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Summary

Positron emission tomography (PET) is an advanced molecular imaging
technique that visualizes physiological and metabolic processes within the
human body. It is routinely used in oncology for cancer diagnosis, staging,
monitoring of disease progression, and guiding treatment response. It also
has widespread applications in neurology and cardiology. As global cases
and mortality from cancer, as well as cardiovascular and neurological
diseases, continue to rise, early and accurate detection has become
increasingly essential for improving patient outcomes.

PET imaging relies on biologically relevant compounds labeled with
positron-emitting radionuclides, most commonly ®F-fluorodeoxyglucose
(*¥F-FDG) in oncological applications, which accumulates in tissues
with high glucose metabolism, such as malignant tumors and enables
their visualization. When a positron emitted by the tracer annihilates
with an electron from the surrounding tissue, they produce two high-
energy 511 keV photons traveling in nearly opposite directions. These
photons are detected by an array of scintillation detectors surrounding
the patient, and the recorded data are reconstructed into tomographic
images showing the distribution of tracer activity. Image quality strongly
depends on the number of detected photons: the higher the count, the
better the resulting image. Increasing the injected dose or acquisition
time can enhance image quality but also raise radiation exposure, impact
patient comfort, and affect workflow efficiency. Producing high-quality
images is the main, but not the only, focus for everyone involved in
the PET imaging process. Radiologists and nuclear medicine physicians
aim for maximum diagnostic accuracy, while patients prioritize comfort,
safety, and shorter scan times. Hospitals seek high throughput, smaller
footprint and efficient use of resources. Therefore, modern PET imaging
involves an optimization challenge, balancing image quality, dose, scan
duration, cost and throughput. Conventional PET scanners practically
need at least 15 minutes per acquisition and yet produce images with

vii
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limited spatial resolution. Systems with longer axial field-of-view (AFOV)
are still limited in resolution but offer greater sensitivity and faster
throughput, but their high manufacturing and operational costs limit
widespread clinical use. To overcome these challenges, this dissertation
focuses on designing and evaluating affordable, high-resolution PET
systems using monolithic detector technology. The work investigates
new system geometries, simulation-based performance evaluation, and
deep learning-based image enhancement to develop a PET system that
delivers high performance, enhances accessibility of PET imaging and
increases operational efficiency.

Chapter 2 establishes the foundational background, covering the
relevant physics processes and detector instrumentation. It also discusses
the characteristics and limitations of the collected data, along with the
statistical reconstruction methods, thereby covering the entire pipeline
from radioactive decay inside the body to the formation of clinical PET
images.

Chapter 3 provides an overview of two major recent advances in
detector technology: time-of-flight (TOF) and depth-of-interaction (DOI)
measurements. These innovations provide additional information about
the emission positions, which enhances lesion detectability, particularly
for small or early-stage tumors. The chapter also discusses recent devel-
opments in scanner design, including long AFOV geometries and sparse
PET configurations with inter-detector gaps, which are proposed as
cost-effective alternatives to fully populated systems. Flat-panel designs
are also reviewed. These are gaining attention as cost-effective and
flexible options as they use fewer detectors than ring-based systems to
achieve the same axial coverage. The Monte Carlo simulation framework
used to model PET acquisitions is explained, along with the evaluation
metrics based on NEMA standards. Adaptations of these standards in
the context of unconventional geometries are discussed where relevant.
Finally, a brief overview of recent deep learning applications in PET for
denoising and artifact reduction is presented, setting the stage for their
integration into the current work.

In Chapter 4, we propose two medium AFOV ring-based PET designs
with monolithic LYSO detectors: a single 36 cm module and a 72 cm
configuration formed by combining two such modules. We model them in
GATE and evaluate their performance through simulation. This modular
approach allows the AFOV to be adjusted, providing flexibility for differ-
ent clinical applications. Monolithic detectors provide distinct advantages
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over pixelated ones, including higher intrinsic spatial resolution and DOI
capability, which help mitigate parallax errors in both the radial and
axial directions, the latter being more pronounced in long AFOV systems.
In this chapter, we assess the spatial resolution and image quality of the
two designs and investigate how detector resolution performance trans-
lates at the system level, considering the fundamental limits imposed by
positron range and photon non-collinearity. To further extend the AFOV,
we introduce a design variant that incorporates detector gaps arranged
in a checkered pattern, effectively doubling the axial length to 145 cm
without increasing detector count. The gaps allow reconfiguration into
pediatric mode, by reducing the system diameter and thus moving the
detectors closer together. For this configuration, we evaluate how the
increased solid angle coverage impacts system sensitivity. For the two
main compact designs, the most notable outcome is the uniform sub-2
mm spatial resolution achieved across the entire FOV, made possible
by the DOI-capable monolithic detectors. Additionally, we show that
sensitivity scales with axial extent. Some limitations are encountered
in the reconstruction software used, highlighting the need for software
optimization. Therefore, in the following chapters, we adopt a differ-
ent iterative reconstruction framework that allows more controlled and
reliable tuning of reconstruction parameters and sensitivity correction.

In Chapter 5, we address the limitations of the previous chapter
and take the optimization of PET system design a step further by aim-
ing not only for high sensitivity, spatial resolution, and performance,
but also for affordability and throughput. The chapter introduces the
Walk-Through PET (WT-PET) concept, upon which two flat-panel
configurations are modeled and evaluated: a long flat panel (L-FP) de-
sign with an AFOV of 106 cm, sufficient to cover the brain and torso,
and a sparse medium-AFOV flat panel (SpM-FP) design featuring a
reduced AFOV of 60 cm (a little over half that of the L-FP) arranged
with axial gaps. This configuration reduces the number of detectors
by a factor of 2.5 compared to the L-FP. The SpM-FP requires limited
panel translation to sequentially image the brain and torso. The main
motivation for these designs is cost reduction by fewer detectors arranged
in a flat-panel geometry rather than a conventional ring-based one. With
vertically oriented panels spaced 50 cm apart, the patient can simply step
between them for a quick scan, thereby increasing throughput. The same
monolithic LYSO detectors used in Chapter 4 are employed, offering
DOI capability, an essential feature given the close detector proximity to
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the patient. However, the flat-panel geometry inherently limits angular
coverage, leading to elongation artifacts in the direction perpendicular
to the panels due to the missing lines of response (LORs). Nonetheless,
previous studies indicate that systems with good TOF performance can
tolerate partial angular sampling. The monolithic LYSO detectors are
expected to achieve a TOF resolution of around 300 ps (based on measure-
ments reported in the literature). Performance evaluation is conducted
according to NEMA standards with adaptations suitable for flat-panel
geometry and extended AFOV. Image reconstruction is performed using
software specifically optimized for the WT-PET geometry, which incor-
porates sensitivity and attenuation corrections, as well as point spread
function (PSF) modeling to account for the system’s intrinsic resolution.
The limitations encountered in Chapter 4 were effectively resolved in
this stage of the work. Both designs achieve uniform sub-2 mm spatial
resolution in the directions parallel to the panels and an average of 3 mm
in the perpendicular direction due to limited-angle effects. The SpM-FP
demonstrates cost-efficiency, estimated to be roughly 30% less expensive
than the PET component of the Siemens Biograph Vision 600, while
maintaining excellent image quality and a stable noise profile minimally
affected by the panel gaps. Good quality 1Q and XCAT phantom images
are obtained with three-minute scans. Despite its limited transverse
coverage, the flat-panel design provides a broader axial sampling com-
pared to cylindrical systems of similar AFOV, thanks to its closer panel
spacing. The oblique LORs contribute valuable information along the
perpendicular direction, helping to partially compensate for limited-angle
artifacts.

In Chapter 6, the detection capabilities of the SpM-FP system are
further examined using a digital high-resolution torso phantom with small
spheres, down to 2 mm in diameter. This study assesses how the system’s
superior spatial resolution enhances the signal-to-noise ratio (SNR) and
lesion contrast for a given number of detected counts. The results
demonstrate that the SpM-FP can identify a 4-mm sphere at a sphere-to-
background activity concentration ratio of 8:1 in less than two minutes.
Owing to is high spatial resolution, the SpM-FP achieves this even at
low count levels, whereas systems with lower resolution need significantly
higher statistics to achieve similar detectability. Comparisons with
the Siemens Biograph Vision 600 emphasize the critical role of TOF
performance in improving lesion detectability and reducing limited-angle
artifacts in flat-panel geometries.
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Given the SpM-FP’s expected 300 ps TOF resolution which does not
fully mitigate the limited-angle artifacts, Chapter 7 introduces a deep
learning-based approach to denoise and correct these artifacts. These
issues mainly result from short acquisition times and the side gaps of the
flat-panel geometry, which restrict angular sampling in the transverse
direction. Building on previous work by our group, a 2D convolutional
neural network (CNN) is trained on data from 30 patients from the
Ultra Low Dose Challenge, using PET images acquired on the Siemens
Biograph Vision Quadra as ground truth. The SpM-FP reconstructed
images from GATE simulated data, serve as input, while the actual
Quadra images serve as targets. The trained model effectively reduces
noise and mitigates limited-angle artifacts in reconstructed images.
However, some anatomical details, especially in the torso and brain
regions, appeared slightly blurred compared to the reference images.
Future improvements include extending the model to 3D CNNs for more
spatial information, and expanding the training dataset to include more
diverse patient cases, particularly those with malignancies.

Considering the entire PET image pipeline, expanding the AFOV
and using DOI-capable monolithic detectors must be paired with design
optimization to ensure cost-effectiveness and clinical practicality. The
SpM-FP, combined with deep learning-based correction, emerges as
a promising alternative to existing long-AFOV PET systems offering
superior resolution, enhanced sensitivity, affordability, and higher patient
throughput. With the future directions outlined in the concluding chapter,
the SpM-FP concept represents a step toward a new generation of
accessible, high-performance PET systems, bridging the gap between
technological innovation and clinical application.
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Samenvatting

Positronemissietomografie (PET) is een geavanceerde moleculaire beeld-
vormingstechniek waarmee fysiologische en metabole processen in het
menselijk lichaam in kaart worden gebracht. Deze techniek wordt veelvul-
dig gebruikt in de oncologie voor de diagnose van kanker, het vaststellen
van het stadium van de ziekte, het volgen van het ziekteverloop en het
sturen van de behandeling. Ook in de neurologie en cardiologie wordt
deze techniek op grote schaal toegepast. Aangezien het aantal diagnoses
en de mortaliteit geassocieerd met kanker blijft stijgen, net als deze
van cardiovasculaire en neurologische aandoeningen, is vroegtijdige en
nauwkeurige detectie essentieel geworden voor het verbeteren van de
klinische uitkomsten voor patiénten.

PET-beeldvorming maakt gebruik van biologisch actieve moleculen
die zijn gemerkt met positron-emitterende radionucliden. In oncologi-
sche toepassingen is ®F-fluorodeoxyglucose (!*F-FDG) een veelgebruikte
radiotracer, aangezien deze zich ophoopt in weefsels met een hoog gluco-
semetabolisme, zoals kwaadaardige tumoren, en deze zichtbaar maakt.
Wanneer een positron wordt uitgezonden door de tracer en annihileert
met een elektron uit het omliggende weefsel, worden twee hoogenergeti-
sche fotonen (511 keV) gegenereerd die in bijna tegengestelde richtingen
voortbewegen. Deze fotonen worden gedetecteerd met behulp van scin-
tillatiedetectoren die rondom de patiént geplaatst worden, en de gere-
gistreerde gegevens worden gereconstrueerd tot tomografische beelden
die de verdeling van de traceractiviteit weergeven. De beeldkwaliteit
hangt sterk af van het aantal gedetecteerde fotonen: hoe hoger het aantal,
hoe beter het resulterende beeld. Het verhogen van de geinjecteerde
dosis of de acquisitietijd kan de beeldkwaliteit verbeteren, maar kan
tegelijkertijd ook de blootstelling aan straling verhogen, het comfort van
de patiént beinvloeden en de efficiéntie van de workflow aantasten. Het
produceren van beelden van hoge kwaliteit is het belangrijkste, maar
niet het enige aandachtspunt voor iedereen die betrokken is bij het PET-
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beeldvormingsproces. Radiologen en nucleair geneeskundigen streven
naar maximale diagnostische nauwkeurigheid, terwijl patiénten prioriteit
geven aan comfort, veiligheid en kortere scantijden. Ziekenhuizen streven
naar het scannen van een groot aantal patiénten per uur, systemen met
een geringe omvang, en een efficiént gebruik van middelen. Daarom
brengt moderne PET-beeldvorming een optimalisatie-uitdaging met zich
mee, waarbij een evenwicht moet worden gevonden tussen beeldkwaliteit,
dosis, scantijd, kosten en doorvoer. Conventionele PET-scanners hebben
praktisch gezien minstens 15 minuten per acquisitie nodig en produceren
toch beelden met een beperkte ruimtelijke resolutie. Systemen met een
langer axiaal gezichtsveld (axial field-of-view, AFOV) hebben nog steeds
een beperkte resolutie, maar bieden een grotere gevoeligheid en een
snellere doorvoer. Hun hoge productie- en operationele kosten beperken
echter het wijdverbreide klinische gebruik ervan. Om deze uitdagingen
het hoofd te bieden, richt dit proefschrift zich op het ontwerpen en
evalueren van betaalbare PET-systemen met hoge resolutie die gebruik-
maken van monolithische detectortechnologie. Het onderzoek richt zich
op nieuwe systeemgeometrieén, simulatiegebaseerde prestatie-evaluatie
en deep learning-gebaseerde beeldverbetering om een PET-systeem te
ontwikkelen dat hoge prestaties levert, de toegankelijkheid van PET-
beeldvorming verbetert en de operationele efficiéntie verhoogt.

Hoofdstuk 2 beschrijft het fundamentele kader en behandelt de rele-
vante fysische processen en detectorinstrumentatie. Daarnaast worden
ook de kenmerken en beperkingen van de verzamelde gegevense en sta-
tistische reconstructiemethoden besproken, zodat de volledige pijplijn
van radioactief verval in het lichaam tot de vorming van klinische PET-
beelden behandeld wordt.

Hoofdstuk 3 geeft een overzicht van twee belangrijke recente ontwik-
kelingen op het gebied van detectortechnologie: time-of-flight (TOF) en
diepte-van-interactie (depth-of-interaction, DOI) metingen. Deze inno-
vaties bieden aanvullende informatie over de emissieposities, waardoor
laesies beter detecteerbaar zijn, met name voor tumoren in een vroeg
stadium of met een beperkte grootte. Het hoofdstuk bespreekt ook
recente ontwikkelingen in scannerontwerp, waaronder geometrieén met
een lang AFOV en schaarse PET-configuraties met tussenruimtes tussen
detectoren, die worden voorgesteld als kosteneffectieve alternatieven voor
systemen met een volledige detectorbezetting. Ook ontwerpen op basis
van vlakke panelen worden besproken. Deze krijgen steeds meer aan-
dacht als kosteneffectieve en flexibele opties, omdat ze minder detectoren
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gebruiken dan systemen gebaseerd op detectorringen om dezelfde axiale
dekking te bereiken. Ook, het Monte Carlo-simulatiekader dat wordt
gebruikt om PET-acquisities te modelleren, wordt uitgelegd, samen met
de evaluatiemethodes op basis van NEMA-normen. Aanpassingen van
deze normen in de context van onconventionele geometrieén worden waar
relevant besproken. Ten slotte wordt een kort overzicht gegeven van
recente deep learning-toepassingen in PET voor ruisonderdrukking en
artefactreductie, waarmee de weg wordt vrijgemaakt voor de integratie
ervan in het huidige werk.

In hoofdstuk 4 stellen we twee ringgebaseerde PET-ontwerpen voor
met een gemiddeld gemiddelde axiale lengte op basis van monolithische
LYSO-detectoren: een configuratie op basis van één enkele module met
een lengte van 36 cm, en een configuratie die wordt gevormd door twee
dergelijke modules te combineren. Deze worden gemodelleerd in GATE,
en hun prestaties worden geévalueerd door middel van simulaties. De
modulaire aanpak staat toe het AFOV te herconfigureren, wat flexibiliteit
biedt voor verschillende klinische toepassingen. Monolithische detecto-
ren bieden duidelijke voordelen ten opzichte van gepixelde detectoren,
waaronder een hogere intrinsieke ruimtelijke resolutie en DOI-capaciteit,
die helpt om parallaxfouten in zowel de radiale als axiale richting te
verminderen, waarbij de laatste meer uitgesproken zijn in systemen met
een lang AFOV. In dit hoofdstuk beoordelen we de ruimtelijke resolutie
en beeldkwaliteit van de twee ontwerpen en onderzoeken we hoe de re-
solutieprestaties van de detector zich vertalen naar het systeemniveau,
rekening houdend met de fundamentele beperkingen verbonden aan het
bereik van positronen en de niet-collineariteit van fotonen. Om het
AFOV verder uit te breiden, introduceren we ook een ontwerpvariant
met openingen tussen de detectoren die in een dambordpatroon zijn
gerangschikt, waardoor de axiale lengte effectief wordt verdubbeld tot
145 cm zonder het aantal detectoren te verhogen. De openingen maken
daarnaast ook herconfiguratie naar pediatrische modus mogelijk, waarbij
de diameter van het systeem verkleint en de detectoren dichter bij elkaar
komen. Voor deze configuratie evalueren we hoe de grotere dekking van
de ruimtehoek de sensitiviteit van het systeem beinvloedt. Voor de twee
standaardconfiguraties ontwerpen is het meest opvallende resultaat dat
een uniforme ruimtelijke resolutie wordt bereikt van minder dan 2 mm
over het gehele gezichtsveld dankzij het gebruik van de DOI-compatibele
monolithische detectoren, mogelijk gemaakt door de DOI-compatibele
monolithische detectoren. Daarnaast laten we zien dat de gevoeligheid
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evenredig is met de axiale omvang. Ten slotte constateren we enkele
beperkingen in de gebruikte reconstructiesoftware, wat de noodzaak van
software-optimalisatie onderstreept. Daarom hanteren we in de volgende
hoofdstukken een ander iteratief reconstructiekader dat een meer gecon-
troleerde en betrouwbare afstemming van reconstructieparameters en
sensitiviteitscorrectie mogelijk maakt.

In hoofdstuk 5 gaan we in op de beperkingen van het vorige hoofdstuk
en gaan we nog een stap verder in het optimaliseren van het ontwerp
van PET-systemen door niet alleen te streven naar hoge sensitiviteit,
ruimtelijke resolutie en prestaties, maar ook naar betaalbaarheid en
doorvoercapaciteit. In dit hoofdstuk wordt het Walk-Through PET
(WT-PET) concept geintroduceerd, op basis waarvan twee vlakkepa-
neelconfiguraties worden gemodelleerd en geévalueerd: een lang ontwerp
(long flat panel, L-FP) met een AFOV van 106 cm, voldoende om de
hersenen en de romp te omvatten, en een schaarse medium-AFOV confi-
guratie (sparse medium flat panel, SpM-FP) met een verminderd AFOV
van 60 cm (iets meer dan de helft van die van de L-FP) met axiale
tussenruimtes. Deze configuratie vermindert het aantal detectoren met
een factor 2,5 in vergelijking met de L-FP. Deze SpM-FP vereist een
beperkte paneelverplaatsing om achtereenvolgens de hersenen en de romp
in beeld te brengen. De belangrijkste motivatie voor deze ontwerpen is
kostenreductie aangezien minder detectoren nodig zijn in configuraties
op basis van vlakke panelen dan conventionele ringvormige opstellingen.
Dankzij de verticaal georiénteerde panelen op een afstand van 50 cm
van elkaar kan de patiént eenvoudigweg de scanner inlopen voor een
snelle scan, waardoor de doorvoer wordt verhoogd. Er wordt gebruik
gemaakt van dezelfde monolithische LYSO-detectoren als in hoofdstuk 4,
die DOI-functionaliteit bieden, een essentiéle eigenschap gezien de nabij-
heid van de detector tot de patiént. De vlakkepaneelgeometrie beperkt
echter inherent het interval van de bemonsterde hoeken, wat leidt tot
verlengingsartefacten in de richting loodrecht op de panelen als gevolg van
de ontbrekende responslijnen (lines of reponse, LORs). Niettemin wijzen
eerdere studies uit dat systemen met goede TOF-prestaties gedeeltelijke
hoekbemonstering kunnen tolereren. De monolithische LYSO-detectoren
zullen naar verwachting een TOF-resolutie van ongeveer 300 ps bereiken
(op basis van metingen die in de literatuur worden vermeld). De prestatie-
evaluatie wordt uitgevoerd volgens NEMA-normen, met aanpassingen
voor de evaluatie van systemen met een lang AFOV en een vlakkepa-
neelgeometrie. De beeldreconstructie wordt uitgevoerd met behulp van



xvii Samenvatting

software die specifiek is geoptimaliseerd voor de WT-PET-geometrie,
waarin sensitiviteits- en attenuatiecorrecties en dempingscorrecties zijn
opgenomen, evenals point spread function (PSF)-modellering om rekening
te houden met de intrinsieke resolutie van het systeem. De beperkingen
die in hoofdstuk 4 werden vastgesteld, werden in deze fase van het werk
effectief opgelost. Beide ontwerpen bereiken een uniforme ruimtelijke
resolutie van minder dan 2 mm in de richtingen parallel aan de panelen
en gemiddeld 3 mm in de loodrechte richting, als gevolg van beperkte-
hoekeffecten. De SpM-FP is kostenefficiént en naar schatting ongeveer
30% goedkoper dan de PET-component van de Siemens Biograph Vision
600, terwijl de uitstekende beeldkwaliteit en het stabiele ruisprofiel be-
houden blijven, met een minimale invloed van de paneelopeningen. Met
scans van drie minuten worden IQ- en XCAT-fantoombeelden van goede
kwaliteit verkregen. Ondanks de beperkte transversale dekking biedt
het vlakkepaneelontwerp een bredere axiale bemonstering in vergelijking
met cilindrische systemen met een vergelijkbaar AFOV, dankzij de klei-
nere paneelafstand. De schuine LOR’s leveren waardevolle informatie in
de loodrechte richting, waardoor artefacten als gevolg van de beperkte
hoekbemonstering gedeeltelijk worden gecompenseerd.

In hoofdstuk 6 worden de detectieprestaties van het SpM-FP-systeem
verder onderzocht met behulp van een digitaal torsofantoom met hoge
resolutie en kleine sferen met een diameter tot 2 mm. In deze studie
wordt beoordeeld hoe de superieure ruimtelijke resolutie van het systeem
de signaal-tot-ruisverhouding (signal-to-noise ratio, SNR) en het contrast
van laesies voor een vast aantal meetwaarden verbetert. De resultaten
tonen aan dat de SpM-FP een sfeer van 4 mm kan identificeren bij een
activiteitsconcentratieverhouding tussen een laag aantal meetwaarden
en achtergrond van 8:1 in minder dan twee minuten. Dankzij de hoge
ruimtelijke resolutie bereikt de SpM-FP dit zelfs bij een laag aantal
meetwaarden, terwijl systemen met een lagere resolutie aanzienlijk ho-
gere statistieken nodig hebben om een vergelijkbare detecteerbaarheid
te bereiken. Vergelijkingen met de Siemens Biograph Vision 600 be-
nadrukken de cruciale rol van TOF-prestaties bij het verbeteren van
de detecteerbaarheid van laesies en het verminderen van artefacten bij
beperkte hoekbemonstering in vlakkepaneelgeometrieén.

Gezien de verwachte TOF-resolutie van 300 ps de beperkte-hoekartefacten
van de SpM-FP niet volledig compenseert, wordt in hoofdstuk 7 een
op deep learning gebaseerde aanpak geintroduceerd om deze artefacten
te verwijderen en te corrigeren. Deze problemen zijn voornamelijk
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het gevolg van korte acquisitietijden en de zijdelingse openingen van
de vlakkepaneelgeometrie, die de hoekbemonstering in de transversale
richting beperken. Voortbouwend op eerder werk van onze groep, wordt
een 2D-convolutionaal neuraal netwerk (CNN) getraind op basis van
gegevens van 30 patiénten uit de Ultra Low Dose Challenge. Hierbij
worden PET-beelden die werden verkregen met de Siemens Biograph
Vision Quadra gebruikt als referentiewaarden. De SpM-FP reconstructies
verkregen na GATE-simulatie dienen als invoer, terwijl de daadwerkelijke
Quadra-beelden als doel dienen. Het getrainde model vermindert effectief
ruis en beperkt artefacten geassocieerd met beperkte-hoekbemonstering
in gereconstrueerde beelden. Sommige anatomische details, vooral in
de romp en hersengebieden, leken echter enigszins wazig in vergelijking
met de referentiebeelden. Mogelijke toekomstige verbeteringen omvatten
onder meer het uitbreiden van het model naar 3D CNN’s voor het bieden
van meer ruimtelijke informatie, en het uitbreiden van de trainingsdataset
met meer diverse patiéntgevallen, met name die met ziektebeelden.

Binnen het kader van de volledige PET-pijplijn, moet de moet de
uitbreiding van het AFOV en het gebruik van DOI-compatibele mo-
nolithische detectoren gepaard gaan met ontwerpoptimalisatie om kos-
teneffectiviteit en klinische bruikbaarheid te garanderen. De SpM-FP,
in combinatie met op deep learning gebaseerde correctie, komt naar
voren als een veelbelovend alternatief voor bestaande PET-systemen met
een lange-AFOV en biedt een superieure resolutie, verbeterde sensiti-
viteit, betaalbaarheid en een hogere doorvoer van patiénten. Met de
toekomstige richtingen die in het slothoofdstuk worden geschetst, verte-
genwoordigt het SpM-FP-concept een stap in de richting van een nieuwe
generatie toegankelijke, hoogwaardige PET-systemen, die de kloof tussen
technologische innovatie en klinische toepassing overbruggen.
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Chapter 1

Introduction

1.1 Context

This dissertation focuses on positron emission tomography (PET), a
functional imaging technique widely used in nuclear medicine for appli-
cations in oncology, cardiology and neurology. In contrast to computed
tomography (CT) and magnetic resonance imaging (MRI), which pri-
marily provide anatomical information, PET offers unique insights into
physiological and molecular processes such as metabolism, perfusion,
and tumor activity. Alongside PET, single-photon emission computed
tomography (SPECT) is also employed for molecular imaging; however,
PET provides superior resolution and higher sensitivity.

The most commonly used tracer in PET is ®F-fluorodeoxyglucose
(18F-FDQG), a glucose analog that accumulates in tissues with high glucose
metabolism. FDG uptake is typically elevated in the brain, myocardium,
and bladder (where it is excreted), and most importantly, in malignant
tumors. PET has therefore become an indispensable tool for diagnosing,
staging, and monitoring treatment response in cancer, a disease that
has become a leading cause of death worldwide. Moreover, PET plays
an important role in the evaluation of cardiovascular and neurological
diseases, both of which also account for a significant proportion of global
mortality, broadening its clinical impact. Early detection and treatment
significantly improve patient outcomes, highlighting the importance of
ensuring global access to high-quality PET imaging.

Over the last three decades, PET has reached several milestones,
including the transition to fully 3D acquisitions and advancements in
detector technology and computational power. Recently, international

1
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collaborations have led to the development of long axial field-of-view
(AFOV) PET/CT scanners, also called total-body PET/CT systems.
These scanners have significantly increased sensitivity compared to con-
ventional systems, allowing for shorter scan times, lower radiopharmaceu-
tical doses, and/or better image quality through a higher signal-to-noise
ratio. Several long AFOV systems have been developed with axial lengths
reaching up to 2 meters and time-of-flight (TOF) resolutions as low as
214 ps. Despite these advances, spatial resolution is still limited by
the discrete pixelation of the scintillation crystals used and the cost of
acquiring such large systems remains high.

Motivated by these challenges, this dissertation explores alternative,
cost-effective PET system designs based on monolithic scintillation de-
tectors. Monolithic crystals inherently provide superior intrinsic spatial
resolution and depth-of-interaction (DOI) capabilities, offering a way to
surpass the resolution limits of pixelated detectors. The designs feature
medium axial fields-of-view that achieve higher sensitivity than conven-
tional PET scanners while being more affordable than the large, expensive
long-AFOV systems currently available. In this work, we evaluate the
performance of several innovative PET geometries through simulations,
analyze the trade-offs between cost, sensitivity, and resolution, and ex-
plore solutions to balance these factors. At the same time, we recognize
that the unconventional geometries present their own challenges, which
we aim to characterize and address throughout this thesis.

To guide this work, this dissertation addresses the following key
research questions:

e How much improvement in spatial resolution can be achieved using
monolithic detectors with intrinsic DOI capabilities and to what
extent can this resolution advantage be leveraged to improve con-
trast recovery, detection of small lesions, and overall image quality
under clinical-like conditions?

e To what extent can unconventional medium-AFOV geometries im-
prove sensitivity compared to conventional clinical PET scanners?

e What performance trade-offs arise when jointly optimizing cost,
sensitivity, and spatial resolution, and how can these be balanced
to enable practical system implementation?

o What image-quality limitations result from the proposed geometries,
and how can these be characterized and mitigated in reconstruction
and through deep learning-based methods?



3 1.2. Outline

1.2 Outline

Chapter 2 covers the basics of PET imaging, starting with the under-
lying physics processes, including radioactive decay and how radiation
interacts with matter to produce photons. It then provides an overview
of the instrumentation, focusing on detector components used to capture
the emitted photons and the difference between pixelated and monolithic
detectors. The chapter also explains the nature of collected PET data,
the key performance metrics and their dependencies, and the principles of
image reconstruction, with a focus on statistical iterative reconstruction
and the necessary corrections. Chapter 3 reviews recent advancements
in PET technology such as time-of-flight (TOF) and depth-of-interaction
(DOI) capabilities, as well as system design developments focusing on
long-AFOV PET systems, sparse configurations and flat-panel geome-
tries, relevant to this study. It also describes the Monte Carlo simulation
framework that is central to this work, as well as the methods used to
evaluate the performance of PET systems based on NEMA (National
Electrical Manufacturers Association) standards with modifications where
deemed necessary. The chapter concludes with a brief overview of deep
learning applications in PET, particularly those employed for denoising
and artifact reduction for limited-angle tomography.

The remaining chapters present the results of the work that has
been accomplished. Various PET systems designs are proposed and
performance-evaluated, with a focus on moderate extension of the AFOV
for cost-effectiveness and the use of superior-resolution and DOI-capable
monolithic detectors. Some performance metrics of the evaluated systems
were benchmarked against current leading clinical PET systems, such as
the Siemens Biograph Vision 600 and Quadra, whenever possible. The
advantages, as well as the challenges and limitations were discussed while
testing a possible deep learning-based solution. Chapter 4 presents
the simulation of two modular ring-based medium-AFOV PET designs
featuring monolithic LYSO detectors. The axial extent of these systems
is moderate compared to the long-AFOV systems, making them more
cost-efficient and affordable. The superior spatial resolution they achieve
is a property that current conventional and long-AFOV systems cannot
yet match. This work has been published [1], [2]. Chapter 5 builds
on the same detector technology and thoroughly investigates a novel,
non-cylindrical geometry, offering further cost reduction and higher
throughput. Two vertical-flat-panel systems also featuring monolithic
LYSO scintillators, based on the Walk-Through PET (WT-PET) concept
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[3] were simulated and evaluated with emphasis on the sparse medium
flat-panel (SpM-FP) design that can operate in a static mode or with
limited panel motion depending on the study of interest. Its performance
and specifically the presence of gaps was evaluated against the long flat
panels (L-FP), a longer and fully populated design with the dimensions
of the originally proposed WT-PET. This study was also published [4].
Chapter 6 presents an in-depth investigation of the spatial resolution
limits of the SpM-FP and the impact of achieving improved spatial
resolution on lesion contrast and signal-to-noise ratio. These resolution
limits are compared to a Monte Carlo model of the Siemens Biograph
Vision 600 and measurements from other conventional scanners. Then, in
Chapter 7, the limitations of the SpM-FP design, mainly the noise and
elongation artifacts due to the side gaps that prevent a complete angular
coverage in the transverse direction are addressed using image-based
deep learning. A 2D U-Net, convolutional neural network is trained on
PET patient-data from the Ultra-Low Dose Challenge [5]. The PET/CT
images acquired on a Siemens Biograph Vision Quadra are used as
ground truth data for simulation in the SpM-FP geometry. Three-minute
acquisitions were reconstructed and used as input data to the network
with the actual Quadra images used as targets. The goal is to reduce
noise and elongation artifacts in the SpM-FP images. Finally, Chapter
8 concludes this dissertation and discusses some future perspectives.



Chapter 2

Positron emission
tomography

Since the discovery of X-rays in 1895, medical imaging has revolutionized
healthcare and become indispensable for diagnosis, patient monitoring,
and surgical guidance by allowing the visualization of internal structures
of the human body. Over time, many imaging techniques have been
developed, which can generally be divided into two categories:
Anatomical modalities focus on visualizing the structural anatomy of
organs, tissues, and systems. These include traditional radiography and
its three-dimensional version, computed tomography (CT). CT works by
transmitting X-rays through the body, detecting variations in attenuation
to produce contrast between tissues. Since X-rays are a form of ionizing
radiation, dose reduction strategies are vital to minimize potential harm.
CT is especially effective for identifying bone disorders, lung diseases, and
strokes after trauma. Another key imaging method is magnetic resonance
imaging (MRI), which uses strong magnetic fields and radiofrequency
waves to excite hydrogen nuclei in water molecules within the body.
Unlike CT, MRI does not involve ionizing radiation and offers superior
soft tissue contrast. However, it is more expensive and requires longer
scan time, making it less suitable for emergency situations. Ultrasound
(sonography) uses high-frequency sound waves to create real-time images.
It is commonly used in obstetrics and gynecology, echocardiography, and
abdominal imaging (e.g., for gallstones or kidney stones), as well as for
guiding minimally invasive procedures like biopsies or catheter insertions.
Ultrasound is inexpensive, fast, portable, and radiation-free, making it
highly adaptable in clinical practice.
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Functional or molecular modalities complement anatomical imaging
by providing insights into physiological processes such as blood flow,
metabolism, and tumor activity. While techniques like functional MRI
(fMRI) and CT perfusion can offer information on blood oxygenation and
tissue perfusion, respectively, they were introduced later and have more
limited clinical uses. In contrast, nuclear medicine techniques, specifi-
cally positron emission tomography (PET) and single-photon emission
computed tomography (SPECT), were developed earlier to address the
need for functional and molecular imaging, and they offer insights into
metabolism, perfusion, and tumor activity. SPECT uses gamma-emitting
radioisotopes like technetium-99m and iodine-123 for perfusion imaging
in cardiology and neurology, as well as for detecting bone metastases and
neuroendocrine tumors. Despite its relatively moderate cost, SPECT is
limited by low spatial resolution, reduced sensitivity, and a lack of tumor-
specific tracers, which restricts its utility in oncology. PET overcomes
many of these limitations and has therefore gained increasing prominence
in nuclear medicine. It enables in vivo visualization and measurement of
physiological and metabolic processes. While mainly used in oncology
for cancer diagnosis, staging and therapy monitoring, PET also plays
an important role in cardiovascular disorders as well as neurological
disorders such as dementia and Parkinson’s disease. The technique re-
lies on biologically relevant compounds labeled with positron-emitting
radionuclides, such as fluorine-18 (¥F), carbon-11 (}C), Gallium-68
(%®Ga), and oxygen-15 (1°0), to serve as tracers for specific physiological
processes. In oncological applications, the most widely used tracer is
I8F-fluorodeoxyglucose (18F-FDG), a glucose analog that accumulates in
tissues with high glucose metabolism, such as malignant tumors [6]. To
provide accurate anatomical information for diagnostic and localization
purposes, PET is typically combined with an anatomical modality, most
commonly CT and less frequently MRI, to form a multimodality PET/CT
or PET/MR. Figure 2.1, adapted from [7] shows ¥F-FDG PET/CT and
PET /MR images illustrating the distribution of the radiopharmaceutical
within the body.

In this chapter, we explore the foundational physical principles under-
lying PET imaging, the detector technology that enables its operation,
and the nature of the data it produces. We also examine the reconstruc-
tion process that converts raw detection events into clinically meaningful
images, highlighting both the performance capabilities and inherent
limitations of PET systems.
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Figure 2.1: Left panel shows only PET images - middle panel: top row
is a fused PET/CT image and bottom row is a fused PET/MR image -
right panel: top row is only CT image and bottom row is only MR image.
Adapted from [7].

2.1 PET physics

2.1.1 Radioactive decay

A nucleus with an excess number of protons or neutrons is unstable
and undergoes radioactive decay, a spontaneous process in which energy
is emitted in the form of ionizing radiation, allowing the nucleus to
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transition to a more stable state. There are various modes of radioactive
decay, each characterized by the emission of different particles or photons.
The mode most relevant to PET imaging is beta-plus (57) decay, in
which nuclei with an excess of protons decay through the emission of a
positron. In this process, a proton is converted into a neutron, releasing
a positron (e*) and an undetected neutrino. The most commonly used
radionuclide in PET imaging is fluorine-18 (*¥F), produced in a cyclotron
via proton irradiation of enriched oxygen-18 (180) water. ®F decays to
stable 180 via positron emission, as shown below:

BF 5 B0 +ef +v (2.1)

Radioactive decay is characterized by the half-life of the radionuclide,
the time required for half of the nuclei in a sample to decay, following an
exponential pattern. For '8F, the half-life is approximately 110 minutes,
which represents an optimal balance: long enough to allow for radiotracer
injection and uptake for patient imaging, yet short enough to minimize
radiation exposure.

2.1.2 Positron range

The emitted positron travels a finite distance before annihilating with
an electron from the surrounding tissue. The median distance it travels,
called the positron range, depends on the positron’s kinetic energy,
which varies with the radionuclide. For example, '®F emits positrons
with relatively low kinetic energy, about 0.63 MeV, resulting in a short
positron range in tissue. Since PET measures the annihilation location,
it is best for this point to be as close as possible to the emission site.
This makes the short positron range of ®F beneficial by minimizing
its impact on the spatial resolution of PET images. A Monte Carlo
simulation study reported the median range of '8F positrons to be 0.44
mm in soft tissue and 1.41 mm in lung tissue. In comparison, for %3Ga
the corresponding ranges are significantly larger: 2.4 mm in soft tissue
and 8 mm in lung tissue, which can lead to greater degradation in spatial
resolution compared to 8F [8]. Table 2.1 lists selected radionuclides that
decay by positron emission along with their corresponding half-lives and
maximum kinetic energy of the emitted positrons, as reported in [9].
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Table 2.1: Positron-emitting radionuclides relevant to PET imaging,
with their half-lives and the maximum kinetic energy of emitted positrons.
Data adapted from [9)].

Radionuclide Half-life  Fyax (MeV)

IBp 110 min 0.63
68Ga 68.3 min 1.90
He 20.4 min 0.96
BN 10 min 1.19
150 123 s 1.72
1241 4.18 d 1.50

2.1.3 Positron-electron annihilation & photon non-collinearity

Following 3T decay, the emitted positron rapidly loses its kinetic energy
through inelastic interactions with bound electrons of the surrounding
tissue. Once it has dissipated all its energy, the positron combines with
an electron, and the two particles annihilate. This annihilation event
produces two high-energy photons, each with an energy of 511 keV,
emitted in approximately opposite directions to ensure the conservation
of energy and momentum in this process. A key advantage of the
simultaneous back-to-back emission of the two photons is that the location
of the annihilation event, and thus, approximately, the site of positron
emission, is known to be along the line connecting the two detected
photons, referred to as the line of response (LOR). However, because the
positron and electron are not entirely at rest when they annihilate, a
small net momentum exists in the system. As a result, the two photons
are not emitted at exactly 180 degrees, but with a slight angular deviation.
This phenomenon, known as non-collinearity, introduces an error in
determining the LOR, which in turn leads to an uncertainty in the
annihilation position and ultimately contributes to spatial resolution
degradation in PET imaging. The angular distribution of the annihilation
photons is approximated by a Gaussian with a full width at half maximum
(FWHM) of 0.5 degrees. This angular deviation contributes to the
blurring in the reconstructed image and can be estimated by:

ng()o =0.0022 x D (2.2)

where D is the diameter of the PET scanner. For a typical scanner with a
diameter of 80 cm, this results in a blurring of approximately 2 mm, which
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is greater than the contribution of positron range on spatial resolution.
In pre-clinical scanners, which have much smaller diameters (10-20 cm),
the effect of non-collinearity is minimal and does not significantly limit
spatial resolution [9].

2.1.4 Interaction of radiation with matter

To understand how the emitted 511-keV photons interact with the sur-
rounding tissue, get attenuated in the patient, and are ultimately stopped
and detected by scintillators, it is essential to explain the photoelectric
and Compton effects. Other interactions, such as Rayleigh scattering
and pair production, also exist but are not dominant at this energy
level. Rayleigh scattering is more prominent at lower photon energies
(less than 50 keV), while pair production becomes relevant only at much
higher energies (higher than 1.022 MeV) than those encountered in PET
imaging.

Photoelectric effect

The photoelectric effect involves the complete absorption of a photon
by the surrounding medium through its interaction with an atom. The
photon transfers all its energy to an inner-shell electron, which is then
ejected from the atom. This ionization leaves the atom in an excited
state. To return to its ground state, an electron from a higher shell
drops into the lower vacant shell, emitting either a characteristic X-ray
or an Auger electron in the process. The probability of photoelectric
absorption depends on both the photon’s energy and the atomic number
7 of the absorbing material. This probability increases when the photon
energy is near the binding energy of electrons in a particular shell and
is significantly higher in materials with a high atomic number. Figure
2.2 taken from [9] shows the dominating interactions as a function of
photon energy for different values of absorber atomic number Z. The
photoelectric effect is predominant at energies below 100 keV and less
likely at 511 keV.

Compton scattering

The Compton effect refers to the inelastic scattering of a photon by a free
or loosely bound electron in the medium. During this interaction, the
photon transfers some of its energy to the electron and is deflected from its
original path. The resulting scattered photon may subsequently undergo
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Figure 2.2: Dominant radiation-matter interactions as a function of
the photon energy for different atomic number of the absorbent material
[9].

additional Compton scattering or be absorbed via the photoelectric effect.
As can be seen in Figure 2.2, this effect dominates photon interactions
in human tissues in the energy range of 100 keV to just below 10 MeV.
This makes it particularly relevant in PET imaging, where the photon
energy is 511 keV. Based on conservation of energy and momentum, the
energy of the scattered photon FEy. can be expressed as a function of
the initial photon energy E, the electron rest mass energy mec?, and the
scattering angle 6 as shown in Figure 2.3:

mec?

%CQ—G—I—COSO

B = (2.3)

Since the photon energy in PET is 511 keV, the same as the rest mass
energy of an electron, equation 2.3 simplifies to:

511
2 —cos¥
As shown in Figure 2.4, the angular distribution of the scattered photons
at 511 keV favors small-angle forward scattering. According to equation

2.4, this results in scattered photons whose energies deviate only slightly
from the original 511 keV.

Photons that are either absorbed via the photoelectric effect or scattered

By (keV) = (24)
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Figure 2.3: Schematic representation of the Compton scattering showing
the angle 0 of the scattered photon after interacting with a loosely bound
outer-shell electron of an atom.

through Compton interactions are considered attenuated, following an
exponential attenuation law described by:

I(x) = I(0) exp(—pa) (2.5)

where I is the initial intensity of the photon beam, I(x) is the intensity
after the beam has traveled a distance x through a material, and p is the
linear attenuation coefficient, which is a measure of the attenuation per
unit distance. At an energy of 511 keV, the attenuation coefficient y is
predominantly composed of contributions from both Compton scattering
and the photoelectric effect, such that:

= Compton T Mphotoelectric (2'6)

The primary media affecting photon attenuation in PET imaging are the
human body and the detector material. Within biological tissues such as
soft tissue and bone, attenuation is mainly due to Compton scattering.
The linear attenuation coefficient 1 depends on both the energy of the
incident photons and the physical properties of the medium, particularly
its density and effective atomic number (Z). Table 2.2 presents the
attenuation coefficients at 511 keV for representative biological tissues and
commonly used PET scintillators, including bismuth germanate (BGO),
lutetium oxyorthosilicate (LSO), and lutetium-yttrium oxyorthosilicate
(LYSO). Based on the attenuation coefficients for soft tissue and bone,
and assuming average photon path lengths of approximately 8 cm in the
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Figure 2.4: Relative probability of Compton scattering (normalized per
unit of solid angle) versus scattering angle  for different incident photon
energies. Adapted from [9].

Table 2.2: Linear attenuation coefficients at 511 keV for soft tissue,
bone and common PET scintillators. Values adapted from [10].

Material g (cm™1)
Soft tissue 0.096

Bone 0.17
BGO 0.96
LSO 0.87
LYSO 0.82

brain and 20 cm in the torso, roughly 60% of photons are expected to
be attenuated in the brain and 85% in the body.

2.2 PET instrumentation

To detect the coincident 511 keV photons emitted from positron annihila-
tion within the patient, PET systems typically employ a ring arrangement
of detectors that surrounds the patient, ensuring complete transverse
coverage. Early PET scanners featured a single ring of detectors, with the
axial field-of-view (AFOV) determined by the number and arrangement
of available detector modules. Modern systems use multiple rings or
extended axial coverage to provide a bigger solid angle coverage. Because
511 keV photons are highly penetrating, detector materials with high
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stopping power are crucial for effectively absorbing these photons. Once
absorbed, the photon interaction must be converted into an electrical
signal that accurately records the time, position, and energy of the event,
enabling precise coincidence detection and image reconstruction. Accord-
ingly, PET detectors are composed of three primary components: the
scintillation crystal, the photodetector, and the readout electronics, see
Figure 2.5.

2.2.1 PET detector components
Scintillation detectors: inorganic crystals with activators

Scintillators can be organic or inorganic compounds and may exist in
solid or liquid forms. For PET imaging, the preferred scintillators are
dense, inorganic, and in solid form, as they offer sufficient stopping power
to efficiently absorb the 511 keV annihilation photons. Upon interaction,
primarily through the photoelectric effect, Compton scattering, or a
combination of both, the incident photon deposits its energy in the
crystal, promoting electrons from the valence band to the conduction
band, thereby creating electron-hole pairs. The number of such pairs is
proportional to the energy deposited. In pure crystals, when electrons
return from the conduction band to the valence band, the resulting photon
emission typically lies outside the visible spectrum and occurs with low
efficiency. To address this, activator ions referred to as impurities are
introduced into the crystal. These dopants create intermediate energy
levels within the band gap, facilitating the de-excitation of electrons to
the valence band by emitting lower-energy optical photons through the
process of luminescence. The key properties of an ideal PET scintillator
include:

Scintillation photons Electronic signal
( A Time
Gamma photon .
Scintillator Photosensor Electronics
——
t Y Energy

Figure 2.5: Schematic representation of a PET detector showing its
three main components.



15

2.2. PET instrumentation

e High stopping power: This depends on the scintillator’s physical

density and effective atomic number Z.g. A high Z.g increases
the probability of interaction via the photoelectric effect over the
Compton scattering which is advantageous for accurate photon
detection. For instance, BGO has a density of 7.1 g/cm?® and
Zo.g ~ 75, providing a high probability of photoelectric interactions
at 511 keV. A sufficiently thick scintillator is required to ensure
efficient photon absorption, but excessive thickness may degrade
spatial resolution. High stopping power also reduces intercrystal
scattering, thereby improving LOR determination [11] and helps
mitigate parallax errors by minimizing the depth of penetration of
obliquely incident photons [12].

High light yield or scintillation brightness: This refers to the
number of optical photons produced per unit of absorbed energy,
typically per MeV. A higher light yield improves the energy resolu-
tion by enabling more accurate estimation of the deposited energy.
For example, LSO and LYSO crystals typically produce approxi-
mately 26000-32000 photons/MeV whereas for BGO it is in the
order of 8500 photons/MeV [13], [14].

Fast rise and decay times: Short scintillation rise and decay
times enable the detector to respond rapidly to incoming photons,
offering high temporal resolution and reducing signal pile-up. While
BGO has a decay time of 300 ns, LSO and LYSO provide much
shorter decay times of about 40 ns and have a fast rise time of
approximately 70 ps, making them well-suited for time-of-flight
(TOF) applications [13], [14].

Refractive index compatibility: To ensure efficient light trans-
mission to the photodetector, the scintillator’s refractive index
should closely match that of the photodetector.

Table 2.3 compares BGO, LSO, and LYSO scintillators, given their
relevance to the work presented in this manuscript and supporting specific
design and detector decisions.
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Table 2.3: Characteristics of common PET scintillators. Values taken
from [15], [16].

Material Effective Z  Density Light yield Decay time 511

(g/cm3®)  (photons/MeV) (ns) keV/cm
BGO 73 7.13 8500 300 0.96
LSO 65 7.35 30000 40 0.87
LYSO 64 7.19 30000 40 0.82

Photodetectors

The scintillation light emitted by the crystals must be efficiently collected,
amplified and converted into an electrical signal. This process is carried
out by photodetectors, with the most common types being the photomul-
tiplier tubes (PMTs) and silicon photomultipliers (SiPMs). Historically,
PMTs were the standard in PET imaging due to their high gain and
fast response. However, their usage is gradually being phased out due
to several limitations: they are bulky, fragile, require high operating
voltages and exhibit relatively low quantum efficiency (i.e., the proba-
bility that an absorbed photon generates a signal). Additionally, their
size and sensitivity to magnetic fields limit integration into multimodal
PET/MRI systems. In contrast, SiPMs, solid-state, semiconductor-based
detectors are increasingly becoming the preferred choice for modern
PET systems as they overcome many of the challenges posed by PMTs.
SiPMs are significantly more compact and robust, making them ideal
for high-density detector configurations. They operate at much lower
voltages, typically around 20-70 V, and are immune to magnetic fields.
Furthermore, their higher quantum efficiency, especially in the blue-green
spectrum where many scintillators emit, enhances signal detection. Most
importantly, they exhibit excellent timing performance, including a very
good single-photon time resolution (SPTR), which has enabled com-
mercial PET scanners to achieve coincidence time resolutions (CTR) as
low as 200 ps FWHM [17]. A SiPM consists of an array of microcells
connected in parallel, with each consisting of a single-photon avalanche
diode (SPAD) in series with a quenching resistor. A SPAD is a type
of p-n junction diode operated at a reverse bias above its breakdown
voltage. When an optical photon hits the active area of the diode, it
generates an electron-hole pair. In the presence of a high electric field,
the electron and hole will accelerate and gain enough energy to knock
out other electrons and holes, which will trigger an avalanche of more
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charge carriers, leading to a current growing to a macroscopic level from
just a single absorbed photon. This current continues to flow until the
avalanche is quenched by reducing the bias voltage down to or below the
breakdown voltage. Then the SPAD is ready to detect another photon
[18]. The collective signal from the array of SPADs is proportional to the
number of incident photons, allowing for both accurate energy estimation
and precise timing. Despite their advantages, SiPMs require careful
optimization of parameters such as temperature sensitivity, dark count
rates and optical crosstalk, all of which can affect performance in PET
systems.

The electronics will read out the output signal from the photodetector
and further process it to extract key information, such as the timestamp
and the energy measured by each SiPM. Therefore, the selection of suit-
able electronic components is critical to achieving good time resolution
in PET imaging.

2.2.2 Pixelated and monolithic detectors

PET scintillation detectors are primarily categorized into two types: pix-
elated and monolithic. An overview of each type, including its respective
advantages and limitations is provided below.

Pixelated detectors

The standard in current clinical PET systems is the use of pixelated
detectors. In this configuration, scintillator blocks are subdivided into
arrays of smaller crystals called pixels separated by a white reflective ma-
terial that prevents inter-pixel optical photon transfer. This arrangement
confines the scintillation light to the pixel where the 511 keV photon
interaction occurred, effectively minimizing light spread and enabling
straightforward estimation of the 2D interaction position and timing.
Because the light is channeled through a single pixel, the interaction
can be localized using the signal from just one SiPM, which allows for
accurate time stamping due to the rapid rise of the waveform above
the noise level. As a result, pixelated detectors can achieve excellent
timing performance. In pixelated detectors, two factors limit the spatial
resolution: the finite size of the pixels and the lack of depth-of-interaction
(DOI) information. The intrinsic resolution of a pixelated detector can
be approximated by a Gaussian function whose FWHM is determined
by the pixel size. At the midpoint between opposing detectors, the coin-
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cidence response function has a triangular shape with a FWHM equal to
half the detector width. This FWHM increases as the source is moved
toward one of the detectors. In clinical PET systems, typical pixel sizes
range from 3 to 4 mm, imposing a limit on the achievable system spatial
resolution. Although reducing pixel size can improve spatial resolution,
it often compromises energy and TOF performance due to decreased
light output [19]. Smaller pixels also reduce detector sensitivity, as the
increased use of reflective coatings between pixels introduces more dead
space. Additionally, thick crystals, usually 15 to 30 mm, are required
to effectively stop the 511 keV photons. This introduces radial parallax
or DOI effects as illustrated in Figure 2.6 where increased radial offsets
lead to asymmetry in the point spread function. When the source is at a
radial offset, the detectors are at an angle which causes the coincidence
response function to become broader and asymmetric.

L J

Figure 2.6: Schematic representation of radial parallax error for a
source at a radial offset showing the asymmetry of the point spread
function due to the lack of DOL

This asymmetry results from discrepancies between the true interaction
site and the assumed LOR, which is inferred from the crystal surface
entry point. Moreover, the absence of DOI information imposes further
limits on the spatial resolution in long AFOV PET systems, particularly
due to axial parallax affecting centrally located events with highly oblique
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LORs. Typically, pixelated detectors do no provide DOI information
unless modifications are made to the detector design. Dual-ended readout
is a well-established method [20], but it increases costs and manufacturing
complexity because photodetectors are coupled to both ends of the
scintillator array, and DOI is estimated from the ratio of light collected
at the two ends. Alternatively, DOI can be encoded in a single-ended
readout design by utilizing controlled light sharing where the distribution
of light across multiple pixels depends on DOI and allows depth estimation
[21].

Monolithic detectors

A monolithic detector consists of a large continuous block of scintillation
material without any segmentation or gaps, typically a few centimeters
wide. When a gamma photon interacts within the crystal, the resulting
scintillation light spreads throughout the block and is collected by an array
of photodetectors (e.g., SiIPMs). By analyzing the spatial distribution
of the detected light, both the 2D position and the depth-of-interaction
(DOI) of the event can be estimated. A concentrated light spread over
a small number of photodetector pixels indicates that the interaction
occurred near the photodetectors, deep in the crystal. Conversely, a
broader light spread suggests that the interaction took place further away
from the detector array, as illustrated in Figure 2.7.

Gamma photons 7%1

Lk Scintillator

'Y

SiPM array

Figure 2.7: Schematic representation of the 2D light spread inside a
monolithic scintillator.

In monolithic detectors, the intrinsic spatial resolution depends on the
number of available scintillation photons. The response function is typ-
ically approximated by a Gaussian with a FWHM that depends on
how close the source is to the monolithic detector. Half-way between
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the two detectors the coincidence response function is approximated as
FWHM =~ % and closer to the detector face FWHM = Rj,;, where
R;nt is the individual intrinsic detector resolution. Despite their advan-
tages, monolithic detectors present two main challenges. First, accurate
positioning requires an extensive calibration process, which becomes
increasingly complex near the crystal’s edges and corners, where light
behavior becomes less predictable. Second, the timing resolution is
degraded due to the spreading of scintillation light over multiple pho-
todetector channels, resulting in fewer detected photons per SiPM and
an increased contribution from dark counts.

2.3 PET data collection and system perfor-
mance

2.3.1 Types of events

PET scanners detect pairs of 511 keV photons in coincidence, eliminating
the need for absorptive collimation to determine the origin and trajectory
of the emitted photons. This is referred to as electronic collimation,
which avoids the substantial sensitivity loss associated with mechanical
collimators, making PET the most sensitive imaging modality in nuclear
medicine. However, the two photons emitted following the positron-
electron annihilation within the subject do not always reach the PET
detectors without interaction. Along their paths, one or both photons
may undergo Compton scattering, which alters their direction and reduces
their energy. Less frequently, photons are absorbed by the photoelectric
effect and are not detected. Additionally, some photons may escape
detection entirely if their paths do not intersect the detectors, due to
the limited coverage of the detectors. As a result, detected events
are categorized into true, scattered, and random coincidences with a
typical rate of 50-70%, 20-40%, and 5-15%, respectively. The exact
proportions depend on administered activity concentration, patient size,
scanner design and acquisition parameters. Scattered and random events
degrade image quality, requiring correction techniques to ensure that the
reconstructed image accurately reflects the tracer distribution within the
patient.
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True coincidences

True coincidences occur when both gamma photons originate from the
same annihilation events, traverse the patient’s body without undergoing
any interaction, and are detected within the same coincidence time
window (CTW). These events provide accurate spatial information about
the radiotracer distribution within the body and are essential for high-
quality PET image reconstruction. However, this represents an ideal
scenario. In practice, PET data also include scattered and random
coincidences.

Scattered coincidences

Scattered coincidences occur when one or both photons undergo Compton
scattering inside the patient, resulting in a deflection from their original
paths. In the human body where tissue density is similar to that of
water, the mean free path of a 511 keV photon is approximately 7 cm [22].
However, the cross-section of the human body, even for low BMI, typically
exceeds 7 cm and is even larger for high BMI individuals, making it
likely that many of the photons will undergo Compton scattering before
reaching the PET detectors. As a result, the LORs associated with these
events no longer accurately represent the true annihilation locations.
This mispositioning introduces noise and reduces image contrast. While
scattered photons lose energy upon interaction, which allows for their
identification using energy discrimination, practical limitations in detector
energy resolution do not permit perfect rejection. Therefore, dedicated
correction techniques are required during image reconstruction to mitigate
the impact of scatter.

Random coincidences

Random coincidences occur when two unrelated photons, originating
from separate annihilation events, are detected within the same CTW.
These false coincidences do not represent valid LORs and contribute to
an increased background noise, reducing image contrast and quantitative
accuracy. The rate of random coincidences increases with both the CTW
width and the injected activity, as shown in equation:

R = 27'N1N2 (27)

where 27 is the width of the CTW, N; and Ny are the individual
detection rates, which directly depend on the activity in the scanner’s
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Figure 2.8: Schematic representation of true, scattered and random
coincidences.

FOV. Random events increase with the square of the injected activity.
Therefore, optimizing the width of the CTW and maintaining a proper
activity level are essential for balancing sensitivity and avoiding random
events. Random correction algorithms are used during reconstruction
to reject these events. Figure 2.8 is a schematic representation of true,
scattered and random coincidence events.

2.3.2 PET system performance

Having covered the fundamental physics of PET imaging and the core
components of a PET scanner, it is essential to examine the system
performance metrics that guide the design and optimization of PET
systems. A well-informed approach requires identifying the key perfor-
mance priorities and understanding the trade-offs involved. Design and
instrumentation choices inevitably impact various metrics, enhancing one
aspect often comes at the expense of another. Sensitivity is among the
most critical metrics. Even with perfect spatial, temporal, and energy
measurements, poor sensitivity, i.e., an insufficient number of detected
events will result in poor image quality. High sensitivity ensures enough
counts are acquired to produce accurate and clinically useful images.
Another major consideration is spatial resolution, which determines the
system’s ability to distinguish small structures, detect fine details, and
accurately localize lesions. This is vital across virtually all PET imaging
applications. Time resolution plays a crucial role, especially in TOF-PET
as it helps limit the propagation of noise in the image reconstruction
process. Better timing translates to improved signal-to-noise ratio (SNR)
and more precise event localization along the LOR. Energy resolution
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is equally important, as it helps eliminate scattered photon events and
reduces background counts, further enhancing image contrast and accu-
racy.

Ultimately, a key question remains: how close can current technology
bring us to the physical limits of spatial, temporal, and energy precision?
The following sections explore these performance metrics in greater de-
tail, examining the factors that influence them, the current technological
capabilities, and the remaining limitations.

Sensitivity and SNR

The sensitivity of a PET scanner is defined as the ratio of detected to
emitted gamma photons for a known activity in the absence of attenuation,
expressed in counts per second per kilobecquerel (cps/kBq). Sensitivity
plays a central role in determining the image SNR and is mainly influenced
in by the system’s geometric efficiency, which depends on the overall solid
angle coverage of the detectors and their intrinsic detection efficiency. To
put this in context, the number of detected events n in a PET scan, which
directly influences the SNR, with SNR o y/n, can be approximated by:

n ~ kAGe*T (2.8)

where A is the activity in the scanner’s FOV, G is the average geometric
coverage of the scanner, ¢ is the detector efficiency (squared because
the photons should be detected in coincidence), T is the acquisition
time and k accounts for losses due to attenuation and scatter which vary
with patients. While increasing the injected activity A or extending
the acquisition time T can improve sensitivity, both options come with
drawbacks. Higher activity raises radiation exposure, which is especially
concerning for pediatric or vulnerable populations. Longer scan durations
increase patient discomfort and limit scanner throughput. The state-
of-the-art whole-body PET scans already require up to 15 minutes.
This leaves geometric coverage G and detector efficiency € as the most
practical levers for improving sensitivity. Detector efficiency is largely
dictated by the scintillator’s stopping power and thickness. Increasing
scintillator thickness improves photon absorption but introduces trade-
offs: it can degrade timing resolution, increase system cost, and offer only
marginal benefits due to the exponential nature of photon attenuation.
To overcome these limitations, many research efforts have focused on
enhancing sensitivity by increasing solid angle coverage, particularly by
extending the scanner’s AFOV. However, the sensitivity gain resulting
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from expanding the AFOV depends on the size and axial extent of the
imaged object. For single-organ imaging, the gain follows roughly that
of a point source, increasing linearly with scanner length until it reaches
a plateau. In contrast, for extended objects or whole-body, sensitivity
increases approximately quadratically with AFOV. Depending on the
scanner design and object dimensions, sensitivity gains can range from a
factor of 10 to 40 [23], [24]. Ultimately, the decision to extend the AFOV
should be guided by the specific imaging application and the potential
benefits in terms of sensitivity and image quality for the targeted use
case.

Timing resolution, TOF and SNR

With the same number of detected events, the SNR of a PET image
can be improved if the system can extract more information from each
event, particularly precise timing information. In PET imaging, three key
measurements are recorded for each event: the interaction positions of the
gamma photons in the detectors, their arrival times, and the deposited
energies. Each of these contributes to localizing the annihilation event
and reconstructing the radiotracer distribution in the body, but they are
all subject to uncertainties due to detector limitations and statistical
fluctuations. In an ideal system, the difference in arrival times of the
two photons is measured accurately (At = to — t1), and the position of
the annihilation event along the LOR can be precisely localized relative
to the midpoint between the two detectors according to Ax = %‘t
where ¢ is the speed of light (see Figure 2.9). In practice, however, the
arrival time of each photon cannot be measured perfectly due to the
statistical nature of scintillation light emission and transport, as well as
limitations of detectors and electronics. The resulting uncertainty in the
time difference between the two detected photons is referred to as the
coincidence time resolution (CTR) or the system’s TOF resolution. This
uncertainty is typically modeled as a Gaussian distribution as shown in
Figure 2.9, with its FWHM equal to the TOF resolution. Incorporating
TOF information replaces the uniform probability assumption used in
non-TOF PET, where all voxels along the LOR are equally probable
to be the source of emission, with a Gaussian kernel centered around
the estimated annihilation point. The time resolution of a PET system
mainly depends on the scintillator’s decay time and light yield, the
photodetector photon detection efficiency (PDE), single photon time
resolution (SPTR), and the related electronics [25]. The current state-
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Non-TOF TOF

At=t2—t1

Figure 2.9: Illustration of the effect of time-of-flight on event localization
with a certain probability.

of-the-art clinical PET systems typically achieve a TOF resolution of
approximately 200 ps FWHM, corresponding to a spatial uncertainty
of about 3 cm along the LOR. This localization, when incorporated
in the image reconstruction process, reduces the noise and accelerates
its convergence. By constraining the probable annihilation location,
TOF information enhances SNR compared to non-TOF systems, thereby
increasing the system’s effective sensitivity. The benefit of TOF increases
with timing resolution and becomes more pronounced for larger patients,
where the spatial uncertainty Az constitutes a smaller fraction of the
patient’s diameter D, which gives a strong localization advantage. The

SNR gain from non-TOF to TOF is proportional to /4 [26], [27], [28].

Spatial resolution

Spatial resolution in PET imaging refers to the system’s ability to ac-
curately localize annihilation events and distinguish two closely spaced
points as separate entities. It is a critical performance metric that de-
pends on the intrinsic resolution of the detectors, as well as physical
effects such as positron range and photon non-collinearity. The combined
effect of these factors can be modeled as the convolution of their respec-
tive resolution response functions. The following quadratic summation
commonly approximates this:

Rags ~ \ Ry, + Rlunge + Riges (2.9)
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Here, Rqer represents the intrinsic detector resolution, Riange the con-
tribution from the positron range, and Rjgge accounts for the deviation
from perfect 180° photon emission (non-collinearity). The positron
range depends primarily on the selected radiotracer and its positron
energy, while non-collinearity is a geometric limitation that scales with
the PET system’s diameter. Since both the positron range and photon
non-collinearity are fundamental physical limitations largely dictated by
tracer choice and system geometry, optimizing the detector resolution
becomes the primary avenue for improving overall spatial resolution. One
additional factor that can degrade spatial resolution is the parallax error,
which arises when photons enter the detector at oblique angles. This
effect varies across the FOV, with greater degradation toward the edges.
It is also important to note that the limited number of detected events in
a PET scan results in a low SNR, which in turn contributes to reduced
image resolution. Therefore, efforts to enhance detector performance,
increase sensitivity, and improve event localization, all contribute to a
superior reconstructed image quality. Another important consequence of
limited spatial resolution is the partial volume effect (PVE), which
poses a significant challenge when quantifying activity in small lesions
or anatomical structures [29]. Due to the blurring introduced by the
system’s point spread function (PSF), small objects appear smeared out
in the reconstructed image and consequently exhibit a lower measured
activity concentration than their true value as shown in Figure 2.10
adapted from [30]. The peak activity recovered from such a structure is
directly influenced by its size relative to the image resolution; smaller
objects suffer more pronounced losses. Therefore, improved spatial reso-
lution not only enhances visual detail and the ability to resolve adjacent
structures but also plays a vital role in accurate quantification. A study
has shown that if the object’s size is at least three times greater than the
system’s spatial resolution, then a small region of interest (ROI) placed
within the object can provide a reliable estimate of its true activity
concentration [10]. Consequently, minimizing the PVE through superior
system resolution is essential for both qualitative interpretation and
quantitative accuracy in PET imaging.

Energy resolution

Energy resolution refers to the ability of a PET system to accurately
measure the energy of incoming photons and distinguish between ra-
diation of different energies. Good energy resolution enables effective
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Figure 2.10: Illustration of the partial volume effect in a cylindrical
phantom containing six spherical inserts (diameters 6, 9, 12, 15, 18
and 24 mm) with a sphere-to-background contrast ratio of 4:1. The
phantom was blurred with a 3D Gaussian PSF with a 6-mm FWHM.
The images on the left show a transaxial slice of the original image (top)
and the blurred image (bottom) and the graph on the right shows a
profile through the spheres. The blue line represents the true data and
the red line represents the blurred data. Adapted from [30].

rejection of scattered coincidences, whose photon energies are reduced
relative to the 511 keV photons that reach the detector without prior
interaction. The energy resolution of a PET detector mainly depends on
the scintillator’s light output, as producing more optical photons during
scintillation allows for a more precise estimate of the deposited energy.
The interaction point within the crystal also influences this, since optical
photons might escape the crystal before detection. Moreover, statistical
fluctuations in the photodetector response add to the broadening of the
energy spectrum. This energy distribution is usually represented as a
Gaussian curve, with a photopeak at 511 keV and a FWHM indicating
the system’s energy resolution. Due to the finite energy resolution of real
systems (typically 10%), many of the scattered photons have energies
that fall within the broadened photopeak, making them indistinguishable
from true coincidences. The narrower the photopeak, the better the sys-
tem can discriminate against scattered events. Scattered events, similar
to random events, contribute to the image background and reduce con-
trast because they result in mispositioned LORs that do not accurately
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reflect the true activity distribution within the FOV. Therefore, improved
energy resolution directly contributes to a reduction in background noise
and enhanced image contrast.

2.4 PET image reconstruction

Following data acquisition (measured LORs), the next step is image
reconstruction which aims to produce an accurate representation of the
tracer activity distribution A in the subject based on the measured data
y. Mathematically, this process can be represented as

y=HA+e (2.10)

where H is the system model or response matrix, which accounts for
the physics and geometry of the PET system, and e represents the
additive noise present in the measured data y. y consists of projection
data, commonly referred to as sinograms. While data acquisition is
three-dimensional, Figure 2.11 shows a two-dimensional representation
as a function of the radial distance and projection angle. To recover the
tracer distribution A, various reconstruction methods are employed in
PET. These methods are broadly classified into two categories: analytic
and iterative techniques.

2.4.1 Analytic reconstruction

The filtered-back-projection (FBP) algorithm is one of the most com-
monly used analytic reconstruction methods to approximate a solution
to equation 2.10, as the inverse problem is ill-posed and does not have
a unique exact solution. FBP works by back-projecting the measured
data uniformly along each LOR, because the original activity distri-
bution along the LOR is lost during the forward projection [31]. By
repeating this process for all measured projection angles and applying
a filter (typically a ramp filter) before backprojection to compensate
for undersampling of mid- to high-spatial frequencies, FBP generates
a superposition of back-projections that approximates the true activity
distribution. Modifying the ramp filter by adjusting the cutoff frequency
allows control over noise (represented by high-frequency components)
while preserving spatial resolution. Although FBP is straightforward to
implement, computationally efficient, and a linear method, it does not ac-
count for the noise statistics of the data or model non-ideal effects of the
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Figure 2.11: Illustration of the sinogram coordinates 6 and r.

scanner, such as intercrystal scatter, positron range and non-collinearity
of annihilation photons. Since analytic reconstruction methods were not
used in this work, and are rarely used in modern PET scanners, we will
not discuss them further.

2.4.2 Statistical iterative reconstruction: MLEM

Statistical iterative reconstruction methods have largely replaced analytic
approaches in nuclear medicine because of their ability to model the
noise characteristics of the measured projection data and incorporate
the physics of PET and the acquisition process. Among these, the
most widely used algorithms are the maximum likelihood expectation
maximization (MLEM) and its accelerated variant, the ordered subset
expectation maximization (OSEM). The goal is to estimate the activity
distribution A that best explains the measured projection data y. This
is achieved by defining an objective or cost function that measures the
similarity between the estimated projections and the measured data.
Since the radioactive decay follows a Poisson process, the appropriate
choice for this objective function is the Poisson log-likelihood which is
maximized using the expectation maximization (EM) framework. This
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leads to the MLEM algorithm, mathematically expressed as:

AK)
(k+1) _ T y
A B e <H)\(k) +e> (211)

where:

e H is the system response matrix that describes the physics and
geometry of the imaging process.

o A* 1) is the updated estimate of the activity distribution after
iteration k, starting from an initial uniform estimate \(©).

e HMA®) 1 e is the forward projection of the current estimate of the
activity distribution with the noise contribution.

H)\(+)+e is the ratio of the measured to estimated projections,
representing the mismatch in projection space.

° HT(m) is the backprojection operation, which maps this
mismatch from projection space back into image space and serves
as a correction term for the current image estimate.

e HT1 represents the sensitivity image, accounting for the system’s
spatially varying detection sensitivity (normalization term).

Figure 2.12 shows the flow of the algorithm. The OSEM algorithm
accelerates convergence by dividing the projection data into subsets
and updating the estimate after each subset rather than using all the
projections.

While the MLEM algorithm offers significant advantages over analytic
reconstruction methods, it also has certain limitations that are important
to highlight in the context of this work. As the number of iterations
increases, image contrast improves; however, this also leads to amplifi-
cation of noise, which degrades the overall SNR. Additionally, MLEM
enforces non-negativity constraints on the reconstructed image, which
can cause overestimation of activity in regions with low counts. Finally,
compared to FBP, MLEM requires substantially more computation time
due to its iterative nature. To address some of these limitations and
further enhance reconstruction quality, specific implementations such
as time-of-flight (TOF) and resolution modeling can be incorporated
into the MLEM framework. The time-of-flight (TOF) implementation
involves convolving the system matrix with a TOF kernel modeled as a



31 2.4. PET image reconstruction

Initial estimate 1(©)

Measured data y

Forward project

HA® + ¢

Update image Compare with measured
projections

1 y
e H ()
*HT1 HA®) + e

‘ Normalize H Backproject ratio |

Figure 2.12: Flow diagram of the maximum likelihood expectation
maximization algorithm.

Gaussian with FWHM corresponding to the system’s timing resolution.
This limits the backprojection and forward-projection contributions to
a spatially localized region along each LOR. The resolution modeling
implementation uses a Gaussian kernel with a FWHM matching the
system’s spatial resolution, which is applied to the image estimate at
each iteration before the forward projection step.

In this work, two MLEM-based algorithms were employed to process
data from the various simulated system designs. Initially, the Quantita-
tive Emission Tomography Iterative Reconstruction (QETIR) software,
an in-house developed tool, was used for the ring-based scanner simula-
tions. However, by the time the flat-panel design was studied, another
in-house developed package, PETRecon, was adopted. This tool is opti-
mized for non-conventional geometries and leverages GPU acceleration
to handle the computationally intensive components of image reconstruc-
tion.

2.4.3 Image-degrading effects

While considerable effort is invested in optimizing the design of PET
systems to improve sensitivity, spatial resolution, timing and energy
resolution, image quality is still affected by various physical and techno-
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logical limitations. These image-degrading effects stem from fundamental
physics, such as positron range, photon non-collinearity, photon absorp-
tion and scatter, as well as imperfections in the instrumentation and
detection process. Recent image reconstruction algorithms play a crucial
role in mitigating these effects. As was just discussed, statistical recon-
struction methods, for instance, can incorporate models of the imaging
system through the system matrix H, as well as account for noise through
a noise term e. These models enable the correction of several image-
degrading factors, such as attenuation, scatter, random coincidences, and
detector response non-uniformities. However, the reconstruction process
is complex, and the system models are only approximations. Therefore,
ongoing developments aim to improve both the modeling accuracy and
computational efficiency to ensure that the reconstructed image more
closely resembles the true radiotracer distribution.

Attenuation

Attenuation occurs when one or both annihilation photons fail to reach
the detector, typically because they are scattered out of the FOV via
Compton scattering. Photoelectric absorption in soft tissue is negligible
at the high energy of PET photons (511 keV). Based on equation 2.5,
the probability of a single photon traveling a distance z in tissue without
interaction and reaching the detector is:
I(x)
P = —= =exp(—pux 2.12
) p(—px) (2.12)
where p is the linear attenuation coefficient at 511 keV. Similarly, the
second photon traveling the remaining distance D-x has a probability:

I(D —x)

Py = 1(0)

— exp(—pu(D — ) (2.13)
where D is the total path length for both photons along the LOR. The
joint probability that both annihilation photons are detected (i.e., a
coincidence event) is the product of both probabilities:

Peoine = P1 X Py = exp(—,uD) (214)

This expression depends only on the total path length D through the
object along the LOR, not on the annihilation location. This property
greatly simplifies attenuation correction in PET. Currently, the most
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common method for attenuation correction uses Computed Tomography
(CT) data from hybrid PET/CT systems. A CT scan performed at lower
X-ray energies (typically 20-150 keV) is used to generate an attenuation
map, which is then scaled to 511 keV to account for the energy of PET
photons.

Scatter and randoms

Although scattered photons lose energy upon interaction, discriminating
them from unscattered (true) events is challenging due to the limited
energy resolution of PET detectors. Additionally, true events may de-
posit only a portion of their energy within the detector, leading to energy
measurements that overlap with those of scattered events. Consequently,
energy-based discrimination alone is insufficient to fully eliminate scat-
tered coincidences. To address this, most PET systems use a relatively
wide energy window, typically between 450 and 650 keV, balancing be-
tween rejecting scattered events and retaining true coincidences. Various
scatter correction techniques have been developed to reduce the impact
of scattered photons on image quality, including single scatter simulation
(SSS) and energy-based methods [32], [33]. Regarding random coinci-
dences, their rate can be estimated from the singles count rate using
equation 2.7, which requires direct measurement of singles at the detector
level. An alternative approach involves implementing a delayed coinci-
dence time window, where only random events are recorded, provided
the delay is sufficiently long to exclude true coincidences.

A detailed discussion of these scatter and random correction techniques
is beyond the scope of this work. To maintain focus on other aspects
influencing PET design and performance, scattered and random events
were excluded prior to reconstruction using Monte Carlo simulation
tags. This choice avoids introducing additional uncertainties inherent to
imperfect correction methods.

2.5 Multimodal imaging: Hybrid PET/CT

Most current clinical PET systems are integrated with a CT component,
enabling the acquisition of both functional and anatomical information in
a single imaging session, which is beneficial for patients. The anatomical
details provided by CT enhance the localization of tracer uptake seen
in the PET image, allowing clinicians to more accurately identify the
anatomical structures associated with metabolic activity. In addition to
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localization, CT also provides an attenuation map derived from tissue
density information acquired at X-ray energies (typically 20-150 keV).
This map is then converted to the PET photon energy of 511 keV to
perform attenuation correction during image reconstruction - an essential
step for quantitative PET imaging. To ensure proper alignment, the
CT and PET components are arranged sequentially in the same scanner
gantry. The patient remains on the same bed and undergoes the CT
scan first, followed immediately by the PET scan, minimizing motion
and simplifying image co-registration.

Having reviewed the fundamentals of PET physics, instrumentation
and image formation, in the next chapter, we will review recent advance-
ments in PET, with a detailed discussion of Monte Carlo simulation and
performance evaluation standards, both of which serve as key tools used
throughout this thesis.



Chapter 3

Recent advancements in
PET

3.1 Introduction

Over the past three decades, PET has undergone transformative ad-
vancements that have significantly enhanced its clinical and research
capabilities. One major milestone was the introduction of fully 3D acqui-
sition and reconstruction by removing the interplane septa [34], which
allowed for improved sensitivity. This was followed by the implementation
of statistical iterative reconstruction algorithms that model the Poisson
nature of PET data [35]. Another key development was the integration
of CT imaging for attenuation correction [36]. In parallel, significant
advances in detector technology have enabled PET to make a substantial
leap forward in the field of molecular imaging. The introduction of fast,
high light-yield LSO scintillators enabled the implementation of TOF-
PET [37], [38], a concept initially proposed in the 1980s. Furthermore,
the evolution of PET photodetectors from PMTs to SiPMs [39], [40]
brought substantial improvements in timing resolution and compactness,
establishing SiPMs as the detector of choice for the new generation of
(TOF-)PET systems. More recently, efforts to enhance spatial resolution
and retrieve DOI information have intensified, with monolithic detec-
tors gaining attention due to their superior intrinsic resolution and DOI
capabilities. At the system level, the pursuit of higher sensitivity has
revived interest in extended AFOV designs, initially proposed in the
1990s. Several long AFOV systems have been developed, offering higher
image quality, and acquisitions at lower injected dose or shorter times.

35
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However, the high cost of the additional detectors required to extend the
AFOV has limited the widespread adoption of these systems, prompt-
ing research into more affordable alternatives. To address this, several
groups have proposed and simulated PET designs incorporating axial and
transverse detector gaps, enabling AFOV extension without significantly
increasing system cost. In addition, flat-panel PET configurations, first
introduced in the 1990s, have been revisited for their potential to reduce
costs further and provide the flexibility of an open PET geometry for
various applications. Furthermore, the growing integration of artificial
intelligence (AI) and in particular, deep learning (DL) in medical imaging
has driven the development of advanced algorithms across multiple levels
of the PET imaging chain. At the detector level, DL techniques have
been applied to signal processing tasks; at the system level, they have
been utilized to enhance and/or accelerate image reconstruction; and at
the image level, they have been implemented for post-processing tasks
such as denoising and image restoration.

In this chapter, we cover the most relevant advancements in PET
detectors, system design and deep learning-based image restoration. We
also describe the details of Monte Carlo simulations and the NEMA
standards to evaluate the performance of PET systems, including modi-
fications proposed for emerging PET designs.

3.2 PET technology advancements

3.2.1 Time-of-flight

Time-of-flight information reduces the localization uncertainty along
the LOR by constraining the annihilation site. Rather than assuming
a uniform probability across all voxels along the LOR, the emission
probability is modeled with a kernel of finite width determined by the
timing uncertainty. This distribution is typically Gaussian with a FWHM
given by the localization uncertainty Az = %‘t. For example, a timing
resolution of 300 ps corresponds to a localization uncertainty of 4.5 cm
(FWHM). Although the intrinsic spatial resolution of PET systems is
on the order of millimeters, TOF measurements do not directly improve
spatial resolution; instead, they improve the image SNR. Although the
concept of TOF-PET dates back to the 1980s, early systems were limited
by the available detector technology. The introduction of fast scintil-
lators, such as lutetium oxyorthosilicate (LSO) and lutetium-yttrium
oxyorthosilicate (LYSO), with high light output and stopping power,
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enabled the real benefit of TOF-PET systems to be explored with the
first commercial TOF-PET scanner (Philips Gemini TF) in 2006, which
used LYSO crystals. In [41] Conti highlighted that the benefits of TOF
become more pronounced in larger patients, and is essential in studies
with low counts or limited transaxial coverage. Building on this, Karp et
al. [42] demonstrated, using clinical data, that TOF reconstruction offers
higher contrast recovery for lesions and faster reconstruction convergence,
particularly in larger patients. Similarly, another clinical study [43] found
a correlation between patient body mass index (BMI) and SNR gain,
noting improvements in lesion definition, image uniformity, and noise
reduction with TOF. Since limited-angle reconstruction is an area of
interest for this work, it is relevant to consider the impact of TOF in
scenarios where the angular coverage is limited. Such configurations have
been explored for applications including breast imaging, in-beam PET
requiring open geometries, and cost-effective designs using partial rings or
flat panels. A simulation by Vandenberghe et al. [44] demonstrated that
improved timing resolution reduces the number of angular views needed
for a good data reconstruction. Likewise, a Monte Carlo simulation for a
breast scanner design [45] showed that a two-thirds ring scanner with
300 ps timing resolution achieved performance comparable to a full-ring
non-TOF scanner, as the TOF gain compensated for sensitivity losses
due to missing LORs. Although this work does not explicitly compare
TOF and non-TOF designs, TOF reconstruction was implemented due
to the documented benefits and the suitability of the detectors used
in these systems, which possess the necessary characteristics for TOF
measurements.

3.2.2 Depth-of-interaction

One of the main limitations affecting spatial resolution in PET is the lack
of depth-of-interaction (DOI) information, which causes radial parallax
error in the transverse plane for off-center sources, and axial parallax
error for oblique LORs in 3D PET or systems with extended AFOV. Sev-
eral DOI-encoding methods have been developed for pixelated detectors,
including multilayer crystal arrays [46], phoswich detectors [47], configu-
rations with multiple scintillator layers each coupled to a photosensor
[48], and dual-ended readout systems [49]. However, each of these meth-
ods faces drawbacks such as degraded timing resolution, reduced light
collection efficiency, complex signal readout, and high manufacturing
costs. Blinder et al. [50] demonstrated that using DOI information with
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dual-layer LSO-LYSO crystals in a high-resolution research tomograph
improved spatial resolution and partially corrected for the parallax error.
A simulation study further showed that while DOI encoding improves
spatial resolution in all dimensions, the most significant benefit lies in
reducing radial parallax error compared to axial parallax error [12]. Thus,
whether in standard AFOV or long AFOV systems, DOI capability is
crucial for optimizing spatial resolution. Monolithic scintillator detectors
have gained increasing attention in recent years due to their inherent
DOI capability and superior intrinsic spatial resolution. These detectors
have been implemented in various research prototypes and commercial
small-animal PET scanners. For example, monolithic LYSO crystals
measuring 25.4 mm x 25.4 mm x 8 mm have been used in preclinical
scanners, achieving a volumetric spatial resolution of 1 mm? in the S-
cube system [51]. The performance of larger monolithic scintillators has
also been widely studied. A 22-mm-thick LYSO detector achieved 1.7
mm FWHM spatial resolution using back-side readout only [52] and
1.1 mm FWHM with dual-sided readout [53]. A 15-mm-thick LYSO
crystal achieved 1.8 mm resolution [54]. Moreover, a study employing
a 50 mm x 50 mm x 16 mm LYSO detector with a neural network and
mean nearest neighbor positioning algorithms [55] reported a 2D spatial
resolution of 1.14 mm with DOI encoding across up to six layers. Despite
these advances, monolithic scintillators present two major challenges: the
lengthy calibration procedures required for accurate event positioning
and limitations in timing estimation due to the spreading of the scintil-
lation light over multiple SiPMs. Several studies have addressed these
challenges and proposed solutions to improve both calibration efficiency
and timing performance [56], [57], [58].

After presenting the key roles of TOF and DOI encoding in overcoming
major limitations of PET systems, it is evident that the development
of detectors with both excellent CTR and precise DOI capability is
fundamental for the next generation of high-performance PET scanners.

3.3 PET design advancements

3.3.1 Long axial field-of-view PET

The pursuit of longer AFOV PET systems has been driven by two key
advantages: a substantial increase in system sensitivity and the ability
to perform simultaneous whole-body imaging. Extending the AFOV
allows for greater solid angle coverage, enabling a large fraction of the
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patient to be imaged within the same time frame. As mentioned in the
previous chapter, the sensitivity gain from extending the AFOV strongly
depends on the size and axial extent of the imaged object. This is well
illustrated in the study by Vandenberghe et al. [23], which provides
detailed calculations of sensitivity gain for both point and line sources
of varying lengths as the AFOV increases. From a purely geometric
perspective, for a central point source, the largest gain occurs within
the first 50 cm to 1 m of scanner length, where up to 80% of the solid
angle can be covered. A similar trend is observed for a 10-cm line
source, representative of single-organ imaging. For longer line sources,
representing volume sensitivity, the increase is less pronounced. For a 1-m
line source, roughly corresponding to combined brain and torso imaging,
only about 50% of events intersect the detector ring with a 1-m AFOV
system, decreasing to 25% with a 2-m source. Thus, to further increase
geometric sensitivity, the AFOV must be extended beyond 1 m. The
authors also examined more realistic imaging situations by accounting
for attenuation within the object and limited detector efficiency, both of
which become increasingly important at long AFOVs due to the higher
fraction of oblique LORs. These oblique LORs suffer greater attenuation
in the body because of their longer photon path length in the body,
while more detector material is traversed, increasing detection efficiency.
However, this effect is outweighed by the increased absorption in tissue.
The combined effects, including event selection criteria, are summarized
in Figure 3.1 adapted from [23]. The graphs compare the sensitivity
gain of extended AFOV scanners relative to a conventional 20-cm system
for both a central point source and a 2-m line source. For a point
source, gains of up to threefold are achieved with an AFOV of 70-80
cm. For extended sources, 1-m and 2-m AFOV systems achieve gains
of approximately 15-fold and 40-fold, respectively. While single-organ
imaging and lesion quantification benefit from increased point source
sensitivity, the primary motivation for extending AFOVs has been to
increase volume sensitivity, which is essential for comprehensive brain to
torso imaging in clinical practice.
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Figure 3.1: Sensitivity gain for different AFOVs versus a 20-cm AFOV
PET system for a central point source (left) and for a 200-cm-long line
source (right). The different curves correspond to combined effects where
acc refers to detector acceptance, det refers to the detection with 20-mm-
thick LYSO crystals, att is the attenuation caused by a 20-cm phantom
and sel corresponds to the event selection criteria. Adapted from [23].

While the concept of long AFOV PET was first proposed in the 1990s and
a few prototypes were built, it was only about a decade ago that the idea
was revived with significant momentum. The EXPLORER consortium
spearheaded this resurgence, a collaboration between the University of
California Davis (UC Davis), United Imaging Healthcare Shanghai, and
the University of Pennsylvania, which developed the first long AFOV
systems. The uExplorer PET/CT scanner, completed in 2018 at UC
Davis, was the first of its kind with an AFOV of 194 cm and a CTR of 505
ps. It uses LYSO crystals measuring 2.76 mm in width and 18.1 mm in
depth, achieving a spatial resolution of approximately 3 mm at the center
of the axial and transverse FOV, increasing to 4.7 mm at radial and
axial offsets [59]. Another system of the EXPLORER collaboration, the
PennPET Explorer developed at the University of Pennsylvania, initially
featured an AFOV of 64 cm that was later extended to 142 cm [60].
More recently, Siemens introduced the Biograph Vision Quadra PET/CT
system, a commercially available scanner with a long AFOV of 106 cm.
This system, based on the Biograph Vision 600 PET/CT technology
with a 26.3 cm AFOV, initially operated with a limited acceptance angle
(maximum ring difference MRD=85) and was later upgraded to support
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Axial length of the PET system

Figure 3.2: Schematic showing the axial acceptance angle in a PET
system.

the full angle (MRD=322) [61]. Figure 3.2 shows a schematic of the
acceptance angle 6 and how it increases with the AFOV of the PET
system. A comparison between images from both systems is shown in
Figure 3.3 taken from [62].
To show the effect of extending the AFOV using a given detector technol-
ogy, Table 3.1 compares the performance of the PennPET Explorer with
three and six rings, and the Siemens Biograph Vision Quadra with MRD
85 and MRD 322. General Electric (GE) also entered this field with the
digital Omni Legend PET-CT system, which features a 32 cm AFOV
and is the first commercially available clinical PET/CT system using
BGO crystals integrated with SiPM [63]. Furthermore, United Imaging
recently expanded its portfolio beyond the uEXPLORER by introducing
two additional systems based on updated technology: the uMI Panorama
GS with an AFOV of 148 cm [64] and the uMI Panorama with a shorter
AFOV of 35 cm [65]. The construction of PET scanners with varying
AFOV lengths reflects the fact that the optimal scanner length depends
strongly on the intended clinical or research application. While longer
AFOV systems provide unparalleled sensitivity and enable total-body
dynamic imaging, they also introduce certain challenges. These include
higher rates or random and scattered coincidences from the oblique events
and increased axial parallax errors due to the detection of very oblique
LORs [12]. Moreover, the high cost of these systems remains a significant
barrier, limiting widespread adoption in most clinical centers, which
instead opt for standard AFOV PET. As a result, trade-offs between
AFOV length, system performance, and affordability continue to shape
the design and deployment of PET scanners.

In this thesis, we first propose and evaluate a medium-cost extended
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Figure 3.3: Maximum intensity projection (top) and axial (bottom)
PET images of a 57-year-old female with non-small cell lung cancer. The
SAFOV refers to the Biograph Vision 600 with an acquisition time of 16
minutes, while the LAFOV refers to the Biograph Vision Quadra with
varying acquisition times. Adapted from [62].

Table 3.1: Characteristics and performance of the PennPET Explorer
with three and six rings, and the Biograph Vision Quadra with MRD 85
and MRD 322. Values are taken from [60], [61], [66], [67].

PET system PennPET Explorer Biograph Vision Quadra
3rings 6 rings MRD 85 MRD 322
Crystal type & size LYSO: 3.86 x3.86 x 19 mm? LSO: 3.2 x 3.2 x20 mm?
AFOV (cm) 64 142 106
Axial acceptance angle 40° 62° 18° 522
TOF resolution (ps) 256 250 225 228
NEMA sensitivity @ center (cps/kBq) 54 140 83 176
Spatial resolution @ center (FWHM)

Transverse (mm) 3.9 3:9 3.1 3.4
Axial (mm) 3.9 4.4 3.4 515
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AFOV ring-based PET design based on monolithic LYSO detectors.
The system combines cost-effectiveness, modularity, superior spatial
resolution, and enhanced sensitivity compared to the state-of-the-art
PET systems. Detailed descriptions and performance evaluation are
provided in Chapter 4.

3.3.2 Sparse PET designs

The long AFOV systems described above represent the most effective, but
also the most expensive solution for increasing system sensitivity. Their
cost roughly scales with the axial length, making them too expensive to
most clinical centers. To achieve similar benefits without incurring such
significant costs, researchers have explored optimizing system geometry.
One such approach involves introducing detector gaps in the transverse
and/or axial directions, enabling extension of the AFOV without adding
detectors and resulting in a sparse configuration. Although this reduces
sensitivity and creates a non-uniform sensitivity profile, it still allows
for simultaneous imaging of multiple organs. Beyond cost reduction,
sparse PET designs have been motivated by applications such as in-beam
PET. The first open-type PET system, “OpenPET”, was developed to
accompany therapeutic beams and monitor the interactions between beam
ions and irradiated tissue [68]. In another study, a Monte Carlo simulation
doubled the AFOV of the Siemens Biograph mCT by introducing 4 mm
physical gaps between LSO crystals within each detector block. While
the extended mCT exhibited increased noise compared to the original
mCT, the noise distribution remained relatively uniform [69]. The same
group conducted a similar simulation study on the Siemens Biograph
Vision, doubling the AFOV by adding 32 mm gaps between detector
module rings, yielding an AFOV of 48 cm. However, they reported
degradation in the axial spatial resolution. Continuous bed motion of
the extended sparse design, with an axial extent equal to twice the
axial detector block width, helped correct for the non-uniform sensitivity
profile caused by these gaps [70]. In a more clinical setting, the PennPET
explorer initially operated with three rings of 16.4 cm active length due
to data readout limitations, leaving 7.6 cm gaps between rings. This
setup inspired a simulation study where their group varied gap sizes from
1 cm to 10.9 cm and assessed performance metrics for each configuration
[71]. They concluded that gap sizes should ideally not exceed half the
width of a detector ring and that the optimal design depends on the
intended application and clinical performance needs. Ultimately, sparse



Chapter 3. Recent advancements in PET 44

PET designs involve a trade-off between sensitivity improvements and
increased axial coverage. The configuration should be chosen based on
the specific application it is intended for.

3.3.3 Flat-panel PET

Since all the systems described earlier use ring-shaped detector con-
figurations, extending their AFOV typically requires adding numerous
detectors, which significantly increases system cost. In the pursuit of
further cost reductions, the concept of a flat-panel PET geometry, first
introduced at IEEE MIC in 1990, has been revisited by several groups.
A key limitation of this design is the missing data in the transverse
direction, which results in elongation artifacts in the reconstructed image
in the direction towards the panels. While ring-based PET systems
provide full 2D angular coverage with a 180° projection range, flat-panel
geometries inherently suffer from a reduced angular coverage due to gaps
between the panels. The percentage of the projection range available is
determined by both the size of the flat panels and the separation distance
between them. Figure 3.4 illustrates the angular projection range in
the transverse view. The limited angular coverage results in elongation
artifacts in the direction of the detector panels, as shown in Figure 3.4a
where the obscured regions are visible. Figure 3.4b highlights some of the
missing projections (i.e., undetected LORs) caused by the gaps between
the panels.

(b)

Undetected
LORs

Obscured
regions

<]

Figure 3.4: Transverse view of a dual flat panel PET illustrating (a)
the obscured regions and (b) the undetected LORs due to limited angular
coverage.

However, studies have shown that with sufficiently good TOF resolution,
full angular coverage is not strictly necessary [45]. Various research



45 3.4. Performance evaluation standards: NEMA with modifications

groups have simulated and developed flat-panel systems to benefit from
the flexibility of an open geometry. Applications include breast PET
systems [72], MRI-compatible PET inserts [73], and systems designed
to facilitate biopsy guidance and clinical intervention during acquisition
[74]. Large-scale flat-panel PET systems have also been simulated for
whole-body imaging, featuring an adjustable transaxial FOVs to enhance
sensitivity [75]. A recent simulation study evaluated configurations with
varying DOI resolutions and TOF resolution down to 70 ps aiming to
match the performance of the Siemens Biograph Vision used as a reference.
The results demonstrated that reducing the panel separation increased
sensitivity and improved spatial resolution, particularly when combining
DOI capability with 70 ps TOF. Nevertheless, it is important to note that
achieving a system-level TOF resolution of 70 ps remains beyond current
technological capabilities. Our MEDISIP group previously proposed the
Walk-Through PET (WT-PET), a monolithic-based flat-panel design
with an extended AFOV that combines cost-effectiveness, compactness,
high patient throughput and superior spatial resolution [3]. The design
features two vertical flat panels, each 106 cm high and 71 cm wide,
separated by a 50-cm gap. This compact design reduces detector volume
and surface area, contributing to lower costs while eliminating the need
for bed positioning, which supports higher patient throughput. The
panels are based on monolithic detectors with DOI capabilities, allowing
them to be as close as reasonably possible to the patient to maximize
solid angle coverage and thus sensitivity, and to minimize non-collinearity
effects, improving spatial resolution. A simulation study evaluated the
performance of a TOF-capable BGO-based WT-PET design [76]. BGO
was initially chosen for its cost advantage, being 2-3 times cheaper than
LYSO. However, LYSO’s superior TOF resolution [77] makes it a more
promising candidate for this geometry, as it can mitigate elongation
artifacts arising from limited angle coverage.

In this thesis, we will simulate and evaluate a LYSO-based WT-
PET design, including a variant with gaps and a reduced AFOV. The
methodology and results will be detailed in Chapter 5.

3.4 Performance evaluation standards: NEMA
with modifications

Computer simulation has been an essential tool for designing and eval-
uating PET systems, whether developing new systems or modifying
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existing ones. It allows for the creation of detailed models of medical
imaging system design and detectors, followed by virtual data acquisition.
The simulated output can then be analyzed to assess various perfor-
mance metrics, providing a comprehensive evaluation before physical
implementation.

3.4.1 Monte Carlo methods

Monte Carlo (MC) methods are numerical techniques based on stochastic
sampling and statistical analysis, widely used in medical physics to
develop nuclear imaging and therapy treatment planning systems [78].
Given the random nature of the radioactive decay and the complex
interactions of radiation and particles with matter, which is the basis of
medical imaging physics, analytical or experimental solutions are rarely
easy to achieve. MC methods have therefore found extensive applications
across nuclear medicine imaging, diagnostic radiology, radiation therapy
planning, and dosimetry. In PET, MC simulations have proven to be a
powerful tool, adopted by research groups worldwide. Several software
packages have been developed for this purpose, with GATE (Geant4
Application for Tomographic Emission) [79] being one of the most widely
used. GATE leverages the well-validated physics models of Geant4 for
use in medical imaging, while also offering user-friendly features and
advanced visualization tools.

GATE Monte Carlo simulations

GATE is an open-source software platform that is continuously being
developed and refined to address the evolving needs of its broad user
community, particularly in response to advances in imaging and radio-
therapy. For PET applications, GATE enables comprehensive modeling
of the entire imaging chain, from radioactive decay of the source to event
detection and data processing. It allows users to define scanner design pa-
rameters, select crystal materials and properties, specify relevant physics
processes, and incorporate various phantoms for simulation studies. Due
to the computational demands of these processes, GATE is best utilized
on high-performance computing clusters. In addition to system-level
PET simulations, it supports detailed detector-level modeling, including
scintillation processes and optical photon transport within the crystal
[80]. These simulations are valuable tools for exploring design trade-offs
and estimating what could realistically be achieved if the systems were
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built. While simulations represent idealized scenarios and cannot fully
capture the complexities of real-world imaging, these models have proven
to be highly accurate when validated against experimental measurements
from actual systems, showing good agreement with empirical data [70],
[81]. As a result, they are widely used by the research community to
predict detector and system performance, guide technological decisions,
and optimize design parameters before prototyping. In this work, GATE
is employed to simulate various PET system designs, model the entire
acquisition process, and evaluate system performance through a series of
phantom studies. The simulation pipeline is structured to replicate the
components of a PET imaging system. First, the scanner geometry is
defined, including dimensions and configurations (ring-based or flat-panel
geometries), with support for static and dynamic setups. This stage
also specifies the detector material, arrangement, and repetitions to
match realistic system architectures. Second, the source characteristics
are specified, from simplified gamma back-to-back sources to positron
emitters with defined activity distributions. Voxelized sources can also
be incorporated, enabling the use of digital phantoms or patient datasets
for more realistic, clinical-like acquisition scenarios. Third, phantom
geometries and materials are designed to provide a medium for positron
annihilation and mimic patient-like conditions or experimental setups by
accounting for attenuation and scatter. When combined with voxelized
sources, voxelized phantoms offer the ability to track particles across
voxels and assign different material properties based on grayscale values
in images. The physics modeling phase involves selecting appropriate
physical interaction models. Typically, the standard electromagnetic
physics model is employed to account for the main processes such as
Compton scattering, photoelectric absorption, and positron-electron an-
nihilation. Additionally, the digitizer implements the detector responses
and data processing, including modeling of energy and time resolution,
dead time effects, and coincident event processing. Finally, data output
preferences are configured to support efficient post-processing and anal-
ysis. GATE supports multiple output formats optimized for different
scanners, including binary files, list mode, sinograms, and the widely
used ROOT format [82]. ROOT output is particularly advantageous for
handling large datasets, providing a visual interface for inspecting sim-
ulation results, troubleshooting outputs, preparing datasets for further
analysis, or image reconstruction. Moreover, GATE’s visualization inter-
face enables users to preview and verify the created geometries and avoid
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volume overlap before running computationally intensive simulations,
thus saving time and resources. Figure 3.5 shows a visualization of a
cylindrical PET system design in which a sensitivity phantom is placed.

Figure 3.5: GATE visualization of a cylindrical PET system with a
uniform arrangement of monolithic detectors. A linear radioactive source
(in red) is embedded in a water-filled cylinder (in blue) to account for
attenuation.

3.4.2 Performance evaluation standards for PET: NEMA
and modifications

Accurate performance evaluation of PET systems is critical for character-
izing their capabilities, benchmarking against other systems, predicting
clinical performance, and guiding protocol optimization. The National
Electrical Manufacturers Association (NEMA) first established standard-
ized guidelines for PET performance evaluation in the early 1990s [83].
These standards, with only minor updates since their inception, were
primarily designed for scanners with standard AFOV (typically 15-30
cm) and conventional ring geometries. As such, they do not fully account
for the unique challenges and characteristics of modern PET systems,
including long AFOV scanners, non-conventional designs such as sparse
or flat-panel geometries or dedicated brain and organ systems. The
NEMA protocols define metrics for key performance aspects such as
sensitivity, count-rate capability, scatter fraction, spatial resolution, and
image quality. In this section, we briefly review these standard metrics
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and discuss the necessary adaptations for emerging PET designs. Several
of these proposed modifications, including some presented by the Pen-
nPET Explorer group at the PSMR 2022 conference [84], aim to extend
the applicability of performance assessments to long AFOV systems and
unconventional geometries. While some of these suggestions have been
implemented in the present work, others remain to be explored in future
studies. Although NEMA performance tests were originally intended
for experimental evaluation of physical systems, they have also been
widely adopted in Monte Carlo simulations. In this context, they serve to
validate MC models of existing scanners, predict the performance of novel
system designs, or optimize parameters of existing designs for research
and development purposes. The main performance metrics established
by NEMA are outlined below, together with proposed modifications.

Sensitivity

According to NEMA standards, PET scanner sensitivity is measured
using a 70-cm long line source of '®F surrounded by five concentric
aluminum sleeves, which act as a medium for the annihilation of the
positrons (Figure 3.6). Sensitivity is determined through five successive
measurements, where one aluminum sleeve is removed at each step.
The attenuation-free sensitivity is then obtained by extrapolating these
measurements to zero attenuation. To minimize dead-time losses and
random coincidences, the line source should have a relatively low activity.
Measurements are performed with the line source placed both at the
center of the transverse FOV and at a radial offset of 10 cm, and the
reported sensitivity is the average of these two values. Additionally, this
setup allows plotting the sensitivity profile along the scanner’s AFOV to
assess variations in sensitivity across its length.

However, using a 70-cm line source raises concerns about its suitability
for evaluating scanners with an AFOV larger than 70 cm, as it does not
fully span the system’s length and cannot accurately reflect the total
number of events that are measured in a clinical setting where activity
distribution often extends beyond 70 cm (e.g., across the torso). To
address this limitation, it is recommended to match the length of the line
source to the AFOV of the scanner or tailor it to the specific task, thereby
enabling measurement of the full axial sensitivity profile. Furthermore,
for non-cylindrical geometries such as flat-panel systems, the positioning
of the line source should be adapted. In addition to placing it at the
transverse center of the FOV, measurements should also be taken with



Chapter 3. Recent advancements in PET 50

Figure 3.6: GATE visualization of the NEMA sensitivity phantom
showing the line source in red surrounded by five concentric aluminum
sleeves.

the source shifted by 10 cm parallel to the panels, then towards the
panels. The reported sensitivity should then be the average of these
three measurements, accounting for variations in angular coverage and
detector arrangement.

Spatial resolution

In NEMA, spatial resolution is evaluated using point-like radioactive
sources (e.g. ®F or ?2Na) of sufficiently low activity to avoid dead time
effects and random coincidences. These sources are placed at specific
positions within the scanner’s FOV: at the center of the transverse plane
and at an axial position corresponding to 3/8ths of the AFOV, with
radial offsets of 1, 10, and 20 cm from the center. The recommended
reconstruction method is filtered-back-projection (FBP) without any post-
processing to ensure that the resolution measurement accurately reflects
the system’s performance. For each source position, the PSF is analyzed
by drawing line profiles along the radial, tangential, and axial directions.
The FWHM of these profiles is determined by linear interpolation between
adjacent voxels. The resulting FWHM values are reported as measures
of the system’s spatial resolution in all three orthogonal directions at
the corresponding locations. This evaluation provides insight into spatial
resolution variations across the FOV, which is particularly relevant
for systems with extended AFOV and unconventional geometries. To
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Figure 3.7: Schematic illustration of a flat-panel PET design with
NEMA point sources placed along the two orthogonal directions in the
transverse planes at Z=0 and Z=3/8ths of the AFOV.

achieve a more comprehensive assessment, additional point sources can
be placed at intermediate radial offsets (e.g., 5 cm and 15 ¢cm) and at
axial positions between the center and 3/8ths of the AFOV. For systems
with non-cylindrical geometries, it has also been suggested to assess
spatial resolution along the two orthogonal directions in the transverse
plane (X and Y), along the scanner’s axial direction, as well as the
diagonal axis, to provide a more complete mapping of the system’s
resolution [76] (see Figure 3.7). Furthermore, we believe that the use
of statistical iterative reconstruction algorithms, as they are now the
standard in clinical practice, is necessary, especially for systems with
incomplete data, such as flat-panel geometries or sparse designs with
large gaps, where analytical methods are not supported. However, it
is important to note that iterative methods can overestimate spatial
resolution when evaluating point sources in a cold background due to
non-negativity constraints in the reconstruction. To mitigate this effect,
several groups recommend using a warm background with sufficiently
low contrast between the reconstructed point peak intensity and the
background intensity [85].
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Image quality (IQ)

While individual performance metrics, such as spatial resolution and sen-
sitivity describe specific aspects of PET scanner functionality, the NEMA
image quality (IQ) phantom offers a more comprehensive evaluation. It
examines how these factors interact to influence the overall quality of
clinical images, considering system- and reconstruction-dependent effects.
The phantom is designed to resemble a human torso and contains six fill-
able spheres of different diameters (ranging from 10 mm to 37 mm), which
simulate lesions of various sizes, along with a central low-density insert
to mimic lung attenuation, see Figure 3.8a. The background is uniformly
filled with an activity concentration of 5.3 kBq/ml, while the spheres are
filled with higher activity to achieve a target sphere-to-background ratio
of either 4:1 or 8:1. After data acquisition and image reconstruction, two
main quantitative metrics are considered according to NEMA: Contrast
recovery coefficient (CRC), a metric that quantifies the system’s
ability to recover the true activity concentration contrast between the
hot spheres and the background. It is defined for each sphere j as:

_ Cp, /Cpj—1

CRC; = T (3.1)

where Cp; is the average counts in the region of interest (ROI) of
sphere j, Cp; is the average count in the background ROIs, and Ag
and Ap are the known true activity concentrations in the hot spheres
and background, respectively. To ensure statistical robustness, sixty
background ROIs of each size are drawn across five transverse slices:
the central slice and two on each slice at £1 cm and 42 cm, see Figure
3.8b. The background variability (BV) reflects the noise level in the
background and is computed as:

. SDBJ
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(3.2)
where SDp ; is the standard deviation of the counts in the sixty back-
ground ROIs corresponding in size to sphere j.

While several factors contribute to background noise in PET images,
random and scatter coincidences are among the most significant sources.
The BV metric quantifies how these events contribute to noise in regions
expected to be uniform. In this work, however, we reconstruct only true
coincidence events, excluding random and scatter events. As a result the
BV metric is not relevant. Instead, we use a measure that represents the
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Figure 3.8: Schematic of the central transverse slice of the NEMA 1Q
phantom showing (a) the dimensions of the phantom, hot spheres and
lung insert and (b) the placement and sizes of the background ROIs.

‘detectability’ of a sphere by incorporating both contrast and background
noise, namely the contrast-to-noise ratio (CNR), defined for sphere j as:

(3.3)

It is important to note that this phantom is centered within the AFOV
and does not assess the image quality across the full FOV in long AFOV
systems. To address this limitation, the same phantom can be moved
axially toward the edge of the scanner to evaluate how variations in
axial spatial resolution and sensitivity affect image quality in peripheral
regions. Additionally, the smallest sphere in the standard phantom is
10 mm in diameter, which may be insufficient for evaluating systems
with high spatial resolution. To better probe the limits of resolution
performance and partial volume effects, smaller spheres down to 2 mm
in diameter are incorporated into what we refer to as the modified 1Q
phantom, see Figure 3.9. In systems, with limited spatial resolution,
small structures appear blurred and underestimated in intensity due
to the partial volume effect, where voxel intensities are averaged over
regions containing both hot and cold areas.
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Figure 3.9: Schematic of the central transverse slice of the modified 1Q
phantom showing the reduced dimensions of the hot spheres.

Axial noise profile

Another phantom commonly used in simulation studies, particularly for
extended AFOV and sparse PET scanner designs, is a long uniform
cylindrical phantom designed to assess the axial uniformity of noise.
This is especially relevant in systems with non-uniform axial sensitiv-
ity profiles or missing axial data due to detector gaps [71], [86]. The
phantom typically consists of a uniform cylinder filled with a constant
activity concentration, often similar to the background concentration
used in the NEMA IQ phantom (e.g., 5.3 kBq/ml). It has a diameter
of approximately 20 cm, while its length must be sufficient to span the
entire AFOV of the system under evaluation. After image reconstruction,
circular ROIs with a diameter of 10 or 15 cm are drawn at the center
of the cylinder in each transverse slice. The noise level in each slice j is
quantified using the normalized standard deviation, calculated as:

(3.4)

where SD; and Cj; are the standard deviation and mean of voxel inten-
sities within the ROI on slice j, respectively. Plotting N; as a function
of axial position results in an axial noise profile of the PET system.
This profile offers insight into the axial uniformity of response, which is
particularly important for long AFOV and sparse designs.

XCAT phantoms

The anthropomorphic eXtended Cardiac-Torso (XCAT) phantoms are
computational models of the human anatomy designed for use in various
medical imaging modalities [87]. They feature anatomically accurate
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representations of major organs, with accurate shapes, sizes, and tissue
densities. Each organ can be assigned a user-defined activity distribution
and attenuation properties, allowing realistic simulation of both func-
tional and structural imaging.

XCAT phantoms are available for both male and female anatomies across
a wide range of ages, and body mass indices (BMIs). They can incorpo-
rate physiological motion, including cardiac and respiratory dynamics,
which makes them particularly useful for evaluating the impact of motion
on image quality. Figure 3.10 shows the activity and attenuation maps of
a male XCAT phantom with a BMI of 19 used as input to the simulation.
In PET imaging, XCAT phantoms are commonly used to assess clinical
image quality, simulate diseases such as tumors, and explore specific
imaging tasks like lesion detectability or motion correction strategies.
Their flexibility makes them an essential tool for evaluating system
performance, benchmarking reconstruction algorithms, and optimizing
acquisition protocols.

&

"

Figure 3.10: Coronal slice of the activity map of a male XCAT phan-
tom with a BMI of 19, showing the variation in activity concentration
across organs (left) and the corresponding attenuation map illustrating
differences in organ attenuation (right) [87].

Throughout this thesis, we simulate the extended-AFOV PET designs
in GATE and evaluate them using the performance metrics described
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above. To address certain performance limitations, image-based deep
learning techniques are employed. Therefore, we provide an overview of
deep learning in PET imaging in the next section, setting the stage for
its use in Chapter 7.

3.5 Deep learning in PET

Deep learning is a subset of machine learning that uses multiple layers
of neural networks, enabling them to learn and perform tasks from
data without explicit programming [88]. Although its foundations date
back to the 1940s, it wasn’t until a little over a decade ago that it
started to gain prominence and momentum, thanks to the advances
in computational power, the availability of large-scale datasets, and
breakthroughs in algorithm design. Its applications now span a broad
range of fields, including computer vision, natural language processing,
speech and audio analysis, and autonomous systems. In medical imaging,
especially radiology, deep learning has proven to be highly useful across
various imaging techniques. It has been employed for lesion detection
[89], [90], disease classification [91], [92], image segmentation [93], and
registration [94]. Additionally, it has been used for image denoising [95],
[96], [97], [98] and for reducing image artifacts caused by incomplete or
limited measurement data [99)].

In this work, we apply deep learning to address two major limitations
affecting PET image quality: noise resulting from low-count statistics
and elongation artifacts caused by the limited angular coverage inherent
to flat-panel geometries. While several studies have proposed DL-based
methods to tackle each limitation individually, few have considered
addressing both simultaneously. Given the relevance of these challenges
to our work, we will first provide a brief introduction to deep learning
and an overview of convolutional neural networks (CNNs), followed by
a discussion of U-Net, a widely adopted CNN architecture in medical
imaging, and then review representative studies targeting these specific
limitations.

3.5.1 Neural networks and convolutional neural networks

A fundamental component of deep learning is the artificial neural network
with the convolutional neural networks (CNNs) being a specialized type
suited for image-based tasks because of their ability to extract and learn
features from raw data. Neural networks are computational models
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inspired by the structure and function of the human brain, consisting of
interconnected layers of neurons [100]. Artificial neurons or perceptrons,
within a layer, are connected to neurons in other layers through weighted
connections, forming altogether an input layer, one or more hidden
layers, and an output layer [101]. Each neuron receives inputs x;, scales
them by corresponding weights, wj;, which represent the strength of each
connection, and sums them together with a bias term b. The resulting
value is passed through a nonlinear activation function fto produce an
output y, which is then propagated to the next layer in the network
(Figure 3.11):

N
y=1/ (Z wiz; + b) (3.5)
=1

B

Input layer ' Output layer

Hidden layers

Figure 3.11: Schematic of an artificial neuron or perceptron (left) and
a fully connected neural network (right).

Prior to training, the dataset is typically divided into three subsets:
training (~80%), validation (~10%) and testing (~10%). The hyper-
parameters, which are user-defined, include aspects of the network
architecture, training settings, and the choice of the loss function. In
contrast, the weights and biases, referred to as parameters, are learned
directly from the data during the training process. The training set is
used to fit the model, where the network initially makes predictions,
computes the error using the loss function, and updates the parameters
through backpropagation over multiple data passes, known as epochs.
The validation set is not used for parameter updates but instead monitors
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the model’s performance after each epoch. It helps determine whether
the model generalizes beyond the training data and can indicate overfit-
ting when validation loss increases while training loss decreases. In such
cases, strategies like early stopping can be applied. Finally, once training
is complete, the test set, which is unseen during training, assesses the
model’s overall performance.

Convolutional neural networks (CNN) are a specialized type of
neural networks, particularly effective for image processing tasks [102].
They use convolutional layers that apply filters or kernels (containing
the trainable weights) that slide across the input data in a process called
convolution. Depending on the dimensionality of the filters and data
they operate on, CNNs are typically categorized in 2D and 3D CNNs. 2D
CNNs apply two-dimensional filters to process each slice independently
offering computational efficiency whereas 3D CNNs use volumetric filters
that operate on 3D data capturing spatial information across slices but
at the cost of higher memory and data requirements. Each filter cap-
tures local patterns such as edges, textures, and shapes by computing
a weighted sum (dot product) of the filter values and the input pixels
at each spatial location. The result is a feature map that highlights the
presence of specific features in different regions of the input image. This
operation allows CNNs to efficiently learn spatial features while signifi-
cantly reducing the number of parameters compared to fully connected
layers. Non-linear activation functions are applied after convolution to
help the network learn complex, non-linear relationships. Batch normal-
ization layers are often added to standardize the inputs to each layer,
ensuring they have zero mean and unit variance, which stabilizes and
accelerates the training process. CNN architectures commonly include
pooling layers between convolutional layers. Pooling operations, such
as max pooling and average pooling, downsample feature maps by sum-
marizing local neighborhoods. This reduces the spatial resolution of the
feature maps, decreases computational requirements, and helps control
overfitting. Additionally, many modern CNNs integrate architectural
enhancements such as residual connections and dropout layers to boost
training stability and overall performance.

3.5.2 TU-Net architecture

U-Net is a CNN architecture originally designed for biomedical image
segmentation tasks and features a nearly symmetric U-shaped structure,
consisting of a contracting path, the encoder, and an expansive path, the
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decoder [103] as illustrated in Figure 3.12. This architecture is also called
an encoder-decoder network. The encoder includes convolutional and
pooling layers that extract features from the input and reduce their spatial
dimensions. The decoder gradually restores the spatial resolution of the
feature maps to improve localization using transposed convolutions. A key
feature of U-Net is the skip connections, which link the corresponding
layers in the encoder and decoder paths to transfer high-resolution
features, compensating for information loss during downsampling. U-Net
has been implemented in both 2D and 3D. 2D U-Net operates on 2D
image slices, making particularly suitable when computational resources
are limited. In contrast 3D U-Net extends every convolution, pooling
and upsampling operation into three dimensions, allowing the network
to process volumetric data and capture spatial context across slices at
the cost of significantly increased memory and training requirements.
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Figure 3.12: U-Net architecture: The blue boxes correspond to multi-
channel feature maps with the number of channels denoted on top of
each box. White boxes represent copied feature maps and the arrows
denote the different operations. Adapted from [103].
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3.5.3 A review on deep learning for PET image restoration
DL-based PET denoising

PET images often suffer from high noise levels, especially when acquired
with low-dose protocols or short acquisition times. To address this,
DL methods have emerged as effective tools for PET image denoising,
providing improvements over traditional post-processing techniques like
Gaussian or non-local means filters. This section offers a brief overview
of recent DL-based denoising methods relevant to the work presented in
Chapter 7. One early study investigated the use of a deep neural network
for denoising PET images reconstructed from downsampled data [104].
They leveraged perceptual loss functions and tailored training strategies
to cope with the limited availability of labeled images. Their results
demonstrated that pre-training on simulated data followed by fine-tuning
on real datasets enabled the network to generate images of superior quality
compared to conventional Gaussian or on-local means filtering. Building
on this, another study proposed a DL model capable of estimating
full-dose PET images from 1/10th dose images while preserving edges,
structures and texture [105]. They incorporated a composite loss function
combining structural similarity features with a weighted mean squared
error (MSE) and an adversarial discriminator network during training.
Testing on low-dose image slices revealed significant improvements in
image quality that are comparable to ground truth full-dose images.
Both studies, however, acknowledged the critical need for larger and
more diverse training datasets to further enhance model robustness
and generalizability. Subsequent work explored variations in network
architecture to further advance denoising performance. For example,
a study compared convolutional autoencoders (CAEs), U-Nets, and
generative adversarial networks (GANs) using a human dataset of 10
patients with solid lung nodules (most <10 mm) and 10% low-dose data
obtained by listmode down-sampling [106]. Among the architectures, a
carefully optimized 3D U-Net achieved the best balance between noise
suppression and bias minimization for lung nodule quantification. The
U-Net notably outperformed Gaussian filtering, anatomical-guided non-
local means (NLM), and maximum a posteriori reconstruction techniques.
In another clinical evaluation, a U-Net based on a 3D CNN was trained
on chest PET scans from lung cancer patients at various noise levels
[107]. Physical assessments consistently ranked CNN-denoised images
higher than the original low-count PET images in terms of overall quality
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and lesion detectability, particularly for data acquired at very low counts.
However, the study noted that at higher count levels, comparable to
routine clinical acquisitions, the added benefit of CNN denoising was
limited. This finding underscores the importance of understanding
the clinical context and limitations of DL methods when applied in
practice. Finally, extending beyond a single-tracer applications, recent
work demonstrated the feasibility of cross-tracer and cross-protocol PET
denoising using transfer learning strategies [108]. Networks trained on
one tracer or protocol were successfully adapted to different tracers or
acquisition protocols through fine-tuning, highlighting the potential of
DL approaches for versatile and robust PET image enhancement across
varied clinical scenarios. It is notable that DL-based PET image denoising
tools are already being implemented in clinical imaging centers. These
tools help reduce radiation dose and scan time, and improve SNR and
lesion detection. Several studies have reported on their development and
shown their clinical benefits [109], [110], [111]

DL-based artifact reduction for limited-angle tomography

Limited-angle tomography with large gaps, as in flat-panel geometries,
presents a significant challenge for image reconstruction. In conventional
ring-based systems, the detectors fully surround the patient providing
360° transverse angular coverage and 180° projection angular coverage,
ensuring complete sampling of LORs. However, flat-panel systems offer a
reduced angular range, resulting in missing projections, and consequently,
image artifacts. To address these limitations, recent studies have explored
DL-based approaches to mitigate elongation artifacts in sinogram space
[112] and image space [113]. While much of this research has focused on
CT, PET studies have largely concentrated on addressing sparse detector
designs with smaller gaps [114], [115]. Given the direct relevance to
our work, we highlight a recent study on the WT-PET geometry by our
group, which developed a DL-based algorithm for correcting limited-angle
artifacts in image space [116]. This approach integrated a 2D U-Net in
the reconstruction workflow as a regularization term and also applied
separately as a post-processing step to reconstructed images, enabling a
comparison between these two strategies. For training targets, a rotating
WT-PET configuration covering the full angular range was employed.
The dataset consisted of XCAT phantoms with varying genders, heights,
and BMIs simulated using GATE. Both methods substantially reduced
limited-angle artifacts; however, integrating the DL model into the
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reconstruction process better preserved image sharpness, but at the cost
of increased noise. In contrast, the post-processing approach resulted
in a loss of contrast for the smallest lesions incorporated in the test
XCAT, see Figure 3.13 adapted from the same work. The study also
emphasized that the main limitation affecting both methods was not the
methodology itself but more likely the lack of diversity in the training data,
including uniform activity distributions across tissues, similar activity
concentration ratios between different organs and identical positioning
of XCAT phantoms within the scanner. This conclusion motivated the
work presented in Chapter 7, where we used a larger and more diverse
dataset of real patient scans acquired on a cylindrical PET scanner and
simulated in a variant of the WT-PET geometry to train a DL algorithm
aimed at simultaneously correcting limited-angle artifacts and denoising
the reconstructed images.

In this chapter, we reviewed recent advancements in PET detector
technology and design and introduced tools to simulate and evaluate the
performance of different PET designs based on NEMA standards with
proposed modifications. In the following chapters, we apply these tools
to study various PET designs that take recent technological and design
advancements into account while aiming to address persistent limitations.
These include the high cost associated with extending the detector’s
axial coverage, the limited spatial resolution of pixelated detectors, and
the lack of DOI capabilities. To address these challenges, the designs
we propose in this thesis are all based on monolithic detectors, which
improve spatial resolution and enable DOI measurement. In parallel, we
aim to enhance system sensitivity while managing costs by exploring a
moderate extension of the AFOV, sparse configurations with detector
gaps, and a shift from the conventional ring-based geometry with patient
bed to vertical flat panels with fast and easy patient access to increase
throughput. In addition to investigating the trade-offs inherent in these
design choices, we also explore how deep learning methods can be used to
overcome limitations such as noise and image artifacts, thereby building
upon the approaches discussed in the current chapter.
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Figure 3.13: Limited angle artifact correction for the XCAT phantom,
comparing implementation as a post-processing step or within the itera-
tive reconstruction algorithm. The tenth iteration is visualized for all
reconstructions. The simulation for the target and reference image did
not contain any lesions, but otherwise used the same activity distribution
for the phantom [116].
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Chapter 4

Ring-based medium axial
field-of-view PET with
monolithic detectors

4.1 Introduction

Enhancing PET system sensitivity has been a primary motivation behind
the development of various research and commercial medium- and long-
AFOV scanners [59], [60], [61]. While these systems share the common
goal of improving performance, each emphasizes different aspects. The
uEXPLORER, with its 2-m-long AFOV, achieves among the highest sen-
sitivities reported and enables full-body dynamic imaging. The PennPET
Explorer, with an AFOV of 142 c¢m, covers most of the human body
while focusing on achieving an excellent timing resolution of 240 ps. The
Siemens Biograph Vision Quadra, introduced later, with an axial length
of 106 cm reaches sensitivity comparable to that of the uEXPLORER,
while offering a more compact system footprint, a TOF resolution of
225-230 ps and simultaneous coverage of the human torso and brain.
Nevertheless, the longer AFOV of these systems results in substantially
higher costs, which can limit their wider use in nuclear medicine de-
partments. Additionally, as discussed in section 3.3.1, the sensitivity
improvements from increasing the AFOV are heavily influenced by the
size and axial length of the imaged object, making the optimal scanner
length highly dependent on the intended imaging application. A further
implication of longer AFOVs is the higher prevalence of random and
scatter events. In a theoretical study on the benefits of long-AFOV PET
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for region of interest quantification, Zhang et al. simulated scanners
with AFOVs from 22 cm to 220 cm and demonstrated that both random
and scatter fractions increase with AFOV; and at an AFOV of 111 cm,
the majority of LORs were dominated by random events [117]. Further-
more, all these systems employ pixelated LSO, LYSO or BGO crystals,
which constrain intrinsic spatial resolution to the pixel size and generally
lack depth-of-interaction (DOI) capabilities. This limitation presents an
opportunity for alternative system designs that focus on high spatial
resolution and DOI performance.

In light of these facts, we propose a modular, cost-efficient PET
scanner design based on monolithic LYSO scintillators. This design
aims to improve spatial resolution and provide DOI information while
increasing geometric sensitivity and maintaining a moderate system cost.
A modular approach further allows scalable extension of the AFOV,
offering flexibility to adapt the system to different clinical or research
needs. The modularity supports whole-body imaging either through
extended coverage or through limited bed motion, reducing the need for
overly long scanners. In addition, a sparse configuration is considered to
achieve a longer AFOV without additional detector modules, to balance
sensitivity and cost. The sparse design can also be adapted for specific
populations where a reduction in bore diameter for pediatric applications
enhances geometric sensitivity. This improved sensitivity can be leveraged
to lower injected dose, critical for vulnerable populations such as children,
or to shorten scan times to minimize the impact of motion.

In this chapter, we present the details of the proposed medium-AFOV
PET designs and evaluate their performance using Monte Carlo simu-
lations, following the main standard NEMA metrics. We also explore
the extended sparse configuration aimed at increasing the AFOV cost-
effectively. For this design, we assess how sensitivity improves with axial
length, and how it varies with different bore diameters. This analy-
sis offers insights into the sensitivity trade-offs and potential benefits
associated with an axial extension and bore reduction achieved by intro-
ducing detector gaps, particularly in the context of full-body coverage or
pediatric imaging applications.
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4.2 Materials and methods

4.2.1 Simulated scanner designs

Three PET scanner configurations were simulated, see Figure 4.1. Design
A features a single-module setup with an AFOV of 36.2 cm, while
design B is a dual-module setup extending the AFOV to 72.6 cm. Both
configurations include 40 detector modules per ring, resulting in a bore
diameter of 70 cm, slightly smaller than that of conventional pixelated-
based PET systems. This reduced bore size does not compromise spatial
resolution thanks to the DOI capabilities provided by the use of monolithic
detectors, and even slightly reduces the spatial resolution loss due to
non-collinearity. Each detector module comprises a monolithic LYSO
scintillation crystal measuring 50 x 50 x 16 mm3. Design A features
seven detector rings, shown in Figure 4.1a, with a 2-mm axial gap
between adjacent rings, resulting in a total scanner length of 36.2 cm.
Design B doubles the number of rings to 14, as illustrated in Figure
4.1b, thereby doubling the AFOV. To further increase axial coverage,
design C features 50% detector gaps arranged in a checkered pattern,
which effectively doubles the axial length of design B to 145.4 cm without
adding detectors (see Figure 4.1c). In this sparse configuration, each ring
contains 20 detectors with alternating modules removed from around
the ring. An advantage of these transverse gaps is the possibility to
reduce the scanner bore diameter down to 35 cm, thereby increasing
angular coverage and improving sensitivity, a design tailored for pediatric
imaging applications.

The scanner performance was modeled with a coincidence timing resolu-
tion (CTR) of 200 ps, a coincidence time window (CTW) of 3 ns, and
an energy resolution of 11.5% using an energy window of 440 - 650 keV.
All simulations were performed using GATE version 9.1.

4.2.2 NEMA phantom studies
Sensitivity

For all three designs, the sensitivity was evaluated using a 70-cm-long
line source emitting 511 keV back-to-back gamma photons at an activity
of 5 MBq, a sufficiently low activity recommended by NEMA to minimize
dead time losses and random coincidence rate. The source was placed
at two positions: at the center of the scanner and 10 cm radially offset.
No attenuating material surrounded the source. Data were acquired
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Figure 4.1: GATE visualization of (a) design A of 36.2 cm AFOV, (b)
design B of 72.6 cm AFOV and (c) sparse design C extending to 145.5 cm,
with a miniature side view shown below to illustrate the checkerboard
pattern of the detectors.

over 30 seconds. The output ROOT files were post-processed to classify
true, scattered, and random events based on Monte Carlo event tagging.
Sensitivity was calculated with the following formula:

True counts detected

Sensitivity = (4.1)

Activity x Acquision time

Similarly, the sensitivity of a Monte Carlo model of the Biograph Vision
600 scanner was evaluated to ensure that the comparison with our designs
was based on simulated data rather than measured values. The simulation
model and parameters were derived from published performance studies
and the scanner’s specification sheet [118], [119].

Spatial resolution

The system’s spatial resolution was evaluated using an '®F positron-
emitting point-like source with a total activity of 3.7 MBq. A 0.5-mm-
diameter water sphere containing the radioactivity is placed inside a
cylindrical glass capillary (inner diameter: 0.52 mm, outer diameter:
1.8 mm, height: 0.9 mm). Measurements were taken at three radial
positions from the center of the FOV: 1, 10, and 20 cm. For each radial
location, two axial positions were examined: the center of the AFOV
and a position located 3/8ths of the AFOV length, away from the center.
At least one million coincidence events were collected per source position.
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The raw simulation data were processed to include the detector’s intrinsic
resolution by applying endpoint blurring to each LOR, with values of 1.14
mm 2D resolution and 2.67 mm DOI based on previously characterized
detector performance [55]. Image reconstruction was performed using the
Quantitative Emission Tomography Iterative Reconstruction
(QETIR) software developed by the MEDISIP group at Ghent University,
which has been used in prior simulation studies for the total-body J-PET
scanner [120], [121], [122]. A QETIR-based implementation is also used
in the pre-clinical f-CUBE from MOLECUBES [51]. QETIR, developed
in C++, implements the maximum likelihood expectation maximization
(MLEM) algorithm with normalization and attenuation corrections. For
reconstructing the simulation data, MLEM was applied for 10 iterations
without subsets. Within QETIR, a sensitivity map was also generated,
and the reconstructed images were produced with an isotropic voxel size
of 0.5 mm. For each source location, the axial, radial and tangential
spatial resolutions were quantified by calculating the FWHM of the point
spread function (PSF) in the respective directions.

Image quality

To evaluate image quality, the NEMA IQ phantom, designed to resemble
a human torso was simulated. The phantom contains six spheres with
diameters of 10, 13, 17, 22, 28, and 37 mm, representing lesions of
various sizes, and a central low-density insert to mimic lung attenuation.
Simulations were run for 400 seconds using two sphere-to-background
(STB) activity concentration ratios of 4:1 and 8:1, with a background
activity concentration of 5.3 kBq/ml. For a 4:1 STB ratio, the total
activity in the phantom is around 60 MBq. The true coincidences were
reconstructed into images with 2 mm isotropic voxels using the time-of-
flight-MLEM (TOF-MLEM) algorithm implemented in QETIR for 20
iterations and without subsets, assuming a coincidence time resolution of
200 ps. Attenuation correction was applied using a density map generated
from the phantom geometry via a custom C++ script. Contrast recovery
coefficients (CRCs) were computed according to the NEMA NU-2018
guidelines.
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4.3 Results

4.3.1 Sensitivity

Design A shows a NEMA sensitivity of 29.2 keps/MBq at the center of
the FOV and 27 keps/MBq at a 10 cm radial offset. Design B, with a
longer AFOV, achieves much higher sensitivity values of 106.8 keps/MBq
at the center and 98.3 keps/MBq at 10 cm off-center. The average of the
two values for each design is listed as the system sensitivity in Table 4.1.
Figure 4.2 displays the axial sensitivity profiles for both designs using the
same 70-cm-long NEMA line source at the center of the FOV. Compared
to design A, design B shows an approximate 1.6x peak sensitivity increase
at the scanner’s center. A detailed comparison of the simulated NEMA
sensitivity values and relevant geometric parameters for designs A and
B, along with reference values from the Biograph Vision 600 system, are
presented in Table 4.1.

Table 4.1: Simulated NEMA sensitivity and geometric characteristics
comparison between designs A and B and the Biograph Vision 600 from
Siemens.

Design A Design B Biograph Vision 600

NEMA sensitivity (keps/MBq) 28.1 102.6 16.4
AFOV (cm) 36.2 72.6 26.1
Diameter (cm) 70 70 78
Crystal thickness (mm) 16 (LYSO) 16 (LYSO) 20 (LSO)
Detector surface (x10°mm?) 0.70 1.40 0.62
Scintillator volume (x10%mm?) 11.20 22.40 12.45

Figure 4.3 shows the cumulative sensitivity as a function of the scanner’s
axial length, allowing a comparison between designs B and C. While
design C exhibits lower sensitivity in the central 70 cm due to axial
gaps, it provides wider axial coverage, which is useful for studies needing
full-body imaging. Additionally, the checkerboard pattern of the gaps
enables a reduction in scanner bore diameter, improving sensitivity and is
particularly advantageous for pediatric imaging. Figure 4.4 demonstrates
the effect of decreasing the bore diameter on system sensitivity: halving
the diameter results in a 50% increase in sensitivity across the entire
axial length of the scanner.

For the remaining phantom studies, we focus on designs A and B for
further evaluation. Design A offers the advantage of enhanced sensitivity
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Figure 4.2: Axial sensitivity profiles at 0 cm radial offset for (a) design
A and (b) design B, using a bin width of 1.65 mm.
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Figure 4.4: NEMA sensitivity as a function axial length for design C,
145.5 cm AFOV with 50% gaps at varying bore diameters.

with only a moderate extension of the AFOV compared to conventional
standard AFOV systems. A potential upgrade involves combining two
modules of design A to achieve the longer AFOV of design B, which
significantly boosts sensitivity and enables torso imaging without bed
translation.

4.3.2 Spatial resolution

Tables 4.2 and 4.3 show the spatial resolution results for both scanner
designs, including detector blurring as well as contributions from positron
range and non-collinearity as simulated in GATE. The radial, tangential,
and axial FWHM values for the point sources at various radial and axial
positions remain below 2 mm, with minimal variations across both the
transverse and axial FOVs for each design. It is noteworthy that iterative
reconstruction methods yield superior spatial resolution compared to
analytical algorithms such as filtered-back-projection (FBP). For both
designs, the radial FWHM does not deteriorate as the point source is
moved radially outward, which is expected due to the DOI capability of
the monolithic detectors that effectively mitigates radial parallax error.
In terms of axial resolution, the highest FWHM values are observed
at the center of the FOV, specifically at position (1,0,0) cm for both
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systems.

Table 4.2: Spatial resolution FWHM (mm) for design A

Radius (cm) Radial (mm) Tangential (mm) Axial (mm)

AFOV center 1 1.44 1.36 1.45
10 1.46 1.41 1.25
20 1.48 1.38 1.23
3/8 AFOV 1 1.34 1.32 1.23
10 1.41 1.38 1.24
20 1.41 1.26 1.14

Table 4.3: Spatial resolution FWHM (mm) for design B

Radius (cm) Radial (mm) Tangential (mm) Axial (mm)

AFOV center 1 1.45 1.48 1.36
10 1.46 1.44 1.32
20 1.50 1.34 1.24
3/8 AFOV 1 1.37 1.37 1.31
10 1.39 1.35 1.20
20 1.44 1.31 1.17

4.3.3 Image quality

The tenth iteration of the reconstructed NEMA IQ images, along with
the CRC curves as a function of iteration number for designs A and B are
shown in Figure 4.5. The sphere-to-background activity concentration
ratio was 4:1. Both reconstructions demonstrate good image quality, with
all spheres clearly visible, including the smallest one (10 mm diameter),
which exhibits a discernible contrast. The CRC values converge around
iteration 10, ranging from 50-60% for the smallest sphere to about 90%
for the largest. For design B, the IQ image exhibits more noise, and the
smallest sphere shows reduced contrast compared to design A. Since the
contrast difference is limited to the smallest sphere and the overall image
of design B appears noisier, this effect can be attributed to the coarser
sampling of the sensitivity image during reconstruction due to software
limitations. A noisy or undersampled sensitivity image propagates into
the reconstruction, leading to increased image noise and affecting small
structures where resolution limits are probed.
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Figure 4.5: Tenth iteration of the reconstructed IQ image (left) and con-

trast recovery coefficient (CRC) values (right). The sphere-to-background
ratio was 4:1, and the data acquisition time was 400 s.

4.4 Discussion

Design A with an AFOV of 36.2 cm, achieves 71% higher sensitivity
than the simulated Biograph Vision 600, as shown in Table 4.1. This
improvement mainly results from a 40% increase in AFOV and a reduction
in bore diameter, both enhancing geometric efficiency and coincidence
detection probability. Although the Biograph Vision 600 uses thicker
scintillation crystals, which theoretically improves photon stopping power,
most 511 keV photons are absorbed near the entrance surface due to
exponential attenuation. As a result, the benefit of extra thickness is
limited. Additionally, thicker crystals often lead to decreased timing
resolution, increased parallax error, and higher system costs. A previous
study by Surti et al. [123] showed that increasing AFOV with shorter
crystals can achieve greater sensitivity improvements than using thicker
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scintillators, supporting our design strategy. This moderate AFOV
extension provides a noticeable improvement in sensitivity compared
to conventional PET/CT systems, making it particularly useful for
applications like organ-specific imaging, without the high costs of large
AFOV systems. Furthermore, the results show nearly a fourfold increase
in sensitivity when comparing design A to B, which features a doubled
AFOV of 72.6 cm. This scaling follows the expected near-quadratic
dependence of sensitivity on AFOV length due to the increasing number
of possible axial LORs. Design B therefore offers a compelling solution for
multi-organ imaging, enabling simultaneous coverage of multiple organs
within the torso or both the brain and upper torso without the need for
bed motion. This not only enhances clinical efficiency but also improves
imaging performance. For cases where an even larger AFOV is needed,
introducing detector gaps can extend coverage without additional cost.
However, design C was only assessed in terms of sensitivity. While this
is a critical performance metric, further phantom studies are needed to
evaluate image quality and to characterize potential non-uniformities
introduced by the gaps. The main advantage of the sparsity of design C
lies in its gap arrangement, which allows for a reduced bore diameter.
This configuration boosts sensitivity and is particularly well-suited for
pediatric applications. It is also shown in Table 4.1 that design A has
slightly less scintillator volume and 13% more detector surface than the
Biograph Vision 600. This is due to its longer AFOV and smaller bore
diameter. While the Biograph Vision 600 requires more detector surface
in the transaxial FOV to cover the perimeter of its 78 cm bore, its larger
scintillator volume results from the thicker crystals, which provide only
marginal, if any, sensitivity gain.

An additional advantage of designs A and B is their use of monolithic
detectors, which offer superior intrinsic resolution and DOI capabilities.
These capabilities help mitigate radial parallax error, leading to a more
uniform radial system resolution when point sources are moved off-center,
as reflected in the results. The FWHM values show a consistent sub-2
mm spatial resolution across both the axial and transverse FOV, enabling
detection of small lesions and abnormalities and making quantification ac-
curacy independent of the source position within the patient. Compared
to the existing standard and large AFOV systems with high sensitivity,
both designs achieve approximately a 50% improvement in spatial resolu-
tion and off-center points are not affected by radial parallax error thanks
to the DOI information. For the axial resolution, the slightly higher
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FWHM observed at the center of the FOV may be attributed to highly
oblique LORs, which cannot be fully corrected by DOI information given
its limited resolution (2.67 mm). However, if axial parallax were the
main contributor, design B would be expected to exhibit poorer axial
resolution than design A at the center, owing to its longer AFOV and
therefore more oblique LORs. Nevertheless, this trend was not observed.
The measured difference between the two designs was only about 0.1
mm, which lies within the expected margin of error. Thus, these results
do not provide sufficient evidence to conclude a significant impact of
axial parallax on the axial resolution of our designs. A previous simula-
tion study followed by measurements reported only a slight degradation
in axial FWHM when extending the AFOV from 64 to 142 cm even
without DOI information [12], [60], [81]. In reflecting on these results,
several factors should be considered for future studies. First, according to
NEMA guidelines, one-dimensional response functions should be formed
along profiles through the image volume, with the width of the response
function in the two orthogonal directions extending to about twice the
expected FWHM. However, in this study, the width was limited to a
single pixel, which makes the measurement more susceptible to noise.
This choice may have caused fluctuations and contributed to the varia-
tion seen in axial resolution. Additionally, iterative reconstruction was
used, which generally provides better results than filtered-back-projection
(FBP) because of the non-negativity constraint. To reduce this effect,
embedding the point-like sources in a warm background could be con-
sidered. Furthermore, iterative algorithms depend on implementation,
meaning that choices such as modeling of physics, noise handling, and
convergence criteria can lead to slight differences in results, so caution
is needed when comparing values from different reconstruction software.
Lastly, since the measured FWHM values were below 1.5 mm, a voxel
size smaller than 0.5 mm is recommended, however, this was not possible
due to limitations of the reconstruction software.

In terms of image quality, the CRC values are highly dependent
on the chosen reconstruction parameters. For example, a study on
the uEXPLORER demonstrated that both voxel size and point spread
function (PSF) modeling significantly affected CRC values, particularly
for the smallest sphere (10 mm) which increased from 49.8% without
PSF to 69.2% with PSF and a reduced voxel [59]. In our work, the
CRC values shown in Figure 4.5 were obtained using a 2 mm voxel size
without PSF modeling. Further optimization of reconstruction settings
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would likely improve these values. Even so, designs A and B achieved
CRC values ranging from 50-60 % up to 90 %, which is comparable
to current clinical systems, including the recent long AFOV scanners.
The assumed time-of-flight (TOF) resolution of 200 ps, consistent with
expected performance for such a system, contributed to enhanced effective
sensitivity and improved SNR and overall image quality. Although it
might be a bit optimistic, we do not anticipate a substantial degradation
in image quality if the TOF resolution is slightly worse (e.g., 300 ps),
although this warrants further investigation.

4.5 Conclusion

In this work, we demonstrated the benefit of a moderate AFOV extension
by adding detectors, which improved sensitivity, and of a larger extension
achieved through the introduction of detector gaps without requiring
additional detectors. We also examined the use of monolithic detectors
and their positive impact on achieving uniform spatial resolution across
the FOV. Nevertheless, reconstruction software and parameter choices
must be carefully considered, as they directly affect spatial resolution and
overall image quality. These aspects will be addressed in the following
chapter, where we build on the choice of monolithic detectors and the
availability of DOI and introduce a novel system geometry with a different
detector arrangement, aiming to further reduce costs while addressing
key clinical needs such as higher throughput.
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Chapter 5

Flat-panel PET geometries
with monolithic detectors

5.1 Introduction

In the pursuit of more cost-effective and widely accessible PET designs
that can match the sensitivity of existing medium- and long-AFOV
systems, there has been growing interest in novel geometries and detector
configurations driven in part by advances in time-of-flight (TOF') technol-
ogy. Conventional PET systems use a ring-shaped detector configuration,
which requires adding many detectors to extend the AFOV while main-
taining full angular coverage in the transverse plane. Since detector
modules are the main cost driver, the total system expense increases
linearly with the AFOV. Although long-AFOV systems provide high
sensitivity, enabling shorter scan times and/or lower injected doses, the
limited gains in throughput and tracer savings are not enough to justify
the higher acquisition and maintenance costs. Additionally, a large part
of examination time is spent on patient positioning, which limits through-
put even when scans are faster. Therefore most clinical centers and
nuclear medicine deparments still rely on conventional standard-AFOV
PET scanners. Various strategies have been explored to reduce system
costs, including designs with detector gaps [69], [71], [86], [124] and the
use of less expensive scintillator materials such as plastic scintillators
[125]. Building on these efforts, our research group has moved away from
the conventional cylindrical geometry and proposed a novel extended
flat-panel PET design based on DOI-capable, high-resolution monolithic
detectors [3]. This setup features two vertical panels, each measuring
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106 cm in height and 71 cm in width, separated by a 50-cm gap.These
dimensions were based on a study that first considered anthropometric
and ergonomic factors and then analyzed the body sizes of 40 PET/CT
patients randomly selected from the database at the University Hospital
of Liege [3]. Compared to existing long-AFOV cylindrical designs,
this flat-panel configuration provides similar sensitivity while offering
improved resolution and DOI capability, along with higher throughput
and a smaller footprint at a reasonable cost.

Monolithic detectors provide better intrinsic resolution than pixelated
detectors, which are limited by pixel size. Their DOI capabilities reduce
the parallax effect and enables the positioning of the panels closer
to the patient. This enhances the axial angular coverage compared
to a cylindrical system with a similar AFOV. Throughput is further
improved by eliminating bed positioning, as patients stand between
the two panels. Based on sensitivity differences, Vandenberghe et al.
[3] estimated a threefold increase in throughput over standard-AFOV
systems and 1.2- to 1.4-fold increase compared with long-AFOV designs
like the Biograph Vision Quadra operating at full acceptance angle.
Additionally, the vertical orientation of the panels and absence of patient
bed reduce the system’s footprint, which is advantageous in nuclear
medicine departments where space is often limited. Cost efficiency is
another advantage of this geometry. Compared with the geometry of
design B from Chapter 4, the flat-panel design uses 1.7 times fewer
detectors for roughly the same axial length. Furthermore, monolithic
scintillators are less costly to produce than pixelated crystals (in fine
pixels of less than 2 mm) because they do not require crystal cutting.
One drawback of the flat-panel geometry is the incomplete angular
coverage in the transverse direction, which causes elongation artifacts
in the reconstructed images. However, studies have indicated that with
sufficiently good time-of-flight (TOF) resolution, full angular coverage is
not always necessary [45]. While other groups have explored flat-panel
concepts for open geometries of adjustable AFOVs [72], [86], [126], our
group simulated an early version of our proposed flat-panel design called
the Walk-Through PET (WT-PET) using BGO scintillators [76]. BGO
was initially selected because it is 2-3 times less expensive than LY SO,
helping to reduce system costs. Still, the superior TOF resolution of
LYSO makes it a more suitable choice for reducing elongation artifacts
in the flat-panel design.
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In this chapter, we present simulation studies of two flat-panel con-
figurations based on the WT-PET geometry. The first design retains the
same AFOV as the WT-PET while the second is a more cost-efficient
configuration featuring axial gaps and a reduced AFOV. In this sparse
configuration, detector costs associated with the switch to LYSO are re-
duced by introducing gaps and limiting the detector arrangement to eight
rows. Given the non-cylindrical geometry and relatively long AFOV of
the proposed designs, certain modifications and additions to the standard
NEMA-recommended tests (as described in chapter 3) were implemented
to enable a more comprehensive system evaluation.

5.2 Materials and Methods

5.2.1 System design specifications and simulation param-
eters

The long flat-panels (L-FP), based on the original WT-PET design,
consists of two flat panels placed 50 cm apart. Each panel contains 20
rows of fully populated monolithic LYSO detectors measuring 50 x 50 x
16 mm?, with a 3-mm gap, resulting in an AFOV of 106 cm. Horizontally,
a width of 71 cm is achieved by arranging 12 detector blocks with a
10-mm gap between each. The sparse WT-PET configuration, referred
to as the SpM-FP, features eight axial rows of detectors with 28-mm
gaps between rows, achieving an AFOV of 60 cm. Each gap includes the
initial 3-mm spacing plus an additional 25 mm, which is half the size of a
detector. This approximately half-detector gap extends the AFOV with
limited sensitivity loss and maintaining image quality, as supported by
previous research [71]. In addition to these performance considerations,
the row-sparse layout is also an engineering choice: introducing sparsity
along the axial direction is simpler than for instance implementing 2D
checkerboard patterns as in Chapter 4, which would require irregular
detector placement and more complex mechanical assembly. With an
AFOV of 60 cm, only limited panel movement is necessary to image
the brain and torso, similar to the L-FP setup. Schematics of the WT-
PET design and both configurations are shown in Figure 5.1. The axial
acceptance angle of the L-FP is 65° and reduced to 50° for the SpM-FP. A
coincidence timing resolution of 300 ps FWHM was chosen, corresponding
to the expected performance of the system, based on a published work by
Carra et al. [58]. The average spatial resolution of the LYSO monolithic
detectors used for detector blurring is 1.14 mm FWHM parallel to the
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Figure 5.1: (a) Schematic view of the WT-PET concept, (b) L-FP
design, (c) SpM-FP design with 28-mm axial gaps and a reduced AFOV.

detector face and 2.67 mm FWHM along the depth as reported in [55]
for measurements on the same detector.

Table 5.1 summarizes the differences in system specifications and simula-
tion parameters. The coincidence time window (CTW) chosen for the
SpM-FP and L-FP designs was 4 ns and 5 ns, respectively (calculated
from the length of the most oblique LOR present in the system). The
energy resolution was set to 11.5% for LYSO (455-645 keV window). The
sources are simulated as '®F positrons, including the positron range and
the physics of the non-collinearity. The exact gamma photon interaction
time and position of the coincident events are recorded in the detector.
The hits are grouped and saved as single events, and the coincidence
sorting is done in GATE. No cut was applied to the axial acceptance
angle.

To reconstruct the images from the simulated data, PETRecon was
used, an iterative list-mode image reconstruction package developed at
MEDISIP and optimized for the WT-PET geometry. It is written in
Julia, a high-level programming language designed for optimal GPU
performance [127]. The true coincidences (511 keV photons originating
from the same annihilation event and not scattered in the phantom) were
reconstructed using the Maximum Likelihood Expectation Maximization
(MLEM) algorithm without subsets. The system’s timing, detector
spatial resolution, and DOI were modeled before reconstruction. The
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Table 5.1: L-FP and SpM-FP design specifications and simulation
parameters.

SpM-FP L-FP

AFOV (cm) 60 106
Axial gap size (mm) 28 3
Detector array size 8x12 20x12
Number of monolithic detectors 192 480
Detector surface (x10mm?) 0.48 1.20
Detector volume (x10%mm?) 7.68 19.20
Axial acceptance angle 50° 65°
Coincidence time window (ns) 4 S
Coincidence time resolution (ps) 300 300

GATE simulation records the exact timestamps and interaction positions
of the two coincident events. Before reconstruction, the measured data
were blurred by applying Gaussian kernels with FWHM values of 300 ps
for time, 1.14 mm and 2.67 mm for spatial coordinates, corresponding to
the 2D intrinsic resolution and DOI, respectively. These values reflect the
average intrinsic performance of the monolithic detector. Although this
approach simplifies the real behavior of such detectors, whose resolution
typically worsens near the edges and varies with interaction depth, it
offers a reasonable approximation. The accuracy of this homogeneous
model is assessed in the spatial resolution study, which includes a spatially
varying resolution model based on data from [55].

5.2.2 Phantom studies for performance evaluation
Sensitivity

The sensitivity of the SpM-FP and L-FP configurations was simulated
using the NEMA standard 70-cm long line source placed at the center
of the scanner and at 10-cm radial offset along two directions: parallel
to the panels (X-axis) and towards the panels (Y-axis). To evaluate
the axial sensitivity profile across a 106-cmm AFOV for head and torso
scanning, a 106-cm-long line source was placed at the center. In the
SpM-FP, the detector panels were moved vertically relative to the source
to cover a scanning FOV of 106 cm, which was then extended by 15 cm
at both the top and bottom, resulting in a total scanning FOV of 136
cm, as illustrated in Figure 5.2. With the 15-cm extension on both ends,
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the head will be positioned at the center of the AFOV at the end of the
scan, improving statistics for the brain region on one side and the pelvic
area on the other. For comparison, the same source was also simulated in
the L-FP. For both line sources, a 1 MBq '®F positron source was used
in water, surrounded by one to five concentric aluminum attenuating
sleeves (2.5 mm thick). The results were extrapolated to determine the
attenuation-free system sensitivity. To simulate attenuation in a human
body with a relatively low Body Mass Index (BMI), we encase the 106-cm
line source with a 20-cm diameter water cylinder.

Spatial resolution

Twelve 8F positron point-like sources with a diameter of 0.5 mm were
simulated to evaluate the system’s spatial resolution following the adapted
NEMA protocol. Six sources were positioned at the central transverse
slice with offsets of 1, 10, and 20 cm along the X- and Y-axes, and another
set of six sources was placed at the transverse slice located at 3/8ths
of the AFOV. According to the NEMA standards, the voxel size of the
reconstructed point source should not exceed one-third of the expected
FWHM in all directions. Given the anticipated spatial resolution range
of 1-2 mm, the images were reconstructed using an isotropic voxel size of
0.25 mm. Because dual flat-panel systems measure incomplete data, due
to the side gaps, filtered back-projection results in image artifacts [128].
For a more realistic assessment of image resolution, the MLEM algorithm
was used instead, without any smoothing or resolution modeling in
the reconstruction. To prevent artificial resolution enhancement caused
by iterative reconstruction [129], all point sources were embedded in
a warm background. The activity concentration ratio of point source-
to-background was set to 160:1. Additionally, the source counts were
subsampled prior to reconstruction to achieve a reconstructed point
source-to-background contrast ratio in the image between 0.1 and 0.2
following the recommendations of a comprehensive study on spatial
resolution assessment with iterative image reconstruction [85]. For each
source position, a minimum of 100,000 true coincidence events were used
for image reconstruction. The background reconstruction was subtracted
from the combined source and background reconstruction to generate
the source-only image, see Figure 5.3. Line profiles in all three directions
of each source’s point spread function (PSF) were drawn, with the width
of the response function in the two orthogonal directions extending to
about twice the corresponding expected FWHM and linear interpolation
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Figure 5.2: (a) Schematic illustration showing the 106-cm line source
simulated in the SpM-FP with upward panel motion to cover a scanning
FOV of (a) 106 cm and (b) 136 cm (106 cm with an additional 15 cm at
the top and bottom).
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Figure 5.3: Line profiles of the point spread function of the point source
at (10,0,0) cm for (a) source and background in blue and background
only in red for a ratio of 160:1 with subsampling, and (b) source only
after background subtraction.

was performed to evaluate the FWHM. The reported values correspond
to the 50th iteration, at which convergence was observed.

Spatially varying detector resolution

The reported spatial resolution results incorporate a uniform model of
the detector’s spatial resolution/DOI based on a previous study of the
same detector [55] which measured an average intrinsic 2D resolution
of 1.14 mm across the entire detector and a DOI resolution of 2.67 mm
over all six layers. In that study, the authors presented a 2D spatial
resolution map showing a uniform resolution in the central 40 x 40 mm?
region, with degradation near the edges, extending up to 5 mm from
each edge, see Figure 5.4. To evaluate how this non-uniform detector
resolution affects system resolution, a spatially varying detector response
function was implemented for an off-center point source. This function
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Figure 5.4: Spatial resolution as FWHM (mm) per calibration position
for detector with 0.6 mm diameter calibration beam. The bias vectors
are indicated as arrows for neural network positioning. Adapted from
[55].

maintained a constant resolution of 1.02 mm in the central 40 x 40
mm?, gradually increasing to 1.35 mm at the edges, averaging to the
reported 1.14 mm for the entire detector. The model was also adjusted
to account for DOI resolution degradation in the two layers closest to
the SiPM array. A constant DOI of 2.4 mm was assigned to layers 1
through 4, while layers 5 and 6 used a DOI of 3.7 mm, resulting in
an average DOI resolution of 2.67 mm across the full detector volume.
These values were weighted based on the percentage of detected events
in each layer, calculated according to the Beer-Lambert attenuation law,
with an attenuation coefficient of 0.082 mm™"' for LYSO, see Table 5.2.
The system resolution, measured as FWHM, was evaluated using this
spatially varying intrinsic resolution model and compared to the uniform
resolution case for a point source simulated in the L-FP system at (10,
0, 0) cm.
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Table 5.2: Depth distribution of events across layers 1-6 of the mono-
lithic detector (depth = 16 mm) calculated according to Beer-Lambert
attenuation law with an attenuation coefficient of 0.082 mm~! for LYSO.

Layer 1 1 3 4 ) 6
Percentage 26.88 21.60 17.36 13.95 11.21 9

5.2.3 Axial noise variability

To evaluate the axial noise variability along the AFOV of the sparse design
due to the presence of gaps, a 3-min acquisition of a 20-cm diameter and
120-cm long water cylinder with a uniform '®F activity concentration of
3.7 kBq/ml was simulated. The images were reconstructed with only true
coincidences and an isotropic voxel size of 2 mm. Attenuation correction
and PSF modeling were implemented in the reconstruction. In the L-
FP, only the LORs within the central 60-cm region of the AFOV were
considered to enable comparison with the SpM-FP. A 16-cm diameter
circular region of interest (ROI) was drawn on each slice, and the noise
measure in each slice j was defined as:

_ 5Dy

N; c,

(5.1)
where SD; and C; are the standard deviation and average of the counts
in each ROI, respectively.

5.2.4 Image quality

The NEMA IQ phantom was used to evaluate the image quality of the
SpM-FP and L-FP designs. It consists of six hot spheres of various
diameters (10, 13, 17, 22, 28, and 37 mm) placed in a body phantom
with a warm background and a cold lung insert. The STB activity
concentration ratio was 4:1, with a background activity of 5.3 kBq/ml,
and a 3-minute acquisition of the phantom was simulated. The true
coincidences were reconstructed with attenuation correction and PSF
modeling and an isotropic voxel dimension of 2 mm. To evaluate the
contrast recovery in the presence of noise in the image, the same ROIs
proposed by NEMA were used to compute the contrast-to-noise ratio

(CNR) defined as:
_Cnj—Csy

CNR; = =45~ (5.2)
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where Cp ; is the average counts in the ROI of sphere j, and Cp ; and
SDp; are the average and standard deviation of the counts in the
background ROIs, respectively.

IQ body phantom with smaller spheres

A modified IQ phantom with small hot sphere sizes was simulated to
probe the limits of the SpM-FP design in distinguishing small features
(less than 12 mm in diameter). The overall geometry of the body phantom
was kept the same, but the diameters of the hot spheres were reduced to
2,4, 6, 8,10 and 12 mm and simulated with a STB activity concentration
ratio of 4:1 and 8:1 for a total acquisition time of 3 minutes. The images
were reconstructed with an isotropic voxel size of 1 mm, and the CNR
was calculated for each sphere for an acquisition time ranging from 30
seconds to 3 minutes.

5.2.5 XCAT anthropomorphic phantom

In this study, a male XCAT phantom (BMI = 18.64) with an activity
concentration of 3 MBq/kg was simulated in both configurations, incorpo-
rating activity decay to represent imaging one hour after injection. The
acquisition was simulated for 30 seconds on the L-FP and 120 seconds
on the SpM-FP without further modeling of activity decay, given the rel-
atively short simulation time. Attenuation correction and PSF modeling
were implemented in the reconstruction with an isotropic voxel size of
2 mm. Two 3-cm diameter 3D ROIs were placed in the liver and lung,
and the normalized standard deviation was calculated for each. These
values were plotted as a function of acquisition time for the SpM-FP and
compared to the values for a 30-second acquisition with the L-FP.

5.3 Results

5.3.1 Sensitivity

Table 5.3 lists the sensitivity values for the SpM-FP and L-FP configura-
tions for the 70-cm long line source in air and the 106-cm source in air
and water. The SpM-FP achieves a NEMA sensitivity of 30 keps/MBq at
the center of the transverse FOV and an average value of 22 keps/MBq
at a 10-cm offset. The average total NEMA sensitivity of the system is
then 26 keps/MBq. This is 4.6 times less than the NEMA sensitivity of
the L-FP design, given the reduced AFOV and the presence of gaps.
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Table 5.3: Total sensitivity values in keps/MBq of the SpM-FP and
L-FP configurations for the 70-cm line source at the center and at 10-cm
radial offset (along X and Y), and the 106-cm line source at the center
in air and in a 20-cm water-filled cylinder for attenuation

Source length and position Sensitivity (kcps/MBq)
SpM-FP (fixed panels) L-FP
70 cm (centered) 30 140
70 cm (10-cm along X) 21.6 100
70 cm (10-cm along Y) 22.4 101
106 cm (centered) 20 109
106 cm (centered and attenuated) 2.7 13

Figure 5.5a shows the axial sensitivity profiles of both designs for the 70-
cm line source. A translation of the panels of half a detector module will
smooth out the SpM-FP profile whereby the new detector positions will
align with the center of the gaps from the previous position, effectively
covering them entirely and compensating for the missing LORs with new
ones. The SpM-FP is compared to the L-FP for a 106-cm line source in
air and with water attenuation. The latter represents a realistic situation,
such as torso scanning with patient attenuation. The sensitivity difference
between both designs is less with water attenuation than only air, which
can be attributed to the higher attenuation of the oblique LORs in the
center of the L-FP design. Figure 5.5b shows the sensitivity profiles
of the L-FP and the SpM-FP with panel motion. The panels of the
SpM-FP design move vertically relative to the patient to image the head
and torso (AFOV of ~ 106 cm). We examine two scanning FOVs: 106
cm and one extended to 136 cm (106 cm plus 15 cm at each end). The
profile of the SpM-FP with the 136-cm scanning FOV shows increased
sensitivity at the 106 cm AFOV edges, improving count statistics in the
brain and pelvic regions.
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Figure 5.5: Axial sensitivity profiles for (a) the L-FP and SpM-FP
with a 70-cm line source, (b) the L-FP and moving SpM-FP to cover
two scanning FOVs (106 and 136 ¢cm) with a 106-cm line source.

5.3.2 Spatial resolution

The FWHM in all three directions for both designs with the NEMA
point sources are presented in Table 5.4 and graphed in Figure 5.6. The
values in the X and Z directions (FWHM-x and FWHM-z) are mostly
below 2 mm, varying slightly with radial and axial offset. In the central
plane and at three-eighths of the AFOV, the FWHM along Y (FWHM-y)
increases when the point source is moved parallel or towards the panels.
The SpM-FP design shows resolution values comparable to those of the
L-FP in all three directions without significant degradation.

Table 5.5 presents the L-FP system’s FWHM for a point source
positioned at (10, 0, 0) cm, comparing uniform and spatially varying
detector response functions. The data show that the degradation of the
2D and DOI resolutions near the detector edges minimally impacts overall
performance. The FWHM values are very similar to those obtained with
a uniform response, with a slight improvement in resolution. This is
attributed to the better resolution in the central region, which compen-
sates for the lower resolution at the edges, ensuring that the average
values at 1.14 mm (2D) and 2.67 mm (DOI) are preserved. Given these
findings, the uniform resolution model was adopted for the remainder of
this study.
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Figure 5.6: FWHM of the NEMA point sources in all three orthogonal
directions at different locations moving sideways (X) and towards the
panels (Y) at the central axial plane and 3/8ths of the AFOV from the
center. The values are shown for iteration 50 at which convergence is
observed.
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Table 5.4: Spatial resolution FWHM (mm) in all three orthogonal
directions for the SpM-FP and L-FP at different X and Y offsets at Z=0
and Z=3/8ths AFOV (22.35 cm and 39.64 cm for the SpM-FP and L-FP,
respectively.)

X is the direction parallel to the panels, Y is towards the panels, and Z
is the direction of the AFOV.

Source position SpM-FP L-FP
X Y Z X Y Z

X offset at Z = 0

1 cm 142 267 152 141 271 1.44
10 cm 1.564 339 154 137 266 1.49
20 cm 142 296 155 146 3.03 1.76
Y offset at Z =0

1 cm 1.61 252 158 1.52 266 1.43
10 cm 1.57 278 151 1.52 258 1.59
20 cm 144 347 144 1.46 3.07 1.60
X offset at Z = 3/8 AFOV

1 cm 1.39 290 1.27 1.55 298 1.22
10 cm 147 3.64 125 1.51 3.00 1.24
20 cm 1.25 4.05 1.26 1.41 452 1.30
Y offset at Z = 3/8 AFOV

1 cm 1.32 345 133 146 3.15 1.33
10 cm 1.34 354 140 154 3.22 1.30
20 cm 1.34 3.68 1.61 1.58 3.52 134

Table 5.5: FWHM values (mm) in all three orthogonal directions for
a point source at (10, 0, 0) cm simulated in the L-FP design using two
detector response models: one with a uniform 2D resolution of 1.14 mm
and DOI resolution of 2.67 mm and another with a spatially varying 2D
resolution ranging from 1.02 to 1.35 mm and DOI resolution between 2.4
and 3.7 mm.

Detector response function FWHM-x FWHM-y FWHM-z
Uniform 1.37 2.66 1.49
Spatially varying 1.34 2.48 1.43




Chapter 5. Flat-panel PET geometries with monolithic detectors 94

5.3.3 Axial noise variability

Figure 5.7a shows the central coronal slice of the reconstructed image of
each design. The slice of the L-FP appears to be more uniform, while
that of the SpM-FP exhibits a non-uniform and higher noise that follows
the pattern of the gaps. The normalized standard deviation (SD) was
calculated for each slice along the AFOV and plotted as a function of the
axial distance from the center, as shown in Figure 5.7b. The SpM-FP’s
axial noise variability is lowest in the central 40-cm region of the AFOV.
It increases closer to the edges, where the peaks get bigger with increasing
distance from the center.
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Figure 5.7: (a) Central coronal slices through the reconstructed images
(5th iteration) of a 3-minute simulation of a 20-cm diameter long cylinder
on the SpM-FP (top) and L-FP (bottom) designs with an AFOV of 60
cm. (b) Axial noise profile of a long, 20-cm diameter water cylinder
simulated in the SpM-FP and the central 60-cm AFOV of the L-FP.

5.3.4 Image quality

Figure 5.8 shows the central transverse slices of the reconstructed 1Q
images (10th iteration - STB activity concentration ratio 4:1) for the
L-FP and the SpM-FP with and without panel motion using different
acquisition times. Elongation resulting from the limited range of pro-
jection angles is visible in the upper and lower regions of the transverse
slices. With a TOF value of 300 ps and an acquisition time as low as 30
seconds, all the spheres are still visible for both designs. Since the 1Q
phantom has an axial extent of around 21 cm only, the SpM-FP with
moving panels to cover a scanning FOV of 106 cm obviously has less
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Figure 5.8: Transverse slices of the reconstructed IQ images (10th
iteration) for the SpM-FP with moving panels, SpM-FP with fixed panels
and the L-FP at 30, 60, 120 and 180-s acquisitions, with a STB activity
concentration ratio of 4:1 and a voxel size of 2 mm.

count statistics than the design with fixed panels. This can be addressed
by scanning for longer when panel motion is needed. The image of the IQ
phantom simulated in the L-FP design shows a very good image already
at 30 seconds.

To evaluate the contrast in the presence of noise for the SpM-FP
design with respect to the L-FP, the CNR is calculated for the images
reconstructed from data simulated without panel motion. Figure 5.9
compares the CNR values across iterations for all spheres at various
acquisition times in the SpM-FP with those from a 30-second acquisition
of the L-FP. The peak CNR is attained at the second iteration for all
spheres and is higher than 5 for even the smallest sphere using a 30-
s acquisition, which means that according to the Rose criterion [130],
all spheres are observable. The CNR of the SpM-FP increases with
increasing acquisition times, achieving at 120 seconds values similar to
those of the L-FP at 30 seconds for the large spheres and higher values
for the smaller spheres. Figure 5.10 shows the reconstructed images
of the modified 1Q phantom with smaller spheres for the STB activity
ratios of 4:1 and 8:1 at different acquisition times. Qualitatively, the
smallest observable sphere has a diameter of 4 mm for a ratio of 8:1
and 6 mm for a ratio of 4:1 at longer acquisition times. To evaluate the
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Figure 5.9: Transverse slices of the reconstructed 1Q images (3rd
iteration) and the CNR values as a function of the iteration number
for various sphere diameters (4:1 activity concentration ratio) for the
SpM-FP with fixed panels at different acquisition times compared to the
L-FP at 30 s (with PSF modeling).

observability quantitatively, the maximum value of the CNR is plotted
as a function of acquisition time for the different sphere sizes, as shown
in Figure 5.11. The black dashed line at a CNR value of 5 marks the
threshold of observability based on the Rose criterion.

5.3.5 XCAT anthropomorphic phantoms

Figure 5.12 shows the central coronal, sagittal and transverse slices of the
reconstructed XCAT images for the SpM-FP at varying acquisition times
compared to the L-FP image at 30 seconds. The SpM-FP design includes
panel motion to cover a scanning FOV of 136 c¢m to increase the count
statistics in the leg and brain regions. Even at 30 seconds, with almost
five times lower sensitivity than the L-FP, the reconstructed image of
the SpM-FP demonstrates good quality with reasonable organ contrast
and acceptable noise level. As the acquisition time increases, image noise
decreases, resulting in improved image quality that resembles the L-FP
image at 30 seconds. In the sagittal and transverse views, elongation
artifacts can be observed due to the limited angular range of the data.
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Figure 5.10: Transverse slices of the reconstructed IQ phantom with
smaller spheres (3rd iteration) for the SpM-FP (fixed panels) at 60, 120

and 180-s acquisitions, with activity concentration ratios of 4:1 and 8:1
and a voxel size of 1 mm.
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Figure 5.11: Maximum CNR values over iterations as a function of
acquisition time for the SpM-FP at activity ratios 4:1 and 8:1, with the

black dashed line representing the observability threshold according to
the Rose criterion.
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The extent of the artifacts and impact on the image quality is however
limited and comparable between both configurations.

SpM-FP L-FP

30s 60s 90 s 120 s 30s

8.6 Mcounts 17.3Mcounts 26.5Mcounts 34.6 Mcounts : 38.6 M counts

Figure 5.12: Central coronal, sagittal and transverse slices of the
reconstructed XCAT phantom for the SpM-FP at acquisition times of
30, 60, 90 and 120 s and for the L-FP at 30 s. The number of detected
counts used in the reconstruction is displayed for each case.

Figure 5.13 displays the 3D ROIs positioned in the liver and lung of
the XCAT image. The SD within each ROI decreases as the acquisition
time increases, approaching at 120 s the SD value of the ROI in the L-FP
image at 30 s. The SD in the lung ROI is consistently higher than in the
liver due to differences in tissue density and tracer uptake.
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Figure 5.13: Central coronal slice of the XCAT phantom for the SpM-
FP with ROIs indicated (left) and a graph of the standard deviation
within the ROIs as a function of acquisition time (right). Dashed lines
represent the SD values for the L-FP at 30 s.

5.4 Discussion

For both designs, the NEMA sensitivity for a 70-cm line source drops
significantly at a 10-cm offset due to the limited angle coverage in the
flat-panel geometry, represented schematically in Figure 5.14. With
a 106-cm line source, the L-FP is 5.5 times more sensitive than the
SpM-FP configuration without panel motion, owing to its longer axial
extent and compact design. This sensitivity difference decreases to a
ratio of 4.8 when the source is surrounded by a water phantom, primarily
due to the attenuation of LORs at large oblique angles [23]. Table 5.6
shows that the SpM-FP, with 22% less detector surface and 38% less
scintillator volume than the Biograph Vision 600 (26 cm AFOV), achieves
59% higher sensitivity than that of the simulated Vision 600. Moreover,
the SpM-FP’s AFOV is 2-3 times greater than that of current SAFOV
systems, including the Vision 600. The extended coverage enables the
simultaneous imaging of the full torso or the brain and upper torso in
a single scan. With limited panel movement, it also allows scanning of
both the brain and full torso in a relatively short time, offering a distinct
advantage over the Vision 600. From a cost perspective, based on a
previous study conducted by our group detailing the PET component cost
of the WT-PET and standard AFOV PET systems [3], the L-FP design
is only 1.9 times more expensive than the Vision 600 (excluding the CT
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Table 5.6: Comparison of the NEMA sensitivity and geometrical char-
acteristics between the SpM-FP configuration and the Biograph Vision
600 (recent standard AFOV scanner).

SpM-FP Biograph Vision 600

Average NEMA sensitivity (keps/MBq) 26 16.4
Axial length (cm) 59.6 25.6
Crystal thickness (mm) 16 (LYSO) 20 (LSO)
Detector surface (x10°mm?) 0.48 0.62
Scintillator volume (x10%mm?) 7.68 s 12.45

component). Meanwhile, the SpM-FP, with 2.5 times fewer detectors, is
2.5 times less expensive than the L-FP. This means that the SpM-FP
cost would be approximately 30% lower than the PET component of the
Vision 600.

Given that they have the same axial extent, Table 5.7 compares
the geometrical characteristics of the L-FP and the Biograph Vision
Quadra. With less than half detector surface and volume, the L-FP
achieves 68% of the sensitivity of the Quadra at half the cost according
to Vandenberghe et al. [3]. That said, sensitivity and cost alone do
not fully capture PET system performance; a comprehensive evaluation
must also account for additional metrics to draw accurate conclusions.
It should also be noted that the current flat-panel configuration with a
gap of 50 cm may not be suitable for bed-ridden patients. However, the
design is intended as a complementary system within nuclear medicine
departments rather than a full replacement. In this role, it could improve
workflow flexibility, especially since bed-ridden cases represent only a
small fraction of the PET imaging cohort.

Table 5.7: Comparison of the NEMA sensitivity and geometrical charac-
teristics between the L-FP configuration and the Biograph Vision Quadra
(recent long AFOV scanner).

L-FP Biograph Vision Quadra

Average NEMA sensitivity (keps/MBq) 120 176
Axial length (cm) 106 106
Crystal thickness (mm) 16 (LYSO) 20 (LSO)
Detector surface (x105mm?) 1.2 2.48

Scintillator volume (x10%mm?) 19.2 49.8
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(a) (b) (c)

Figure 5.14: Schematic view of the available projection ranges in the
L-FP and SpM-FP for a transverse view of the sensitivity line source (a)
in the center, (b) moved 10 cm parallel to the panels (in the X direction),
(c) moved 10 cm towards one of the panels (in the Y direction). The
same also applies to a point source.

The spatial resolution of PET systems primarily depends on the
intrinsic resolution of the detectors, as well as fundamental limitations
such as positron range and non-collinearity. Therefore, improving the
system resolution relies on enhancing the intrinsic detector resolution
[131]. Monolithic detectors were chosen for their superior intrinsic reso-
lution and DOI capabilities. The aim is to bring the detector resolution
down to the fundamental physical limit. Based on prior measurements
[55], the 50 x 50 x 16 mm? LYSO detectors used in this study have an
intrinsic resolution of 1.14 mm, contributing to the system’s resolution
in X and Z directions, parallel to the panels (sideways and vertically,
respectively). Additionally, the detectors have a DOI resolution of 2.67
mm, which, together with elongation artifacts caused by limited angular
coverage, degrades the system resolution along the Y direction (perpen-
dicular to the panels). This explains why both configurations consistently
show higher FWHM-y values than FWHM-x and FWHM-z across the
entire FOV. The results shown in Table 5.4 and Figure 5.6 demonstrate
a relatively uniform spatial resolution of less than 2 mm in the two
directions parallel to the panels across the FOV. This is owing to the
DOI information provided by the monolithic detector and their superior
intrinsic resolution. Such system-level spatial resolution has not been
achieved experimentally, nor has it been reported by any simulated and
validated model of the current leading standard-AFOV or long-AFOV
scanners [66], [132]. At Z=0, the FWHM-y is generally less than 3 mm
in the center and increases when the point source is moved parallel or
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towards the panels due to the reduced range of angles in the transverse
planes, as shown in Figure 5.14 (for a point source). As the source is
moved toward the edge of the AFOV (at 3/8ths of the AFOV), the
range of available projection angles is reduced by factors of 3 and 2.3
for the SpM-FP and L-FP, respectively. See Figure 5.15. Consequently,
fewer oblique LORs contribute information along the Y-direction and
for both designs, the measured FWHM-y near the edge of the AFOV is
consistently greater than at the center. In contrast, while the FWHM-x
and FWHM-z values may vary slightly, they do not exhibit significant
degradation, as they are determined by the LORs that are perpendicular
to the detector panels and are unaffected by an axial displacement of
the source. Overall, the SpM-FP design does not exhibit significant
degradation in FWHM values due to detector gaps or reduced AFOV
when compared to the L-FP design.

Additionally, we performed an analytical calculation of the expected
system spatial resolution by accounting for the combined contributions
of positron range, non-collinearity, and intrinsic detector resolution using
the following equation:

acol

Rgys = \/ R% + Ripge + R2 (5.3)

where Rget =~ Jf}; when the point source is positioned at the center of the
transverse FOV, i.e., halfway between detectors and Rget ~ Rint when it
is located closer to one of the panels, i.e. near the detector’s face. Since
our system is not ring-based, for the non-collinearity contribution, the
equation R,., = 0.0022D where D is the system diameter is calculated

for two cases:

e case A: D = 50 ¢m, which represents the direct gap between the
two panels.

e case B: D = 87 c¢m, representing an extreme case to account for
the most oblique LORs in the transverse plane.

The system resolution values are shown for both cases in Table 5.8 for
a point source in the center of the transverse FOV and Table 5.9 for a
point source near the detector’s surface. For both tables, the positron
range contribution is taken as Range = 0.5 mm.

The calculated values highlighted in gray in the above tables generally
align with the measured values reported in Table 5.4.
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Figure 5.15: Schematic view of the available axial projection ranges
in the L-FP for (a) a point source in the center of the AFOV and (b) a
point source at 3/8ths of the AFOV.

Table 5.8: System resolution for cases A and B for a point source in
the center of the transverse FOV, i.e. halfway between detectors. All
values are in mm.

Rint Rdet Racol (A) Racol (B) Rsys (A) Rsys (B)

2D (X & Z) 114 081 1.10 1.91 1.45 2.29
DOI direction (Y) 2.67 1.89 1.10 1.91 2.24 3.33

Table 5.9: System resolution for cases A and B for a point source near
the detector’s surface. All values are in mm.

Rint Rdet Racol (A) Racol (B) Rsys (A) Rsys (B)

2D (X & Z) 1.14 1.14 1.10 1.91 1.66 2.56
DOI direction (Y) 2.67 2.67 1.10 1.91 2.93 4.27
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The presence of axial gaps in the SpM-FP design leads to variations
in the axial sensitivity and noise profiles as shown in Figures 5.5a and
5.7b, respectively. However, these variations are not prominently visible
in the reconstructed image of the cylinder, particularly when compared
to the image obtained with the L-FP configuration. The normalized
standard deviation shows minimal variation within the central 40 cm
of the AFOV. This is attributed to the moderate size of the axial gaps
(28 mm), which are approximately half the width of a detector module
(50 mm). Simulations by the PennPET group at the University of
Pennsylvania on various scanner configurations with different gap sizes
concluded that gaps should not exceed half the width of a detector ring
to prevent significant performance variability [71]. Our findings align
with this conclusion.

The IQ and XCAT results indicate that a 30-second scan in the
SpM-FP configuration with moving panels is insufficient to generate a
high-quality image. The reduced AFOV, axial gaps, and panel motion
require longer scan times to increase count statistics and reduce image
noise. A 120-second scan in the SpM-FP achieves CNR values in the 1Q
phantom and SD values in the XCAT liver and lung comparable to those
of the L-FP in 30 seconds, consistent with the 4.8-fold higher sensitivity
compared to the SpM-FP.

On another note, in both designs, the reconstructed transverse slices of
the IQ phantom exhibit elongation artifacts in the direction of the panels
caused by the missing projection angles. These artifacts appear as shape
distortions in the larger spheres and as smearing at the phantom’s upper
and lower edges, where boundaries are poorly delineated and activity
spills into non-active regions. Similarly, the transverse and sagittal slices
of the XCAT also show blurring along edges perpendicular to the panels.
Table 5.10 summarizes the projection angle ranges in both designs for the
transverse and axial planes derived from the corresponding acceptance
angles. For comparison, values are also shown for the Biograph Vision
600 and Quadra. In the transverse plane, the flat-panel designs cover
only 61% of the projection range available to a cylindrical configuration.
However, in the axial direction, the SpM-FP provides a wider projection
range than the Vision 600, and the L-FP a wider range than the Quadra.
This provides additional information that partly mitigates the impact
of missing transverse projection angles, though the artifacts remain.
Consequently, the residual artifacts reduce PET image quality, and
correction strategies will be required before the proposed flat-panel
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designs can be considered clinically viable.

Table 5.10: Available projection ranges at the center of the FOV of the
SpM-FP and the L-FP in comparison to the Biograph Vision 600 and
Quadra.

SpM-FP Vision 600 L-FP Quadra
Transverse 110° 180° 110° 180°
Axial 100° 36° 130° 105°

5.5 Conclusion

The study presented in this chapter demonstrates that the L-FP LYSO-
based configuration combines cost-effectiveness and higher throughput
with superior spatial resolution and good overall image quality in just
30-second acquisition. With 2.5 times less detectors and an axial extent
exceeding half that of the L-FP, the SpM-FP emerges as an attractive and
more cost-efficient clinical alternative. The sensitivity, image quality and
XCAT results indicate that a 2-3-minute scan with SpM-FP produces
images comparable in quality to a 30-second scan on the L-FP. The
axial noise profile shows low variability, suggesting that the presence
of gaps has little impact on the image quality beyond the expected
drop in sensitivity which can be compensated for by slightly longer scan
times. Moreover, the superior spatial resolution shows great promise,
particularly for detecting sub-centimeter lesions. To fully assess these
benefits, further studies will compare the superior resolution SpM-FP
against the Biograph Vision 600, which provides better TOF resolution
and complete angular coverage in the transverse plane. This comparison
will be presented in Chapter 6. Looking ahead, strategies to address
limited-angle artifacts using deep learning methods will be explored in
Chapter 7.
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Chapter 6

PET performance trade-offs

6.1 Introduction

Despite advances in PET image quantification with long-AFOV sys-
tems that improve diagnostic accuracy, treatment planning and therapy
monitoring, diagnosis and follow-up in most clinics continue to rely on
visual examination of images. A common challenge remains the reliable
detection of small lesions [133], [134], and precise tumor outlining [135],
[136], both of which are limited by current spatial resolution and its effect
on lesion contrast. This challenge is particularly critical for early-stage
lesions, where small size and low tracer uptake push the scanner’s detec-
tion limits. In such cases, detectability depends on system sensitivity,
resolution and the choice of reconstruction algorithms and parameters,
which collectively determine the effective signal-to-noise ratio (SNR) of
the final image.

As explained in section 2.3.2, the signal-to-noise ratio (SNR) of a
PET image depends on the number of detected counts, roughly scal-
ing with the square root of the counts. Therefore, doubling the SNR
requires increasing the number of detected events by about a factor
of four. Consistent with this principle, Yan et al. demonstrated that
increasing the number of counts in clinical PET/MR scans results in
higher liver SN R? and lesion CNR, along with decreased bias and noise
[137]. Extending the AFOV is a way to boost detected counts, but it
requires more detectors and increases system costs. Increasing the ad-
ministered activity is another option, but it raises patient risk and causes
more random coincidences, adding noise to the background. Extending
the scan time is also undesirable given the clinical focus on reducing

107
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acquisition time. Additionally, as discussed in Chapter 2, time-of-flight
(TOF) information can significantly improve SNR. Specifically, the gain

from non-TOF to TOF is proportional to \/g, where D is the object
size, and Ax is the spatial uncertainty determined by how accurately
the difference in arrival times of the two photons is measured. Better
TOF resolution directly enhances SNR. However, this benefit is limited
by current detector technology and the achievable timing resolution in
the system.

From a different perspective, early studies have demonstrated that
spatial resolution can address the challenge of low SNR caused by low
statistics. Muehllehner [138] demonstrated that improved spatial resolu-
tion can compensate for lower count statistics. Specifically, increasing
system resolution by 2 mm resulted in image quality similar to what
is achieved with roughly four times more counts at lower resolution.
This indicates that higher resolution can reduce the injected dose and,
consequently, patient exposure while also decreasing noise from random
coincidences, since fewer counts are needed overall. A recent work by
Nuyts et al. showed that improvements in spatial resolution lead to an
increase in "effective” sensitivity, an overall measure that accounts for
detector solid angle coverage, stopping power, TOF resolution, scatter
fraction and system spatial resolution [139]. Additionally, Kaufman et al.
pointed out that spatial resolution is an inherent property of the imaging
system, independent of image statistics [140]. Importantly, they also
showed that spatial resolution directly impacts image contrast and the
ability to distinguish small features, thereby enhancing the benefits of
increased sensitivity and statistical data. These findings are particularly
relevant to our work, as the cylindrical and flat-panel PET systems
previously proposed are based on monolithic detectors, which inherently
provide superior intrinsic resolution and depth-of-interaction capabilities.

In this chapter, we therefore test the limits of detection of the most
cost-effective among the previously proposed designs, the sparse medium
flat panels (SpM-FP) and examine how the improved spatial resolution
can enhance image SNR and lesion contrast for a given number of detected
counts. Specifically, we assess whether higher resolution can compensate
for reduced statistics while preserving diagnostic quality. This analysis
offers insights into the trade-offs between resolution, sensitivity, and
acquisition conditions in developing next-generation PET systems.
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6.2 DMaterials and methods

In the NEMA IQ phantom, the smallest sphere has a diameter of 10
mm, which is too large to test the detection limits of the SpM-FP
design. Therefore, for this study, we use the IQ body phantom with
smaller spheres described in Chapter 5, and we refer to it here as the
high-resolution torso phantom, see Figure 6.1. It is simulated in the
static SpM-FP with sphere-to-background (STB) activity concentration
ratios of 4:1 and 8:1 for an acquisition of six minutes. The images were
reconstructed using only true coincident events with a TOF of 300 ps and
an isotropic voxel size of 0.5 mm, given how small the imaged spheres are.
This is also supported by a previous study that showed the advantage of
using smaller voxel sizes to improve tumor detection performance for PET
[141]. The contrast recovery coefficients (CRCs) and contrast-to-noise
ratios (CNRs) were then calculated for the different scenarios.
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Figure 6.1: Schematic of the central transverse slice of the high-
resolution torso phantom showing the reduced dimensions of the hot
spheres in red and the background regions of interest in blue.

Detection limits of the SpM-FP

Initially, the detection limits of the SpM-FP were evaluated by varying
the acquisition time to determine which of the three smallest spheres (2,
4, and 6 mm) could be reliably detected. Reconstructions were performed
at 2-minute intervals, up to 6 minutes, since changes were minor when
using an increment of 1 minute. In this study, the actual intrinsic and
DOI resolutions of the monolithic LYSO detectors were used. For PSF
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modeling, the system’s spatial resolution values at the scanner’s center
were applied, since the phantom was positioned in the center.

Detector resolution versus counts

In this study, the impact of detector spatial resolution was evaluated
by varying the detector blurring parameters to determine the smallest
sphere that can be reliably detected for a given number of counts and to
assess how this detection limit changes with improved resolution. The
endpoints of the lines of responses (LORs) were blurred using a kernel size
corresponding to the intrinsic detector and DOI resolutions as described
in the previous chapters. Three additional cases were considered, where
the actual detector and DOI resolution values were scaled by factors of 2,
3, and 4. To enable accurate point spread function (PSF) modeling, the
effective spatial resolution of the SpM-FP in the center of the FOV was
first evaluated for each detector resolution scenario. These values were
then used as the corresponding PSF kernels during image reconstruction.

Comparison with the simulated Vision600

To compare the resolution limits of the SpM-FP with those of the
Siemens Biograph Vision 600, we simulated the high-resolution body
phantom using the validated MC model of the Vision 600. The model had
previously been benchmarked against the scanner’s sensitivity, showing
good agreement with both the simulated values reported in Chapters
4 and 5, and the measurements by van Sluis et al. [118]. The STB
activity concentration ratios were set to 4:1, with acquisition time of
6 minutes. To account for the intrinsic resolution limitations of the
Vision 600 pixelated detectors which lack DOI capability, the interaction
points within each detector pixel recorded in GATE were shifted to the
central plane of the pixel and uniformly randomized within that plane.
The reported TOF resolution of 214 ps was incorporated to reflect the
system’s timing performance. In addition, PSF modeling was applied
using a kernel size of (4.4, 4.0, 4.5) mm, corresponding to the reported
spatial resolution of the Vision 600 at the scanner’s center, where the
high-resolution torso phantom was positioned.

6.3 Results

6.3.1 Detection limits of the SpM-FP

Figure 6.2 shows the reconstructed images and the contrast metrics of
the high-resolution torso phantom (10th iteration) at an STB activity
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ratio of 4:1 for various acquisition times. The CRC values stay consistent
across different acquisition times while the CNR values increase for most
spheres due to reduced image noise at higher statistics. The 2-mm and
4-mm spheres do not meet the Rose criterion, with CNR values remaining
well below 5 even after six minutes of acquisition. In contrast, the 6-mm
sphere reaches a CNR of 5 with increasing statistics after approximately
15 iterations, demonstrating that the SpM-FP can reliably detect lesions
as small as 6 mm in diameter with a relatively low uptake given sufficient
acquisition time. Looking at the 10th iteration at 360 seconds, the
6-mm sphere is already visible despite having a CNR less than 5. This
can be due to the relatively uniform background of the phantom used,
however, in clinical patient data, with increased anatomical complexity
and heterogeneity, the Rose criterion serves as a more strict threshold for
reliable lesion detection. The same analysis was performed for an STB
activity concentration ratio of 8:1 with results shown in Figure 6.3. At
this higher contrast, the resolution limit improves and the SpM-FP can
detect the 4-mm sphere as early as 120 s, where the CNR slightly exceeds
5 at the 10th iteration and the sphere is clearly visible in the reconstructed
images. At longer acquisition times, the CNR of all spheres except the
2-mm increases further as image noise decreases. CRC values remain
consistent as image noise decreases confirming that the improvement in
CNR mainly results from reduced noise at higher statistics.

6.3.2 Detector resolution versus counts

Having established the detection limits of the SpM-FP for STB activity
concentration ratios of 4:1 and 8:1, we now examine the effect of degrading
detector resolution and consequently system spatial resolution on image
quality with a focus on CNR values of the smallest spheres. The analysis
is performed at an STB ratio of 8:1, at which the 4-mm is detectable
in the SpM-FP. Table 6.1 summarizes the actual detector resolution
along with values scaled by factors of 2, 3, and 4. For each case, the
corresponding PSF kernel size was determined based on the system’s
achievable spatial resolution in all three direction.

Figure 6.4, shows the reconstructed images and the associated CRC and
CNR values for these four scenarios. As detector resolution degrades, the
broader PSF kernels applied during reconstruction lead to smoother and
less sharp images. While this smoothing reduces image noise and results
in higher CNR values overall, the contrast recovery is not improved.
The CRC is consistently highest at the best detector resolution, and
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Figure 6.2: Reconstructions of the high-resolution torso phantom (10th
iteration) simulated in the SpM-FP, with the corresponding CRC and
CNR at different acquisition times for an STB activity concentration
ratio of 4:1 with PSF modeling applied. The dotted black line represents
the observability threshold according to the Rose criterion.

Table 6.1: Detector resolution and DOI values in mm scaled by factors
of 2, 3, and 4 with the corresponding kernels used for PSF modeling.

DRx1 DRx2 DRx3 DRx4

2D resolution - DOI  1.14 - 2.67 2.28-5.34 3.42-801 4.56 - 10.68
PSF kernel (152815)  (242)  (285528) (3.4,6.5,3.4)
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Figure 6.3: Reconstructions of the high-resolution torso phantom
(10th iteration) with the corresponding CRC and CNR at different
acquisition times for an STB activity concentration ratio of 8:1 with
PSF modeling applied. The dotted black line represents the observability
threshold according to the Rose criterion.

importantly, the CNR of the 4-mm sphere falls below the detectability
threshold (CNR less than 5) when detector resolution is degraded by
factors of 3 and 4, rendering the sphere practically undetectable. To
put this into perspective and evaluate the trade-off between detector
resolution and the number of counts or simply acquisition time, Figure
6.5 compares three cases:

e 180-second acquisition with a detector resolution degraded by a
factor of four (DRx4),

e 360-second acquisition with the same degraded resolution (DRx4)
to increase the number of counts, and
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e 180-second acquisition with the actual detector resolution (DRx1).
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Figure 6.4: Reconstructions of the high-resolution torso phantom (10th
iteration) with the corresponding CRC and CNR at varying detector
resolutions with an acquisition time of 180 s and an STB activity
concentration ratio of 8:1 with PSF modeling applied (bigger PSF
kernels are used for higher detector resolution values).

The DRx4 reconstructions (left and middle) appear smoother and in-
creasingly blurred due to the broader PSF kernels, whereas the DRx1
reconstruction (right) is sharper and achieves higher CRC values despite
showing slightly more noise. As expected, doubling the statistics at
DRx4 increases the CNR, of the 4-mm sphere above 5, enabling detection.
However, with DRx1, the same sphere is already visible at 180 seconds,
reaching a CNR of roughly 5 by the 10th iteration. This result high-
lights that improving detector resolution provides a more effective way
for detecting small lesions than increasing acquisition time. Enhanced
resolution not only improves detectability but also strengthens contrast
recovery, a benefit that cannot be achieved by only increasing statistics.
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Figure 6.5: Reconstructions of the high-resolution torso phantom (10th
iteration)simulated in the SpM-FP, with the corresponding CRC and
CNR at 180 and 360 seconds for DRx4 and at 180 seconds for
DRx1 for an STB activity concentration ratio of 8:1 with PSF modeling
applied (bigger PSF kernels are used for the cases of DRx2 and DRx4).

6.3.3 Comparison with the simulated Vision 600

Figure 6.6 compares the reconstructed images of the SpM-FP and Vision
600 for a 360-s acquisition with an STB ratio of 4:1. The Vision 600
image appears smoother, with well-defined edges, whereas the SpM-FP
reconstruction is affected by elongation artifacts, particularly at the top
and bottom edges of the IQ phantom and around the larger spheres.
Despite this, the SpM-FP achieves higher CRC values than the Vision
600, reflecting its superior spatial resolution. In contrast, the CNR
values are lower for the SpM-FP due to increased background noise.
For the 6-mm sphere, the SpM-FP reaches a CNR of about 5 after the
10th iteration, whereas the Vision 600 achieves nearly twice this value,



Chapter 6. PET performance trade-offs 116

despite the sphere being only faintly discernible in both reconstructions
as indicated by the green arrow.
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Figure 6.6: Reconstructions of the high-resolution torso phantom (10th
iteration) simulated in the SpM-FP and Vision600, with the correspond-
ing CRC and CNR at 360 seconds for an STB activity concentration
ratio of 4:1 with PSF modeling applied.

6.4 Discussion

As outlined in Chapter 2, the limited spatial resolution of PET systems
leads to partial volume effects, which reduce the apparent activity concen-
tration in small lesions. Because PET systems have a limited resolution
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characterized by the point spread function of imaged point-like sources,
small objects appear blurred, and lesions with low uptake can be missed
when the system resolution exceeds roughly one-third of the lesion size.
Detecting early-stage, low-uptake lesions therefore requires systems with
superior spatial resolution, one of the main strengths of the SpM-FP
design, as demonstrated in Chapter 5. To probe the limits of detectability,
we reconstructed images with small voxel sizes of 0.5 mm and evaluated
the detection of the three smallest spheres in the high-resolution torso
phantom. The PSF model was anisotropic due to elongation along the
direction orthogonal to the detector panels, reflecting the limited-angle
geometry. However, because the phantom was centered in the field of
view, where the system resolution is relatively uniform, the same PSF
kernel was applied throughout the reconstruction for each scenario.

The results demonstrate that the SpM-FP can detect a 6-mm sphere
at low uptake (4:1 contrast) with a 4-minute scan, and a 4-mm sphere
at higher uptake (8:1 contrast) in less than 2 minutes. These results
are consistent with the system’s measured resolution of less than 2 mm
parallel to the panels (X, Z) and around 3 mm in the orthogonal direction
(Y). While such high resolution enhances detectability, the small PSF
kernels also limit noise suppression, reducing CNR values across most
spheres, especially the larger ones, highlighting the trade-off between
resolution recovery and noise. The detector resolution study confirmed
this behavior. When resolution was intentionally degraded, the resulting
larger PSF kernels suppressed noise and increased CNR, at the expense
of details. In contrast, the actual SpM-FP resolution preserved fine
structures but yielded noisier images. This aligns with Muehllehner’s
observation [138] that improved system resolution reduces the number
of counts required to achieve a given image quality. Although applying
Gaussian filtering could have mitigated this difference, mostly for the
larger spheres, our primary aim was to assess the detectability of the
smallest spheres.

Comparisons with the Monte Carlo model of the Siemens Biograph
Vision 600 must be interpreted cautiously. Differences in PSF modeling
and especially in time-of-flight resolution influence detectability metrics.
In his work, Kadrmas et al. showed how time-of-flight helps detect focal
warm lesions in a noisy background [142]. The Vision 600, simulated
with its reported 214 ps TOF resolution, benefited from reduced noise
propagation and improved effective sensitivity. The SpM-FP, modeled
with a more conservative TOF resolution of 300 ps, produced noisier
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reconstructions. This helps explain why Vision 600 images appeared
smoother and why its CNR values for the 6-mm sphere were nearly
double those of the SpM-FP, despite neither system clearly resolving the
lesion.

Experimental data from Siemens support these findings where the
Biograph Vision 600 was able to detect a 5-mm sphere at a 6:1 contrast
ratio as shown in Figure 6.7, largely due to its use of small crystal sizes
that enhance resolution [119]. Other phantom studies confirm that lesion
detectability strongly depends on acquisition time, lesion-to-background
contrast, and reconstruction choices. For example, Oen et al. reported
that with PSF modeling and Gaussian filtering, the 5-mm sphere could
be detected on the Siemens mCT at 8:1 contrast within 150 seconds.
Similarly, a multi-vendor study concluded that while all systems could
resolve 4-mm spheres at very high uptake (15:1) with long acquisitions,
detection of 5-6 mm spheres at routine scan times (2-4 minutes per bed
position) required very high uptake values. In comparison, the SpM-FP
achieved detection of a 6-mm sphere at a clinically realistic 4:1 contrast
in roughly 4 minutes.

4-mm crystal Biograph Vision

5-mm sphere 5-mm sphere

Figure 6.7: Reconstructions of the high resolution torso phantom with
sphere sizes equal to 5.0, 7.9, 9.9, 12.4, 15.4 and 19.8 mm. Data acquired
with 4-mm crystals and the Biograph Vision 600 for a 6:1 contrast-to-
background ratio. Figure adapted from [119].

Together, these results underscore the importance of spatial resolution
for lesion detection, which complements but does not replace TOF
improvements. Although the SpM-FP’s TOF resolution does not yet
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reach the latest standards, its superior intrinsic resolution allows detection
of very small lesions that might otherwise be missed. At the same time,
TOF is particularly critical for the SpM-FP geometry: the flat-panel
configuration suffers from elongation artifacts, especially at the top and
bottom of the phantom. These artifacts can also bias CNR estimates, as
background ROIs overlap with regions affected by elongation.

6.5 Conclusion

This chapter demonstrates the potential of the SpM-FP to deliver high-
resolution PET imaging and improve the detectability of small lesions,
even at modest uptake values. The results confirm that spatial resolution
plays a decisive role in extending lesion detectability to sub-centimeter
scales. Nonetheless, two main limitations remain. First, the flat-panel
geometry introduces elongation artifacts due to incomplete angular cov-
erage. Second, the system’s TOF resolution is currently inferior to that
of leading clinical systems, which amplifies noise in short acquisitions.
Addressing these challenges is essential for clinical translation. In the
next chapter, we introduce and evaluate a deep learning-based approach
aimed at mitigating noise and reducing elongation artifacts. This strategy
is expected to further enhance lesion detectability and image quality,
thereby advancing the clinical potential of the SpM-FP system.
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Chapter 7

Deep learning-based image
restoration

7.1 Introduction

In Chapter 5, we evaluated the sparse medium flat panel (SpM-FP)
design and demonstrated its potential for cost-effective PET imaging,
offering good sensitivity and superior spatial resolution that yield clear
advantages in lesion detection as demonstrated in Chapter 6. However,
two main image quality challenges were evident in the reconstructed
images:

e Elongation artifacts in the transverse and sagittal directions, caused
by side gaps and incomplete angular coverage. These artifacts
are inherent to flat-panel geometry and represent a fundamental
limitation of the design.

e Noise from low-count statistics, which reduces image quality, even
with the system’s relatively high resolution. Although this issue
could potentially be addressed by longer acquisition times than 2-3
minutes, doing so would undermine the high-throughput benefit
that the SpM-FP is designed to offer.

The first limitation stems from fundamental differences between flat-
panel and cylindrical geometries. In a cylindrical PET system, a full
180-degree angular projection range is available in the transverse plane,
which, despite noise, limited detector resolution, dead time, and physical
constraints, provides enough information to accurately reconstruct the
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tracer distribution. Although 3D projections can be partly redundant
and increase scatter, they improve sensitivity and provide essential cross-
plane and oblique lines of response (LORs), especially in long-AFOV
systems. In flat-panel designs, the available transverse angular coverage
is less than 180 degrees. While the axial projection range adds extra
information, it is not enough to fully compensate for missing projection
angles. As a result, certain regions remain obscured, leading to structured
elongation artifacts. In the NEMA IQ and modified 1QQ phantoms of the
flat-panel designs (Figures 5.9 and 5.10), hot spheres appeared stretched,
blurring tumor boundaries and creating the impression of artificially
enlarged lesions. Similarly, in the XCAT phantom, edges perpendicular
to the panels were poorly defined, with spillover of activity into cold
regions, which could impact clinical interpretation despite otherwise good
quantitative results. On the other hand, the SpM-FP achieved good
image quality in 2-3 minutes, which is 4-5 times faster than the Siemens
Biograph Vision 600, despite having less than double its sensitivity and a
clear advantage in spatial resolution. However, the lower count statistics
still cause noticeable noise, emphasizing the need for effective image
denoising methods.

Therefore, for the SpM-FP to become clinically practical, both limited-
angle artifacts and image noise need to be addressed. As discussed in
Chapter 3, deep learning (DL)-based methods have been used separately
for denoising and artifact correction. Here, we build on this approach by
considering both factors together, while acknowledging their differences:

e Noise is random, high-frequency, and spread across the entire image,
which lowers the signal-to-noise ratio (SNR).

e Limited-angle artifacts are directional and structured, caused by
incomplete angular sampling.

Previous studies we conducted to denoise reconstructed XCAT images
from data simulated in the L-FP design (not included in this work)
showed that noise could be significantly reduced, both visually and
through calculation of the contrast-to-noise ratio [143]. However, training
a deep learning model on highly controlled, idealized data such as XCAT
phantoms can lead to unrealistic performance. To better approximate
clinical reality, we therefore switched to using PET patient data acquired
on the Siemens Biograph Vision Quadra as part of the Ultra Low Dose
Challenge [5)].
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In this chapter, we use a 2D U-Net architecture that has proven
effective for denoising micro-PET data [97]. It is now adapted to not
only reduce noise but also minimize elongation artifacts in SpM-FP
reconstructed images, enhancing the potential for practical deep learning-
based image restoration in flat-panel PET systems.

7.2 DMaterials and Methods

7.2.1 Training data

The dataset used to train the deep learning model consists of ®F-
fluorodeoxyglucose (*¥*F-FDG) scans from 30 patients of the Ultra Low
Dose Challenge dataset acquired on the Siemens Biograph Quadra at
Bern University hospital [5]. The corresponding CT data were also
provided. The patient cohort comprised both genders and was selected
to cover a broad range of body-mass indices (BMI: 16-48 kg/m?) and
ages (26-85 years). Acquisition times varied between 6 and 10 minutes,
with injected activities ranging from 84 to 250 MBq calculated at 2.5
MBq/kg of body weight, in accordance with EANM guidelines. All
PET scans were conducted approximately 1 hour post-injection to allow
for tracer uptake. The full dose PET images served as the reference
targets for training the deep learning model.

Input data: simulation and reconstruction

To generate patient-specific GATE simulations, two inputs were required
for each subject: (i) an activity distribution map derived from the PET
images, and (ii) an attenuation map representing the tissue composition
derived from the CT images. The original CT images had a matrix size
of 512 x 512 x 644 with voxel dimensions of 1.52 x 1.52 x 1.65 mm?,
while the PET images had a matrix size of 440 x 440 x 644 with isotropic
voxel dimensions of 1.65 mm. The Quadra scanner with an AFOV of
106 ¢cm was operated with a maximum ring difference of 85, and a single
bed position. Images were reconstructed using PSF modeling and TOF
with four iterations and five subsets. Prior to simulation, the CT images
were preprocessed by cropping the patient bed from the transverse slices.
Image co-registration was then performed in PMOD v4.4 [144]. To re-
tain the higher spatial resolution of the CT data, the PET images were
interpolated to the CT voxel grid. Cropping and positioning adjustments
were applied to ensure correspondence with the scanning FOV and the
moving SpM-FP design.
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In the XCAT simulations described in Chapter 5, activity and attenua-
tion maps were directly generated by the XCAT software by specifying
various parameters. Here, both maps were derived from clinical PET/CT
acquisitions. The PET images, originally expressed in Standardized Up-
take Value (SUV), were converted to units of Bq/voxel for use in GATE.
The CT images in Hounsfield Units (HU) were converted into a tissue
classification map using tabulated stoichiometric conversion data from
Schneider et al. [145]. Since scanner-specific calibration data from the
Siemens Biograph Vision Quadra were not available, the generic conver-
sion tables were applied. Nevertheless, visual inspection confirmed that
the resulting tissue classification and spatial distribution were anatomi-
cally consistent. The final attenuation maps were generated in GATE
and served as the ground-truth tissue maps for the simulation. Figure 7.1
shows the activity and attenuation maps for one of the patients, which
were used as input for the GATE simulations. The moving SpM-FP
configuration described in Chapter 5 was simulated to cover a total
AFOV of 136 cm, with an acquisition time of three minutes per patient.

Activity map Attenuation map

Figure 7.1: Activity and attenuation maps from one of the patient
datasets used as input for the GATE simulation.
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The ROOT outputs were post-processed and only true coincidences were
used. For the reconstruction, a TOF resolution of 300 ps and detector
blurring were modeled, along with attenuation correction. Patient-specific
attenuation maps were derived from CT images by converting Hounsfield
Units to linear attenuation coefficients using a bilinear transformation
based on scanner-specific calibration curves [146]. Image reconstruction
was performed using the MLEM algorithm with a voxel size of 1.52 x
1.52 x 1.65 mm?3, incorporating PSF modeling. Images from the fifth
iteration were selected to balance between image contrast and noise.

7.2.2 Network architecture

Based on earlier successful DL-denoising work by our group [97], the
model used in this study consists of a 2D convolutional neural network
based on a four-layer U-Net architecture shown in Figure 7.2. It features
an encoder path that gradually reduces spatial resolution at each level
while increasing the number of feature maps, and a decoder path that
restores the spatial resolution. Nine adjacent slices are stacked at the
input to provide some 3D spatial context. Since the 2D U-Net processes
each slice independently, this approach allows the model to capture
information across slices; however, only the central slice is denoised
during each forward pass, making the network a 2.5D U-Net.
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Figure 7.2: U-Net structure of the 2D convolutional neural network
used in this work. The model takes 9 input slices.

Each encoder level performs two convolutional operations (kernel size of
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3), followed by batch normalization (BN) and rectified linear unit (ReLU)
activation. Moving to the second level, the 2D max-pooling operation
downsamples the feature maps, reducing their spatial resolution by a
factor of two. Then, the number of feature maps doubles from 64 to
128. This process continues until the bottleneck layer, where the feature
depth reaches 512. In the decoder path, 2D transposed convolution
operations are used for upsampling between levels. Skip connections
concatenate the corresponding feature maps from the encoder to the
decoder, allowing the model to preserve details lost during encoding.
After each upsampling and concatenation, two blocks of convolutions,
BN, and ReLu are applied. The final layer in the decoding path is a
convolution with a kernel size of 1, used for mapping the feature maps
back to the original spatial dimensions and predict the new pixel/voxel
values. A residual connection between the input and output slices is
also included to improve model convergence. This network ultimately
outputs a DL-enhanced version of the input slice.

7.2.3 Training strategy

The dataset of 30 subjects was divided into training, validation, and
testing sets in a 24:3:3 ratio, ensuring that each set included a range of
BMIs and ages, both genders, and acquisition times (6 and 10 minutes).
During preprocessing, a patient with a clearly visible high-uptake struc-
ture in the shoulder, confirmed by a clinician to be a residual tracer, was
identified and set aside for testing, since no obvious lesions appeared
in the training data. This enabled evaluation of the model’s ability to
handle focal high-uptake regions that resembles lesions. Multiple models
were trained using different anatomical views: transverse only, sagit-
tal only, both transverse and sagittal, and a combination of transverse,
sagittal, and coronal. This approach was driven by the structure of the
elongation artifacts in the SpM-FP system, which occur perpendicular to
the detector panels and are visible in the transverse and sagittal planes
but not in the coronal plane. As a result, including coronal slices, where
elongation artifacts are not visible might reduce the model’s ability to
learn artifact-related features and could influence the learned weights
and biases. Consequently, the results presented correspond to a model
trained on transverse views only. All models were trained using paired
images: the noisy, artifact-affected SpM-FP reconstructions as input
and the corresponding Quadra images as ground-truth targets. Images
were expressed in standardized uptake value (SUV) units, and mean
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intensity normalization was applied to both input and target data to
ensure consistent scaling across subjects. Data augmentation involved
random horizontal and vertical flipping of the input images. Several
loss functions were used, including mean absolute error (MAE), mean
squared error (MSE) and a combination of MSE and VGG16 perceptual
loss [147]. The perceptual loss uses the VGG16 deep convolutional neural
network as a feature extractor, comparing high-level feature maps from
intermediate layers instead of performing pixel-wise comparison like MAE
and MSE. This method is expected to help maintain perceptual and
structural image features. For the results presented in this work, we used
the combined MSE and VGG16 perceptual loss. The Adam optimizer
[148] was employed with a fixed learning rate of 10~%. The batch size was
set to 6, limited by available GPU memory. Early stopping was applied
to end training once no further improvements in validation performance
were observed. All trainings were conducted on a workstation equipped
with an Intel(R) Core(TM) i7-9700K CPU (8 cores) and an NVIDIA
GeForce RTX 2080 GPU (11 GB memory). Depending on the model
and loss function, training times varied but generally under 12 hours,
with an average of about 6 hours. Inference was carried out in the same
orientation as training. For models trained on transverse slices, inference
was done slice-by-slice in the transverse plane, and the 2D outputs were
stacked to create the full 3D image volume.

7.2.4 Model evaluation

The performance of the trained model was evaluated on the testing
dataset, which included three patients, with one of them having a
high-uptake structure in the shoulder region. Both qualitative and
quantitative analyses were conducted to assess the model’s ability to
reduce noise, mitigate elongation artifacts, and preserve contrast in the
high-uptake structure. The details of the test patients are summarized
in Table 7.1.

Qualitative evaluation

A visual inspection of the images was performed by examining the
transverse, sagittal and coronal slices of the input, DL-enhanced, and
target (Quadra) images. The assessment focused on evaluating noise
reduction and the elimination of elongation artifacts, especially in the
transverse and sagittal planes where these artifacts were most prominent.
Particular attention was given to anatomical boundaries and small
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Table 7.1: Demographic and acquisition details of the three test patients
used in this study with injected activities, calculated at 2.5 MBq/kg
according to EANM guidelines.

BMI Sex Age Injected Activity Acquisition time

Patient 1 (P1) 27 M 59 179 MBq 6 min
Patient 2 (P2) 35 F 47 211 MBq 6 min
Patient 3 (P3) 24 F 50 132 MBq 10 min

structures that appeared elongated in the SpM-FP images, to see if the
DL model could better define edges.

Quantitative evaluation

For quantitative analysis, three-dimensional volumes of interest (VOIs)
were placed in homogeneous areas of the liver and leg to estimate image
noise, calculated as the standard deviation of the SUV values within each
VOI. In the patient with the high-uptake structure caused by residual
tracer, a VOI covering most of the structure was drawn to determine the
mean SUV and assess how the DL enhancement recovered focal uptake.
Additionally, line profiles were drawn across the lesion-like feature and
other small anatomical features that showed elongation artifacts in the
input images. These profiles were compared across input, DL-enhanced,
and target images to measure improvements in shape and boundary
clarity. Line profiles through organ boundaries were also analyzed to
evaluate transitions between regions, which often appear blurred or
poorly defined in the original SpM-FP reconstructions.

7.3 Results

Various models were trained with different number of input slices (3,
9, and 17), loss functions, and anatomical views (one, two, or all three
planes). Models that achieved good validation performance were further
evaluated on the test patients summarized in Table 7.1. Overall, the
differences in quantitative performance across models were not substan-
tial, and the final selection was based on detailed visual assessment.
Notably, models trained exclusively on transverse slices provided the best
results in terms of noise reduction, correction of elongation artifacts, and
reduction of spillover effects caused by the limited-angle coverage of the
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flat-panel geometry. In contrast, models trained on sagittal or combined
views exhibited higher noise levels and more distortions. The use of MSE
loss alone also yielded acceptable results. Furthermore, increasing the
number of input slices from three to nine improved both denoising and
artifact-correction performance. The best performing model was trained
exclusively on transverse slices using nine input slices and a combined
loss function of both MSE and VGG16-based perceptual loss. The model
achieved optimal performance at epoch 13, with a total training time of
approximately six hours and about three hours to reach the best epoch.
During inference, the model generated a DL-enhanced image for each
patient in the test set in roughly 14 seconds.

Qualitative evaluation

Figure 7.3 shows the visual results for Patient 1, comparing the re-
constructed SpM-FP data for a three-minute acquisition (input) with
the DL-enhanced and reference images, the latter corresponding to the
original Quadra reconstruction. Slices from all three anatomical views
are shown, emphasizing those that include the high-uptake structure
in the shoulder region. The DL-enhanced image exhibits a clear noise
reduction, with improved delineation of anatomical structures, partic-
ularly in the sagittal and transverse planes. Compared to the Quadra
reference, however, it remains slightly blurred, and some fine details such
as spinal discs in the cervical and upper thoracic regions, abdominal
organs, and brain structures are not fully recovered. Regarding limited
angle artifacts, the high-uptake structure that appeared elongated in
the sagittal and transverse input images is restored to a more rounded
shape in the DL-enhanced image, although it does not perfectly match
the reference in size. The network also improved the definition of edges
perpendicular to the detector panels (top and bottom in the transverse
view; left and right in the sagittal view), where activity in the input
images appeared smeared or poorly separated from cold regions. In
the DL-enhanced output, these edges are better defined, though not as
sharply as in the Quadra reference, which shows a clear skin boundary.
Figures 7.4 and 7.5 show similar results for Patients 2 and 3 who had no
visible lesions but different BMIs and injected activities. Again, the DL
model effectively reduced noise and improved edge definition and organ
clarity, most notably in the transverse and sagittal planes. For Patient 3,
a minor anatomical distortion was observed in the DL-enhanced coronal
slice, where the brain appears slightly wider on the left side, suggesting
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that the model may have introduced artificial tissue adjacent to the
skull.

Quantitative evaluation

Regarding image noise, figure 7.6 illustrates the spherical VOIs used for
analysis: 6 cm in diameter placed in the liver and leg for all three patients,
and a 1-cm VOI placed over the high-uptake lesion-like structure for
Patient 1. The standard deviation, representing voxel-to-voxel intensity
variation within each VOI, was calculated for the input, DL-enhanced,
and reference Quadra images of each patient. Figure 7.7 shows these
results in a bar plot, demonstrating a consistent reduction in standard
deviation for the DL-enhanced images across all patients. The noise
levels were slightly lower than those of the reference images, consistent
with the visual observations where the DL-enhanced images appeared
smoother. Figure 7.8a shows the percentage SUV recovery in the SpM-
FP and DL-enhanced images relative to the reference Quadra image.
Within the 1-cm VOI of the lesion-like structure, SUV recovery improved
from 62% in the input image to full recovery in the DL-enhanced image,
indicating that the model effectively restored the structure contrast.
Figure 7.8b presents a line profile across a transverse slice for Patient
2 illustrating how closely the DL-enhanced image follows the reference
image in terms of SUV values. In contrast, the input image exhibits
substantial fluctuations due to noise.

To assess the limited angle artifacts visible in the transverse and
sagittal slices, Figure 7.9a presents a line profile through the lesion-like
structure in the transverse plane. The broader peak observed in the
input image reflects the elongation of the structure along the detector
panel direction. The DL-enhanced image not only reduces this elongation
but also shows improved SUV recovery, with a peak height closer to
that of the reference image. In Figure 7.9b, the line profile across the
liver boundary demonstrates that the DL-enhanced profile more closely
follows the reference, while the input image shows elevated SUV values
spilling into the adjacent region (encircled in black), consistent with
the blurring and edge distortion caused by limited-angle effects. The
improvements are further demonstrated in Figure 7.10 for Patient 2,
where line profiles in the transverse and sagittal planes show reduced
artifacts. Figure 7.11 presents similar enhancement across an elongated
structure in the sagittal plane for Patient 3.
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Figure 7.3: Patient 1: BMI 27 - 179 MBq. Coronal, sagittal and
transverse slices of the input SpM-FP, DL-enhanced output, and the

reference Quadra image. Slices including the high-uptake structure in
the shoulder region are also shown.
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Figure 7.4: Patient 2: BMI 35 - 211 MBq. Coronal, sagittal and
transverse slices of the input SpM-FP, DL-enhanced output, and the
reference Quadra image.
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Figure 7.5: Patient 3: BMI 24 - 132 MBq. Coronal, sagittal and
transverse slices of the input SpM-FP, DL-enhanced output, and the
reference Quadra image.
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Figure 7.6: Coronal slices for all three patients showing the placement
and size of the VOIs used for the quantitative analysis.
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Figure 7.7: Quantitative evaluation of the noise in the input, DL-
enhanced and the reference images showing the standard deviation values
evaluated in the liver and leg VOlIs.
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Figure 7.8: (a) Patient 1: Recovery of SUV in the high-uptake struc-
ture, caused by residual tracer, in the input and DL-enhanced images,
expressed as a percentage relative to the SUV measured in the reference
image, (b) Patient 2: Line profiles across the central transverse slice for
all three images, showing that the DL-enhanced profile closely follows
the reference profile except at the skin boundary, where uptake is not
fully recovered.
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Figure 7.9: Patient 1: (a) Line profile across the high-uptake structure
boundary, (b) line profile across the liver boundary, both in the transverse
plane.
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Figure 7.10: Patient 2: (a) Line profile across the liver boundary in
the transverse plane, (b) line profile across the patient boundary in the
sagittal plane.

7.4 Discussion

Based on the presented qualitative and quantitative results, the DL model
effectively reduced image noise, although it caused some blurring and
loss of sharpness compared to the reference images. Certain anatomical
details, particularly in the brain and some thoracic regions, were not
clearly visible. However, examining the input images of the test patients,
especially in the sagittal and transverse planes, reveals that much of
these fine details were already obscured by noise. Thus, relative to the
input, the DL model was able to recover most structural information,
even if the sharpness does not match that of the Quadra images. Regard-
ing elongation and spillover caused by the limited-angle geometry, the
network was capable of addressing these effects by redistributing activity
into appropriate regions, reducing spillover, and providing better-defined
edges. Lesion-like and small structures that appeared elongated in the
input have regained their shape when compared to the reference images.
However, the model was unable to fully restore skin uptake, likely due
to limited-angle artifacts. Analyzing the data used to reconstruct the
SpM-FP images, each three-minute scan across the 30 patients, yielded
on average around 40 million true coincidence events, which is consider-
ably lower than typical counts used in conventional PET reconstructions.
The SpM-FP featuring 8 detector rows with 28-mm gaps along the axial
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direction, moves during acquisition to cover a scanning FOV of 136 cm.
Compared to the Quadra, and accounting for differences in acquisition
time and system sensitivity (with the Quadra operating at MRD =
85), there was an approximately 9- to 14-fold difference in total counts.
To put this into perspective, a recent systematic review of 55 studies
highlighted the strong potential of deep learning models, such as gen-
erative adversarial networks and U-Nets, to produce high-quality PET
images from low-dose acquisitions [149]. For instance, previous work has
shown effective denoising even for dose-reduction factor as high as 50
[150]. However, those studies typically used pairs of low-dose full-dose
data acquired on the same scanner, whereas our method used inputs
and targets obtained from two different PET systems with inherently
different characteristics. Moreover, the target (Quadra) images used
as ground truth have lower spatial resolution than the images of the
monolithic-based SpM-FP system. Additionally, the input images repre-
sent a convolution of both system resolutions, which, along with noise,
likely contributed to the loss of sharpness that the DL model was unable
to fully recover. Furthermore, the network was challenged to address
both noise and limited-angle artifacts simultaneously. Despite these dif-
ferences, the U-Net model effectively produced lower-noise outputs from
high-noise, low-count SpM-FP images and mitigated the artifacts caused
by the limited-angle geometry. Increasing the count statistics in the in-
put images, by simulating longer acquisition times, would likely improve
image quality and enhance the model’s ability to learn fine anatomical
structures. The dataset size was also relatively limited, particularly since
only transverse slices were used for training. Expanding the dataset
to include more patients and especially cases with lesions of varying
uptake levels, could help the model generalize better. In such cases,
however, careful image normalization strategies are essential to prevent
distortions or biases around high-uptake lesions. Additionally, future
work could explore 3D U-Net architectures, which have shown promise
in PET denoising and artifact reduction [107]. These architectures could
address both noise reduction and limited-angle correction. Although
our 2.5D network incorporated multiple neighboring slices as input, its
convolution remained two-dimensional. A 3D convolutional approach,
though more memory intensive, could better exploit inter-slice spatial
correlations and further enhance images.
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Figure 7.11: Patient 3: (a) Line profile across an elongated structure
in the sagittal plane.

7.5 Conclusion

The results of this study demonstrate the strong potential of the deep
learning model in effectively denoising and reducing limited-angle artifacts
in images reconstructed with the SpM-FP design. Building upon this
work, further optimization of the network architecture and training
strategies could yield even greater improvements in image quality and
artifact correction. The DL-enhanced results present the SpM-FP as a
clinically viable PET system capable of producing high-spatial-resolution
images with low noise and minimal artifacts. When combined with
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its high throughput and cost-effective design, the SpM-FP represents
a promising step toward more accessible, high-quality PET imaging.
In summary, this study supports ongoing efforts to develop affordable,
high-performance PET systems suitable for routine clinical practice.
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Chapter 8

Conclusions and future
perspectives

8.1 Summary

The purpose of this dissertation was to analyze and assess, through
simulation, cost-effective and high-resolution medium-AFOV PET system
designs based on monolithic scintillation detectors. Improving spatial
resolution remains a central goal in PET imaging, especially with the rise
of long AFOVs, and TOF-capable systems developed over the past decade.
Moreover, the high cost of these systems has motivated the search for more
affordable yet high-performance alternatives. This study investigated
ring-based and flat-panel PET configurations with extended AFOVs.
Their imaging performance was assessed and compared to current clinical
systems. Based on simulation results and considerations of cost and
throughput, the sparse medium-AFOV flat-panel design (SpM-FP) was
identified as the most promising option. Compared to the state-of-the-art
PET scanners, it showed excellent spatial resolution, higher sensitivity,
cost efficiency and potential for increased throughput. A comprehensive
performance evaluation was then conducted to determine the detection
limits of the SpM-FP and compare them with those of existing clinical
systems. Two main issues were identified: increased image noise due
to short acquisition times and elongation artifacts caused by limited
angular coverage resulting from side gaps in the flat-panel design. To
address these issues, a deep learning model was developed and tested.
The model successfully reduced both noise and elongation artifacts,
producing smoother, higher-quality images. With these improvements
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and the system’s ability to detect lesions as small as 4 mm in diameter,
the SpM-FP stands out as a promising, clinically feasible, and accessible
solution that balances image quality, performance, and cost.

Chapter 2 covered the fundamental principles of PET physics and
instrumentation, along with data acquisition and image reconstruction
techniques. Chapter 3 reviewed recent technological advances in PET,
with particular emphasis on time-of-flight (TOF) and depth-of-interaction
(DOI) capabilities. TOF detectors enhance effective sensitivity and reduce
noise propagation in reconstruction, allowing imaging with fewer angular
projections, which is especially beneficial for geometries with limited
angular coverage such as the flat-panel design proposed in this work.
DOI measurement helps reduce parallax errors in both transverse and
axial directions, which are more pronounced in flat-panel systems since
detectors are positioned closer to the patient. The literature review also
examined advances in scanner geometry and system design. This included
long-AFOV systems that increase sensitivity and enable simultaneous
imaging of multiple body regions, with axial lengths ranging from 32 cm
to approximately 2 meters. Sparse geometries incorporating detector gaps
were also discussed as cost-efficient methods to extend AFOV without
additional detector modules. Furthermore, the flat-panel geometry was
also analyzed, outlining its advantages and limitations to establish the
rationale for its selection in this study. Finally, the simulation and
performance evaluation framework used throughout this research was
described in detail, including any necessary adaptations to the NEMA
standards. A concise review of deep learning applications in PET imaging
was also presented to give context to the development and integration of
the proposed model for denoising and artifact correction.

Chapter 4 presented the results of extended-AFOV ring-based designs
employing monolithic detectors. This step aimed to validate the detector
technology within a conventional geometry and evaluate the system’s
performance with improved spatial resolution. Along with the expected
improvements in sensitivity and spatial resolution, the proposed designs
provided modularity as a key benefit. Starting with an initial AFOV
of 36 cm, a modest extension over traditional scanners, the design can
be expanded to 72 cm by combining two such modules in a dual-mode
configuration, thereby boosting system sensitivity without substantially
increasing cost. The two designs, labeled A and B, used monolithic LYSO
crystals measuring 50 x 50 x 16 mm3, which, based on previous mea-
surements by our group, achieved an intrinsic spatial resolution of 1.14
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mm and a DOI resolution of 2.67 mm. A third design, C, incorporated
50% detector gaps arranged in a checkered pattern, effectively doubling
the axial length of design B to 145 cm without needing additional detec-
tors. Designs A and B were simulated in GATE using digital models of
the NEMA phantoms to evaluate key performance metrics: sensitivity,
spatial resolution, and image quality, while design C was simulated and
mainly evaluated for sensitivity. The checkered layout of design C also
allowed to reduce the bore diameter, further enhancing sensitivity and
making this configuration particularly suitable for pediatric applications.
The results showed that design A, with its moderate AFOV extension,
offers a significant sensitivity boost over traditional PET/CT systems
but still requires bed movement for whole body scans. Conversely, design
B, with an AFOV over 70 cm, achieved higher sensitivity and provided
greater anatomical coverage in a single bed position. Both designs had
a major benefit in maintaining sub-2 mm spatial resolution that was
mostly uniform across the FOV, thanks to the use of monolithic detectors
and their DOI capability, which effectively reduces parallax error. Image
quality tests using the NEMA IQ phantom confirmed good contrast
recovery, even for the smallest spheres. Nevertheless, it became clear
that further optimization of the reconstruction software and parameter
settings was necessary to ensure an accurate evaluation of system perfor-
mance. The simulations used a coincidence timing resolution (CTR) of
200 ps, based on expected performance of the two designs. However, this
value might be somewhat optimistic, as very few current state-of-the-art
pixelated PET systems have achieved such timing precision. Therefore,
a more conservative CTR value was adopted in subsequent studies to
avoid overestimating timing performance. Image reconstruction during
this phase was performed using the QETIR package; however, compu-
tational limitations impacted the image quality for designs A and B.
For subsequent stages of this work, we switched to a different list-mode
iterative reconstruction package developed at MEDISIP, optimized for
GPU acceleration and tailored for non-standard geometries such as flat
panels.

After validating the performance of monolithic detectors at the sys-
tem level and demonstrating their potential for sub-2 mm resolution, this
research shifted to a major design innovation: flat-panel, extended-AFOV
system called the Walk-Through PET (WT-PET). This concept
marks a significant advancement, improving sensitivity and spatial reso-
lution, reducing system costs, and increasing patient throughput. Unlike
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traditional or long-AFOV ring-based systems that require patients to be
positioned on a bed, the WT-PET allows the patient to stand between
two vertical panels of monolithic detectors for a quick scan. Although this
setup offers several notable benefits, it also presents specific challenges,
especially related to image noise and limited-angle artifacts. In Chapter
5, we introduced and evaluated the WT-PET concept though two designs:
the long flat-panel (L-FP) system with a 106 cm AFOV and the sparse
medium-AFOV flat-panel (SpM-FP) design, which achieves more than
half that coverage (~ 60 cm) using 2.5 times fewer detectors. The latter,
providing significant cost savings and maintain high throughput, became
the focus of the remaining work. Designed for limited panel movement
relative to the patient, the SpM-FP enables brain-to-torso imaging while
smoothing the sensitivity profile across detector gaps. Using a 300 ps
timing resolution and monolithic LYSO detectors, the SpM-FP, esti-
mated to be roughly 30% less expensive than the PET component of the
Siemens Biograph Vision 600, achieved an average NEMA sensitivity of
25 keps/MBq, approximately 1.5 times that of the Vision 600. The L-FP
showed roughly 4.8 times the sensitivity of the SpM-FP. Both systems
demonstrated sub-2 mm spatial resolution parallel to the panels (consis-
tent with analytical estimates) and around 3 mm perpendicular to them.
Importantly, the presence of detector gaps did not noticeably affect axial
noise uniformity. Phantom studies showed that the SpM-FP produced
high-quality images with good contrast and performance similar to the
L-FP, but it required four times longer scan times. Phantom simulations
showed that lesions as small as 4 mm were detectable, demonstrating
the system’s resolution limits and motivating the next chapter, which
discusses performance trade-offs and the advantages of higher spatial
resolution. However, limited angular coverage caused elongation artifacts
perpendicular to the panels in the images, an issue addressed in Chapter
7 using deep learning.

In Chapter 6, a digital high-resolution torso phantom with sphere
diameters ranging from 12 down to 2 mm was used to evaluate the
detection limits of the SpM-FP under various acquisition times and
sphere-to-background activity concentration ratios. The contrast recovery
coefficient (CRC) and contrast-to-noise ratio (CNR) were employed as
quantitative measures of sphere detectability. The results demonstrated
that the SpM-FP can reliably detect 6 mm and even 4 mm spheres with
practical acquisition times and standard NEMA activity concentration
ratios used for the IQ phantom. An important observation was that
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improved system resolution reduces the number of counts required to
achieve a given image quality. Furthermore, the detectability performance
of the SpM-FP was comparable to that of the Siemens Biograph Vision
600, despite the latter offering superior TOF resolution and full angular
coverage. These findings suggest that combining high spatial resolution
with improved TOF performance provide an optimal configuration for
detecting small or early-stage lesions that are often missed in standard
PET/CT systems with average resolution. Increased TOF capability
is especially advantageous for systems with flat-panel geometry, as it
reduces elongation artifacts and spillover effects caused by limited angular
coverage. It also helps minimize noise spread during short scans. However,
data on the exact timing resolution achievable with the SpM-FP system
has not yet been obtained.

Chapter 7 introduced a deep learning-based method aimed at ad-
dressing the two main limitations seen in the XCAT and IQ phantom
studies: image noise due to short scan times and artifacts caused by
limited angular coverage. A 2D convolutional neural network (CNN)
was trained using paired datasets for 30 Quadra patient scans obtained
from the Ultra Low Dose Challenge. This data was simulated using
the SpM-FP model in GATE to obtain reconstructions with notable
noise and limited-angle artifacts. These were used as input images, and
the network was trained to generate the corresponding Quadra images
which served as less noisy and artifact-free references. The deep learning
model effectively reduced both noise and limited-angle artifacts, pro-
ducing images with enhanced visual quality. However, several avenues
remain to further improve performance. Increasing the size and diversity
of the training dataset, particularly by including more malignancies,
using higher-quality inputs through longer acquisitions, and refining
the network architecture could contribute to more robust performance.
Implementing these enhancements could allow the DL model to serve as
a complementary correction tool, enabling the SpM-FP system to deliver
higher-quality images as part of a complete, optimized PET imaging
solution.

8.2 Future perspectives
Based on the findings of this dissertation, several promising directions

for future research can be identified.
First, in the work we presented, image reconstructions included only



Chapter 8. Conclusions and future perspectives 146

true coincidence events. Random and scattered events were excluded
through Monte Carlo tagging. This allowed us to evaluate the system
while assuming that standard correction methods effectively remove
randoms and scatters that degrade image quality. The next step should
therefore involve including these events and applying the correction
algorithms for scatter and randoms within the reconstruction framework
developed at MEDISIP.

From another perspective, since the SpM-FP requires patients to
stand upright between the detector panels for scan times of up to three
minutes, longer than 30 seconds used in the WT-PET concept, external
and physiological motion (such as cardiac and respiratory) becomes un-
avoidable. Such motion can affect the system’s effective spatial resolution
and compromise one of its main advantages. Our group is currently
developing and testing an ergonomic prototype with healthy volunteers
and patients to assess and reduce external patient motion while also
exploring the integration of motion correction techniques directly into
the reconstruction process. Another limitation is that the vertical panel
design in its current form is not suitable for bedridden patients. However,
the flexibility of using flat panels allows for adjusting the gap when
needed to accommodate a bed insert. Although this group constitutes a
small portion of the patient population, alternative configurations are
being explored through simulations to identify optimal solutions.

In the context of deep learning, further optimization of the denoising
and artifact-correction model remains a key goal. Future research could
explore 3D U-Net architectures to better capture spatial information
and use 3D data. Expanding the training dataset to include patients
with a wider range of lesion sizes and uptake characteristics will also
enhance model generalization. Another promising approach is to use the
DL-enhanced image, which have reduced noise and limited-angle artifacts,
as an initial estimate in MLEM reconstruction for flat-panel systems.
This method could be effective for similar configurations, potentially
speeding up convergence and enhancing the quality of the reconstructed
images.

On a more technical note, the time-of-flight (TOF) resolution used
for reconstructing the SpM-FP images in this study, is based on pub-
lished estimates from comparable systems. However, it is crucial to
replace these assumptions with experimentally measured values once
data from the physical prototype become available. As the system is
currently under construction, future reconstructions should be guided
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by the TOF performance measured in the laboratory. Achieving a high
TOF resolution will be particularly important for reducing image noise
and mitigating limited-angle artifacts. Once the physical system is oper-
ational, validating the simulation and performance models used in this
dissertation will be crucial. Such validation will confirm the accuracy
of our predictions and help guide future design iterations, especially for
innovative configurations based on flat-panel geometries.

Another open question for the WT-PET concept is the CT com-
ponent. Conventional PET/CT systems use a circular source-detector
geometries for anatomical localization and attenuation correction, which
are incompatible with the flat-panel design. Our group is exploring a
rectangular CT configuration that integrates well with the WT-PET
geometry, using carbon nanotube (CNT)-based X-ray sources to create a
rectangular source-detector array capable of acquiring 3D tomographic
images [151]. However, this technology is still new and not yet clinically
established. Alternatively, deep learning-based CT-less attenuation cor-
rection methods are gaining interest. These approaches aim to produce
quantitatively accurate PET images without any CT acquisition. Ongo-
ing work in our group in this area [152] could be expanded to support the
WT-PET concept. However, a CT component will likely still be required
within the WT-PET system to produce diagnostic-quality CT images,
as the mentioned deep learning methods do not yet provide sufficient
reliability.

8.3 Conclusion

Transitioning from conventional horizontal PET/CT scanners to vertical
flat-panel geometries could provide important practical benefits in clinical
PET imaging. The SpM-FP design offers greater flexibility, higher
throughput, improved patient access and reduced costs, but it also
introduces new technical challenges. To effectively address the current
limitations of the SpM-FP (and flat-panel designs in general) careful
system optimization is essential. Incorporating TOF reconstruction
and detector-DOI capabilities is critical to ensure both measurement
accuracy and high image quality. Having demonstrated a system with
sub-2 mm spatial resolution throughout the FOV (thanks to DOI-capable
detectors), the next key step is to experimentally measure and enhance
TOF performance which allows to further reduce noise and artifacts
and improve image quality. Once achieved, deep learning approaches,



Chapter 8. Conclusions and future perspectives 148

as presented in this work, can be leveraged to address any remaining
noise and artifacts, paving the way for a new generation of accessible,
high-performance PET systems.

Looking forward, the next generation of PET systems will likely
emerge from the combined evolution of detector technology, geometric
design, and Al-supported approaches. Sparse geometries are gaining
traction because they allow substantially longer axial coverage without a
proportional increase in detector material. These configurations can de-
liver extended whole body coverage at reduced cost, while the associated
non-uniform sensitivity profiles can be corrected in the reconstruction
pipeline. On the detector side, continued improvements in TOF perfor-
mance and DOI estimation will further enhance sensitivity and mitigate
parallax errors, helping maintain uniform spatial resolution across the
entire FOV. Monolithic scintillation detectors, thanks to their continuous
3D interaction positioning, are particularly promising in this regard. If
ongoing research confirms that their timing performance approaches
that of pixelated detectors, they may become central components in
next-generation PET architectures, including those employing extended
AFOV or unconventional geometries.

In parallel, Al-supported reconstruction methods, together with post-
reconstruction techniques are expected to overcome several limitations
of traditional statistical iterative algorithms. Deep neural networks offer
the ability to integrate measurement statistics, physics models and prior
information more flexibly, enabling improved noise-resolution trade-offs
and reducing artifacts associated with sparse or limited-angle geometries.
Post-reconstruction methods, such as image-domain denoising, super-
resolution, or artifact-suppression networks, can further enhance image
quality by correcting residual noise or distortions. For systems such as
flat panels or axially sparse designs, these Al-driven approaches can par-
tially compensate for missing angular information. While image-domain
networks already provide substantial gains as we proved in this work,
other approaches, such as unrolled iterative networks [153], may offer
even deeper integration between physical modeling and learned priors,
further advancing image quality, quantitative accuracy, and robustness.
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