version of the device is under development and will

provide real-time measurement of carotid-femoral PWV. To do so, we need

real-time assessment of the quality of incoming data to decide whether or

not data records are of an acceptable quality for subsequent processing.

This is, however, not a trivial assessment as there is little reference as to

what makes LDV signal recordings appropriate for PWV estimation.

The aim of this study is therefore to identify a strategy to objectively

and automatically assess the LDV-signal quality and set criteria for future

use of this technology in arterial pulse detection. To do that we will use the

existing CARDIS database of LDV recordings at the carotid and femoral

measurement sites and subject them to two different strategies: the template

matching and the matrix profile will be tested for (1) analysing the nature

and achievable quality of the recorded signals, and (2) exploring models for

an automated classification of LDV-signal quality.

3.2 METHODS

3.3 MATERIALS AND METHODS

3.3.1 The CARDIS device

Technical details on the optics and overall design of the CARDIS device

have been described in [19]. Briefly, the device consists of two handpieces

(handpiece 1 contains the handgrip of the device, handpiece 2 is the add-on

part of the device: we refer to Figure 3.1 for an illustration of the device

and the positioning of the handpieces), each sending out 6 laser beams
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(wavelength 1550 nm), positioned along a line and 5 mm apart. The hand-

pieces can be used separately for measurement of carotid-femoral PWV, or

attached to measure signals on locations 25 to 50 mm apart, e.g. to locally

measure pulse wave propagation along the carotid artery. A retro-reflective

tape is attached to the skin at the measurement location to enhance reflec-

tion of the laser light, and the device is equipped with a spacer to ensure an

appropriate optical focus distance and to stabilize measurements.

Figure 3.1: CARDIS device in configuration to measure carotid-femoral (A) and

local carotid PWV (B). (C) and (D) display representative tracings on the carotid

(C) and femoral (D) measuring site receiving a visual grading score of 1 to 5.

Especially in the excellent tracings, the foot-of-the-wave waveforms are clearly

visible, with the same for the dicrotic notch waveforms in the local carotid case.

3.3.2 Study population and available database

The data used in this study were acquired with a clinical feasibility study

in 100 patients, conducted at the Hôpital Européen Georges Pompidou

(HEGP) in Paris, France, to assess the ability of the CARDIS device to

measure signals in a configuration with simultaneous carotid-femoral or

carotid-carotid recordings. Patients were in the age range 19-85 and presen-

ted with mild to stage 3 hypertension, controlled or not [25]. For each sub-

ject, 4 to 5 datasets, each consisting of 20 second traces on 12 channels

measured with the two handpieces, were acquired. In detail, the analysed

database was made of 410 datasets (4920 waveforms) from carotid-femoral

recordings, and of 407 datasets (4884 waveforms) from carotid-carotid re-

cordings. Raw IQ (In-phase and quadrature) LDV-data were acquired at a
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sampling frequency of 100 kHz, and LDV-displacement data were down-

sampled to 10 kHz upon demodulation. A low-pass filter with cut-off fre-

quency of 30 Hz was applied to LDV displacement data, which were dif-

ferentiated twice to yield acceleration. The same low-pass filtering strategy

was applied after each differentiation operation.

3.3.3 Visual scoring of the data

A graphical interface displaying all the LDV acceleration signals derived

from the six channel recordings per each handpiece was implemented in

MATLAB environment (The MathWorks, Naticks MA, US). The acceler-

ation signals were visually scored by an expert operator (Segers P.) on a

5-level grade scale taking values Qvis according to table 3.1.

Table 3.1: The 5-levels grade scale taking values Qvis

Quality

score Qvis
Quality Description

Score 1 Bad
Acquisition with no evidence of repeatable features that may be linked

to the detection of a pulse

Score 2 Poor
Very noisy acquisition not suitable for analysis, but with identifiable

pulses within the noisy trace

Score 3 Bordeline

Acquisition affected by noise but presenting clear repeatable patterns.

Advanced signal processing algorithms could remove the noise and al-

low to detect the foot of the pulse wave with reasonable affordability

Score 4 Good
Acquisition with sharp and pronounced peaks at the foot (and dicrotic

notch), with relatively low noise levels between successive pulse peaks

Score 5 Excellent

Acquisition with very sharp and pronounced peaks at the foot (and di-

crotic notch), with low noise levels in between the peaks. Signals of

textbook quality

Note that the presence of brief artefacts in the 20 second acquired traces

was not used as a criterion to score the signal quality. As such, signals qual-

ified as excellent may still demonstrate a brief episode of poor data. Over-

all, the femoral data were of a markedly lower Qvis ‘quality’ than traces

recorded at the carotid artery, which impacted the rating. Therefore, the

Qvis quality score 3 (borderline) was given to femoral traces that appeared

to be of a much lesser quality than Qvis = 3 rated carotid traces. Such a bor-

derline score was assigned when 5-10 beats were discernible in the signal.

Representative carotid and femoral signals receiving the different scores are

displayed in Figure 3.1.

3.3.4 Template matching

Template matching technique is an effective approach for the automatic de-

tection of a priori identified patterns in signal recordings [145, 146] and im-

ages [144]. A good-quality carotid LDV acceleration signal presents two

sharp peaks for each heartbeat: the first peak corresponds to the systolic
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rapid upstroke of pressure and demarcates the foot of the arterial pulse;

the second peak denotes the wave that is generated at the moment of clos-

ure of the aortic valve (the dicrotic notch). The LDV-femoral recording is

devoid of clearly identifiable features related to the dicrotic notch because

of the distance of the measurement site from the heart, whose final effect

is filtering the recorded LDV pulses, in the femoral artery. An example of

displacement, acceleration and ECG signals together are shown in Figure

3.2.

Figure 3.2: An example of Cardis data. (A) shows the ECG signals, (B) shows the

displacement signal and (C) the corresponding acceleration signal.
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3.3.4.1 Constructing the templates

High-quality carotid and femoral LDV-acceleration traces were adopted

for template construction. Traces with visual score value Qvis of 4 and

5 were selected. To avoid subject-specific biasing in template construc-

tion, only one 20 s recording (from the acquired channel with highest Qvis)

per subject was selected. Based on these selection criteria, 135 carotid

LDV-acceleration traces from 20 different subjects and 40 femoral LDV-

acceleration traces from 10 different subjects were identified as suitable for

template construction in the CARDIS dataset. The selected carotid LDV-

acceleration traces were from both handpieces.

The selected traces, characterized by the presence of sharp and pro-

nounced peaks at the foot (and dicrotic notch for carotid recordings), were

then segmented in epochs, each one corresponding to a single heartbeat.

LDV-acceleration trace segmentation was carried out using ECG synchron-

ous recordings (available for each subject in the CARDIS dataset, on which

automatic R-peak detection was carried out, see Figure 3.3). Over each

LDV trace single epochs were then defined within a time interval within the

occurrence of two consecutive R peaks in the ECG trace (Figure 3.3A). By

construction of the visual inspection classification, some of the identified

single epochs might still not be of adequate quality for template construc-

tion, because of the presence of short-time artifacts/noise (Figure 3.3B).

The lower quality single epochs in a LDV-acceleration trace were identi-

fied according to the following strategy: (1) for each LDV segmented trace

a correlation matrix Ri j was built up, each element of the matrix being the

Pearson-correlation coefficient between epochs i and j, used as a measure

of their shape similarity; (2) a threshold value of the correlation coeffi-

cient was defined and single epochs with an average correlation coefficient

with all the other epochs lower than the threshold was discarded, since

they were not sufficiently similar in shape to the other epochs in the recor-

ded trace (Figure 3.3C); (3) for each LDV-acceleration trace an ‘individual

template’ was built up by averaging only the identified highly correlated

epochs (Figure 3.3D); (4) by adopting the same approach with the carotid

and femoral LDV-acceleration traces, the final carotid and femoral ‘popu-

lation templates’ were obtained (Figure 3.4).

Template construction is based upon the definition of a strategy to treat

the issue of the different time length of single epochs (intra-individual RR

variability) [187, 188] and of the individual templates as well. Hence,

the time length of single epochs should be defined on the basis of what

the template should represent. In the case under study, the carotid LDV-

acceleration template longer than 350 ms will include by construction the

foot of the wave (first peak) and the dicrotic notch (second peak). Here
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Figure 3.3: Workflow detailing the construction of the template. Illustration of

selection of good quality epochs using the correlation coefficient. (A) ECG signal

with detected R peaks, which are used to segment the acceleration signal into

heartbeat epochs (B). After the correlation matrix analysis, only the good epochs

are maintained (D). In (C) the final individual template, calculated as the average

of the good epochs, is displayed.

we speculate that a carotid LDV template incorporating the second peak

may degrade in performance, as the distance between the two peaks is

(intra-individually as well as inter-individually) variable. In figure 3.5,

carotid and femoral LDV-acceleration templates constructed for different

(predefined) time length are displayed. In detail, time lengths of 300, 400

and 500 ms were considered for the femoral LDV-acceleration template,

and time lengths of 200, 400 and 600 ms for the carotid LDV-acceleration

template. The impact of the time length in the LDV template performance

when used for the automatic assessment of the quality of the CARDIS data

was evaluated.

3.3.4.2 Template matching and beat selection

The matching between the templates and the LDV-acceleration traces in

the CARDIS dataset was performed by applying a local moving-window

function calculating the Pearson’s correlation coefficient between the LDV

template and the 20 s-long acceleration trace at each time step, as displayed

in Figure 3.6. The locations of peaks in the time series resulting from

this moving-window cross-correlation operation identify the time instants

where the sliding template is similar to a segment of the LDV-acceleration

trace.
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Figure 3.4: Bottom (C & D): individual carotid (CC) and femoral (CF) templates;

Top (A & B): population-average carotid and femoral templates.

Setting a threshold for the value of the cross-correlation coefficient then

demarcates the correspondence level above which segments of the LDV-

acceleration trace can be considered similar to the template. Based on the

set threshold value, single segments corresponding to single heartbeats in

the LDV trace can be considered of sufficient or not sufficient quality.

To further improve the identification of high-quality heartbeats in the

LDV recorded traces, two further selective criteria were added. Firstly, all

the LDV-acceleration peaks in the recorded trace with an amplitude lower

than the 80% of the average peak amplitude were not considered. Then,

if two successive peaks were detected within a time window shorter than

500 ms, the second peak was discarded and only the first one was con-

sidered. The latter criterion was adopted to avoid the dicrotic notch de-

tection (second peak), especially when the shorter carotid template was

used. An explanatory example of peak detection, presenting the LDV-

acceleration trace, the moving-window cross-correlation function and de-

tected peaks is displayed in Figure 3.7.
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Figure 3.5: Left column (A, C & E): three different length of the femoral template;

Right column (B, D & F): three different lengths of the carotid template.

3.3.4.3 LDV traces classification based on template matching - finding

threshold values

The performance of the template matching algorithm in classifying the

quality of the CARDIS dataset was evaluated by comparison with visual

score classification, according to the following scheme: acceptable heart-

beat (label 1), corresponding to Qvis values 4 or 5; not acceptable heartbeat

(label 0) corresponding to Qvis values 1 or 2. Signals with Qvis-values of 3

are discarded in this analysis as these signals are difficult to assign an ab-

solute and correct classification (see discussion). The template matching-

based c classification, as also mentioned before, depends upon the threshold

value for the moving-window correlation function and the number of detec-

ted heartbeats in the LDV-acceleration trace, which have to be appropriately

set.
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Figure 3.6: The template matching algorithm is shown. The chosen template (dis-

played in the middle row of the figure) is iteratively correlated with the accelera-

tion signal to get the cross correlation function. In that function, the appropriate

peaks are then identified.

Figure 3.7: First row: acceleration signal. Second row: normalised cross-

correlation function and its maximum values of the acceleration signal with the

femoral template of 500 ms. Last row: acceleration signal with the detected peaks

using the template matching method.
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Here, we considered: true positive (TP) an acceptable LDV trace (based

on Qvis classified by the template matching as acceptable; false negative

(FN) an acceptable LDV trace classified by the template matching as not

acceptable; true negative (TN) an unacceptable LDV trace classified by the

template matching as not acceptable; false positive (FP) an unacceptable

LDV trace classified by the template matching as acceptable. On this basis,

sensitivity and specificity values of the classifier are defined as:

Sensitivity =
T P

T P+FN
(3.1)

and

Specificity =
T N

T N +FP
(3.2)

Sensitivity and Specificity were then used to build up the Receiver Op-

erating Characteristic (ROC) curves and their area under the curve (AUC)

was used to assess the performance of the classifier. Moving-window cross-

correlation coefficient threshold values and number of detected heartbeats

yielding the highest AUC were defined on the complete CARDIS dataset,

and this for each one of the template lengths in time.

3.3.4.4 LDV traces classification based on template matching - defining

quality score and testing on the CARDIS dataset

Once the best performing carotid and femoral templates time length and the

associated moving-window cross-correlation threshold values were identi-

fied, a quality score (QTM)was estimated for each 20 s LDV-trace recording,

based on two main features.

The first feature (Q1) is the number of the detected acceleration peaks

(npeaks), normalized with the maximum expected number of peaks or heart-

beats in the 20 s LDV-trace recording (maxpeaks). This value was empiric-

ally set equal to 26 to ensure a maximal feature value of 1 in the investigated

database:

Q1 =
npeaks

maxpeaks

(3.3)

The second feature (Q2) is defined as the average time delay between

the occurrence of maximum value of each LDV-acceleration epoch in the

recorded trace and the occurrence of the peak value on the template (dpeakn
),

normalized to the template time length (N):

Q2 =
∑

npeaks

n=1 (1− dpeakn

N
)

maxpeaks

(3.4)
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When the peaks in the template and in each LDV epoch are all perfectly

aligned, and when all the peaks in the LDV-trace are detected (i.e., Q1 = 1),

feature Q2 is equal to 1, indicating good quality of the LDV trace recording.

The final score based on template matching can be computed as the mean

value of the partial scores Q1 and Q2:

QTM =
1

2
(Q1 +Q2) (3.5)

By construction, the score QTM was set up so that the value is within

the range [0,1] (with QTM = 0 representing the worst possible signal quality

and QTM = 1 indicating that the signal is of excellent quality). QTM was

calculated for all the traces in the CARDIS database and compared to the

corresponding assigned visual score Qvis, which is treated as the ground

truth.

3.3.4.5 A logistic regression model for signal classification based on

template matching

QTM Was a heuristically derived quality metric with equal weighting on the

sub-components. Now we use logistic regression models to find a better

weighting of the contributions of Q1 and Q2, and automatically map this

to a predicted quality of the signal. Logistic regression models are chosen

since they can be well applied to binary classification problems, and are

typically used in medical research [168–170] when a two-class classifier is

required. These predictions were then compared to the ground truth labels

(given by the visual scores).

Logistic regression models were trained and tested with the two

template-matching derived scores (3.3) and (3.4) as features, on both

carotid and femoral LDV-acceleration traces. For this purpose, again the

LDV traces visually scored with Qvis equal to 1 or 2 were labeled 0, and

LDV traces visually scored with Qvis equal to 4 or 5, were labeled 1.

Again, signals with Qvis score 3 were not included in the analysis.

The data available in the CARDIS database was split such that 80%

was used for training the logistic regression model and the remaining 20%

used for testing purposes. The training-testing set partition was randomly

iterated 1000 times while storing the model accuracy every iteration, so that

the overall accuracy distribution of the logistic regression model approach

could be assessed.

Of note, all features used to train logistic regression models were nor-

malized via standardization. This allowed the logistic regression-model

coefficients to be interpreted as the corresponding feature weights, granting
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information about which feature was most influential in labeling an LDV

trace.

The accuracy distributions of logistic regression models trained on

template-matching and the later discussed matrix-profile derived features

were evaluated.

3.3.5 Matrix profile

The matrix profile is a data structure that annotates a time series [141, 142].

It allows for exact, simple and fast [139] similarity search or discord dis-

covery and is among the state-of-the-art techniques in the field of discrete

time-series analysis [140, 143]. The matrix profile has been used in pro-

cessing biological signals like EEG [138], ECG and gait cycles [142]. It

was applied here to accurately identify recurring waveforms in the LDV-

acceleration data. Every such waveform is a subsequence of the original

sequence or time series. These subsequences, taken togegher, are collect-

ively called a motif. We gauged the quality of an LDV-measurement via

several features determined by its best motif. The strength of the matrix

profile lies in the fact that it does not require a template or other input para-

meters except for the length m of the desired motif subsequences. Ana-

logous to the template matching analysis, waveforms were subsampled to

1 kHz. We set m to 200 ms, similar to the optimal length of the template

described in previous sections.

3.3.5.1 Signal classification based on the matrix profile

A quality metric (QMP) was constructed based on three features of the mat-

rix profile-generated motif as seen in (3.6). This metric was constructed so

that its possible values lie between 0 and 1.

QMP = AMP td,MP nMP (3.6)

The first feature used in calculating (QMP) is the average relative max-

imum amplitude of a subsequence in the motif (AMP) computed as in (3.7).

The maximum amplitude of a subsequence As was compared with the max-

imum amplitude of the reference subsequence Aref. This reference is the

first subsequence identified by the matrix profile (the minimum of the mat-

rix profile) and subsequently included in the motif. In good quality meas-

urements, most maximum amplitudes of subsequences in the motif were

similar.

AMP =
1

nmtf

nmtf

∑
n=1

As

Aref

(3.7)
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The second feature, the average relative time-instant of the subsequence

peaks in the motif (td,MP), is computed as in (3.8). The time-instant of the

subsequence peak was compared with that of the reference. This value

was then normalized over the length of the subsequence m. Ideally, all

subsequences in the motif represent the same heartbeat-related waveform

with peaks at similar time instants. For poor quality signals, these time

instants tended to randomly vary over the length of the subsequence.

td,MP =
1

nmtf

nmtf

∑
n=1

(1− dpeak

m
) (3.8)

Lastly, the third feature (nMP) was calculated as the expected amount

nexp versus the effective amount nmtf of subsequences in the motif, shown

in (3.9). nexp was estimated based on a discrete-Fourier-transform analysis

of the entire signal recording. More specifically, the peak corresponding to

the heartbeat during the measurement was identified as the most prominent

peak in the signal spectrum, in the range 0.5 - 1.5 Hz. The effective amount

of subsequences in the motif nmtf was based on how many heartbeats the

matrix-profile technique was able to pick up.

nMP =
nmtf

nexp

(3.9)

Before a subsequence is included in the motif, three criteria decide the

inclusion: (1) If a subsequence maximum amplitude was lower than 0.8

times the reference maximum amplitude it was excluded from the mo-

tif. (2) If the time instant of the peak deviated 30 ms or more from that

of the reference, the subsequence was also removed from the motif. (3)

If two subsequences were closer than 0.8 times the expected time delay

between two subsequent heartbeats, the one with the lower matrix-profile

value (higher similarity to the reference) of the two was preserved, the other

was removed. The applied thresholds levels were determined empirically

from excellent and poor quality signals. Figure 3.8 shows an example of

a signal being scored by first finding the motif so that as many heartbeats

as possible are present within it, then calculating the features of that motif.

Both the relative amplitude and time-instant of subsequence peak features

of one subsequence in the motif are indicated on the Figure.

The auto-generated matrix-profile based quality metric was computed

for all carotid-carotid and femoral-carotid datasets and results were com-

pared to the visual scores.
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Figure 3.8: Example of one signal being scored by the features that are derived

from the Matrix-Profile-identified motif. The amplitude feature of one subsequence

is shown in the upper figure, the reference is indicated with a red square. The

time-instant of subsequence peak feature is shown in the lower figure where all

subsequences shown in the upper figure are time-aligned. Signal score is shown in

the upper left corner of the upper Figure. The visual score of this signal is 4.

3.3.5.2 A logistic regression model based on the matrix profile

Similar to template matching, we also designed logistic regression models

using the previously discussed matrix-profile derived features. These mod-

els allowed for more freedom in weighting the features to come to a better

classification result. Models were trained and tested on the three features

mentioned above. Signals were labeled and available data was split into

training and testing sets analogous as in the previously discussed template-

matching case.

3.3.6 Relation between signal quality and physiological variables

Lastly, we investigated the existence of possible associations of quality of

the LDV-acceleration traces with age, body mass index (BMI) and systolic

blood pressure. The statistical analysis was performed using QMP as quality

score variable. In detail, the existence of a linear correlation was tested

using the Pearson-correlation coefficient on both CC and CF datasets, with

data analysed per handpiece. For all analyses, significance was assumed

for p < 0.05.

3.4 RESULTS

3.4.1 Visual scoring

3.4.1.1 Carotid-carotid measurements

By visual inspection, about 12% of all LDV-acceleration traces were qual-

ified as bad and close to 30% as poor (Figure 3.9, panel B). Which implies

that about the 42% of the recorded LDV traces was evaluated to not be
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of sufficient quality for further analysis. About 22% of all recordings was

scored from good to excellent, and are deemed suitable for further ana-

lysis. About 37% of the traces was visually scored borderline, i.e. these

traces might be of sufficient quality for further analysis with advanced pro-

cessing. The number of LVD traces scored with Qvis 4 or 5, and recorded

using handpiece 2 was higher than the number using handpiece 1. For hand-

piece 1, channel 1 scored almost systematically very low; the best channels

were channels 3 and 4. For the second handpiece, the best channels were

channels 2 and 3.

3.4.1.2 Carotid-femoral measurements

The bottom row of Figure 3.9 illustrates that, concerning femoral LDV-

acceleration traces (handpiece 1), 20% of all recordings was qualified as

bad, and another 32% as poor, meaning that over 50% of all recordings is

not usable for analysis. About 15% of the measured signals get a score

good to excellent, deemed immediately suitable for analysis. Best channels

are channels 3 and 4 with 21.9% (beam 3) and 19.5% (beam 4) of the

recordings good to excellent. For handpiece 2 (carotid recordings), about

20% gets a score good to excellent. This is less than what was obtained

for handpiece 2 for the carotid-carotid recordings, where close to 25% of

all recordings were rated good to excellent. On the other hand, less signals

received grade 1 and 2. Best channels are channels 4 (24.9%) and 5 (24.1%

of the recordings scoring good to excellent).

3.4.2 Template matching

3.4.2.1 Carotid-carotid (CC) measurements

From the analysis carried out on the complete CC dataset, it emerged that

using the carotid template of 200 ms length guarantees the best perform-

ance in terms of specificity, setting the cross-correlation threshold to 0.74

and the minimum number of detected heartbeats per trace to 15 (AUC =

0.89, sensitivity 74%, specificity 89%; template of 400 ms length: AUC =

0.89, sensitivity 81%, specificity of 83%; template of 600 ms length: AUC

= 0.92, sensitivity 87%, specificity 86%). For each template length, the

corresponding confusion matrix is presented in Table 3.2. The adoption of

specificity for the evaluation of the performance of the template matching

strategy was dictated by the need of maximizing the removal of LDV traces

with inadequate quality. More in detail, it emerged that in general the tem-

plate matching performed excellently in correctly classifying visual scores

1 and 5, while accuracy decreased for visual scores 2 and 4 (Table 3.2).

Interestingly, using the shorter template length of 200 ms led to score 42%

of the LDV acceleration traces visually scored 3 (borderline) as acceptable

data.
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Figure 3.9: Top row: visual scoring of signals measured with handpiece 1 and

2 during local carotid measurements (A) with overall grades shown in (B) and

box plots and mean values per channel in (C). Bottom row: visual scoring of sig-

nals measured during carotid-femoral PWV measurements (D) with overall grades

shown in (E) and box plots and mean values per channel in (F).

Table 3.2: Confusion matrices of signal classification done by the hand-

engineered classification model constructed with template matching. Signals clas-

sified in this table were measured at the carotid and the templates used were the

carotid population templates.

Template of 200ms Template of 400ms Template of 600ms

Carotid recordings TM score 0 TM score 1 TM score 0 TM score 1 TM score 0 TM score 1

score 1 97% 3% 97% 3% 97% 3%

score 2 86% 14% 86% 14% 82% 18%

score 3 58% 42% 55% 45% 44% 56%

score 4 29% 71% 30% 70% 15% 85%

score 5 8% 92% 19% 81% 6% 94%

The level of agreement obtained between QTM and Qvis on the CC

recordings dataset, with template matching adopting a 200 ms template

length, is presented in Figure 3.10. This suggests that the median of the

QTM values, computed on traces that have a Qvis = 3, could be adopted

as a threshold value for the automatic quality checking of an LDV trace

(i,e. in the case under study, traces with a QTM > 0.5 could be considered

of adequate quality; note that, manually setting these thresholds is not re-

quired for the logistic regression models since this is implicitly learnt in the

training).
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Figure 3.10: Quality score comparison between visual score and the template-

matching-derived and matrix-profile-derived. Subfigures (A) and (C) display the

score based on the template matching and (B) and (D) quality score based on the

matrix profile.

The accuracy distributions of logistic regression models trained on

quality scores derived from template-matching are displayed in figure

3.11 (3.11A- 3.11B). On average, the accuracy on traces acquired

using handpiece 2 is higher than handpiece1 (85±1.6% and 80±1.70%,

respectively; the results are summarized in Table 3.3).

Table 3.3: Table containing the average performance of the logistic regression

models trained on features derived by both template matching and matrix profile

methods. Results are shown per handpiece of the measuring device. Average

classification accuracy as well as its standard deviation are given.

Template Matching Matrix Profile

Accuracy Average Std Average Std

Carotid-carotid HP1 80% 1.75% 82% 1.64%

Carotid-carotid HP2 85% 1.63% 88% 1.53%

Femoral-carotid HP1 87% 1.31% 86% 1.43%

Femoral-carotid HP2 81% 1.96% 85% 1.71%
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Figure 3.11: Accuracy distributions for 1000 random train-test set partitions and

subsequent logistic regression models trained. The accuracy distribution is shown

cumulatively through bar-charts with the equivalent Gauss-curve plotted on top of

it. Subfigures (A), (B), (C) and (D) show this for CC HP1, CC HP2, CF HP1 and

CF HP2 cases respectively.

3.4.2.2 Carotid-femoral (CF) measurements

From the analysis carried out on the complete CF dataset, it emerged that

using the carotid template of 500 ms length guarantees the best performance

in terms of specificity, setting the cross-correlation threshold to 0.56 and

the minimum number of detected heartbeats per trace to 10 (AUC = 0.89,

sensitivity 77%, specificity 92%; template of 400 ms length: AUC = 0.88,

sensitivity 76%, specificity of 91%; template of 300 ms length: AUC =

0.87, sensitivity 72%, specificity 92%).The confusion matrices are shown

in Table 3.4 for each template.

Table 3.4: Confusion matrices of signal classification done by the hand-

engineered classification model constructed with template matching. Signals clas-

sified in this table were measured at the femoral and the templates used were the

femoral population templates.

Template of 300ms Template of 400ms Template of 500ms

Femoral recordings TM score 0 TM score 1 TM score 0 TM score 1 TM score 0 TM score 1

score 1 96% 4% 96% 4% 96% 4%

score 2 91% 9% 89% 11% 91% 9%

score 3 68% 32% 64% 36% 65% 35%

score 4 33% 67% 28% 72% 27% 73%

score 5 8% 92% 6% 94% 7% 93%

As for the carotid traces, the performance of the template matching al-

gorithm was based on the specificity values, in order to remove the bad

quality signals. More in detail, the template matching strategy shows ex-

cellent performance for the classification of visual scores 1 and 5 (accuracy
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of 96% and 93% respectively), while the accuracy decreases for class 2

and class 4 (91% and 72% respectively). In the femoral case, the method

classified a majority of LDV traces with a visual score of 3 (borderline)

as inadequate. Indeed, considering the template of 500 ms, the template

matching method classified 65% of score 3 as inadequate signals and the

other 35% (borderline)as adequate.

The level of agreement obtained between QTM and Qvis on the CF

recordings dataset, using the 500 ms template length, is shown in Fig-

ure 3.10C. The results indicate that from the median QTM values scored Qvis

= 3, a threshold value could be adopted for the automatic quality checking

of the LDV trace (i,e. in the case under study, traces with a QTM > 0.23

could be considered of adequate quality; again, this threshold is not re-

quired when working with the logistic regression models.)

The accuracy distributions of logistic regression models trained on

quality scores derived from template-matching are displayed in figure

3.11( 3.11E and 3.11F). On average, the accuracy on traces acquired

using handpiece 1 is higher than handpiece 2 (87±1.3% and 81±1.9%,

respectively; the results are summarized in Table 3.3).

3.4.3 Matrix profile

On good quality data, i.e., those visually scored at 4 or 5, the matrix pro-

file technique was able to include nearly all heartbeats in the motif. On

poor quality data the matrix profile was unable to identify most heartbeats

because of noise or artifacts in the measurement. On some measurements

that contain pure noise, the matrix profile picked up random noisy wave-

forms that were less prevalent and differed much compared to the desired

foot-of-the-wave waveform.

3.4.3.1 Quality metric results

The signals measured at the carotid measuring site were given a matrix

profile-derived quality score that is compared with their visual scores in

figure 3.10B. A positive, linear relation between the two scoring methods

is observed for the carotid-carotid database.The same information is shown

for the femoral measuring site in figure 3.10D. The difference between poor

and good quality signals is apparent. Signals with visual score 1,2 or 3 have

significantly lower QMP than those with visual score 4 or 5.

3.4.3.2 Logistic regression models performance

Figure 3.11C,D,H show the accuracy distributions of the repeated logistic

regression model-training experiment for signals measured in the neck with

the different handpieces. All accuracy averages are above 80% with 82%
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(±1.64%) and 88% (±1.53%) for carotid-carotid recordings with hand-

piece 1 and 2, respectively. For carotid-femoral recordings, carotid data

recorded with handpiece 2 yielded an accuracy of 85%± 1.71%. The distri-

butions were assumed to be normally-distributed after a Shapiro-Wilk test

and thus the Gauss-curves are drawn onto the subfigures of Figure 3.11.

The same data for the femoral data (measured with handpiece 1 during

carotid-femoral recordings), is shown in figure 3.11G. An average accur-

acy of 86% with a standard deviation of 1.43% is observed. All accuracy

statistics of the different measurement situations are summarized in table

3.3.

3.4.4 Signal quality vs. physiological variables

The results from the correlation analysis between QMP and age, BMI

and systolic blood pressure are shown in figure 3.12 for the femoral data

(carotid-femoral recording, handpiece 1; CF HP1) and the carotid-carotid

recordings with handpiece 2 (CC HP2) showing the strongest trends.

Significant negative correlations were found between age and QMP for CF

HP1 (ρ = −0.253, P<0.05) and CC HP2 (ρ = −0.365, P<0.001). The

correlation with BMI (figure 3.12B) was significant only for the femoral

recording (ρ = −0.304, P<0.01) while the correlation with systolic blood

pressure was significant only for CC HP2 (ρ = −0.206, P<0.05)(figure

3.12C). In a multivariate regression model including both age and systolic

blood pressure, the correlation between carotid signal quality and systolic

blood pressure was no longer significant (due to the correlation between

age and systolic blood pressure). In contrast, in a multivariate model of

femoral signal quality, both age and BMI remained significantly correlated

with signal quality. The same relations are found when repeating the

analysis with Qvis or QMP (data not shown).

3.5 DISCUSSION

The potential of Laser-Doppler Vibrometry (LDV) for non-contact meas-

urement of physiological (cardiovascular) signals has been reported since

about 2000 in explorative studies [21, 186, 189, 190] making use of bulky

industry-time devices, and the technique has been suggested for meas-

urement of carotid-femoral PWV by [22]. An important technological

breakthrough to enable LDV-based measurements in a clinical setting is

the use of silicon photonics to miniaturize and integrate the optical com-

ponents onto chips [18] that are easily built in into hand-held devices as the

CARDIS prototype used in this study. That prototype was used in a clinical

feasibility study where measurements were performed on the carotid and

femoral artery and we previously reported on the agreement of LDV-based
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Figure 3.12: Correlation analyses of the matrix profile-based quality score with

age, BMI and systolic blood pressure, shown in subfigures (A), (B) and (C) re-

spectively. Only data in the CC HP2 and CF HP1 cases is shown. Trendlines of

the data are also drawn.

carotid-femoral PWV with a reference method [25]. In that paper, data was

processed off-line and algorithms for foot detection relied on the ECG and

gating was applied on carotid and femoral tracings to ensure identification

of the correct characteristic points on the waveforms. Further developments

aim for ECG-independent measurements and will require a more stringent

quality assessment in real-time application to ensure that data is captured

from which transit times can be derived. Unlike the CARDIS device, fu-

ture versions of the device will provide real-time feedback on signal quality

and valid measurements will only be accepted after a minimal number of

data samples have been retrieved from signals passing predefined quality

criteria. In this paper, we explored two possible strategies for such quality

assessment, template matching and matrix profile, and benchmarked them

using visual scoring as reference.

The visual grading was done by what we considered an expert observer,

but is inherently subjective. The graphical user interface that was developed

showed all data within one single window for reasons of efficiency, but in-

evitably leads to a weighed appreciation where data from different channels

do get, to some extent, a degree of relative scoring. This mainly applies

to the scores good (4)-excellent (5) where recordings of certain channels

could have likely received different rankings if they had been individually

assessed without the knowledge of the signal on the other channels. This

remark may also pertain to the grade borderline. As future use of the device

will target acquiring the best possible signals in a given subject, we partic-

ularly focused on signals graded 4 or 5. Figure 3.9 provides a visual over-

view of observed quality across the complete database. Each handpiece of
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the device is equipped with 6 channels in line, spanning 2.5 cm with the

aim to have minimally one channel that detects a strong signal. It is clear

that channel 1 on handpiece 1 systematically yields very low scores, which

was attributed to a hardware problem with inadequate alignment of the op-

tical components during device assembly. For carotid measurements, the

middle channels 3 and 4 yielded the the highest quality signals (as expec-

ted), but this shifted to channels 2 and 3 for handpiece 2. Also, the overall

signal quality was slightly higher for handpiece 2. We speculate that the

use of the spacer underneath handpiece 1 may contribute to the difference

in signal quality between both handpieces. These data can be compared

to the data from handpiece 2 during carotid-femoral measurement, where

handpiece 2 is now equipped with a spacer (see Figure 3.9 for the measur-

ing configurations). The mean signal quality is now in the same range as

it was for handpiece 1 on the local carotid measurements. An extra factor,

however, is the fact that carotid-femoral measurements are technically more

demanding, requiring the simultaneous acquisition of signals at 2 distinct

locations. The same conclusions can be drawn on the basis of the automat-

ically calculated sores QTM and QMP.

In essence, one very good to excellent channel recording on each of

the handpieces should guarantee a reliable transit time estimation from one

handpiece to the other. This was achieved in 27% of the local carotid data-

sets and in 13% of the carotid-femoral datasets mainly due to the subop-

timal femoral recording that is more challenging due to fact that the oper-

ators has to manipulate two sensors on two distinct locations as well as the

deeper positioning of the femoral artery leading to weaker signals. That

does not imply that the remaining datasets cannot be processed (especially

when the ECG is available; see [25]) or that LDV would not be suitable as

measuring technique; we just speculate that these results can be drastically

improved with real-time feedback on the signal quality upon measurement.

The main objective of this paper was to explore different methods for

an automated signal quality assessment, where we first explored template

matching. The template should minimally contain the foot fingerprint of

the wave, apparent on both the carotid and femoral measuring locations.

That pattern turned out to be fairly robust across the tested population.

Even though the amplitude of acceleration signals was lower at the femoral

measuring site, the pattern of the foot is quite similar on both measuring

locations. A practical choice that has to be made is on the length of the

template. For carotid signals, it may be relevant to extend the template

such that it also encompasses the dicrotic notch. We preferred the shorter

template of 200 ms (which does not extend beyond the dicrotic notch) as

the time delay between the wave’s foot and the dicrotic notch is not con-

stant but varies in between subjects and also within one subject from cycle
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to cycle due to physiological variations in blood pressure and heart rate.

The shorter template was found to result in a somewhat higher specificity

in correctly classifying poor signals, but overall, the performance of the

carotid templates with different lengths was not very different, as can be

observed from the confusion matrix (Table 3.2). On the other hand, for the

femoral artery, we preferred the longest template of 500 ms which should

detect epochs characterized by one prominent peak, the foot of the wave,

followed by a long tail of low amplitude signals.

We then determined optimal thresholds levels for the magnitude of the

cross-correlation and the number of detected beats using ROC analysis,

whereby we maximized the classification performance of a binary classifier

on the basis of QTM. In this exploratory study, that analysis was done on

the complete database and further optimizations should be done on the used

features and repeating the analysis with a separate training and testing data

set. Using the resulting thresholds, the agreement between QTM and Qvis

was overall satisfactory. The logistic regression model analyses learned that

a template matching approach is a valuable option to automatically classify

signal quality as acceptable or not acceptable with an accuracy of over 80%.

As a second method, we considered the matrix profile as a technique to

identify recurring patterns in the LDV-measurements in an automatic man-

ner [191], with very few control parameters. The potential advantage of

a matrix profile approach over template matching is that no prior know-

ledge is required on the shape of the signal feature that one is looking for.

Also, using the matrix profile allows the generation of a ‘user-dependent’

template in situ. Signal quality was quantifiable using features of the mo-

tifs found by the matrix profile and combined into the quality metric QTM,

which showed a good agreement with the ground truth of visual scores as

can be observed from Figure 3.10.

As for the template matching approach, the average accuracy of a lo-

gistic regression model trained and tested on features derived from motifs

provided by the matrix profile technique is in all cases higher than 80%.

Overall, only relatively small differences are observed between the two

techniques. Both techniques perform similarly well which suggests that

both, or a combination of the two, can be used for classifying new, fu-

ture data into ‘bad, unusable’ or ‘good, usable’. This allows us to state

that a logistic regression model suffices, along with the signal features and

techniques that are considered, to accurately assess incoming data in future

real-time applications.

In our logistic model training, we purposely discarded datasets visually

labelled ’borderline’ (score 3) as these data were simply hard to classify
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visually in an unequivocal way. That difficulty is relatively well reflec-

ted in the values of the quantitative metrics for these signals (figure 3.10)

and the performance of the classifiers as quantified by the confusion matrix

(table 3.2 and 3.4). Especially for the carotid artery, automated classifica-

tion leads to a close to fifty-fifty percent labeling of data as acceptable or

not acceptable. For the femoral recordings, there is a larger tendency to

classify signals with visual score 3 as not acceptable. This is in line with

our own perception that femoral data may have received higher scores than

carotid data of a similar quality, and underlines the need for objective tools

to score signal quality.

Interestingly, the quality score, exemplified by QMP, correlates negat-

ively with age and especially with BMI when signals are measured in the

groin on the femoral artery. This observation supports the operator impres-

sion that measuring good quality LDV-signals on more obese subjects is

consistently more challenging. The deeper the positioning of the artery and

the more surrounding tissue, the stronger the signal attenuation. Such re-

lation with BMI was absent for neck recordings. Also, skin inelasticity or

thickness is expected to play a role on the transmission of intra-arterial vi-

brations and likely contributed to the observed negative correlation between

and signal quality at the carotid and femoral locations in the study popula-

tions. The negative correlations between signal quality and age for carotid-

carotid recordings with handpiece 2 were less strong, and were not found

for the other carotid recordings (carotid-carotid handpiece 1 or carotid-

femoral handpiece 2 recordings). A possible explanation may be the use

of the spacer for these latter measurements, which may mechanically in-

terfere with the transmission of the vibrations from within the artery to the

skin and exert an effect on the recordings. Overall, this effect is considered

minor, but it may nonetheless be a factor contributing to observed differ-

ences in the recordings.

The CARDIS prototype has a laser wavelength of 1550 nanometer

which is insufficiently reflected by the skin. We therefore attached

retroreflective patches to the skin at the measurement locations to enhance

reflection. The next-generation prototype aims for measurements without

the retroreflective patch to facilitate practical use. A wavelength of 1300

nanometer, for which there is a relative peak in skin reflectance [192], will

be used but the impact of skin pigmentation or sweating on data quality

will have to be investigated.

In this study, signal quality was assessed off-line on 20 second record-

ings. Future developments will focus on real-time assessment of data qual-

ity as data is being captured and where the considered techniques will be

used for epoch detection and subsequent quality quantification. Although
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a template-matching approach has the benefit that prior knowledge can be

used to assess incoming data from the start, we assume that both techniques

provide similarly useful features and that both are suitable for real-time im-

plementation. It may be an option to hybridize the two techniques to come

to a stronger, even more robust algorithm when implementing them into the

device.

3.6 CONCLUSION

In conclusion, template matching and matrix profiling are methods suit-

able for the automated assessment of the signal quality of acceleration data

measured from the skin in the neck and groin using laser Doppler veloci-

metry. Both methods allow to identify epochs in a data stream, and provide

quantifiable features that can be combined into a quality score, or be used

as input for logistic regression models for an automated classification of

signals as acceptable or not acceptable. Models based on both methods

yielded an accuracy of minimally 80% in our CARDIS database of carotid

and femoral recordings, reaching as high as 87% for the femoral data.
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VIBROMETER SENSOR ARRAYS

POSITIONING OF THE CHAPTER

This chapter is based on the publication Enhancing Multichannel Laser-

Doppler Vibrometry Signals with Application to (Carotid-Femoral) Pulse

Transit Time Estimation (Beeckman, S., Li, Y., Aasmul, S., Baets, R.,

Boutouyrie, P., Segers, P., & Madhu, N., 45th Annual International Confer-

ence of the IEEE Engineering in Medicine & Biology Society (EMBC), 24-

27 July 2023, pp. 1-7, doi: 10.1109/EMBC40787.2023.10340553) [193].

Conceptualization and methodology for this paper were tackled by the full

list of authors. The author performed the presented analyses and wrote the

conference proceeding in conjunction with prof. Madhu. This chapter only

deviates from the conference proceeding in section 4.6, were an extension

to the analysis is presented.

ABSTRACT

Pulse-wave velocity (PWV) can be used to quantify arterial stiffness, al-

lowing for a diagnosis of this condition. Multi-beam laser-doppler vibro-

metry offers a cheap, non-invasive and user-friendly alternative to meas-

uring PWV, and its feasibility has been previously demonstrated in the

H2020 project CARDIS. The two handpieces of the prototype CARDIS

device measure skin displacement above main arteries at two different sites,
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yielding an estimate of the pulse-transit time (PTT) and, consequently,

PWV. The presence of multiple beams (channels) on each handpiece can

be used to enhance the underlying signal, improving the quality of the

signal for PTT estimation and further analysis. We propose two methods

for multi-channel LDV data processing: beamforming and beamforming-

driven ICA. Beamforming is done by an SNR-weighted linear combination

of the time-aligned channels, where the SNR is blindly estimated from the

signal statistics. ICA uses the beamformer to resolve its inherent permuta-

tion and scale ambiguities. Both methods yield a single enhanced signal

at each handpiece, where spurious peaks in the individual channels as well

as stochastic noise are well suppressed in the output. Using the enhanced

signals yields individual PTT estimates with a low spread compared to the

baseline approach. While the enhancement is introduced in the context of

PTT estimation, the approaches can be used to enhance signals in other

biomedical applications of multi-channel LDV as well.

4.1 INTRODUCTION

The large arteries, and specifically the aorta, play a central role in the blood

circulation. Their structure allows the vessel wall to distend during heart

contraction, storing elastic energy, which is used during the consequent re-

laxation to drive the blood flow [49]. This way, a near-continuous flow

is assured at the smaller arteries that provide organ perfusion. This ‘buf-

fer’ function [35] deteriorates significantly when these large arteries stiffen,

leading to poorer blood flow and consequent organ damage – especially in

low resistance organs such as the heart itself [7, 8, 75].

A metric that allows for quantifying arterial stiffening is the pulse-wave

velocity (PWV) [8, 11]. Especially carotid-femoral PWV has been studied

and showed a significant relationship with arterial stiffness. The speed of

the pulse-wave induced by heart-contraction increases with arterial stiff-

ness. If we measure the arrival time of the pulse-wave at two points on the

arterial tract, separated by a distance dx, it holds that PWV = dx
PT T

, where

PT T is the delay in the pulse arrival time across the two points. We refer

to PT T as the pulse-transit time.

Aside from the current state-of-the-art measurement methods, such as

applanation tonometry and ultrasound [11, 184], an alternative approach

based on laser-doppler vibrometry (LDV) [20–22] has also been applied to

the measuring of PWV . This cheaper, more user-friendly method meas-

ures skin displacement above large arteries such as the carotid and femoral

arteries, based on which the pulse arrival time and PTT can be estimated.

A feasibility study was previously conducted using industrial LDV devices

82



4.1. Introduction

[22]. In the scope of the H2020 CARDIS project, a first prototype was

constructed with two handpieces, with which skin displacement could be

simultaneously measured at two different locations. Each handpiece cap-

tured data using six laser beams with a wavelength of 1550nm, where the

inter-beam distance was 5mm. The displacement signals obtained were dif-

ferentiated twice, yielding acceleration. The time-point of the arrival of the

pulse wave was then detected via the point of maximum acceleration.

Several datasets were obtained with this prototype [25]. However, des-

pite the availability of multi-channel data on both handpieces, PTT and

PWV estimates were based on a laborious combination of the individual

channels across both handpieces.

Since the underlying signal captured by all the channels in a single

handpiece is the same, linearly combining the channels could yield an out-

put with a better signal-to-noise ratio. Such methods of combining signals

from spatially separated sensors to enhance a desired (target) signal fall un-

der the umbrella of beamforming [158, 159, 194, 195]. A beamformer is es-

sentially a spatial filter that, like its temporal/spectral counterpart, combines

signals captured by spatially distributed sensors to extract signals coming

from desired directions while suppressing interference and noise from un-

wanted ones. Since the original problem in the time-domain is a convo-

lutive mixing, beamforming is typically applied in the transform (Fourier)

domain, where the signal model reduces to an instantaneous mixture with

complex coefficients at each frequency. This simplifies the subsequent en-

hancement as it simplifies to a straightforward matrix multiplication instead

of a deconvolution. Such methods have also been applied to electroenceph-

alography (EEG) data e.g. [162], where an instantaneous mixing model is

directly applicable in time domain.

Unlike conventional beamforming or the methods applied to EEG sig-

nal processing, however, the signal model for LDV captures cannot be

straightforwardly transformed into an instantaneous mixing model in the

frequency or the time domain [160]. In this contribution, therefore, we in-

vestigate how to adapt and apply beamforming to multichannel LDV data.

We also show how to extend the framework to incorporate more sophist-

icated approaches such as independent component analysis (ICA) [161].

While the approach will be demonstrated in the context of carotid-femoral

PTT estimation, the underlying signal model and concepts can be applied

to a wide range of applications using multichannel LDV - which is being

explored in the scope of the follow-up H2020 project InSiDe.

The paper is structured as follows: we first present the CARDIS data

and the ‘brute-force’ baseline PTT estimation method. Next, we present the
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signal model for the multichannel LDV data. Based on this model we first

adapt the beamforming strategy to perform a signal-to-noise ratio (SNR)-

weighted averaging of the channels. Lastly, we show how, with the adapted

signal model, ICA can also be applied and how the permutation and scaling

ambiguity associated with ICA can be resolved. The approaches are then

compared in terms of the quality of the PTT estimates obtained from the

enhanced signals. It will be demonstrated that individual PTT estimates

obtained on the beamformed or ICA processed signals are more reliable

(lower variance) than that obtained from the baseline method. Further, the

SNR estimates computed in the course of the beamforming provide valu-

able, additional information regarding the reliability and quality of differ-

ent segments of the signal - opening up new possibilites for such signal

analysis.

4.2 MATERIALS & BASELINE METHOD

4.2.1 The CARDIS database

The CARDIS device consists of two handpieces (HP) - which we will refer

to as HP1 and HP2. While the reader is referred to [18, 19] for the details,

the prototype is illustrated in Fig. 4.1, along with typically captured signal

traces, for convenience. Note the six channels per handpiece, which cap-

ture the skin displacement. To guarantee that sufficient light is reflected by

the skin back to the device, application of retro-reflective tape on the meas-

urement site was required. Finally, to ensure stability of positioning and an

optimized focus distance during the measurements, a spacer is included in

the build.

Data can be gathered simultaneously with both handpieces, each of

which is located at a separate measurement site – such as above the ca-

rotid and femoral artery to get a carotid-femoral PWV estimation, or on

measurement sites that are 25− 50mm apart, to measure local pulse wave

propagation in e.g. the carotid artery. Note that while the developed ap-

proaches are illustrated on the carotid-femoral setup, they are equally ap-

plicable to other setups as well.

The carotid-femoral LDV-data used in this analysis were acquired in

a clinical feasibility study at the Hôpital Européen Georges Pompidou

(HEGP) in Paris, France. Data was gathered from 100 subjects with vary-

ing ages (19-85), sex, BMI, and history with cardiovascular risk-factors

and illnesses (from mild to stage three hypertension) [25]. For every

subject, four to five sets of measurements were conducted, resulting in 410

datasets for the carotid-femoral database. Each measurement contained six

LDV signals per handpiece, yielding skin-displacement data sampled at
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Figure 4.1: The CARDIS device being used during a carotid-femoral measure-

ment. Handpiece 1 measures skin displacement above the femoral artery and

handpiece 2 above the carotid artery. 20-second recordings for the 12 beams are

displayed. Channel 1-6 correspond with handpiece 1 and channel 7-12 to hand-

piece 2.

fs = 10kHz. This was passed through a linear-phase low-pass filter with

a cut-off frequency of 30 Hz to suppress high-frequency noise. Filtering

was applied in a zero-phase manner. The signal was then differentiated

twice to yield acceleration data – which is a more robust feature as the

differentiation removes any drift in the displacement signal.

4.2.2 Brute-force PTT estimation

To validate the applicability of LDV for PWV estimation, the carotid-

femoral PTT estimate was calculated and compared with ground truth

data, which was obtained using applanation tonometry. As mentioned

previously, PTT is defined as the time delay between the arrival of the

pulse wave at the carotid artery and the femoral artery. It should be

noted that, since the arterial pathway from the heart to the carotid artery

is shorter than that from heart to femoral, the pulse wave should always

be detected first at the carotid. The time of arrival of the pulse at each

measurement point is taken as the instant of maximum acceleration for
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a given heartbeat. Demarcation of the pulse arrival time and the PTT

computation is illustrated in Fig. 4.2 where one channel each from HP1

and HP2 are considered. By pooling the estimates across the 36 possible

channel combinations between HP1 and HP2, more robust PTT estimates

can be obtained.

Figure 4.2: Example matching of simultaneously measured carotid and femoral

LDV-traces. Two corresponding heartbeats from which pulse-transit times can be

calculated are indicated in red. Y-axis is not labelled because the scale is arbitrary.

As the above example illustrates, computing the PTT consists of first

identifying the heart cycles in the acceleration signals of the carotid-

femoral channel-pair considered, followed by identifying the pulse arrival

time in each channel and for each cycle. However, the problem is that

either or both channels may not pick up the pulse in each beat - because

of insufficient reflection of the beam or movement of the handpiece or

insufficient skin displacement. Further, as the heart rate can also change

during a measurement, an online estimation of the heart rate (and, thus, the

location of a cycle) becomes necessary. Thus, the following procedure was

adopted for estimating the PTT from a given recording.

First, a beat-detection algorithm based on template matching [145, 146]

was applied to each of the 12 traces (we term the acceleration signal of a

channel as a trace). Template matching is a pattern recognition technique

which essentially consists of computing the normalised cross-correlation

between a so-called template (here, the characteristic waveform of the ac-

celeration signal when the pulse traverses the measurement point) and the

trace at different time-lags. For time-lags where the segment of the trace

‘matches’ well with the template, the normalised cross-correlation will be

high (ideally ≈ 1) – indicating the presence of the pulse-wave. An empir-

ically selected threshold of 0.7 was selected and at time instants where this

value was exceeded, it was be assumed that a beat was detected. As the
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acceleration signal demonstrates different characteristic wave pattern at the

carotid (HP1) and femoral (HP2) measurement points, separate templates

were used each case, and were obtained offline by an ensemble average

across all recordings. The length of the carotid template was 200ms and

that of the femoral was 500ms (please see [27] for details).

Next, matching beat-pairs were identified using the carotid as reference

(typically more carotid beats are detected compared to femoral). When a

pulse is detected on any of the carotid channels, all femoral channels are

examined for pulses within a time-window of 200ms of this pulse (two

matching beat-pairs are indicated in Fig. 4.2). The range of 200ms was

chosen to accommodate a wide range of PWVs while minimising the risk

that a subsequent beat on the femoral is matched (i.e., carotid detects beat P

and is matched to beat P+1 on the femoral). Since a 200ms beat period cor-

responds to the unlikely heart rate of 300bpm, such confusion is avoided.

Finally, PTTs were calculated from each matching beat pair in the 36 trace

combinations. The median value of these was taken as the final PTT es-

timate.

In addition to being laborious (template matching applied to 12 chan-

nels, exhaustive search for a matching beat in the femoral channels for each

beat found on a carotid channel,...) this approach implicitly includes data

from noisier channels as well. With no way of indicating which estimate

comes from a good or from a bad channel, this leads to a wide spread of

the results. Hence we investigate the linear combination of all channels at

a handpiece to generate a single output signal with improved SNR. This

should reduce the spread of the PTT estimates and offer potential to reduce

the computational complexity as well.

4.3 BEAMFORMING FOR PTT ESTIMATION

4.3.1 Signal model

For any handpiece, the acceleration signal at a channel m ∈ {1,2, . . . ,6} is

modelled as:

xm(n) = sm(n)+ vm(n) , (4.1)

where sm(n) is the underlying target signal in channel m and vm(n) is

the noise in that channel. We further assume:

sm(n) = αms(n− τm) , (4.2)

i.e., the target signal is received at each channel with a channel-

dependent scale factor αm and delay τm.
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The channel-dependent delay in (4.1) makes it difficult to form the en-

hanced output (y(n)) by a weighted linear combination of the form:

y(n) = ∑
m

wmxm(n) , (4.3)

while ensuring a constructive addition of the desired component s(n).
The general solution requires the estimation of optimal individual filters

wm(n) for each channel – which is not a straightforward problem (see,

e.g., [196]). However, the model of (4.2) allows for a simpler alternative:

by time-aligning the target components sm(n), (4.1) reduces to:

x′m(n) = αms(n)+ v′m(n) , (4.4)

allowing for the application of (4.3). We address, next, the blind es-

timation of the time-delays τm and the optimal weighting factor wm. Since

the underlying signal s(n) is essentially unknown, a blind estimation of τm

and αm is always subject to an offset and a scale ambiguity respectively -

i.e., any solution of the kind τ̂m = τm + T and α̂m = C αm, where T and

C are constants, is acceptable – the constant values being subsumed into

the definition of s(n). The ambiguities vanish, however, if we estimate the

scale and delay with respect to the signal component in a reference channel

mref. Thus, reinterpreting (4.1) and (4.2) with respect to a reference channel

mref we obtain:

xm(n) = αms(n− τm)+ vm(n) ∀m ̸= mref (4.5)

xmref
(n) = s(n)+ vmref

(n)

where αm and τm are now with respect to the signal component in the

reference channel.

In general, the reference channel can be arbitrarily chosen for each

handpiece – the middle channels (m= 3,4) being a logical choice. Alternat-

ively, with the help of overall-quality estimated per channel over the whole

recording – as in [27] – the ‘best’ channel (on average) may be chosen. In

the following we denote this generically as mref.

4.3.2 Time alignment of the sm(n)

As the signal component in channel m can either be advanced or delayed

with respect to the signal component at channel mref, the reference signal

xmref
(n) is first shifted by a group delay of D > max{τm} samples. This en-

sures that all other channels are shifted causally for time alignment. Thus,

the reference signal becomes:

x̃mref
(n) = s(n−D)+ ṽmref

(n) . (4.6)
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It is easy to see that delaying each xm(n) (m ̸= mref) by Tm = D− τm

ensures that the signal component is aligned with the reference. By cross-

correlating xm(n) with x̃mref
(n) an estimate of the time-delay can be obtained

[159, 197]. The integer part of the delay corresponds to the time-lag at

which the cross-correlation peak is observed. The delay estimate can be

further refined to account for fractional shifts. This can be done by a simple

three-point parabolic fit around the observed cross-correlation peak, or by

more sophisticated methods (see, e.g., [198]). Having estimated Tm, generic

delay filters hm(n) can be obtained by (truncated) sinc functions [199] of

order L ≥ 2D:

hm(n) = sinc
(

n−Tm

)
. (4.7)

This formulation of the delay filter allows us to account for fractional

sample shifts. It is easy to see that the filter reduces to a shifted Kronecker’s

delta function when Tm is an integer – as we expect.

4.3.3 Compensating for αm

By appropriately compensating αm, we can express the signal at each chan-

nel as:

x̃m(n) = s(n−D)+ ṽm(n) , (4.8)

which, as we subsequently show, allows for an intuitive definition of

the weighting factors wm in (4.3). We exploit the observation that s(n) is

characterised by high-energy regions corresponding to the traversal of a

pulse. Thus, comparing energies of xm(n) to xmref
(n) (or their time-aligned

versions) at these regions can yield a reasonable idea of αm.

While identification of high-energy regions can be done using template

matching (as in Sec. 4.2.2), this requires extra computation and the availab-

ility of templates. Therefore, we present a more generic method based on

the statistics of the signal energy – so the approach is also applicable where

prior knowledge of templates are unavailable.

We segment xmref
(n) and xm(n) (or their time-aligned versions) into J

non-overlapping segments of length N samples, where N is roughly the

length of a pulse waveform (≈ 200ms). The energy Em, j (resp. Emref, j) is

obtained as:

Em, j =
N−1

∑
n=0

(
xm(n+ jN)

)2

. (4.9)

Subsequently, as we are interested in the high-energy segments, the 85th

percentile of the energies was calculated. This threshold was empirically

89



4. BEAMFORMING LASER DOPPLER VIBROMETER SENSOR ARRAYS

found to be a good balance between accounting for the variation of the

received pulse energy in the trace and not being biased by the low-energy

segments which mainly contain channel-dependent noise. Based on this,

αm can be estimated as:

α̂m =

√√√√√
perc

(
{Em, j},85

)

perc
(
{Emref, j},85

) (4.10)

The distribution of the energies are illustrated for an example dataset in

Fig. 4.3 and the 85th percentiles are shown as vertical lines in the colour

of the corresponding distribution.

Based on α̂m above and hm(n) from (4.7), we modify the signal of each

channel as:

x̃m(n) =
1

α̂m

hm(n)∗ xm(n) ≈ s(n−D)+ ṽm(n) , (4.11)

where ∗ represents the discrete-time convolution operator.

4.3.4 Estimating wm and the enhanced signal y(n)

Using (4.5) and (4.11) and stacking the signals into an M−dimensional

column vector for each time-instant yields:

x̃(n) = 1s(n−D)+ ṽ(n) , (4.12)

Figure 4.3: Distribution of the segmented energies for 4 channels in a sample

dataset. The 85th percentiles are displayed by vertical lines, and in the colour

chosen for the corresponding channel.
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4.3. Beamforming for PTT estimation

where x̃(n) =
[
x̃1(n), x̃2(n), . . . , x̃M(n)

]T

, 1 is an M×1 vector of

ones and ṽ(n) is similarly defined to x̃(n). This model now allows the com-

putation of the enhanced signal as in (4.3) and an intuitive way to define the

weights would be to make them proportional to the SNR at each channel.

However, computing a single set of weights over the whole recording

would not be optimal, since the quality of the underlying received signal

is time-variant in each channel (as can be seen in Fig. 4.1). Thus, we

propose to segment x̃m(n) ∀m into J̃ overlapping segments of length Ñ ≈
1s, and derive optimal weights for each segment independently. A 50%

overlap is considered to avoid edge effects during the subsequent weighted

combination.

To estimate the SNR of each channel m in segment j̃, we expand upon

the idea in Sec. 4.3.3. We first partition segment j̃ into K̃ = 2000 sub-

segments of Ñ/K̃ = 5 samples and compute the energy E
m, j̃ ,̃k

of every sub-

segment k̃ . Indices (m, k̃ ) where E
m, j̃ ,̃k

> 85th percentile (for channel m

and segment j̃ ) are then extracted. This is done separately for all channels.

Next, we compare the selected k̃ across all M channels and only retain

those sub-segment indices that occur in a majority of the channels. The

signal energy in segment j̃ for each channel (denoted as Ps(m, j̃ )) is finally

computed as the average of the energies E
m, j̃ ,̃k

in the retained sub-segments

k̃ . Since the desired signal s(n) is time-aligned across the channels, when

the energy of a particular sub-segment k̃ lies beyond the 85th percentile in

multiple channels, it is likely that this is not a spurious energy peak, but

that occasioned by s(n). This selection thus avoids noise sub-segments in a

channel from biasing the signal energy estimate.

A similar procedure is applied to estimate the noise energy Pv(m, j̃ ), but

here we select segment indices where E
m, j̃ ,̃k

< 15th percentile. Comparison

of sub-segment indices across channels is not required in this case.

The final SNR and the resultant combination weights wm( j̃ ) are then

obtained, for segment j̃ , as:

SNR(m, j̃ ) =
Ps(m, j̃ )

Pv(m, j̃ )
(4.13)

wm( j̃ ) =
SNR(m, j̃ )

M

∑
m′=1

SNR(m′, j̃ )

. (4.14)

The beamformed signal of segment j̃ is subsequently computed using (4.3)

as:

yBF(n, j̃ ) = wT ( j̃ )x(n, j̃ ) . (4.15)
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The enhanced signal yBF(n) is reconstructed from the segments

yBF(n, j̃ ) by the overlap-add method, after the application of an Ñ-point

von Hann window. This tapered window reduces edge effects at the

boundaries of the overlapping segments and, at 50% overlap, allows

perfect reconstruction during overlap-add.

4.3.5 Beamformer-driven ICA

Given an instantaneous multi-channel mixture of the form:

x(n) = As(n) , (4.16)

where x(n) is an M−dimensional vector of observations at time-instant

n and s(n) is a Q(≤ M)-dimensional vector of underlying source activity.

A is an M ×Q mixing matrix yielding a linear combination of the sources

in the observed signal. Under the assumption that the sq(n) are statistic-

ally independent, ICA [160, 196] can be applied to yield a Q×M demixing

matrix W. Applied to x(n) this yields: y(n) = Wx(n) , with statistically

independent yq′(n). For non-Gaussian sq(n), such maximisation of statist-

ical independence in the output implies that yq′(n) recover sq(n), subject

to a scale ambiguity and arbitrary order of outputs (permutation ambigu-

ity). Robustly resolving these ambiguities is an enduring challenge, usually

requiring extra knowledge!

Our signal model after time-alignment may be written as (slightly ab-

using the notation in (4.12)):

x̃(n) = αααs(n−D)+ ṽ(n) , (4.17)

where ααα =
[
α1, α2, . . . , αM

]T

. This can be straightforwardly massaged

into the standard ICA form of (4.16):

x̃(n) = As̃(n) , (4.18)

with the noise subsumed into the definition of s̃(n). Application of ICA

then gives outputs yICA(n), where yICA,q(n) corresponds to s(n−D) for

some output channel q, and subject to an unknown scale. A simple correl-

ation of each yICA,q(n) with yBF(n) can then be used to identify the correct

output channel q′– the one with the maximum correlation with yBF(n). It is

straightforward, then, to infer the scale as:

α ICA =
E

{
y2

BF(n)
}

E

{
yBF(n)yICA,q′(n)

} , (4.19)
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where E{·} is the expectation operator.

Consistent with Sec. 4.3.4, ICA is similarly applied segment-wise and

the final output obtained by overlap-add.

4.4 EXPERIMENTAL RESULTS AND DISCUSSION

We start with a qualitative evaluation on a sample dataset: Fig. 4.4 depicts

the captured signal on four channels of a handpiece, after scale compens-

ation and time-alignment. To illustrate the weight computation of (4.14),

three segments ( j̃ ) are highlighted in each channel, and the correspond-

ing weights (wm( j̃ )) assigned to those segments are indicated. As can be

seen, when using these four channels for beamforming, our blind SNR-

estimation approach performs correctly, assigning a very low weight to

channel 1 (essentially noise) and giving more-or-less similar weights to the

other three channels (of similar quality). Also evident is the time-varying

SNR in each channel (indicated by the changing weights) – indirectly val-

idating the wisdom of segment-wise processing.

This is further highlighted in Fig. 4.5 which shows, for the same sample

dataset as in Fig. 4.4, a different set of channels as well as the enhanced

signals (yBF(n) and yICA(n)). Channel 1 is omitted for space reasons (and,

as Fig 4.4 shows, this channel will not contribute to the output). It is in-

structive to note that despite all channels being of relatively good quality in

Fig. 4.5, spurious peaks occur in individual channels – which are effectively

removed in the enhanced signals.

Lastly, we test the benefit of the proposed beamforming and ICA-

based enhancement for PTT estimation on a subset of the CARDIS

carotid-femoral database. Only those datasets were taken that had at least

one good quality channel per handpiece [27] (to allow reasonable PTT

estimation with the baseline). A total of 54 datasets passed this threshold.

For these datasets, the yBF(n) and yICA(n) are obtained for each handpiece.

Following this, PTT is estimated on these signals, in a similar manner

as described in Sec. 4.2.2. These estimates were compared with those

generated by the baseline (‘brute-force’) and the ground truth.

Fig. 4.6 shows the error of each method compared to the ground-truth

as a function of the number of PTT estimates (i.e., the number of matching

beat-pairs across which the PTT estimate is computed). For all methods

the accuracy of the final PTT estimate improves with increasing number of

timepoints at which a pulse-transit time estimation could be made. While

all methods deviate somewhat from the applanation-tonometry reference

values, between brute force, beamforming and ICA, results were mostly
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Figure 4.4: Weights wm computed for four input channels. Three representative

segments are highlighted. The correlation between the segment weights and the

SNR is evident – indicating a good (blind) SNR estimation.

similar. This is not wholly unexpected: yBF(n) and yICA(n) are obtained

by linearly combining the different channels. Inherently, the brute-force

search across all beat-pairs and all channels performs such a linear combin-

ation. As the final estimate is obtained from the median value in all cases,

the results are expected to be rather homogeneous.

It is more instructive, therefore, to consider the distribution of the in-

dividual PTT estimates in all cases. This is depicted in Fig. 4.7, where

the left sub-plot shows the distribution of the PTT-deviation about the me-

dian value and the right sub-plot shows the cumulative density. Both plots

indicate a clear reduction of variance in the PTT estimates obtained after

beamforming and ICA enhancement, whereas the brute-force method has

a larger variance and several outliers. Between beamforming and ICA, for

the purpose of PTT estimation, the performance is comparable, with the

ICA being marginally better.
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Figure 4.5: A selection of four input signals from the femoral recording, along

with the beamformer & ICA enhanced outputs, for an example dataset. The

segment-wise operation with time-varying weights effectively suppresses spuri-

ous pulses in individual channels (highlighted). The ICA also yields a cleaner

signal compared to the beamformer.
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Figure 4.6: PTT estimation error for the different methods, compared to the

ground-truth. The error is shown in function of the number of individual estim-

ates obtained from matching beat-pairs. As the number of individual estimates

increase, their median is closer to the ground truth.

Figure 4.7: PTT-estimation distributions calculated via brute force, beamforming

and ICA methods for ten example datasets. The median value was subtracted from

the estimations.
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4.5 CONCLUSIONS

We proposed two methods for the enhancement of multi-channel LDV sig-

nals, as applied to the task of pulse-wave velocity estimation. Data from a

pilot study indicate that the desired signal component in each channel can

be modelled as a scaled and time-shifted version of the true, underlying

signal. Exploiting the fact that this underlying signal is characterised by

high-energy peaks at instants of pulse traversal, an analysis of statistics of

the short-term signal energy allows for an estimation of the scale factor,

and correlation analysis yields the necessary time-shift for the signal align-

ment across the channels. By compensating the scale and time-aligning the

signals across all channels of a handpiece, an SNR-weighted linear com-

bination yields the beamformed signal. The SNR in each channel is blindly

estimated, based on percentile statistics of the short-term signal energies

and by cross-validating across channels – increasing the robustness of the

estimates.

Experiments demonstrate that the weights assigned during beamform-

ing reflect the signal quality in the channels – validating the SNR estima-

tion. Further, the beamformed output shows a cleaner signal with spurious

pulses in the individual channels being well suppressed. Because the ICA

does not require an explicit compensation of the individual channel scale

factors and is free to derive the optimal weighting in terms of maximising

statistical independence, it yields sharper, better formed outputs compared

to the beamformer.

Regarding the reliability of individual PTT estimations: the distribution

of the estimates has low variance when estimated on the beamformed or

ICA-enhanced outputs. In comparison, the estimates from the brute-force

method exhibit a larger variance – indicating the influence of noisy and

unreliable beat-pairs.

While we have demonstrated the benefit of the proposed approaches in

the context of PWV estimation, the underlying ideas for blind SNR estim-

ation and delay- and scale compensation can be more broadly applied to

analyse the quality of, or enhance the signals from multidimensional LDV

data in biomedical applications.

4.6 ADDENDUM

The following subsections present an extended analysis that was not pub-

lished in a peer-reviewed journal but was documented in a project deliver-

able for the InSiDe project. This analysis expands the dataset and evaluates

whether the conclusions drawn in the preceding sections are substantiated

by additional evidence.
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4.6.1 Premise of the expanded analysis

This section introduces an extension of the previously presented work by

applying the beamforming method to an alternative dataset. The dataset,

referred to as InSiDe, is described in detail in Chapter 6. Briefly, it com-

prises 83 patients, each of whom underwent multiple LDV measurements.

For the purposes of this analysis, only the carotid-femoral measurements

were considered, with each patient contributing three such recordings. Ad-

ditionally, carotid-femoral PWV reference values were obtained using the

Sphygmocor system via arterial tonometry.

Following the LDV measurements, cfPWV was also assessed using the

SphygmoCor system, serving as the ground truth. A secondary reference

metric was derived from the LDV data. Simultaneously recorded ECG sig-

nals enabled the identification of heartbeat onsets, allowing segmentation of

LDV signals into individual cardiac cycles. Carotid and femoral segments

corresponding to the same heartbeat were paired, and pulse transit time was

estimated by manually identifying fiducial points. For each measurement,

the manual cfPTT was determined as the median value derived from five

heartbeat pairs. These pairs were manually selected based on visual in-

spection, prioritizing segments with high signal quality in the vicinity of

the relevant fiducial points.

The beamforming, ICA, and brute-force baseline methods described

earlier were applied to all 249 measurements. cfPTT was estimated where

signal quality permitted. Subject-level cfPTT values were calculated as the

median of up to three measurement-level values per subject.

4.6.2 Expanded results and discussion

The correlation between the SphygmoCor-derived cfPTT values and the

manually derived LDV-based cfPTT values was first assessed (Figure 4.8).

Statistically significant correlations were observed at both the measurement

level (ρ = 0.646, p < 0.001, N = 165) and the subject level (ρ = 0.625,

p < 0.001, N = 66).

Figure 4.9 presents subject-level comparisons for cases where cfPTT

estimates were available across all methods (N = 39). The manual cfPTT

served as the reference. Among the automated methods, beamforming

demonstrated the highest correlation with the manual reference (ρ = 0.457,

p = 0.003), followed by ICA (ρ = 0.375, p = 0.019), and brute-force

(ρ = 0.255, p = 0.117).

An alternative visualization is provided in Figure 4.10, which illus-

trates the absolute differences between automated and manual cfPTT es-

timates in terms of density and cumulative density. The results indicate
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Figure 4.8: Comparison of manual cfPTT estimates derived from LDV data with

cfPTT values obtained via the SphygmoCor system. The left panel presents data

at the measurement level (three measurements per subject), while the right panel

aggregates data at the subject level using the median of available measurements.

that beamforming and ICA yield estimates closer to the manual reference,

with beamforming showing a slight advantage. The brute-force method

exhibited larger deviations.

These findings are consistent with those discussed in Section 4.4, rein-

forcing and extending the conclusions regarding the efficacy of beamform-

ing and ICA-based approaches for automated cfPTT estimation.
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Figure 4.9: Correlation of automated cfPTT estimation methods (beamforming,

ICA, brute-force) with manual cfPTT estimates at the subject level. Trendlines,

correlation coefficients, and p-values are shown.

Figure 4.10: Density (left) and cumulative density (right) plots of the absolute

differences between automated and manual cfPTT estimates. Beamforming and

ICA methods show smaller deviations compared to the brute-force approach.
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REAL-TIME PULSE WAVE

VELOCITY ESTIMATION

POSITIONING OF THE CHAPTER

This chapter is derived from the article titled Real-Time Beat-to-Beat Pulse

Wave Velocity Estimation: A Quality-Driven Approach using Laser Dop-

pler Vibrometry (Seoni, S., Segers, S., Beeckman, S., Salvi, M., Romanelli,

M., Badhwar, S., Bruno, R. M., Li, Y., Aasmul, S., Madhu, N., Molinari,

F. & Morbiducci U.). At the time of writing, this article was submitted

to Medical & Biological Engineering & Computing for publication. The

primary authorship and editorial work was conducted by Dr. Silvia Seoni.

The development of real-time PWV estimation algorithms based on the

quality metrics introduced in chapter 3 was a collaborative effort between

the InSiDe-project partners at UGent and PoliTo. This chapter outlines

those joint contributions.

ABSTRACT

Arterial stiffness, a key cardiovascular risk marker, is typically assessed

via carotid-femoral pulse wave velocity (cfPWV), the gold-standard

method. In this study, we introduce CAPE (Continuous Automatic

PWV Estimation), an innovative framework for near real-time cfPWV

estimation based on beat-to-beat analysis of Laser-Doppler Vibrometry

(LDV) signals. CAPE integrates automatic fiducial point detection,
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systematic signal quality control, and a cross-channel strategy to provide

a highly reliable assessment of cf-PWV. The framework was evaluated

using LDV signals acquired from 100 patients with mild to moderate

essential hypertension, using a multichannel laser vibrometry system.

CAPE calculates cf-PWV as the ratio of carotid-femoral distance to pulse

transit time (PTT), which is the delay between carotid and femoral fiducial

points. These points are detected using template-matching on the second

derivative of LDV displacement signals. Signal quality in CAPE is ensured

through an integrated quality assessment based on the number of automat-

ically detected carotid-femoral peaks, which assigns confidence scores

(acceptable or excellent) to the PWV measurements. When validated

against the gold-standard applanation tonometry, CAPE achieved a mean

bias of 0.25 ± 0.77 m/s, demonstrating high reliability and precision. The

optimized framework estimates cf-PWV in 3 seconds, making CAPE ideal

for clinical applications requiring real-time cardiovascular assessment.

5.1 INTRODUCTION

The aorta and large central arteries buffer the heart’s pulsatile output by

expanding with each beat to store elastic energy, which is released dur-

ing relaxation to maintain continuous blood flow and stable pressure [35,

49]. With age or disease, arterial stiffening reduces the buffering capacity

of arteries, increasing the risk of e.g. stroke, cardiac failure, chronic renal

disease, end-organ damage [11]. Based on evidence, over the past few dec-

ades, arterial stiffness has been increasingly recognized as a key indicator

of cardiovascular risk and mortality [8, 75].

Arterial stiffness can be evaluated by measuring the so-called pulse

wave velocity (PWV) which refers to the speed at which pressure waves

propagate through the arterial tree during the systolic contraction. High

PWV values indicate reduced vessel distensibility, reflecting greater arter-

ial stiffness [63]. PWV is typically measured between two arterial sites,

one proximal and one distal, to assess the velocity along a segment of the

arterial pathway of defined length. In this regard, carotid-femoral PWV is

considered the gold-standard method for assessing arterial stiffness, where

pressure waveforms are captured from the carotid and femoral arteries, loc-

ated in the neck and groin, respectively [8]. PWV is determined by the

ratio of the distance between two arterial sites, to the transit time of the

pulse wave between the two measurement sites.

A non-invasive, commonly adopted technique for measuring PWV is

applanation tonometry. Various algorithms can be implemented within

applanation tonometry to enhance the accuracy of PWV measurements.
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These algorithms have been developed to improve the accuracy of fidu-

cial point detection and Pulse Transit Time (PTT) estimation, with the foot

of the waveform often serving as the primary reference point [200, 201].

Foot-to-foot methods such as the diastole-minimum, maximum first deriv-

ative, maximum second derivative, and tangential methods are frequently

employed, along with region-based approaches like the diastole-patching

method [202] or region-based cross-correlation approach [203]. However,

current automated PWV estimation methods often face challenges includ-

ing operator dependency, sensitivity to signal noise, and lack of real-time

quality assessment capabilities. These limitations can lead to unreliable

measurements and require multiple recording attempts in clinical settings.

In some of the proposed implementations, applanation tonometry is

combined with ECG signals, where the R-wave of the ECG provides a tim-

ing reference to allow for sequential measurements at the two measuring

sites [204, 205]. Other technologies, such as ultrasound, Magnetic Reson-

ance Imaging (MRI), and accelerometers, are also used to detect arterial

pulses and estimate PWV [11, 206, 207]. Ultrasound-based devices, for

instance, rely on Doppler signals or vessel wall motion tracking to meas-

ure PTT [208, 209]. Regional aortic stiffness can be measured using 4-

Dimensional Flow Cardiac Magnetic Resonance [210, 211]. However, non-

invasive PWV measurements present practical challenges hampering their

large adoption [11], which have motivated the exploration of alternative

methods. These practical limitations highlighted the need for more access-

ible and operator-independent measurement techniques. Laser-Doppler Vi-

brometer (LDV) has emerged as a promising non-contact technique, de-

tecting skin motion overlying the carotid and femoral arteries, and offering

a viable method for PWV estimation [21, 22, 185, 212]. There is a large

body of literature confirming that LDV offers a simple, noninvasive, and

operator-independent method for assessing arterial stiffness, with results

comparable to established methods [21, 22, 212].

In previous studies, the feasibility of LDV for PWV measurements was

demonstrated using industrial-grade sensors [22]. As part of the H2020-

funded CARDIS project, a multi-beam handheld device was developed,

incorporating a silicon photonics chip into a compact design, enabling flex-

ible, multi-array configurations [19]. The prototype consists of two separ-

able handheld units for simultaneous measurement of the neck and groin,

each equipped with six channels with a laser beam. In a clinical feasibil-

ity study, carotid-femoral PWV (cfPWV) measurements from this device

were compared to a reference method using applanation tonometry, yield-

ing promising results [25]. Furthermore, Badhwar et al. [23] demonstrated

the clinical validity of LDV-based measurements of carotid-femoral PWV

(cfPWV) compared to standard reference techniques.
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In this context, we present the framework CAPE (Continuous Auto-

matic PWV Estimation), an automated algorithm for cfPWV estimation

based on beat-to-beat analysis of high-quality LDV signals acquired over

several heartbeats. The approach builds upon our previously validated

methodology for automatic fiducial point detection and signal quality as-

sessment, thoroughly described in [27], which is now embedded within

CAPE to enable robust and confidence-classified cfPWV measurements.

The main contributions of this paper are as follows:

• A near Real-Time automatic algorithm for cfPWV estimation us-

ing an LDV system (with results available within approximately 3

seconds after signal acquisition), enabling continuous cardiovascular

monitoring with minimal operator intervention.

• The integration of automatic fiducial points detection with a qual-

ity criterion, ensuring accurate and reliable cfPWV estimation with

systematic signal quality assessment.

• An LDV multichannel acquisition implementing a cross-channel

strategy and an innovative beat-to-beat analysis for cfPWV

estimation.

• Based on signal quality, a quality-controlled algorithm with integ-

rated confidence level assessment for cfPWV measurement.

This paper is structured as follows: Section 2 provides a comprehensive

overview of the proposed method, while Section 3 details the experimental

results. Finally, Sections 4 and 5 offer a thorough discussion of the overall

work.

5.2 MATERIALS AND METHODS

5.2.1 Dataset

The dataset used in this study was acquired as part of the CARDIS project

[25]. The CARDIS project recruited 100 patients, both male and female,

aged between 18 and 85 years, diagnosed with mild to moderate essential

hypertension (systolic blood pressure ranging from 140 to 179 mm Hg and

diastolic blood pressure ranging from 90 to 109 mm Hg). The study was

conducted at the Georges Pompidou European Hospital (Paris, France),

where patients referred by the Hypertension and Pharmacology units un-

derwent carotid-femoral pulse wave velocity (cfPWV) assessment in the

vascular laboratory as part of routine clinical care.
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To ensure stable physiological conditions, all measurements were per-

formed in the supine position following a 10-minute rest period, in accord-

ance with the European Society of Hypertension guidelines [1]. Three con-

secutive measurements of blood pressure and heart rate were obtained using

a validated oscillometric device (Colin Press-Mate BP monitor) immedi-

ately before cf-PWV acquisition.

The applanation tonometry measurements were acquired first using the

SphygmoCor system (Atcor Medical, Australia), which served as the ref-

erence method in this study. On the same day and within the same clin-

ical session, LDV signals were recorded using the CARDIS device from

the carotid and femoral arteries. Although the two measurements were not

simultaneous, the temporal gap was minimal, and both were acquired under

comparable resting conditions to limit potential hemodynamic variability.

The LDV signals used in this study were recorded in an ambulatory setting,

replicating real-world conditions, allowing for the evaluation of CAPE’s

performance under conditions where motion artifacts might be more pre-

valent.

Exclusion criteria included secondary hypertension, established cardi-

ovascular diseases such as a history of acute heart failure, unstable coron-

ary heart disease, peripheral arterial disease, stroke, and arrhythmias. Ad-

ditionally, patients with chronic inflammatory or infectious diseases were

excluded from the study. The study received approval from the National

Ethics Committee (Comité de Protection des Personnes) and is registered

under ClinicalTrials.gov with ID: NCT03446430.

Raw LDV data in the form of in-phase and quadrature (IQ) signals were

acquired at a sampling frequency of 100 kHz. The resulting LDV displace-

ment signals were downsampled to 10 kHz upon demodulation. An IIR

infinite impulse response low-pass filter with a cut-off frequency of 30

Hz was applied to LDV displacement recorded signals, which were then

differentiated twice to obtain acceleration. Note: this filtering was also

applied after each differentiation step to further suppress high-frequency

noise. The filtering was performed using zero phase forward-backward fil-

tering to avoid phase distortion and preserve the temporal integrity of the

signal features.

5.2.2 LDV device

An extensive description of the CARDIS device and the embedded optical

system is provided in Li et al. [19]. Briefly, the device comprises two main

components: Handpiece 1, which includes the primary grip, and Handpiece

2, an auxiliary extension. The primary handpiece was placed at the femoral

artery and the secondary handpiece at the carotid artery for simultaneous
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measurement from the two arterial sites for carotid-femoral PWV meas-

urements. Each handpiece projects a series of 6 laser beams (wavelength

1,550 nm) arranged linearly with a 5 mm interval between them. To en-

hance the reflection of the laser beams, a retro-reflective tape is applied

to the measurement area on the skin. Additionally, the device includes a

spacer to ensure optimal optical focus and stability during measurements.

Figure 5.1 displays an illustration of the device and the positioning of these

handpieces (a) and a measurements setup (b). A single measurement con-

sists of six LDV signals acquired at the carotid site and six LDV signals

acquired at the femoral site.

Figure 5.1: LDV device and the positioning of (a) the two handpieces and (b) a

measurements setup.

5.2.3 Automatic algorithm for PTT and PWV estimation

An overview of the CAPE framework for the cfPWV analysis is presented

in Figure 5.2. LDV signals are acquired using the CARDIS device from

femoral and carotid sites. The panel of Figure 5.2 displays an example

of LDV recording from one of the 6 channels (in terms of displacement

signal) at the carotid site together with its second derivative (acceleration

signal), the latter being used to identify the fiducial points for the PTT es-

timation. In detail, in the CAPE framework, the cf-PTT is defined as the

time delay between the maximum of the second derivative (fiducial points)

of the LDV displacement signals acquired at the carotid and femoral artery

measurement sites. The adoption of the second derivative data, correspond-

ing to skin acceleration, minimizes motion drift and enhances sensitivity to

rapid changes associated with the pulse wave’s arrival [186]. The second

derivative was specifically chosen as it amplifies the sharp features of the
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waveform while suppressing low-frequency motion artifacts, making it par-

ticularly suitable for accurate fiducial point detection. This approach has

been shown to be more robust than using either the raw displacement sig-

nal or first derivative, especially in cases where baseline drift or patient

movement might affect the measurements.

Initially, template matching is applied to accurately identify the fidu-

cial points on the acceleration data [27]. Considering the six LDV signals

acquired from each of the two handpieces (Figure 5.1), the proposed al-

gorithm performs a cross-channel analysis of all the possible combinations

of carotid-femoral peak pairs, resulting in 36 possible combinations per

heartbeat. The CAPE algorithm aggregates these cf-peak pairs for each in-

dividual heartbeat, effectively capturing a comprehensive set of peak pairs

that serves as a basis for PTT estimation.

To ensure reliable PTT measurements [29], a quality criterion is then

applied to individual heartbeats as well as to the overall recording, aiming

to preserve the accuracy of PTT measurements. Technically, for each cf-

peak pair, the CAPE algorithm calculates the PTT by measuring the delay

between carotid and femoral acceleration peaks. The PTT values from each

possible combination are then aggregated to perform a beat-by-beat ana-

lysis, producing a single PTT value for each heartbeat. Finally, an over-

all PTT value is computed by averaging these beat-by-beat PTT estimates,

yielding a comprehensive cfPWV measurement and an associated confid-

ence level based on signal quality. Specifically, this confidence level is

classified as acceptable or excellent, according to threshold values defined

by guidelines criteria [29].

5.2.3.1 Identification of the fiducial points

In the CAPE framework, the template matching algorithm is employed to

detect peaks in the LDV acceleration signals according to the strategy de-

scribed in our previous study [27]. This algorithm identifies acceleration

waveforms that closely match a pre-constructed template [213], [145]. For

this study, two templates were used: one for the carotid site and one for the

femoral site. These templates were generated by averaging LDV epochs

from high-quality signal recordings. High-quality signals were defined us-

ing an expert-based visual scoring system, where only those rated as excel-

lent (score = 5) were included. Details on the template generation can be

found in [27]. Each template spans 200 ms centered around the peak of the

LDV acceleration signal.

In our previous work [27], we evaluated multiple template durations

and found that 200 ms offered the best performance for accurately detecting

high-quality LDV acceleration peaks. Building on the previous study, here
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Figure 5.2: CAPE Framework: Starting with the displacement signals acquired by

the CARDIS device, the CAPE algorithm calculates the second derivative (accel-

eration signals) and automatically identifies the fiducial points as the peaks of these

acceleration signals. Following a cross-analysis of all cf-peak pairs and a quality

control check, CAPE computes cf-PTT values. This process provides an overall

PTT and cfPWV (carotid-femoral pulse wave velocity) value, along with a trend

analysis of PTT values over time. In the figure, ACC, TM, CC, and cf represent

the acceleration, the template, the cross-correlation function, and carotid-femoral.
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we revised and expanded the approach to make the method more effect-

ive for clinical use and to enhance computational efficiency. Specifically,

here, the cross-correlation function was employed to quantify the similarity

between the template and LDV signals.

To detect fiducial points within the LDV signals, a threshold level based

on the cross-correlation amplitude rx,y, referred to as the Cross-Correlation

Threshold (CCT), was established according to:

CCT = K
1

N

N

∑
i=1

∣∣rx,y[i]
∣∣ (5.1)

where subscript x and y denote the LDV signal and the template, re-

spectively, and N is the number of steps over which the cross-correlation

is computed. Since the template is shorter than the LDV signal, it slides

over the entire signal, with the cross-correlation calculated at each step.

Consequently, N represents the total number of cross-correlation operations

performed as the template slides over the LDV signal. A fiducial point is

detected when the cross-correlation value is higher than CCT. The sens-

itivity and specificity of the peak detection process are controlled by the

tuning factor K, which directly influences PTT estimation accuracy. An

example of the way the fiducial peaks detection and the template matching

algorithms operate is displayed in Figure 5.3.

The acquired signals from all 12 channels (6 from the carotid hand

piece, and 6 from the femoral handpiece) are processed simultaneously,

using separate templates for carotid and femoral LDV signals while main-

taining the same K value for CCT calculations. In this configuration, the

algorithm can detect up to 36 cf peak pairs per heartbeat, based on the pos-

sible combinations of six carotid peaks and six femoral peaks. CAPE then

aggregates the cf-peak pairs for each heartbeat, effectively capturing a com-

prehensive set of peak pairs for a detailed analysis of the specific heartbeat.

5.2.3.2 Automatic quality control

Signal quality is crucial for accurate PTT estimation. To ensure reliable

measurements, we introduced a quality control criterion aimed at discard-

ing low-quality and incorrectly detected peaks that could compromise the

accuracy of PTT calculations. An example of the LDV acceleration signals

acquired from each one of the two handpieces, where the two modules of

quality criterion assessment are applied, is presented in Figure 5.4. The

quality assessment framework operates at two different levels: individual

heartbeat or signal segment evaluation, (local) and overall recording quality

evaluation (global). This local-global approach is founded on the previous
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Figure 5.3: Fiducial peaks detection using the template matching algorithm. The

template moves among the signals and the cross-correlation function is computed

(third line). The last line displays the acceleration signals with the detected peaks,

that correspond to the Cross-correlation values higher than the Cross-Correlation

Threshold (CCT, green line in the figure). In this example, K = 2.5. The template

is not scaled to the signals and has a duration of 200 ms.

finding that the LDV acceleration signal quality can be effectively quanti-

fied through the number of accurately detected fiducial points [27].

At the first local quality control level the Beat Quality Threshold (BQT)

module, defining the minimum number of carotid-femoral peak pairs (cf-

peak pairs) required to classify a heartbeat as reliable for its use in delay

estimation, is applied. If the number of detected cf-peak pairs is lower than

BQT, the heartbeat is discarded since the PTT estimation may lack accuracy

and could lead to unreliable results. Conversely, if the number of identified

peak pairs within a heartbeat is higher than BQT, the estimation of the delay

becomes more robust, increasing the likelihood of accurate PTT estimates.

The second global quality control level implements the Recording

Quality Threshold (RQT) module, which establishes the minimum number
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Figure 5.4: Quality criterion for the cfPWV estimation. The black box repres-

ents the first module on the number of peak pairs (Beat Quality Threshold, BQT),

while the red box the second module on the number of good heartbeats (Recording

Quality Threshold, RQT).

of high-quality heartbeats required for a recording to be considered valid.

This ensures that in recordings with an insufficient number of high-quality

heartbeats, the algorithm will not provide any estimate of cfPWV, as the

entire acquisition is considered unaffordable for PTT estimation. The

tuning of the threshold values for signal quality selection was conducted in

accordance with international guidelines [29], ensuring that the algorithm

meets the required standards for accuracy and reliability.

5.2.3.3 PTT estimation

The cfPWV estimation is based on a three-step process of delay computa-

tion. Figure 5.5 illustrates an example of a combination of cf-peak pairs

used in the cfPWV estimation process. First, for each cf-peak pair, the al-

gorithm calculates the PTT as the temporal distance between the two accel-

eration cf-peaks (green square). Then, if a heartbeat presents a higher num-

ber of cf-peak pairs than BQT, the algorithm computes the median value

of all delays of the corresponding heartbeat (PT Thbeat). In this way, heart-

beats that do not meet the BQT threshold are excluded from the estimation.
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Finally, when the number of valid heartbeats is higher than the RQT, the

algorithm computes the overall PTT for the entire recording, denoted PT T ,

in terms of median value of all PT Thbeat values.

As recommended by the expert consensus document on the measure-

ment of aortic stiffness by Van Bortel et al. [29], the final cfPWV is com-

puted as follows:

PWV = 0.8 · dx

PTT
(5.2)

Where dx is the directly measured straight distance between the carotid

and femoral sites, PTT is the computed delay, and 0.8 is a correction factor.

The proposed algorithm offers two distinct analyses: an overall cfPWV es-

timation over the entire recording, and a time-based assessment of cfPWV

variation, providing a detailed beat-to-beat evaluation of cfPWV trends. A

final comprehensive overview of the CAPE framework is displayed in Fig-

ure 5.6.

Figure 5.5: Automatic Estimation of Final cf-PTT: CAPE first computes the pulse

transit time (PTT) between all peak pairs (green square) within each individual

heartbeat (indicated by the green rectangle). It then determines the final PTT value

by taking the median of the PTT values across all heartbeats (indicated by the red

rectangle).
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Figure 5.6: A comprehensive overview of the CAPE framework.
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5.2.4 Validation and Ablation Analysis

5.2.4.1 Validation of cfPWV estimation

The automatic algorithm for cfPWV estimation was validated against

applanation tonometry measurements (SphygmoCor System) [214],

considered as the gold standard. The equivalence of the applanation

tonometry-based and of the LDV-based approaches was tested through

Bland-Altman analysis [215, 216], calculating the mean differences

between the two estimated cfPWV data, along with their standard

deviations. Following international guidelines criteria [29], two cfPWV

measurements are considered equivalent if the mean difference is less than

0.5 m/s with a standard deviation (SD) below 0.8 m/s.

Based on guidelines, measurements are classified into three quality

grades:

• Excellent: mean difference < 0.5 m/s and SD < 0.8 m/s

• Acceptable: mean difference < 1.0 m/s and SD < 1.5 m/s

• Poor: mean difference > 1.0 m/s or SD > 1.5 m/s

To optimize the PWV estimation, a systematic tuning and ablation ana-

lysis was conducted for three key variables (K, BQT, and RQT) of the

CAPE framework:

• The value of K was varied from 1 to 5, in increments of 0.5.

• The value of BQT was varied from 10 to 20, in increments of 5.

• The value of RQT was varied from 5 to 15, in increments of 5, con-

sidering a recording duration of 20 seconds.

5.2.4.2 Confidence level of the cfPWV estimation

The CAPE framework, implementing an adaptive validation approach

through dynamic adjustment of BQT and RQT thresholds, enables

quality-dependent accuracy levels. This flexibility allows the algorithm

to operate effectively across varying signal quality conditions, with three

distinct response modes:

• Low-quality signals: The algorithm automatically withholds PWV

estimation when signal quality falls below minimum thresholds, pre-

venting unreliable measurements.
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• Moderate-quality signals: For signals meeting basic quality meas-

urements, the algorithm provides acceptable PTT estimates, ensur-

ing usable measurements while acknowledging potential limitations

in precision.

• High-quality signals: When the signal quality is high, the algorithm

delivers an excellent measurement with high accuracy PTT estimates.

Following established guidelines [29], two distinct threshold configur-

ations were implemented to optimize the algorithm performance. The first

configuration focuses on high-precision measurements, optimized specific-

ally for high-quality signals to deliver maximum accuracy in PTT estima-

tion. The second configuration adapts to moderate-quality signals, provid-

ing acceptable measurement precision while maintaining reliability. This

dual-configuration approach ensures the algorithm’s versatility across vary-

ing signal quality conditions while maintaining measurement reliability.

5.2.4.3 Ablation analysis

To assess the impact of various quality control modules on cfPWV estim-

ation, an ablation analysis was performed by systematically disabling spe-

cific thresholds. Disabling the BQT threshold allowed for the evaluation of

how single-beat quality control influences the overall accuracy of cfPWV

estimation. Similarly, disabling the RQT threshold assessed the effect of

quality control applied to the entire recording on the final cfPWV estimate.

Additionally, we evaluated the computation of the PTT by implement-

ing four distinct statistical approaches, applied to both individual beats and

the entire recording:

PT Tmean_mean =
1

N

N

∑
i=1

(
1

ki

k1

∑
j=1

PT Thbeat,1, j, ...,
1

kN

kN

∑
j=1

PT Thbeat,N, j) (5.3)

PT Tmean_median =
1

N

N

∑
i=1

(Median(PT Thbeat,1, j), ...,Median(PT Thbeat,N, j))

(5.4)

PT Tmedian_mean = Median(
1

ki

k1

∑
j=1

PT Thbeat,1, j, ...,
1

kN

kN

∑
j=1

PT Thbeat,N, j)

(5.5)
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PT Tmedian_median =Median(Median(PT Thbeat,1, j), ...,Median(PT Thbeat,N, j))
(5.6)

where N represents the number of heartbeat and k the number of

carotid-femoral pair in the specific heartbeat.

5.3 RESULTS

5.3.1 Validation of the algorithm

5.3.1.1 Validation of cfPWV estimation

The optimal configuration (K = 2.5, BQT = 15, and RQT = 15) using

PT Tmedian_median achieved excellent accuracy with a mean difference of

0.25±0.77 m/s compared to applanation tonometry. Detailed performance

metrics under different configurations are presented in Table 5.1. Record-

ings that did not meet the minimum quality criteria—based on the BQT

and RQT thresholds—were automatically excluded from the analysis. The

number of subjects and recordings reported in Table 5.1 refer only to those

retained after this quality filtering step.

This approach ensures that the analysis is based on reliable signals,

consistent with findings from a previous study [27], where only 15% of the

measured signals were rated as good to excellent, making them immedi-

ately suitable for analysis.

Furthermore, to emphasize the advancements introduced by CAPE,

we compared its performance against a previously published LDV-based

method that was applied to the same dataset [23]. Unlike CAPE, the earlier

method did not include any automatic signal quality assessment and de-

pended on ECG-based detection. As shown in Table 5.2, CAPE achieved

lower bias and standard deviation in cfPWV estimation, highlighting its

increased accuracy and robustness.

Bland-Altman analysis (Figure 5.7) revealed a slight positive bias in

both acceptable and excellent measurement configurations. For accept-

able measurements, the bias was 0.39±1.23 m/s (95% limits of agree-

ment: -2.02 to 2.80 m/s), while excellent measurements showed a bias of

0.25±0.77 m/s (95% limits of agreement: -1.26 to 1.76 m/s).

Table 5.1: Mean and standard deviation of the difference between the automatic

methods and the tonometry or manual method. K: cross-correlation function;

BQT: number of peak pairs in the heartbeat; RQT: number of good beats.

Performance measure K BQT RQT Mean of difference (m/s) standard deviation of difference (m/s) number of patients number of recordings

Excellent 2.5 15 15 0.25 0.77 25 69

Acceptable 2.5 15 10 0.39 1.23 52 151
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Table 5.2: Comparison of cfPWV estimation accuracy between CAPE and the

method by Badhwar et al. [23] on the same dataset. STD refers to the standard

deviation.

METHOD BIAS (m/s) STD (m/s) KEY FEATURES

Badhwar et al. with ECG 0.58 1.14 ECG used; no quality filtering

Badhwar et al. without ECG 0.65 1.27 ECG-free; no quality filtering

CAPE (proposed method) 0.25 0.77 ECG-free; automatic quality assessment

Figure 5.7: Bland-Altman analysis between the tonometry and the proposed al-

gorithm, using the configuration for acceptable (a) and excellent (b) measure-

ments. The red line represents the mean difference, while the black lines indicate

the 95% limits of agreement, computed as the mean of difference ± 1.96 of the

standard deviation difference. The gray dashed line represents the zero.

5.3.2 Threshold tuning and ablation analysis

To determine the optimal values for the quality thresholds BQT and RQT,

an empirical tuning procedure was conducted. Various combinations of

these parameters were systematically tested across different values of

the correction factor K. The configuration that achieved the best balance

between estimation accuracy (measured in terms of mean difference and

standard deviation relative to applanation tonometry) and the number of

retained subjects and recordings was identified as: K = 2.5, BQT = 15, and

RQT = 15 (Table 5.3).

The ablation analysis, summarized in Table 5.4, highlights the critical

role of the BQT and RQT thresholds in ensuring high-quality PWV estim-

ation. The BQT was disabled to assess how the inclusion of lower-quality

beats influences overall PWV estimation. The results indicated a signific-

ant deterioration in the accuracy of PWV measurements, as a substantial

number of low-quality beats were incorporated into the analysis, leading to

increased variability and potential inaccuracies in the calculated PWV.
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Table 5.3: Tuning threshold result: Effects of the BQT, RQT, and K parameters on

cfPWV estimation accuracy. Values report the mean and standard deviation of the

difference with applanation tonometry. K: correlation threshold; BQT: number of

peak pairs; RQT: number of high-quality beats.

Performance measure K BQT RQT Mean of difference (m/s) standard deviation of difference (m/s) Number of patients Number of recordings

Acceptable 1 20 10 0.47 1.20 52 154

Excellent 1 20 15 0.38 0.70 26 58

Acceptable 2 20 10 0.32 1.20 44 125

Excellent 2 20 15 0.33 0.64 20 47

Acceptable 2.5 15 10 0.39 1.23 52 151

Excellent 2.5 15 15 0.25 0.77 25 69

Acceptable 3 15 10 0.27 1.20 37 102

Excellent 3 15 15 0.22 0.68 17 47

Additionally, the RQT was also disabled. This allowed recordings with

insufficient valid beats to be considered in the analysis, negatively affecting

the robustness of the PWV estimations. The data revealed that the absence

of this threshold contributed to a marked increase in estimation error, par-

ticularly in recordings that were brief or contained excessive noise.

The findings from the ablation analysis underscore the necessity of im-

plementing stringent quality control measures in cardiovascular signal ana-

lysis to enhance the reliability of PWV assessments.

The results obtained using the four approaches for computing the fi-

nal delay, based on the module combination for excellent measurements

(k = 2.5, BQT = 15, and RQT = 15), are summarized in Table 5.5, where

PT Tmedianmedian appears to be the most robust against outliers, displaying

the smallest standard deviation computed between the LDV-based PTT es-

timation (performed with the four statistical approaches) and applanation

tonometry.

As an extension of our previous analysis on the same dataset [23],

we investigated the relationship between cf-PWV values – measured us-

ing both LDV and applanation tonometry (AT) – and age, body mass in-

dex (BMI), and systolic blood pressure (SBP). For this analysis, Spearman

correlation coefficients (ρ) and corresponding p-values were computed for

each modality. LDV-derived cf-PWV values were averaged per subject

across all beats that met the “excellent” quality criterion (n = 25).

Table 5.4: Ablation Study Results: Effects of BQT and RQT modules on cfPWV

estimations. K: cross-correlation function; RQT: number of peak pairs in the heart-

beat; RQT: number of good beats.

BQT RQT Mean of difference (m/s) standard deviation of difference (m/s)

X ✓ 2.56 2.39

✓ X 0.75 4.36

✓ ✓ 0.25 0.77
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Table 5.5: Comparison between LDV-based PTT estimation (performed over the

entire recording) approaches and applanation tonometry. The best configuration is

highlighted in bold. STD refers to the standard deviation.

Estimation method MEAN OF DIFFERENCE (M/S) STD OF DIFFERENCE (M/S)

PT Tmean_mean 0.16 0.95

PT Tmean_median -0.25 2.23

PT Tmedian_mean 0.25 0.88

PT Tmedian_median 0.25 0.77

The scatterplots of cf-PWV versus age, BMI, and SBP for both LDV

and AT modalities in Figure 5.8 highlight that the two measurement meth-

ods exhibit similar associations with physiological quantities. In detail,

cf-PWV via LDV showed strong correlation with age and moderate correl-

ation with SBP, consistent with physiological expectations (and with AT

measurements as well). Although weaker, correlations with BMI were

comparable between modalities. These findings further support the plausib-

ility and potential generalizability of LDV-based cf-PWV estimation using

the CAPE framework.

Figure 5.8: Scatterplots showing the association between cf-PWV values ob-

tained from LDV (blue points) and applanation tonometry (AT, red points) with

key physiological variables: (a) age (left); (b) body mass index—BMI; (c) systolic

blood pressure—SBP.

5.3.3 Beat-to-beat analysis

Finally, the proposed algorithm performs the beat-to-beat analysis. Figure

5.9 presents an example of the PTT variability on a beat-by-beat basis. In

this context, variability refers to the global assessment of PTT fluctuations

across all beats, rather than a direct difference between consecutive beats.

By evaluating these fluctuations, it is possible to qualitatively assess the

robustness of the measurement.

As a final analysis, we present the time-varying trend of cfPWV, as

shown in Figure 5.10. The results indicate that PWV exhibits beat-to-

beat variability with a slow trend that could be ascribed to physiological
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Figure 5.9: An example of PTT beat-to-beat variability with PTT and automatic

PWV values from CAPE (blue) and applanation tonometry (black).

lower frequency activity such as breathing and/or so-called Mayer waves

[217]. Breathing could influence intrathoracic pressure and modulate arter-

ial blood pressure, potentially leading to cyclic changes in transit time.

Figure 5.10: An example of the time-varying trend of cfPWV. Beats that are not

classified as of good quality are excluded, and the values in between are interpol-

ated to maintain the continuity of the trend.

5.4 DISCUSSION

This study presents CAPE, a near real-time, accuracy-controlled frame-

work for cfPWV estimation using an LDV system. CAPE offers a continu-

ous (beat-to-beat analysis) as well as an overall cfPWV estimation, provid-

ing a comprehensive understanding of cardiovascular dynamics. To ensure

accuracy, CAPE applies a quality criterion that assesses the reliability of

measurements in advance, based on the quality of heartbeats and record-

ings. It is designed to handle variable quality single pulses (heartbeats)

and use only those that meet established standards for the cfPWV estima-

tion, resulting in more reliable measurements. Indeed, by considering the

number of cf-peak pairs (BQT) and the number of high-quality heartbeats

(RQT), CAPE performs the cfPWV estimation, with a specific confidence

level, classifying it as excellent, acceptable, or unreliable. This local-global

120



5.4. Discussion

mechanism is critical in real-world conditions, where signals may be irregu-

lar or of suboptimal quality [27]. Furthermore, the dual-tuning architecture

ensures flexibility, allowing CAPE to maintain performance across various

signal recording levels and deliver either acceptable or high-accuracy meas-

urements, based on data quality. CAPE is fully automated, once the signals

are acquired the analysis proceeds without any other operator intervention,

minimizing operator dependency and improving reproducibility in clinical

applications.

CAPE demonstrated excellent accuracy with improved performance

compared to a previous LDV-based study which using the same dataset

[23] exhibited a standard deviation of 1.27 m/s versus CAPE’s standard

deviation of 0.77 m/s, when compared to applanation tonometry. These

results underscore the importance of applying quality criteria to ensure the

algorithm produces accurate measurements. However, the use of these cri-

teria also led to a reduction in the analyzed dataset, as low-quality record-

ings were excluded from validation. Specifically, the sample size decreased

to 25 patients when only measurements with an excellent confidence level

were considered but increased to 52 patients with an acceptable confidence

level. This consideration is in line with a previous study where a by-visual

inspection quality assessment was implemented [27], and where only 15%

of signals were rated from good to excellent, while 52% were classified as

poor (20%) or suboptimal (32%).

CAPE’s ability to perform cfPWV estimation within just 3 seconds of

latency (tested on MacBook Pro 15, 2.6 GHz Intel Core i7 6 core) high-

lights its computational efficiency, making it an ideal candidate for integra-

tion into real LDV devices such as the CARDIS system. The preprocessing

step, including acceleration calculation and signal filtering, takes approx-

imately 1.7 seconds, while the quality assessment and fiducial point detec-

tion, along with PWV calculation, are completed in about 1.3 seconds. The

clinical potential of our framework extends beyond standard PWV meas-

urements. Its rapid processing capabilities make it suitable for continuous

monitoring during surgical procedures, intensive care settings, and routine

cardiovascular screening. The automated quality assessment feature could

particularly benefit clinical research studies requiring large-scale arterial

stiffness measurements, where operator expertise might vary across differ-

ent centers.

Another key strength of the proposed pipeline is its ability to estimate

cf-PWV without relying on an ECG signal, which is typically used to detect

and synchronize fiducial points [27]. By eliminating the need for ECG,

the method simplifies the setup and reduces patient preparation time, all
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while preserving measurement accuracy. This makes it especially valuable

in clinical settings where quick and efficient assessments are essential.

Finally, another key strength of the proposed pipeline is its ability to

estimate cfPWV without relying on an ECG signal, which is typically used

to detect and synchronize fiducial points [27]. By eliminating the need for

ECG, the method simplifies the setup and reduces patient preparation time,

all while preserving measurement accuracy. This makes it especially valu-

able in clinical settings where quick and efficient assessments are essential.

Despite the promising performance of CAPE, several limitations should

be acknowledged. First, the thresholds used in the framework – such as

BQT and RQT values – were set based on a single dataset (the CARDIS

one). While these threshold values proved effective within this cohort, fur-

ther validation is needed to assess their generalizability across diverse pop-

ulations and measurement conditions, particularly in pathological cohorts

such as the elderly, individuals with diabetes, or patients with advanced car-

diovascular disease. Additionally, CAPE relies on template matching for

fiducial point detection. Although this method performed well in CARDIS

cohort [27], it may be sensitive to variations in signal morphology.

The framework’s local-global quality assessment enhances the reliab-

ility of cfPWV estimation by filtering out poor-quality signals. However,

this process also reduces the number of usable recordings, representing a

trade-off between estimation accuracy and data availability. This trade-off

should be taken into account when applying CAPE in real-world settings.

Future studies should explore the robustness of the quality assessment ap-

proach, particularly in datasets characterized by lower signal quality or

greater physiological heterogeneity.

Finally, the integration of machine learning or deep learning models

[218]. could further enhance CAPE’s adaptability by learning from sig-

nal variability, thus reducing the need for manual threshold tuning. These

models could improve the algorithm’s robustness, especially in populations

with challenging physiologies. Future work may also include the devel-

opment of a measurement uncertainty parameter, based on signal quality

metrics, to complement the final cfPWV output.

5.5 CONCLUSION

This study introduces the CAPE framework, a near real-time, accuracy-

controlled system for cfPWV estimation using LDV signals. CAPE

provides continuous, beat-to-beat assessments of arterial stiffness,

integrating quality control mechanisms to ensure reliable measurements
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across varying signal qualities. By evaluating the number of cf-peak pairs

(BQT) and high-quality heartbeats (RQT), CAPE classifies measurements

into confidence levels, adapting to real-world conditions. The integration

of CAPE within the CARDIS device represents a significant advancement

in cfPWV estimation, offering an automated, near real-time solution for

continuous cardiovascular monitoring and enhancing clinical assessments

of arterial stiffness.
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HEART-CAROTID PULSE-TRANSIT

TIME

POSITIONING OF THE CHAPTER

This chapter is based on the publication Heart-Carotid Pulse-Wave Velo-

city via Laser-Doppler Vibrometry as a Biomarker for Arterial Stiffening:

a Feasibility Study (Beeckman, S., Badhwar, S., Li, Y., Aasmul, S., Madhu,

N., Khettab, H., Mousseaux, E., Gencer, U., Boutouyrie, P., Bruno, R.

M., & Segers, P., Physiological Measurement, vol. 46(4), 22 April 2025,

doi: https://doi.org/10.1088/1361-6579/adcb85) [219]. For this disserta-

tion, Tables 6.5 and 6.6 were added to the discussion. The presented clin-

ical investigational study protocol was determined by prof. Bruno, prof.

Mousseaux and prof. Boutouyrie and executed by dr. Badhwar, dr. Gencer,

dr. Khettab, dr. Gencer and in part also by the author. Methodology was

provided for by prof. Li and ing. Aasmul. The analysis was conceptualized

by the author and dr. Badhwar and performed by the author. The public-

ation was written and proof-read by the author, dr. Badhwar, prof. Bruno

and prof. Segers.

ABSTRACT

Objective: Large artery stiffening leads to an increase in cardiovascular

risk and organ damage of the kidneys, brain or the heart. Biomarkers that
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allow for early detection of this phenomenon are a point of interest in re-

search, with pulse-wave velocity (PWV) having been proven useful in pre-

dicting and monitoring arterial stiffness. We previously introduced a laser

Doppler vibrometry (LDV) prototype which can measure carotid–femoral

PWV (cfPWV). In this work, we assess the feasibility of using the same

device to infer heart-carotid pulse-transit time (hcPTT) as a first step to-

wards measuring heart-carotid PWV (hcPWV). The advantage of hcPWV

over cfPWV is that the ascending aorta, which is the most distensible seg-

ment of the aorta contributing most to total arterial compliance, is included

in the arterial pathway.

Approach: Signals were simultaneously acquired from a location on

the chest (near either the base or the apex of the heart) and the right carotid

artery for 100 patients (45% female). Fiducial points on the heart wave-

forms are associated with opening and closure (second heart sound; S2) of

the aortic valve, which can be combined with, respectively, the foot and

dicrotic notch (DN) of the carotid waveform to retrieve hcPTT. Consider-

ing two distinct heart-signal measurement sites, four hcPTT estimations are

evaluated in about 94% of all measurements.

Main results: Correlations between these and known predictors of ar-

terial stiffness i.e. age, blood pressure and carotid–femoral PTT via applan-

ation tonometry indicated that combining S2 from a heart-measurement site

located at the base of the heart, with the carotid DN yields hcPTT provid-

ing convincing correlations with known determinants of arterial stiffness

(ρ = 0.377 with age).

Significance: We conclude that LDV may provide a corollary

biomarker of arterial stiffness, encompassing the ascending aorta.

6.1 INTRODUCTION

The large arteries, and specifically the aorta, play a central role in the blood

circulation [49]. Their structure allows the vessel wall to distend during car-

diac contraction, storing elastic energy, which is used during the consequent

relaxation to drive blood flow after the pressure wave has passed [35, 49,

220]. This way, a near-continuous flow is assured further down the arter-

ial tract, providing constant organ perfusion. This buffer or ’windkessel’

function deteriorates significantly when large arteries stiffen, during a pro-

cess called arteriosclerosis, leading to deregulated blood pressure, blood

flow and consequent organ damage [7, 8, 75, 109]. Understanding the as-

sociated waveforms in blood pressure and flow related signals is vital in

detecting and preventing this early vascular aging [221].
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6.1.1 Carotid-femoral pulse-wave velocity

A metric that allows for quantifying arterial stiffening is pulse-wave velo-

city (PWV) [8, 11, 222], with especially carotid-femoral PWV (cfPWV)

being studied and showing a significant relationship with arterial stiffness.

It can be stated that cfPWV serves as the baseline biomarker regarding

arterial stiffening [11]. The speed of the pulse-wave induced by heart-

contraction increases with increased arterial stiffness. If one measures the

arrival time of the pulse-wave at two distinct points on the arterial tract, sep-

arated by a distance dx, one can calculate PWV as in equation 6.1, where

PT T is the delay in the pulse arrival time (PAT) across the two points. We

refer to PT T as the pulse-transit time (PTT).

PWV =
dx

PT T
(6.1)

Aside from the current state-of-the-art measurement methods of

cfPWV, such as applanation tonometry and ultrasound [11, 184], we have

been exploring an alternative approach based on laser-Doppler vibrometry

(LDV) [20–22]. With this technique, skin displacement signals above large

arteries such as the carotid and femoral arteries can be measured, from

which the PAT and carotid-femoral PTT (cfPTT) can be estimated [18]. It

was shown that cfPWV via LDV measurements had a high agreement with

its tonometry-based counterpart [23]

6.1.2 Heart-carotid pulse-wave velocity

A drawback of cfPWV is that its arterial pathway does not include the

ascending aorta, which is the most distensible aortic segment and con-

sequently the region where the increase in arterial stiffness is expected to

be most apparent. cfPWV is determined using a pathway spanning from

the femoral artery up to the descending thoracic aorta. In this way, an im-

portant region of potential elastic behaviour changes is excluded from the

metrics. Vlachopoulos et al. have shown that aortic stiffness is an inde-

pendent predictor of cardiovascular-related mortality and disease [75], that

also precedes the onset of hypertension [10].

This work proposes heart-carotid PTT (hcPTT) as an additional bio-

marker that includes the ascending aorta. Our hcPTT is measured via LDV,

as seen in Figure 6.1, as opposed to the more frequent use of MRI to assess

aortic stiffness [15, 123–129]. A similar experiment was conducted previ-

ously, using accelerometers placed on the chest at the mid-sternal precor-

dial region, and in the neck above the carotid artery [223]. This experiment

was able to evaluate the variation of the true central hcPTT during phar-

macological and dynamic stress. In general, hcPTT is calculated between

129



6. HEART-CAROTID PULSE-TRANSIT TIME

the proximal measurement site (the heart), and the distal one of the carotid

[224].

Figure 6.1: Overview of the two investigated methodologies to achieve hcPTT.

Both panels show the LDV device’s two handpieces measuring in parallel. The

left panel shows a measurement on the carotid artery and the fifth left intercostal

space. The right panel presents a measurement on the carotid artery and second

right intercostal space.

Approaches for the proximal measurement site have been proposed,

among them seismocardiography (SCG) [225–228]. SCG also measures

skin acceleration, albeit via different technology and methodology, and

could thus be interpreted as a form of reference for the currently unexplored

LDV heart-waveforms. Phonocardiogram (PCG) methods via digital steth-

oscope have also been investigated for the proximal measurement [229].

Regarding the distal waveform, LDV can provide reliable waveforms at the

carotid [18, 19, 26].

The specific research aims for this article are fourfold: assessing (i) cor-

relation of hcPTT with relevant clinical parameters such as age and blood

pressure; (ii) agreement of LDV with the golden standard for cfPTT, as

measured by the Sphygmocor system; (iii) agreement between different es-

timates of hcPTT using LDV; (iv) investigation of the reproducibility of the

LDV measurements. From these avenues, we propose an approach for the

assessment of hcPTT while simultaneously quantifying the potential use-

fulness of hcPTT as a biomarker.
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6.2 MATERIALS & METHODS

6.2.1 The LDV-prototype specifications

In the context of a H2020 project (CARDIS, Grant agreement ID: 644798),

a first LDV prototype was constructed, which has been extensively de-

scribed in [19, 26, 230]. Briefly, the device includes two handpieces, with

which skin displacement can be simultaneously measured at two differ-

ent locations. Each handpiece captures data using six laser beams with a

wavelength of 1550nm that are reflecting off of a retroreflective tape that

is applied to the measurement site. The inter-beam distance is 5mm. The

displacement signals obtained are differentiated twice, yielding skin accel-

eration. The time-point of the arrival of the pulse wave is then detected by

selecting the appropriate features in the acceleration signals.

6.2.2 Study population and data collection

In this study, 100 patients with ages ranging from 18 to 90 years old, that

could provide informed, written consent were recruited after their routine

clinical care. Population statistics are listed in Table 6.1. Exclusion criteria

for the InSiDe study were:

• Patients with skin lesions on the chest or neck or allergies to the

adhesive that may affect placement of the patch.

• Patients with life-threatening conditions (metastatic cancer,

end-stage renal failure, end-stage liver failure or end-stage heart

failure).

• Patients with history of acute heart failure (NYHA class III-IV).

• Patients with progressive cardiovascular pathologies (unstable coron-

ary artery disease, Peripheral artery disease, stroke, aortic dissec-

tion).

• Patients with arrhythmias leading to great heart rate variability during

recordings.

• Pregnant or breastfeeding women.

The patients additionally underwent several tonometric and LDV meas-

urements, with simultaneous recording of LDV signals at the two measur-

ing sites as seen in Figure 6.1. Patients were placed in a supine position for

entire duration of the protocol. Tonometric cfPTT data was collected via

the Sphygmocor system, to serve as an established biomarker to compare

the LDV-results to. The following measurements were performed:
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Parameter (N=100) Mean ± SD Range

Age (years) 48 ± 17 [18, 81]

Sex (male %) 55 /

BMI (kg/m²) 26 ± 5 [17.24, 39.82]

Systolic BP (mmHg) 130 ± 20 [88, 219]

Diastolic BP (mmHg) 79 ± 15 [49, 136]

Table 6.1: Population statistics. SD refers to standard deviation.

• Carotid-femoral PTT with the Sphygmocor system (three repeated

measurements, measuring 10 heartbeats each).

• Heart-carotid PTT, with the LDV probe measuring the heart signals

aimed at the base of the heart (Base), as exemplified in panel B of

Figure 6.1 (three repeated measurements, measuring 15 heartbeats

each).

• Heart-carotid PTT, with the LDV probe measuring the heart signals

aimed at the apex of the heart (Apex). An example of this is shown

in panel A of Figure 6.1 (three repeated measurements, measuring 15

heartbeats each).

Electrocardiogram (ECG) data were also collected in parallel with the

LDV measurements. Brachial systolic and diastolic blood pressure were

gathered via state-of-the-art cuff-based technology.

Sphygmocor measurements were performed by continually recording

ECG in parallel with the tonometry measurements. These alternate between

measuring at the right carotid first, and then the right femoral artery. Transit

time from the peak of the R-wave to the foot of the carotid pressure wave,

and the peak of the R-wave to the foot of the femoral pressure wave, was

used to calculate cfPTT. The intersecting tangent algorithm was used to

assess the fiducial point of the foot of both pressure waveforms.

6.2.3 Analysis of heart-carotid LDV data

6.2.3.1 Data properties & preprocessing

For each measurement, six channels were measured for the carotid and

heart measurement sites respectively. The signal length varied due to vary-

ing signal quality influencing the real-time heartbeat detection, but was

capped at 60 seconds as a maximum measurement duration. All signals

were passed through a second-order bandpass Butterworth filter with cutoff

frequencies at 0.5 and 50Hz respectively, to filter out baseline wandering
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and high-frequency signal distortion, and were then differentiated twice.

The acceleration signals were then exported to the user at 10kHz and were

resampled to 1kHz for post-processing computational purposes.

An example (patient 40, first Base-carotid measurement) is shown in

Figure 6.2. As can be observed in the figure, signal quality can vary drastic-

ally between channels and/or handpieces since it is possible that only a few

beams are placed on top of the target artery [27]. Panel B helps to visual-

ize the arterial pathway between the measurement sites. The hcPTT to be

quantified is the time delay between the pressure wave traveling from the

aortic valve up to the right carotid artery, as demarcated in the figure panel.

A peak detection algorithm was applied to the ECG signal to detect the

R waves of individual cardiac cycles. This allowed us to split the LDV

signals into individual cardiac cycles, which will be called epochs in this

work. Heart and carotid epochs that correspond to the same heartbeat are

selected and matched to estimate the hcPTT based on the available temporal

signal features. This is shown in Figure 6.2, panel C.

6.2.3.2 Heart-carotid pulse-transit time calculation

Similar to carotid-femoral, we intended to identify signal features in the

LDV traces that correspond to the same physical event in the cardiac cycle,

for both the heart and the carotid epochs. For the interpretation of cardiac

LDV skin-acceleration signals, we relied on what was reported on SGC

data [226, 227].

These SCG signals contain chest-skin acceleration in time, as measured

by the application of accelerometers to the skin. From visual inspection of

the data, it was found that the LDV signals mostly resembled the SCG

waveforms as reported in literature. As indicated in panel C of Figure 6.2,

several signal features and their respective fiducial points could be indic-

ated. For the heart-signal epoch, there is the mitral valve closure (MC),

isovolumic contraction (IVC), aortic valve opening (AO), rapid ventricular

ejection (RE), aortic valve closure (AC), mitral valve opening (MO) and

rapid ventricular filling (RF). In the carotid signal-epoch we indicated the

foot-of-the wave and dicrotic notch (DN), corresponding to AO and AC

respectively. Two hcPTT estimation methods were proposed.

First, the features corresponding to the opening of the aortic valve were

identified. For the carotid signals, this is the well-established foot-of-the-

wave waveform [11]. Opening of the aortic valve is less evident to assess

from the cardiac LDV data. Analyzing reported SCG data, the second peak

in the first region of elevated signal energy after the timepoint of the ECG

R-peak is associated with AO [226, 227]. It was assumed that, because of
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Figure 6.2: Panel A shows a 4.5-second segment of the first Base-carotid meas-

urement of patient 40, performed during the study. The six channels in the right

column represent carotid skin-acceleration in time. The left column contains base-

of-the-heart skin acceleration in time. The bottom row shows the ECG measured

in parallel with the LDV-channels. Panel B visualises the arterial pathway under

investigation. Figure created with BioRender.com. Panel C displays a selection

of carotid (middle plot) and heart (upper plot) channels that were split into epochs

using the ECG, shown in the bottom plot. A randomly-picked carotid and heart

epoch are both displayed on top of all individual epochs. Two combinations of

temporal features that lead to two distinct hcPTT estimations are illustrated. See

text for the definition of all indicated points. Y-axes show arbitrary units for all

graphs.
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the similarity between SCG and chest-LDV waveforms, the same peak in

the LDV signal also corresponded to AO. The time delay between these ca-

rotid and heart features was then taken as a first hcPTT estimation (PT T1).

Secondly, the features corresponding to the closure of the aortic valve

are considered, see panel C of Figure 6.2. Again, this was straightfoward

to assess from the carotid data, where the well-known DN [11] leads to a

prominent second peak in the LDV acceleration signal. As for the heart

signal, we again rely on what is known from SGC, where the first peak

in the second region of visible signal perturbation (which we refer to as

heartsound two, or S2) is associated with aortic valve closure [226, 227].

Analogously, the corresponding LDV feature could be identified. Com-

bining both features yielded a second hcPTT estimation. In the following

sections we will be referring to both these proposed methods as PT T1 and

PT T2, respectively.

The following protocol was established to get PT T1 and PT T2, for Apex

and Base measurements:

• For a given measurement (Base or Apex), the most qualitative chan-

nels (highest signal-to-noise ratio) of both handpieces respectively,

were designated via visual inspection of signal quality.

• The R-wave peaks in the ECG trace were detected and utilised to

split the selected channels into epochs.

• Signal averaging of the epochs yielded an average carotid and heart

epoch.

• The five epochs per channel with the highest normalised cross-

correlation coefficient with their average epoch were selected for

hcPTT estimation.

• hcPTT estimation was performed via both methods described above

to get PT T1 and PT T2 for the five selected epochs.

• Of these five values for both PT T1 and PT T2, the median values were

taken as hcPTT estimates for the measurement.

• Of the three measurement hcPTT estimations per patient, the median

value was again taken as final hcPTT estimation for the patient, and

the standard deviation as a measure for inter-measurement hcPTT

variability. If one (or two) of the three measurements could not be

processed, the average value of the remaining hcPTT estimates was

taken as the final hcPTT.
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6.2.3.3 Heart-carotid PTT with age and blood pressure

Both hcPTT estimation methods were applied on the database, for both

heart-measurement sites. This resulted in four hcPTT estimations. All

four were compared to known biomarkers for arterial stiffness: age, bra-

chial diastolic blood pressure (DBP), brachial systolic blood pressure (SBP)

and cfPTT measured via the Sphygmocor system. The same correlations

were additionally calculated for both male and female patients separately.

All correlations were quantified using the Pearson-correlation coefficient

and were considered significant for associated p-values < 0.05. Variability

between measurements done per patient was investigated.

Additionally, the agreement between the four methods was investig-

ated. This was done through correlation analyses that were performed

between hcPTT’s estimated on the two different heart-measurement sites.

Correlations between PT T1 and PT T2, controlling for measurement site,

were also investigated as well as any statistical difference between the two

metrics which was done via paired t-tests and nonparametric Wilcoxon

signed-ranks tests. Bland-Altman plots were made to evaluate any poten-

tial biases and to appraise the level of agreement between hcPTT estimation

methods and between heart-measurement sites.

6.2.3.4 Intra- and inter-operator variability

In order to examine the reproducibility of the hcPTT biomarker, a separate

batch of measurements was performed on 10 healthy volunteers by two dis-

tinct operators (OP1 & OP2). Similar to the protocol of the InSiDe-study

described above, every volunteer was subject to three LDV measurements

at both Base and Apex, performed by the two operators. This resulted in

a total of 120 planned measurements. It was determined that only subjects

with all three measurements being processable, were considered for the

reproducibility analysis. hcPTT’s were derived from the considered meas-

ured data as mentioned before, and compared in an intra- and inter-operator

analysis.

Intra-operator variability was quantified as follows: every measurement

resulted in a hcPTT estimate. The coefficient of variation (CV) was calcu-

lated on the three hcPTT estimates per subject. For a single method, e.g.

Base PT T2, this resulted in 10 CV values of which the mean was taken,

together with its standard error (SE), as the metrics for evaluation. This

was done for Base PT T1, Base PT T2, Apex PT T1 and Apex PT T2. Equa-

tions 6.2 and 6.3 show the formulas used to calculate CV and SE σ refers

to the standard deviation and µ to the arithmetic mean. σCV is the standard

deviation of the CV values for the N = 10 subjects.
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CV = 100∗ σ

µ
(6.2)

SE =
σCV√

N
(6.3)

The inter-operator variability was investigated using a Bland-Altman

analysis [231], constructing Bland-Altman plots and recording relevant val-

ues i.e. bias, standard deviation of the differences and limits of agreement.

Again, this was done for the four considered hcPTT methodologies.

6.3 RESULTS

Of the total number of datasets gathered at each of the two measurement

sites (600), 94%, 93.6%, 94.4% and 94.4% yielded a hcPTT for Base PT T1,

Base PT T2, Apex PT T1 and Apex PT T2 respectively. On a per-patient level,

96 of the 100 patients yielded a final hcPTT for Base measurements. For

the Apex measurements, 97 patients yielded a final hcPTT. Sphygmocor

cfPTT reference values were gathered from 97 of the 100 patients.

6.3.1 Correlation with clinical parameters and sphygmocor cfPTT

Figure 6.3 shows the distributions of all four hcPTT estimates versus age,

per patient. In case no error bar is visible, it is assumed that for two out of

the three measurements no hcPTT estimate was possible (due to low sig-

nal quality or issues with the ECG). Panel A and B show the significant

correlations, between age and Base PT T1 (ρ =−0.3, p = 0.003) and PT T2

(ρ = −0.377, p < 0.001) respectively. Panel C and D show the same cor-

relations, but for the Apex measurement site (ρ = −0.144, p = 0.16 and

ρ =−0.149, p = 0.146).

In Figure 6.4 the correlations are depicted for Base PT T1 and PT T2,

with Sphygmocor cfPTT. This Figure highlights the strongest correlations

found between LDV-based hcPTT and any other metric in the analysis.

Base PT T1 and Sphygmocor cfPTT yielded a correlation with ρ = 0.359

and p < 0.001, Base PT T2 and Sphygmocor cfPTT yielded ρ = 0.475 and

p < 0.001.

In Table 6.2, the Pearson-correlation coefficients between the con-

sidered hcPTT values and other parameters such as brachial SBP and DBP,

and Sphygmocor cfPTT are displayed.
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Figure 6.3: Correlations of the four proposed hcPTT estimations with age. Lin-

ear regression lines are drawn. The distinction between male and female patients

has been visualised. Pearson-correlation coefficients and their p-values are given.

Error bars represent the standard deviation of the resulting hcPTT values for the

three measurements done per patient.

Base PTT1 Base PTT2 Apex PTT1 Apex PTT2

Age -0.3** -0.377*** -0.144 -0.149

SBP -0.259* -0.18 -0.058 -0.1

DBP -0.179 -0.098 -0.047 -0.125

cfPTT 0.359*** 0.475*** 0.167 0.196

Table 6.2: Pearson-correlation coefficients of the proposed hcPTT estimations

with age, brachial SBP, and DBP, and cfPTT are shown. Highlighted with ’*’ are

the statistically significant correlations with a p-value smaller than 0.05. (’**’ and

’***’ refer to p-values smaller than 0.01 and 0.001 respectively)

6.3.2 Relation between hcPTT methods

Correlation between PT T1 and PT T2 for Base (N = 96) and Apex (N = 97)

separately are investigated in Figure 6.5. The distributions are accompan-
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Figure 6.4: Correlations are depicted between both hcPTT estimation methods

on Base measurements, and the golden standard of Sphygmocor cfPTT. Pearson

correlations are given with their p-values for both cases. Linear regression lines

are drawn in the relevant color.

ied by their respective Bland-Altman plots. The correlation between Base

PT T1 and Base PT T2 yields the highest coefficient. the mean difference

of these two is -5.08ms. Both the paired t-test (T − statistic = 5.545, p <
0.001) and Wilcoxon signed ranks test (Test −Statistic = 950, p < 0.001)

suggest a significant difference between these two methods. The mean

difference between Apex PT T1 and Apex PT T2 is -6.32ms. The paired

t-test (T − statistic = 5.315, p < 0.001) and Wicoxon signed ranks test

(Test −Statistic = 879, p < 0.001) provide similar results as with the Base

hcPTT methods. The limits of agreement are large for both measurement

sites.

Figure 6.6 explores the correlations between measurement sites while

controlling for the hcPTT estimation methods (N = 96). PT T2 reports the

highest correlation between Base and Apex. Bland-Altman figures for these
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cases show next to no bias (mean difference of 1.62 and 2.81 ms for PT T2

and PT T1 respectively), allthough a large variance is again observed. All

correlations are given in Table 6.3.

Figure 6.5: Correlations between the two proposed hcPTT-estimation methods

are investigated while controlling for the heart-signal measurement site. Bland-

Altman plots are displayed in addition. SD refers to the standard deviation of the

differences between the two datasets.

6.3.3 Intra- and inter-operator variability

Not all data measured on the 10 subjects was fit for analysis. In one case,

only two of the three measurements were conducted. Another two cases

contained one measurement of inadequate signal quality each. This resulted

in 111 out of the total 120 (92.5%) planned measurements that could be

used.

The intra-operator variability is low (CV < 15%) for both operators, for

all four methodologies. Specifically OP2 has very low (CV < 5%) variab-

ility. Especially the standard error of OP2 for Base PT T1 suggests minimal
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Figure 6.6: Correlations between the two heart-measurement sites are investig-

ated while controlling for the hcPTT estimation method. Bland-Altman plots are

displayed in addition.

Base PTT1 Base PTT2 Apex PTT1 Apex PTT2

Base PTT1 1 0.449*** 0.245* 0.213*

Base PTT2 0.449*** 1 0.092 0.372***

Apex PTT1 0.245* 0.092 1 0.296**

Apex PTT2 0.213* 0.372*** 0.296** 1

Table 6.3: Correlations between the four proposed hcPTT estimation methods.

Highlighted with ’*’ are the statistically significant correlations with a p-value

smaller than 0.05 (’**’ and ’***’ refer to p-values smaller than 0.01 and 0.001

respectively).

variability in the estimate of its mean CV. The other standard errors range

between 14.5% and 33% of their respective mean CV estimates. Mean CV

and their standard errors are given in Table 6.4.
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Figure 6.7 displays the Bland-Altman analysis done on the subject-level

hcPTT estimates for OP1 and OP2. It was observed that both the bias

and limits of agreement are smallest for Base PT T2, suggesting that this

hcPTT estimation method is the most reproducible between different op-

erators. Notably, measurements taken at the Apex seem to produce results

with higher biases, and wider limits of agreement, insinuating less repro-

ducibility.

Intra operator 1 Intra operator 2

mean CV (%) SE N mean CV (%) SE N

Base PTT1 5.43 1.11 9 4.15 0.51 10

Base PTT2 5.49 1.98 10 8.04 3.18 10

Apex PTT1 9.27 3.59 9 11.75 3.30 10

Apex PTT2 5.83 2.51 9 8.22 3.84 9

Table 6.4: Mean CV’s are reported per hcPTT-acquiring method, together with

their standard errors. N indicates the number of included subjects in the analysis.

6.3.4 Sphygmocor cfPTT agreement with clinical parameters

Figure 6.8 shows the trends between Sphygmocor cfPTT and age (ρ =
−0.674, p < 0.001), brachial SBP (ρ =−0.512, p < 0.001) and DBP (ρ =
−0.336, p = 0.001). All correlations are statistically significant, with N =
100.

Figure 6.8 serves as a possible form of reference for hcPTT, with cor-

relation values between cfPTT and age, SBP and DBP. We assume this

because we consider cfPTT (and by extension: cfPWV), resulting from

Sphygmocor measurements, as a golden standard for assessing vascular

aging.

Currently it is not yet possible to approach the high correlation coeffi-

cient of ρ =−0.674 between Sphygmocor cfPTT and age when calculating

hcPTT. At this time, we ascribe this effect to the different arterial pathway

between both PTT’s and increased complexity of the heart-LDV data. The

proposed hcPTT’s are clearly not yet interchangeable with Sphygmocor

cfPTT, but could be considered as an additional metric that describes ar-

terial stiffness in the ascending aorta, which is not included in the cfPWV

pathway.
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Figure 6.7: Bland-Altman plots are given for all four hcPTT methodologies. A

comparison between hcPTT values, from measurements performed by two dif-

ferent operators, is made. SD refers to the standard deviation of the differences

between the two datasets.
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Figure 6.8: Figure depicting reference correlations of Sphygmocor cfPTT with

age, brachial SBP and DBP. Linear regression lines are drawn and correlation coef-

ficients are given alongside their p-values.
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6.4 DISCUSSION

Despite the compelling evidence of PWV as a biomarker of cardiovascular

risk and target organ damage, its widespread application is still hampered

by the difficulty of its measurement. LDV, picking up vibrations from the

skin, has the potential to provide an easy technique to be broadly deployed,

beyond specialized centers. Our team has been successful in using integ-

rated silicon photonics solutions to develop a multi-sensor LDV system to

simultaneously acquire signals from two distinct locations, and we previ-

ously demonstrated to be able to measure carotid-femoral PWV.

6.4.1 Feasibility of LDV-based hcPTT

In this study, we explored the use of our LDV-based prototype to also meas-

ure heart-carotid pulse transit times and demonstrated that it is feasible to

capture signals from two different locations on the chest that seemingly

demonstrate a high similarity to seismocardiographic signals and hence po-

tentially allow identifying moments of aortic valve opening and closure.

Combined with simultaneous measurements at the carotid artery, we could

measure pulse transit times at aortic valve opening (PT T1) and closure

(PT T2). PT T2 using the ‘Base’ location on the chest provided the strongest

correlations with age and blood pressure, and was also the measurement

with the lowest inter- and intra-operator variability.

Irrespective of the exact method (PT T1, PT T2, Base or Apex), hcPTT

could be estimated in about 94% of the population, with a very good inter-

and intra-operator variability. These numbers, however, should be inter-

preted within the context of the study. It is observed from Figure 6.3 that

several data-points show no error bars, which inherently means that of the

three measurements for the considered heart-carotid measurement site, at

least one did not yield a hcPTT estimate. Some measurements contained a

faulty ECG trace (3.2% for Base and 2.8% for Apex measurements), but for

the remainder 2.8% of measurements, this lack of a hcPTT could be attrib-

uted to a low signal quality or less interpretable waveforms for at least one

of the measuring locations, with the carotid signals only failing for 5 meas-

urements. The most difficult component in the estimation of hcPTT was the

interpretation of the heart signals. Signal features associated with the first

heartsound, on which PT T1 was based, often fluctuated between patients

in temporal and frequency content. The signal features corresponding with

the second heartsound were not always as pronounced and sometimes dif-

ficult to detect. The ECG measurements in this feasibility study helped to

identify signal features, but the method should become independent of the

ECG. Any potential future work will implement algorithms for the auto-

matic interpretation of the heart signals.
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6.4.2 hcPTT as biomarker of arterial stiffness?

For hcPTT to be a biomarker of arterial stiffness, it should at least negat-

ively correlate with its main predictor i.e. (chronological) age, as one may

expect with an increased arterial stiffness. This is the case for hcPTT meas-

ured at the Base for both PT T1 and PT T2 (Figure 6.3 and Table 6.2), but

not for values retrieved from apical data. We speculate that the consist-

ent results for Base measurements are explained by the fact that the Base

measurement site is anatomically closer to the aortic valve, leading to a

better identifiability of the desired AO and AC features, with reduced dis-

tortion and delay of vibrations travelling to the measuring site. We found

less pronounced correlations with brachial SBP, which was only signific-

antly correlated with Base PT T1, while brachial DBP did not significantly

correlate with any of the measured hcPTT’s.

These correlations are thus albeit modest, but it is important to consider

that we are analysing hcPTT, and not heart-carotid PWV (hcPWV) which

requires knowledge of the pathlength (see also further). As we expected,

we found a positive correlation between cfPTT and hcPTT, with again the

highest values for hcPTT assessed at the base (ρ = 0.359, p < 0.001 and

ρ = 0.475, p < 0.001 for PT T1 and PT T2, respectively). Given that heart-

carotid and carotid-femoral sample a very different trajectory along the ar-

terial tree, it may not be surprising to find moderate correlations between

both.

Another interesting observation is made when performing the correl-

ation analysis of the proposed hcPTT’s with Age, SBP, DBP and cfPTT,

between male and female patients separately, as provided in Table 6.5.

While for most cases, correlations are similar for male and female, this is

not the case for the Apex measurements. correlations with Age and cfPTT

are much higher and significant only for females. This phenomenon most

likely presents itself as an anatomical difference between the two. For this

work, it is another argument to prefer Base measurements over Apex.

While we only assessed hcPTT in this study, the ambition is to assess

stiffness, and to eventually retrieve hcPWV, for which the pathlength is

required. Nagasaki et al. calculate heart-carotid distance as a function

of height (HT); dx = 0.2473 ·HT − 18.999 [232]. When this function is

applied to the Base PT T2 data of this study, the average hcPWV (± standard

deviation) was 8.89 ± 3.21 m/s, with a range of 3.47 to 22.88 m/s. These

values are plausible, but given the absence of a reference, it is difficult to

evaluate the accuracy of these estimates. What we do know is that none

of the hcPWV estimates provided stronger correlations with age or blood

pressure than hcPTT. In this feasibility study, we wanted to exclude sources
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Table 6.5: Pearson-correlation coefficients of the proposed hcPTT estimations,

for male and female separately, with age, brachial SBP, and DBP, and cfPTT are

shown. Significant correlations are marked with ’*’ (p < 0.05).

Base PTT1 Base PTT2 Apex PTT1 Apex PTT2

Age (male) -0.245 -0.34* -0.004 0.065

Age (female) -0.379* 0.476* -0.297 -0.379*

SBP (male) -0.251 -0.177 -0.066 -0.078

SBP (female) -0.278 -0.189 -0.047 -0.12

DBP (male) -0.176 -0.113 -0.099 -0.145

DBP (female) -0.189 -0.085 0.004 -0.108

cfPTT (male) 0.377* 0.491* 0.03 0.046

cfPTT (female) 0.319* 0.49* 0.342* 0.392*

of uncertainty beyond the uncertainty related to the LDV measurements,

which is why we opted to present the results in terms of hcPTT.

An interesting aspect of our technique is that we assess hcPTT at both

diastolic (PT T1) and end-systolic pressure (PT T2). Given that elastic arter-

ies typically stiffen with an increasing pressure [54], leading to lower PTT,

one expects higher values for PT T1 than for PT T2. The Bland-Altman plots

in Figure 6.5 demonstrate that this is effectively the case on average, with

an average difference, for the Base measurements, of 5.08 ms. Using the

estimated path lengths from Nagasaki et al., this time difference translates

into an average hcPWV difference of 1.53 ± 2.84 m/s (range: -4.24 to 13.82

m/s). This is lower than the ∆PWV = 2.4m/s (range: 0.8 to 4.4 m/s) stiff-

ening reported by Hermeling et al. for the carotid artery [54].

However, an important consideration is that while we found this higher

hcPTT at diastolic pressure on average, we did not find a systematic dif-

ference per subject ( although the statistical tests performed did indicate a

significant difference between PT T1 and PT T2). An important factor con-

tributing to the observed variability is the complexity of the LDV signals

originating from the aortic valve, but only being picked up at the skin-

level. The effect of this on the time and frequency content of the observed

epochs more than likely introduces inaccuracies in one or both PTT meth-

ods. Clearly PT T1 is the most difficult to measure due to the complex

waveform of S1 in the heart-LDV signals and the uncertainty on the identi-

fication of the exact timepoint of the opening of the aortic valve. While we

are confident that further optimisation of our technique (measurements dir-

ectly on the skin without retroreflective patch and further signal processing
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enhancement) will further improve PT T2 estimation, uncertainty on PT T1

may remain too large to reliably quantify the stiffening between diastolic

pressure and the dicrotic notch.

6.4.3 LDV-based hcPTT compared to other techniques

The following paragraphs provide an overview of the studies that we could

identify in literature on (or including) heart-carotid PWV, demonstrating

the relative paucity of articles investigating hcPTT or hcPWV. Table 6.6

provides a summary of the following paragraphs. Faita et al. conducted

a feasibility study with N = 8, where they also combine signal features

that correspond to the closure of the aortic valve via SCG at proximal and

distal locations [223]. Nagasaki et al. also combine AC signal features but

use a combination of ECG and PCG at proximal, and tonometry at distal

locations [232]. Nagasaki et al. found hcPWV value of 8.45 ± 0.17 m/s,

which had a correlation coefficient of 0.686 with age (N = 276). They

calculated the distance dx as mentioned earlier.

Li et al. get to hcPTT via calculation of pulse-arrival time (PAT) using

ECG and the foot of the systolic upstroke in the Doppler spectral envelope

using ultrasound (US) at the left carotid [233]. The pre-ejection period was

calculated the same way but with the ultrasound probe pointed at the aortic

valve. They then calculated hcPTT as the difference between pulse-arrival

time and pre-ejection period. They found hcPTT values of 22.65 ± 11.92

ms and 25.61 ± 10.18 ms for patients with a carotid intima-media thickness

(CIMT) of over 0.8mm and lower than 0.8mm respectively (N = 85). The

distance was calculated via the same way as Nagasaki et al. This led to

hcPWV values of 2.47 ± 0.49 ms and 2.35 ± 0.47 ms in the high and low

CIMT group, respectively.

Yang et al. calculate hcPTT as the time delay between the peak R wave

in ECG, and the foot of the Doppler flow waveform with US [234]. They

get to hcPWV by measuring dx with a tape measure on the body surface.

This resulted in mean hcPWV values of 9.24 ± 1.93 m/s for their healthy

controls, and 10.21 ± 4.18 m/s for patients with rheumatoid arthritis (N =

127). Ejiri et al. found a median hcPWV value of 12.04 m/s with a standard

deviation of 3.36 m/s in an elderly population (mean age of 79.2 ± 4.1 years,

N = 1351) [235].

When comparing between LDV and SCG, both methods require the

application of an experimental tool to the skin. The used LDV prototype

requires a piece of retroreflective tape, with SCG requiring the placement

of accelerometers on the body. Currently, both technologies do not yet meet

the expectations of clinicians and patients in that a vascular age assessment

should come in the form of a quick, accessible and intuitive measurement.
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Future LDV technology developments aim for measurements without the

need of the retroreflective patch (InSiDe project).

Table 6.6: A framing of this work within the present literature. SCG = seismocar-

diography, PCG = phonocardiography, US = ultrasound, AC = aortic valve closure,

PAT = pulse arrival time, PEP = pre-ejection period.

Method Pathway Strategy PTT Method Age N

This work LDV heart-carotid Skin acceleration features Time domain: AC 0.377 100

Faita 2009 SCG heart-carotid Skin acceleration features Time domain: AC / 8

Nagasaki 2011 ECG, PCG-tonometry heart-carotid Time domain features Time domain: AC 0.686 276

Li 2015 ECG, US heart-carotid Time domain features PAT-PEP / 85

Yang 2019 ECG, US heart-carotid Time domain, US spectra PAT-peak R wave 0.235 127

Ejiri 2024 ECG, PCG heart-carotid Time domain Time domain: AC / 1351

6.4.4 Study limitations

The eventual transition from hcPTT to hcPWV is only possible if hcPTT

has been shown to indicate a change in arterial stiffness. A reliable distance

metric dx has to be derived first, as to avoid adding errors to the hcPWV

biomarker. Because of the shorter pathlength between both measurement

sites, small distance errors will cause large relative hcPWV errors.

We did not investigate the technical reproducibility of this study. We

strive towards hcPTT based on fully automated algorithms, removing the

need of manual hcPTT estimation.

The most important limitation, however, is the absence of a proven ref-

erence method for LDV-derived hcPTT. The literature survey shows that no

single method of estimating hcPTT (or hcPWV) is acceptable for this role.

A future study could consider using established methods that capture flow-

or distensibility data at the aortic valve and carotid simultaneously, with a

high enough temporal resolution, in order to acquire reference hcPTT data.

6.5 CONCLUSIONS

This work represents a feasibility study, investigating hcPTT as a potential

and not well-known biomarker for arterial stiffening, sampling the proper-

ties of the large, proximal aorta and carotid artery using LDV technology to

detect the pulse transit time from the heart to the carotid artery. It was found

that most robust hcPTT is retrieved from the base of the heart, and meas-

urements are repeatable, with significant though moderate correlations with

known predictors of arterial stiffness. Future work should focus on further

refinement of the method - especially regarding the identification of aortic

valve opening and closure from chest measurements – and on more precise

validation against metrics of proximal aortic stiffness. We believe this work

adds to the legitimacy of heart-carotid PWV as a biomarker that could be

used in conjunction with cfPWV in the future.
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POSITIONING OF THE CHAPTER

This chapter is a copy of the publication under review Deep-Learning

Based ECG-free Heart-Carotid Pulse Transit Time Estimation from Laser

Doppler Vibrometry (Beeckman, S., Badhwar, S., Bruno, R. M., Li, Y.,

Aasmul, S., Seoni, S., Segers, P. & Madhu, N.). The presented analysis

was conceptualized by prof. Segers, prof. Madhu and the author and

performed by the author. The article was proof-read and finetuned by the

author, dr. Badhwar, prof. Segers and prof. Madhu.

ABSTRACT

Assessment of arterial stiffness is important in the diagnosis and manage-

ment of cardiovascular diseases. A strong biomarker for arterial stiffness

is pulse-wave velocity (PWV) – the speed at which a heartbeat-induced

pulse wave travels through the large arteries. By measuring the pulse-

transit time (PTT) – the time delay between the arrival of the pulse wave

– at two points on the arterial pathway, PWV can be estimated. PTT can

be calculated from skin-displacement signals, measured via laser Doppler
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vibrometry (LDV). This process requires an accurate indication of heart-

beat onsets, to be able to utilize the correct signal features or fiducial points

that lead to PTT. Typically, electrocardiography (ECG) is a reliable, paral-

lel measurement to segment LDV signals. However, common practice for

LDV does not include ECG, necessitating alternative means for identifying

heartbeat cycles from LDV signals. Proposed solution is a deep neural net-

work (DNN) which returns an ECG-proxy for each LDV signal, containing

information on the timing of the heartbeats. Heart-carotid PTT can then

be calculated after segmenting the signals based on the predicted heartbeat

timing. This PTT was additionally calculated via two other techniques i.e.

a state-of-the-art template matching algorithm and a reference technique in

which PTT was calculated via manual inspection of the data. The DNN was

able to correctly predict the onset of 72% and 75% of heartbeats present in

the test and validation sets respectively. When applied to unseen data of

100 subjects (45 female), it provided PTT values for 68 subjects that cor-

related well with the reference (ρ = 0.71). In comparison, a state-of-the-art

knowledge-driven approach yielded a similar correlation (ρ = 0.69) but

was only able to return PTT values for 46 subjects. An ECG-based ground

truth method reached a correlation of ρ = 0.62 for 91 subjects. Finally,

the DNN demonstrates potential for broader biomedical LDV applications

beyond heart-carotid PTT, provided that carotid signals are incorporated.

7.1 INTRODUCTION

The large arteries, particularly the aorta, play a crucial role in blood cir-

culation [49]. Their structural properties enable the vessel wall to distend

during cardiac contraction, storing elastic energy that is subsequently re-

leased during relaxation to maintain blood flow after the pulse wave has

passed [35, 49, 220]. This mechanism ensures a near-continuous flow fur-

ther along the arterial system, supporting constant organ perfusion. How-

ever, this buffering or ’windkessel’ function deteriorates significantly when

large arteries stiffen due to arteriosclerosis, resulting in dysregulated blood

pressure, altered blood flow, and subsequent organ damage [7, 8, 75, 109].

Understanding the shape and content of blood pressure and flow-related

signals is essential for detecting and preventing early vascular aging as well

as other related cardiovascular diseases (CVD), as CVD risk increases with

an increase in large artery stiffness [10, 75, 221].

7.1.1 Pulse transit time estimation

Common practice for the assessment of arterial stiffness is via the speed

of the pressure wave which travels through the arterial tree following heart

contractions [8, 11, 222]. This pulse-wave velocity (PWV) increases with
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increased stiffness. By measuring the distance dx between two measure-

ment sites, and the time delay between the arrival of the pressure wave at

these sites (i.e., the pulse transit time – PTT)), the PWV is obtained as:

PWV =
dx

PT T
(7.1)

Current state-of-the-art for measuring PWV is through applanation

tonometry, magnetic resonance or ultrasound applied to the carotid and

femoral arteries [11, 127–129, 184]. These methods, while reliable, have

a number of challenges associated with them: (i) they require specialized

operator training, (ii) are typically located at dedicated medical facilities

or hospitals, (iii) can be expensive to acquire and (iv) there is a widely

held consensus in the medical community that none of the aforementioned

diagnostic methods can effectively identify a significant portion of at-risk

individuals, both in primary care and secondary prevention settings [1].

Furthermore, individuals classified as low or moderate risk may remain

undiagnosed.

As such, there is an interest in deploying the optimal diagnosis to insti-

tute a timely preventative therapy among those that are currently considered

to be at low or moderate risk. We have been investigating laser-Doppler vi-

brometry (LDV) as an alternative technology to address these challenges

[20–22, 212]. LDV measures skin displacement at the location of large

subcutaneous arteries such as the carotid and the femoral. By differentiat-

ing the displacement signal twice, skin acceleration is obtained. From these

data, PTT can be estimated [18, 19]. It was demonstrated that these PTT

and their corresponding PWV values strongly correlate with tonometry [23,

25].

The LDV-prototype used to measure all data presented in this work

was developed during the H2020 CARDIS project (Grant agreement ID:

644798). It consists of two handpieces (Figure 7.1), where each hand-

piece has 6 built-in laser beams with a wavelength of 1550 nm that illu-

minate the measurement site on the skin. The distance between beams is

5 mm. Retroreflective tape was applied to the skin to ensure sufficient re-

flection. Further details can be found along with an extensive description

of the device in [19, 26, 230].

Several arterial pathways can be considered for estimating PTT, to use

as additional biomarkers for large artery stiffness assessment and its asso-

ciated CVD risk prediction. One such is the heart-carotid, whose PTT is

calculated on a pathway spanning from the aortic valve at the base of the

heart, up to the (right) carotid artery [223, 233]. Previous work using LDV
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has investigated the correlation of heart-carotid (hc) PWV with known pre-

dictors of arterial stiffness i.e. chronological age and blood pressure in a

population of 100 patients with CVD [219]. Figure 7.1 depicts the heart-

carotid measurement and illustrates the arterial pathway that is investigated.

This study builds upon previous work on heart-carotid PTT via LDV,

with focus on techniques to calculate heart-carotid PTT from heart-carotid

LDV measurements that were considered for implementation in an LDV

prototype set-up. In this previous work, hcPTT values were estimated

manually through visual inspection. The aim of this study is to investig-

ate improved approaches for automated heart-carotid PTT estimation.

7.1.2 Automated PTT estimation

We subsequently use PTT to refer to heart-carotid PTT. Manual PTT es-

timation serves as the reference. This manual method required electrocar-

diography (ECG), measured in parallel with LDV, for R-peak detection so

the LDV signals could be segmented into individual heartbeats (or epochs).

This made both the identification and combination of the relevant fiducial

points for PTT calculation significantly easier.

However, parallel ECG measurements can be cumbersome, are not in-

cluded in the LDV-device functionality and will not be included in future

wireless and user-friendly iterations of the prototype. A system including

both LDV and ECG decreases the envisioned ease-of-use for clinical per-

sonnel and increase the average time to get patient measurements. ECG was

measured during this study for research purposes only. The exact timing of

heartbeats provided by ECG is essential for manual PTT calculation. How-

ever, automated PTT estimation – especially in the absence of the ECG ref-

erence – requires other solutions. Similarity-search or pattern-recognition

techniques exist e.g. template matching (TM) [145–147] or matrix profile

[27]. Drawbacks of these techniques are the requirement of a preconstruc-

ted template and the occasional identification of the wrong recurring wave-

forms respectively. Our work aims to boost the current state-of-the-art.

The proposed approach in this work is based on a deep neural network

(DNN) trained and tested on the available LDV databases. The DNN was

trained for a signal-to-signal mapping, using LDV data as input and return-

ing a proxy signal for ECG, preserving information on cardiac gating. In

general, neural networks have been applied to biomedical signals before,

such as seismocardiography (SCG) [236, 237], ECG [238, 239], electroen-

cephalography (EEG) [240], photoplethysmography (PPG) [241, 242] and

many others [178, 243–245], but not yet on clinical LDV data. Some in-

teresting work published in the literature contain inspiration for the grand
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Figure 7.1: Figure showing an example heart-carotid LDV measurement using

the prototype handpieces. The top panel contains skin acceleration signals with

the first column containing 6 heart signals (channel 1 = C1, etc.) and the second

one the 6 carotid signals. Each handpiece contains 6 channels for a higher prob-

ability of at least one channel containing useful signal quality. The bottom row

shows the ECG measured in parallel, to illustrate the rhythmic correspondence

between ECG and LDV signals. The bottom-left panel sketches the anatomy of

the considered arterial pathway. The bottom-right panel is a picture taken during

the measurement, depicting the prototype as well as two ECG electrodes.
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scope of the DNN-related methods in this work such as working with a

transformed target signal as opposed to raw ECG [246, 247].

To validate our findings a template-matching based method is also

presented as a classical machine learning benchmark technique. We

hypothesize that the data-driven DNN approach would outperform TM

in both accuracy and representation i.e. (i) The DNN provides a useful

alternative to ECG for robust automated heartbeat onset detection, leading

to PTT estimations, (ii) the correlation of DNN-derived PTT values with

the manual reference will be higher than for TM and (iii) the number of

subjects whose data can be processed to obtain a reliable PTT estimate

will be higher than for TM.

7.2 METHODS

Both carotid and heart handpieces have M = 6 channels. For any handpiece,

the LDV (discrete-time) acceleration signal at a channel m ∈ {1,2, . . . ,M}
is modeled as:

xm(n) = sm(n)+ vm(n) , (7.2)

where sm(n) is the underlying signal in channel m and vm(n) is the noise in

that channel. The accompanying ECG signal is denoted as ECG(n). Index

n refers to the sample index with N being the total signal length in samples.

7.2.1 Applied principle for PTT calculation

All PTT calculation methods based on LDV signals for a given measure-

ment have the same workflow:

1. Select the carotid and heart channels that will be used.

2. Segment each selected signal into separate heartbeats.

3. For each heart-carotid channel combination, combine fiducial points

that correspond to the same heartbeat to estimate the PTT for that

combination.

4. Calculate a final PTT value from all available PTT estimates.

7.2.2 Manual PTT estimate (reference method)

Manual PTT estimation served as ground truth to benchmark the automated

PTT estimation algorithms. Using ECG(n), the LDV signals were seg-

mented into separate heartbeats or epochs. This simplified the combining

of fiducial points in both carotid and heart LDV signals for PTT estima-

tion [219]. The physiological event underlying the relevant fiducial points
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is the closure of the aortic valve (AC). This event is associated with a re-

gion of elevated signal energy typically referred to as the second heartsound

(S2). The fiducial point in the heart signal is then taken as the first perturb-

ation before the minimum value during S2. The carotid fiducial point is

taken as the second distinct peak in the carotid epoch, a.k.a. the carotid

dicrotic notch (DN). This signal feature also corresponds to AC. PTT is

then calculated from the time difference between heart and carotid fiducial

points, as illustrated in Figure 7.2.

Figure 7.2: Example of an ECG-based heartbeat segmentation of a carotid and

heart channel combination (channel numbers 1 and 8). The top graph displays

LDV-heart epochs of which one is highlighted. The middle graph shows the same

for the carotid site. Fiducial points that were used to identify the timing of AC are

indicated. PTT is calculated from a combination of the indicated heart and carotid

fiducial points. The bottom graph contains individual epochs of the ECG(n) signal

that was used for LDV-signal segmentation.

7.2.3 ECG-based automated PTT estimation

For the sake of comparison, an experiment was conducted wherein PTT

values were calculated on data that was segmented into separate heartbeats

(or epochs) delineated by the I available R peaks in ECG(n). For this naive

method, all heart-carotid channel combinations were included, leading to

M2 = 36 combinations that were all segmented.

Every channel combination has I epochs. PTT was calculated on the

same fiducial points as the reference (manual) PTT method, as in Figure

7.2. The key difference however was that the fiducial point detection was

done in an automated manner. The carotid DN was identified by taking the
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point of maximum acceleration within a window of 300 to 550 ms in the

epochs of the selected carotid channel. The fiducial point corresponding

to the aortic valve closure in the heart epochs was taken as the first peak

before the absolute minimum within a window of 250 to 500 ms in heart

channel epochs. The values of these windows were set based on the time

between closure of the mitral valve (corresponding to the timepoint of the

associated R-peak in ECG) and the closure of the aortic valve. This varies

between 250-300 ms for healthy individuals, but can be elongated due to

aging or disease [248, 249].

PTT j were then calculated for each valid beat, yielding a total of J es-

timates. Only PTT values within a physiological range (5 ms to 60 ms)

were considered valid, and the median of these values was used as the rep-

resentative PTT for the recording, as in (7.3):

PT T = median(PPPTTT TTT ) , (7.3)

with PTT =
[
PTT1, PTT2, . . . , PTTJ

]T

.

This method is not practical for clinical implementation, as the ad-

ditional ECG set-up would hamper the potential speed of LDV measure-

ments, and decrease its appeal for widespread adoption.

7.2.4 Template matching-based PTT estimation

Without the ECG trace to identify heartbeat onsets and segment accord-

ingly, the identification of required fiducial points is more challenging. One

potential solution to this challenge was a similarity-search algorithm based

on template matching.

First, a criterion was designed to remove channels with poor signal

quality, as signal quality can vary significantly between channels of one

handpiece [27]. A signal-to-noise-ratio (SNR) estimate was computed as

follows, and applied to all M-channels per handpiece. First, the input signal

power was obtained as:

Px,m =
1

N
∑x2

m(n) , (7.4)

which represents the joint power of the target signal and noise. A median-

filtered version of the input signal was next computed using a (non-causal)

window of 5 samples:

x̃m(n) = median(xm(n−2),xm(n−1),xm(n),

xm(n+1),xm(n+2)) (7.5)
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Noise was approximated as vm(n) = xm(n)− x̃m(n) and its power was es-

timated:

Pv,m =
1

N
∑(xm(n)− x̃m(n))

2 (7.6)

Thereby, the SNR was estimated as:

SNRm =
Px,m

Pv,m
−1 =

Ps,m

Pv,m
(7.7)

The maximum SNRm and standard deviation of SNRm values per handpiece

were calculated. Channels whose SNRm deviated from the maximum value

by more than one standard deviation were excluded from the analysis. The

remaining carotid and heart channels were pair-wise combined for PTT

estimation.

A template for the foot-of-the-wave waveform in carotid LDV acceler-

ation signals was constructed as outlined in [27]. This waveform corres-

ponds to a large peak in the acceleration signal, indicating the arrival of

a pulse wave. For one heartbeat, two peaks are typically observed. The

first one is referred to as the foot of the wave, while the second one corres-

ponds to the dicrotic notch. The constructed template was cross-correlated

with a sliding window on each considered carotid channel of the heart-

carotid channel combination. A heartbeat onset was assumed when the

cross-correlation exceeded an empircally set threshold ([27]).

For every detected beat, fiducial points corresponding to (AC) were

searched for in physiologically relevant windows. For the carotid DN, this

window spanned between 250 and 500 ms after the detected heartbeat on-

set. The fiducial point in the heart signal, corresponding to AC, lay within

a window of 200 to 450 ms after the onset of the corresponding beat at the

carotid. Similar to section 7.2.3, these windows were set with physiological

cardiac timing in mind but were altered slightly due to the construction of

the template. Indices at which template matching detects a beat are situated

up to 50 ms later in time than the corresponding R-peaks [27].

In this way, both heart and carotid fiducial points depended on the tem-

plate matching at the carotid level. The construction and application of

a heart-signal template was deemed unsuitable due to the observed inter-

subject variability in the heart-signal morphology. The carotid dicrotic

notch was found as the maximum value in its window. The aortic valve

closure timing in the heart signal was taken as the first peak to the left of

the minimum value in its respective window.

To ensure the quality of the resulting PTT values, a criterion was set

on the variability in fiducial point timing. The method flagged the data as

159



7. DEEP-LEARNING BASED ECG-FREE HEART-CAROTID PULSE

TRANSIT TIME ESTIMATION

unreliable if either the timepoints at which the carotid DN was found, or the

timepoints for the heart fiducial points had a standard deviation exceeding

60 ms. In these cases, the channel combination was dropped.

PTT values were calculated in the same way as in section 7.2.3. The

final PTT was calculated as in (7.3), but was rejected if the total number

of PTT estimates J was smaller than or equal to an empirical threshold

of 15. This value was set to exclude several measurements where signal

quality was extremely poor, and the few PTT estimation made resulted from

random, noisy waveforms being combined as opposed to physiologically

sound features.

7.2.5 Data-driven PTT approach

There is an obvious need for robust segmentation of LDV signals. The

importance of this need warrants a data-driven approach, realized through

the development of a DNN. This DNN was trained using 4-second ca-

rotid LDV-signal segments as input. Any selected carotid channel was

segmented into 4-second segments with 50% overlap. This returned for

e.g. a signal of length 20 seconds, 9 overlapping segments. For every such

LDV segment, the model provided an equally long output signal Ê ′(n) of 4

seconds. The individual output signals Ê ′(n) were then concatenated using

windowed overlap-add with perfect reconstruction condition [193], result-

ing in a model prediction Ê ′
m(n) for carotid channel m.

The target signal had to be a signal from which segmentation of LDV

signals into heartbeats was feasible. Raw ECG, while rich in information

on cardiac timing, was deemed too complex to accurately predict with the

available data. For our application, only the timing of R-peaks is needed,

while ECG contains many more features that are not relevant for this work.

From visual inspection of the measured data, it was observed that the ECG

traces also contained noise. Hence, a transformation aimed at reducing

complexity while conserving cardiac timing information was engineered

first.

7.2.5.1 ECG-proxy as learning target

To derive a suitable learning target for the DNN, the ECG was transformed,

taking care to conserve the information on the timing of the R-peaks. First,

the ECG trace is replaced by a pulse train formed by Kronecker’s delta

functions at the location of the original R-peaks. Denote this as:

ECG′(n) = ∑
i

δ (n−np,i) , (7.8)

where np,i is the sample-index of the i− th R-peak. This does not yet suffice

however, as this pulse train is too sparse. Such a sparse target signal is
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not optimal for model training with the mean squared error (MSE) loss

function.

Subsequently, this simplified ECG trace is convolved with a Gaussian

filter, to yield the target signal E ′(n):

E ′(n) = ECG′(n)∗g(n) = ∑
i

g(n−np,i) , (7.9)

where g(n) is the Gaussian filter:

g(n) =
1

σ
√

2π
exp

{
(− n2

2σ2

}
) . (7.10)

This transformed signal is contrasted with the original trace in 7.3. For the

model training, the mean-squared error (MSE) between the target E ′(n) and

model-output Ê ′(n) signals is calculated as:

MSE =
1

N
∑(E ′(n)− Ê ′(n))2 (7.11)

Figure 7.3: Example of the transformation from raw ECG (ECG(n)) to a target

signal with reduced complexity (E ′(n)) for a randomly picked LDV segment. Data

are z-normalized. σ = 75 samples.

7.2.5.2 DNN structure and training

The DNN architecture was inspired by state-of-the-art for biomedical im-

age processing, where U-nets are often used because of their multi-scale

feature extraction, end-to-end learning and strong generalization with lim-

ited dataset sizes, amongst others [175]. The proposed model is adjusted

for 1D data but largely retains the structure of the U-net architecture. It has
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four convolutional layers in the encoder- and decoder blocks, and an added

transformer layer in the bottleneck [250]. Addition-based skip connections

were also included. This architecture (Figure 7.4) ensures the conservation

of short- and long-term temporal context, allowing it to effectively learn the

complex non-linear transformation between input and target. The model

has 25k learnable parameters.

Figure 7.4: DNN-model architecture: each blue box represents a feature map

with a number of channels equal to the number displayed on top of it. The 1D-

data dimension is noted at the bottom of the relevant boxes. Arrows and notations

corresponding to different operations are listed. k, s and p refer to kernel size,

stride and padding respectively.

During training, the calculated loss on the validation set was evaluated

to identify the stopping criterion. Model performance was also evaluated

via an auxiliary metric, the R-peak score QR. This is the ratio of the num-

ber of R-peaks that are present in the target signal I to the number of those

peaks that were also detected in the model output Î (within a window of

30 ms before or after the corresponding target R-peak, as illustrated in Fig-

ure 7.5):

QR =
Î

I
(7.12)

To illustrate this, an example datapoint is presented (Figure 7.5). Peaks are

found via a simple find-peaks algorithm that has the criteria of a minimum

amplitude Amin = 1 (all data is z-normalized) and that the peaks should be

separated by at least 500 ms. Also indicated in the target and model-output

signals are the temporal windows around the target R-peak instances, where

a corresponding peak should occur in a correctly predicted output. It should
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be noted that the example datapoint in Figure 7.5 is unseen data, and com-

pletely independent of the training set. This well showcases the generaliz-

ation capability of the proposed DNN.

Figure 7.5: Example of model prediction on an unseen datapoint. The top graph

shows the carotid-LDV segment that serves as model input. Its corresponding

E ′(n) segment is displayed in the middle graph, and serves as target signal for this

datapoint. The model prediction or output, is shown in the bottom plot. The ver-

tical dotted lines indicate the tolerance window around target-signal peaks wherein

output-signal peaks are desired for an acceptable model performance. QR in this

case is 100%.

7.2.5.3 Application to PTT calculation

The DNN-based ECG-proxy estimate is used to segment the LDV-signal

xm(n) into separate heartbeats or epochs. In order to get to a PTT estim-

ate, additional steps are required: starting from the M = 6 heart and carotid

LDV channels for a given measurement, first a check on individual chan-

nel signal quality was implemented using SNR-based estimations. For the

heart signals, SNR was calculated as detailed in Section 7.2.3.

Carotid SNR was calculated differently. The DNN was used to generate

predictions Ê ′
m(n) for all M = 6 carotid channels. A simple peak-finding

function was applied to Ê ′
m(n). The only restraints provided to the function

were again; a minimum distance of 500 ms between consecutive peaks,

and a minimum height of Amin. For every detected peak i at n̂m
p,i(n), an

individual, bounded, SNR-based metric ζm,i ∈ [0,1] is calculated as follows:

ζm,i =
SNR

SNR+1
=

Pm
s

Pm
s +Pm

v

, (7.13)
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where Pm
s is now computed from Ê ′

m(n) within a window spanning −2σ to

+2σ centered around n̂m
p,i. σ comes from the definition of g(n), where a

window of 4σ centered on the peak of the predicted gaussian waveform is

assumed to contain correctly predicted model output signal content:

Pm
s =

p̂i+2σ

∑
n=p̂i−2σ

Ê ′2
m (n) (7.14)

ζm,i was calculated on a segment of Ê ′
m(n) around p̂i, as in (7.13) – (7.15).

The signal plus noise component Ps + Pv is approximated as the en-

ergy of E ′(n) within a window between the previous and next peak loca-

tions. Specifically, denoting by dm
i = n̂m

p,i+1 − n̂m
p,i the distance, in samples,

between the current and next successive peak and analogously defining

di−1 = n̂m
p,i − n̂m

p,i−1, we define:

Pm
s +Pm

v =

di
2

∑
n=

di−1
2

Ê ′2
m (n) . (7.15)

Note that due to heart rate variability, typically dm
i−1 ̸= dm

i . An average ζm

is then calculated for each carotid channel: ζζζ =
[
ζ1, ζ2, . . . , ζM

]T

.

ζm =
1

Î
∑ζm,i (7.16)

For both the heart and carotid side, only channels with a ζm within one

standard deviation of the maximum ζm were considered for further ana-

lysis. The Ê ′
m(n) of the carotid channel with the maximum ζm was used

for segmentation. Further, only the peaks with a ζm,i > 0.4 were kept for

further processing. All included heart and carotid channels were segmented

into individual epochs based on these detected peaks. Each heart channel

was iteratively combined with each carotid channel.

At this point, the DNN-based pseudo-ECG transform allowed us to de-

tect heartbeat onsets, followed by carotid and heart signal segmentation.

The next step towards PTT calculation was designed to be similar to that

described in section 7.2.4 for the template-matching method. Briefly, Fi-

ducial points had to be identified in the segmented epochs within physiolo-

gically sound windows. The signal features corresponding to the fiducial

points are the same for this method, previously exemplified in Figure 7.2.

However, taking the tolerance window for QR into account, slightly

wider windows were used for this method as compared with those used for
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Figure 7.6: Panel A: Example LDV carotid skin-acceleration signal. Panel B:

Ê ′
m(n) for the example signal. The ground truth E ′(n) is displayed for reference

in gray in the background. Panel C: An illustrative segment of Ê ′
m(n) is shown

in which the detected beats are indicated. The ζi values for detected peaks are

displayed together with the boundaries within which signal (vertical dashed lines)

power Ps and signal plus noise (full vertical lines) power Ps +Pv are calculated.

The gray graph is the corresponding E ′(n). The two smaller peaks indicated with

’o’ were excluded from the analysis based on the set criteria on amplitude and

proximity to other peaks in time.
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the template matching. The fiducial points and window values are the same

as for the ground-truth method with ECG, outlined in section 7.2.3. The

above steps are illustrated for one measurement in Figure 7.7. The PTT can

then be estimated as detailed in section 7.2.3 and 7.2.4.

A final difference between this method and the TM-based approach is

the acceptance criterion for the final PTT. Here, if J is the total number

of PTT estimates, the final PTT estimate is rejected if J ≤ γN, where N is

the total sample length of the measured LDV signals. The threshold factor

γ was set to 0.0025 (corresponding roughly to 50 PTT estimates over a

20s long segment, sampled at 1kHz – consistent with previous work on the

CARDIS database, where this criterion yielded the best results [23].

Figure 7.7: One heart-carotid channel combination is illustrated. Both channels

were split into epochs according to the detected peaks in the preferred Ê ′
m(n)

(channel with highest ζm). Its epoch-wise representation is given in the bottom

plot. Carotid (top) and heart (middle) epochs are drawn together with the window

limits between which the search desired fiducial points. These points are indic-

ated.

7.2.6 Experiment

Two separate databases were used (demographic data reported in

Table 7.1). The first one, the CARDIS database, was measured during

the CARDIS project [23]. 100 hypertensive patients (age range: 23-73

years, 50% female) were included with three measurements made for

each measurement set-up, consisting of carotid-carotid (i.e. the two LDV
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handpieces mounted on top of eachother, both pointed at the carotid artery)

and carotid-femoral measurements. For this database, an expert visually

scored all carotid signals on a 5-point scale ranging from 1 (very bad) to

5 (very good) [27]. 67 subjects had at least one measurement with at least

one qualitative carotid channel (score 4 or 5) that could be included in the

DNN training and evaluation process. Other data was discarded for the

purpose of this analysis.

All signals of higher signal quality (visually scored 4 or 5 on the 5-

pointer scale outlined in previous work [27]) were selected and split into

70 – 15 – 15 percent subsets. The 70% data stack served as a training set,

while the two 15% stacks served as validation and testing sets respectively.

Care was taken to ensure that data from the same subject were not present

in both training and validation or test sets, thus avoiding data leakage. This

yielded 6055 4-second segments for the training set, 1431 segments for the

validation set and 1432 segments for the test set. The training data was

provided by 45 subjects. The validation and testing data together entailed

22 subjects. Each segment had a corresponding, ground truth, ECG trace

(ECG(n)), measured in parallel. This served to generate the training target

as detailed in Section 7.2.5.1.

The second database (INSIDE) was cultivated during the H2020 In-

SiDe project (Grant agreement ID: 871547). Of importance for this work:

100 patients (age range: 18-81 years, 45% female) were included, each of

whom had 3 heart-carotid measurements taken. One handpiece was poin-

ted at the right common carotid artery, with the other pointed at the base of

the heart i.e. the second right intercostal space, depicted in Figure 7.1. This

measurement site was yielded better signal quality when compared with

others, in previously exploratory work. PTT values for these data were

previously estimated by manual segmentation based on ECG(n), followed

by a manual combination of fiducial points. The proposed PTT estimation

using the DNN-based segmentation and SNR metrics, as well as the pre-

viously proposed template-matching (TM) based method in section 7.2.4,

were tested on this database. For the DNN, this database is comprised

completely of unseen data. The skin acceleration data used across the two

databases was resampled to a 1kHz sampling rate.

7.3 RESULTS

First, the performance of the DNN is investigated through evaluation of

the QR metric. From visual inspection of the data, it was observed that

signal quality can vary, even between the selected higher-quality segments

for the training, testing and validation sets [27]. There is also the presence
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InSiDe (N=100)

Variable Mean ± SD Range

Age (years) 48 ± 17 [18, 81]

Sex (male %) 55 /

BMI (kg/m²) 26 ± 5 [17.24, 39.82]

Systolic BP (mmHg) 130 ± 20 [88, 219]

Diastolic BP (mmHg) 79 ± 15 [49, 136]

CARDIS (N=100)

Variable Mean ± SD Range

Age (years) 43 ± 19 [19, 85]

Sex (male %) 50 /

BMI (kg/m²) 23 ± 3.6 [17.63, 31.6]

Systolic BP (mmHg) 118 ± 14.7 [96, 183]

Diastolic BP (mmHg) 64.5 ± 9.2 [45, 99]

Table 7.1: Population statistics for both LDV databases. SD refers to standard

deviation.

of motion artifacts, obscuring underlying heartbeat-related waveforms re-

quired by the DNN for an accurate prediction. The DNN model reached

QR values of 75% on the validation set and 72.84% on the test set. This is

visualized in Figure 7.8.

Figure 7.8: R-peak score evolution during the DNN training for both training and

validation sets. The epoch at which the training process was halted is indicated.

Following DNN hearbeat onset detection, the performance of PTT es-

timation is assessed. All results pertaining the automated PTT methods are
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displayed in Figure 7.9. Panel A shows the results when the automated

PTT algorithm using ground-truth ECG(n) for signal segmentation is util-

ized. A total of 215 datapoints stemming from 91 subjects are represented.

The correlation coefficient with the ground truth (manual PTT values) is

ρ = 0.62, p < 0.001

Panel B shows the results for the template-matching based PTT method.

Out of the 100 subjects included in the INSIDE study, for 46 subjects the

method yielded a final PTT estimate from at least one of the three heart-

carotid LDV measurements. In total, 78 measurements had a final result, as

seen on the panel. The correlation coefficient between the manual PTT and

their corresponding automated PTT values is ρ = 0.69, p < 0.001.

Panel C in Figure 7.9 shows the datapoints of measurements with a fi-

nal PTT value via the DNN-based method. These are plotted against and

correlated with their corresponding manual PTT estimates. A total of 127

datapoints belonging to 68 subjects were displayed. A correlation coeffi-

cient of ρ = 0.71, p < 0.001 was found.

7.4 DISCUSSION

7.4.1 DNN-model validation for heartbeat onset prediction

The U-net inspired configuration was scaled in accordance with the preval-

ence of available training data. At 25k trainable parameters, the model is

relatively small and we did not observe overfitting.

Carotid signals were chosen as inputs to the model, instead of the heart-

signals measured at the chest. This choice was partially driven by our more

detailed understanding of the carotid LDV waveforms as compared to the

newly investigated heart signals. This is because the bulk of the existing

LDV research focuses on carotid-femoral PTT (and consequently PWV)

[19, 23, 25, 27]. Thus, selection of good quality data was deemed most

feasible at the carotid site for this study. The carotid signals also seemed

to be more consistent in quality, experiencing less pronounced effects on

signal content from altered physiology due to cardiovascular disease. Due

to these reasons, signal-quality scores per measured signal for the carotid

signals in the CARDIS database were previously acquired [27]. This al-

lowed for selection of good to very good quality data, making the training,

testing and validation data representative for the type of data that future

applications of improved LDV-prototypes will provide.

Our application requires only the detection of the onset of heartbeats,

so the R peaks of the ECG(n) are critical and need to be reliably predicted

by the DNN. Therefore a target signal containing information only on the
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Figure 7.9: Results comparing automated PTT estimates with manual PTT estim-

ates. Panel A displays the ECG-based automated PTT estimates. Panel B shows

TM-based automated PTT values and panel C shows those obtained using the

DNN-based Ê ′(n) for segmentation. Correlation coefficients and corresponding

p-values are indicated. NS refers to the total number of unique subjects for whom

a final PTT estimate was obtained by the corresponding methods.

timepoints of these R peaks is sufficient and simplifies the relation to be

learnt between input and target signals. Additionally, this transformation

allows us to train the DNN with the straightforward, well-known MSE loss

function, which would be challenging with a more sparse ECG(n). The

transformation from raw ECG to the series of Gaussian pulses in E ′(n) was,

thus, beneficial for model performance. For the Gaussian filter, σ = 75 was

empirically found to be a good trade-off.

The R-peak score QR counts a correctly detected R-peak location in

the Ê ′(n) if it corresponds to an R-peak in the associated raw ECG sig-

nal (or the corresponding peak in E ′(n)) within a 60 ms window centered

on that R-peak. A QR value of 72-75% for unseen data indicates that our
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model performs well in detecting heartbeat onsets, especially considering

the sensitivity of LDV data to motion artifacts, which can be visually in-

spected and influence signal quality.

It is important to note that a reliable PTT estimate does not require

exhaustive processing of every single beat in a given measurement. Fi-

nal DNN-based PTT estimates were accepted if, for a Ts = 20 s signal,

J = 50 PTT estimates were made across all considered channel combin-

ations. Even if only M = 3 carotid and M = 3 heart channels pass their

respective SNR criteria, this results in 9 channel combinations. Assuming

a heart rhythm of 60 bpm (a realistic lower bound), with 20 beats in the Ts

measurement, this leads to 9×20= 180 total beat-pairs considered for PTT

calculation. In this scenario, J is well below 72-75% of 180, implying that

the DNN-based method can return reliable PTT values based on a smaller

subset of the available data from one LDV measurement.

We observed that the majority of the accepted R-peak locations in Ê ′(n)
do not perfectly coincide with the ground-truth peaks. The reason why we

accept these timeshifts (maximum of 30 ms before or after the ground-truth

peak) is because of the windowing in the later stages of PTT-estimation

processing. The set windows, to locate the desired fiducial points, are wide

enough to account for this margin of error. These windows also take into

account the inter-subject variability in time between features such as the

carotid foot of the wave and the dicrotic notch.

7.4.2 TM- vs DNN-based PTT estimation

It is clear from Figure 7.9 that using the raw ECG for signal segmenta-

tion leads to an acceptable final PTT value for most subjects. This method

would indeed be the most inclusive, if ECG could readily be measured

alongside LDV, which is not the case. However, subjects with objectively

poor signal-quality measurements are also included, leading to more out-

liers and a somewhat lower correlation coefficient with the reference when

compared to TM and the DNN-based method. This is to be expected, as

there are no severe quality criteria included with this ground-truth method

while there are several in place for the other, ECG-independent methods.

To evaluate the discrepancies between the TM and DNN-based ap-

proaches, they were both correlated to the reference. While the correlation

between reference and TM-based PTT values is indicative enough to be in-

terpreted as a validation for the method, the number of criteria that were

put in place to ensure a reliable result leads to many measurements being

discarded. This yields results for only 31.2% of data (i.e. for 46 subjects),

which is a significant drawback.
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The DNN-based method implemented similar criteria on the quality of

the input signals and the DNN output, also to guarantee results that are

as robust as possible. Doing so, this method yielded results for 50.8% of

the measurements corresponding to results for 64 subjects. The correlation

between manual and both automated PTT values was also stronger for the

DNN method compared to the TM-based approach. These results imply

that the DNN method is not only more in line with our chosen reference,

but also more inclusive and subsequently more applicable in practice.

An explanation for the discrepancy between the number of subjects

represented by the TM-based and DNN-based automated PTT estimation

methods can be derived from Figure 7.10. The figure shows a segment of

carotid LDV data of lower signal quality, i.e. less pronounced and differ-

ently shaped physiologically relevant peaks and low SNR. For this segment,

the carotid foot was detected by TM where the algorithm found matches.

Using the DNN, an Ê ′(n) was generated on the same segment. As can

be seen, TM failed to indicate the correct waveforms. Conversely, while

not perfect by any means, the DNN output does place peaks in acceptable

proximity to the ECG R peaks, that can be identified in an automated man-

ner. This specific case illustrates general observed trends: the TM is more

susceptible to signal quality degradations as opposed to the DNN, demon-

strating the power of representations learnt by data-driven methods.

7.4.3 Future applications

All measurements in both CARDIS and InSiDe studies were conducted

using the CARDIS prototype. This device has a few drawbacks such as

the requirement of retroreflective tape on the measurement site to ensure

enough reflection of the incident laser beams. This likely has an effect on

signal quality that can only be resolved by improving the hardware. A new

LDV prototype is set to be released within the scope of the InSiDe project

that aims to achieve this and thereby improve measurement signal quality.

With this, the DNN-based technique can be expected to perform even better.

Other project objectives for InSiDe are the development of algorithms

for estimating carotid-femoral pulse-wave velocity, investigating carotid

stenosis and cardiac arrythmia [26, 230, 251]. For the latter especially, but

not exclusively, the DNN could prove useful as its output contains inform-

ation on the relative heartbeat onset timing within a given measurement.

One could generalize the potential use of the DNN to any cardiac applica-

tion of LDV, potentially even for non-carotid signals (given a retraining of

the DNN on e.g. heart or femoral artery LDV measurements).
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Figure 7.10: An example Figure presenting a low-quality carotid signal (blue)

and its corresponding ECG (black, second panel). Indicated in black on the first

panel are the waveforms in the LDV signal that were identified by template match-

ing. The detected waveforms do not correspond with actual heartbeats here. DNN

output is shown in red, in which detected peaks are marked. These peaks do cor-

respond with heartbeat onsets as can be seen from the R peaks in the ECG signal.

7.4.4 Remaining challenges

Given the relative niche application of LDV within the current state of the

art and especially the paucity of other studies investigating heart-carotid

PTT, there is little literature to compare the results of this work to. How-

ever, as the technology and prototype builds progress, so would the average

signal quality and with it the DNN performance.

7.5 CONCLUSION

A DNN was trained for the purpose of heartbeat onset prediction in LDV

signals measured at the carotid artery. The model training was efficiently

done by way of a transformation applied to raw ECG signals that were

measured in parallel with the LDV signals. This transformation consisted

of Gaussian pulses at the location of the ECG R peaks, conserving only in-

formation of their timing and facilitating a simplified loss-function applic-

ation. With the information provided by the DNN, robust signal segmenta-

tion in the absence of ground-truth ECG was possible. From the segmented

heartbeats, fiducial points were identified which led to heart-carotid PTT

values. These DNN-based PTT values correlated better with reference PTT
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values than the classical TM-based method. The DNN method also yielded

results for significantly more subjects than TM. We conclude that the DNN

method provides added value in the form of a complexity-reducing target

signal transformation and robust heartbeat segmentation, which performed

well when applied to LDV-derived heart-carotid PTT estimation and could

be expanded for other cardiac applications.
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Having discussed the several avenues of efforts made in the previous

chapters of this dissertation, a comprehensive discussion on the larger

scope is in order. This chapter will convene the individual results and

conclusions of the dedicated analyses of the different chapters and review

them globally for the reader.

8.1 SIGNAL QUALITY

Beginning with LDV signal quality, a metric was derived based on tem-

poral signal features. The primary contributors to the quality metrics were

the number and shape of recurring patterns over time, applicable to both

matrix-profile and template-matching metrics. Logistic regression models

were also trained using these new quality metrics to classify signals accord-

ing to their respective qualities. Although these models performed well for

their intended application, they were not integrated into the updated soft-

ware packages for enhanced graphical user interface functionality. Instead,

a real-time signal quality indicator was deemed more beneficial than post-

measurement signal quality classification. This decision is rational, as real-

time feedback allows the operator to make adjustments to their own and the

subject’s positioning for improved results.

The final implementation of real-time signal-quality feedback utilized

the template matching metric. Despite the nearly identical performance of

both metrics, template matching was preferred due to its lower computa-

tional resource requirements and seamless integration. Another advantage
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of template matching was its perceived lower susceptibility to detection er-

rors, particularly in detecting incorrect waveforms, such as mistaking the

carotid dicrotic notch or motion artefacts for the wave foot. However, sub-

sequent analyses following the publication of the paper on which chapter

3 is based revealed that both template matching and matrix profile exper-

ienced this issue. This error could occur even in objectively high-quality

measurements, though it was more commonly observed in lower-quality

signals.

Another method for improving signal quality was our ’beamforming’

and beamforming-derived independent component analysis, reported

in chapter 4. This approach utilized spatial features, as opposed to the

previous temporal features, by combining multiple channels from the

same handpiece to create a single, enhanced signal. When tested for

carotid-femoral PTT estimation, it produced values closer to Sphygmocor

reference values compared to a benchmark method that individually

combined all channels across handpieces for PTT estimation. Notably,

spurious artefacts were effectively suppressed through the blind, segmen-

ted weighting of the different spatial components used to construct the

enhanced signals. PTT estimation methods using matrix profile or template

matching, which are known to be affected by such artefacts, benefit from

the spatial filtering provided by beamforming. With further optimization,

these methods could be incorporated into future software updates for the

LDV system to improve carotid-femoral PTT estimation.

Real-time carotid-femoral PWV can be estimated using the algorithm

described in chapter 5. The results corresponded with gold-standard (arter-

ial tonometry) reference values, demonstrating that carotid-femoral PWV

can be reliably calculated from LDV measurements. Still, there is no such

thing as a free lunch in signal processing. If signal quality is insufficient,

template matching may fail to detect heartbeats, resulting in either no PWV

value or an erroneous one.

Ultimately, even with the implementation of the real-time quality feed-

back system, the average signal quality did not show noticeable improve-

ment. Visual inspection of data collected with this added functionality for

the heart-carotid feasibility study revealed that much of the data were dif-

ficult or impossible to process into a PTT value, both automatically and

manually. This was particularly true for carotid-femoral measurements,

similar to observations during the CARDIS study. Although the real-time

quality feedback functioned effectively, it did not sufficiently guide the op-

erator towards obtaining better measurements. Poor signal quality typic-

ally did not improve with increased pressure or device repositioning, al-

though it is to be kept in mind that data were generated with the CARDIS
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device which requires retroreflective patches, limiting repositioning op-

tions. Given that the device cannot compensate for factors such as excess

body weight, which affect the signal-to-noise ratio for femoral signals, it

can be concluded that there are inherent limitations to the physiologically

relevant information present in the skin vibrations of subjects with poor

real-time signal quality. While LDV technology is capable of detecting

nanometer-scale vibrations, it falls short for this specific application if the

detected vibrations do not correspond to meaningful physiological signals.

One potential reason for the persistent difficulty in consistently obtain-

ing high-quality measurements could be the necessity of the retroreflect-

ive patch. As previously mentioned, the CARDIS device operates at a

wavelength where the reflected laser-beam amplitude is insufficient when

illuminating bare skin. While the retroreflective patch resolves this reflec-

tion issue, it is not unreasonable to assume that it interferes with the bio-

mechanics of skin vibrations. It remains to be seen whether a hardware

update to a future prototype that eliminates the need for the patch will yield

signals with higher signal-to-noise ratio and better interpretability.

8.2 THE POTENTIAL OF HEART-CAROTID PWV

Part III explored the study of heart-carotid PWV as a potential alternative

or supplementary biomarker to carotid-femoral PWV. The primary motiv-

ations for this experiment were to incorporate the elastic region of the as-

cending aorta into the considered pathlength and to address the scarcity of

extensive literature on heart-carotid PTT and PWV. Additionally, heart sig-

nals measured by the LDV device generally exhibited clear features, higher

signal-to-noise ratio, and greater reliability compared to femoral measure-

ments.

To minimize potential errors, a manual PTT estimation method was

employed, involving visual inspection of signals to identify fiducial points.

PWV was not calculated because the distance between the heart and carotid

measurement sites was unknown, preventing an accurate estimation of the

heart-carotid pathlength. Although several distances were measured along-

side the LDV, they could not be validated due to the absence of a reference

for heart-carotid PTT values. This challenge, which remains unresolved,

was initially thought to be surmountable. According to the clinical study

protocol, LDV measurements were conducted after an MRI. The intention

was to calculate PTT between the aortic valve and carotid artery using MRI

data. However, this was not feasible because the MRI coils only covered

the thoracic area and did not extend to the carotid measurement site. Even

approximations, such as PTT between the aortic valve and brachiocephalic
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trunk, could not be reliably assessed due to the low temporal resolution of

the MRI data. Alternative technologies offering superior temporal resolu-

tion and accounting for the entire heart-to-carotid arterial pathlength should

be explored.

LDV-derived heart-carotid PTT values could be correlated with estab-

lished predictors of arterial stiffness, such as age and blood pressure. The

experimental correlations indicated a clear preference for specific heart

measurement sites (i.e. the base of the heart) and temporal signal features

(the dicrotic notch) for fiducial point detection and combination in PTT

calculation. However, the results did not reveal the strength of the poten-

tial biomarker. The correlations were not sufficiently high for serious clin-

ical consideration, which usually requires them to fall in the 0.7-0.8 range.

These mediocre correlations suggest that while LDV heart measurements

contain physiological information, this data is distorted by the multiple tis-

sue layers between the measurement site and the origin of the vibrations

(i.e., the aortic valve).

The project goal of investigating heart-carotid PWV was not fully

achieved, but significant initial progress was made. Further investigation

is necessary, but current evidence does not suggest that heart-carotid

PWV is a strong, independent biomarker like carotid-femoral PWV.

Consequently, we conclude that while heart-carotid LDV measurements

contain some physiologically relevant information, it is insufficient for this

application and should be redirected towards other uses. However, this

remains to be confirmed by testing with a device without the requirement

of retro-reflective tape. Heart signals may still be valuable for detecting

cardiac arrhythmias or ventricular dysfunction, though this remains

speculative at this stage. Additionally, other more compact and efficient

technologies, such as digital stethoscopes, already perform well for these

applications.

8.3 DEEP LEARNING APPLICATION AND FINDINGS

ECG is highly effective for heartbeat detection, which facilitates LDV sig-

nal segmentation and subsequently simplifies signal feature detection. Our

experiments utilized carotid signals, but with comprehensive visual classi-

fication of heart measurements based on signal quality (as was done with

carotid and femoral signals in chapter 3), similar experiments could be con-

ducted using a DNN trained on heart signals. This would extend the applic-

ation of the model presented in Chapter 7 from heart-carotid measurements

to purely cardiac measurements. LDV signal segmentation following heart-

beat detection remains beneficial for various cardiac fields beyond arterial
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stiffness assessment, and is equally applicable to other carotid-related stud-

ies. The current model could also be employed in carotid stenosis detection,

albeit as a component of a larger algorithm.

A significant strength of our approach lies in the utilization of a

compact network comprising 25,000 trainable parameters. This network,

trained on CARDIS data and validated with new data measured within

the InSiDe project (though with the same CARDIS device), exhibits

robust generalization capabilities despite the InSiDe dataset being unseen

data. Enhancing the model’s representational capacity would naturally

involve expanding both the training and validation datasets. The model’s

performance with limited training data, especially considering the small

number of subjects, underscores its efficacy.

The DNN-based method demonstrates significant advantages over

template-matching based algorithms due to its robustness against variations

in carotid acceleration signal morphology, including artefacts. Unlike

the prior approach, which depended heavily on sharp accelerations at the

wave foot and dicrotic notch – features that are not consistently present

– the DNN method reduces dropout in usable beat-pairs. It effectively

compensates for the absence or reduced prominence of the double spike

pattern (e.g., when only one prominent LDV peak is present), facilitating

the identification of whether the single peak corresponds to the wave foot

or the dicrotic notch.

A key insight from Chapter 7 with broader applicability is the meth-

odology for training DNNs on signals characterized by sparsity or sparse

features. While the primary application involved high-quality skin accel-

eration signals acquired via LDV, the principles outlined are transferable

to other biomedical domains that involve irregular or spurious signal char-

acteristics – such as SCG, PPG or non-cardiac signals e.g. electrooculo-

graphy (eye blinks) or respiratory monitoring. Another generalizable con-

tribution is the use of simplified proxy targets to facilitate model training.

This strategy can enhance generalization performance, particularly in scen-

arios constrained by limited dataset sizes, a common challenge in many

medical signal processing applications.

8.4 ALTERNATIVE TOOLS FOR ARTERIAL PULSE DETECTION

This dissertation has primarily concentrated on the application of LDV for

arterial pulse detection and vascular stiffness assessment. However, altern-

ative methodologies have been proposed within the literature for a straight-

forward detection of the arterial pulse at a relevant measuring site for ad-

dressing similar physiological measurements.
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An initial alternative to LDV is photoplethysmography (PPG), a widely

adopted technique in clinical practice due to its rapid acquisition and oper-

ational simplicity [252]. PPG works by shining an infrared or green light

into the skin and measuring the amount of light either absorbed or reflec-

ted by blood vessels with a photodetector. As blood volume changes with

each heartbeat, the light absorption fluctuates, allowing the device to detect

pulse waves and derive cardiovascular metrics like heart rate, PTT or pulse

arrival time [218, 225, 241, 252, 253]. PPG has demonstrated efficacy in

pulse detection across various anatomical sites, including finger, wrist and

earlobe, and across various different wearables [253].

A notable commercially available example is the pOpmètre device,

which simultaneously acquires PPG signals from the finger and toe to

estimate PTT, employing a methodology analogous to that described in

preceding chapters [254, 255]. This approach yields PWV measurements

that correlate strongly with those obtained via arterial tonometry (e.g.

SphygmoCor) [256], particularly when the foot of the PPG waveform is

used for timing reference [257]. However, PPG is not without limitations.

It is susceptible to non-stationary noise such as motion artifacts, exhibits

reduced reliability in mobile or ambulatory settings due to inconsistent

sensor-skin contact, and lacks standardized metrics for signal quality

assessment [252]. pOpmètre results can be challenging to interpret

physiologically because it aims to measure aortic pulse wave velocity from

measurements along two distinct peripheral arterial pathways – from the

heart to the finger, and from the heart over the aorta to the toe – rather

than along a single central arterial segment. As such, the pOpmètre device

amplifies the problem that also exists for carotid-femoral PWV, with pulse

waves travelling along two partially parallel pathways rather than a single

one.

Seismocardiography (SCG), which involves placing accelerometers

on the sternum, yields mechanical cardiac signals that are comparable

in morphology and timing to those obtained via LDV [225, 227, 258].

Recent advancements in sensor technology and the integration of artificial

intelligence-based signal processing algorithms have contributed to a

resurgence of interest in SCG as a viable tool for non-invasive cardiac

monitoring [258]. Still, SCG is a technically elegant but clinically

immature modality. It holds promise for enhancing cardiac diagnostics,

especially in wearable health tech, but its clinical utility is currently

constrained by signal variability, lack of standardization, and limited

interpretability. For SCG to become mainstream, it needs robust validation,

automated interpretation tools, and integration with multimodal data (e.g.,

ECG, PPG) – as our LDV technology.
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Building upon the arterial tonometry techniques outlined in Section

2.2.1, recent research efforts have explored the development of multi-

sensor, cuffless, and wearable tonometry systems [259, 260]. These

devices, characterized by their flexible and mobile form factors, offer

promising potential for continuous and unobtrusive monitoring. However,

current implementations are primarily oriented toward blood pressure

estimation. While local PWV can be derived from these systems, it is

typically integrated into the device’s signal processing framework as an

intermediate parameter to enhance the accuracy of blood pressure meas-

urements [260]. Conventional PWV assessment using two measurement

sites is not currently integrated into the functional capabilities of these

devices.

An emerging approach for assessing and monitoring vascular health in-

volves the use of ultrasound patch technology [261–263]. Unlike tonometry

or LDV, which acquire signals at the skin surface, these devices operate dir-

ectly at the level of the blood vessel or cardiac tissue, enabling more direct

and potentially accurate physiological measurements. In patch format, this

modality supports long-term, motion-resilient monitoring of localized ar-

terial or cardiac parameters. Compared to conventional ultrasound systems,

these patches are significantly less operator-dependent and more compact,

although their application and upkeep still demand a certain degree of tech-

nical proficiency. Ultrasound-based measurements may also yield signals

that are more readily interpretable than those obtained via LDV, owing to

their higher signal-to-noise ratio and the direct visualization of anatomical

structures. A notable limitation remains the cost, driven by the need for

compact, high-capacity batteries and integrated computational resources,

which currently constrains their scalability and widespread clinical adop-

tion.

To further illustrate the diversity of pulse detection technologies, the

Withings smart scale is among the few consumer-grade devices that incor-

porates a (aortic-leg) PWV measurement into its functionality [264, 265].

The device estimates PWV by combining ballistocardiography, detecting

micro-variations in body weight caused by left ventricular ejection, with

impedance plethysmography at the feet to assess peripheral blood volume

changes. While its agreement with reference systems such as Sphygmo-

Cor is generally favorable, comparisons with other methodologies can be

challenging due to the upright posture required during measurement, which

contrasts with the supine position typically used in clinical assessments.

Looking ahead, integrating LDV with complementary technologies

may offer promising avenues for enhancing cardiovascular assessment.

The current LDV configuration relies on two prototype handpieces, which
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inherently doubles the potential for hardware-related error due to the

early-stage nature of the system. A more streamlined approach could

involve a single, optimized LDV handpiece positioned at the carotid artery,

used in conjunction with a PCG device – such as a digital stethoscope –

to estimate heart-carotid PTT. Additional hybrid configurations, such as

combining LDV at the thorax with tonometry or ultrasound at the carotid

site, may also yield accurate PTT measurements. Furthermore, alternative

PWV pathways, including heart-to-finger or heart-to-toe, could become

feasible through integrated LDV-PPG systems. These hypotheses warrant

further investigation to validate the role of LDV as a supportive component

in multimodal cardiovascular monitoring frameworks.

8.5 THE INSIDE-ALPHA DEVICE

In February 2025, a first new LDV prototype resulting from the InSiDe

project became available. Although its use is currently restricted to research

purposes within a laboratory setting, and clinical investigations are not yet

permitted, the device has been distributed across the consortium in several

iterations. Figure 8.1 depicts this device being used on the author.

The primary advantages of this new device are as follows: (i) It features

a more compact and lightweight design, reducing the number of laser chan-

nels to four, thereby enabling four simultaneous beams to illuminate the

target. (ii) The device operates effectively on bare skin, achieved by modi-

fying the laser wavelength and incorporating an adjustable set of lenses to

focus the beams, although automatic autofocusing has not yet been imple-

mented. (iii) The device includes a wireless connection to the processing

unit (laptop), although the power connection still requires wiring. (iv) The

laptop is equipped with software that allows operators to observe the meas-

ured signals in (pseudo) real-time. These signals are accompanied by qual-

ity indicators, aiding the operator in making necessary manual adjustments.

Despite the numerous challenges, resulting delays, and design com-

promises, the existence of the InSiDe-alpha device is a testament to the

substantial efforts made to advance clinical LDV aspirations. While the

device is not yet perfect, its functionality validates the potential for further

research and development of an LDV-based solution for accessible arterial

stiffness assessment (among others). The future of this technology depends

on the positive interpretation of the provided scientific evidence and finan-

cial support of those willing to invest in its continued development.

8.6 FINAL THOUGHTS

The potential of laser Doppler vibrometry for medical applications is evid-

ent, not only from the findings presented in this dissertation but also from
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Figure 8.1: The InSiDe-alpha device in action while performing a measurement

at the base of the heart of the author (March 5, 2025). Luckily for him, as can be

seen from the sparse signals on the associated laptop, he seems to still be alive.

numerous previous studies [18–23, 26, 230]. This potential justified a ded-

icated set of efforts, spanning two distinct EU-funded projects. Despite

the substantial progress made, it must be acknowledged that laser Doppler

vibrometry technology is not yet mature enough for clinical implementa-

tions. Over eight years of resource investment have resulted in a device that

meets many of the valid requirements of clinical personnel, yet it still falls

short in some areas. To name a few: the device still requires a wired con-

nection to a power supply, the ’autofocus’ optical system has not yet been

implemented to operate automatically and requires manual setting, and the

device has not been tested to operate with two handpieces measuring sim-

ultaneously. This suggests that the envisioned laser Doppler vibrometry

application may not be fully achievable at this stage. The transition from a

prototype clinical investigational device to a marketable, licensed medical

device is a lengthy process, and persistent signal-quality issues temper a

more optimistic outlook.
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Nevertheless, the work presented in this dissertation is meaningful.

Quality metrics based on established similarity-search algorithms remain

relevant beyond carotid-femoral laser Doppler vibrometry measurements.

Beamforming and beamforming-derived independent component analysis

can enhance multi-sensor array medical signals with similar spatial multi-

dimensionality intentions, as demonstrated by the CARDIS device. This

approach increases the likelihood of obtaining at least one sensor/channel

with a sufficiently high signal-to-noise ratio for further processing.

Furthermore, the investigation of heart-carotid pathlength for arterial

stiffness assessment is of significant importance to the field, even if the

outcome does not indicate that non-invasive assessment of heart-carotid

pulse wave velocity assessed from LDV shows great promise. References

to heart-carotid pulse wave velocity in the literature are typically as one

of several metrics measured by a single device for broader clinical studies

[225, 232, 233, 235]. The research validating the functionality of heart-

carotid pulse wave velocity in these devices remains protected and copy-

righted.

Finally, the deep neural network method demonstrates promise and util-

ity beyond the application of automated heart-carotid pulse transit time cal-

culation. Predicting heartbeat onset timing can be highly valuable without

relying on carotid laser Doppler vibrometry data. The general principles

discussed can be extended beyond the specific purpose of handheld, laser

Doppler vibrometry based technology. Therefore, while we remain hope-

ful for the future of laser Doppler vibrometry, the CARDIS and InSiDe

devices, the added value of the research presented herein does not solely

depend on the clinical aspirations of laser Doppler vibrometry technology.
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