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English Summary

Language is one of the most fundamental yet complex domains of human cog-
nition. While gestures, facial expressions, and emotional tone contribute to
communication, language remains the primary tool for expressing intricate and
abstract ideas. Despite its apparent ease in daily life, language relies on highly
specialized and distributed neural mechanisms, many aspects of which are still
being actively investigated. Understanding these mechanisms is particularly
important for developing better diagnostic tools and therapeutic approaches
for individuals with language impairments resulting from conditions such as
stroke, brain tumors, or traumatic brain injury.

Research increasingly shows that language processing is not confined to iso-
lated brain regions but emerges from the dynamic interaction of distributed
neural systems. Processing even a single spoken word consists of multiple
stages, each recruiting multiple brain areas. Early auditory analysis, for exam-
ple, includes the superior temporal cortex, lexical mapping requires the middle
temporal gyrus, semantic retrieval involves the angular gyrus, and syntactic
integration is mediated by the inferior frontal gyrus. Theoretical frameworks
developed by Ellis and Young (auditory processing), De Deyne (semantic net-
works), and Dominey (syntactic parsing) underscore the interconnected nature
of these processes and emphasize the importance of studying language process-
ing in the brain as a network phenomenon.

This dissertation builds upon these frameworks and pursues two major ob-
jectives. The first objective is to characterize the neural dynamics of speech per-
ception, which is a complex and multilayered process that transforms acoustic
signals into meaningful linguistic information within a few hundred millisec-
onds, using electroencephalography (EEG). The second objective addresses key
methodological challenges in EEG research through a series of targeted simula-
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tion studies, aiming to refine techniques for analyzing event-related potentials
(ERPs) and to augment the insights obtained from the improved results.

Chapter 1 serves as a general introduction to the topic and outlines the
broader context of the dissertation. Part I: From Neural Activity to Measured
Brain Signals lays the groundwork by explaining how brain activity is recorded
and interpreted using EEG. Chapter 2 introduces key neurophysiological princi-
ples, covering the generation of electrical activity in the brain, the fundamentals
of electroencephalography, and the concept of event-related potentials (ERPs).
Chapter 3 then provides more details about EEG signal processing, focusing on
EEG source imaging and functional connectivity. It discusses methods for esti-
mating the sources of brain signals, including the formulation of the forward
model and solutions to the inverse problem, as well as techniques for assessing
how different brain regions interact.

In Part II: Source reconstruction and functional connectivity of language
ERP components, speech perception is investigated empirically using EEG,
which offers the temporal resolution needed to track fast-evolving cognitive
processes. Chapter 4 examines three well-established ERP components — the
Mismatch Negativity (MMN), the P300, and the N400 — each reflecting distinct
stages of linguistic analysis. The MMN captures early, pre-attentive detection
of unexpected auditory changes; the P300 reflects attentive categorization and
task-related decision processes; and the N400 is a robust index of semantic
integration during language comprehension.

Source localization and functional connectivity analysis revealed differenti-
ated but interacting cortical networks for each component. The MMN engaged
a bilateral network comprising auditory, frontal, and parietal regions, consis-
tent with models of automatic prediction error detection. The P300 activated
a broader fronto-parietal-cingulate network, supporting its association with at-
tention and cognitive control. The N400 was predominantly left-lateralized,
involving frontal, temporal, and parietal regions linked to semantic process-
ing. Connectivity analysis showed that these networks are highly dynamic, with
strengthened fronto-parietal and intra-frontal coupling during higher-level lin-
guistic tasks. Taken together, these findings highlight the distributed, flexible
nature of speech processing networks. They offer a reference point for studying
how these systems may be altered in clinical populations, such as individuals
with aphasia or neurodegenerative disorders.

However, several methodological limitations should be acknowledged. First,
the analyses assume a fixed latency for ERP components across all trials, poten-
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tially overlooking meaningful trial-by-trial variability in neural timing. Second,
the analyses focus primarily on time-domain ERPs and do not incorporate time-
frequency methods that could capture oscillatory dynamics relevant to speech
processing. Third, the studies rely on standard head models, without incor-
porating individualized or anatomically detailed forward modeling, which may
limit spatial precision in interpreting EEG signals. These limitations underscore
the need for a deeper examination of the assumptions and constraints inherent
in ERP analysis.

To address these issues, this dissertation also explores methodological aspects
critical to EEG research through simulations. Part III: How simulations can
help us understand the working mechanisms of the brain presents a series of
simulation studies addressing how choices made during the analysis can impact
the interpretation of ERP data.

In Chapter 5, we address the variability in ERP latencies across trials, a
longstanding challenge in EEG research. Conventional averaging methods as-
sume consistent timing across trials, yet cognitive processes often vary sub-
stantially from trial to trial. To address this, we developed artificial neural
network models capable of estimating single-trial ERP latencies. Simulations
demonstrated that these models outperformed traditional methods under vary-
ing noise conditions. Applied to real EEG data, single-trial latency estimates
showed stronger correlations with behavioral performance and revealed group-
level differences that conventional averages failed to detect. These findings
suggest that accounting for latency variability can enhance both the sensitivity
and interpretability of ERP studies.

In Chapter 6, we investigate the relationship between ERPs and oscillatory
activity by combining eLORETA-based ERP source localization with DICS-based
oscillatory source analysis. Traditionally, ERP and oscillation studies have been
treated separately, but emerging evidence suggests they reflect complementary
aspects of brain function. Our findings indicated partial overlap between ERP
components (such as the P300) and low-frequency oscillations (such as delta
rhythms), while also revealing distinct contributions from alpha band activity.
These results highlight the value of integrating multiple source analysis meth-
ods to gain a more comprehensive view of neural dynamics.

Chapter 7 examines how the choice of head model affects source localization
accuracy. In the absence of individualized MRI scans, many EEG studies rely on
standard template head models. However, simulations and empirical analyses
demonstrated that using template models introduced systematic localization
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errors, producing spatially diffuse and sometimes misleading results. Individu-
alized head models significantly improved source specificity, underscoring their
importance, particularly in clinical research settings where precise localization
may guide intervention strategies.

Finally, Chapter 8 explores how structural brain anomalies, such as lesions
resulting from tumors or strokes, affect EEG measurements. Simulations incor-
porating lesion-informed forward models showed significant distortions in ERP
topographies and source estimates near lesion sites. These findings were cor-
roborated by analyses of EEG data from patients with craniotomies. Together,
the results emphasize the necessity of incorporating individualized anatomi-
cal information when conducting source localization in clinical populations to
ensure accurate and reliable interpretations.

In sum, this dissertation contributes both to the empirical understanding of
speech perception and to the advancement of EEG research methodologies. The
empirical results elucidate the dynamic and distributed nature of the networks
in the brain supporting different levels of linguistic processing. The method-
ological work provides practical guidelines for improving the robustness and
interpretability of EEG studies: emphasizing the need to account for trial-to-
trial variability, advocating for individualized head models, encouraging the
integration of multiple source localization approaches, and highlighting the im-
portance of anatomical specificity in clinical contexts.

By combining empirical research with simulation-driven methodological in-
novation, this work aims to support future studies of language networks and
to enhance the clinical relevance of EEG as a tool for diagnosing and treat-
ing language impairments. Through this dual focus, the dissertation advances
our understanding of both the brain’s capacity for language and the methods

needed to study it effectively.
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Taal is een van de meest fundamentele maar toch complexe domeinen van
de menselijke cognitie. Hoewel gebaren, gezichtsuitdrukkingen en emotionele
toon bijdragen aan communicatie, blijft taal het primaire middel om ingewik-
kelde en abstracte ideeén uit te drukken. Ondanks het ogenschijnlijke gemak
waarmee taal in het dagelijks leven wordt gebruikt, berust taal op zeer gespe-
cialiseerde en gedistribueerde neurale mechanismen, waarvan veel aspecten
nog steeds actief worden onderzocht. Inzicht in deze mechanismen is vooral
belangrijk voor het ontwikkelen van betere diagnostische hulpmiddelen en the-
rapeutische methoden voor mensen met taalstoornissen als gevolg van aandoe-
ningen zoals een beroerte, hersentumoren of traumatisch hersenletsel.

Onderzoek toont in toenemende mate aan dat taalverwerking niet beperkt
is tot geisoleerde hersengebieden, maar voortkomt uit de dynamische interac-
tie van gedistribueerde neurale systemen. Het verwerken van een gesproken
woord verloopt in meerdere stadia, waarbij steeds verschillende hersengebie-
den betrokken zijn. Zo vindt de vroege auditieve analyse plaats in de superi-
eure temporale cortex, is de middelste temporale gyrus betrokken in lexicale
mapping, betrekt semantische oproeping de angulaire gyrus en wordt syntac-
tische integratie gemedieerd door de inferieure frontale gyrus. Theoretische
raamwerken ontwikkeld door Ellis en Young (auditieve verwerking), De Deyne
(semantische netwerken) en Dominey (syntactische verwerking) onderstrepen
de onderlinge verbondenheid van deze processen en benadrukken het belang
van het bestuderen van taal als een netwerkfenomeen.

Dit proefschrift bouwt voort op deze kaders en streeft twee belangrijke
doelstellingen na. De eerste doelstelling is het karakteriseren van de neurale
dynamiek van spraakperceptie, een complex proces dat akoestische signalen
transformeert in betekenisvolle linguistische informatie binnen een paar
honderd milliseconden, gebruik makend van elektroencephalografie (EEG).
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De tweede doelstelling richt zich op belangrijke methodologische uitdagingen
in EEG-onderzoek door middel van een reeks gerichte simulatiestudies, met
als doel technieken voor het analyseren van event-gerelateerde potentialen
(ERP’s) te verfijnen en de nauwkeurigheid van empirische bevindingen te
verbeteren.

Hoofdstuk 1 dient als algemene inleiding op het onderwerp en schetst de
bredere context van het proefschrift. Deel I: Van neurale activiteit naar ge-
meten hersensignalen legt de basis door uit te leggen hoe hersenactiviteit
wordt geregistreerd en geinterpreteerd met behulp van EEG. Hoofdstuk 2 in-
troduceert de belangrijkste neurofysiologische principes en behandelt hoe elek-
trische activiteit in de hersenen wordt gegenereerd. Daarnaast komen ook de
basisprincipes van elektro-encefalografie en het concept van event-gerelateerde
potentialen (ERP’s) aan bod. Hoofdstuk 3 gaat vervolgens dieper in op signaal-
verwerking met een focus op EEG bronlokalisatie en functionele connectiviteit,
waarbij methoden worden besproken voor het schatten van de locatie van de
bronnen van hersensignalen, inclusief de formulering van het voorwaartse mo-
del en oplossingen voor het inverse probleem. Daarnaast worden hier ook tech-
nieken voor het beoordelen van de interactie tussen verschillende hersengebie-
den besproken.

In Deel II: Bronlokalisatie en functionele connectiviteit, onderzoeken we
spraakperceptie met behulp van EEG, dat de temporele resolutie biedt die no-
dig is om snel evoluerende cognitieve processen te volgen. Hoofdstuk 4 on-
derzoekt drie bekende ERP-componenten - de Mismatch Negativity (MMN), de
P300 en de N400 - die elk verschillende stadia van taalanalyse weerspiegelen.
De MMN weerspiegelt vroege, pre-attente detectie van onverwachte auditieve
veranderingen; de P300 weerspiegelt aandachtige categorisatie en taakgerela-
teerde besluitvormingsprocessen; en de N400 is een robuuste index van seman-
tische integratie tijdens taalbegrip.

Bronlokalisatie en functionele connectiviteitsanalyses onthulden gedifferen-
tieerde maar interagerende corticale netwerken voor elke component. Het
MMN activeerde een bilateraal netwerk bestaande uit auditieve, frontale en
pariétale gebieden, wat consistent is met modellen van automatische detectie
van voorspelfouten. De P300 activeerde een breder fronto-pariétaal-cingulaat
netwerk, wat de associatie met aandacht en cognitieve controle ondersteunt.
De N400 was voornamelijk links-lateraal, waarbij frontale, temporale en pa-
riétale gebieden betrokken waren die verband houden met semantische ver-
werking. Connectiviteitsanalyses toonden verder aan dat deze netwerken zeer
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dynamisch zijn, met versterkte fronto-pariétale en intra-frontale koppeling tij-
dens linguistische taken op een hoger niveau.

De experimentele bevindingen benadrukken de gedistribueerde, flexibele
aard van spraakverwerkingsnetwerken. Ze bieden ook een referentiepunt voor
het bestuderen hoe deze systemen kunnen veranderen in klinische populaties,
zoals mensen met afasie of neurodegeneratieve aandoeningen.

Er moet echter rekening worden gehouden met verschillende methodologi-
sche beperkingen. Ten eerste gaan de analyses uit van een vaste latentie voor
ERP-componenten over alle trials, waarbij geen rekening gehouden wordt met
de trial-tot-trial variabiliteit in neurale timing. Ten tweede richten de analy-
ses zich voornamelijk op ERP’s in het tijdsdomein en bevatten ze geen tijd-
frequentie methoden die de oscillerende dynamiek, die relevant is voor spraak-
verwerking, in kaart zouden kunnen brengen. Ten derde vertrouwen de studies
op template hoofdmodellen, zonder geindividualiseerde of anatomisch gede-
tailleerde voorwaartse modellering, wat de ruimtelijke precisie kan beperken
bij het interpreteren van EEG signalen. Deze beperkingen tonen de noodzaak
voor een dieper onderzoek naar de aannames en beperkingen die inherent zijn
aan ERP analyse.

Om deze kwesties aan te pakken, verkent dit proefschrift ook methodologi-
sche aspecten die cruciaal zijn voor EEG-onderzoek door middel van simulaties.
Deel III: Hoe simulaties ons kunnen helpen bij het begrijpen van de wer-
kingsmechanismen van de hersenen presenteert een serie simulatiestudies
die onderzoeken hoe keuzes gemaakt tijdens de analyses de interpretatie van
ERP-data kunnen beinvloeden.

In hoofdstuk 5 gaan we in op de variabiliteit in ERP-latenties over proeven
heen, een reeds lang bestaande uitdaging in EEG-onderzoek. Conventionele
methodes, zoals het uitmiddellen over meerdere trials, gaan uit van een con-
sistente timing over de trials heen, maar cognitieve processen variéren vaak
aanzienlijk van trial tot trial. Om dit aan te pakken, ontwikkelden we kunst-
matige neurale netwerkmodellen die in staat zijn om in een enkele trial ERP
latenties te schatten. Simulaties toonden aan dat deze modellen beter pres-
teerden dan traditionele methoden onder variérende ruiscondities. Toegepast
op echte EEG-gegevens, vertoonden schattingen van enkelvoudige trial laten-
ties sterkere correlaties met gedragsprestaties en onthulden ze verschillen op
groepsniveau die conventionele gemiddelden niet detecteerden. Deze bevin-

dingen suggereren dat rekening houden met de variabiliteit van de latentie
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zowel de gevoeligheid als de interpreteerbaarheid van ERP-studies kan verbe-
teren.

Hoofdstuk 6 onderzoekt hoe de keuze van het anatomisch hoofdmodel de
nauwkeurigheid van de bronlokalisatie beinvloedt. Bij gebrek aan geindivi-
dualiseerde MRI scans, vertrouwen veel EEG studies op standaard template
hoofdmodellen. Echter, simulaties en empirische analyses toonden aan dat het
gebruik van template modellen systematische lokalisatie fouten introduceert,
wat leidt tot ruimtelijk diffuse en soms misleidende resultaten. Geindividua-
liseerde hoofdmodellen verbeterden de bronspecificiteit aanzienlijk, wat hun
belang onderstreept, vooral in klinische onderzoeksomgevingen waar precieze
lokalisatie interventiestrategieén kan sturen.

In hoofdstuk 7 onderzoeken we de relatie tussen ERP’s en oscillerende acti-
viteit door eLORETA-gebaseerde ERP-bronlokalisatie te combineren met DICS-
gebaseerde oscillatoire bronanalyse. Traditioneel worden ERP en oscillatie stu-
dies apart behandeld, maar opkomend bewijs suggereert dat ze complemen-
taire aspecten van de hersenfunctie weerspiegelen. Onze bevindingen gaven
een gedeeltelijke overlap aan tussen ERP-componenten (zoals de P300) en laag-
frequente oscillaties (zoals deltaritmes), terwijl ook afzonderlijke bijdragen van
alfabandactiviteit zichtbaar werden. Deze resultaten benadrukken de toege-
voegde waarde van het integreren van meerdere bronanalysemethoden om een
uitgebreider beeld te krijgen van neurale dynamiek.

Tenslotte wordt in hoofdstuk 8 onderzocht hoe structurele afwijkingen in
de hersenen, zoals laesies als gevolg van tumoren of beroertes, EEG-metingen
beinvloeden. Simulaties met laesie-geinformeerde voorwaartse modellen toon-
den significante vervormingen in ERP topografieén en in bron schattingen in
de buurt van laesie locaties. Deze bevindingen werden bevestigd door analy-
ses van EEG-gegevens van patiénten met die na een hersentumor een crani-
otomie ondergingen. Samen benadrukken de resultaten de noodzaak van het
opnemen van geindividualiseerde anatomische informatie bij het uitvoeren van
bronlokalisatie in klinische populaties om accurate en betrouwbare localisaties
te garanderen.

Samengevat draagt dit proefschrift bij tot zowel het empirisch begrip van
spraakperceptie als tot de vooruitgang van EEG onderzoeksmethodologieén.
De empirische resultaten verhelderen de dynamische en gedistribueerde aard
van de netwerken in de hersenen die verschillende niveaus van taalverwerking
ondersteunen. Het methodologische werk biedt praktische richtlijnen voor het
verbeteren van de robuustheid en interpreteerbaarheid van EEG studies: het
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benadrukt de noodzaak om rekening te houden met de variabiliteit over tri-
als, pleit voor geindividualiseerde hoofdmodellen, moedigt de integratie van
meerdere bron lokalisatie benaderingen aan, en benadrukt het belang van ana-
tomische specificiteit in klinische contexten.

Door een brug te slaan tussen empirisch onderzoek en simulatiegedreven
methodologische innovatie, beoogt dit werk toekomstige studies van taalnet-
werken te ondersteunen en de klinische relevantie van EEG als hulpmiddel voor
het diagnosticeren en behandelen van taalstoornissen te vergroten. Door deze
tweeledige focus bevordert het proefschrift ons begrip van zowel de hersenca-
paciteit voor taal als van de methoden die nodig zijn om dit effectief te bestu-

deren.
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]. Introduction

Language is one of the most fundamental aspects of human communication.
While gestures and emotional tone also play a role in conveying meaning, lan-
guage serves as the primary tool that facilitates complex expression (Friederici,
2017). Imagine traveling to a place where you do not share a common lan-
guage — simple transactions, like buying an orange at a market, may be man-
ageable with gestures, but asking for directions to your next destination quickly
becomes much more challenging. Despite its complexity, our native language
is something we acquire effortlessly, without formal instruction, and use daily
without conscious effort.

Our understanding of how language functions in the brain originates from
the study of individuals who have experienced language impairments. The
first significant case was documented by the French scientist Paul Broca, whose
patient, "Monsieur Tan," exhibited a severe language production deficit, being
able to utter only the syllable "tan". Broca analyzed his patient’s condition, but
at the time, neuroscientists had to wait until a patient passed away to conduct
a brain autopsy to identify the underlying neural damage. Upon examination,
Broca identified a lesion in the left inferior frontal gyrus—an area now known as
Broca’s area (Broca, 1861). A few years later, Carl Wernicke studied the brains
of patients with impairments in language comprehension (Wernicke, 1881) and
found lesions in the left temporal cortex, now referred to as Wernicke’s area.
From these findings, Broca’s area was linked to language production, while
Wernicke’s area was associated with language comprehension.

Thanks to the invention of neuroimaging technologies, researchers today
are able to study language processing in living individuals. The classical view
that Broca’s area is solely responsible for production and Wernicke’s area for
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comprehension has undergone significant revisions. Contemporary research
suggests that language processing is a complex cognitive function requiring
the integration of multiple neural systems. Understanding a single word
involves various stages—auditory perception, lexical access, and syntactic
integration—each mediated by distinct but interconnected brain regions
(Friederici, 2017). Several theoretical models, such as the Ellis & Young model
for auditory analysis, the De Deyne model for semantic processing, and the
Dominey model for syntactic integration (Ellis and Young, 1996; De Deyne
et al., 2016; Dominey and Inui, 2009), highlight the importance of connectivity
within multimodal neural networks. These findings emphasize that language
processing is not confined to isolated brain regions but rather emerges from a

dynamic interplay between multiple specialized and interconnected areas.

1.1 Understanding a spoken word

Understanding a spoken word is a complex, multi-stage process that begins
with the perception of sound. When we hear speech, auditory information is
first processed by converting sound waves into neural signals. These signals
travel via the auditory nerve to the primary auditory cortex in the superior
temporal gyrus, where early acoustic analysis enables the brain to distinguish
phonemes, the smallest contrastive units of speech that differentiate meaning
(Friederici, 2017).

According to the Ellis & Young model for auditory analysis, the comprehen-
sion of a heard word follows four key stages (Figure 1.1): (1) In the auditory
phonological analysis stage, the continuous speech sound wave is segmented
into individual phonemes. (2) These phonemes are temporarily stored in the
phonological input buffer, a working memory system that maintains the se-
quence of phonemes for further processing. (3) The segmented phonemes then
activate corresponding phonological representations in the phonological input
lexicon, which serves as a mental repository for all known word forms. This
stage facilitates lexical decision-making—determining whether a given speech
sound sequence corresponds to a known word or a pseudoword. (4) If the
phonological input lexicon identifies the sequence as a real word, it is mapped
onto stored meanings in the semantic system, where long-term memory enables
word comprehension by linking the word form with its associated meaning (El-
lis and Young, 1996).
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Figure 1.1. The psycholinguistic model for auditory and written word compre-
hension and production, as introduced by Ellis & Young (1996). The substages
in bold relate to auditory word comprehension. Reprinted from Criel (2024)
with permission from the author.

While this model provides a strong foundation for understanding the differ-
ent stages of auditory word processing, it does not account for the underlying
neural mechanisms. To address this, Hickok and Poeppel (2004) introduced
a dual-stream model that explains how speech processing is organized in the
brain (Figure 1.2). According to this framework, speech perception begins with
the activation of the bilateral dorsal superior temporal gyrus (STG), where in-
coming auditory signals undergo spectrotemporal analysis. This is followed by
phonological processing, primarily supported by the middle posterior superior
temporal sulcus (STS). At this stage, the auditory system splits into two paral-
lel processing streams. The dorsal stream links posterior temporal regions, the
parietal operculum, and frontal areas such as the inferior frontal gyrus (IFG)
and premotor cortex. It acts as a sensory-motor interface, integrating speech
perception with production. Meanwhile, the ventral stream connects the pos-
terior STG to the posterior middle temporal gyrus (pMTG), anterior temporal
lobe (ATL), and IFG, facilitating the mapping of sounds onto meaning. Berwick
et al. (2013) later expanded this model to encompass sentence-level process-
ing, proposing an additional dorsal and ventral stream. In this extended frame-
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work, the dorsal stream supports complex syntactic processing, while the ven-
tral stream handles basic syntactic structures, further refining our understand-

ing of language comprehension.

Figure 1.2. Dual stream model of speech processing. The dual stream
model holds that early stages of speech processing occur bilaterally in the
dorsal STG (spectrotemporal analysis; green) and STS (phonological ac-
cess/representation; yellow), and then diverges into two broad streams: a
temporal lobe ventral stream supports speech comprehension (lexical access
and combinatorial processes; pink), whereas a strongly left-dominant dor-
sal stream supports sensory-motor integration and involves structures at the
parietal-temporal junction (Spt) and frontal lobe. The conceptual network
(gray box) is assumed to be widely distributed throughout the cortex. IFG, infe-
rior frontal gyrus; ITS, inferior temporal sulcus; MTG, middle temporal gyrus;
PM, premotor; Spt, Sylvian parietal-temporal; STG, superior temporal gyrus;
STS, superior temporal sulcus. Reprinted from Hickok and Poeppel (2007) with
permission from the publisher.

By integrating the cognitive steps of phonological and lexical processing with
the neural pathways of speech perception, these models provide a more com-
prehensive view of spoken word recognition. While the Ellis & Young model
focuses on the sequential stages of word comprehension, the dual-stream model
maps these processes onto distinct cortical networks. This perspective is par-
ticularly relevant in cases where the brain’s speech processing network is dis-
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rupted, such as in patients with aphasia. Understanding these mechanisms not
only deepens our knowledge of language function but also sheds light on how

the brain can adapt and reorganize in response to injury.

1.2 Neuroplasticity of the language network in pa-

tients with an acquired brain injury

Acquired brain injuries, such as stroke and brain gliomas, can significantly im-
pact the language network (Goldman et al., 2022). However, the brain has a re-
markable ability to reorganize itself through neuroplasticity, enabling patients
to regain language function to varying degrees. This plasticity involves struc-
tural and functional changes within the perilesional cortex, homologous areas
in the opposite hemisphere, and broader language-related networks (Pasquini
et al., 2022).

In the case of stroke, damage to traditional language areas often results in
aphasia. Recovery depends on the recruitment of perilesional areas within the
left hemisphere or the engagement of homologous right-hemispheric regions
(Hamilton et al., 2011; Kiran and Thompson, 2019; Li et al., 2022). Studies
using functional neuroimaging have shown that in the early stages of recov-
ery, increased right hemisphere activation may compensate for left hemisphere
deficits (Schneck et al., 2021). However, optimal recovery is typically associ-
ated with a gradual shift back toward left-hemisphere dominance as language
processing is restored to its primary networks (Schneck et al., 2021; Hamilton
et al., 2011; Kiran and Thompson, 2019). Rehabilitation strategies, such as
speech therapy, aim to facilitate this process by strengthening residual connec-
tions and promoting cortical reorganization.

Another type of acquired brain injuries are brain gliomas. In these patients,
neuroplasticity typically follows a different trajectory. Unlike stroke or trau-
matic brain injury (TBI), where damage is abrupt, gliomas grow gradually,
allowing the brain time to adapt (Duffau et al., 2003; Krishna et al., 2021;
Traut et al., 2019). This slow progression can lead to functional reorganization,
where language-related activity shifts to surrounding cortical areas or even to
homologous regions in the right hemisphere (Figure 1.3; Yuan et al. (2020);
Nieberlein et al. (2023)). Studies using functional magnetic resonance imaging
(MRI) and intraoperative mapping have demonstrated that language functions
can be preserved despite tumor invasion, as the brain dynamically redistributes
linguistic processing. However, the extent of reorganization depends on tumor
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location, size, and growth rate (Noll et al., 2015). Low-grade gliomas, which
develop more slowly, provide a greater window for plasticity, often allowing
significant language recovery following surgical resection. In contrast, high-
grade gliomas, which grow more aggressively, may outpace the brain’s ability
to reorganize, leading to more severe language deficits (Noll et al., 2015; Yuan
et al., 2020, 2022). Understanding these mechanisms is crucial for neurosurgi-
cal planning, as awake brain mapping can help to identify and preserve critical

language areas during tumor removal.

Figure 1.3. Visual representation of language-related reorganization patterns
in relation to glioma growth. Reprinted with permission from Nieberlein et al.
(2023).

1.3 Neuroimaging techniques for studying lan-

guage processing in the brain

Several neuroimaging methods provide insights into how language is processed
in the brain. Electroencephalography (EEG) and magnetoencephalography
(MEG) are two time-sensitive techniques that measure respectively electrical
and magnetic activity in the brain. EEG records electrical signals from the
scalp capturing event-related potentials (ERPs), which reflect neural responses
to linguistic stimuli with millisecond precision. Some key ERP components
include the N100 (acoustic processing), the N400 (semantic processing), and
the P600 (syntactic integration). Because individual ERP responses are small,
they must be averaged across multiple trials to isolate meaningful patterns
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from background neural noise. MEG, while similar to EEG in temporal
resolution, detects the magnetic fields produced by neural activity, offering
improved spatial localization thanks to its high-density sensor array. However,
MEG is significantly more expensive and requires specialized, magnetically
shielded rooms to minimize interference from external magnetic sources,
making the method less accessible.

Functional magnetic resonance imaging (fMRI) is another essential tool
for studying language, offering high spatial resolution. Unlike EEG and
MEG, which track neural activity in real-time, fMRI measures changes in
blood-oxygen-level-dependent (BOLD) signals, reflecting metabolic activity
over seconds rather than milliseconds. This makes it ideal for mapping the
functional anatomy of the language network but less suited for capturing rapid
processing dynamics. Despite its lower temporal resolution, fMRI has been
instrumental in identifying key brain regions involved in language, including
Broca’s area, Wernicke’s area, and other distributed cortical and subcortical
structures.

Each of these non-invasive methods provides either high temporal or high
spatial resolution, but not both. To obtain a more complete understanding of
brain function, researchers often combine techniques, integrating fine-grained
temporal data from EEG and MEG with the detailed spatial mapping provided
by fMRI.

1.4 Objectives and Outline of this dissertation

Language is a fundamental yet complex cognitive process. While we use it
effortlessly in daily life, the neural mechanisms behind it remain a subject of
ongoing research. Understanding these mechanisms is particularly important
for individuals with language impairments, such as stroke survivors or patients
with brain tumors.

The initial goal of this dissertation was to explore speech perception — a
complex process that unfolds across multiple levels of analysis, from early
acoustic-phonetic processing to higher-order lexical processing and semantic
integration. Using event related potentials (ERPs), we investigated the
cortical generators and functional connectivity of the MMN, P300, and N400
components. While state-of-the-art methods were used in this work, certain
challenges and limitations emerged, highlighting the need for further refine-
ment of these methods. This led us to a dual focus: first, on understanding the
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neural basis of speech perception through source localization and functional
connectivity, and second, on exploring some methodological questions that
could have an impact on the obtained results.

The dissertation begins with some foundational background in Part I: From
Neural Activity to Measured Brain Signals. Since our goal is to use non-
invasive methods, Chapter 2 explains how electrical signals in the brain gener-
ate the activity we can measure with EEG, along with a discussion of common
ERP components. Chapter 3 introduces EEG source imaging (ESI) and func-
tional connectivity (FC), key methods used throughout this work.

The empirical work is presented in Part II: Source reconstruction and func-
tional connectivity of language ERP components. In Chapter 4 we investi-
gate the P300, MMN, and N400 components, their cortical generators, and
the underlying networks. However, certain limitations and assumptions could
influence the obtained results, and applying these techniques to patient popu-
lations requires addressing several methodological challenges. To tackle this,
in Part III: How simulations can help us understand the working mech-
anisms of the brain, simulation studies were conducted, each addressing a
specific question:

* Chapter 5: How does latency jitter in single trials affect ERP analyses?

* Chapter 6: How can combining different source reconstruction tech-
niques improve our understanding of the relationship between ERPs and
brain oscillations?

* Chapter 7: How does using template head models instead of subject-
specific models influence EEG source localization?

* Chapter 8: How do craniotomy-induced lesions impact EEG signals?

The findings from these simulation studies were also always applied to real
data in these chapters. This way, we were able to obtain deeper insights into
both the methodological limitations and the neurophysiological mechanisms
underlying the recorded data.

Finally, in Chapter 9, we provide an overall summary of the results obtained
in these chapters and discuss the general findings. By combining simulations
with work on real data, this dissertation provides new insights into the neural
basis of speech perception and the methodological considerations needed for
future research and clinical applications.



Part 1

From Neural Activity to

Measured Brain Signals






2 The brain, electroencephalography and

event-related potentials

Electroencephalography (EEG) is a recording technique used to measure the
electrical activity in the brain. The first EEG recording was made in 1924
by German physiologist and psychiatrist Hans Berger. Experiments by Berger
showed that recorded brain waves differed for healthy participants and pa-
tients with a neurological disorder. Furthermore, he also showed that brain
waves change depending on whether a patient is paying attention, relaxing
or sleeping (Berger, 1929; S6rnmo and Laguna, 2005). In 1934, Fischer and
Léwenbach demonstrated epileptiform spikes, after which EEG found its way
into clinical neuroscience. Since then, it has been one of the most used tech-
niques to study brain activity and to diagnose different neurological disorders
such as epilepsy and sleep disorders. EEG can also be used to check the depth
of a patient’s anaesthesia during surgery or to examine the brain activity of pa-
tients in coma (Kulkarni and Bairagi, 2018). The technique plays an important
role in research fields such as cognitive neuroscience, where it is used to in-
vestigate brain function and cognitive processes. EEG is particularly valuable
for studying the neural mechanisms underlying attention, perception, memory,
and decision-making. Researchers use EEG to investigate how different brain
regions communicate and coordinate during various mental tasks.

This first chapter aims to provide the necessary background to understand
the work in this dissertation. We begin by explaining how electrical activity
is generated in the brain, which helps in understanding EEG signals. Next, we
describe how EEG is measured in the lab and explore the different types of brain
activity it can capture. Finally, we focus on Event-Related Potentials (ERPs), a
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common EEG method used in cognitive neuroscience to study brain responses

to specific events.

2.1 Electrical activity in the brain

Nerve cells or neurons are specialised cells of the nervous system that receive
and transmit information in the body through electrical and chemical signals.
A nerve cell consists of three main components: the dendrites, the cell body
and the axon. The dendrites receive signals sent by other neurons and trans-
mit these signals towards the cell body. Each neuron typically has a number
of dendrites that are strongly branched. This branching of the dendrites in-
creases the contact surface for input from other neurons, allowing input from
a multitude of neurons in proximity. The cell body then combines or processes
this incoming information from the different dendrites. In turn, the neuron can
then send information to other neurons via its axon. The anatomy of a neuron
is illustrated in Figure 2.1.

When we look at this process of information transfer in more detail, typically,
a distinction is made between the pre-synaptic neuron and the post-synaptic
neuron (Figure 2.1). When a pre-synaptic neuron wants to send information
towards post-synaptic neurons, the signal originates at the axon hillock of the
pre-synaptic neuron and travels along the axon towards the axon terminals in
the form of action potentials. During an action potential, the membrane po-
tential at a specific location in the neuron will rise and fall in a very short time
period of about 1 to 2 ms, after which the membrane potential again reaches
its resting state (Hodgkin and Huxley, 1952). Changes in the membrane poten-
tial are caused by the active transport of K* and Na* ions over the membrane.
When the action potential reaches the axon terminals, it will trigger the release
of neurotransmitters into the synapse. The neurotransmitters that bind with the
receptors of the post-synaptic dendrites will initiate a post-synaptic potential.
Depending on the type of neurotransmitter that is released, the ion channels
in the neuronal cell wall will increase the inflow of Na* ions or decrease the
outflow of Kt at the dendrite. This results in two types of post-synaptic poten-
tials. In the first type, the membrane potential will increase, resulting in an
excitatory post-synaptic potential (EPSP), while in the second, the membrane
potential decreases, and an inhibitory post-synaptic potential (IPSP) is gener-
ated. The post-synaptic potentials travel along the dendrites towards the cell
body and the axon hillock. All post-synaptic potentials of the different den-
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Figure 2.1. The anatomy of a neuron. The most important parts of the cell
are the cell body, the axon, the dendrites and the axon hillock. An action po-
tential is generated at the axon hillock after which it travels along the axon
in the direction of the axon terminals. When the action potential reaches the
axon terminals, it will trigger the release of neurotransmitters in the synapse,
where it will bind to the post-synaptic receptors of a second neuron and will
trigger a post-synaptic potential (figure adapted from Tang et al. (2019) with
permission).

drites are summed up at the axon hillock. When the membrane potential at the
axon hillock reaches a certain threshold, an action potential will be generated
(Figure 2.1). More detailed information about these mechanisms can be found
in Marieb and Hoehn (2015).

At the moment excitatory neurotransmitters bind with the receptors, the ex-
tracellular voltage at the dendrite becomes more negative than elsewhere along
the neuron due to the increased inflow of Na*. This means that the neuron be-
comes a dipole, in which a positive charge is separated from a negative charge,
resulting in an electric field. The electric field of a single neuron is too weak to
be measurable at the scalp. The signals measured by EEG are the result of both
spatial and temporal summation of the dipoles of different neurons. Spatial

summation is illustrated in Figure 2.3. In Figure 2.3a, the different neurons
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have a parallel arrangement and are oriented identically. This configuration
allows the dipoles to sum up and create a larger electric field, thus resulting in
a larger signal. Figures 2.3b and 2.3c show two situations where spatial sum-
mation is impossible, as the electric fields will cancel each other out. Different
types of neurons exist in the brain. Pyramidal cells are the largest cells in the
cortex and have a parallel, radial orientation (Figure 2.2). As these specific
characteristics of pyramidal cells are ideal for spatial summation, these neu-
rons are the main generators of the electrical field in the brain (Mark E Bear,
2006).

Figure 2.2. The summation of excitatory and inhibitory post-synaptic poten-
tials results in an action potential if the threshold is reached. Excitatory post-
synaptic potentials (EPSPs) will increase the membrane potential, and thus
bring it closer to the threshold, while inhibitory post-synaptic potentials (IP-
SPs) will decrease it. The figure also shows that after the action potential, the
membrane potential will return to its resting state (figure adapted from Biga
et al. (2019)).

2.2 Electroencephalography

Electroencephalography (EEG) is a noninvasive method for recording the elec-
trical activity of the brain. Four main hardware components are needed: elec-
trodes placed on the scalp, an amplifier to amplify the measured signals, an
analog-to-digital converter, and a recording device.

In most EEG recording systems, an electrode consists of an Ag/AgCl-metal

disk or pellet that makes an electrical connection to the scalp through a con-
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(a) (b)

(@

Figure 2.3. Spatial summation depends on the arrangement and orientation of
the different neurons. In the first subfigure, each of the neurons is oriented and
arranged in the same way. This way, the electrical field created by the differ-
ent neurons is summated and becomes measureable. For the other subfigures,
however, the electrical fields cancel each other out (figures based on Jackson
and Bolger (2014)).

ductive gel and has a long lead that allows the electrode to be connected to the
amplifier. While different systems exist to define and name the electrode posi-
tions, the most-used configuration is the International 10-20 system (Malmivuo
and Plonsey, 1995). In its original version, the locations of the electrodes were
determined using 10% and 20% intervals of the distance between different ref-
erence points, namely the nasion, the inion, and the left and right pre-auricular
points (Figure 2.5). In more recent versions, more electrodes are used, and also
5% points are now included. Each electrode is given a label to indicate its posi-
tion on the scalp. The letters ‘P’, ‘T", ‘F’ and ‘O’ are used to indicate respectively
the parietal, temporal, frontal and occipital lobes of the brain, while the let-
ter ‘C’ is used for the central electrodes. The numbers in the label illustrate
on which side of the brain the electrode is placed. Even numbers are used for
electrodes on the right hemisphere and odd numbers for the left hemisphere.
Larger numbers indicate greater distances from the midline, while electrodes
on the midline are given the letter ‘z’ (zero) instead of a number because the
number zero looks too much like the letter O.
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Figure 2.4. The electrical fields measured by EEG are generated by aligned
pyramidal cells in the cortex (figure adapted from Mark E Bear (2006)).

Apart from recording or active electrodes, the system also requires a ground
and a reference electrode. The ground electrode serves as a common reference
point for the electrical potential of the body. It helps to reduce electrical noise
and interference from external sources, such as power lines and electronic de-
vices. On the other hand, the reference electrode is used to compare the electri-
cal activity recorded by the other electrodes on the scalp. The EEG will measure
the voltage difference between the active and the reference electrodes. This dif-
ferential measurement helps to isolate the brain’s electrical activity from other
sources of electrical noise.

Once the electrodes pick up the EEG signals, they are amplified and converted
from a continuous, analog voltage into a discrete, digital form that can be stored
in a computer. A typical amplification factor of 10,000 is used, ensuring that
the EEG voltage is in an appropriate range for the analog-to-digital conversion.
In the final step, the digital signal is stored on a recording device, such as a
regular computer, allowing visualization and analysis of the measured signals.

2.2.1 Spontaneous and evoked EEG

When recording EEG data, researchers are typically interested in either spon-
taneous brain activity or in understanding brain activity in response to specific
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Figure 2.5. The international standardized 10-20 system for the placement
of electrodes in EEG. The reference points in this system are the nasion and
the inion. The locations of the electrodes are determined using 10% and 20%
intervals of the distance between these reference points (figure reprinted with
permission from Shriram et al. (2013)).

tasks or stimuli. When EEG is recorded in the absence of external stimuli, it
is typically referred to as resting-state EEG. The primary focus of this disser-
tation, however, is on Event-Related Potentials (ERPs), which are time-locked
brain responses to distinct sensory, motor, or cognitive events (Luck, 2014).

Resting-state EEG

Resting-state EEG (rs-EEG) captures the brain’s ongoing, spontaneous electrical
activity when no specific task is performed. It is typically considered to provide
information on the intrinsic connectivity and the functional organization of the
brain.

As the electrical activity measured by the EEG often shows oscillatory and
repetitive behaviour, rs-EEG is often analysed using spectral analysis methods.
The rhythm of the activity depends, among other things, on the alertness or the
consciousness of the subject and is characterised by its frequency (Figure 2.6.
Five different rhythms or frequency bands are distinguished in EEG research,
namely delta rhythm (0-4 Hz), theta rhythm (4-8 Hz), alpha rhythm (8-12
Hz), beta rhythm (12-30 Hz) and gamma rhythm (30-100 Hz). Delta rhythm
is typically observed during deep sleep, while theta rhythm is associated with
other sleep stages and drowsiness. In awake subjects who are relaxed, activity
in the alpha frequency band is most prominent. The frequency of electrical
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activity in the brain increases further to the beta frequency band when subjects
are having conversations or are focusing on a task. Finally, gamma rhythm
indicates hyper brain activity, which is associated with learning (S6rnmo and
Laguna, 2005).

Figure 2.6. The frequency of the rhythm of brain activity depends on the alert-
ness or the conciousness of the patient (figure adapted from Biorender with
permission).

Changes in the spectral composition of the EEG signals can be observed
across the lifespan. Studies comparing adolescents and adults, for example,
have shown that EEG power typically decreases with increasing age, while func-
tional networks become more organized probably due to structural changes of
the brain. Changes in these features have also been associated with a number
of disorders, including depression and dementia. To give an example, studies
have found a decrease in spectral power in the alpha and beta bands in dif-
ferent types of dementia, such as Alzheimer’s disease and fronto-temporal lobe
dementia (FTLD). However, while patients with Alzheimer’s also showed an in-

crease in spectral power in the theta and delta bands, indicating slowing of the
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brain oscillations, these frequencies were not affected in FTLD (Lindau et al.,
2003; Nishida et al., 2011; Caso et al., 2012).

Task-related EEG

In addition to analyzing spontaneous EEG activity, another widely used ap-
proach in EEG research involves measuring the brain’s responses to specific
sensory, motor, or cognitive events (Luck, 2014). These time-locked responses,
known as Event-Related Potentials (ERPs), provide a noninvasive window into
the neural mechanisms underlying perception, attention, decision-making, and
many other cognitive processes. Given that ERPs form the central focus of this
dissertation, the following section offers a more detailed overview of how they
are measured, interpreted, and applied in experimental research.

2.3 Event-Related Potentials

ERPs are small voltage fluctuations embedded within the ongoing EEG signal.
Since raw EEG data is highly dynamic and contains a mix of background neural
activity and noise, individual event-related responses are very difficult to distin-
guish in single trials. To extract ERPs, researchers use trial averaging, a method
in which multiple EEG epochs (time segments) aligned to the same type of stim-
ulus or event are averaged together. This process enhances the stimulus-related
signal while minimizing the influence of unrelated brain activity and external
noise, revealing characteristic ERP waveforms.

ERP components are defined by their latency (when they occur relative to the
stimulus), polarity (positive or negative deflection), and topography (scalp dis-
tribution). These components are often classified into early and late responses.
Early sensory components, such as P1, N1, and P2, typically occur within the
first 100-200 milliseconds after stimulus onset and reflect the initial stages of
sensory processing. Their amplitude and latency can be influenced by stimulus
properties such as intensity, modality (e.g., visual vs. auditory), and attention.
Cognitive components on the other hand, such as the P300 (associated with at-
tention and decision-making) and the N400 (linked to language comprehension
and semantic processing), appear later and are thought to reflect higher-order

cognitive functions.
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Figure 2.7. Visual representation of some common event-related potential
components

2.3.1 Advantages of ERPs

One of the key advantages of ERPs is their high temporal resolution, allowing
researchers to track neural processing on the millisecond scale. This makes
ERPs particularly useful for studying the sequence and timing of cognitive pro-
cesses that would be difficult to resolve using techniques like fMRI, which has
much lower temporal precision.

ERPs are widely used in both basic and applied research. In cognitive neuro-
science, they help uncover how the brain processes stimuli and how different
mental functions unfold over time. In clinical settings, ERPs are very promising
as biomarkers for neurological and psychiatric disorders, such as schizophrenia,
autism spectrum disorder, and Alzheimer’s disease. Certain ERP abnormalities
can indicate deficits in sensory processing, attention, or memory, making them
valuable tools for early diagnosis and treatment monitoring.

Another important aspect of ERP research is its adaptability to different ex-
perimental paradigms, allowing researchers to study a wide range of cognitive
processes in both healthy individuals and clinical populations. The flexibility
of ERPs comes from their ability to be elicited by carefully designed tasks that
isolate specific cognitive functions while maintaining high temporal precision.
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2.3.2 Common Experimental Paradigms in ERP Research

One widely used paradigm is the oddball task, which is commonly employed
to investigate attention, novelty detection, and cognitive control. In this
paradigm, participants are presented with a sequence of repetitive "standard"
stimuli interspersed with infrequent "oddball" or "deviant" stimuli that differ
in some characteristic, such as pitch in an auditory oddball task or color in
a visual oddball task. When participants are asked to not pay any attention
to the stimuli, this paradigm typically elicits a Mismatch Negativity (MMN)
component, which can be used to study automatic change detection. On
the other hand, when researchers ask the participant to pay attention and
for example press a button when the rare oddball stimulus apprears, these
stimuli will typically elicit a P300 component, a well-known ERP marker of
attentional allocation and context updating. The amplitude and latency of
the P300 provide insights into how quickly and efficiently the brain detects
and responds to unexpected stimuli, making this paradigm useful for studying
attentional processes and clinical conditions such as ADHD and schizophrenia.

Another common approach is the go/no-go task, which is used to study re-
sponse inhibition, cognitive control, and executive function. In this paradigm,
participants must execute a motor response (pressing a button) when they see
a "go" stimulus but withhold their response when a "no-go" stimulus appears.
The difference in ERP responses between go and no-go trials reveals neural
mechanisms of impulse control. The N2 component (a frontocentral negative
deflection occurring around 200-300 ms after the stimulus) is thought to re-
flect conflict detection, while the P3 (or P300) component in no-go trials is
associated with inhibitory control. Go/no-go tasks have been widely applied
in research on impulse control disorders, substance abuse, and developmental
changes in executive function.

ERPs are also extensively used in language comprehension studies, where
they provide insights into how the brain processes different linguistic elements
in real time. For instance, the N400 component, a negative-going wave peak-
ing around 400 ms after word onset, is sensitive to semantic incongruities. It
is larger when a word is unexpected or does not fit the preceding context (e.g.,
"He spread the warm bread with socks"). Another important ERP component
in language research is the P600, which is linked to syntactic processing and
reanalysis, often appearing in response to grammatical errors or complex sen-
tence structures. By using paradigms that manipulate lexical, semantic, and

syntactic information, researchers can investigate the neural basis of language
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comprehension in both typical and impaired populations, such as individuals

with dyslexia or aphasia.



3 EEG source imaging and functional connec-

tivity

As explained in the previous chapter, EEG provides a non-invasive window into
brain activity with high temporal resolution, making it a valuable tool for study-
ing neural dynamics. However, the interpretation of EEG data is often compli-
cated by the fact that signals recorded at the scalp represent a mixture of con-
tributions from multiple underlying neural sources. EEG source imaging (ESI)
addresses this challenge by estimating the location and strength of the cortical
generators that result in the observed EEG signals. By solving the so-called in-
verse problem, ESI reconstructs brain activity at the source level, allowing for
an easier interpretation of neural processes.

Beyond identifying individual brain regions involved in specific cognitive
functions, a growing interest in neuroscience focuses on how different regions
interact. Functional Connectivity (FC) refers to the statistical dependencies be-
tween signals recorded from different brain regions. These measures provide
insights into the functional neural networks in the brain. FC can be assessed
both at the sensor level, using the original EEG recordings, and at the source
level, following ESI. While sensor-level FC is often easier to compute, it may
be confounded by volume conduction effects. Source-level FC, on the other
hand, allows for network analysis in a more physiologically meaningful way, as
it accounts for the true neural origins of EEG signals.

By combining EEG source imaging with functional connectivity analysis, re-
searchers can study how brain regions coordinate their activity, offering valu-
able insights into cognitive processing, neurological disorders, and brain net-
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work dynamics. In this chapter, both EEG source imaging and functional con-
nectivity will be introduced, highlighting their methodological principles.

3.1 EEG Source Imaging

One of the limitations of EEG is its limited spatial resolution. As the electrical
activity generated by the neurons travels through the brain in different direc-
tions, the activity recorded by each electrode does not represent a single un-
derlying brain source but rather a composite of activities from various brain
regions. To overcome this limitation, EEG source imaging was introduced as
a computational technique to estimate the electrical neuronal activity in the
brain. This technique identifies the underlying generators of the electrophysi-
ological activity recorded at the scalp by combining the EEG signals with struc-
tural MR images. During recent decades, EEG Source Imaging (ESI) has been
an important area of research, and it has introduced significant advances in
multiple research domains such as epilepsy (Mégevand & Seeck, 2020) and
sleep (Del Felice et al., 2014; Fernandez Guerrero & Achermann, 2019).
Source analysis of EEG data consists of two different processes: a forward
model and an inverse model. The forward model, also called the head model,
describes how a known source of electrical activity within the brain contributes
to the signal observed at each EEG electrode on the scalp. Conversely, the in-
verse model estimates the location and strength of the electrical activity within
the brain based on the EEG signals recorded at the scalp and relies on the
forward model to obtain an accurate solution. This is a non-unique problem,
which means that regularisation techniques or constraints are needed to find
plausible solutions. A visual overview of the information flow and the basic
components included in EEG source imaging is given in Figure 3.1.

3.1.1 The forward model

In EEG source imaging, the forward model is a crucial step in understanding
how brain activity results in the electrical signals recorded at the scalp. It estab-
lishes the mathematical relationship between neural sources and the measured
EEG signals, essentially predicting how neuronal activity propagates through
different head tissues to reach the electrodes. This process requires an accurate
representation of both the brain’s electrical sources and the head’s conductive
properties. The forward model is constructed using three key components: the

head model characterizing the geometric and electrical properties of the head,
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Figure 3.1. Information flow and basic components of the forward and inverse
problems (adapted with permission from Zorzos et al. (2021)

the source model defining the possible location of neural activity, and the posi-

tions of the electrodes that were used for the EEG recording.

The head model

To understand how the neuronal sources generate measurable EEG signals at
the scalp, a detailed representation of the head’s structure is necessary. The
head model accounts for the anatomical and electrical properties of different
tissues, determining how electrical currents propagate through, among others,

the brain, skull, and scalp.

Geometry: The complexity of the head model can vary. While simplified
spherical models exist which allow for analytical solutions, they lack the re-
alism and accuracy that is needed for accurate localizations. More detailed,
subject-specific models are typically derived from MRI scans. These models
include multiple layers representing different tissues, such as the brain, cere-
brospinal fluid (CSF), skull, and scalp. Advanced segmentation tools exist in
open source packages, such as FreeSurfer, SPM and Brainstorm, facilitating
the construction of these models. The number of tissue types that are consid-
ered can vary. Some simple models only segment three different tissue types
(i.e. brain, skull, and scalp), while more complex models sometimes include
up to nine different tissues (i.e. white matter, grey matter, CSE compact bone,
spongiform bone, scalp, eyes, blood and muscle). More detailed models have
been shown to improve accuracy, especially the inclusion of CSF in the model,
however, they also increase computational demands and potential numerical

€Irors.
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When individual structural brain images are unavailable, which is often the
case in studies with healthy participants, standardized anatomical templates
can be used as a alternative. One commonly used template is fsaverage, a
standard cortical surface template provided by FreeSurfer (Fischl, 2012).
The fsaverage model is based on the alignment of multiple individual brain
scans, resulting in an average cortical surface representation that facilitates
group-level analyses and comparisons across studies. Other standardized
templates, such as the ICBM152 or the Colin27 brain (Mazziotta et al., 2001;
Holmes et al., 1998), offer additional options depending on the specific
requirements of the study.

Electrical Conductivity: Each tissue type has unique electrical conductiv-
ity properties, which influence how the brain’s electric fields propagate to the
scalp. Conductivity values are typically estimated from literature, as direct
in vivo measurements for every patient are currently impossible. Some tis-
sues, like white matter and the skull, exhibit anisotropic conductivity, meaning
their electrical properties also vary depending on direction. While Anwander
et al. (2002) have shown localization errors of 5.1 mm for radial sources when
white matter anisotropy was neglected, most models used today ignore the
anisotropic nature of these tissue types and approximate them using isotropic

conductivity values.

The source model

Neuronal sources in the brain generate electrical activity that can be modeled
to simulate EEG signals. As discussed earlier, the primary generators of EEG are
the pyramidal neurons in the cortex. These neurons create electrical currents
through postsynaptic potentials, which can be represented at a macroscopic
level as current dipoles. A current dipole consists of a paired current source
and sink, separated by a small distance, and is mathematically characterized
by its position, orientation, and intensity. The dipole moment describes both
the direction and strength of this source.

The source space then represents the set of all possible locations where
dipoles can be placed to model brain activity. Since pyramidal neurons are
primarily located in the cortical gray matter, sources are usually restricted to
this region. Dipoles can be positioned on the cortical surface or within a 3D
grid inside the gray matter volume (cf. Figure 3.3). Their orientations may be

fixed perpendicular to the cortical surface, reflecting the natural alignment of
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Figure 3.2. Examples of head models. In the different columns, examples are
shown of head models including respectively 9 and 3 different tissue types,
while in the different rows, examples are given for head models based on tem-
plates (top row) and based on subject-specific MRIs (bottom row).

neurons. The number of dipoles in the source space can range from hundreds

to tens of thousands, depending on the required resolution.

Electrode positions

To accurately calculate the EEG signals resulting from modeled sources, pre-
cise knowledge of electrode positions on the scalp is essential. Standardized
systems, such as the 10-20 system and its higher-density extensions (10-10
and 10-5 systems), provide predefined electrode placements, ensuring consis-
tency across studies and compatibility with existing head models. In this sys-
tem, which was originally designed to balance spatial coverage and practicality,
electrodes are positioned based on distances between anatomical landmarks,
including the nasion, inion, and preauricular points. The 10-10 and 10-5 exten-
sions increase the density of electrodes, allowing for finer spatial resolution and
improved source estimation. While high-density EEG (e.g., 128 or 256 chan-
nels) further enhance spatial sampling, they also introduce challenges related to
setup time, patient comfort, and computational complexity in source modeling.
To take into account individual variability in head shape and size, these stan-
dard electrode positions can be coregistered to the head model and projected on

the scalp based on the anatomical landmarks. A visualization of these coregis-
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Figure 3.3. Examples of source models with a different number of dipoles. The
dipoles are placed within a regular 3D grid inside the gray matter volume.

tered electrodes to the head model is shown in Figure 3.4 for different electrode
set-ups including respectively 32, 64 and 128 electrodes. Alternatively, actual
electrode locations can be measured using 3D digitization techniques. This ap-
proach is considered the most accurate one, and common methods include elec-
tromagnetic tracking systems (e.g., Polhemus), optical tracking (e.g., infrared
cameras), and photogrammetry. These techniques ensure accurate alignment
between the recorded EEG signals and the individual head model, reducing lo-
calization errors in EEG source imaging. By integrating accurate electrode po-
sitioning with detailed head and source models, the forward model can provide
a reliable foundation for EEG source imaging, improving the ability to localize
and interpret underlying neural activity.

32 electrodes 64 electrodes 128 electrodes

Figure 3.4. Visualization of the electrodes placed on the scalp of the head
model based on anatomical landmarks including respectively 16, 64 and 128
electrodes.
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Calculation of the Forward Model

Once the head model, source model, and electrode positions have been defined,
the forward model can be computed. This step determines how electrical ac-
tivity generated within the brain propagates through the head’s tissues to pro-
duce the EEG signals recorded at the scalp electrodes. The fundamental part of
the forward model is the leadfield matrix, which mathematically describes the
contribution of each potential dipole source to the signals at each electrode.
Essentially, the leadfield acts as a transformation between source space (the
neural generators) and sensor space (the observed EEG signals).

Mathematically, the EEG potentials V recorded at the electrodes can be ex-
pressed as a linear combination of the source activities J:

V=LJ+e¢ 3.1

where L is the lead field matrix, which depends on the head model’s geometry
and conductivity, and € represents measurement noise. Computing L requires
solving Maxwell’s equations, which describe the behavior of electrical fields
within a conductive medium.

For simplified spherical head models, the forward model can be computed
analytically using closed-form solutions. These models assume that the head
consists of concentric spherical shells with uniform conductivity. While com-
putationally efficient, spherical models oversimplify head anatomy, leading to
localization errors and limiting their practical applicability in EEG source imag-
ing. For realistic head models based on MRI-derived anatomy, numerical meth-
ods are needed to solve the electromagnetic field equations. The most widely
used approaches include the Boundary Element Method (BEM), the Finite Ele-
ment Method (FEM) and the Finite Difference Method (FDM). BEM treats the
head as a set of nested surface compartments (e.g., brain, skull, and scalp) and
solves the electrical potential at these boundaries. It assumes that each com-
partment has isotropic conductivity, making it computationally efficient while
capturing some anatomical details. However, BEM cannot model conductivity
variations within each tissue layer and is less accurate when dealing with highly
conductive structures such as cerebrospinal fluid (CSF). FEM divides the head
volume into small finite elements (e.g., tetrahedra or hexahedra) and approx-
imates the electrical field within each element. Unlike BEM, FEM allows for
inhomogeneous and anisotropic conductivity, making it more accurate in mod-

eling complex tissue properties (e.g., anisotropic white matter). However, FEM
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requires computationally intensive meshing and numerical solvers, making it
more demanding in terms of processing time and memory. FDM discretizes
the head volume using a regular grid and approximates differential equations
governing electric potential propagation. While computationally efficient, the
availability of FDM tools in open source software is very limited, making it the

least often used option.

3.1.2 The inverse problem

The second part of the EEG source imaging technique involves solving the in-
verse problem. This problem refers to determining the location, orientation and
magnitude of the cortical dipoles that explain the observed activity at the scalp
(Luck, 2014). This process relies on the forward solution, but is fundamen-
tally ill-posed as the number of possible sources vastly exceeds the number of
electrodes where the EEG is measured, meaning that there is no unique math-
ematical solution. To overcome this limitation, inverse techniques incorporate
certain assumptions or enforce specific constraints to regularize the solution.
The final goal is to minimize the difference between the predicted EEG (based
on the forward model) and the measured EEG, i.e. the residuals, while op-
timizing a particular cost function. Typically, inverse solutions are separated
into two categories: the equivalent current dipole (ECD) approaches and the
distributed dipoles approaches. Where the ECD approaches assume that the
EEG signals are generated by a small number of focal sources, the distributed

dipoles approaches consider all possible source locations simultaneoulsy.

Equivalent Current Dipole Models

ECD models assume that EEG signals arise from a small number of discrete
dipoles, typically fewer than 10, each defined by its position, orientation, and
strength. These dipoles are estimated through optimization techniques that
iteratively adjust their parameters to best fit the observed EEG data. ECD mod-
els are particularly useful in cases where neural activity originates from well-
defined focal sources, such as epileptic spike localization.

The estimation of dipole parameters relies on nonlinear optimization meth-
ods that refine dipole locations and orientations to minimize the residual error
between the predicted EEG signals (derived from the forward model) and the
observed EEG signals. The simplest case, involving a single ECD, is typically
solved by minimizing the relative residual energy (RRE), which quantifies the
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proportion of unexplained signal energy relative to the total measured signal
energy. When multiple dipoles are assumed, the most widely used approach
is multiple emitter location and signal parameter estimation (MUSIC), which
searches for sources that best match the dominant components of EEG activity
(Schmidt, 1986). More advanced techniques, such as Recursively Applied and
Projected MUSIC (RAP-MUSIC), iteratively refine dipole estimates by sequen-
tially localizing multiple sources while minimizing interference between them.
These methods enhance source localization accuracy by iterating through mul-
tiple candidate dipole configurations and projecting out previously identified
sources to improve subsequent estimates (Mosher and Leahy, 1999).

Despite their precision in localizing a small number of sources, ECD mod-
els require an a priori assumption about the number of dipoles present, which
may not always be known. Additionally, the accuracy of the solution is highly
dependent on the initial parameter estimates, as nonlinear optimization tech-
niques can converge to local minima rather than the true global solution. This
sensitivity to initial conditions necessitates careful selection of starting param-
eters and, in some cases, the incorporation of additional constraints or prior
knowledge to guide the optimization process.

Distributed Dipole Models

In contrast to ECD approaches, distributed dipole models assume that brain
activity is generated by a large number of simultaneous sources distributed
across the cortical surface or within a volumetric source space. Instead of esti-
mating a small number of dipoles, these models assign an activation value to
thousands of potential sources and attempt to reconstruct a spatially extended
representation of neural activity. However, since the number of sources exceeds
the number of electrodes, additional constraints must be imposed to obtain a
stable and physiologically plausible solution.

Different inverse methods apply various regularization techniques to achieve
this. The most simple approach to regularization is the Minimum Norm Estima-
tion (MNE) solution (Hamaéildinen and Ilmoniemi, 1994), which assumes that
the overall source activity should be as small as possible while still explaining
the observed EEG signals. In other words, this approach tries to find the so-
lution with minimum power. As this solution favours superficial sources over
deep sources, the method was extended by Lin et al. (2006) who introduced
the Weighted Minimum Norm Estimate (WMNE) solution in which the power

of the sources is weighted using a weighting matrix that can be based on the
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depth of the sources or other constraints. Another regularization approach is
Low-Resolution Electromagnetic Tomography (LORETA), which enforces spa-
tial smoothness constraints to enhance the continuity of reconstructed sources
and improve localization accuracy (Pascual-Marqui et al., 1994). In this ap-
proach, if one source is active, there is a high probability that the neighbour-
ing sources are also active. Other methods that build further upon this are the
standardized low-resolution brain electromagnetic tomography (SLORETA) and
exact low-resolution brain electromagnetic tomography (eLORETA) (Pascual-
Marqui, 2002; Pascual-Marqui et al., 2011). Other methods, such as beam-
forming approaches like Linearly Constrained Minimum Variance (LCMV) and
Dynamic Imaging of Coherent Sources (DICS), use spatial filtering techniques
to isolate the contributions of specific brain regions while suppressing interfer-
ence from other areas (Van Veen et al., 1997; Gross et al., 2001).

Distributed models offer the advantage of not requiring a priori assumptions
about the number of active sources, making them particularly well suited for
cognitive studies where multiple brain regions may be simultaneously engaged.
However, they tend to exhibit lower spatial specificity compared to ECD models
due to regularization constraints, which often result in spatially diffuse solu-
tions. Additionally, these models are computationally more demanding, partic-
ularly when high-density EEG recordings are used to improve resolution. While
they provide a more comprehensive picture of brain activity, their accuracy can
be affected by the choice of regularization method and the assumptions that

are made about signal smoothness.

3.2 Functional Connectivity

When looking at connectivity in the brain, two different types of connectiv-
ity can be distuinguished: structural connectivity and functional connectivity.
Structural connectivity investigates the anatomical connections that exist be-
tween different areas of the brain, and is typically measured using diffusion
weighted imaging (DWI). It provides the framework of physical white matter
pathways through which signals in the brain can travel. While changes in these
connections are possible over time, when looking at short time scales, struc-
tural connectivity remains stable. Functional connectivity (FC), on the other
hand, refers to the statistical dependencies between neural signals recorded
from different brain regions, reflecting coordinated activity rather than direct

anatomical connections. Unlike structural connectivity, functional connectivity
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is a dynamic measure that can change over time, depending on cognitive states,
tasks, or pathological conditions, and is typically assessed using EEG or fMRI
time series.

As mentioned in the introduction of this chapter, functional connectivity can
be studied at two levels in EEG research: the sensor level (i.e., between EEG
electrodes) and the source level (i.e., between reconstructed cortical sources).
Sensor-level connectivity is more straightforward but is affected by volume con-
duction, which can introduce artificial correlations. Source-level connectivity,
derived from EEG source imaging techniques, provides a more anatomically
meaningful interpretation by mapping connectivity patterns onto specific brain
regions, reducing the influence of spurious correlations caused by volume con-
duction.

Functional connectivity measures in EEG can be grouped into four different
categories:

* Correlation and coherence methods typically assess the linear relation-
ship between signals recorded from different electrodes or brain regions.
Correlation quantifies the similarity in signal amplitude fluctuations over
time, while coherence measures the consistency of phase relationships
across specific frequency bands. These methods are widely used due to

their simplicity and ability to reveal large-scale network dynamics.

* Phase synchronization measures focus on the temporal alignment of
oscillatory activity between signals, independent of amplitude variations.
Metrics such as the Phase Locking Value (PLV) and the Phase Lag Index
(PLI) quantify how consistently two signals maintain a fixed phase differ-
ence, making them particularly useful for studying neural communication
mechanisms.

* Information based measures capture both linear and nonlinear depen-
dencies between EEG signals by evaluating shared information content.
Mutual Information (MI) is a commonly used approach that detects statis-
tical dependencies beyond simple correlation, offering insights into com-

plex interactions that traditional linear methods might miss.

* Granger causality measures go a step further by estimating the
directional influence between signals, distinguishing between mere
correlation and potential causal relationships. Techniques such as
Granger Causality (GC), directed coherence (DC), partial directed
coherence (PDC) and directed transfer function (DTF) assess whether
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past activity in one signal can predict future activity in another, providing
valuable insights into the directional flow of information in the brain.

Each functional connectivity method has its own strengths and weaknesses,
making the choice of method highly dependent on the research question, the
characteristics of the EEG data, and the brain processes being studied. To help
researchers select the right approach, connectivity measures are often grouped
based on several key differences.

One important distinction is whether the method analyzes connections in the
time domain or frequency domain. Time-domain methods, like correlation and
Granger causality, examine how signals relate to each other over time, making
them useful for studying short-lived neural responses or event-related activ-
ity. Frequency-domain methods, such as coherence and phase synchronization,
break signals down into different frequency bands (e.g., alpha, beta, gamma)
to investigate how brain regions interact through specific rhythmic patterns.

Another key difference is whether a method detects directed or undirected
connectivity. Undirected methods, like correlation and coherence, measure
how strongly two signals are related but do not indicate which one influences
the other. Directed methods, such as Granger causality and Transfer Entropy,
aim to determine whether activity in one brain region helps predict future ac-
tivity in another. These methods are useful for studying causal relationships
in brain networks but require careful interpretation since factors like volume
conduction and hidden sources can complicate the results.

A third distinction is whether a method follows a model-based or model-free
approach. Model-based methods, like Granger causality, rely on mathematical
models that describe how one signal influences another, usually assuming linear
relationships. These methods are useful when data follow predictable patterns
but may not capture more complex interactions. Model-free approaches, like
mutual information or phase synchronization, make fewer assumptions and can
detect both linear and nonlinear connections. While these methods are more
flexible, they are often more computationally demanding and can be harder to
interpret.

Finally, connectivity methods differ in whether they examine bivariate or
multivariate relationships. Bivariate methods assess connections between pairs
of signals independently, making them easier to use and interpret. However,
they do not account for indirect connections, meaning they may overlook com-
plex brain interactions. Multivariate methods, like partial coherence or multi-

variate Granger causality, analyze multiple signals at once, allowing researchers
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to study broader network interactions while reducing the impact of false con-
nections. These methods provide a more complete picture of brain networks
but require more data and computational resources.

By considering these key differences, researchers can choose the most suit-
able functional connectivity measure based on their study goals, the nature of
their EEG data, and the assumptions they are willing to make. This choice
ultimately affects how well the results reflect real brain activity and how mean-
ingful the findings are for understanding neural function.
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4 Cortical Generators and Connections Under-
lying Phoneme Perception and Semantic Priming: a
Mismatch Negativity, P300 and N400 Investigation

Abstract

Speech perception is a complex process that unfolds across multiple levels
of analysis, from early acoustic-phonetic processing to higher-order lexical pro-
cessing and semantic integration. This study examined the cortical sources
and functional networks underlying three Event-Related Potential (ERP) com-
ponents often used to study different aspects of language: the MMN and P300
during passive and active phoneme discrimination, and the N400 during au-
ditory taxonomic priming. Sixty healthy adults underwent high-density EEG
recording while completing a phonemic oddball task and a categorical prim-
ing task. Source localization was performed using eLORETA, and functional
connectivity was assessed via cross-correlation across ROI pairs.

The MMN, elicited during passive listening, showed activation in bilateral
temporal (insula, superior temporal gyrus, temporal pole), frontal (rostral
middle frontal, pars opercularis), and parietal (postcentral, supramarginal)
cortices. Functional connectivity revealed a network linking right tem-
poroparietal regions with left frontal areas supporting automatic detection
of deviant phonemes. In contrast, the P300—evoked during active phoneme
categorization—engaged frontal (caudal middle frontal, precentral), parietal
(precuneus), and cingulate (posterior, isthmus) cortices, forming a distributed
fronto-parieto-cingulate network for goal-directed speech processing. Finally,
the N400, associated with semantic priming, showed left-lateralized activation
in the frontal cortex and posterior cingulate. Enhanced connectivity within
and between frontal areas, and between frontal and parieto-occipital cortices,
supported efficient retrieval of lexical-semantic representations for primed
words.
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Overall, these results reveal that passive phoneme discrimination and active
categorization recruit distinct yet overlapping bilateral networks, while seman-
tic processing relies more heavily on a left-lateralized frontal system. Together,
the MMN, P300, and N400 reflect complementary neural mechanisms under-
lying the transition from sound to meaning in spoken language.

This chapter is based on the following articles:

Criel, Y., Depuydyt, E., Miatton, M., Santens, P, van Mierlo, P, & De Letter, M.
(2024). Cortical generators and connections underlying phoneme perception:
a mismatch negativity and p300 investigation Brain Topography 37(2024):
1089-1117. doi:10.1007/5s10548-024-01065-z

Criel, Y., Depuydt, E., Cocquyt, E.-M., Miatton, M., Santens, B, van Mierlo, B,
& De Letter, M. (2025). Frontal Synchronization Facilitates Taxonomic Priming:
Insights from N400 Source Estimation and Functional Connectivity Language,
Cognition and Neuroscience, 1-18. doi:10.1080/23273798.2025.2501049

For both of these articles, Yana Criel and Emma Depuydt are shared first au-
thors. In this collaboration, Yana Criel focused on interpreting the results and
situating them within the broader scientific context, while Emma Depuydt fo-
cused on designing the methodological approach and processing the data. Both
contributions were essential to the conception and realization of the studies.
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4.1 Introduction

Speech perception is a complex process that unfolds across multiple levels
of analysis, from early acoustic-phonetic processing to higher-order lexical
processing and semantic integration. According to the dual-stream model of
spoken word recognition (Hickok and Poeppel, 2004), the dorsal and ventral
streams play distinct but complementary roles in speech processing. The
initial prelexical stages of spoken word processing provide the foundation for
further lexical analysis in the ventral stream and access to articulatory sound
representations through the dorsal stream. At the core of these processes is
the ability to extract and interpret meaningful linguistic units from continuous
auditory input.

Prelexical speech processing involves three key stages (Pettigrew et al.,
2004). First, the auditory system analyzes the incoming speech signal based
on its spectrotemporal features. Next, acoustic-phonetic cues are extracted,
allowing for the identification of phonetic distinctions. Finally, phonologi-
cal/phonemic representations are activated, enabling the discrimination and
categorization of phonemes based on distinctive features such as articulation
place, manner, and voicing (Becker and Reinvang, 2007). Impairments in
these early stages can significantly impact spoken word recognition and
comprehension, as observed in individuals with aphasia, where deficits in
acoustic-phonetic analysis contribute to broader language impairments (Wertz
et al., 1998; Auther et al., 2000). Understanding the neural circuits supporting
phoneme-level processing is therefore essential for elucidating the mechanisms
underlying speech perception.

Neurophysiological research has extensively relied on electroencephalogra-
phy (EEG) to investigate the temporal dynamics of speech processing. Event-
related potentials (ERPs) provide a powerful tool for examining how the brain
responds to different aspects of auditory input in real-time (Luck, 2014). Two
key ERP components, the mismatch negativity (MMN) and P300 (P3b), have
been widely used to study phoneme discrimination and categorization using
oddball paradigms (Aerts et al., 2013; Criel et al., 2023; Naatianen et al., 1997;
Partanen et al., 2011). In this context, these components have been consid-
ered to reflect respectively passive discrimination (Kujala et al., 2007; Naatédnen
et al., 2012) and active categorization (Bledowski et al., 2004; Kok, 2001) of
phonemes. Phoneme discrimination refers to the ability to perceive and distin-
guish acoustic differences between phonemes, irrespective of their categorical
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boundaries. Phoneme categorization entails the perception of these linguistic
units into distinct groups that are based on shared acoustic features. The MMN
(Naatédnen et al., 1978) typically occurs in the range of 160 to 220 ms after the
onset of a deviance in an oddball task where attention is directed away from the
auditory modality. In contrast, the P300 (Sutton et al., 1965) emerges between
300 and 700 ms after the presentation of a target when stimuli are actively
attended to. Whereas the MMN is characterized by a frontocentral scalp distri-
bution, the P300 is primarily detectable at parietal electrodes (Polich, 2007).
MMN and P300 cortical generators and the functional connectivity thereof have
been a topic of investigation, albeit mainly in relation to the perception of tonal
contrasts. The question remains whether the same cortical regions and connec-
tions are engaged during phoneme perception, or whether the processing of
speech sounds draws on distinct networks. Evidence on the neural generators
of passive and active auditory deviance processing is provided by EEG/MEG
investigations (Koshiyama et al., 2020; Sabeti et al., 2016; van Dinteren et al.,
2018; Volpe et al., 2007; Wronka et al., 2012), fMRI (Rinne et al., 2005), com-
bined EEG-fMRI investigations (Crottaz-Herbette and Menon, 2006; Doeller
et al., 2003; Li et al., 2019b; Opitz et al., 2002), lesion mapping (Alho et al.,
1994; Ehlers et al., 2015) and intracranial recordings (Halgren et al., 1998).

Beyond phoneme-level processing, successful speech comprehension
requires access to stored semantic knowledge and the ability to integrate
lexical information into meaningful representations. The controlled semantic
cognition (CSC) framework (Jefferies, 2013; Chiou and Lambon Ralph, 2019)
suggests that conceptual knowledge is distributed across modality-specific
regions but is integrated within the anterior temporal lobe (ATL), which acts
as an amodal semantic hub (Patterson and Lambon Ralph, 2016). Accessing
and selecting relevant semantic information depends on a network of regions
involved in semantic control, including the posterior middle temporal gyrus
(pMTG), inferior frontal gyrus (IFG), and inferior parietal cortex (IPC)
(Diveica et al., 2021; Jackson, 2021). The efficiency of semantic retrieval is
often examined using semantic priming paradigms, where reaction times and
ERP responses reveal facilitated processing for semantically related versus
unrelated words (McNamara, 2005).

A key ERP component linked to lexical-semantic processing is the N400, a
negative-going potential peaking around 300-500 ms after word onset (Kutas
and Federmeier, 2000). The N400 is modulated by semantic priming, with
larger amplitudes observed for unprimed or semantically incongruent words
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compared to primed or congruent words (Cocquyt et al., 2022; Chen et al.,
2014; Khateb et al., 2010). This modulation, referred to as the N400 priming
effect, reflects the relative ease of lexical-semantic retrieval and integration.
The N400 component is observed across both visual and auditory modalities,
though its peak manifests differently depending on modality: as a centropari-
etal peak in visual presentation and as a more frontally distributed plateau in
auditory processing (Kutas and Van Petten, 1994). Auditory N400 responses of-
ten show a slight latency shift, attributed to the additional temporal demands
of spoken language processing (Pawlowski et al., 2019).

Theoretical accounts of the N400 have proposed different explanations for
its functional significance. One dominant view holds that the N400 reflects
the processing cost of retrieving lexical-semantic representations from long-
term memory (Lau et al., 2008). In contrast, alternative models suggest that
the N400 reflects post-lexical integration, where a word’s meaning is incor-
porated into the preceding semantic context (Hagoort, 2008). More recent
perspectives propose that the N40O represents an interplay of both automatic
and controlled processes, with varying contributions from automatic spreading
activation (ASA), controlled prediction, and controlled semantic integration
(Steinhauer et al., 2017). ASA occurs when a prime word automatically acti-
vates semantically related target words in memory, such as “dog” pre-activating
“cat.” Prediction involves the controlled pre-activation of specific lexical candi-
dates based on contextual information. Semantic integration, in turn, refers
to the incorporation of the target word’s meaning within the broader semantic
context, which occurs after lexical access. The relative contribution of these
mechanisms to the N400 effect depends on several factors, including stimulus
onset asynchrony (SOA) and the strength of semantic relationships. ASA effects
are most prominent at short SOAs (<300 ms), while controlled prediction re-
quires stronger contextual constraints and is diminished when SOA is too long
(Hill et al., 2002; Steinhauer et al., 2017). Recent studies have also linked the
N400 to predictive coding frameworks, suggesting that it reflects a mismatch
between top-down lexical-semantic predictions and the actual sensory input
(Eddine et al., 2024). In this view, the N400 indexes a prediction error sig-
nal, where more unexpected words generate larger negative amplitudes due to
greater discrepancies between expected and observed input.

In the following sections, we will examine the neurophysiological basis of
each component in greater detail. Specifically, we will explore the underly-
ing sources of the MMN, P300, and N400, drawing from functional MRI, EEG
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source localization, magnetoencephalography (MEG), and lesion studies. Fur-
thermore, we will discuss how these components interact within broader func-
tional networks involved in auditory processing, attention, and semantic mem-
ory. By reviewing the existing literature on the spatial and functional orga-
nization of these ERP components, we aim to provide a more comprehensive
understanding of how the brain transitions from early auditory discrimination
to higher-order language comprehension.

4.1.1 Mismatch Negativity (MMN)

In relation to the MMN, the available evidence on pure tone discrimination
mainly points in the direction of two dominant sources, one in the bilateral tem-
poral cortex and a second generator in the (right) frontal cortex (Doeller et al.,
2003; Fulham et al., 2014; Kim et al., 2017; Koshiyama et al., 2020; Li et al.,
2019b; Opitz et al., 2002; Auther et al., 2000; Rinne et al., 2005). Whereas the
temporal generator has been repeatedly localized to regions in and surround-
ing the auditory cortex, uncertainty remains on the exact nature of the frontal
MMN source. Reviewing the existing literature, Deouell (2007) observed that
in particular the caudal and rostral inferior frontal gyrus (for later evidence, see
Li et al. (2019b)), the medial frontal cortex and the right superior precentral
or motor cortex (for later evidence, see Hsu et al. (2014); Li et al. (2019b);
MacLean and Ward (2016)) were found to underlie the frontal MMN. Accord-
ingly, Fulham et al. (2014) concluded that widespread areas in the frontal cor-
tex can account for the anterior portion of the MMN. The diverse nature of the
component-specific time windows that were investigated and of the auditory
stimuli and contrasts used to elicit the MMN, each addressing specific subsets of
the functional network governing stimulus discrimination, might in part explain
these varying results (MacLean and Ward, 2016; Molholm et al., 2005). The
temporal-frontal engagement has been widely interpreted as evidence for the
predictive coding hypothesis (Garrido et al., 2009). Following this framework,
bottom-up propagations of sensory input are compared to top-down predictions
regarding the incoming stimuli, which are based on memory traces of preced-
ing sounds. If a mismatch emerges between bottom-up and top-down propaga-
tions, a change is detected and the predictive model is adapted. In the context
of predictive coding, the temporal generator is thought to be responsible for
the bottom-up processing of auditory stimulus features. In turn, the frontal
generator is thought to be activated when change detection occurs, subserving
automatic reallocation of attention to the deviant stimulus and updating of the
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predictive model (Fulham et al., 2014). Supporting evidence for this hypothesis
is provided by source localization studies that established different time courses
for the frontal and temporal MMN generator, whereby activation of the tempo-
ral source precedes frontal activation (Fulham et al., 2014; Kim et al., 2017,
Koshiyama et al., 2020). Investigations into the functional networks of pas-
sive auditory discrimination have provided further insight into the interaction
of the temporal and frontal MMN sources. That is, in addition to considerable
evidence pointing to phase synchronization between the bilateral temporal and
(pre)frontal regions during pure-tone discrimination (Choi et al., 2013; Hsiao
et al., 2010; MacLean and Ward, 2014), Choi et al. (2013) observed cortical
synchronization directed from the temporal to the frontal cortex. The anterior
cingulate cortex (Jemel et al., 2002), the hippocampus (Duncan et al., 2009)
and several subcortical structures including the cerebellum (Schall et al., 2003)
and thalamus (Yago et al., 2001) have additionally been mentioned in relation
to the MMN. Finally, Zhang et al. (2018) suggested that the MMN might orig-
inate from the activation of a fronto-temporo-parietal network, rather than a
fronto-temporal network. The authors compared long-range cortical connec-
tions during MMN deviance processing in awake state versus under anesthesia,
based on the idea that the latter would preclude high-level cognitive but not
lower-level sensory processing. A reduced number of long-distance connections
between prefrontal, temporal and centroparietal areas during deviant process-
ing under anesthesia lead them to assume a role of these areas in MMN gener-
ation. Diffuse engagement of the parietal cortex has indeed been reported in
relation to the MMN (Fulham et al., 2014), more specifically in the postcentral
gyrus, the precuneus and the inferior to superior parietal cortex (Levédnen et al.,
1996; Marco-Pallarés et al., 2005; Molholm et al., 2005; Schall et al., 2003).
Synchronization between ipsilateral temporo-parietal cortices during deviant
processing, as observed by Hsiao et al. (2010), also supports this theory. Sev-
eral hypotheses have been put forward regarding the role of the parietal cortex
in MMN generation, including the facilitation of multisensory integration and
P3a-related attention reallocation (Fulham et al., 2014). Since evidence in sup-
port of both theories is available, the literature remains inconclusive at present.
While the evidence presented above exclusively stems from the study of tonal
contrast, passive discrimination of speech stimuli essentially relies on a similar
fronto-temporal network (MacLean and Ward, 2016). Nevertheless, a number
of aspects specific to the processing of linguistic stimuli should be highlighted.
Both investigations of MMN scalp topography (Alho et al., 1994; Partanen et al.,
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2011; Tervaniemi et al., 1999), as well as MMN source reconstruction, point
to left-lateralized processing of speech stimuli (overall: Sorokin et al. (2010);
temporal source: Nadtanen et al. (1997); Pulvermiiller (2001); frontal source:
Deouell (2007)). Considering the predictive coding hypothesis in relation to
phoneme discrimination, top-down predictions are not solely based on the pre-
viously presented speech stimuli, but are also derived from language-specific
memory traces (Nddtinen et al., 1997). Stored in the language-dominant au-
ditory cortex (Naatdnen et al., 1997; Shestakova et al., 2002), recall of these
traces might explain the generalized lateralization to the left hemisphere. Us-
ing the phase locking value, MacLean and Ward (2016) investigated cortical
connectivity in relation to the discrimination of phonemic articulation place
contrasts and provided evidence for a predominantly left-lateralized network
to underlie both bottom-up and top-down MMN projections. The authors estab-
lished interactions between the left superior temporal gyrus and the left inferior
frontal gyrus (IFG; BA45 and BA47). Moreover, both the left (BA47) and right
(BA45) IFG showed connections with the ipsilateral superior frontal cortex.

4.1.2 P300

Source imaging generally indicates that the P300 in relation to pure tone tar-
get detection, showing a characteristic centroparietal scalp distribution, origi-
nates from the activation of a broad bilateral fronto-parietal network (Wronka
et al. (2012); for a review see Bocquillon et al. (2011) and Linden (2005)).
Within this network, a number of areas have been frequently reported: (1)
widespread areas across the parietal cortex, including the postcentral gyrus
(Ehlers et al., 2015), the precuneus (van Dinteren et al., 2018), the supra-
marginal gyrus (Crottaz-Herbette and Menon, 2006) and the inferior parietal
cortex (Crottaz-Herbette and Menon, 2006; Li et al., 2016); (2) the cingulate
cortex (Peng et al., 2012; Sabeti et al., 2016; van Dinteren et al., 2018; Volpe
et al., 2007; Linden, 2005); and (3) widespread (pre)frontal activity with ev-
idence for the orbitofrontal cortex (van Dinteren et al., 2018), the inferior
frontal cortex (Ehlers et al., 2015; Li et al., 2016), the middle frontal gyrus
(Ehlers et al., 2015; Li et al., 2016) and the precentral gyrus (Crottaz-Herbette
and Menon, 2006; Ehlers et al., 2015). In addition to the source reconstruction
data, a number of studies have investigated neural synchronization at sensor
level, thus providing insight into the interaction of P300 generators. In this
respect, phase synchrony between (temporo)frontal and (temporal-)posterior
electrodes was evidenced during active auditory deviant processing (Choi et al.,
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2010, 2015). Alternatively, Volpe et al. (2007) described early activation in
frontal and cingulate areas, followed by increased parietal activation in the
late P300 time window. In addition to the fronto-parieto-cingulate network,
some evidence points to the role of a number of subcortical structures, specif-
ically the basal ganglia and thalamus (Crottaz-Herbette and Menon, 2006),
the cerebellum (Crottaz-Herbette and Menon, 2006) and hippocampus (Lin-
den, 2005; Volpe et al., 2007) in active auditory discrimination. In view of the
fronto-parieto-cingulate network governing P300 generation, this component
is commonly linked to the process of stimulus categorization (Kok, 2001), and
more specifically the attentional and working memory related aspects of this
process. In this context, (Bledowski et al., 2004) associated the parietal P300
generator with top-down attentional processes that modulate the categoriza-
tion of task-specific stimuli. That is, these processes facilitate the comparison
of the sensory input to the established working memory representation. The
posterior cingulate cortex has likewise been linked to the top-down regulation
of attentional focus (Leech and Sharp, 2014). Alternatively, Sabeti et al. (2016)
attributed activation of the cingulate cortex during active sound categorization
to working memory engagement.

As the P300 indexes a late stage of information processing, the extent to
which it is subject to sensory stimulus modality and specific stimulus character-
istics is a matter of debate. Whereas certain evidence points to the P300 being
a purely cognitive component independent of sensory modality (Linden et al.,
1999; Peng et al., 2012; Sabeti et al., 2016), other studies suggest that the
component contains an additional modality-specific aspect, as they identified
activation of auditory or visual cortices in the P300 time window (Bledowski
et al., 2004; Moores et al., 2003). In this context, Crottaz-Herbette and Menon
(2006) demonstrated activation of Heschl’s gyrus during auditory P300 target
detection, as well as strong connectivity between the auditory cortex to the
cingulate gyrus.

Only a limited number of studies have explored the P300 in relation to speech
stimuli. Investigating auditory target detection using monosyllabic word stim-
uli, Geal-Dor et al. (2006) evidenced greater P300 amplitudes over left com-
pared to right electrode sites in young individuals. Correspondingly, Criel et al.
(2023) found maximal P300 strength over left and midline electrode sites in re-
lation to active phoneme categorization based on an articulation place contrast.
Similar results were also reported by Breier et al. (1999) and Justen and Her-
bert (2018). This raises the question of whether these topographic properties
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stem from a specialization of the commonly described bilateral fronto-parietal

network to the left hemisphere in relation to language processing.

4.1.3 N400

Areas in the frontal and temporal cortex have been demonstrated to govern
semantic priming. A considerable amount of proof stems from (mostly event-
related) functional magnetic resonance imaging (fMRI). Reviews by Holder-
baum (2019) and Lau et al. (2008) point to two areas in specific to support
automatic and controlled priming operations: the left MTG and the left IFG.
Consistent activation of the posterior part of the MTG, and by extension adja-
cent areas in the superior (STG) and inferior (ITG) temporal gyrus, has been
documented for unrelated compared to related target processing at both short
and long SOAs. Activation of the IFG, especially the pars triangularis (BA 45)
and pars orbitalis (BA 47), is specifically observed during semantic priming
at a long SOA. Electroencephalography (EEG) and magnetoencephalography
(MEG) source reconstruction of the scalp-recorded N400 potential has con-
firmed the presence of a dominant generator in the temporal lobe, govern-
ing lexical-semantic retrieval in a priming set-up (Geukes et al., 2013; Khateb
et al., 2010). These reports, however, are less uniform on the precise location
of this generator. In accordance with fMRI research, several studies identified
an activation component in the left MTG, STG and ITG (Ghosh Hajra et al.,
2018; Khateb et al., 2010; Matsumoto and Kakigi, 2014; Silva-Pereyra et al.,
2003). Performing electrocorticographic (ECoG) recordings in a group of in-
dividuals with epilepsy, Khachatryan et al. (2019) likewise designated the left
superior and middle temporal gyri as the main generator region for the N400.
Alternatively, combining evidence from MEG source localization and fMRI, Lau
et al. (2013, 2016) attributed the N400 to an activation cluster in the ATL at
both short and long SOAs. Apart from the temporal generator area, EEG and
MEG studies point to additional generators in the left inferior temporal gyrus
(Ghosh Hajra et al., 2018; Matsumoto and Kakigi, 2014), the left insula (Khateb
et al., 2010), the bilateral middle or superior frontal gyrus (Khateb et al., 2010;
Silva-Pereyra et al., 2003), the posterior cingulate cortex (Khateb et al., 2010)
and the putamen (Khateb et al., 2010). Combined results of fMRI, EEG and
MEG research thus converge to a left dominant temporo-frontal network to un-
derly semantic priming, albeit that the exact locations of these generator areas
are still under debate. The enhanced engagement of frontal and temporal cor-
tices in the retrieval of unprimed compared to primed words has generally been
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interpreted in light of the hypothesis that the N400 (at least partially) reflects
the facilitated access of primed lexical-semantic items (Lau et al., 2008). The
access and retrieval of unprimed targets (i.e., targets preceded by an unrelated
prime) requires more engagement of the semantic control system, which re-
sides in posterior middle temporal and inferior frontal cortices (Ralph et al.,
2017). At short SOAs, only automatic processes aid the retrieval of semantic
representations, which translates to the activation of the temporal cortex. At
long SOAs, frontal cortices additionally mediate the top-down retrieval (ante-
rior IFG) and selection (posterior IFG) of lexical-semantic representations (Lau
et al., 2008).

The above-discussed literature purely focused on areas showing increased
activation during semantic priming. Some researchers have further explored
the functional interaction between frontal and temporal regions that are en-
gaged in semantic priming. Based on functional connectivity investigation of
source localized EEG and MEG signals, Matsumoto et al. (2014) and Kujala et
al. (2012) found evidence for enhanced synchronization between frontal and
temporal N400 generators for the processing of related compared to unrelated
target words. Matsumoto et al. (2014) identified a bidirectional causal flow
between the left IFC and ITC in a sublimal (i.e., masked priming at short SOA)
priming task. Adopting a categorical priming paradigm with a long SOA, Kujala
etal. (2012) identified enhanced coherence between the left superior temporal,
right frontotemporal and right inferior temporal cortex. The authors hypoth-
esized that behavioural priming effects and reduced activation of frontal and
temporal areas observed for primed compared to unprimed items, may result
from a more efficient information transmission within the neural network in
this condition, as manifested in enhanced neural synchronization. Also, some
fMRI investigations targeted priming-related functional connectivity. Roelke &
Hofmann (2020) demonstrated enhanced functional synchronization between
the left inferior frontal cortex on the one hand, and the fusiform gyrus and the
anterior cingulate cortex during the processing of word pairs with low com-
pared to high semantic similarity.

4.1.4 The present study

While the neural generators of the MMN, P300, and N400 components have
been explored in previous research, several questions remain regarding their
precise cortical origins and functional network interactions, particularly in the
context of speech and semantic processing. For the MMN and P300, the exact
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source of the frontal MMN remains uncertain, as well as the precise locus of the
frontal and parietal P300 generators. Moreover, the majority of existing studies
have focused on tonal stimuli rather than speech, leaving open the question
of whether phoneme discrimination and categorization engage distinct neural
networks. Additionally, the temporal dynamics and interregional interactions
underlying these components remain poorly understood. Similarly, while some
source estimation studies have been conducted for the N400, the results are
inconsistent, and little is known about the connectivity between its generator
regions. Most prior studies have examined thematic semantic relations, leaving
it unclear whether taxonomic relations engage a partially distinct network.

The present study aimed to enhance our understanding of the cortical sources
and functional networks associated with the MMN, P300, and N400 compo-
nents. Specifically, we investigated 1) the cortical generators of the MMN and
P300 in relation to phoneme discrimination and categorization, as well as those
of the N400 in relation to the processing of taxonomic semantic relations, and
2) the functional connectivity between cortical regions for each component,
characterizing the interactions between generator areas during phoneme and
semantic processing.

To achieve this, high-density EEG recordings were obtained during two
paradigms: an auditory oddball task with a phonemic articulation place
contrast (for MMN and P300) and an auditory categorical priming task (for
N400). Component-specific cortical activity was reconstructed using exact
low-resolution brain electromagnetic tomography (eLORETA; Pascual-Marqui
et al. (2011)). This method minimizes localization errors, particularly for
deeper sources (Jatoi et al., 2014), and reduces false positive connectivity
estimates (Pascual-Marqui et al., 2018). Given the inherent limitations of
EEG source reconstruction due to the inverse problem and the smoothing
effects of the scalp and skull, spatial resolution remains constrained. However,
recent work suggests that eLORETA provides an estimated spatial resolution
of approximately 2 cm for ERP components, allowing for the identification of
key cortical regions involved in cognitive processing (Depuydt et al., 2024).

We further examined the temporal dynamics of neural activation by segment-
ing reconstructed activity into early, middle, and late component-specific time
windows. Functional connectivity was analyzed in source space by comput-
ing maximal cross-correlation between reconstructed signals across 68 corti-
cal regions, providing insights into task-dependent neural synchronization pat-
terns during phoneme discrimination, categorization, and semantic process-
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ing. By integrating source estimation and functional connectivity approaches
across these ERP components, this study aims to provide a more comprehensive
understanding of the neural mechanisms underlying phoneme perception and

lexical-semantic processing.

4.2 Materials and Methods

4.2.1 Participants

A total of 60 Dutch-speaking adults (30 men, 30 women) participated in this
study. An equal number of male (n = 10) and female (n = 10) participants
was recruited in each of the following age ranges: 20-39 years, 40-59 years
and 60+ years. The age of the participants reached from 23 to 80 years, with
the mean age equal to 49.3 years (SD = 16.84). A wide, balanced sample was
constructed based on sex and age in order to obtain results representative for
the broad population.

Included participants were right-handed, as objectified by a score > 8 on
the Dutch Handedness Inventory (DHI; (Van Strien, 1992)). Participants were
screened for cognitive impairment by means of the Montreal Cognitive Assess-
ment (MoCA; (Nasreddine et al., 2005)), where a cut-off score of 26/30 was
adopted for inclusion (Thissen et al., 2010). General language function was as-
sessed by means of the Dutch version of the Comprehensive Aphasia Test (CAT-
NL; (Swinburn et al., 2014)). A score below the cut-off value for one or more
test items was adopted as an exclusion criterion. Moreover, participants did not
report any hearing impairments, described a normal or corrected to normal vi-
sion, reported a negative history of any neurological or psychiatric disorders,
and did not have a history of any developmental disorders. Table 4.1 provides
an overview of demographic variables, as well as the score on the DHI, MoCA
and CAT-NL, for the participants grouped by age and sex. This study was ap-
proved by the Ghent University Hospital ethical committee (ONZ-2022-0127).

All participants gave their written informed consent.

4.2.2 Electrophysiological recording

Experimental procedure

Participants were subjected to two auditory oddball paradigms containing a

phonemic contrast and an auditory categorical priming task. First, an inatten-
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Table 4.1. Demographic details on the participants, grouped by age and sex

20-39 years 40-59 years 60+ years
Male Female Male Female Male Female

n 10 10 10 10 10 10

Age (years) 30.2 (5.31) 29.2 (4.32) 49.8 (4.39) 49.9 (6.86) 68.4(4.50) 69.0 (5.89)
Education level® 1.6 (0.84) 1.2 (0.42) 1.9 (0.99) 1.6 (0.70) 2.3 (1.06) 2.3 (0.67)
DHI (/10) 9.8 (0.63) 9.8 (0.63) 9.6 (0.84) 9.8 (0.42) 9.9 (0.32)  10.0 (0.00)
MoCA (/30) 27.6 (1.51) 27.9(0.74) 28.2(1.62) 28.4(1.65) 27.7(1.16) 27.6(1.43)
CAT-NL cognition (/40) 38.3(2.16) 38.5(1.43) 38.9(1.20) 37.9(1.37) 37.3(1.34) 38.0(1.56)
CAT-NL language comprehension (/19) 17.1 (2.33) 18.6(0.70) 17.3(2.06) 17.2(1.48) 16.4(2.12) 17.7(0.48)
CAT-NL language production (/35) 33.9 (1.37) 34.5(0.71) 34.3(0.82) 34.4(0.70) 33.1(1.01) 33.3(1.25)

Reported values are mean (standard deviation); DHI = Dutch Handedness Inventory; MoCA = Montréal
Cognitive Assessment; CAT-NL = Comprehensive Aphasia Test, Dutch Translation.

@ Education level was rated on a four-point scale: 1 = higher education-academic, 2 = higher
education-nonacademic, 3 = higher secondary school, 4 = lower educational school.

tive oddball paradigm, eliciting the MMN, was administered, followed by an
attentive paradigm eliciting the P300 to investigate phoneme perception. In
both of these paradigms, the same phonemic stimuli, differing only in terms of
articulation place, were used. The standard stimulus [ba] was presented with
an 80% probability while the deviant stimulus [go] was presented with a prob-
ability of 20%. Both stimuli had a duration of 250 ms. The stimuli used in the
current study were modified from the experiments of Aerts et al. (2013), who
generated the stimuli from NeXTeNS.

The inattentive oddball paradigm (MMN) comprised 600 standard and 150
deviant stimuli, which were presented with a 500 ms inter stimulus interval
(ISI). During the paradigm, participants were instructed to watch a silent movie
(Donald Duck). The total duration of the inattentive oddball task was approx-
imately 7 minutes. The attentive oddball paradigm (P300) consisted of 160
standard and 40 deviant phonemes, presented with a 2000 ms ISI, leading to
a total duration of 8 minutes. The actual paradigm was preceded by a practice
block, containing 16 standard and 4 deviant stimuli. In order to assess stimu-
lus categorization, participants were instructed to press a button on a Chronos
response box (Psychology Software Tools, Pittsburgh, PA, USA) when hearing
a deviant stimulus.

The auditory categorical priming task used in this work was adapted from
Hagoort et al. (1996) by Cocquyt et al. (2022). The task consisted of 120
Dutch word pairs, each including a prime and target word. In half of the pairs,
the prime and target word were semantically related by being members of the
same semantic category (e.g., cat — horse). In the other 60 pairs, the prime
and target word were unrelated in meaning (e.g., pink — coffee). None of the
word pairs were characterized by a thematic relation. To control for the ef-
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fect of psycholinguistic variables, target words in the related and unrelated
condition were matched for word frequency, phonological length, the number
of phonological neighbours, concreteness, imageability, age of acquisition, va-
lence, arousal, dominance and duration. For additional information on the
stimuli, we refer to Cocquyt et al. (2022). The prime and target words were
presented with a stimulus onset asynchrony (SOA) of 1800 ms, while the inter
stimulus interval (ISI) between the two words ranged from 830 to 1520 ms to
account for variations in word length. Following the presentation of the tar-
get word, participants were required to assess the semantic relatedness of the
prime and target words through a button press response. A delayed response
was adopted to avoid interference of movement artefacts and response-related
potentials (Van Vliet et al., 2014). Button presses were again registered by the
Chronos response box, on which participants were instructed to press a green
button in case of a semantically related word pair and a red button in case of
an unrelated pair. Following the button press, an inter trial interval (ITI) of
2500 ms was applied prior to the start of a new trial. The 120 trials were ad-
ministered over seven blocks, each separated by a pause. The experiment was
preceded by a practice block consisting of eight trials (four related, four unre-
lated pairs) to familiarize subjects with the task procedure. The time required
to complete this task ranged between 15 and 20 minutes.

The auditory stimuli in all paradigms were delivered binaurally at the same
comfortable hearing level in all participants using ER1-insert earphones, and E-
Prime 3.0 (Psychology Software Tools, Pittsburgh, PA, USA) was used to present
the different stimuli at random. Eye movement artifacts were limited by asking
the participants to focus on a white fixation cross presented on a black back-
ground during the auditory stimulus presentation.

EEG Recording

EEG was recorded continuously from 128 electrode sites using an EasyCap
electrode cap (Brain Products, Germany). The ground and online reference
were recorded at AFz and FCz, respectively. Using an abrasive electrolyte gel
(Abralyt 2000, EasyCap), impedances were kept below 20 k(). A BrainVision
BrainAmp amplifier (Brain Products, Germany) was used to acquire the EEG
signals, which were digitized with a sampling frequency of 500 Hz. To record
the data, the BrainVision Recorder software was used (Brain Products, Ger-

many).
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4.2.3 Electrophysiological data analysis

Data preprocessing

Similar preprocessing was applied to the MMN, P300 and N400 data. For the
P300 and the N400 data, the practice block preceding the experimental trials
were excluded from analysis. First, bad electrode channels were automatically
detected using different noisy channel detection methods implemented in the
PREP pipeline (Appelhoff et al., 2022; Bigdely-Shamlo et al., 2015). The four
primary measures used in this pipeline are extreme amplitudes (deviation cri-
terion), lack of correlation with any other channel (correlation criterion), lack
of predictability by other channels (predictability criterion), and unusual high
frequency noise (noisiness criterion). The electrodes marked as bad by the al-
gorithm were ignored in the subsequent analysis. The data were band-pass
filtered using a zero phase shift Butterworth filter with half-amplitude cut-off
frequencies of 0.3 Hz and 30 Hz and a 12 dB/octave slope. Also a 50 Hz notch
filter was applied to the data to remove power line noise. Independent compo-
nent analysis using the FastICA algorithm (Ablin et al., 2018) was performed
for eye blink and horizontal eye movement artifact rejection. The number of
independent components calculated per subject ranged between 117 and 128
(mean 124, std 2.8), as bad electrode channels were excluded in the calcu-
lation, and between 2 and 6 (mean 3, std 1.2) of the components have been
identified to contain artefacts. In case bad electrode channels were identified
and excluded in step 1, these channels were interpolated. Subsequently, data
were re-referenced to an average common reference. The continuous EEG was
segmented in 600 ms long epochs (-100 ms to 500 ms) for the MMN, 1500
ms long epochs (-300 to 1200 ms) for the P300 and the N400. Baseline cor-
rection was performed using a 100 ms prestimulus window for the inattentive
paradigm and a 300 ms prestimulus window for the attentive paradigm and
the categorical priming paradigm. Artifact rejection using the following crite-
ria was applied: 75 pV maximum gradient criterion; 100 pV minimal/maximal
amplitude criterion; 150 pV maximum difference criterion; 0.5 pV low activity
criterion during 100 ms. Also trials for which in incorrect response was given
to the stimuli were removed (P300 and N400). For the inattentive paradigm,
these criteria led to the rejection of between 0 and 92 trials (mean 30, std
38) out of the 750 trials in total, in the attentive paradigm between 0 and 33
(mean 4, std 6.9) out of the 200 trials were excluded and finally in the categor-
ical priming task between O and 43 trials (mean 14.8, std 9.5) were rejected.
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Standard and deviant trials (MMN and P300), and related and unrelated tri-
als (N400), were segmented separately in view of source reconstruction and
functional connectivity calculation.

ERP Level Analysis

To investigate wheter the administered oddball tasks and the priming task did
elicit the expected MMN, P300 and N400 effects in our participant sample, we
extracted amplitude values from the scalp-recorded ERP signals. For the MMN,
mean amplitude values in response to the standard and deviant condition were
extracted in a 100-300 ms time window at six frontocentral electrode sites (F3,
Fz, F4, C3, Cz, C4). For the P300, mean amplitudes for standard and deviant
waveforms were extracted in a 300-800 ms time window at three parietal elec-
trodes (P3, Pz, P4). Finally, also the mean amplitude of the N40O in response
to the related and unrelated condition was extracted in the 400-800 ms time
window at three central electrode sites (C3, Cz, C4). A paired samples t-test
was performed to assess the presence of the MMN, the P300 effect and the
N400 effect by comparing the average of the mean amplitudes at the different
electrode sites between the two conditions.

ERP source reconstruction

Forward modeling: Source analyses were performed using the MNE-Python
software package (v1.2.1) (Gramfort et al., 2013). As no individual MRI
images were available, Freesurfer’s standard template MRI subject fsaverage
was adopted to create the EEG forward model (Fischl, 2012). A three-layer
head model was created using the inner skull, outer skull, and outer skin as
boundaries for the different compartments. Default electrical conductivity
values were assigned to the scalp (0.3 S/m), skull (0.006 S/m) and brain (0.3
S/m) compartments of the model. Approximately 8200 equivalent current
dipoles were distributed on the cortical surface, resulting in a spacing of about
4.9 mm between the dipoles. Dipole orientations were fixed to be normal to
the cortical surface throughout the study. Finally, the EEG leadfield matrix was
calculated using the boundary element method (BEM).

Inverse modeling: The source reconstruction was performed for each
subject and each condition (standard and deviant, or related and unrelated)
separately using the exact Low-Resolution Tomography (eLORETA) inverse
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method (Pascual-Marqui et al., 2011). As the signal to noise ratio (SNR) of
the signal is affected by the number of trials used for averaging, the number
of epochs was equalized for both conditions before averaging and source
reconstruction. In further analysis, the absolute magnitude of the dipoles, the
current source density (CSD), was investigated, disregarding the orientation
information of the dipoles. As indicated by Fulham et al. (2014), the CSD
at each dipole location is not only proportional to the ERE but also to noise.
Therefore, we corrected for differences in noise conditions across subjects
by converting the CSD signals to z-scores. This was done by creating a
noise-signal for each subject using 50% of the standard/related trials and
50% of the deviant/unrelated trials. Of each set, the polarity of half of the
trials was switched to obtain a signal that represents the noise. This resulted
in a signal containing no ERP response but only noise with similar statistical
properties as the original signals, which was then source reconstructed. This
process was repeated 100 times to obtain mean and standard deviation values
for the CSD noise bias for each subject separately, which was then used for the

normalization of the original CSD signals in both conditions.

Source clustering: Significant effects of interest were explored in three
separate time windows of 50 ms through statistical clustering analysis in
source space. The early, middle and late time windows were selected based on
the 25%, 50% and 75% fractional area latency of the MMN, P300 and N400
grand average difference wave of all participants in a broad time window of
100-300 ms, 300-800 ms and 400-800 ms, respectively. For the MMN, the
140-190 ms, 190-240 ms and 240-290 ms time windows were investigated.
Clustering analysis for the P300 was performed in the 370-420 ms, 460-510 ms
and 590-640 ms time windows, and for the N400 in the 460-510 ms, 520-570
ms and 630-680 ms time windows. These different time windows allowed us
to investigate how the sources underlying the ERP components change as a
function of time. A data-driven approach was applied by selecting these time
windows based on the fractional area latency of the grand average component,
thus assuring that the selected 50 ms time windows were of interest for early,
middle and late processes underlying the ERPs. The data was averaged over
the time dimension for each participant in each of the different windows. Two
different approaches were used to test for significant differences in source
activation between the standard and deviant condition. The first approach

consisted of a cluster-based non-parametric permutation test, in which the
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significance probability was computed under the permutation distribution
using the Monte-Carlo method (Maris and Oostenveld, 2007). First, paired
t-tests were performed for each dipole separately. Then, the dipoles for
which the obtained t-value proved larger than the imposed threshold were
selected as cluster candidates. In this study, a data-driven approach was
used to determine the threshold, so that the 5% of the dipoles with the
strongest differences were selected. In the next step, the selected dipoles
were grouped in potential clusters based on spatial adjacency, and the cluster
size was determined for each cluster. To form the permutation distribution,
the standard and deviant conditions were randomly reassigned across all
participants 5000 times and for each of these permutations, the largest
cluster size was calculated. Finally, the differences between the conditions
were considered significant if the cluster size fell into the highest 5% of the
distribution. While the cluster-based permutation test controls the multiple
comparison problem and at the same time maximizes power, no inference is
made over individual dipoles. Consequently, no statements about the spatial
location and extent of the significant effect between both conditions based on
the cluster locations will be completely accurate. Therefore, a second approach
to test for significant differences in source activation between both conditions
was used. Here, paired t-tests are performed for each dipole separately, after
which the obtained p-values are corrected for multiple comparison with False
Discovery Rate (FDR) (Genovese et al., 2002).

Source Data extraction: To investigate activation changes in sources
underlying the MMN, P300 and N400, regions of interest for further analysis
were defined based on both the identified activation clusters and dipoles
identified to have the strongest significant differences between both conditions.
To this end, the cerebral hemispheres were parcelated in 34 regions of interest
(ROIs) each, using the Desikan-Killiany atlas (Desikan et al., 2006). For each
activation cluster identified in relation to the MMN, P300 or N400, the ROI
comprising the majority of cluster dipoles was selected. For each selected
ROI, as well as for the contralateral homologues ROI, the time series for both
the standard and deviant, or related and unrelated conditions were extracted
from the reconstructed signal by applying principle component analysis (PCA)
decomposition to the time courses within the ROI, and using the first mode of
the decomposition as the representative time course. From these ROI-specific
time series, we extracted the mean CSD in the early, middle and late time
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windows (MMN: 140-190 ms, 190-240 ms, 240-290 ms; P300: 370-420 ms,
460-510 ms, 590-640 ms; N400: 460-510 ms, 520-570 ms, 630-680 ms).
Additionally, the mean CSD in the large time window was calculated for each
ROI identified in relation to the MMN (100-300 ms), P300 (300-800 ms) and
N400 (400-800 ms) in both hemispheres.

Functional connectivity analysis

The functional networks underlying phoneme discrimination (MMN) and cat-
egorization (P300), and categorical priming (N400) were mapped based on
the 68 ROIs predefined by the Desikan-Killiany atlas (Desikan et al., 2006).
For each participant and each condition, we extracted the time series for the
different ROIs from the source reconstructed data using PCA decomposition,
selecting the first mode of the decomposition as the representative time series.
The functional networks were then created using the maximal cross-correlation
as functional connectivity measure. The cross-correlation function was calcu-
lated between all ROI-pairs, limiting the signals to the time windows of interest
for each ERP component (MMN: 100-300 ms, P300: 300-800 ms, N400: 400-
800 ms). The correlation coefficients were then calculated by normalizing the
cross-correlation function by the energy of each signal. The connection strength
in the functional network was set to the maximal cross-correlation coefficient
for which the corresponding absolute time lag was larger than 6 ms and smaller
than 100 ms. This restriction on the time lags was imposed to reduce the effect
of instantaneous interactions within the network due to source leakage or the
spreading of the CSD signals over multiple ROIs. Finally, the values within each
functional connectivity network were normalized by subtracting the mean and
dividing by the standard deviation.

To identify significant differences between the networks obtained for the
standard and deviant, or related and unrelated conditions, the Network Based
Statistic (NBS) method was used (Zal, 2010). This method identifies significant
network components that are related to the experimental effect and is based
on a permutation approach. In the first step, paired t-tests are performed for
each connection between the conditions and connections exceeding the chosen
threshold of p < 0.001 are selected. The algorithm then identifies networks
within the set of selected connections, after which permutation-based univari-
ate statistical testing is performed to identify significant networks based on

size. This approach offers a gain in statistical power compared to analyzing
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each connection individually. For more details about the NBS approach, we
refer the reader to Zal (2010).

To quantify and describe the obtained significant network components, we
subdivided the 34 ROIs of each hemisphere into five groups: Frontal, Tem-
poral, Parietal, Occipital and Cingulate (cf. appendix A.1). The number of
connections between and within the different groups in the significant network
component was then calculated. To account for the differences in the number
of ROIs per group, the number of connections was divided by the number of
possible connections between and within the groups, allowing us to identify
the relative importance of each group to the differences in functional networks
between the conditions.

4.3 Results

4.3.1 Behavioral Results

In the P300 task, mean behavioral accuracy was high for the entire participant
group, with 91.67% for standard and 94.08% for deviant trials. In the seman-
tic priming task, participants were more accurate in identifying related (95.8%)
compared to unrelated (97.2%) word pairs, demonstrating a facilitation effect
in processing meaningful associations. Notably, all participants maintained ac-

curacy above 75% for both tasks, confirming overall reliable task performance.

4.3.2 ERP Results

MMN

A repeated-measures ANOVA (rmANOVA) revealed the presence of a MMN ef-
fect in the 100-300 ms time window in the overall participant sample (main
condition effect: F(1,57) = 155.494; p<0.001), as well as each separate age
group (condition by age group interaction effect: F(2,57)=7.307; p=0.001).
Across the entire participant group, MMN amplitude in response to deviant
trials was on average 0.451 pV (95% CI=0.379-0.524) more negative com-
pared to standard trials. Post-hoc pairwise comparison (Bonferroni) revealed
the same pattern for each separate age subgroup. The MMN effect observed in

the current participant sample is visualized at frontocentral sites in Figure 4.1
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Figure 4.1. MMN in response to standard and deviant sound, as well as the
difference, at electrodes Fz and Cz for participants recruited in a young (20-39
years), middle-aged (40-59 years) and elderly(60+ years) age range

P300

Based on an rmANOVA, the presence of a P300 effect was confirmed in the
300-800 ms time window in the overall participant sample (main condition
effect: F(1,57)=145.188; p<0.001), as well as the young, middle-aged and
elderly group participants were recruited in based on their age (condition by
age group interaction effect: F(2,57)=2.806; p=0.069). In the overall group,
the amplitude in response to standard sounds was on average 1.811 pV (95%
CI=1.510-2.112) smaller compared to deviant sounds. Post-hoc pairwise com-
parison of the marginally significant age group by condition interaction effect
revealed that the same pattern was observed in each of the three subgroups
based on the age range participants were recruited in (p<0.001 in all). Figure

4.2 provides a visualization of the P300 effect at parietal electrode sites.

N400

The presence of the N400 effect at the central electrode sites in the 400-800 ms
window in both young, middle-aged and elderly participants was indicated by
a rmANOVA, showing a main effect of condition (F(1,57) =47.166; p < 0.001)
but no main age group effect (F(2,57) = 0.488; p = 0.616) or condition by age
group interaction effect (F(2,57) = 0.194; p = 0.824). N400 amplitude was
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Figure 4.2. P300 in response to standard and deviant sound, as well as the
difference, at electrode Pz for participants recruited in a young (20-39 years),
middle=aged (40-59 years) and elderly(60+ years) age range

on average 0.996 pV more negative for unrelated compared to related trials.
Likewise, a univariate ANOVA, showing no main effect of age group (F(2,57) =
0.973; p = 0.384) on the onset latency of the N400 difference wave, indicated a
comparable onset for the N400 effect across age groups. The time series of the
N400 (effect) as recorded at the central scalp electrodes, are shown in Figure
4.3.

Young (Cz) Middle Aged (Cz) Elderly (Cz)
1 1

2 | /

Y — Related i — Related i — Related

i Unrelated i Unrelated i Unrelated
—— Difference | —— Difference | —— Difference

' ' '
-02 00 02 04 06 08 10 12 -02 00 02 04 06 08 10 12 -02 00 02 04 06 08 10 12
Time (s) Time (s) Time (s)

Figure 4.3. N400 in response to standard and deviant sound, as well as the
difference, at electrode Cz for participants recruited in a young (20-39 years),
middle=aged (40-59 years) and elderly(60+ years) age range

4.3.3 Source Reconstruction
MMN

Results of eLORETA source reconstruction of the time series in the broad time
window (100-300 ms) in response to the standard and deviant condition, as
well as the difference (deviant minus standard), are visualized in Figure 4.4.
For each subject, the source reconstruction explained between 32.5% and
83.7% of the variance (mean 68.8%, std 9.5%). In both the early (140-190
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ms), middle (190-240 ms) and late (240-290 ms) time windows, dipole
clusters contributing to MMN generation were identified based on spatial
clustering (Figure 4.7). In the early time window, both the cluster-based
permutation test and the paired t-tests followed by fdr-correction revealed
a significant difference between the standard and deviant conditions. This
difference was most pronounced in the left insula and in the right frontal
lobe. Significant differences between both conditions were also identified in
the middle time window, mainly in the left parietal cortex, the left temporal
cortex and the right frontal cortex. Finally, in the late time window, differences
were identified in the left insular cortex and in the right frontal, insular and
temporal cortex. Similar results were found using dipole-level statistical
comparisons followed by fdr-correction (Figure A.1).

Figure 4.4. eLORETA source reconstruction results of the MMN in response to
the standard condition and deviant condition, and the difference between both
in the 100-300 ms time window.

P300

The results of source reconstruction of the P300 time series in response to the
standard condition, deviant condition and difference between both in the 300-
800 ms broad time window using eLORETA are shown in Figure 4.5. In this
case, the source reconstruction explained between 32.1% and 81.5% of the
variance (mean 68.4%, std 7.3%) in each subject. Spatial clustering and paired
t-tests followed by fdr-correction in the early (370-420 ms), middle (460-510
ms) and late (590-640 ms) time windows revealed significant differences to
underlie P300 generation (Figure 4.8 and A.2). In the early window, these
differences were most pronounced in the left cingulate cortex, in the left frontal
cortex, in the right cingulate cortex and in the right parietal cortex. In the
middle time window significant differences were localized to the left cingulate,
right cingulate, right parietal and right occipital cortex. Lastly, the left and
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right cingulate and right parietal cortex were identified to contain significant
differences between both conditions in the late window.

Figure 4.5. eLORETA source reconstruction results of the P300 in response to
the standard condition and deviant condition, and the difference between both
in the 300-800 ms time window.

N400

Results of eLORETA source reconstruction for related trials, unrelated trials and
the difference, in the broad time window (400-800 ms) are visualized in Fig-
ure 4.6. Spatial clustering in early (460-510 ms), middle (520-570 ms) and
late (630-680 ms) component-specific time windows revealed five significant
dipole clusters underlying the generation of the N400 effect (Figure 4.9). In
the early time window, a combination of cluster-based permutation testing and
fdr-corrected paired t-tests (Figure A.3) revealed a difference between the re-
lated and unrelated condition, mainly located in the left lateral orbitofrontal
cortex, the left pars opercularis and left pars triangularis of the inferior frontal
gyrus, and the left precentral gyrus. In the middle time window, significant ac-
tivation differences between related and unrelated trials were predominantly
identified in the left posterior cingulate cortex. In the late time window, no
condition effect could be observed.

Figure 4.6. eLORETA source reconstruction results of the N400 in response to
the standard condition and deviant condition, and the difference between both
in the 400-800 ms time window.



Figure 4.7. Results of clustering analysis on the eLORETA source reconstruction of the MMN difference in the early (140-190 ms),
middle (190-240 ms) and late (240-290 ms) time window. The time series of each significant cluster, as averaged over all dipoles of the
cluster, is shown.
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Figure 4.8. Results of clustering analysis on the eLORETA source reconstruction of the P300 difference in the early (370-420 ms),
middle (460-510 ms) and late (590-640 ms) time window. Also the time series of each significant cluster, as averaged over all dipoles
of the cluster, is shown.
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Figure 4.9. Results of clustering analysis on the eLORETA source reconstruction of the N400 difference in the early (460-510 ms),
middle (520-570 ms) and late (630-680 ms) time window. Also the time series of each significant cluster, as averaged over all dipoles
of the cluster, is shown.
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4.3.4 Functional Connectivity

MMN

A network encompassing 10 nodes, connected by 12 edges (p = 0.013), was
identified to significantly differ between deviant versus standard phoneme pro-
cessing (Figure 4.10). This network comprised short intrahemispheric connec-
tions within the right temporal and right parietal region, as well as long in-
trahemispheric connections between the right temporal and parietal, and right
parietal and occipital nodes. Interhemispheric connections were established
between the left frontal nodes on the one hand, and the right temporal and
parietal regions on the other hand. The right bank superior temporal sulcus
showed the highest number of connections during deviant processing (n = 6).
No edges were identified showing stronger functional connectivity in the stan-
dard compared to the deviant condition.

P300

A network showing significantly stronger functional connectivity for deviant
compared to standard phoneme processing was identified, comprising 54 edges
that connect 31 nodes (p < 0.001) (Figure 4.11). The network predominantly
involved intra- and interhemispheric connections between temporal, parietal,
cingulate and occipital nodes. More specifically, intrahemispheric connections
were mainly located between cingulate and parietal, cingulate and temporal
and temporal and occipital regions in both the left and right hemisphere, with
additional links between parietal and occipital nodes in only the left hemi-
sphere. The network featured interhemispheric connections between right pari-
etal regions on the one hand and left temporal, occipital, frontal and cingulate
nodes on the other hand. Links were also found between the right cingulate
and left parietal and occipital cortex, as well as between the left cingulate and
right frontal and temporal nodes. Lastly, interhemispheric connections were
established between the left temporal and right occipital, right temporal and
left occipital, and left and right occipital cortex. The left fusiform gyrus was
the most connected node in the network underlying deviant processing (n =
12). Contrasting the standard compared to the deviant condition, a network
containing 19 nodes and 22 edges was identified (p = 0.002) (Figure 4.11).
This network mainly consisted of intrahemispheric connections, with short
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Figure 4.10.
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(b) Functional P300 networks showing a significant effect of condition (p < 0.001).
(A) Graph representation of significant network edges between 68 ROIs for standard
> deviant processing. (B) Normalized connectivity matrix of significant network edges
between frontal, temporal, parietal, cingulate and occipital ROIs for standard > deviant

processing

Figure 4.11.
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connections within the left frontal and left temporal lobe, as well long con-
nections between left frontal nodes on the one hand and left cingulate and
occipital nodes on the other hand. Interhemispheric links were established be-
tween the left cingulate and right frontal cortex. The left lateral orbitofrontal
gyrus and left rostral anterior cingulate cortex showed the highest number of
connections during standard processing (n = 5).

N400

Network Based Statistics identified a significant network for related (related
> unrelated) but not unrelated (unrelated > related) target processing, at a
threshold of p < 0.01 (Figure 4.12). The significant network for related process-
ing encompassed 15 nodes, connected by 12 edges (p = 0.014). The network
mainly comprised short connections within the left frontal lobe, connecting
the frontal pole, pars orbitalis, pars triangularis, pars opercularis and lateral
orbitofrontal cortex. Additional short-range connections linked left temporal
areas, specifically the entorhinal and inferior temporal region. Long-range con-
nections essentially linked the left frontal cortex (especially the pars orbitalis
of the IFG) with right frontal (interhemispheric; the frontal pole and medial
orbitofrontal cortex), left parietal (intrahemispheric; the precuneus) and left
occipital (intrahemispheric; the cuneus) cortices.

4.4 Discussion

The present study investigated the neural mechanisms underlying auditory de-
viance processing and speech sound discrimination, focusing on the mismatch
negativity (MMN), P300, and N400 components. Our findings highlight a more
extensive and interconnected neural network than traditionally proposed, ex-
tending beyond temporo-frontal interactions to include significant parietal and
cingulate contributions. In the following sections, we discuss the implications
of these findings for predictive coding theories, attentional modulation, and
the role of parietal and cingulate regions in speech perception and semantic
processing.

4.4.1 Mismatch Negativity

Our combined source reconstruction and connectivity findings suggest that

speech sound discrimination is supported by a temporo-parieto-frontal
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network, rather than the traditionally proposed temporo-frontal circuitry.
While temporo-frontal interactions are well-established as the core network
for passive auditory deviance processing (Doeller et al., 2003; Kim et al.,
2017; Li et al., 2019b; MacLean and Ward, 2016), the present data highlight
parietal involvement, particularly in the left supramarginal and postcentral
gyrus. The possibility of parietal activation being an artifact from temporal
sources cannot be entirely excluded (Fulham et al., 2014), but several factors
argue against this explanation. First, increasing evidence supports parietal
contributions to passive auditory deviance processing (Marco-Pallarés et al.,
2005; Zhang et al., 2018). Second, parietal engagement was corroborated
not only by source localization but also by functional connectivity analyses,
which revealed robust synchronization between parietal, temporal, and frontal
cortices. Given that absolute time lag corrections were applied, potential
spreading effects were minimized. Third, structural connections between the
parietal and other cortical regions (Schmahmann et al., 2008) likely support
functional interactions observed here and in prior research (Hsiao et al.,
2010).

The temporal sources were primarily located in and around the auditory cor-
tex, including the superior temporal sulcus, the insula, and the banks of the
superior temporal sulcus, the latter showing the strongest connectivity dur-
ing deviant processing. Frontal activation was identified in the rostral middle
frontal gyrus (MFG) and pars opercularis of the inferior frontal gyrus (IFGop).
While the MFG has frequently been linked to frontal MMN generation (Deouell,
2007; Takahashi et al., 2013), fewer studies have localized MMN-related activ-
ity to the IFGop (Molholm et al., 2005; Doeller et al., 2003). Given the IFGop’s
well-documented role in motor and phonetic processing (Amunts et al., 2004;
Heim and Alter, 2006; Heim et al., 2010), its involvement in MMN generation
may reflect phoneme-specific computations.

Our findings align with the predictive coding framework of auditory discrim-
ination (Garrido et al., 2009), which posits that bottom-up sensory processing
in the temporal cortex interacts with frontal regions to update predictive mod-
els of auditory stimuli. The observed functional connectivity between temporal
and frontal cortices supports this mechanism (Choi et al., 2013; MacLean and
Ward, 2014). However, unlike previous studies that reported a temporal-to-
frontal directional pattern in MMN activation (Fulham et al., 2014; Kim et al.,

2017; Opitz et al., 2002), we observed persistent frontal activity across all time
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(a) Functional N400 networks showing a significant effect of condition (p < 0.001).
(A) Graph representation of significant network edges between 68 ROIs for related >
unrelated processing. (B) Normalized connectivity matrix of significant network edges
between frontal, temporal, parietal, cingulate and occipital ROIs for related > unrelated
and processing

Figure 4.12.
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(b) Functional N400 networks showing a significant effect of condition (p < 0.001).
(A) Graph representation of significant network edges between 68 ROIs for unrelated
> related processing. (B) Normalized connectivity matrix of significant network edges
between frontal, temporal, parietal, cingulate and occipital ROIs for unrelated > related

processing

Figure 4.12.
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windows. This suggests an early frontal role in processing stimulus predic-
tions, consistent with findings by Xiao et al. (2018), where frontal activation
preceded sensory input processing. Methodological differences in determining
peak latencies versus analyzing time-segmented activation may explain these
discrepancies.

The role of parietal sources within the predictive coding framework remains
less clear. Some authors have linked parietal MMN activation to the P3a re-
sponse, associated with attentional reallocation (Molholm et al., 2005), but
this explanation does not fit our data, as parietal activation was observed in the
middle (190-240 ms) rather than the late (240-290 ms) MMN time window.
Another possibility is that parietal cortices contribute to multisensory integra-
tion during deviance processing (Fulham et al., 2014), aiding in the extrac-
tion of supplementary information from other sensory modalities. Given the
strong temporo-parietal connectivity in our dataset, our results support this
hypothesis. Additionally, the supramarginal gyrus is implicated in phonolog-
ical working memory (Deschamps et al., 2014), which could explain its en-
gagement in the linguistic oddball task. Thus, parietal involvement may reflect
either multisensory integration, phonological working memory, or both, facil-
itating bottom-up processing in the temporal cortex and predictive modeling
via temporo-parietal-frontal connections.

The hemispheric lateralization of phoneme processing was also examined.
Our results indicate a bilateral network, with left-lateralized activation in tem-
poral and parietal areas, but high interhemispheric connectivity in the right
temporo-parietal cortex. Frontal activation clusters were right-lateralized, yet
functional connectivity patterns confirmed engagement of both hemispheres.
This finding contrasts with the conventional view that MMN responses to lin-
guistic stimuli originate from a predominantly left-lateralized network (Pul-
vermiiller, 2001; Naatédnen et al., 1997; Sorokin et al., 2010). As suggested
by Criel et al. (2023), the inclusion of a non-native phoneme (deviant [go]
vs. standard [bo]) may have influenced lateralization patterns. The deviant
phoneme, lacking a well-established memory trace in Dutch speakers, might
have been processed similarly to a tonal frequency contrast, engaging a more
bilateral network.

In summary, our findings support a widespread, interconnected network for
speech sound discrimination, including temporal, frontal, and parietal regions.
The engagement of the supramarginal gyrus suggests a role for multisensory in-
tegration and phonological working memory, while bilateral connectivity chal-



4. ESI and FC of the MMN, P300 and N400 107

lenges traditional views on lateralization in phoneme processing. Further re-
search should explore whether parietal involvement is specific to linguistic stim-
uli or generalizes to non-speech contrasts.

4.4.2 P300

Broad bilateral activation was observed in the cingulate cortex, particularly the
posterior part and isthmus, the parietal lobule (with maximal activation in the
precuneus), and the frontal cortex (notably the left caudal middle frontal and
right precentral areas) during P300 generation in response to speech sounds.
These findings align with previous accounts of a broad fronto-parietal network,
with cingulate activation contributing to deviant detection (Bocquillon et al.,
2011; Linden, 2005). Similar brain structures are involved in both tonal con-
trast and phoneme processing, suggesting attentional and working memory-
related functions (Bledowski et al., 2004; Leech and Sharp, 2014; Sabeti et al.,
2016).

Justen and Herbert (2018) examined cortical activity related to pure-tone
deviant processing within the dorsal and ventral fronto-parietal attention
networks (DAN and VAN) (Corbetta and Shulman, 2002). The DAN, which
includes the superior parietal lobe/precuneus and inferior frontal junction,
governs top-down perceptual attention, while the VAN, involving the tem-
poroparietal junction, inferior frontal gyrus, and anterior cingulate cortex,
supports bottom-up attention reallocation. The present findings confirm DAN
involvement in deviant categorization, with activation in the caudal middle
frontal gyrus and precuneus, linked to selective attention and voluntary
attention switching (Le et al., 1998; Rossi et al., 2009). No major VAN source
clusters were found, but connectivity analysis identified VAN components
(e.g., right supramarginal gyrus, bilateral inferior parietal cortex, right insula,
and right superior temporal gyrus) as part of the speech sound detection
network. The VAN’s early activation, preceding the P300, might explain
its absence in eLORETA results (Justen and Herbert, 2018). Additionally,
increased connectivity in the superior temporal cortex and insula may reflect
modality-specific processing.

Beyond fronto-parieto-cingulate activation, occipital lobe involvement was
evident, particularly through its connectivity with parietal and cingulate cor-
tices, as well as the lingual gyrus. Occipital contributions to P300 generation
have been noted in prior studies (Justen and Herbert, 2018; Peng et al., 2012).
Given its role in visual processing, this connectivity might be inhibitory or re-
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late to attentional modulation, with effective connectivity from occipital alpha
desynchronization sources to posterior cingulate P300 sources supporting au-
ditory and visual target detection.

Studies on P300 activation timing have reported varying patterns, from early
fronto-cingulate engagement preceding parietal activation (Volpe et al., 2007)
to the reverse sequence (Li et al., 2019a; Tao et al., 2022). Our findings suggest
an early activation of DAN structures (precuneus and caudal middle frontal
gyrus), followed by later engagement of the posterior cingulate cortex, which
exhibited increasing current source density (CSD) in later time windows. This
supports the hypothesis that top-down attentional mechanisms modulate target
categorization (Bledowski et al., 2004; Donchin and Coles, 1988; Kok, 2001;
Li et al., 2016).

The functional role of the posterior cingulate in P300 remains complex. In-
creased activation in the late P300 phase may reflect attention reallocation fol-
lowing deviant detection or working memory updating (Sabeti et al., 2016).
Our hemispheric analysis revealed a largely bilateral network, mirroring MMN
results. Despite left hemispheric dominance in the posterior cingulate (possibly
due to phonemic stimuli), active speech categorization did not rely on a strongly
lateralized system. This aligns with the view that P300 reflects domain-general
cognitive functions rather than modality-specific processes (Linden et al., 1999;
Peng et al., 2012; Sabeti et al., 2016).

The oddball task design, requiring a button press for deviants, likely influ-
enced observed activation. Precentral cortex activation in the late P300 win-
dow suggests motor-related processing. Additionally, inhibition of a behavioral
response to standard stimuli may have contributed to observed frontal connec-
tivity patterns. Future studies should compare tasks requiring responses to both

standard and deviant stimuli to clarify methodological effects.

4.4.3 N400

Significant N400 source clusters were identified in the left frontal and left pos-
terior cingulate cortices, supporting a left-dominant network for semantic pro-
cessing (Binder et al., 2009) and N400 elicitation during semantic priming
(Geukes et al., 2013; Ghosh Hajra et al., 2018). Frontal and temporal areas
govern semantic priming at long SOAs (Kircher et al., 2009; O’Hare et al.,
2008), with the inferior frontal gyrus (IFG) emerging as a major N400 gen-
erator. The IFG consists of the pars opercularis (BA 44), pars triangularis (BA
45), and pars orbitalis (BA 47) (Petrides and Pandya, 2004), which are involved
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in semantic retrieval and selection (Moss et al., 2005; Noppeney et al., 2004).
As part of the semantic control network (Diveica et al., 2021; Jackson, 2021),
the IFG mediates top-down retrieval and selection, with reduced activation for
primed targets due to facilitated processing (Lau et al., 2008). Increased poste-
rior IFG activation for unrelated targets suggests heightened semantic control
demands. However, given the inherent localization errors in EEG source es-
timation (Asadzadeh et al., 2020), caution is warranted in interpreting these
results.

The absence of a priming-related N400 generator in the temporal cortex,
particularly in the posterior middle temporal gyrus (pMTG), contrasts with
previous findings (Ghosh Hajra et al., 2018; Holderbaum, 2019). However,
some fMRI studies on long SOA priming also identified only frontal generators
(Kircher et al., 2009). A more liberal analysis revealed bilateral pMTG activa-
tion in later time windows, suggesting that while temporal contributions exist,
semantic control processes may dominate long SOA priming effects. No acti-
vation was observed in the anterior temporal lobe, contradicting its proposed
role in taxonomic semantic processing (Lau et al., 2013; Mirman et al., 2017).

Another cluster was identified in the left posterior cingulate cortex (PCC),
with delayed activation relative to the IFG. The PCC is generally linked to the
default mode network (Buckner et al., 2008) and domain-general attention
(Corbetta and Shulman, 2002), with functional segregation into ventral and
dorsal subregions (Vogt et al., 2006). The ventral PCC interfaces semantic re-
trieval and episodic memory encoding (Binder et al., 2009), potentially explain-
ing its reduced activation for primed targets due to facilitated encoding. The
dorsal PCC, implicated in response control, has been suggested to categorize
stimuli (O’Hare et al., 2008). Increased PCC activation for unrelated targets
may reflect response selection demands, though the lack of an oddball task de-
sign challenges this interpretation. Alternatively, activation in the late 630-680
ms window may relate to extended semantic integration demands (Yacovone
et al., 2021) or working memory and cognitive control processes (Coulson and
Kutas, 2021; Lee and Federmeier, 2009).

Enhanced functional connectivity was observed among left intrahemispheric
and interhemispheric frontal areas for related targets, aligning with findings by
Kujala et al. (2012). Increased connectivity between distinct neuronal assem-
blies in primed conditions reduces local processing demands, supporting the
hypothesis that semantic priming relies on efficient information transfer rather
than localized activation (Matsumoto and Kakigi, 2014). The strongest connec-
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tivity was in the left IFG, consistent with its role in top-down retrieval (Moss
et al., 2005).

Additionally, enhanced connectivity was observed between the left pars or-
bitalis and left parieto-occipital areas (precuneus, cuneus). This aligns with
the hub-and-spoke model (Patterson and Lambon Ralph, 2016), where parietal
and occipital cortices encode modality-specific representations, particularly vi-
sual object features (Dilkina and Lambon Ralph, 2012). The auditory nature of
the priming task suggests this connectivity reflects facilitated retrieval of visual
representations rather than direct stimulus processing. Alternatively, fronto-
parietal synchronization may indicate engagement of domain-general control
processes (Bulut, 2023), as the IFG participates in both domain-specific lan-

guage processing and broader cognitive control functions (Belyk et al., 2017).

4.4.4 Limitations and directions for future research

This study provides insight into the cortical sources and functional networks
underlying speech sound perception and semantic priming. However, several

limitations must be acknowledged, along with directions for future research.

Methodological Considerations

The study design did not allow for a full investigation of stimulus modality ef-
fects. For instance, different subareas in the auditory cortex respond to specific
deviant types (Frodl-Bauch et al., 1997), but the present findings do not clar-
ify whether the activation of certain regions (e.g., the supramarginal gyrus) is
specific to linguistic stimuli. Additionally, the question of whether the P300 is
modality-specific (Crottaz-Herbette and Menon, 2006; Peng et al., 2012; Sabeti
et al., 2016) remains unresolved, highlighting the need for comparative studies
on tonal versus phonemic contrasts. Furthermore, our paradigms, while con-
trolled, do not fully replicate natural speech perception (Hickok and Poeppel,
2007), raising concerns about generalizability beyond the phoneme level.
Furthermore, we employed the Desikan-Killiany atlas (Desikan et al., 2006)
for cortical parcellation, balancing spatial resolution with EEG localization error
constraints (Pascual-Marqui et al., 2018). However, this atlas does not differ-
entiate between anterior and posterior portions of the lateral temporal lobe,
which is significant for semantic processing research. Although our analysis
did not reveal significant activation clusters in the temporal cortex, future stud-

ies should consider alternative atlases, such as the Destrieux (Destrieux et al.,
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2010) or Brainnetome (Fan et al., 2016) atlases, for finer parcellation of se-
mantic networks.

Influence of Age and Biological Factors

Our participant pool spanned a wide age range (20-80 years), allowing for
generalizable findings. However, aging-related neural changes may have
influenced our results. Structural (Fjell and Walhovd, 2010) and functional
(Cabeza, 2002; Davis et al., 2008) network alterations, such as the Posterior-
to-Anterior Shift in Aging (PASA; Davis et al. (2008)) and Hemispheric
Asymmetry Reduction in Older Adults (HAROLD; Cabeza (2002)), could
impact phoneme and semantic processing. Notably, Hoffman and Morcom
(2018) observed reduced activation in key semantic areas (e.g., the left
inferior prefrontal and posterior temporal cortex) in older adults. While our
scalp-level results do not suggest age-related N400 differences, the absence of
a temporal N400 source cluster could reflect reduced engagement of this area
in elderly participants. This warrants further investigation into age-related
semantic processing changes.

Previous studies (Criel et al., 2023; Geal-Dor et al., 2006; Tsolaki et al., 2015)
have also documented age-related shifts in P300 amplitude, latency, and source
localization. Tsolaki et al. (2015) found that aging alters P300 generators in
tonal contrast tasks but not MMN sources. While our study did not focus on
biological influences, future research could explore how age and sex modulate
the neural architecture of speech perception and semantic priming.

Functional Connectivity and Directionality

The functional connectivity approach used in this study provided valuable in-
sights but also had limitations. While our connectivity analysis considered all
68 ROIs, an alternative approach could involve targeted assessments of interac-
tions between key N400 generator sites, such as the inferior frontal gyrus and
the posterior temporal cortex, as well as their connections with the posterior
cingulate area. Exploring directional connectivity (e.g., using Granger Causal-
ity or transfer entropy) could clarify the dynamic interactions within semantic
networks.

Additionally, our methodology did not capture high-frequency synchroniza-
tion, as trial averaging eliminates high-frequency activity. Since synchroniza-
tion in specific frequency bands may play a role in MMN and P300 generation,
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future studies should apply alternative connectivity measures that retain high-
frequency information. Moreover, while maximal cross-correlation was used to
assess connectivity, this measure is not well-suited for networks with bidirec-
tional interactions (Bastos and Schoffelen, 2015), limiting its reliability in the
context of higher-order cognitive processing.

4.5 Conclusion

Our results support a broader conceptualization of speech sound discrimina-
tion and auditory deviance detection, emphasizing the contributions of pari-
etal, frontal, and cingulate cortices alongside traditional temporo-frontal path-
ways. The identification of temporo-parietal-frontal interactions in MMN gen-
eration suggests an expanded role for the parietal cortex in predictive coding
and phonological working memory. Similarly, P300-related activation patterns
reinforce the involvement of attentional networks in deviant categorization,
while N400 findings underscore the IFG’s role in semantic priming and retrieval.
The observed bilateral connectivity patterns challenge classical lateralization
models, suggesting a more distributed and adaptable neural framework for au-
ditory processing. Future research should investigate whether these findings
generalize across different linguistic contexts and non-speech auditory stimuli,
further refining our understanding of the neural architecture underlying speech

perception.
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Abstract

Traditional approaches to quantify components in Event-Related Potentials
(ERPs) are based on averaging EEG responses. This, however, ignores the
trial-to-trial variability in the component’s latency, leading to a smeared
version of the component’s shape and underestimations of its amplitude.
Therefore, different techniques to quantify ERP components in single trials
have been described in literature. In this study, two approaches based on
neural networks are proposed. We compared the neural networks’ perfor-
mance with other techniques using both simulated data and two experimental
datasets. The results on simulated data showed that both neural networks
outperformed other techniques for most signal-to-noise ratios. Furthermore,
the single-trial latency quantification methods resulted in better estimates of
the topography and shape of the ERP component compared to those obtained
using averaging-based methods. In the first experimental dataset, the highest
correlation values between the estimated latencies and the reaction times were
found using the neural networks, while in the second dataset, the networks
allowed us to better investigate the changes in amplitude of the component
with age. Here, we were able to show significant differences in amplitude
between the age groups, that were not found using the traditional averaging
approaches. Our results illustrate the applicability and the added value of
neural network-based approaches for the quantification of ERP components in
single trials. A limitation, however, is that simulated data is needed to train
the networks, which can be difficult when the ERP components to be found are
not known a-priori. Nevertheless, we have illustrated that single-trial latency
estimation methods offer more information on the variability of the timing of
the component and result in better estimates of their shape and topography.
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This chapter is based on the following article:

Depuydt, E., Criel, Y., De Letter, M., & van Mierlo, P (2023). Single-trial ERP
quantification using neural networks Brain Topography 36.6: 767-790. doi:
10.1007/s10548-023-00991-8



5. Single-trial ERP quantification using neural networks 117

5.1 Introduction

Event-related potentials (ERPs) are responses in the brain that directly result
from a specific sensory, cognitive, or motor event and consist of multiple peaks
and troughs that are referred to as the ERP components (Luck, 2014). These
responses can be measured using electroencephalography (EEG), a technique
in which electrical brain activity is recorded by electrodes placed on the scalp.
Because of the high temporal resolution of EEG, ERPs are extensively used in
neuroscience to study the timing of neural responses.

When recording ERPs during tasks, EEG signals not only capture the activ-
ity associated with the stimuli, but also the ongoing spontaneous brain activity
and noise. Unfortunately, the amplitude of the ERP components is often small
in comparison to the background EEG, which makes it challenging to extract
reliable and meaningful information. In order to characterize ERPs accurately,
signal processing techniques that improve the signal-to-noise ratio (SNR) are
required. One of the most commonly used approaches is to average the EEG
signals across multiple trials. This technique is based on the assumptions that
event-induced responses are consistent across different trials, and that sponta-
neous brain activity unrelated to the event is random and thus can be attenu-
ated by averaging. After averaging, the ERP component of interest is typically
quantified by measuring the amplitude and latency of this component in the
averaged ERP For this quantification, different measures can be used, such as
the amplitude and the latency of the peak voltage, or the mean amplitude and
fractional area latency (Luck, 2014; Hansen and Hillyard, 1980; Kiesel et al.,
2008). Also other analysis techniques, such as ERP topographic analyses of
variance and microstate analyses (Murray et al., 2008), have been proven to
be effective, but still rely on single trial averaging in most cases.

In practice, the assumption that the ERP component is identical across trials
often proves invalid, as it is known that both the latency and the amplitude
of different ERP components show significant variability across single trials
(Handy, 2005; Brazier, 1964). This is especially the case for later components,
such as the P300, N400 and P600 components, that express more complex
cognitive processing in the brain (Polich, 2012). The variability has multiple
implications on the averaging approach (D’Avanzo et al., 2011). First, in order
to obtain robust estimations of the latency and the amplitude of the ERP compo-

nent, a large number of trials needs to be included (Clayson et al., 2013). This
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however increases the recording time, which may be challenging for certain
patient groups.

Another limitation of the averaging technique is that it is unable to provide
detailed information on the mechanisms underlying differences in ERP com-
ponents between subject groups. For instance, in schizophrenic patients, P3
amplitudes are often smaller compared to healthy controls (Jeon and Polich,
2003). However, as schizophrenic patients also typically show a higher vari-
ability in reaction times (Ford et al., 1994; Roth et al., 2007), the amplitude
variation in the averaged ERP waveform could also in part be caused by the
variability in latency jitter (Ouyang et al., 2016). This variability in latency
jitter has also been observed in other populations, such as aging populations
(MacDonald et al., 2008) or in individuals suffering from brain damage (Fjell
et al., 2011). Also here, variations in the amplitude of an average ERP compo-
nent may be due to changes in the amplitudes of individual trials, variability
in latency, or a combination of both factors (Walhovd et al., 2008). Correcting
for this latency variability may help to better understand the neural mecha-
nisms underlying different tasks. For example, in a recent study Murray et al.
(2019) have shown the parietal retrieval success effect to be both variable and
thresholded in older adults by compensating for the trial-to-trial latency jitter.

Many different single-trial estimation algorithms have been proposed in liter-
ature. One of the currently most widely used techniques to quantify the single-
trial latency consists of an iterative approach based on template matching and
was proposed by Woody et al. (1967). The component’s latency is estimated
using the cross-correlation between a template and the single trial, after which
all single trials are realigned to the estimated latencies and averaged, result-
ing in a new template. The assumption behind this method is that while the
latency of the ERP component varies in different trials, its shape does not. This
iterative scheme results in a subject-specific estimation of the shape of the ERP
component, which has, however, proven to be sensitive to noise. Errors made
in the latency estimation can deform the shape of the template, enlarging the
error made in subsequent iterations (Moucks et al., 1988). Another impor-
tant drawback of this method is that it relies on the analysis of the EEG data
in a single channel. Given that in most recording set-ups multiple electrodes
are used and that different electrodes instantaneously capture the evoked re-
sponse, only a fraction of the available information is thus used. Therefore,
techniques that also consider the topographic information in the EEG data have
been extensively explored. For example, the cross-correlation curves calculated
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in Woody’s method can be obtained for multiple electrodes and averaged, after
which the peak lag is extracted from the averaged curve (Ouyang et al., 2017).
A similar template matching technique that has been proposed is dynamic time
warping (DTW) (Zoumpoulaki et al., 2015). This alignment algorithm matches
the different components of the template to the single trial through local com-
pressions and extensions of the signal, allowing to estimate the time-points in
the single trial that best resemble the ERP component. The algorithm can be
extended to include topographic information by using a multi-dimensional gen-
eralization of the algorithm as proposed in (Shokoohi-Yekta et al., 2017). Dif-
ferent spatiotemporal filters have also been proposed, including multi-channel
Wiener filters (Maki et al., 2015) and spatiotemporal LCMV beamformers (van
Vliet et al., 2016). Another group of techniques exploiting the spatiotemporal
information in the EEG data are decomposition techniques, such as principal
component analysis (PCA) (Dien, 2010) and independent component analysis
(ICA) (De Lucia et al., 2010). While PCA decomposes the signal in orthogonal
components that capture the maximum amount of variance in the data, ICA
decomposition is based on the idea that the recorded signal in the different
electrodes is a mixture of the signals generated by several independent sources
in the brain and that one or a combination of multiple of these sources corre-
sponds to the ERP component (Bugli and Lambert, 2007).

It is interesting to note that many of the methods for the quantification of
ERP components in single trials have also been used in research focusing on
Brain-Computer Interfaces (BCIs). Here, for each trial, a decision has to be
made whether a certain ERP component is present in the data or not. Most
recent advances in this field, however, have been made using deep learning
techniques, such as convolutional NNs (CNN) (Lawhern et al., 2018; Vateka,
2020), recurrent CNNs (Maddula et al., 2017) and convolutional Long Short-
Term Memory (convLSTM) NNs (Joshi et al., 2018). This research has shown
that neural networks are able to learn the pattern of the ERP component from
the data. Therefore, deep learning approaches might also be able to improve
the quantification of ERP components in single trials.

The aim of this work is to investigate the applicability of neural networks to
the quantification of ERP components in single trials. Therefore, we will adapt
two existing neural networks described in literature for BCIs, namely the
compact convolutional neural network, EEGNet, introduced by Lawhern et al.
(2018) and the convolutional LSTM neural network proposed by Joshi et al.
(2018). We will compare these neural networks to other single-trial latency
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estimation techniques described in literature, such as (iterative) template
matching using cross-correlation and DTW, an (iterative) spatiotemporal LCMV
beamformer and a decomposition based approach using ICA. Furthermore,
the different single-trial latency estimation techniques will be compared to the
traditional averaging approach to assess the added value of single-trial ERP
quantification by evaluating the topography and morphology of the obtained
ERP components, using both simulated and experimental data. While we
will focus on the P300 and N400 components in the remainder of the study,
we believe that the proposed methods could easily be adapted for other ERP

components.

5.2 Materials and Methods

5.2.1 Experimental data

In our study, we have used two different datasets. In the first dataset, an atten-
tive oddball task was used in which two types of phonemes were presented
to the subjects, while in the second dataset, a semantic sentence congruity
task was used. The collection of both datasets and the analysis of the data
in this study were carried out in accordance with the Declaration of Helsinki
and were approved by the Ethical Committee of the University Hospital Ghent
(BC-11771). All participants signed an informed consent.

Dataset 1: Oddball task eliciting a P300 component

Different methods to quantify the P300 component were compared and evalu-
ated on both simulated and experimental data. The normative dataset collected
by Aerts et al. (2013) for phonological input, consisting of 71 healthy subjects,
was used in this work both as the experimental dataset and to generate the
simulated trials. In the experiment, an attentive oddball paradigm for auditory
phoneme discrimination was used. The participants had to discriminate the
deviant phoneme [go] from the standard phoneme [bs]. In total, 150 stimuli
of 250 ms were presented to the participants with an interstimulus interval of
2000 ms and a deviant/standard ratio of 1/4. Participants were asked to press
a button each time a deviant stimulus was presented, allowing us to measure
the reaction times to the stimuli. The data was recorded using 20 electrodes:
Fpl, Fpz, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1 and
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Oz, at a sampling rate of 500 Hz. More details about the recording procedure
can be found in (Aerts et al., 2013).

Dataset 2: Semantic sentence congruity task eliciting an N400 component

For the second experimental dataset involving an N400 component, we used
the dataset recorded by Cocquyt et al. (2023) who used a semantic sentence
congruity task (SSCT). Briefly, 120 sentences, half of which were semantically
correct while the other half contained a semantic violation at the end, were
presented to 110 individuals. After the final word of each sentence, the Dutch
word ‘Druk’ (‘press’) appeared on the screen, asking participants to press the
green (correct sentences) or red (incorrect sentences) button. In this experi-
ment, the response was thus delayed to avoid influence of the button press to
the ERPs of experimental interest. More details about the complete experiment
can be found in Cocquyt et al. (2023).

Data preprocessing

The offline preprocessing of the data was done using the MNE-Python library
(Gramfort et al., 2013). Bad electrode channels were automatically detected
and removed. The data was then band-pass filtered between 0.3 Hz and 30 Hz
(half-amplitude cut-off, 12 dB/octave roll-off), as well as notch-filtered at 50
Hz. Independent component analysis was performed to remove both eye blinks
and horizontal eye movements. The data was re-referenced to an average com-
mon reference, after which the data was segmented. For the oddball paradigm,
the data was segmented into 1100 ms long epochs, starting from 100 ms before
the stimulus onset to 1000 ms post-onset, while for the SSCT dataset, the data
was segmented into epochs of 300 ms pre- and 1200 ms post-presentation of
the critical nouns. Baseline correction was performed using the pre-stimulus
window for both paradigms. Finally, automatic artefact rejection was applied,
rejecting epochs where the signal exceeded £100 pV, where the peak-to-peak
signal amplitude exceeded 150 nV or where the peak-to-peak signal amplitude
was less than 0.5 pV. Figure 5.1 depicts the averages across all trials and all
subjects of both conditions, and the difference between these conditions, are
shown for both datasets.
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Figure 5.1. The averaged waveforms across all trials and subjects for both
conditions, and the difference between these conditions for both experimental
datasets used in this work. For both datasets, also the topography at 0.400 s
after the stimulus onset is shown.

5.2.2 Methods for ERP component quantification

The methods used for the quantification of the ERP components can be split
up in two different groups. The first group of methods follows the traditional
approach where the individual trials for each subject are averaged before quan-
tifying the latency, the topography and the shape of the ERP component using
the average waveform. The second group are methods that first estimate the
latency of the ERP component in single trials. Based on these estimations, the
different trials are realigned for each subject before averaging, after which the
obtained waveform is used to quantify the topography and the shape of the ERP

component.

Averaged trial ERP component quantification

Two different techniques were used to quantify the ERP component’s latency
after averaging, namely the peak latency and the 50%-area latency.

M1: Peak latency: The most commonly used technique for measuring the
latency of ERP components is by defining a time window and finding the
latency of the maximal value in this time window at a specific electrode. For
the P300 component, we used the time window between 250 ms and 650 ms
post-stimulus at the Pz electrode, while for the N400 component, we focussed
on the Cz electrode using the 200 ms-600 ms time window. This measurement
window was chosen based on visual inspection of the data averaged across
patients (Luck, 2014), while the Pz and Cz electrodes were chosen as the P300
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and N400 components typically reach maximum values over the parietal and
central electrodes, respectively (Polich, 2012).

M2: 50%-Area latency: An alternative method for calculating the compo-
nent latency on the averaged waveform is by calculating the area under the ERP
waveform over a specified time-window and then finding the time point where
a fraction of this area is reached (Luck, 2014). In this work, the 50%-area was
used. As for the calculation of the peak latency, a time window from 250 ms to
650 ms post-stimulus was used and the ERP waveform was considered at the
Pz and Cz electrodes for the P300 and N400 components, respectively.

Single trial ERP component quantification based on template matching

Seven different approaches were selected for the single-trial latency estima-
tion: non-iterative and iterative template matching using cross-correlation,
non-iterative and iterative template matching using DTW, a non-iterative and
an iterative spatiotemporal LCMV beamformer and template matching after

decomposition using ICA.

M3: Template matching using the cross-correlation curve: In this
method, the resemblance between the template and the single trials was
measured by calculating the correlation between both at each time lag. This
corresponds to calculating the cross-correlation curve between the template
and the signal. To take the spatial information present in the data into
account, the approach proposed by Ouyang et al. (2017) was used. Here,
cross-correlation curves were calculated for all electrodes, after which they
were averaged. The optimal latency was then determined as the latency
corresponding to the peak in this averaged cross-correlation curve.

M4: Template matching using subsequence Dynamic Time Warping
(DTW): A second template matching approach that was used is based on
DTW. Different variants of the DTW algorithm exist that differ in the posed
constraints. In the original version, one of these constraints is the boundary
condition. This states that in the alignment, the first and the last indices
of the first sequence must be matched with the first and last indices of the
second time series (Miiller, 2007). However, the goal in this work is to find
a subsequence, i.e. a template, within a longer sequence, namely the EEG

signal. Therefore, the subsequence DTW variant, in which this constraint is
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dropped, was used as implemented in the tslearn library (Tavenard et al.,
2020) in Python. The optimal alignment between the template and the single
trial is expressed as a mapping between the time indices of the two signals.
The latency of the ERP component is then estimated as the time-point to which
the peak latency of the template is matched in the optimal alignment path.

M5: Spatiotemporal LCMV Beamformer: The spatiotemporal linearly
constrained minimum variance (LCMV) beamformer is a flexible spatiotem-
poral filter developed by van Vliet et al. (2016) to estimate the amplitude
of ERP components. We have extended their method to allow estimation of
the latency of the ERP component by shifting the template in time. For each
time-shift, the amplitude of the ERP component is estimated after which the
time-shift with the highest amplitude is selected as the latency of the ERP
component in the single trial.

M6, M7 and MS8: Iterative approaches: Each of the single-trial latency
estimation algorithms M3, M4 and M5 can be extended by iteratively applying
the methods. This approach was first described for the cross-correlation by
Woody in 1967 (Woody, 1967) and allows the estimation of a subject-specific
template. In each iteration, the different trials were realigned based on the
estimated latencies to obtain a subject-specific estimate of the ERP compo-
nent. However, incorrectly estimated latencies can have a large influence
and distort the shape of the obtained component estimate. Therefore, a
weighted average of the old template (80%) and the subject-specific com-
ponent estimate (20%) was used as the new template in the following iteration.

M9: Template matching after Independent Component Analysis: Multi-
ple ICA decomposition approaches can be used for the latency quantification
of the ERP component in single trials. The first choice that can be made is
the specific ICA algorithm that is used for the decomposition. Algorithms
that are typically used for EEG data include FastICA (Hyvarinen, 1999),
extended Infomax (Lee et al., 1999), picard (Ablin et al., 2018) and adaptive
mixture ICA (AMICA) (Palmer et al., 2012; Delorme et al., 2012). Secondly,
we can consider the ERP component either a single peak within the ICA
decomposition, or as a combination of several components, each with an
independent topography, which are mixed at the scalp level due to volume
conduction (Onton et al., 2006). In the first case, we can determine the
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latency of the ERP component by determining the ICA component which has
the highest cross-correlation with the template. The latency is then estimated
as the time lag for which this correlation value was obtained. In the second
case, several components from the ICA decomposition were combined before
calculating the cross-correlation with the template to determine the latency of
the ERP component. To determine which components to take into account, i.e.
which subspace of the ICA components form the ERP component, two different
criteria were used: the correlation between the IC topography after backpro-
jection to the scalp and the template should be positive, and the p-value should
be less than 0.01 (Ouyang et al., 2017). The different ICA algorithms and the
two latency quantification approaches were evaluated in this work using the
simulated data. These results can be found in appendix. Based on these re-

sults, we decided to focus in this article on the extended Infomax ICA algorithm.

Single trial ERP component quantification using neural networks

Finally, two deep learning approaches, namely the EEGNet network and
a convLSTM neural network, were used for the quantification of the ERP
components in single trials.

M10: EEGNet, a convolutional neural network: EEGnet is a compact con-
volutional neural network that was developed by Lawhern et al. (2018) for
EEG-based BCIs. The network combines depthwise and separable convolu-
tions, allowing the model to combine spatial and temporal information present
in the data. It consists of two convolutional blocks, followed by a Softmax clas-
sification layer. In the first convolutional block, two convolutional steps are
performed in sequence. First, a number of 2D convolutional filters are fitted to
the data to capture the frequency information present in the data. A depthwise
convolution is then used to learn a spatial filter. This combination of convolu-
tional layers allows the model to learn frequency-specific spatial filters for each
feature map. In the next layer, batch normalization is used, before applying the
exponential linear unit non-linearity and reducing the dimensionality using Av-
erage Pooling. Finally, to reduce overfitting of the model, the dropout technique
is applied with a probability of 0.5. The second convolutional block consists of a
separable convolution, both decoupling the relationship between feature maps
and reducing the number of parameters. This convolutional layer is again fol-

lowed by batch normalization, ELU activation, average pooling and dropout, af-
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ter which the features are passed to the classification block (Alvarado-Gonzalez
et al., 2021).

In this work, the two convolutional blocks will be kept as in the original
model, but the classification block is adapted to allow the estimation of
the P300 latency by flattening the data and using a dense layer with linear
activation instead of the Softmax classification layer. To reduce the number of
parameters in the model, the EEG data is downsampled to 250 Hz. The model
was fitted using the Adam optimizer, with the default parameters available in
the Keras API, to minimize the mean squared error loss function. An overview
of the final architecture of the model and the chosen parameters is shown in
table 5.1.

M11: Convolutional LSTM neural network (ConvLSTM): ConvLSTM is a
specific type of recurrent neural network that is used for spatiotemporal pre-
dictions and was first introduced in precipitation nowcasting (Shi et al., 2015).
The model can learn both spatial and temporal features at the same time. Fur-
thermore, as convolution operations share parameters, the number of param-
eters in a convLSTM is greatly reduced compared to the traditional LSTM ap-
proach. As mentioned in the introduction, the model was recently used by Joshi
et al. (2018) in the area of BCIs to determine the presence of the P300 com-
ponent in single trials. In this work, the proposed architecture was adapted to
allow estimation of the latency of the ERP components.

As convLSTM networks perform better on shorter sequences, the trials were
again downsampled to 250 Hz. To preserve the spatial information present in
the data, the electrodes were mapped to a 5x5 2D map as shown in figure 5.2.
This was done for each time sample, converting each trial to a (number of time
samples x 5 x 5) 3D matrix that can be used as input for the neural network. The
first layer of the network was a convLSTM layer in which the sequence of 2D
input maps was passed through the recurrent convolutions of 6 filters with size
2x2. Here, the tanh-function was used as the activation function. In order to
reduce overfitting, a dropout of 0.2 was used together with a recurrent dropout
of 0.1. In the second layer, the data was batch normalized with the batch size
set to 128 samples. The convLSTM and the batch normalization layers were
repeated in the third and fourth layers of this network. For each time index,
the maximum value obtained across the different filters is selected, after which
the data is flattened into a 1D array of size (number of time samples). The
final layer of the model was a dense layer that outputs the estimate of the P300



Table 5.1. Full details of the EEGNet architecture. The network starts in the first block with a temporal convolution (Conv2D) to learn
the frequency filters, after which the depthwise convolutions (DepthwiseConv2D) are used to learn frequency-specific spatial filters.
The second block initially learns a temporal summary for each feature map individually (SeperableConv2D), and finally learns to mix
the feature maps together. More details about the network architecture can be found in the work of Lawhern et al. (2018).

Block Layer No. filters  Size No. params Output Activation function Options
1 Input 1x20x101
Conv2D 8 1x64 512 (8,20,101) Linear padding = same, use_bias = False
BatchNorm 32 (8, 20, 101)
DepthwiseConv2D 20x1 320 (16,1, 101) Linear use_bias = False, number of depth wise convolution output channels = 2,
max norm constraint function = 1
BatchNorm 64 (16, 1, 101)
Activation (16,1, 101) ELU
AveragePool2D 1x4 (16, 1, 25)
Dropout (16, 1, 25) p=0.5
2 SeperableConv2D 16 1x16 512 (16, 1, 25) Linear padding = same, use_bias = False
BatchNorm 64 (16, 1, 25)
Activation (16, 1, 25) ELU
AveragePool2D 1x8 (16,1, 3)
Dropout (16,1, 3) p=0.5
Flatten (48)
Latency Dense 1 49 (€D) Linear

estimation
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latency. The model was again fitted using the Adam optimizer, with the default
parameters available in the Keras API, to minimize the mean squared error
loss function. A summary of the network architecture is given in table 5.2 and

shown in figure 5.2.
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Figure 5.2. Overall visualization of the ConvLSTM network. Full details of the
architecture can be found in table 5.2. The network consists of two consecu-
tive ConvLSTM layers followed by a pooling layer and a linear dense layer to
estimate the latency of the ERP component. In this type of recurrent neural
network, the model can hold and use information obtained from previous time
points it has seen to make decisions.

5.2.3 Experimental pipeline

Data simulation

In this work, simulated data is needed 1) to train the neural networks and 2)
to quantify the performance of the different methods. The general approach
that is used here is to add an ERP waveform at a known latency to background
EEG data. A visual overview of the process described here is shown in figure



Table 5.2. Full details of the ConvLSTM architecture. The network consists of two consecutive convolutional LSTM layers followed by

a pooling layer and a linear dense layer to estimate the latency of the ERP component.

Layer No. filters  Size No. params Output Activation function Options

Input 101x1x5x5

ConvLSTM2D 6 2x2 696 (101,6,4,4) hyperbolic tangent  dropout = 0.2, recurrent_dropout = 0.1
BatchNorm 16 (101,6,4,4)

ConvLSTM2D 6 2x2 1176 (101, 6, 3, 3) hyperbolic tangent  dropout = 0.2, recurrent_dropout = 0.1
BatchNorm 12 (101, 6, 3, 3)

MaxPooling3D 6x3x3 (101, 1,1, 1)

Flatten (101)

Dense 1 102 (@D)] Linear
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5.3. To create the simulated ERP waveform, we start by calculating the average
response over trials and participants for both conditions separately, i.e. for the
standard and deviant stimuli in the oddball paradigm (P300 dataset) and the
correct and incorrect stimuli in the SSCT (N400 dataset). We then calculate
the difference between both conditions to obtain the topography of the ERP
waveform that will be used. The shape of the ERP component is simulated as a
half-cycle sinusoidal wave. As the goal is to generate a dataset that resembles
the experimental data, we decided to use the epochs recorded while presenting
the standard phoneme (P300 dataset) and the correct sentences (N400 dataset)
as background EEG data.

Simulated epochs were then generated using the EEG data of all participants
in the experimental dataset. For each simulated subject, the EEG data of only
one participant was used as background EEG data. To introduce inter-subject
variability, the frequency of the sinusoidal waves used for the ERP component
was uniformly drawn to obtain a signal length between 100 ms and 300 ms.
Furthermore, different uniform latency distributions were simulated for each
participant by sampling a mean latency between 350 ms and 550 ms and a
standard deviation between 40 ms and 80 ms. For the mean latency, the shape
of the grand-average of the experimental data within this time window was
used as the sampling distribution, while a uniform distribution was used for
the standard deviation. After randomly selecting half of the standard/correct
trials, the ERP component was added to the data using latencies sampled from
the previously created distribution. In order to keep the latency of the ERP
component within the expected range for healthy controls, trials for which the
generated latency was outside the time window of 300 ms to 600 ms were
excluded from the dataset (Aerts et al., 2015). Finally, to increase the amount

of generated data, this process was repeated 30 times.

Pipeline for the performance evaluation on simulated data

We evaluated the performance of each of the different ERP quantification meth-
ods on a simulated dataset using different SNRs. For the simulated data, the
P300 dataset was used as the basis. The proposed approach for data simulation
easily allows generating data with different SNRs by scaling the amplitude of
the ERP component that is added to the data. Here, the SNR of the original
dataset was determined as the ratio of the power at the peak of the grand-
average deviant waveform and the power of the standard trials. Five different
SNRs were simulated, namely -6dB, -3dB, +0dB, +3dB and +6dB. For each
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Figure 5.3. Visual overview of the approach used to generate simulated data.
The images used in this overview figure are generated using the P300 dataset,
however, the same approach can be used to simulate data based on other
datasets and other ERP components. The general approach that is used here is
to add an ERP waveform at a known latency to background EEG data. (A) To
do this, we start by pre-processing the original data and extracting the epochs
for both conditions. (B) We then generate the topography of the ERP wave-
form by calculating the average response over trials and participants for both
conditions separately, after which the difference between both conditions is cal-
culated. The topography at the time of the peak in this difference waveform is
then used for the ERP waveform. (C) Finally, the simulated trials are generated
by first scaling the amplitude of the ERP waveform according to the SNR and
the width. The ERP waveform is then shifted to the correct latency, after which
it is added to the data of a standard trial, serving as background EEG data, to
construct the deviant trials.

SNR, the topography of the added ERP component was scaled so that the ra-
tio of the power at the peak of a waveform obtained after averaging the same
amount of trials as in the original dataset, and the power of the standard trials
was respectively -6dB smaller, -3dB smaller, equal, +3dB larger, or +6dB larger
compared to the SNR of the original dataset.

As each of the proposed latency estimation techniques needs a form of train-
ing or learning from the data (i.e. defining the template or learning the model
parameters), the performance of the different ERP quantification techniques
was evaluated using a seven-fold cross-validation approach. The simulated
data was split into seven different groups, so that all data generated using the

original data from a particular subject was included within the same split. This
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was done to guarantee independence between the train and test sets. For each
fold, the (initial) template used by the template matching methods was cre-
ated using only the data in the training set. This was done by calculating the
difference wave between the grand averages of the deviant and standard trials
between 300 ms and 600 ms, after which a 5 Hz low-pass filtered was applied.
The obtained template was then used to estimate the latency of the ERP com-
ponent in the trials of the test set. Similarly, both the EEGNet network and the
convLSTM network were trained using the data in the training set after which
the model was used to estimate the ERP latencies in the test set.

Different evaluation criteria were used to evaluate the performance of the
methods on the simulated trials. First, to assess the latency estimation in the
single trials, the mean absolute error between the true and the estimated laten-
cies were calculated for the different SNRs. This was done by calculating the
absolute error for each trial separately and then averaging the errors over all
trials and all subjects. The different methods were also evaluated at the level of
individual subjects. After estimating the latencies in the single trials, the mean
latency was calculated per subject. This approach allows us to compare the
latencies obtained using the averaging-based methods with the single-trial es-
timation methods. To do this, the mean absolute error between the true mean
latency and the estimated mean latency was calculated for each subject and
each SNR. Also the topography and the shape of the ERP component obtained
with the different methods were evaluated. First the correct topography and
shape of the ERP component were calculated by realigning all trials of a specific
subject according to the correct latencies. For the averaging-based methods,
no realignment was done, and the average waveform was used to quantify the
topography and shape of the ERP component. For the single-trial estimation
methods, on the other hand, the different trials were realigned according to
the estimated latencies before averaging and quantifying the topography and
shape of the component. The topographies obtained with the different meth-
ods were then compared with the true topography using the mean absolute
error. The obtained P300 shapes were compared over the specified time win-
dow by calculating the mean absolute error between the true realignment and
the realignment based on the estimated latencies. As the SNR of the dataset
influences the obtained metrics, the measures were normalized by the absolute
amplitude and the area of the true P300 component, respectively, resulting in
the relative mean absolute error (RMAE). This approach allows comparing the
methods over the different datasets in the simulated data. A visual overview of
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this pipeline is shown in figure 5.4. The process was repeated for each of the
different train-test splits, allowing us to also evaluate if the results are biased
by the specific selection of samples within each fold.

Finally, the (realigned) average waveforms of all subjects were realigned to
the estimated mean latencies before averaging to obtain the realigned grand-
average waveform for each method. Then, the relative absolute error between
the true and the estimated grand-average for each of the different methods was

calculated to evaluate the obtained shape of the P300 component.

Pipeline for the performance evaluation on experimental data

The different proposed methods were also applied to both experimental
datasets. In these datasets, the true latency of the P300 component in the
individual trials is unknown, making it impossible to use this data to train
the parameters in the convLSTM network and to use error-based metrics
to evaluate the performance of the different methods. A visual overview of
the pipeline used in this scenario is shown in figure 5.5. For the template
matching-based methods, the (original) template is created by calculating
the difference between averages of the deviant and standard trials across all
subjects, after which a 5 Hz low-pass filtered is applied to smooth the template.
For the neural network based approaches, simulated data is created to train
the parameters in the networks using the approach described before. The
latencies of the ERP component in the experimental trials are then calculated
using the trained networks.

Dataset 1: Oddball paradigm eliciting a P300 component: To evaluate
the performance of the methods on the P300 dataset, the approach proposed
by Ouyang et al. (2017) was used. Here, the correlation between the estimated
latency and the reaction time of the subject was calculated and used to evaluate
each of the different methods. This approach is based on the knowledge that,
under particular conditions, the neurocognitive processing stream that under-
lies the stimulus evaluation affects the response time of subjects (Da Pelo et al.,
2018). Furthermore, to evaluate the ability of the different methods to estimate
the shape of the P300 component on the experimental dataset, all trials were
realigned according to the estimated latencies and averaged across all subject,
after which the obtained waveforms were visually compared.

Since the first description of the P300 component in 1965 (Sutton et al.,
1965), an abundant amount of research has been done to study the component.
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Figure 5.4. Visual overview of the approach used to evaluate the performance
of the different single-trial latency estimation methods using simulated data. In
the first step, the simulated data is split into seven different folds. To guarantee
the independence between the train and test sets, this was done in a way so
that all data generated using the original data from a particular subject was
included within the same split. For each fold, the (initial) template are created
and the neural networks are trained using only the data in the training set.
In the next step, these templates and networks are then used to estimate the
latencies of the individual trials in the test set. Finally, the performance of each
of the different latency estimation techniques is evaluated. By repeating this
process for each of the different folds, we can assess the variance across folds.

An important finding is that the P300 latency is sensitive to neural changes
in both development and aging. Different studies have shown that while the
P300 latency decreases with age during childhood and adolescence (Polich
et al., 1990; Sangal et al., 1998; van Dinteren et al., 2014), it starts increasing
again in early adulthood (Rossini et al., 2007, Walhovd et al., 2008; van
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Figure 5.5. Visual overview of the approach used to estimate the latencies
of the individual trials on experimental data. Starting from the pre-processed
data, the templates used by the template matching methods are created by cal-
culating the average response over trials and participants for both conditions
separately, after which the difference between both conditions is calculated.
This difference waveform is then filtered to remove noise and cropped to the
time window of interest. For the neural networks, first simulated trials are
created following the approach described before, after which the networks are
trained using this simulated dataset with known latencies. The obtained tem-
plates and trained networks are then used to estimate the latencies of the de-
viant trials, after which the performance of the different methods is evaluated
using different methods depending on the dataset that is used.
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Dinteren et al., 2014; Brown et al., 1983; Hirayasu et al., 2000). We will use
the mean latencies estimated on the experimental data by each of the different
methods to model the effect of age on the latency of the P300 component and
to see which method results in the best fit of the model. For each method, a
linear regression line is fitted to the data and the slope of the curve is observed
to evaluate whether an increase of latency with age is found. The goodness of
fit of the regression lines is then evaluated using the root mean squared error
(RMSE).

Dataset 2: SSCT paradigm eliciting an N400 component: As the button
press response was delayed in the SSCT task, it is not possible in this case to use
the reaction times as a measure to evaluate the single trial latency estimation
methods. Instead, in this dataset we will investigate the effect of age on the
N400 component using the different single trial latency estimation methods.

In the paper of Cocquyt et al. (2023), the authors found that the amplitude
of the N400 effect, i.e. the difference between the incorrect and correct evoked
responses between 0.3 s and 0.5 s after stimulus onset, was significant smaller
in the older subjects (ages 60-79) compared to the young subjects (ages 20-
39). Furthermore, also the latency of the N400 effect was significantly delayed
in elderly compared to both the young and the middle-aged subjects (ages 40-
59). In this study, we will try to replicate these findings and investigate if the
changes in amplitude across age are caused by changes in the amplitudes of
individual trials, by variability in latency, or by a combination of both factors.
To do this, we will estimate the latency of the N400 effect using both the av-
eraging based methods and the single-trial latency estimation methods. As in
this case the N400 effect is investigated, we will subtract the averaged response
to the correct trials from the incorrect trials for each subject before estimating
the latency of the N400 effect. The amplitude of the N400 effect will be calcu-
lated as the mean amplitude of the difference in evoked responses between the
incorrect and correct conditions within the 0.3 s-0.5 s time window at the Cz
electrode for the averaging-based method. For the single-trial latency estima-
tion techniques, the averaged response to the correct trials will be subtracted
from the incorrect trials before realignment. The amplitude of the N400 ef-
fect is then again calculated as the mean amplitude of this realigned waveform
within the 0.3 s-0.5 s time window at the Cz electrode. For each method, the
effect of aging on both the latency and the amplitude of the N400 effect will
be investigated using a univariate analysis of variance (ANOVA) approach with
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age group as independent variable. Significant main effects will be investigated
by post hoc multiple comparisons with a Bonferroni correction.

5.3 Results

5.3.1 Simulated data

Performance at single trial level

In figure 5.6, the mean absolute error between the true and the estimated la-
tencies are shown for each single-trial latency estimation method in function of
the SNR level of the trials averaged of the different folds. Also the standard de-
viation of the mean absolute errors over the different folds is shown. The figure
indicates that for the lower SNRs, both neural network-based approaches and
single component ICA outperform all other methods. For higher SNRs, similar
performance is also achieved by the cross-correlation based techniques. As ex-
pected, in general the estimated latencies improved for higher SNRs. However,
only limited improvement is obtained using single component ICA and even
a small decrease in performance is found using DTW-based template match-
ing. For the single component ICA approach, this effect might be caused by
the nature of the simulated data, as these simulations were created by adding
an independent P300 component with varying amplitude to background noise.
The results suggest that the decomposition algorithm might be able to extract
this P300 component from the data even for very low SNRs. For the multiple
component ICA approach, the performance does improve with increasing SNR,
but large differences in performance are found compared to the single com-
ponent ICA approach. It is probable that by selecting multiple components to
create the P300 ICA subspace, also non-P300 related activity and noise are in-
cluded, disrupting the time-series that are subsequently used to correlate with
the template.

The DTW-based approach leads to large errors in the latency estimation for
all SNRs, with the method performing only slightly better or even worse than
randomly estimating the single trial latency. This is probably caused by the
difference in amplitude of the template and the P300 component in single tri-
als. The template is created by calculating the difference wave between the
grand-averages of the deviant and standard trials within a time window and
therefore represents a smeared version of the P300 component. As the DTW
algorithm calculates the Euclidean distance between the template and the time
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series to obtain the optimal warping path, this difference in amplitude strongly
influences the latency estimates obtained.

Finally, comparing the template-matching techniques with their iterative
variants, the results indicate that the performance of the DTW technique is
improved by iteratively updating the template, especially for larger SNRs.
Likely, the amplitude difference between the template and the single-trial
P300 component becomes smaller, as fewer trials are taken into account when
updating the template per subject, improving the performance of the DTW
algorithm in the estimation of the P300 latency. The performance of the
beamformer, on the other hand, decreases when the template is updated for
each subject, while the performance of the correlation method and that of its

iterative variant are similar.
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Figure 5.6. Comparison of the different methods regarding the mean absolute
error between the estimated latencies and the true latencies in single trials for
each each SNR in the simulated data.

Performance at subject level

The different latency estimation approaches were also compared at the level
of individual subjects. In figures 5.7A, B and C respectively, the mean abso-
lute error in mean latency, the relative absolute error in the topography and
the relative absolute error between the shapes of the estimated and correct
realignments are shown for the different SNR levels of the trials. Looking at
the error in the mean latency, the figure shows that the EEGNet network, the
convLSTM network and the single component ICA-based approach all outper-
form both averaging-based methods. The results also indicate that using the

peak method, larger errors in the estimated mean latency are made and more
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variability across the different cross-validation folds are found compared to all
other methods, especially for small SNRs.

Figures 5.7B and C indicate that both the topography and the shape of the
estimated P300 component after realignment improve with increasing SNR for
all methods except the DTW-based approach. As for the latency estimations,
best results regarding the estimation of topography and shape of the component
are obtained using the neural network approaches and the single component
ICA-based method. Furthermore, figure 5.7C indicates that the shape of the
P300 component is better approximated using these methods compared to the
averaging approach, even for low SNRs. Estimating the latency of the P300
component at the level of single trials thus not only offers more information on
the variability of the timing of the P300 component within a subject, but also

results in a better estimate of the shape of the component.
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Figure 5.7. Comparision of the P300 quantification results of the different
methods on the simulated datasets on subject level. (A) Mean absolute error
between the estimated mean latencies and the true mean latencies for each
method and each dataset. (B) Relative absolute error in topography between
the estimated topography and the true topography for each method and each
dataset. (C) Relative absolute error in shape between the estimated shape of the
P300 component and the true shape of the P300 component for each method
and each dataset.

Finally, in figure 5.8 the realignment of the single trials averaged across all
subjects with SNR +0dB is shown for each of the different methods, along with
the topography at the time of the peak. Also the non-realigned grand-average
and a random realignment are plotted as a reference. The realigned grand-
averages are compared with the correct realignment to check how well the
shape of the P300 component is estimated by each of the different methods
by calculating the mean relative absolute error (MRAE). The figures show that
the realignment based on the convLSTM network gives the best results. While
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the topographies at the peak are very similar across all methods, apart from
a scaling factor due to smearing, the shape of the obtained P300 component
clearly varies. In the iterative cross-correlation, the (iterative) beamformer and
the multiple component ICA based approaches, artefacts are being introduced
into the shape of the component due to errors in latency estimations. The
figures for the other SNRs are added in appendix B.
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Figure 5.8. Realignment of the single trials averaged across all subjects with
SNR +0dB for each of the different methods. Grey lines represent the different
channels, with Pz being marked in black. Also the topography of the realign-
ment at 0.420 s after the stimulus onset is shown. The realigned waveforms
are compared to the correct realignment to evaluate how well the shape of the
simulated P300 component is estimated. For each method, the mean relative
absolute error between the true and the estimated realigned waveforms across
all subjects is reported.
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5.3.2 Experimental data

Dataset 1: Oddball task eliciting a P300 component

The performance of each of the different methods on the experimental data
was first evaluated by looking at the correlation of single-trial latencies with the
corresponding reaction times (table 5.3). The highest correlations were found
for the neural network approaches, followed by the iterative cross-correlation
method and the beamformer technique. Comparing the template matching
techniques with their iterative variants, we see that iteratively updating the
template improves the correlation value for the cross-correlation method and
DTW, which is in line with the results obtained using the simulated data. While
the performance of the neural networks and that of the single component ICA-
based approach was similar on the simulated data, the correlation between
the latencies estimated by single component ICA and the reaction times is very
low in the experimental dataset. Furthermore, while the performance of single
component ICA was better than the multiple component approach on the sim-
ulated data, the opposite is found on the experimental data. This confirms our
theory of the excellent performance of single component ICA on the simulated
dataset being due to the nature of the simulations.

Next, figure 5.9 shows the realigned averaged waveforms across all subjects,
using the estimates of the different methods. By visually inspecting the figures,
we see that most single-trial methods result in a more narrow P300 compo-
nent with similar topography to that obtained without realignment of the tri-
als. While the realigned waveforms using the peak and area method are slightly
more narrow than the waveform without realignment, the effect is clearer for
the single-trial methods. This indicates that there is indeed within-subject vari-
ability of the P300 latency. The figures also show that the realignments using
the DTW- and single component ICA-based approaches result in a more smeared
out version of the P300 component, resembling the waveform obtained using
random latencies in the simulated dataset. This suggests that the latencies ob-
tained using these methods might be incorrect. On the other hand, realigning
the epochs using the iterative cross-correlation, the iterative beamformer or
the peak methods results in peaks in the realignment, which are similar to the
shapes obtained with these methods on the simulated data, indicating that this
might be an artefact induced due to errors in the latency estimation.

Finally, the relationship between the mean estimated P300 latency and age of
the subjects for each of the different methods is shown in figure 5.10. For each
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Table 5.3. The correlation between the reaction time and the latencies esti-
mated by the different methods for each single trial in the P300 experimental
dataset

Method Correlation with RT
Cross-correlation 0.20
DTW 0.08
Beamformer 0.25
Cross-correlation (iterative) 0.26
DTW (iterative) 0.14
Beamformer (iterative) 0.23
ICA (single component) 0.10
ICA (multiple components) 0.17
EEGNet 0.29
convLSTM 0.30

method, a linear regression line was fitted to the data. The goodness-of-fit of
the regression is evaluated using the RMSE, and the slope of the curve is used
to evaluate the relationship between the mean estimated P300 latency and the
age of the subject. As expected based on literature (van Dinteren et al., 2014),
most methods show an increase in estimated P300 latency with age. However,
this is not the case for single component ICA and iterative DTW, where even a
small decrease is found. The effect is also very limited for the multiple com-
ponent ICA approach. These results further illustrate that these approaches to
estimate the latency in single trials may lead to incorrect results. The strongest
increases in latency with age are found for the averaging-based methods and
for the cross-correlation techniques. Comparing the results of the peak method
and the 50%-area latency estimation method, a better fit is found for the 50%-
area method, as the RMSE is smaller, illustrating that the 50%-area latency
estimation technique should be preferred over the peak method when using
averaging-based approaches. While these methods result in the largest slope,
the best fits to the regression line are found using the neural networks and the
ICA-based approaches.

Dataset 2: Semantic sentence congruity task eliciting an N400 component

Also for the second experimental dataset, the realigned averaged waveforms
across all subjects were visually compared, using the estimates of the differ-
ent methods. This result is shown in figure 5.11. We again notice more narrow
ERP components when realigning according to the single trial latency estimates
for the neural network based approaches, as well as for the (iterative) cross-



5. Single-trial ERP quantification using neural networks 143

No Realignment

Cross-correlation DTW Beamformer

ICA (single component) ICA (multiple components) EEGNet

convLSTM Peak 50%-Area

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
time time time

Figure 5.9. Realignment of the single trials averaged across all subjects in the
P300 experimental dataset, obtained with the different methods. Grey lines
represent the different channels, with Pz being marked in black. Also the to-
pography of the realignment at 0.420 s after the stimulus onset is shown.

correlation and (iterative) DTW based template matching methods. The fig-
ure also indicates that realignments using the ICA based techniques result in
smeared out versions of the N400 effect, again resembling the waveform ob-
tained using random latencies in the simulated dataset.

Furthermore, we investigated the effect of using single-trial latency estima-
tion techniques compared to the classical averaging approach on the statistical
analysis of the effect of age on the latency and the amplitude of the N400 effect.
To do this, we estimated for each subject the mean and the standard deviation
of the estimated latency, and compared the obtained results over three differ-
ent age categories: young (ages 20-39), middle-aged (ages 40-59) and elderly
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Figure 5.10. Scatterplot and regression lines of the relationship between the
mean estimated latency of the P300 component and the age of the subject for
each of the different methods.

(60-79). The results are shown in table 5.4. The original paper by Cocquyt et
al. 2023 reported a significant effect of age group on the latency of the N400
effect, with post hoc pairwise comparisons using bonferroni correction reveal-
ing a significant delay in elderly compared to both the young and middle-aged
subjects. We reproduced these results using the 50%-area approach, as was
done in the original paper, and were able to find similar results using the EEG-
Net and the convLSTM networks. While significant effects of age were also
found using the DTW and iterative beamformer approaches, post-hoc analy-
ses in these cases only reported significant delays between the elderly and the
young subjects. Looking at the standard deviation per subject over the esti-

mated latencies, significant effects of age are found using the cross-correlation,
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Figure 5.11. Realignment of the single trials averaged across all subjects in the
N400 experimental dataset obtained with the different methods. Grey lines
represent the different channels, with Cz being marked in black. Also the to-
pography of the realignment at 0.400 s after the stimulus onset is shown. The
realigned waveforms are compared to the correct realignment to check how
well the shape of the N400 component is estimated.

beamformer and multiple component ICA approaches, as well as for the neu-
ral networks. Post-hoc analyses reveal increased variations in latency in the
young subjects compared to the middle-aged (EEGNet and convLSTM) as well
as compared to the elderly subjects (cross-correlation, multiple component ICA,
EEGNet and convLSTM).

Finally, we compared the effect of age on the amplitude of the N400 effect
using both the classical averaging approach and using the estimated latencies

to realign the single trials before calculating the amplitude. Here, we found a
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significant effect of age for the classical averaging approach, as well as after re-
alignment using the (iterative) cross-correlation techniques, the iterative DTW
and both neural networks. As in the original paper, post-hoc analyses showed
that the young subjects had a significant larger N400 effect compared to the
elderly subjects (all methods with significant effect of age). However, using the
(iterative) cross-correlation methods and the neural networks, also significant
differences were found between the young and the middle-aged subjects, with

the young subjects having a larger N400 effect.

Table 5.4. Overview of the statistical results on the mean and standard de-
viations of the estimated latencies, and on the amplitudes of the N400 effect,
elicited during the semantic sentence congruity task.

Mean latency Standard deviation latency Amplitude
F-values p-values F-values p-values F-values p-values

Cross-correlation 0.355 ns 7.154 4.277 *
DTW 3.828 * 0.167 ns 0.257 ns
Beamformer 2.227 ns 3.284 * 2.528 ns
Cross-correlation (iterative) 1.386 ns 2.024 ns 4.295 *
DTW (iterative) 0.564 ns 1.052 ns 3.831 *
Beamformer (iterative) 3.759 * 1.733 ns 2.060 ns
ICA (single component) 0.872 ns 2.321 ns 1.892 ns
ICA (multiple components) 2.636 ns 4.566 * 1.992 ns
EEGNet 9.355 ok 4.581 6.585
convLSTM 7.308 sk 12.360 sk 7.230 ok
Peak 1.149 ns NA NA 5.501 ok
50%-area 6.095 e NA NA 5.501 o

5.4 Discussion

Different methods for the quantification of the ERP component were evaluated
both on simulated data and on experimental data. We have shown that deep
learning-based methods, namely the EEGNet approach and the convLSTM net-
work, perform very well on all, proving the applicability of these neural net-
works to quantify ERP components in single trials. For low SNRs in the simu-
lated dataset, the single component ICA approach worked slightly better than
the neural networks. However, only limited differences were found between the
estimated latencies, the topographies and the shapes of the ERP components
obtained using these approaches. Interesting to notice is that while single com-
ponent ICA gave excellent results on the simulated dataset for all SNRs, the
performance of this method is much lower on the experimental data. This dis-
crepancy between the results could be explained by the nature of the simulated
dataset. As this dataset was created by adding an independent ERP compo-
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nent to background EEG data, the ICA algorithm was probably able to clearly
separate this component. Therefore, it is likely that a good fit between this
component and the template was found. In the experimental dataset, however,
the data is more complex. There is likely more variability in the topography
of the ERP component, resulting in a mismatch between the template and the
selected ICA component containing the ERP This is further confirmed by the
differences in performance between the single and multiple component ICA
approaches, as the multiple component ICA approach performed better than
the single component approach on the experimental data.

The performance of the single-trial latency estimation techniques was also
compared to that of averaging-based approaches in terms of the estimated la-
tencies, and the topography and shape of the obtained ERP component after
realignment. The results on both the experimental datasets and the simulated
data showed that the neural network based approaches typically performed
better than the averaging approaches. The results also clearly indicate that
when using averaging-based approaches, the 50%-area based approach should
be preferred over the peak-based method. The drawback of this averaging ap-
proach, however, is still that it is unable to correctly capture the shape of the
ERP component and that it does not provide information on the variability of
the latency of the ERP component.

The added value and the usability of single trial latency estimation using the
neural networks was proven on the SSCT dataset, where we were able to show
a larger N400 effect in the young subjects compared to both the middle-aged
and elderly subject, while only significant differences between the young and
elderly subjects were found using the averaging approach in both the original
paper and this work. This amplitude reduction of the N400 effect with age from
middle age on, was already shown by Gunter et al. (1992), and Cocquyt et al.
(2023) attributed the discrepancy in the result to differences in the age range
under investigation. However, our results using the neural networks showed
that the effect of age on the amplitude of the N400 effect is indeed present in the
data from the middle age on. Furthermore, by including the information from
the standard deviation of the estimated latencies in the single trials, which was
found to be larger in younger subjects compared to both the middle-aged and
elderly subject, we are able to confirm that the significant changes in the am-
plitude of the N400 effect are indeed due to changes in amplitude and are not
caused by latency jitter of the N400 effect. This is also in line with the findings
of Hoffman & Morcom (2018), who reported reduced activity in some regions
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of the typical left-hemisphere semantic network which have been reported as
potential generators of the N400 effect, namely the inferior prefrontal, poste-
rior temporal and inferior parietal cortex, in older subjects compared to the
younger. These findings show the added value of including single trial latency
estimations in the analysis of the data.

In this paper, we adapted different neural networks to quantify the ERP com-
ponent in single trials and compared it to other methods commonly used in liter-
ature using both simulated and experimental data. Even though we attempted
to create the simulated dataset as realistic as possible, certain assumptions,
such as the topography and simplified shape of the ERP component, influence
the obtained dataset and the performance of the different methods. Further-
more, these assumptions also affect the results obtained on the experimental
dataset. As no information on the component latency is present in the experi-
mental data, the parameters of the neural networks can only be learned based
on simulated data. This is an important limitation of deep learning approaches
for single-trial ERP component quantification. If the assumptions about the
shape or the topography of the ERP component in the simulated data are in-
correct, the network will not be able to perform well on the experimental data.
The need for the simulated data also limits the applicability of the networks
on datasets where the ERP components of interest are not known a-priori. In
this case, data-driven approaches, such as topographic analyses of variance and
microstate analyses, have a clear advantage, as they allow to estimate the ERPs
without being limited to one peak selected beforehand. Another remark that
can be made is that the same ERP component may have different characteris-
tics in different populations. In this case, however, it would be possible to train
different networks for the different populations, or to include characteristics
of both populations under investigation in the simulated data, thereby mak-
ing the network more robust. Also more advanced methods to generate the
simulated data could be used, for example using ICA to extract one or more
subcomponents of the ERP component from the original data and using them
as ERP waveform that is added to the background EEG data that is used to train
the network.

A final limitation of the neural networks approaches is that they work as a
so-called black box, returning an estimation of the latency of the ERP compo-
nent without giving insight into what the network’s decision is based upon.
This makes the deep learning approaches less interpretable compared to other
methods such as the (iterative) cross-correlation method. Lastly, it is important
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to note that each method always returns an estimate of the component latency
even when no ERP component is present in the data. Therefore, it could be
useful in future work to combine the ERP component classifiers used in BCIs

with these latency estimation techniques.

5.5 Conclusion

Two deep learning approaches were proposed for single-trial latency estimation
in ERP data. Application of these methods on both simulated and experimental
data has shown that the neural networks outperform other single-trial latency
estimation methods and thus that deep learning techniques can be used as a
new approach to estimate the latency of ERP components in single trials. More
specifically, we were able to show that the proposed approaches to quantify the
ERP components resulted in better estimates of the topography and the shape
of the components. On the P300 experimental data, higher correlations were
found between the P300 single trial latencies and the reaction times of the sub-
ject. Furthermore, using the N400 dataset, we were able to show a larger N400
effect in the young subjects compared to both the middle-aged and elderly sub-
jects, while only significant differences between the young and elderly subjects
were found using the averaging approach. By including the information from
the standard deviation of the estimated latencies in the single trials, we were
also able to confirm that the significant changes in the amplitude of the N400
effect are indeed due to changes in amplitude and are not caused by latency
jitter of the N400 effect, showing the added value of the neural networks for
single-trial latency estimation compared to the averaging-based approaches.
While the EEGNet network and the convLSTM network are more complex than
other techniques proposed in literature, it allows researchers to better study
the trial-to-trial latency variability of the ERP component, even in data with
a low SNR. A drawback, however, is that simulated data needs to be created
upfront to train the network, limiting the applicability of the proposed network
to study ERP components about which limited information is known. In future
work, the proposed neural network approach could be applied to both other
ERP components, as well as to other populations where the ERP components

may have different characteristics, to further study its validity.







6 | Disentangling ERP and Oscillatory Sources
with eLORETA and DICS: A Comparative Study with

Simulations and Empirical Data

Abstract

Event-related potentials (ERPs) and oscillations are often-used tools for inves-
tigating neural processing. The relationship between these two phenomena,
however, remains debated: while some argue they reflect the same underlying
neural processes, others suggest they arise from distinct mechanisms. In this
work, we show that combining different EEG source imaging methods, namely
eLORETA and DICS, can help us address this open question. We use simula-
tions to illustrate the strengths and limitations of both methods, and real data
to show how the complementarity of eLORETA and DICS can help us identify if
the ERP and the oscillations originate from common or distinct neural sources.
The source localization results for the P300 ERP component using eLORETA
and DICS in the delta range converge. In this case, while the time-course of
the alpha desynchronization aligns closely with that of the P300, the obtained
localizations do not overlap. For the auditory N1, bilateral activation is found
using eLORETA. While similar activity is found when localizing theta power in
the corresponding time window using DICS, the accuracy in this case seems to
be better when using eLORETA. Finally, the eLORETA and DICS localization re-
sults converge on a view of the N400 as a product of oscillatory dynamics within
a distributed semantic network. The DICS localizations of the delta power in-
crease, and the alpha and beta power decreases, all overlap with the obtained
sources found using eLORETA. These findings point towards amplitude asym-
metry mechanisms responsive to task demands. In sum, this study provides
empirical and conceptual evidence for the complementary use of eLORETA and
DICS in ERP research. By harnessing the strengths of both methods, we gain a
richer, more mechanistic understanding of the temporal and spectral processes
that give rise to stimulus-locked brain responses.
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6.1 Introduction

Event-related potentials (ERPs) are a powerful tool for investigating the tem-
poral dynamics of neural processing, offering millisecond-level resolution of
brain activity. ERPs are time-locked responses to specific events, which can
interact with oscillatory activity—both evoked and induced—and can be quan-
tified using time-frequency analysis (TFA). The relationship between ERPs and
oscillations remains debated: some researchers argue they reflect the same un-
derlying neural processes (Hagoort et al., 2004; Roehm et al., 2007; Schneider
et al., 2016), while others suggest they arise from distinct mechanisms (Basti-
aansen and Hagoort, 2015; Wang et al., 2012).

Three prominent theoretical accounts have emerged to explain this relation-
ship (Cohen, 2014). The additive model proposes that ERPs are generated by
neural activity that is elicited by a stimulus and simply added to ongoing back-
ground oscillations, which are then attenuated through averaging. In contrast,
the phase-resetting model suggests that ERPs arise when the phase of ongoing
oscillations is reset by a stimulus, leading to a consistent phase alignment across
trials without requiring an increase in overall power (Makeig et al., 2002).
A third perspective highlights the role of amplitude asymmetry and baseline
shifts. Although neural currents are theoretically balanced in polarity, outward-
directed currents may be less detectable at the scalp surface (Mazaheri and
Jensen, 2008). This detection bias can introduce asymmetries in the recorded
oscillatory waveform, such that peaks and troughs are unequally represented.
Such asymmetries, or subtle shifts in the oscillatory baseline, could generate
ERP-like signals even in the absence of stimulus-locked activity (Nikulin et al.,
2010). Fluctuations in oscillatory power, when averaged across trials, might
therefore mimic slow ERP components through mechanisms unrelated to tra-
ditional evoked responses (van Dijk et al., 2010; Mazaheri and Jensen, 2010).
Despite these differing accounts, conclusive evidence supporting one over the
others remains limited, and the neural underpinnings of ERP generation are
still not fully understood.

A major obstacle in resolving this debate lies in the ambiguity of scalp-level
EEG data. Due to volume conduction and spatial smearing, it is often un-
clear which neural sources contribute to observed signals. Electrophysiological
source imaging (ESI) has therefore become a crucial tool in disentangling these

processes. By reconstructing the cortical origins of EEG activity, ESI can help
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identify whether the same or different sources give rise to ERPs and oscillatory
dynamics.

Various source localization methods have been developed to address the in-
verse problem of estimating cortical sources from scalp-recorded potentials.
Minimum-norm-based approaches like SLORETA, dSPM, and eLORETA estimate
distributed source activity by minimizing the overall power of the source so-
lution, typically under a smoothness constraint (Himaldinen and Ilmoniemi,
1994; Dale et al., 2000; Pascual-Marqui et al., 2011). eLORETA (exact Low
Resolution Electromagnetic Tomography), in particular, improves on earlier
variants by providing zero localization error for single sources under ideal con-
ditions and reducing depth bias, making it well-suited for time-domain anal-
yses of event-related potentials (ERPs). It computes current density estimates
assuming that neighboring neuronal populations exhibit highly correlated ac-
tivity. This allows for a spatially smooth yet temporally precise reconstruction
of source activity across time. In contrast, spatial filtering techniques such as
LCMV (Linearly Constrained Minimum Variance) and DICS (Dynamic Imaging
of Coherent Sources) take a beamforming approach (Van Veen et al., 1997;
Gross et al., 2001). DICS operates in the frequency domain and constructs
adaptive spatial filters based on the cross-spectral density (CSD) matrix of the
EEG data to localize oscillatory sources at specific frequencies. Unlike dis-
tributed methods like eLORETA that tend to produce spatially extended so-
lutions, DICS provides more focal source estimates by maximizing the signal-
to-noise ratio for narrowband oscillatory activity. This makes it particularly
suitable for analyzing sustained or transient oscillations and inter-regional co-
herence, allowing for detailed mapping of frequency-specific neural dynamics.

While several studies have compared these methods in terms of spatial accu-
racy, precision and resolution (e.g. Halder et al. (2019); Pellegrini et al. (2023);
Babajani-Feremi et al. (2023)), fewer have explored how their complementary
strengths can be leveraged to clarify the relationship between ERPs and oscil-
lations. Notably, minimum-norm-based inverse solutions have been used to
localize ERP components such as the P300 (Criel et al., 2024; Bocquillon et al.,
2011; Ehlers et al., 2015; van Dinteren et al., 2018) and N400 (Criel et al.,
2025; Khateb et al., 2010; Geukes et al., 2013), while DICS has been applied
to identify task-related alpha and beta oscillations in attention and language
paradigms (Wang et al., 2012; Mazaheri et al., 2014). However, relatively few
studies have used both methods in tandem to disentangle whether time-domain
and frequency-domain activity stem from shared or distinct cortical generators.
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Interesting though is that other works have tried to link the oscillatory dy-
namics and event-related responses in other ways. Schneider and Maguire
(2018), for example, identified a significant relationship between the N400
and P600 ERPs and theta and beta oscillatory dynamics during respectively se-
mantic and syntactic processing using Pearson’s r correlation analyses. Based
on these findings, they suggested that ERPs and neural oscillations measure
similar neural processes. Similarly, Torrence et al. (2021) investigated the link
between theta oscillations and N170 amplitudes in a dot-probe task, and found
that greater N170 amplitudes were associated with greater theta oscillations,
indicating that both are related to each other. Studenova et al. (2023) stated
that the P300 evoked response and alpha oscillations (8-12 Hz) can be linked
through the amplitude asymmetry model. They showed that the temporal evo-
lution of the P300 and alpha amplitude is similar, and that their spatial localisa-
tions overlap. Additionally, they showed that the oscillations exhibit a non-zero
mean, and both the P300 and alpha amplitude correlate with cognitive scores
in a similar manner, further supporting the view that these two phenomena
may share a common underlying neural mechanism.

While these studies offer valuable insights into the potential relationship be-
tween ERPs and oscillatory activity, they often infer this link indirectly -through
correlations between ERP components and power in specific frequency bands-
rather than explicitly examining whether these signals originate from common
or distinct neural generators. As such, these associations do not clarify the
mechanistic or spatial overlap between ERP and oscillatory sources. Without
source-level analyses, it remains unclear whether these signals reflect shared
cortical origins or merely co-occur due to parallel processes. Thus, a more inte-
grated methodological approach is needed to directly test the extent of overlap
between ERP and oscillatory sources.

We argue that combining different ESI methods offers a promising approach
to address the open question of how ERPs and neural oscillations are related. In
this study, we use both simulations to illustrate the strengths and limitations of
eLORETA and DICS, and demonstrate how these tools can be applied to localize
the sources of the P300 and N400 ERP components in real data. Through this,
we aim to provide new insights into the interplay between phase-locked and
non-phase-locked activity, and to assess whether distinct neural mechanisms

contribute to each.



6. Disentangling ERP and Oscillatory Sources 155

6.2 Methods

6.2.1 Simulations

To illustrate how ESI can help us understand the relationship between ERPs and
neural oscillations, we simulated the three prominent theoretical accounts. In
short, our simulation approach consists of generating neural activity in distinct
brain regions, adding realistic noise, and projecting the resulting signals to the
scalp using a template head model.

This head model was based on Freesurfer’s standard template brain, fsav-
erage (Fischl, 2012). A three-layer boundary element model (BEM) was con-
structed, using the inner skull, outer skull, and scalp surfaces to define the
compartments. Standard conductivity values were assigned to each layer: 0.3
S/m for both the brain and scalp, and 0.006 S/m for the skull. Dipoles were
placed across the cortical surface with approximately 3 mm spacing, resulting
in roughly 10,000 dipoles per hemisphere. Each dipole was constrained to be
oriented normal to the cortical surface. The EEG leadfield matrix was then
computed using the BEM approach.

Two different scenarios were simulated. In each scenario, we simulated a
network involving two active brain regions: the left occipital pole and the left
inferior temporal sulcus for the first scenario, and the right inferior frontal cor-
tex (pars opercularis) and the left supramarginal gyrus in the second scenario.
These regions were defined using the Destrieux cortical atlas (Destrieux et al.,
2010), and for each region of interest (ROI), dipoles within a 10 mm radius
of the parcellation center were selected. Additionally, we modeled a change in
the amplitude of an ongoing oscillation. In Scenario 1, we included an increase
in the amplitude of a 9 Hz oscillation in the frontal lobe between 400-800 ms,
and in Scenario 2, a decrease in amplitude of a 22 Hz oscillation was modeled
in the precentral gyrus, again between 400-800 ms.

In each simulation scenario, 80 epochs of 1600 ms were simulated, half of
which contained the ERP as well as pink noise and ongoing oscillatory activity,
while only the noise and ongoing oscillations were included in the other half.
In each epoch, a pre-stimulus window of 300 ms was considered. By including
epochs which only contain noise, and thus simulating two different conditions,
it is possible to investigate the difference between the localizations obtained for
both conditions. The noise amplitude was adjusted to achieve a signal-to-noise
ratio (SNR) of -5 dB. The SNR was defined as the ratio of the peak ampli-
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tude of the ERP component to the peak-to-peak amplitude measured within
the pre-stimulus window. This approach helps in reducing systematic biases
in the source reconstruction process. If certain types of noise or non-specific
activity consistently affect the EEG data, this might lead to similar localization
errors across both conditions. By subtracting one condition from another, these
systematic errors can be reduced, leading to a more accurate estimate of the
neural sources.

The additive model:

The additive model assumes that ERPs arise from stimulus-evoked neural activ-
ity that is linearly added to ongoing background oscillations, which are attenu-
ated through trial averaging (Cohen, 2014). In this simulation, ERP waveforms
were modeled using half-cycle sinusoidal signals.

As stated before, two different scenarios were simulated. In Scenario 1, we
simulated a network involving the left occipital pole and the left inferior tempo-
ral sulcus. ERP activity was generated as a 4 Hz half-cycle sinusoidal waveform
lasting 125 ms. To mimic a simple propagation pattern, a temporal delay was
introduced: the ERP began in the first ROI at 200 ms post-stimulus and in the
second ROI 10 ms later. Additionally, we modeled an increase in the amplitude
of a 9 Hz ongoing oscillation in the frontal lobe between 400-800 m:s.

In Scenario 2, a different network was simulated involving the right inferior
frontal cortex (pars opercularis) and the left supramarginal gyrus. ERP activity
here was modeled using a 6 Hz half-cycle sinusoid, and an amplitude decrease
was applied to an ongoing 22 Hz oscillation in the precentral gyrus, again be-
tween 400-800 ms.

The phase-resetting model:

The phase-resetting model, on the other hand, suggests that ERPs arise when
the phase of ongoing oscillations is reset by a stimulus, leading to a consistent
phase alignment across trials without requiring an increase in overall power
(Makeig et al., 2002).

In this case, again two different scenarios were simulated. An ongoing oscil-
lation of respectively 4 Hz (Scenario 1) and 6 Hz (Scenario 2) was simulated
in the same ROIs as before, i.e. the left occipital pole and the left inferior tem-
poral sulcus for Scenario 1 and the right inferior frontal cortex pars opercularis
and the left supramarginal gyrus for Scenario 2. The phases of the oscillations
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were in both scenarios reset at 200 ms post stimulus onset, eliciting an ERP
As in the additive model scenarios, also here an increase in the amplitude of
a 9 Hz ongoing oscillation at the frontal lobe was added between 400 ms and
800 ms in the first scenario, while a decrease in the amplitude of an ongoing
oscillation in the precentral gyrus at 22 Hz was added in the second scenario.

The amplitude asymmetry model:

The amplitude asymmetry model posits that ERPs can emerge from a stimulus-
induced bias in the amplitude distribution of ongoing oscillations, without nec-
essarily involving additive activity or phase resetting. In this account, even a
symmetric oscillation can produce ERP-like components if it exhibits a non-zero
mean, such that post-stimulus amplitude increases result in a consistent shift
in the trial-averaged signal (Mazaheri and Jensen, 2008).

For these simulations, we used the same two ROIs as in the previous mod-
els. In both scenarios, we simulated ongoing oscillatory activity at either 4 Hz
(Scenario 1) or 6 Hz (Scenario 2), using sinusoidal waveforms with a small
positive baseline shift. This offset caused the oscillations to have a slightly pos-
itive mean, thereby introducing an asymmetry in the waveform. No explicit
ERP waveform was added, and no phase resetting was applied.

A transient increase in the amplitude of the ongoing oscillation was intro-
duced starting at 200 ms post-stimulus and lasting for 250 ms. Due to the
baseline shift, this amplitude modulation led to a consistent deflection in the
averaged signal, mimicking an ERP component while remaining purely oscilla-
tory in origin.

In parallel with the other models, both scenarios included modulation of
ongoing oscillations: an increase in amplitude of a 9 Hz oscillation in the frontal
lobe between 400 ms and 800 ms in Scenario 1, and a decrease in amplitude of
a 22 Hz oscillation in the precentral gyrus in the same time window in Scenario
2. This allowed consistent control over non-specific oscillatory activity across

all simulation models.

6.2.2 Real data

Participants and data

To assess the complementarity of eLORETA and DICS, as well as if this ap-
proach allows us to get a better understanding of the link between the ERPs
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and the oscillations in real data, we incorporated datasets from our previous
research exploring the cortical generators and functional connectivity associ-
ated with the P300 and N400 ERP components (Criel et al., 2024, 2025). The
dataset includes 60 Dutch-speaking adults (30 men and 30 women), with an
equal number of male and female participants represented in each of the fol-
lowing age brackets: 20-39 years, 40-59 years, and 60+. Participants ranged
in age from 23 to 80 years, with a mean age of 49.3 years (SD = 16.84). This
balanced sample, stratified by age and sex, was designed to ensure the gen-
eralizability of the findings to the broader population. All participants were
right-handed, as confirmed by a score of > 8 on the Dutch Handedness Inven-
tory (DHI; (Van Strien, 1992)). Cognitive status was screened using the Mon-
treal Cognitive Assessment (MoCA; (Nasreddine et al., 2005)), with a minimum
score of 26 required for inclusion (Thissen et al., 2010). General language func-
tioning was evaluated using the Dutch version of the Comprehensive Aphasia
Test (CAT-NL; (Swinburn et al., 2014)). Participants scoring below the cut-
off on any test item were excluded. Additionally, participants self-reported no
hearing impairments, normal or corrected-to-normal vision, and no history of
neurological, psychiatric, or developmental disorders. The study was approved
by the Ethics Committee of Ghent University Hospital (ONZ-2022-0127), and
all participants provided written informed consent.

For each participant, high-density EEG was recorded from 128 electrodes us-
ing an EasyCap system (Brain Products, Germany). The ground electrode was
placed at AFz, and the online reference at FCz. Impedances were maintained
below 20 k2 using an abrasive electrolyte gel (Abralyt 2000, EasyCap). EEG
signals were acquired with a BrainVision BrainAmp amplifier (Brain Products,
Germany) and digitized at a sampling rate of 500 Hz. Data collection was per-
formed using the BrainVision Recorder software.

Participants completed two experimental tasks: an attentive auditory odd-
ball paradigm designed to elicit a P300 response, and an auditory categorical
priming task targeting the N400 component. In the oddball task, the standard
stimulus [be] was presented with a probability of 80%, while the deviant stim-
ulus [go] appeared in 20% of the trials. Both types stimuli lasted 250 ms. The
main experiment consisted of 160 standard and 40 deviant trials, presented
with a 2000 ms interstimulus interval (ISI), resulting in a total duration of 8
minutes. A brief practice block (16 standard and 4 deviant trials) preceded the

main task. Participants were instructed to press a button on a Chronos response
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box (Psychology Software Tools, Pittsburgh, PA, USA) whenever they detected
a deviant stimulus, allowing assessment of stimulus categorization.

The auditory categorical priming task was adapted from Hagoort et al.
(1996) by Cocquyt et al. (2022). It consisted of 120 Dutch word pairs, each
comprising a prime and a target word. Half of the pairs were semantically
related (e.g., cat — horse), while the other half were unrelated (e.g., pink
— coffee), with no pairs exhibiting thematic associations. Psycholinguistic
properties of the target words were carefully matched across conditions for
word frequency, phonological length, number of phonological neighbors,
concreteness, imageability, age of acquisition, valence, arousal, dominance,
and duration. For more details on stimulus selection, see Cocquyt et al.
(2022). Word pairs were presented with a stimulus onset asynchrony (SOA) of
1800 ms. The interstimulus interval (ISI) between the prime and target words
varied from 830 to 1520 ms to account for differences in word length. After
the target word, participants were asked to judge the semantic relatedness
of the word pair via button press. A delayed response design was employed
to minimize movement artifacts and avoid contamination of the ERP by
motor-related activity (Van Vliet et al., 2014). Responses were again collected
using the Chronos response box, with participants pressing a green button for
related word pairs and a red button for unrelated pairs.

ERP Preprocessing

The high-density EEG data recorded during an auditory oddball task (P300) and
an auditory categorical priming task (N400) were processed using the MNE-
python library (Gramfort et al., 2013). Bad electrode channels were automati-
cally detected using the different noisy channel detection methods in the PREP
pipeline (Bigdely-Shamlo et al., 2015). The electrodes indicated as bad were
excluded from further analysis. The data was band-pass filtered using a zero
phase shift Butterworth filter with half-amplitude cut-off frequencies of 0.3 Hz
and 100 Hz and a 12 dB/octave slope. The power line noise was then removed
using a 50 Hz notch filter. Independent component analysis was applied for
eye blink and horizontal eye movement artefact removal. In case bad electrode
channels were identified and excluded in the first step, these channels were
interpolated at this stage. Subsequently, data were re-referenced to an average
common reference. In the next step, the data was segmented into epochs going
from 200 ms before the stimulus onset to 1000 ms after. Finally, epochs con-

taining artefacts were rejected using the following criteria: 75 pV maximum
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gradient criterion; 100 pV minimal/maximal amplitude criterion; 150 pV max-

imum difference criterion; 0.5 uV low activity criterion during 100 ms.

6.2.3 Time-Frequency Analysis

To examine the spectral dynamics associated with both the simulated data and
the experimental data, time-frequency analysis was performed using Morlet
wavelet convolution. The analysis was applied to the epoched EEG data from
the simulations as well as from all participants, separately for the different con-
ditions. For each epoch, time-frequency representations (TFRs) of oscillatory
power were computed using the MNE-Python package. A total of 75 logarith-
mically spaced frequencies were analyzed, ranging from 3 to 80 Hz. To balance
temporal and spectral resolution across frequencies, the number of cycles per
frequency increased linearly from 1.5 cycles at the lowest frequency to 15 cy-
cles at the highest frequency. Wavelet transforms were computed using the fast
Fourier transform (FFT) with downsampling (decimation factor = 3) to reduce
computational load. The resulting TFRs were then cropped to a time window
from -0.1 to 1.0 seconds relative to stimulus onset to remove edge artifacts.
The obtained TFRs were then averaged, over all trials and channels in the
case of the simulations and over trials, channels and subjects for the experimen-
tal data, after which the data was baseline-corrected using a log-ratio trans-
formation. To identify the time-frequency windows of interest, we applied a
data-driven clustering approach to the grand-average TFR. Specifically, we se-
lected the top 5% of absolute power values based on a percentile threshold. A
binary mask was then created, marking these high-power values. Using con-
nected component labeling, contiguous clusters of high activity were identified
in the time-frequency plane. For each resulting cluster, we extracted the corre-
sponding time and frequency boundaries. This allowed us to objectively define
windows of interest that captured the most prominent task-related modulations

in spectral power.

6.2.4 Source Reconstruction

Since individual MRI scans were not available for the real dataset, the same
BEM head model used in the simulation setup—based on Freesurfer’s standard
template subject fsaverage—was also applied for source localization in the real
data (Fischl, 2012).
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Two complementary inverse methods were applied for source reconstruc-
tion of both the real and the simulated EEG datasets: exact Low-Resolution
Electromagnetic Tomography (eLORETA) and Dynamic Imaging of Coherent
Sources (DICS). These methods target different aspects of the neural signal,
with eLORETA focusing on time-locked evoked potentials and DICS estimating

oscillatory power in specific frequency bands.

eLORETA:

Source reconstruction was performed separately for each subject and condi-
tion (ERP vs. noise, standard vs. deviant, or related vs. unrelated) using the
eLORETA algorithm (Pascual-Marqui et al., 2011). Given that the signal-to-
noise ratio (SNR) is influenced by the number of epochs, an equal number of
trials was used for both conditions before averaging and applying the inverse
model.

Subsequent analyses focused on the absolute magnitude of the reconstructed
dipoles—i.e., current source density (CSD)—ignoring dipole orientation. As
highlighted by Fulham et al. (2014), CSD reflects both signal and noise com-
ponents. To account for inter-subject differences in noise levels, CSD values
were normalized using z-scores. This normalization was based on a noise esti-
mate generated per subject: 50% of trials from each condition were randomly
selected, and half of those were polarity-inverted to cancel out the ERP signal,
yielding a noise-only signal with similar statistical characteristics. This syn-
thetic noise signal was source-reconstructed, and the procedure was repeated
100 times to compute a mean and standard deviation for noise at each dipole
location. The original CSD values were then z-transformed using these subject-

specific noise estimates.

DICS:

To investigate oscillatory activity in source space, Dynamic Imaging of Coherent
Sources (DICS; Gross et al. (2001)) was applied. This method was used to
reconstruct frequency-specific power differences between conditions—ERP vs
noise for the simulations, standard vs. deviant for the P300 oddball paradigm,
and related vs. unrelated for the N400 paradigm.

Cross-spectral density (CSD) matrices were computed using Morlet wavelet
convolution, with the number of cycles and frequency ranges tailored to
the frequencies of interest identified in the prior time-frequency analysis.
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For each subject, CSDs were estimated separately for each condition and
for a pre-stimulus baseline period, providing both condition-specific and
noise-related CSDs. Spatial filters were then computed using the forward
model, the average CSD across all epochs, and the baseline CSD as the noise
estimate. These filters were subsequently applied to the condition-specific
CSDs to obtain source-level power estimates. To enable group-level compar-
isons and normalize for individual variability, the power difference between
conditions (e.g., ERP minus noise, deviant minus standard, or unrelated minus
related) was divided by the baseline power at each source location. The
resulting normalized power changes were averaged across subjects to obtain a
group-level source estimate for time-frequency window of interest.

6.3 Results

6.3.1 Simulations

Figure 6.1 displays the average ERP waveforms obtained from each of the
three simulation models—additive, phase-resetting, and amplitude asymme-
try—across both scenarios. As expected, all models produced clear ERP-like
components, with peak amplitudes occurring around 265 ms in Scenario 1 and
approximately 240 ms in Scenario 2. Each model exhibited distinct temporal
profiles, consistent with their underlying generative mechanisms. In the phase-
resetting model, oscillatory activity with similar frequency and spatial distribu-
tion persisted throughout the entire epoch, reflecting the continuous presence
of the underlying rhythm. Due to the relatively small number of simulated
epochs (n = 40), the non-phase-aligned oscillations were not fully averaged
out, though a noticeable reduction in amplitude was observed outside the reset
window. In the amplitude asymmetry model, the ERP component arose from
transient amplitude modulations of an ongoing oscillation with a slight baseline
shift. As a result, the evoked waveforms also exhibited lower-amplitude deflec-
tions at other time points, mirroring the same topographical distribution as
the main component. Finally, subtle effects of the additional frontal oscillation
modulations were visible in the waveforms for Scenario 1, where an amplitude
increase was introduced. This was less evident in Scenario 2, where a decrease
in oscillatory amplitude was simulated.

The corresponding time-frequency representations are displayed in Figure

6.2. In both the additive and amplitude asymmetry models, prominent tran-



6. Disentangling ERP and Oscillatory Sources 163
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model asymmetry
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Figure 6.1. The average ERP waveforms for each simulation model and sce-
nario, showing distinct temporal patterns linked to their underlying mecha-
nisms.

sient increases in low-frequency power were observed around the time of the
ERP component. Notably, these increases extended beyond the specifically sim-
ulated frequency band, affecting adjacent frequencies as well. This spread can
be attributed to the inherent time-frequency trade-off associated with the spec-
tral decomposition method, as well as the use of a finite time window that
introduces spectral leakage. In contrast, the phase-resetting model did not ex-
hibit a marked increase in power around the ERP component. This aligns with
its theoretical basis, where ERP-like features emerge primarily through phase
alignment across trials rather than changes in amplitude. As expected, across
all simulation models, modulations were also detected in the ongoing oscilla-
tory activity during the post-stimulus window (e.g., 400-800 ms), with peaks
centered at 9 Hz and 22 Hz, depending on the scenario. These changes reflect
the background oscillatory dynamics that were explicitly embedded into the
simulated data.

To identify time-frequency windows of interest, we applied a percentile-based
clustering procedure to the average time-frequency representations (TFRs).
This revealed consistent clusters within the expected frequency bands and time
windows for each model. In the additive model, the ERP-related cluster in
Scenario 1 spanned 3-8.7 Hz and 146-392 ms, while in the amplitude asym-
metry model it appeared between 3-7 Hz and 122-404 ms. In Scenario 2, the
corresponding clusters were found between 3-15.5 Hz and 108-394 ms for
the additive model, and 3-10 Hz and 150-344 ms for the amplitude asymme-
try model. As expected, no ERP-related clusters were identified in the phase-
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Figure 6.2. The time-frequency plots corresponding to the simulated data,
showing transient power increases in the additive and amplitude asymmetry
models, with the phase-resetting model reflecting phase-based alignment.

resetting model for either scenario. For ongoing oscillations, power-related
clusters were detected in Scenario 1 at 550-640 ms / 8.7-10.0 Hz (additive),
252-808 ms / 7.3-13.6 Hz (phase-resetting), and 526-664 ms / 8.3-10.4 Hz
(amplitude asymmetry). In Scenario 2, the clusters were located at 456-746
ms / 19.3-25.2 Hz (additive), 474-732 ms / 20.2-24.1 Hz (phase-resetting),
and 496-718 ms / 21.1-23.1 Hz (amplitude asymmetry).

Based on these results, we selected 130-400 ms as the time window for ERP
source localization in Scenario 1, using eLORETA, and 130-400 ms / 3-8 Hz
for DICS. For Scenario 2, we used 100-450 ms for eLORETA and 100-450 ms
/ 3-12 Hz for DICS. For localizing ongoing oscillations with power changes,
we used 450-800 ms / 8-10 Hz in Scenario 1 and 480-750 ms / 21-23 Hz in
Scenario 2 for DICS and used the same time windows for eLORETA.

Figure 6.3 presents the source localization results for the ERP time window
using both eLORETA and DICS. For all three simulation models, eLORETA suc-
cessfully localized source activity to the two simulated ROIs—the left occipital
pole and left inferior temporal sulcus in Scenario 1, and the right inferior frontal
cortex (pars opercularis) and left supramarginal gyrus in Scenario 2—closely
matching the ground truth. In contrast, DICS yielded more variable results. In
Scenario 1, both the additive and amplitude asymmetry models showed source
activity in the simulated ROIs, but also exhibited spurious activations outside
these regions. For the phase-resetting model, no clear or consistent source lo-
calization was observed. A similar pattern emerged in Scenario 2: while DICS

captured activity near the simulated sources for the additive and amplitude
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asymmetry models, localization was less accurate and more spatially diffuse
compared to eLORETA. Again, no meaningful localization was achieved for the
phase-resetting model.

Figure 6.4 shows the source localization results for the ongoing oscillations
using both eLORETA and DICS. In this case, DICS successfully identified the
simulated ROIs, accurately localizing the amplitude changes in the ongoing
oscillations across all models. In contrast, eLORETA did not yield clear local-
ization results for the additive model. Interestingly, for the phase-resetting and
amplitude asymmetry models, eLORETA localized some of the same regions
involved in the ERP simulation. This is not entirely unexpected, as in these
models, the oscillations underlying the ERP are not confined to the ERP time

window but persist throughout the trial.
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Figure 6.3. The source localization results for the simulated ERP components using both eLORETA and DICS. In the first column,
the ground truth of the simulated sources is shown. In Scenario 1, a 130-400 ms / 3-8 Hz time-frequency window was used for the
localization using DICS, and a 100-450 ms / 3-12 Hz time-frequency window in Scenario 2. The same time windows were also used

for the localizations using eLORETA.
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Figure 6.4. The source localization results for the simulated ongoing oscillations using both eLORETA and DICS. In the first column,
the ground truth of the simulated sources is shown. In Scenario 1, a 450-800 ms / 8-10 Hz time-frequency window was used for the
localization using DICS, and a 480-750 ms / 21-23 Hz time-frequency window in Scenario 2. The same time windows were also used

for the localizations using eLORETA.
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6.3.2 Real Data

Grand-average ERP waveforms for the oddball (P300) and semantic priming
(N400) tasks are shown in Figure 6.5. As expected, the P300 was characterized
by a positive deflection between approximately 300-800 ms post-stimulus at
parietal electrodes, while the N400 showed a negative deflection between 400-

800 ms at central-posterior sites.

P300 N400

Standard Deviant Related Unrelated

Pz (z

Figure 6.5. Grand-average evoked potentials for the P300 and N400
paradigms, showing characteristic stimulus-locked components.

Figure 6.6 displays the average time-frequency representations (TFRs) across
participants for both the standard and deviant trials in the P300 paradigm, as
well as the related and unrelated trials in the N400 paradigm. In both tasks,
stimulus-related spectral modulations were evident. The P300 task revealed
post-stimulus increases in low-frequency power (3-8 Hz), along with modu-
lations in the alpha (8-12 Hz) and beta (15-30 Hz) bands. In the N400 task,
broader frequency changes were observed, extending across delta, theta, alpha,
and beta ranges.

Cluster analysis of the TFRs revealed distinct time-frequency windows of in-
terest for each condition. For the P300, a prominent cluster was identified in
standard trials between 3 and 6.3 Hz and 96-900 ms. In the deviant trials,
three clusters were found: a low-frequency cluster between 3 and 5.8 Hz from
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228 to 552 ms, an alpha-band cluster between 7.6 and 11.4 Hz from 408 to 948
ms, and a beta-band cluster between 17.7 and 25.2 Hz from 354 to 594 ms.
In the N400 paradigm, both the related and unrelated trials showed an early
theta cluster between 3 and 5.8 Hz from 132 to 336 ms, as well as a broader
cluster from 6.1 to 19.3 Hz between 330 and 1002 ms. Also a smaller cluster
from 3 to 3.9 Hz between 600 and 756 ms was found in both conditions.

These cluster results were used to guide the selection of time-frequency win-
dows for source localization using DICS. For the P300 task, we localized delta/
theta power (3-7 Hz) between 200 and 400 ms across both conditions. We
also examined alpha desynchronization (6-13 Hz) between 300 and 1000 ms
and beta desynchronization (20-22 Hz) between 400 and 500 ms, both derived
from the deviant-minus-standard contrast. In parallel, we applied eLORETA to
localize temporally defined ERP components, i.e. the P300 was localized be-
tween 300 and 800 ms. This dual approach allowed us to separately capture
the spatial patterns of both evoked and induced activity.

For the N400 dataset, we adopted a similar approach. DICS windows were
again based on the cluster findings, while eLORETA was informed by the tim-
ing of components in the grand-average evoked potentials. DICS was used to
localize delta power between 600 and 1000 ms (3-4 Hz), theta power between
100 and 300 ms (4-6 Hz), alpha desynchronization between 300 and 1000 ms
(6-12 Hz), and beta desynchronization between 300 and 1000 ms (15-20 Hz).
The N1 and N400 were localized using eLORETA within the 120-180 ms and
400-800 ms windows, respectively.

The results of the source localization analyses for both the P300 and N400
paradigms are summarized in Figures 6.7 and 6.8. In the P300 paradigm,
eLORETA localized the P300 component to the left and right cingulate cor-
tex, with additional activity observed in the left superior premotor cortex. The
DICS results revealed condition-specific power changes across frequency bands.
Delta/Theta-band activity (3—-7 Hz) between 200 and 400 ms was localized to
the left superior premotor and frontal cortex. Alpha desynchronization (6-13
Hz) between 300 and 1000 ms was observed in the left superior parietal lobe,
while beta desynchronization (20-22 Hz) between 400 and 500 ms was pri-
marily localized to the left motor cortex.

In the N400 paradigm, eLORETA localized the N1 component to the bilat-
eral auditory cortices. The N400 component was primarily found in the left
frontal cortex, with additional activation in the right frontal and right middle
temporal regions, and weaker involvement of the left temporal cortex. DICS
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P300 N400
Standard Related
Deviant Unrelated

Figure 6.6. Time-frequency representations for the P300 and N400 tasks,
revealing distinct patterns of low- and high-frequency modulations following
stimulus onset.

analysis revealed theta-band power changes (4-6 Hz, 100-300 ms) in the left
and right auditory cortices, extending toward the supramarginal gyrus. These
early components—the N1 and theta activity—were analyzed by combining
both conditions and comparing them to baseline, based on the expectation that
they reflect shared auditory processing mechanisms present in both conditions.
In contrast, delta synchronization (3-4 Hz, 600-1000 ms) and alpha desynchro-
nization (6-12 Hz, 300-1000 ms), primarily observed in the left frontal cortex
with some extension to the left middle temporal gyrus, and beta desynchroniza-
tion (15-20 Hz, 300- 1000 ms), localized bilaterally to the posterior temporal
poles, were analyzed by comparing the two conditions directly. This approach
was taken to capture condition-specific neural dynamics associated with the
N400 time window.

6.4 Discussion

In this work, we combined simulation-based and empirical approaches to ex-
plore how different neurophysiological mechanisms underlying event-related
potentials can be disentangled using two complementary source localization
methods: eLORETA and DICS. By systematically simulating ERPs based on
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P300

P300
(0.3-0.85)

eLORETA

Delta synchronization Alpha desynchronization ~ Beta desynchronization
(0.2-0.45) (0.3-1.0s) (0.4-0.55)
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Figure 6.7. Source localization results for the P300 paradigm using
eLORETA and DICS, showing distinct regions involved in evoked responses and
frequency-specific activity. All results were obtained by comparing the localiza-
tions obtained for both conditions.

three models, namely the additive, phase-resetting, and amplitude asymmetry
models, and applying these source reconstruction methods to both simulated
and real EEG data, we gained novel insights into how each method captures
different facets of brain activity, and how they can be jointly used to better infer
the origins of observed ERPs.

6.4.1 Complementarity of eLORETA and DICS in ERP Local-
ization

Our simulations demonstrated a clear dissociation in the localization per-
formance of eLORETA and DICS depending on the underlying mechanism.
eLORETA, which localizes activity based on evoked signals, reliably recovered
the known sources of ERP components across all three models, regardless
of whether the ERP was generated through additive, phase-resetting, or
amplitude asymmetry mechanisms. In contrast, DICS—which localizes sources
based on oscillatory power changes in the frequency domain—was particularly
sensitive to amplitude-related changes, showing accurate localization only
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N400
N1 N400
(0.120-0.180s) (0.4-0.8s)
eLORETA
Theta power Delta synchronization Alpha desynchronization Beta desynchronization
(0.1-03s) (0.6-1.0s) (0.3-1.0s) (0.3-1.05)
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Figure 6.8. Source localization results for the N400 paradigm using eLORETA
and DICS, highlighting frontal and temporal contributions to semantic process-
ing. Note that the early components—the N1 and theta activity—were analyzed
by combining both conditions and comparing them to baseline, based on the
expectation that they reflect shared auditory processing mechanisms present
in both conditions. In contrast, the N40O0 effect, delta synchronization, alpha
desynchronization and beta desynchronization were analyzed by comparing
the two conditions directly.

in the additive and amplitude asymmetry models. Notably, DICS failed to
recover meaningful sources in the phase-resetting model, aligning with the
theoretical understanding that phase-resetting does not necessarily produce
power changes detectable by spectral methods. These results are consistent
with, and expected from, the patterns observed in our time-frequency analysis,
which likewise showed no power changes in the phase-resetting condition,
underscoring this limitation of DICS.

This divergence underscores the methodological complementarity of
eLORETA and DICS. Whereas eLORETA is well-suited to identify sources of
time-locked ERP components, DICS is more sensitive to stimulus-induced
modulations in oscillatory power, even when they are not strictly phase-
locked. Therefore, interpreting ERP components solely through one method
may lead to incomplete conclusions about their neural generators. When
used together, these methods provide a more nuanced picture—eLORETA
highlights the evoked, time-locked responses, while DICS reveals the induced,
frequency-specific dynamics that may underlie or accompany ERP generation.
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6.4.2 ERP Mechanisms in Light of Source Localization

The different localization patterns observed across simulation models also in-
form the longstanding debate on what generates ERPs. While simulations can-
not confirm any single model of ERP generation, they offer a controlled frame-
work for probing how different mechanisms, such as additive activity or am-
plitude asymmetry, interact with different source localization techniques. The
additive model, which assumes that ERPs result from the addition of transient
activity to ongoing background oscillations, led both eLORETA and DICS to
localize activity to the simulated sources within the ERP time window and dur-
ing ongoing oscillation. Similarly, in the amplitude asymmetry model—which
assumes transient amplitude increases in ongoing oscillations—both methods
again identified meaningful source patterns, with DICS accurately capturing
power changes and eLORETA detecting the consistent topography of the evoked
component.

In contrast, the phase-resetting model—where ERPs emerge through trial-
wise realignment of ongoing oscillatory phase—showed a clear dissociation:
only eLORETA captured the simulated sources, while DICS yielded no consis-
tent results. This reflects a fundamental limitation of DICS, which relies on
changes in spectral power and is insensitive to phase-based dynamics. Since
phase-resetting does not necessarily produce measurable power changes, DICS
is unable to detect such activity. Interestingly, eLORETA also identified some
of the ERP-related sources in the later (post-ERP) time windows, particularly
in the phase-resetting and amplitude asymmetry models, suggesting that these
mechanisms involve more sustained spatially-specific dynamics, even beyond
the ERP time window.

Taken together, these findings suggest that the additive and amplitude asym-
metry models are more readily detectable using both evoked and induced mea-
sures, while the phase-resetting model cannot be adequately assessed using
frequency-based source localization methods like DICS, due to their insensitiv-
ity to phase dynamics. Therefore, multimethod source reconstruction provides
critical leverage for adjudicating between competing mechanistic accounts of

ERP generation.

6.4.3 Insights from Real Data: The P300

In the P300 oddball paradigm, we observed partial convergence between the

source localization results obtained with eLORETA and DICS, particularly in the
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delta/theta band. While the peak time windows of these effects were not iden-
tical, they nonetheless point to potentially overlapping neural sources. This
discrepancy in timing is likely due to the intrinsic trade-off in frequency-based
methods—lower frequency components such as delta inherently suffer from
reduced temporal resolution due to time—frequency smearing. Despite this,
the spatial overlap between eLORETA's evoked activity and DICS’s delta-band
power increase suggests that both methods may be tapping into the same un-
derlying neural process that supports the generation of the P300.

Moreover, time-frequency analysis and DICS revealed additional frequency-
specific changes: an alpha-band desynchronization localized to the superior
parietal cortex, and a beta-band desynchronization localized to the left mo-
tor cortex. These findings align with the cognitive and motor demands of the
task. Alpha desynchronization in the parietal cortex has been robustly asso-
ciated with attentional allocation (van Winsun et al., 1984; Capotosto et al.,
2016; Woodman et al., 2022), which is expected to be enhanced in response
to deviant stimuli in an oddball paradigm. The beta desynchronization ob-
served in the motor cortex during deviant trials also fits this model: beta sup-
pression is classically linked to motor preparation and execution (Stancak Jr
and Pfurtscheller, 1996; Gross et al., 2005; Engel and Fries, 2010; Heinrichs-
Graham and Wilson, 2016). Given that participants were required to press a
button only in response to deviant tones, the beta decrease in these trials likely
reflects the engagement of motor systems, again through transient amplitude
modulations of ongoing oscillations.

These real data observations provide evidence for both additive and ampli-
tude asymmetry mechanisms in the generation of the P300. The convergence
of eLORETA and DICS in the delta range supports the additive model, where
evoked components are superimposed on ongoing oscillations and lead to both
increased ERP amplitude and low-frequency power. More surprising though is
that while the time-course of the alpha desynchronization aligns closely with
that of the P300, the obtained localizations do not overlap. It is however not
possible to rule out the amplitude asymmetry model in this case, as it is possible
that both models are involved in the P300 component generation and that the
obtained amplitude shift gets lost in the combination with the additive model.

6.4.4 Insights from Real Data: The N400

In the N400 paradigm, eLORETA localized the early N1 component to the bi-
lateral auditory cortices, in line with its well-established role in early auditory
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processing (Bertrand et al., 1991; Giard et al., 1994). The N400 component
was primarily found in the left frontal cortex, with additional activation in the
right frontal and right middle temporal regions, and weaker involvement of
the left temporal cortex. This spatial pattern is consistent with prior studies
implicating a predominantly left-lateralized frontotemporal network in seman-
tic processing and integration (Kutas and Federmeier, 2011; Lau et al., 2008).

DICS analysis revealed theta-band power changes (4-6 Hz, 100-300 ms)
localized to the left and right auditory cortices, extending toward the supra-
marginal gyrus. These results closely align with the N1 findings from eLORETA,
and were similarly analyzed by collapsing across conditions and comparing
them to baseline. This approach was based on the expectation that these early
components reflect shared auditory and early context-processing mechanisms
that are not specific to semantic deviation (Bastiaansen et al., 2005).

In contrast, delta synchronization (3-4 Hz, 600-1000 ms), alpha desynchro-
nization (6-12 Hz, 300-1000 ms) and beta desynchronization (15-20 Hz, 300-
1000 ms) were evaluated by directly contrasting the deviant and standard
conditions, aiming to isolate neural dynamics specific to the semantic devia-
tion captured by the N400. Alpha desynchronization was predominantly ob-
served in the left frontal cortex, with some spread to the left middle temporal
gyrus—regions associated with semantic control and attentional engagement
(Klimesch, 2012). This suggests that increased semantic or cognitive demands
in unrelated trials may drive greater alpha suppression, consistent with theo-
ries linking alpha decreases to active information processing. Interestingly is
that the same cortical generators were found for the delta synchronization (3-4
Hz, 600-1000 ms).

The convergence of neural sources for both delta and alpha activity strongly
supports the amplitude asymmetry model. In this framework, fluctuations in
alpha amplitude can modulate the phase or amplitude of delta oscillations in
the same regions, reflecting a cross-frequency coupling mechanism. This inter-
dependence suggests that high-frequency alpha and low-frequency delta oscil-
lations interact nonlinearly, providing a shared neural mechanism for cognitive
processes. These findings align with existing literature, such as the work of
Varga and Manns (2021) on delta-modulated alpha oscillations in memory in-
tegration, where delta-phase modulation of alpha amplitude contributes to the
synchronization of distributed cortical networks. A similar interaction may also

apply to the N400 component during semantic processing.
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Beta desynchronization was found bilaterally in the posterior temporal poles,
a region increasingly implicated in conceptual integration and context updat-
ing during language comprehension (Lewis and Bastiaansen, 2015; Lam et al.,
2016). The observed beta suppression may reflect a mismatch between pre-
dicted and incoming semantic content or the need to reconfigure the current
context, both of which are heightened during unrelated trials.

Together, the eLORETA and DICS results converge on a view of the N400 as
a product of both evoked potentials and induced oscillatory dynamics within a
distributed semantic network. The N1 evoked component seems to correspond
to additive neural activity, as we find an increase in theta power in the corre-
sponding window, while the alpha and beta desynchronizations in the N400
time window point toward amplitude asymmetry mechanisms responsive to

task demands.

6.4.5 Implications and Future Directions

This study highlights the value of multimodal source localization for disentan-
gling the neural basis of ERPs. While eLORETA provides reliable localization
of phase-locked responses, DICS offers complementary insights into frequency-
specific, non-phase-locked processes. The divergence in performance across
different simulation models further illustrates that observed ERP components
could arise from distinct and overlapping mechanisms, each with unique impli-
cations for how brain dynamics are temporally organized.

Moreover, the interaction between different frequency bands—such as cross-
frequency coupling—emerges as a critical factor in understanding ERP compo-
nents. Specifically, the interplay between higher-frequency oscillations (e.g., al-
pha desynchronization) and lower-frequency rhythms (e.g., delta synchroniza-
tion) may help explain the dynamic coordination of brain networks engaged in
cognitive processing. This cross-frequency coupling provides insight into the
neural mechanisms underlying complex ERP components like the N400, high-
lighting the importance of studying both spectral and temporal dynamics in
tandem.

Moving forward, this dual-method approach can be used to characterize ERPs
in clinical or cognitive populations, helping to identify whether atypical ERP
responses arise from altered evoked activity, disrupted oscillatory dynamics, or
both. Moreover, combining these tools with techniques like dynamic causal
modeling or intracranial recordings may further deepen our understanding of
the causal architecture underlying ERP phenomena.
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In sum, this study provides empirical and conceptual evidence for the comple-
mentary use of eELORETA and DICS in ERP research. By harnessing the strengths
of both methods, we gain a richer, more mechanistic understanding of the tem-

poral and spectral processes that give rise to stimulus-locked brain responses.







7 | Investigating the effect of template head
models on Event-Related Potential source localiza-

tion: A simulation and real-data study

Abstract

Event-Related Potentials (ERPs) are valuable for studying brain activity with
millisecond-level temporal resolution. While the temporal resolution of this
technique is excellent, the spatial resolution is limited. Source localization
aims to identify the brain regions generating the EEG data, thus increasing the
spatial resolution, but its accuracy depends heavily on the head model used.
This study compares the performance of subject-specific and template-based
head models in both simulated and real-world ERP localization tasks. Simu-
lated data mimicking realistic ERPs was created to evaluate the impact of head
model choice systematically. The results indicate that the template models cap-
ture the simulated activity less accurately, producing more spurious sources
and identifying less true sources correctly. Furthermore, the results show that
while creating more accurate and detailed head models, such as finite element
method (FEM) models instead of boundary element method (BEM) models,
improves the localization accuracy for subject-specific head models, this ad-
vantage is less pronounced when using template head models. The different
modelling approaches were also applied to a face recognition dataset. The main
N170 source was correctly localized to the fusiform gyrus, a known face pro-
cessing area, using the subject-specific models. Apart from the fusiform gyrus,
the template models also reconstructed several other sources, illustrating the
localization inaccuracies. While template models allow researchers to investi-
gate the neural generators of ERP components when no subject-specific MRIs
are available, it could lead to misinterpretations. Therefore, it is important to
consider a priori knowledge and hypotheses when interpreting results obtained
with template head models, acknowledging potential localization errors.
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This chapter is based on the following article:

Depuydst, E., Criel, Y., De Letter, M., & van Mierlo, P (2024). Investigating the
effect of template head models on Event-Related Potential source localization:
A simulation and real-data study Frontiers in Neuroscience 18(2024): 1443752.
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7.1 Introduction

Electroencephalography (EEG) is an essential tool for analyzing brain activity,
which allows researchers to study the neuronal mechanisms at work when ex-
ecuting specific tasks at a millisecond scale (Luck, 2014). While this technique
offers excellent temporal resolution, its spatial resolution is limited, as the sig-
nals are measured at the scalp using a limited number of electrodes. Moreover,
due to volume conduction, the activity recorded by each electrode does not
represent a single underlying brain source, but rather a composite of activities
from various brain regions, again limiting the spatial accuracy of EEG. EEG
source imaging was introduced to overcome this limitation as a computational
technique to estimate the electrical neuronal activity in the brain. This tech-
nique identifies the underlying generators of the electrophysiological activity
recorded at the scalp by combining the EEG signals with structural MR images.
During recent decades, EEG Source Imaging (ESI) has been an important area
of research. However, while it has introduced significant advances in multiple
research domains such as epilepsy (Mégevand and Seeck, 2020) and sleep (Del
Felice et al., 2014; Fernandez Guerrero and Achermann, 2019), the precise lo-
calization of the neuronal activity is still a challenge, and the spatial resolution
remains unclear.

Source analysis of EEG data consists of two different processes, namely a
forward model and an inverse model. The forward or head model describes
how a known source of electrical activity within the brain contributes to the
signal observed at each EEG electrode on the scalp. The inverse model then
estimates the location and the strength of the electrical activity within the
brain based on the EEG signals recorded at the scalp, and relies on the for-
ward model to obtain an accurate solution. As this is a non-unique problem,
regularization techniques or constraints are needed to find plausible solutions.
Many different techniques have been proposed for solving the inverse prob-
lem, such as single dipole models, multiple dipole models, including multiple
emitter location and signal parameter estimation (MUSIC) (Schmidt, 1986),
and distributed source estimation methods, including the minimum norm es-
timate (MNE), dynamic statistical parametric mapping (dSPM), standardized
low-resolution brain electromagnetic tomography (sLORETA) and exact low-
resolution brain electromagnetic tomography (eLORETA) (Hamaldinen and Il-
moniemi, 1994; Dale et al., 2000; Pascual-Marqui, 2002; Pascual-Marqui et al.,
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2011). However, the accuracy of the EEG reconstruction obtained with each of
these techniques still depends on the accuracy of the forward model.

The construction of the forward model is thus a critical step in the source
reconstruction. The model takes into account the anatomical structure of the
head, as well as the electrical conductivity of the different tissue types. Many
different studies have investigated the effect of the head model on the obtained
localization errors. Vorwerk et al. (2012) and Birot et al. (2014), for example,
have investigated the effect of using different methods for the creation of the
head model, such as boundary element models (BEMs), finite difference mod-
els (FDMs) or finite element models (FEMs). In other studies, the influence of
including more head tissue compartments in the model was investigated (Vorw-
erk et al., 2014; Neugebauer et al., 2017). Recently, Nielsen et al. (2023) specif-
ically investigated the influence of anatomical accuracy and electrode positions
on the accuracy of the forward solutions. Other work by (Montes-Restrepo
et al., 2014) and (Montes-Restrepo et al., 2016), for example, studied the influ-
ence of different skull modelling approaches on EEG source localization, while
Stenroos and Hauk (2013) looked into the robustness of source estimation in
the case of skull conductivity errors. Also the influence of head tissue conduc-
tivity uncertainties on dipole reconstructions has been investigated (Vorwerk
et al., 2019), as McCann et al. (2019) have shown that the electrical conduc-
tivity values assumed for each compartment likely vary between individuals. It
is clear that the ideal head model for the most accurate reconstruction of the
neural activity is a realistic head model created using the subject’s individual
MRI and accurate electrical properties of the different tissue types (Akalin Acar
and Makeig, 2013; Vorwerk et al., 2018; Conte and Richards, 2021).

Unfortunately, in many EEG studies the additional acquisition of MRI data
proves difficult. The acquisition of MRI data for each subject would require
more time, research funds, and the availability of an MRI scanner. Therefore,
many studies using ESI to source localize ERP data use an approximate, av-
erage or template-based head model (Sabeti et al., 2016; Dorme et al., 2023;
Criel et al., 2024). The effect of this simplification has been studied exten-
sively before. Valdés-Hernandez et al. (2009), for example, investigated the
performance of approximate models of the head in ESI using simulations and
showed that the average of many individual MRI-based models outperforms a
randomly selected individual model. Liu et al. (2023) quantified source local-
ization discrepancies introduced by using template head models, inexact elec-
trode locations, and inaccurate skull conductivity for both younger and older
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adults using real EEG data. They found that using template MRIs led to lo-
calization discrepancies of up to 2 cm compared to the anatomically accurate
subject-specific head models for both younger and older adults.

However, most studies investigating EEG source localization accuracy have
focused on the localization of a single source and quantified the localization
error associated with each source modelled within the brain (Vorwerk et al.,
2014; Hauk et al., 2022). This approach is motivated by applications in which
the activity is dominated by a single source, e.g. in the localization of epilep-
tiform interictal discharges. However, it is known that in multiple applications
of ESI, such as Event-Related Potential (ERP) research, typically more than one
source is involved in the observed waveform, as more than one brain region
is involved in processing the stimuli. It is therefore important to investigate
the effect of the head model that is used particularly when multiple sources of
activity are present. In a study by Cho et al. (2015), the influence of imperfect
head models on EEG source connectivity analyses has been studied with multi-
source scenarios, where they found that neglecting the distinction between gray
and white matter or neglecting CSF causes large connectivity errors. However,
they only used a single subject in this study, and they did not yet investigate
the effect of using a template head model.

The objective of this study is therefore to investigate the effect of using a
template head model instead of subject-specific head models, particularly in
the context of Event-Related Potentials (ERPs) involving multiple brain regions,
and to quantify the localization error associated with this simplification. By
using both simulated and real task data, the aim is to quantify the localization
errors introduced by this simplification and assess the interpretability of the
reconstructed neural activity.

7.2 Materials and Methods

7.2.1 Participants and data

In this work, the open-source multimodal neuroimaging dataset VEPCON
(OpenNeuro Dataset ds003505) was used (Pascucci et al., 2022), in which
visual evoked potentials were recorded while the subjects discriminated faces
from scrambled faces. This dataset has previously been used in different
studies, for example, to improve and validate EEG source imaging methods and

time-varying functional connectivity methods (Rubega et al., 2019; Pascucci
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et al., 2020). The dataset includes raw data, derivatives of high-density
EEG, structural MRI and diffusion-weighted images (DWI), and single-trial
behaviour.

The dataset includes the data of twenty participants (3 males, mean age =
23+3.5) who were recruited from the student population at the University of
Fribourg, Switzerland. In this work, only the raw high-density EEG, recorded
during a face detection task, and the derivatives of the T1-weighted structural
MRI data, obtained using the Freesurfer software, were used. Subjects for
whom (part of) this data was missing were excluded, resulting in a total of
eighteen participants. The EEG data were recorded at a sampling rate of 2048
Hz with a 128-channel Biosemi Active Two EEG system (Biosemi, Amsterdam,
The Netherlands) in a dimly lit and electrically shielded room. More informa-
tion regarding the dataset and recording procedures can be found in the data
descriptor provided by Pascucci et al. (2022).

7.2.2 MRI Processing and Head Model Reconstruction

Preprocessed structural MRI data was included in the open-source dataset.
For each subject, Pascucci et al. (2022) resampled the T1w images using the
Connectome Mapper v3.0.0-beta-RC1 pipeline (Tourbier et al., 2022), and seg-
mented gray and white matter using Freesurfer 6.0.1 (Fischl, 2012). The struc-
tures were then parcellated into 83 cortical and subcortical areas according to
the Desikan-atlas. Also other parcellations were included in the dataset, such
as the parcellation following the Destrieux atlas.

Multiple approaches were used for the construction of the forward model,
namely the finite element method (FEM) and the boundary element method
(BEM). The FEM method uses a realistic volume mesh of the head, which is
generated from the MRI segmentation, and results in anatomically accurate
models. The BEM model, on the other hand, relies on the creation of three
BEM surfaces (inner skull, outer skull, and skin) and thus includes less detailed
segmentations in the model.

FEM

A finite element method (FEM) head model was constructed for each subject
in Brainstorm (Tadel et al., 2011), which is documented and freely available
for download online under the GNU general public license. In the first step,

the tetrahedral FEM meshes were generated using the SimNIBS-charm pipeline
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(Puonti et al., 2020). The MRI data was segmented into nine different tissue
types: white matter, gray matter, CSE compact bone, spongy bone, scalp, eyes,
blood and muscle, after which the meshes representing the geometry of the
head were created. Equivalent current dipoles were then distributed within
the grey matter. The dipoles were spaced approximately 3 mm apart, resulting
in a dense and uniform grid of dipoles throughout the cortical surface. The
forward model was subsequently generated from the obtained mesh using the
DUNEuro-FEM computation within Brainstorm (Medani et al., 2023).

Two different forward models were created based on the FEM meshes. In the
first model, the conductivity values for the different tissue types were based on
the weighted average means from the meta-analysis by McCann et al. (2019):
0.22 S/m for white matter, 0.47 S/m for grey matter, 1.71 S/m for the CSE
0.006 S/m for the compact bone and 0.048 S/m for the spongiform bone, 0.41
S/m for the scalp, 0.33 S/m for the eyes, 0.57 S/m for blood and finally 0.32
S/m for the muscle layer. In the second model, the default conductivity val-
ues as proposed by Brainstorm were used: 0.14 S/m for white matter, 0.33
S/m for grey matter, 1.79 S/m for the CSE 0.008 S/m for the compact bone
and 0.025 S/m for the spongiform bone, 0.43 S/m for the scalp, 0.33 S/m
for the eyes, 0.33 S/m for blood and 0.33 S/m for the muscle layer (Vorwerk
et al., 2014). By including two models with different conductivity values, it is
possible to investigate the effect of using slightly deviant conductivities on the
reconstructions.

In addition to individual head models, the same approach was applied to the
average MRI, fsaverage, available in Freesurfer. This template brain is based on
a combination of 40 MRI scans of real brains. More information on the creation
of the fsaverage template and details about the subjects used in this template

can be found in the official Freesurfer documentation (Fischl, 2012).

BEM

For each individual, a three-layered head model was created using Freesurfer
6.0.1 and MNE-python (Fischl, 2012; Gramfort et al., 2013). The inner skull,
outer skull and outer skin surfaces were obtained from the dataset and then
used as boundaries for the different compartments, assigning default electrical
conductivity values to the scalp (0.33 S/m), skull (0.006 S/m) and brain (0.33
S/m) compartments of the head model. The same equivalent current dipole
locations as used in the FEM models were used here, i.e. the dipoles were
distributed in the grey matter with a spacing of 3 mm. Finally, the boundary
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element method (BEM) was used to obtain the EEG leadfield matrix. As before,
this approach was also applied to the average MRI, fsaverage, to obtain the
leadfield matrix for the average head model.

7.2.3 ERP Preprocessing

The high-density EEG data recorded during the face recognition task was
processed using the MNE-python library (Gramfort et al., 2013). The data were
first downsampled to 250 Hz and bad electrode channels were automatically
detected using the different noisy channel detection methods in the PREP
pipeline (Bigdely-Shamlo et al., 2015). The electrodes indicated as bad were
excluded from further analysis. The data was band-pass filtered using a zero
phase shift Butterworth filter with half-amplitude cut-off frequencies of 0.3
Hz and 30 Hz and a 12 dB/octave slope. The power line noise was then
removed using a 50 Hz notch filter. Independent component analysis was
applied for eye blink and horizontal eye movement artefact rejection. In
case bad electrode channels were identified and excluded in the first step,
these channels were interpolated at this stage. Subsequently, data were
re-referenced to an average common reference. In the next step, the data was
segmented into epochs going from 100 ms before the stimulus onset to 500
ms after. Finally, epochs containing artefacts were rejected using the following
criteria: 75 pV maximum gradient criterion; 100 pV minimal/maximal
amplitude criterion; 150 pV maximum difference criterion; 0.5 pV low activity

criterion during 100 ms.

7.2.4 Simulation

Simple ERP waveforms were simulated using half-cycle sinusoidal waveforms
to allow the objective quantification of the localization error associated with
the subject-specific and average head models. This was done by simulating
activity in different regions of the brain, including noise, and projecting this
activity to the scalp surface using the individual head models. For each subject,
80 epochs of 1000 ms were simulated, half of which contained the ERP wave-
form as well as pink noise, while only the noise was included in the other half.
In each epoch, a pre-stimulus window of 200 ms was considered. By including
epochs which only contain noise, and thus simulating two different conditions,
it is possible to investigate the difference between the localizations obtained

for both conditions. This approach helps in reducing systematic biases in the
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source reconstruction process. If certain types of noise or non-specific activity
consistently affect the EEG data, this might lead to similar localization errors
across both conditions. By subtracting one condition from another, these sys-
tematic errors can be reduced, leading to a more accurate estimate of the neural
sources.

Different networks responsible for generating ERP activity were simulated,
each involving four symmetrically active brain regions, with two regions in each
hemisphere. These regions were identified using the Destrieux cortical atlas
parcellations. For each region of interest (ROI), the center of the parcellation
was determined, and dipoles within a 10 mm radius around this center were
selected. The ERP activity in these selected dipoles was simulated as a 5 Hz
half-cycle sinusoidal waveform lasting 100 ms. A small delay was introduced
across the ROIs: the ERP waveform began in the first ROI at 100 ms post-
stimulus, followed by the second ROI 10 ms later, and then in the third and
fourth ROIs at 120 ms. Additionally, the signal amplitude in the third and
fourth ROIs was reduced to 80% of the amplitude in the first two ROIs. Table
1 provides an overview of the different ROIs selected for each network. The
obtained ERP waveforms and the simulated ROIs can be found in respectively
Figure 7.2 and the first column of Figure 7.3. These networks were designed
to investigate localization errors across different ROIs, as previous studies have
shown that localization errors are typically larger for temporal sources (Cuffin
et al., 2001; Kobayashi et al., 2003). To simulate realistic conditions, pink
noise was added to all epochs. The noise amplitude was adjusted to achieve
different signal-to-noise ratios (SNRs) ranging from -20 dB to +0 dB. The SNR
was defined as the ratio of the peak amplitude of the ERP component to the
peak-to-peak amplitude measured within the pre-stimulus window. This SNR-
range was chosen based on the VEPCON dataset, where an SNR of about -10
dB was observed for the N170 component.

After creating the simulated activity in source space, the source time series
were projected to the scalp by applying the subject-specific FEM forward model
created using the individual MRI for each subject and using the conductivity
values based on the meta-analysis by McCann et al. (2019). This step results
in individual epochs in sensor space, or thus the simulated EEG data.

7.2.5 Brain Activity Reconstruction

For the reconstruction of the brain activity, the MNE-python implementation
of the exact Low-Resolution Tomography (eLORETA) inverse method was used
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Table 7.1. Overview of the different ROIs used for the simulation of the net-
works. lh: left hemisphere, rh: right hemisphere

Network ROI'1 ROI 2 ROI 3 ROI 4
Temporo-Occipital Occipital Pole (Ih) Occipital Pole (rh) Inferior Temporal Sulcus Inferior Temporal Sulcus
network () (rh)
Fronto-Parietal Inferior Frontal Gyrus, Inferior Frontal Gyrus, Supramarginal gyrus (lh) Supramarginal gyrus (rh)
network pars opercularis (rh) pars opercularis (lh)

Fronto-Occipital Occipital Pole (lh) Occipital Pole (rh) Inferior Frontal Gyrus, Inferior Frontal Gyrus,
network pars opercularis (rh) pars opercularis (lh)
Temporo-Parietal Inferior Temporal Sulcus Inferior Temporal Sulcus Supramarginal gyrus (lh) Supramarginal gyrus (rh)
network (h) (rh)

(Pascual-Marqui et al., 2011). The source reconstruction was done for each
epoch separately, using both the subject-specific head models and the average
head models that were previously constructed using the three different mod-
elling pipelines. Noise pre-whitening of the leadfield matrix was applied using
the noise covariance matrix before calculating the inverse solution. Next, the
absolute magnitude of the dipoles or the current source density (CSD) was cal-
culated, disregarding the orientation information of the dipoles in subsequent
analyses. In a final step, for each subject, each condition and for each head
model, the average response was calculated. In the case of the simulated data,
an evoked response was obtained for the ERP and the noise condition for each
subject and both the subject-specific and the average head models, while for
the experimental data, an evoked response in source space to the faces and to
the scrambled images was obtained, again for each subject and for both the

subject-specific and the average head models.

7.2.6 Evaluation of the Source Reconstruction

Simulated Data

Different aspects are taken into account in the evaluation of the source recon-
struction: the correspondence between the obtained sources and the simulated
sources, the localization error and the spatial dispersion of these reconstructed
sources, and the correlation between the originally simulated activity and the
reconstructed activity.

For each subject, the difference in source space activity between the ERP and
the noise condition is calculated, after which the data is averaged over the time
window of interest, in this case from 100 ms to 220 ms post-stimulus. The
data is then thresholded so that only the 5% strongest differences between the
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ERP and noise conditions remain, after which the remaining active dipoles are
grouped into potential clusters based on the spatial adjacency. Two dipoles are
considered to be adjacent if the distance between both dipoles is smaller than
5 mm. Finally, only clusters containing at least five dipoles are retained.

For each of the obtained dipole clusters, the distance between the centre of
the cluster and the centre of the simulated ROIs is calculated. Each ROI for
which at least one reconstructed cluster is found within a 3 cm distance is con-
sidered a true positive (TP), while ROIs without a cluster within this distance
are considered false negatives (FN). Similarly, clusters that are not within a 3
cm distance of a simulated ROI are annotated as false positives (FP). Based on
this classification of the clusters, the sensitivity and the precision of the local-
ization are then calculated as respectively the ratio of the number of TPs over
the sum of the TPs and the FNs and the ratio of the number of TPs over the sum
of the TPs and FPs. These measures are used to quantify the correctness of the
reconstructed activity. To clarify these metrics further, a figure illustrating the
calculation of sensitivity and precision is provided (Figure 7.1). As the maxi-
mal distance is an important parameter, also the effect of this parameter was
investigated by including the results of using a maximal distance of 1 cm and

5 cm in the appendix.
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Figure 7.1. Illustration of the calculation of sensitivity and precision of the
source reconstructions for the simulated data. True positives (TPs) are defined
as reconstructed clusters within a 3 cm distance from the center of the simulated
ROIs, while false negatives (FNs) are ROIs without a nearby cluster, and false
positives (FPs) are clusters not within 3 cm of any ROI. Sensitivity is calculated
as the ratio of TPs to the sum of TPs and FNs, and precision is calculated as the
ratio of TPs to the sum of TPs and FPs.

For the calculation of the localization error and the spatial dispersion, only
the true positive ROIs are taken into account. The localization error is calcu-
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lated as the Euclidean distance between the centre of the simulated ROI and the
reconstructed cluster. When more than one cluster is within the 3 cm distance
of the ROI, the average of the localization errors is taken into account. The spa-
tial dispersion, on the other hand, is calculated as the difference between the
total volume of all reconstructed clusters within the 3 cm distance of the ROI
and the total volume of the ROI. This measure is then normalized by dividing
by the total volume of the simulated ROI to take into account differences in the

dispersion of the original activity.

VEPCON data

As no ground truth data exists for the sources underlying the signals measured
during the face task, the evaluation of the reconstructed activity can only be
evaluated descriptively. One of the ERP components elicited by the faces task
that is used in the VEPCON dataset is the N170. This component is larger
when the eliciting stimulus is a face compared to when the stimulus is a non-
face object, such as a scrambled face or a car (Rossion and Jacques, 2012).
Many researchers have investigated the sources underlying this component.
Using a dipolar fit method, Taylor et al. (2001) have located the N170 in the
middle part of the fusiform gyrus. This localization corresponds to the fusiform
face area that was identified in fMRI studies (Haxby et al., 2000), as well as
in intracranial EEG studies (Engell and McCarthy, 2014). Similarly, Henson
et al. (2007) found differences between the localization of faces and scrambled
faces in the anterior fusiform gyrus, with a strong dominance towards the right
hemisphere .

In this work, each of the individual epochs will be source-localized using both
the subject-specific head models and the average head models. The obtained
localization will then be averaged for each condition dataset and, in the case the
subject-specific head model was used, the obtained results will be morphed to
the average head model after which averaging can be applied over all subjects.
The 5% dipoles with the strongest difference in activation between the two
conditions within a time window of 150 ms to 170 ms post-stimulus will then

be visualized and compared to the regions identified in the literature.
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7.3 Results

7.3.1 Simulated data

The simulated EEG data of the different networks was source localized for each
subject using both the subject-specific and the template head models, using both
of the FEM models and a BEM model for the reconstruction. Figure 7.2 shows
the simulated data at the sensor level. In the figure, the symmetric nature of the
simulated data is visible. While in most networks the activity of the different
ROIs of a single hemisphere is blended at the surface, for the fronto-occipital
network a clear distinction is visible between the frontal and the occipital sub-
components of the simulated ERP waveform, both when looking at the topog-
raphy of the obtained signal and when inspecting the waveform. This effect
might facilitate the source localization compared to the other networks, where
the activity from the different sources is less separated spatially at the scalp
level.

In Figure 7.3, both the originally simulated data in source space and the re-
constructed activity averaged over all subjects for the different networks for
an SNR level of -10dB are shown. To reduce systematic biases in the source
reconstruction, the difference between the reconstructed activity for the ERP
and noise conditions is shown. As averaging over subject-specific anatomies
is not possible, the source activity of both the original simulated data and the
subject-specific reconstruction was morphed into the anatomy of the average
head model before averaging. The figure illustrates the differences between the
obtained reconstruction when using the different models. The results obtained
with the two FEM models, constructed using different conductivity values, are
very similar for most of the networks. While differences in the intensity of the
activity can be observed, the location of the activity averaged over all subjects is
very similar when using the FEM models with different conductivities. Looking
at the different networks, the figures show that the location of the ROI influ-
ences on the accuracy of the localization. For the temporo-parietal network,
for example, the activity in the temporal lobes is not reconstructed using the
subject-specific FEM-based models, while it is clearly present for the temporo-
occipital network. The differences between the subject-specific reconstructions
and the template reconstructions illustrate that for both FEM approaches bet-
ter results are obtained using the subject-specific reconstructions. It is clear
that while most simulated are reconstructed, i.e. taking into account some
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mislocalizations, also many false positive clusters are reconstructed. Finally,
the figure shows that the results obtained using the BEM models perform quite
poorly. Limited differences are found between the subject-specific reconstruc-
tions and the template reconstructions in this case in terms of the location of
the reconstructed activity. Upward mislocalizations seem to be present for all
of the different networks when using BEM models. The occipital sources are
localized more towards the superior parietal lobe, for example, while no clear
reconstruction can be found for the temporal ROIs. Finally, the figure also
shows that only for the fronto-occipital network two distinct ROIs are local-
ized per hemisphere, while only a single spread-out ROIs is reconstructed per
hemisphere for the other networks.

Temporo-Occipital network 0.160s |y Fronto-Parietal network

i
50 }
i

o 10 A

A

Time (s) Time (s)

Fronto-Occipital network 0160s |y Temporo-Parietal network

=0 125
00
so 100

Time (s) Time (s)

Figure 7.2. Overview of the simulated data at sensor level averaged over all
subjects. The simulated epochs in the ERP condition at SNR = -10dB are aver-
aged.

The quantification results of the localization errors associated with the local-
izations for the individual subjects are shown in Figure 7.4. In this evaluation of
the source reconstructions, different aspects were taken into account: the sen-
sitivity and the precision of the obtained sources, the localization error and the
spatial dispersion of these reconstructed sources. For each of these measures,
the difference between using the subject-specific and the average head models
was investigated, as well as the differences between the different modelling
approaches. Clusters of activity were considered correctly localized when the
difference between the centre of the reconstructed cluster was within 3 cm of
the centre of the simulated ROIs. As this maximal distance is an important pa-

rameter, the results when using a maximal distance of both 1 cm and 5 cm were
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Figure 7.3. Overview of the original simulated data and the reconstructed activity averaged over all subjects for the different networks
at SNR = -10dB. For the reconstructed activity, the difference between the ERP- and the noise-conditions is shown. In the case of the
simulations and the subject-specific reconstructions, the source activity was morphed to the anatomy of the average head model before
averaging.
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Figure 7.3. (Continued) Overview of the original simulated data and the reconstructed activity averaged over all subjects for the
different networks at SNR = -10dB. For the reconstructed activity, the difference between the ERP- and the noise-conditions is shown.
In the case of the simulations and the subject-specific reconstructions, the source activity was morphed to the anatomy of the average
head model before averaging.
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included in the appendix. Looking at the different FEM models, higher sensitiv-
ity and precision, as well as smaller localization errors were found when using
the subject-specific head models compared to the template head model. These
trends were found for the different simulated networks, however, some indi-
vidual differences were observed. For most subject-specific reconstructions, a
sensitivity value of about 0.75 is achieved, meaning that one out of the four sim-
ulated ROIs was not reconstructed for most subjects. The mean sensitivity ob-
tained using the template-based head models is lower, around 0.5, illustrating
that only two ROISs are correctly reconstructed. The sensitivity of the template-
based reconstructions however increases for all models when increasing the
maximal distance to consider reconstructed activity to 50 mm, indicating that
the ROIs are reconstructed with a large localization error. The precision of the
localizations is quite high for all of the subject-specific reconstructions, for all
networks, indicating that only a limited number of false positive reconstructed
sources were found. Very low precision values are found however when using
the template head models. This result again illustrates that while the different
ROIs are reconstructed, the localization error associated with them is too large
to consider them as true positives.

Only considering the clusters located closely to the simulated ROIs, the lo-
calization error and the spatial dispersion were investigated. These results are
shown in respectively the third and the fourth row of Figure 7.4. It is clear
that for both FEM-based head modelling approaches, the localization error is
smaller for subject-specific reconstructions compared to the template recon-
structions. Surprisingly, higher spatial dispersion is found when using subject-
specific headmodels compared to using the template head models, meaning
that larger volumes of reconstructed activity are found compared to the simu-
lated data.

Looking at the BEM models, higher sensitivity values are found when using
the template head models compared to the subject-specific head models, while
the opposite effect is found for the precision. A large range of precision values
is found when using the subject-specific head models, indicating that in this
case, the number of false positive reconstructed clusters is very dependent on
the individual subject. As expected based on the results shown in Figure 7.3,
similar localization errors are found for the subject-specific and the template-
based BEM models. Interesting to note is that the quantitative results for all
template-based head models in terms of sensitivity, precision, localization error
and spatial dispersion are similar for the two FEM models and the BEM model,
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Figure 7.4. Results of the quantification of the localization errors for the SNR
= -10dB. In this evaluation the sensitivity and the precision of the obtained
sources, the localization error and the spatial dispersion of these reconstructed
sources were taken into account. For each of these measures, the difference be-
tween using the subject-specific and average head models is shown for each of
the different modelling approaches. Clusters of activity were considered to be
correctly localized when the difference between the center of the reconstructed
cluster was within 3 cm of the center of the simulated ROIs.

while different errors are made in terms of the location of the reconstructed
sources (cf. Figure 7.3).

Finally, also the effect of the SNR of the simulated data on the reconstructions
is quantified in Figure 7.5. In this figure, the results obtained for the different
networks are aggregated. As before, the results when using a maximal distance
of both 1 cm and 5 cm are included in the supplementary materials. The figures
indicate only a limited effect of the SNR for most measures. A slight increase
in sensitivity with increasing SNR can be found for the subject-specific FEM
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models, as the boxplots indicate that there are fewer subjects for whom only
one or two of the simulated ROIs are reconstructed. Also, an increasing trend
with increasing SNR was found when looking at the precision. Finally, a limited
improvement can be found in the localization error when increasing the SNR
from -20 dB to -10 dB. Further increase of the SNR has almost no effect. The
most prominent conclusions that can be drawn from this figure, however, are
again that for both FEM-based modelling approaches, the subject-specific head
models perform better than the template-based methods in terms of sensitivity,
precision and localization errors, while the BEM-based modelling approaches
perform worse in the case of subject-specific models but perform similarly when
using template-based models compared to the FEM-models.

7.3.2 Real task data

The evoked potentials averaged over all subjects are shown in Figure 7.6 both
for the faces and the scrambled faces. A clear difference between both con-
ditions was found between 150 ms and 170 ms after the stimulus onset. The
N170 component is thus clearly present in the data when faces were presented
to the subjects, while it is not for the scrambled faces. Figure 7.7 shows the dif-
ference of the obtained reconstructions between both conditions averaged over
all subjects using both the subject-specific head models and the template head
model. In the first column of the figure the expected reconstructed area, i.e. the
fusiform area, is shown. The figures show that in the case of the subject-specific
FEM head models, most activity is found in the left and right fusiform area while
using the subject-specific BEM model, most activity is found more occipitally.
When using the template head model, on the other hand, the reconstructed
activity is more spread out compared to the subject-specific reconstructions. In
the case of the FEM-models, activity is found not only in the fusiform area,
but also at the frontal and temporal poles as well as in occipital lobe. In case
of the template BEM models, the largest differences in activity between both
conditions are again found occipitally.

7.4 Discussion

The goal of this work was to investigate the effect of using template head mod-
els instead of subject-specific head models when localizing ERPs and to quan-
tify the localization error associated with this simplification. To this end, both

simulated data and real task data were used. Different activity networks were
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Figure 7.5. Results of the quantification of the localization errors. In this eval-
uation the sensitivity and the precision of the obtained sources, the localization
error and the spatial dispersion of these reconstructed sources were taken into
account. For each of these measures, the effect of both the SNR of the simu-
lated data and the difference between using the subject-specific and average
head models is shown for each of the different modelling approaches. Clus-
ters of activity were considered to be correctly localized when the difference
between the center of the reconstructed cluster was within 3 cm of the center
of the simulated ROIs.

simulated, each with four ROIs and specific SNRs using subject-specific head
models created using FEM. We found that subject-specific head models per-
form significantly better than template head models, and that the modelling
approach (FEM or BEM) only has a limited influence on the accuracy of the
results when using template head models.
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Figure 7.6. Visualization of the evoked potentials averaged over all subjects
for both the faces and scrambled faces conditions of the face-detection task in
the VEPCON dataset. Also the topography at 160 ms post-stimulus is indicated,
as this is considered the peak of the N170 component in the faces condition.
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Figure 7.7. Illustration of the fusiform area and the difference in the recon-
structed activity between both conditions for the N170 component averaged
over all subjects.

7.4.1 Simulated data

Effect of template head model vs. subject-specific models

Looking at the simulations, the results indicate there is a significant decrease
in both the sensitivity and precision when using template head models instead
of subject-specific head models when using FEM-based head models. Interest-
ingly, when using BEM models the sensitivity is better when using the template
head model. Also, clear differences in the localization error were found be-
tween the subject-specific and the template FEM models, as values between
+5-20 mm are found using the subject-specific headmodels compared to local-
ization errors between +15-30 mm are found for the template-based models.
These results correspond with our hypothesis and with results found in litera-
ture, as many researchers report that the ideal head model for the most accurate
reconstruction of the neural activity is a realistic head model created using the
subject’s individual MRI (Akalin Acar and Makeig, 2013; Conte and Richards,
2021). However, it is also important to note that, as subject-specific models
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were used in the simulations, this is also the case for which the best results
were expected.

Looking at the results at the group level (Figure 7.3), it is clear that not all
simulated ROIs are present, especially when using template-based models, and
that a localization error is associated with other reconstructed ROIs. As in most
ERP research, the MRI data of individual subjects is not available, it is important
to take these limitations into account in the interpretation of obtained results.
In cases where no subject-specific data is available, it might be helpful to use
a hypothesis-driven approach to investigate the cortical generators of a certain
ERP component. This approach can help in identifying FPs and possible FNs in
the reconstructed sources.

Effect of using different conductivity values

As mentioned in the introduction, studies have shown that accurate electrical
conductivity values for the different tissue types included in the head model are
important for accurate source localization of the EEG signals (Vorwerk et al.,
2019). Furthermore, McCann et al. (2019) have shown that the electrical con-
ductivities assumed for each compartment likely vary between individuals. As
the measurement of the electrical conductivities of the different tissue types
in individuals is not feasible, the conductivity values used in the created head
models will thus always be (slightly) off. To investigate the effect of this error
on the localization accuracy, two different FEM models with different conduc-
tivity values assigned to the tissues were used in this work. Differences were
found in all of the measures used in the quantification of the results with the
models using the 'true’ conductivities giving better results. These found differ-
ences are however small, both when the subject-specific and the template-based
head models are used.

Furthermore, it should be noted that the subject-specific FEM model using the
’true’ conductivities was also used in the simulation of the data. This model was
thus also expected to yield the best outcome, as an identical transformation was
applied to reconstruct the data. Differences between the simulated data and
the reconstructed activity in this case can thus be attributed to the assumptions
made by the inverse solutions, as this is a non-unique problem. These results
thus indicate that, while it is important to use the most accurate conductivity
values possible, the effect of deviations in these values is much smaller than the

effect of using subject-specific vs. template-based head models.
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Effect of FEM vs. BEM models

In this work, different head modelling approaches were used for the reconstruc-
tion of the simulated data, namely two FEM models with different conductivity
values and a BEM model. As discussed in the previous section, the effect of
using different conductivity values for the different tissue types in the FEM
models is more limited than the use of subject-specific head models. However,
much larger differences are found between the results obtained using the FEM-
based head models and the results using the BEM-based models. Looking at
the subject-specific reconstruction, the FEM-based models perform better than
the BEM-based models across all measures. This result was expected, as BEM
models are much less accurate than the FEM-based models that were used be-
cause they are unable to take into account cerebrospinal fluid (CSF). Also the
influence of including more head tissue compartments in the model has been
studied extensively before (Vorwerk et al., 2014; Neugebauer et al., 2017).
However, again it is also important to note that, as FEM models were used in
the simulations, this is also the case for which the best results were expected.

It is however interesting to note that the quantitative results obtained us-
ing the template-based head models are similar across the different modelling
approaches. For some networks, the template-based BEM models even per-
form slightly better than the template-based FEM models in terms of sensitiv-
ity. These quantitative results were not what was expected based on the results
that were plotted at the group level (Figure 7.3), where the localization errors
seem larger for the template-based BEM models compared to the FEM-models.
Combining these results indicates that the localization errors made using the
template-BEM model are less systematic than those made using the template-
FEM models, i.e. the localizations and the associated errors that are obtained
at the individual level are more random than in the case of the FEM models.
This will cause some of the reconstructed ROIs to cancel out at the group level,
seemingly indicating that these ROIs were not reconstructed using these mod-
els.

Effect of the Signal-to-Noise Ratio

While the effect of the SNR is limited in this simulated dataset, some differ-
ences are still observed between the lowest simulated SNR, -20 dB, and the
other SNR levels. For the subject-specific FEM models, for example, lower pre-

cision, higher localization errors and less spatial dispersion are found for the
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lowest SNR level compared to the others, indicating that more FPs are found
for the lower SNRs. It is important to take these results into account when in-
terpreting findings obtained from real data. In the case of low SNRs, multiple
sources may be reconstructed which are not related to the true underlying ac-
tivity of the ERB even after averaging over all subjects (cf. Figures C3 to C6 in
appendix). Another possibility is that due to the larger localization errors and
smaller reconstructed volumes, the obtained sources are not pertained after av-
eraging over all subjects, giving the impression that this source is not present in
the data. The differences between the averaged results and the quantifications
illustrate the importance of also looking at the results of the reconstruction at
the level of the individual subject. Furthermore, these results again illustrate
that using a hypothesis-driven approach for interpreting the findings can help.
Other methods to increase the SNR of the data might be useful, such as using
averaged data instead of individual trials when possible.

However, more and more interest is found in functional connectivity analysis
in source space to investigate the networks underlying brain activity. As many
functional connectivity measures focus on spectral features of the data, in this
case, a priori averaging of the epochs is not possible, as high-frequency infor-
mation would be averaged out in the data, as well as time- but not phase-locked
activity (Simoes et al., 2003). While researchers have already investigated the
influence of the head model in terms of neglecting white/grey matter distinc-
tion or CSF on EEG source connectivity analyses (Cho et al., 2015), this work
shows that also the SNR of the data should be taken into account.

Effect of different networks

Finally, the results show some differences in localization performance for the
different networks that were simulated. Looking at the averaged reconstruc-
tions, it is clear that not all ROIs were reconstructed for the different net-
works. When using the template-based FEM models for the reconstruction
of the fronto-parietal and the fronto-occipital networks, no frontal ROIS were
found in the right hemisphere in the averaged reconstructions. However, the
quantitative results found for these networks indicate mean sensitivity values
of 0.75. One possible explanation for the absence of the frontal sources could
be the reduced amplitude of the simulated signals in these ROIs compared to
the signals in the respectively parietal and occipital sources.

Looking at the results obtained using the BEM-based head models, large lo-
calization errors were found across the different networks. For all networks
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except the fronto-occipital network, the different ROIs appear to have been lo-
calized as single clusters per hemisphere, indicating that the BEM-based models
have more difficulty separating sources of activity. This seems probable, as in
the simulated ERP-data at the sensor level, also the fronto-occipital network is
the only network in which a clear separation of the underlying sources could
be seen in the topography and the waveform of the obtained ERP. Furthermore,
for the networks including occipital sources, an upward displacement of these
sources could be seen when using the BEM-based head models. Similar mis-
localization results were also found by Huang et al. (2016) and Akalin Acar
and Makeig (2013), who both identified larger localization errors for occipital
sources when using less accurate head models. Multiple explanations can be
found in literature for these errors in the localization of occipital sources. The
occipital lobes are complex structures with many folds and curves with signif-
icant inter-subject variability. Using less accurate head models in this case can
thus increase the mislocalization of the sources. In addition to this, also the oc-
cipital bone is in general thicker with again significant inter-subject variability.
Modelling this using a non-accurate head model will again lead to larger er-
rors in the head model, reducing the localization precision (Michel and Brunet,
2019).

A limitation of this study was that only a limited number of ROIs were in-
vestigated. As it was shown that the underlying sources influence the accuracy
of the reconstruction, in future work, a more generalized approach should be
developed to investigate the effect of different networks more systematically.
While such approaches have already been proposed for focal sources (Samuels-
son et al., 2021), this problem is much more challenging when considering si-
multaneous activations and remains, to the best of our knowledge, currently

unsolved.

7.4.2 Real task data

Localization of the high-density EEG data in the VEPCON dataset, recorded
while presenting faces and scrambled faces to subjects, resulted in different
sources using the subject-specific head models and the average head model.
Using the subject-specific FEM head models, the N170 component was mainly
localized to the left and right fusiform areas. These results correspond to
the sources found in other studies (Rossion and Jacques, 2012), both using
EEG/MEG data (Henson et al., 2007) and fMRI (Haxby et al., 2000). While the
fusiform area is considered the core generator of the N170, there is evidence
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suggesting that also the prefrontal cortex plays a role in the processing of faces
and that this region contributes to the top-down modulation of face processing
(Kornblith and Tsao, 2017; Gazzaniga et al., 2009). There was however no
activation found in this region in this work.

Looking at the results obtained using the template FEM models, again the
left and right fusiform areas were found as generating sources of the N170.
However in this case, also multiple other sources were found, such as the frontal
and temporal pole and the occipital lobe. Finally, using both the subject-specific
and the template-based BEM models, the N170 component was localized more
in the occipital lobe with the activity extending towards the posterior inferior
temporal lobe, rather than in the fusiform area. As the results obtained using
the subject-specific FEM head models correspond well to results reported in the
literature, these results indicate that while the template-based head model can
be used for the localization of ERP sources, interpretations should be done with

care, as mislocalizations of the sources and localization errors can be present.

7.5 Conclusion

In this study, the effect of using template head models instead of subject-specific
head models was investigated in localizing event-related potentials (ERPs) and
in quantifying the associated localization error using both simulated and real
data. As expected, the results indicated that subject-specific head models out-
perform template head models in terms of localization accuracy. Using template
head models also increases both false positives and false negatives in source re-
constructions. Also the effect of using more accurate FEM models compared
to simple BEM models was investigated. As found in previous studies, more
anatomically accurate head models result in better localization performance.
When template-based head models are used however, similar quantitative re-
sults in terms of sensitivity, precision, localization error and spatial dispersion
were found for the FEM- and BEM-based head models, even though the pat-
terns of mislocalizations are different. Furthermore, the role of the SNR on the
localization performance was investigated, with the results showing that low
SNRs may lead to larger errors. Finally, the influence of the simulated network
also has a significant effect on the accuracy of the source localization, with the
results indicating that some regions, such as the temporal and occipital lobes

are more prone to mislocalization when using template head models.
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While template head models offer a practical alternative for ERP source local-
ization when no subject-specific MRI data is available, their limitations should
be considered, and the results should be interpreted with caution. A priori
knowledge and hypothesis-driven approaches are crucial for interpreting re-
sults obtained with average head models. Interestingly, however, is that while
creating more accurate and detailed head models is beneficial for the localiza-
tion accuracy when using subject-specific head models, this is not the case for
template head models. As many studies investigating the effect of modelling
approaches for ESI focus on focal sources, it would be beneficial if systematic
approaches to assess the influence of multiple sources on localization accuracy

would become more prominent.
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lesions on scalp ERPs

Abstract

Electroencephalography (EEG) is widely used in both research and clinical set-
tings, yet its accuracy can be significantly impacted by subject-specific anatom-
ical anomalies such as brain lesions and skull defects. This study investigates
the effects of glioma-related brain lesions and craniotomy-induced bone dis-
continuities on scalp-recorded EEG signals. To do this, single- and multi-source
simulations were created using individualized forward models with and with-
out these structural anomalies. We assessed changes in signal amplitude and
topography, and identified the most affected electrodes. Real EEG recordings
were also analyzed to evaluate how these anomalies influence the topography
and source localization of early auditory evoked responses (P1 and N1 ERP
components). Both single- and multi-source simulations showed that the dis-
tortions in the EEG signals depend on the location of the neural source and the
location of the lesion. Electrode-level analyses showed that these distortions
were most pronounced at the electrodes near the bone flap, and thus near the
lesions. Real ERP data supported these findings: a subject with lesions near
the auditory cortex showed notable topographic deviations over time for the P1
and N1 ERP components, while a subject with a frontal lesion showed minimal
changes in the scalp EEG. These results highlight the need to include detailed
brain and skull anatomy in EEG models, especially in studies that track changes
over time in clinical populations.
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8.1 Introduction

Event-Related Potentials (ERPs) are a valuable tool for investigating brain activ-
ity. Recorded using electroencephalography (EEG), they enable researchers to
study neuronal processes underlying cognitive functions with millisecond pre-
cision (Luck, 2014). Due to its excellent temporal resolution and direct link to
neural activity, EEG has played a critical role in advancing our understanding of
cognitive processing. Beyond cognitive neuroscience, EEG is increasingly used
in clinical and translational research for studying neuroplasticity in individuals
with brain damage caused by a stroke or brain tumor.

Neuroplasticity refers to the brain’s ability to reorganize itself in response to
injury, involving structural and functional adaptations that help maintain or re-
store brain functions, such as cognitive and motor functions. In the context of
gliomas, Cirillo et al. (2019) defined neuroplasticity as "the biological dynamic
ability of the central nervous system to reorganize itself in response to injuries."
Understanding neuroplasticity is essential for optimizing treatment strategies,
including neurosurgical interventions, and for tracking recovery and functional
reorganization over time. Given its excellent temporal resolution and sensi-
tivity to dynamic changes in neural activity, EEG is well-suited for studying
neuroplasticity. Unlike fMRI, which primarily reflects slow hemodynamic re-
sponses, EEG captures rapid changes in brain function and can provide insights
into functional reorganization. Moreover, EEG’s non-invasive nature makes it
particularly useful for longitudinal studies that monitor neuroplasticity over
extended periods.

For patients with gliomas located in eloquent brain areas, i.e. regions respon-
sible for critical functions such as language, motor control, and sensory process-
ing, neurosurgical approaches aim to maximize tumour resection while preserv-
ing critical functions, such as language processing. Awake craniotomy with in-
traoperative direct electrical stimulation (DES) has become the gold standard
for glioma resection in these cases. This technique allows functional mapping
of the brain to identify and spare essential cortical and subcortical structures,
thereby reducing the risk of postoperative neurological deficits (Rahimpour
et al., 2019; Surbeck et al., 2015). Compared to resections performed un-
der general anaesthesia, awake craniotomy has been shown to improve both
the extent of tumour resection and functional outcomes (De Witt Hamer et al.,
2012).
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While these surgical advancements have improved patient outcomes, they
also introduce challenges for EEG research. A craniotomy—the surgical re-
moval of part of the skull—creates structural changes that can significantly
affect EEG recordings. The (temporary) removal of a portion of the skull al-
ters the conductivity profile of the head. Previous research has demonstrated
the importance of accurate head modelling in EEG source reconstruction, par-
ticularly with respect to skull conductivity (Dannhauer et al., 2011; Vorwerk
et al., 2014; Montes-Restrepo et al., 2014). Additionally, studies have shown
that skull defects, such as those resulting from craniotomy or traumatic in-
jury, can distort the measured EEG signals (Flemming et al., 2005). In stroke
patients, Piai et al. (2024) highlighted the impact of cerebrospinal fluid (CSF)-
filled lesions on EEG amplitude and topography, further emphasizing the role
of structural abnormalities in shaping electrophysiological recordings.

Despite growing awareness of these structural influences, the extent to which
lesions caused by gliomas and craniotomies distort EEG/ERP signals remains in-
sufficiently understood. Given that EEG is frequently used to assess neuroplas-
ticity in glioma patients before and after surgery, it is crucial to determine how
these anatomical alterations influence EEG measurements. The present study
aims to quantify the impact of glioma-related lesions and craniotomy-induced
skull defects on EEG, particularly in terms of amplitude (magnitude difference,
MAG%) and topographic distortions (relative difference measure, RDM%). By
simulating EEG signals using different head models, we assess how lesion-
related structural changes influence scalp-level recordings and identify the elec-
trodes most affected by these alterations. We also evaluate if the predictions
based on the simulations correspond to the results found using real EEG data
recorded in an auditory task in two different subjects, one with a lesion near the
left auditory cortex and one with a left frontal lesion. Understanding these ef-
fects is essential for improving the accuracy of EEG-based assessments in glioma
patients and ensuring reliable interpretations of neuroplasticity-related changes

over time.

8.2 Methods

8.2.1 Participants and Data acquisition

For this study, two patients diagnosed with a brain glioma in an eloquent lan-

guage area were recruited from the department of Neurosurgery at the Ghent
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University Hospital in Belgium. The patients were diagnosed by an experi-
enced neurosurgeon and neuroradiologist based on magnetic resonance imag-
ing (MRI) and diffusion tenson imaging (DTI). These images were also used to
establish the tumour location and to assess the subcortical glioma infiltration.
Based on this information, an awake craniotomy with intraoperative language
mapping was selected as part of the course of treatment. Both participants are
Dutch native speakers and were between 40 and 60 years of age at the time
of surgery. This study was approved by the Ghent University Hospital Ethical
Committee (ONZ-2022-0127) and all participants provided informed consent.

Anatomical T1-weighted MRI images were collected for both patients at the
Ghent University Hospital with a 1.5T SIEMENS-MAGNETOM Avanto scanner
both pre- and postoperatively. The preoperative image was taken 1 day before
the surgery, while postoperative images were collected both three and nine
months after the surgery. In Figure 8.1, these images are shown for both pa-
tients, allowing us to evaluate the changes in the brain anomaly over time. In
the pre-op image, the tumor itself is visible, while in the post-op images a lesion
filled with oedema and/or cerebrospinal fluid (CSF) can be seen. At each of
these evaluation moments, also EEG data was recorded for both patients. An
attentive auditory oddball paradigm with phonemic contrasts was used to ob-
tain an electrophysiological language assessment through the recording of the
P300 ERP component. The EEG data was recorded at a sampling rate of 500 Hz
with a 128-channel EasyCap electrode cap using a BrainVision BrainAmp am-
plifier in combination with the BrainVision Recorder software (Brain Products,

Germany). Impedances were kept below 20 k{2 throughout the recording.

8.2.2 MRI processing and head model construction

For both patients, four individual forward models were computed: one for each
of the three time points (T1 - pre-op; T2 — 3 months post; T3 — 9 months post),
and one in which the lesion was not considered, creating a “normal”, refer-
ence brain. The T1-weighted MRI images at the different evaluation moments
were used to create three finite element method (FEM) head models for each
patient. In the first step, the SimNIBS-charm pipeline (Saturnino et al., 2019)
as implemented in the Brainstorm toolbox (Tadel et al., 2011) was used to
segment the MRI images into nine different tissue types: white matter, grey
matter, CSE compact bone, spongy bone, scalp, eyes, blood and muscle. As this
tool is unable to segment other tissue types, manual segmentations of the tu-
mour (preop), and oedematous tissue, CSE titanium fixtures and the bone flap
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Subject 1 Subject 2

3 months
post-op

9 months
post-op

Figure 8.1. Multislice images of the brain tumours and post-surgery lesions on
a structural T1 MRI scan of both subjects.

(postop) were created in ITK-snap (Yushkevich et al., 2006) based on the cor-
responding MRIs. Subsequently, hexahedral volumetric meshes representing
the geometry of the head were created with a resolution of 1 mm?3. Conduc-
tivity values were specified for each tissue type based on the weighted average
means from the meta-analysis by McCann et al. (2019): 0.22 S/m for white
matter, 0.47 S/m for grey matter, 1.71 S/m for the CSE 0.006 S/m for the
compact bone, 0.048 S/m for the spongiform bone, 0.41 S/m for the scalp,
0.33 S/m for the eyes, 0.57 S/m for blood and finally 0.32 S/m for the muscle
layer. For the gliomas, a conductivity value of 0.50 S/m was used based on
values found for low-grade gliomas in the work of Latikka and Eskola (2019),
where the resistivity of different types of human brain tumours was investigated
in vivo. Conductivity values for titanium (2.38x10°S/m), oedematous tissue
(0.80 S/m), and the bone flap (0.50 S/m) were determined based on literature
values and physiological reasoning. The conductivity for titanium is consistent
with values reported for commercially pure titanium. A conductivity value of
0.80 S/m was assigned to oedematous tissue, as a physiologically plausible es-
timate lying between the reported values for vasogenic edema (~0.71S/m) and
interstitial edema (~2.0S/m) (Lok et al., 2023), under the assumption that the
postoperative edema present in our subjects likely exhibits mixed characteris-
tics of these two types. The conductivity value for the bone flap was obtained
from averaging the conductivities of dominant bone defect constituents during

early bone healing, namely extracellular fluid, hematoma, and cartilage (Verma
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et al., 2022). Equivalent current dipoles were distributed within the grey mat-
ter to create the source model. The dipoles were spaced 3 mm apart, resulting
in a dense and uniform grid of dipoles throughout the cortical surface. The
forward model was subsequently calculated using the finite element method
based on the SimBio software as implemented in the FieldTrip toolbox (Oost-
enveld et al., 2011; Vorwerk et al., 2018). All intermediate steps were visually
inspected to ensure correct tissue segmentations, mesh generations and proper

alignment of the head, source model and electrode positions.

8.2.3 Simulations

Single-source simulations

To examine how individual cortical sources contribute to the scalp EEG signal,
we conducted single-source simulations by systematically activating dipoles
across the cortical surface. Each dipole was assigned unit-amplitude activity.
The forward models, both with (T1, T2, T3) and without (T0) lesions, were
used to project these source activations to the scalp, simulating the resulting
EEG topographies. The single-source simulations provided a baseline reference
for understanding how dipole locations affect EEG scalp distributions. These
simulations also allowed us to establish a controlled dataset for later compar-
isons, particularly in evaluating how lesions influence signal propagation.

Multisource ERP simulations

While single-source simulations provide valuable insight into how anomalies
affect the forward model, they do not capture the complexity of cognitive event-
related potentials (ERPs), which typically involve multiple simultaneously ac-
tive brain regions. Given that cognitive ERPs are commonly the primary focus
when assessing patients after brain surgery, we developed a set of simulations
involving four distinct active cortical regions. The time courses of the differ-
ent regions-of-interest were derived from an auditory oddball paradigm dataset
(Abrahamse et al., 2021) and previously used to generate simulations by Piai
et al. (2024) to study CSF-filled lesion effects. Artifact-free EEG data was seg-
mented into epochs from 300 ms before to 1000 ms after the auditory stimulus
onset. ICA decomposition was applied to all epochs and used to identify four
primary components, assumed to represent cortical source activity from four

different sources. The component time courses were then averaged over tri-
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als for the two different experimental conditions (362 standard and 57 deviant
trials), resulting in four distinct time courses per condition.

Four different dipole configurations were simulated, representing potential
neuronal sources of a cognitive ERP. In the first scenario, dipoles were posi-
tioned in the left superior temporal lobe, the left inferior frontal lobe, and the
left and right supramarginal gyrus (parietal lobe), as indicated in Figure 8.2.
The second scenario maintained the same dipole locations but swapped the
time courses of the first and second dipoles. In the third scenario, we returned
to the first configuration but relocated the left supramarginal gyrus dipole to
the right temporal lobe. Finally, in the fourth scenario, the right supramarginal
gyrus dipole from the third scenario was moved to the right inferior frontal
gyrus, creating a symmetrical dipole distribution. Each dipole was assigned
distinct time courses for two experimental conditions. The simulated activity
was then projected to the scalp using the different forward models, allowing us
to investigate the effects of dipole location and time course variability on the

resulting scalp EEG.

8.2.4 Evaluation of the effect of tumour- and craniotomy-
induced lesions on simulated data

As we were interested in the effect of the tumour- and craniotomy-induced le-
sions on the measured EEG signals, we evaluated the differences in magnitude
and topography of the signals obtained using the forward models that accu-
rately incorporated these lesions and the reference model (T0), in which no
lesions were considered. To quantify these differences, we used the magnitude
difference measure (MAG%) and the relative difference measure (RDM%). The
magnitude difference measure (MAG%) captures variations in overall signal

strength and is defined as

Vel =1V,
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where ||.|| denotes the Euclidean norm and V;, represents the (Nx1)-vector

MAG%; =100 - (

of the EEG signal, with N the number of electrodes, for the model based on
the MRI-scan taken before the operation (T1), three months after the opera-
tion (T2) and nine months after the surgery (T3). A high MAG% indicates a
substantial difference in signal magnitude due to the presence of lesions.
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Magnitude (nA*m)

Figure 8.2. Time courses of the activity for four sources in a cognitive paradigm
with conditions 1 and 2 (taken from an empirical P300 oddball task). Each
set of the standard and deviant dipole activity time courses was assigned to a
dipole, as indicated for scenario 1.

To assess differences in EEG topography, we used the relative difference mea-
sure (RDM%), which is independent of absolute magnitude and quantifies dis-

crepancies in the spatial distribution of EEG signals. It is defined as

el vl

A low RDM% value indicates a similar topographical distribution between

RDM%, = 50- H (8.2)

the two models, whereas higher values suggest significant alterations due to

the lesions.

Single-source evaluation

To evaluate the impact of lesions on the measured EEG, we conducted two

analyses: one focusing on how lesion-induced differences in simulated EEG
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signals varied depending on dipole location, and another examining how the
presence of lesions affected each electrode’s sensitivity to brain-wide activity.

In the first analysis, we assessed how lesion-induced differences in simulated
EEG signals varied depending on dipole location. As previously described, we
simulated unit dipole activity at each cortical source, oriented perpendicular
to the cortical surface, and computed the resulting EEG signals for both the
lesion (T1, T2, T3) and no-lesion (TO) models. We then calculated MAG%
and RDM% values at the scalp level for the simulated data of each individ-
ual dipole to quantify changes in signal strength and spatial distribution, re-
spectively. Higher values indicated greater discrepancies between the models,
allowing us to identify the sources in the brain on which the presence of the
lesions had the most significant impact. In addition, to disentangle the influ-
ence of the different types of lesions, we also constructed additional forward
models in which either the tumour lesion or the craniotomy-related bone flap
lesion was omitted. Specifically, when excluding the tumour lesion, the affected
region was modeled as if it consisted of gray matter, based on the tissue seg-
mentations produced by SimNIBS, Similarly, when excluding the bone flap le-
sion, the corresponding region was modeled as compact and spongiform bone,
again following the SimNIBS tissue segmentations. These additional models
were generated for T2 and T3, as those are the only time points where both
lesion types were present, allowing us to assess their individual contributions
to the observed EEG alterations.

While the first evaluation focused on differences per dipole (i.e., across elec-
trodes), the second analysis reversed the perspective to assess lesion-induced
changes per electrode, across all dipoles. For each electrode, we extracted
the corresponding row of the lead field matrix, representing the spatial pat-
tern of contributions from all dipole sources. By computing MAG% and RDM%
across these electrode-specific vectors, we quantified, respectively, changes in
the overall sensitivity and in the spatial distribution of contributing sources to
each electrode. This allowed us to identify electrodes for which the aggregate

cortical input was most altered due to the tumour and craniotomy lesions.

Multisource evaluation

In the evaluation of the multi-source simulations, we first computed the ERP
difference wave between condition 1 and condition 2, averaged between 0.340

s and 0.360 s post-stimulus. Then, as in previous analyses, we calculated the
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MAG% and RDM% for each scenario by comparing simulations with and with-
out modelled lesions.

8.2.5 Evaluation of the tumour- and craniotomy-induced le-
sions on real data

To evaluate the effects of the tumour- and craniotomy-induced lesions on the
measured EEG activity, we focused on the auditory P1 and N1 components that
were obtained from the auditory oddball task with phonemic contrasts. These
early components were selected because they have relatively well-defined and
focal generators in the left and right auditory cortices, making them easier to
localize and interpret compared to later or more distributed ERP components.
For each subject and at each evaluation time point, we assessed the P1 and
N1 responses in terms of amplitude and scalp topography, and compared these
measures to those obtained from a normative dataset of 60 healthy controls.
Additionally, we performed electrical source imaging (ESI) using eLORETA
to estimate the neural generators of the components. We compared source
reconstructions obtained at each time point using both the model including the
lesion (T1, T2, T3) and the one (TO) that did not. To provide a reference for
interpreting patient data, we also estimated the generators of the components
in the healthy control group. This allowed us to assess the impact of lesion

inclusion on source localization accuracy.

The auditory oddball paradigm

In the attentive auditory oddball paradigm designed to elicit the P300 com-
ponent, the stimuli consisted of phonemes that differed only in place of artic-
ulation. The standard stimulus [bo] was presented in 80% of trials, and the
deviant stimulus [ge] in 20% of trials. Both auditory stimuli were 250 ms in
duration.

The paradigm included 160 standard and 40 deviant stimuli, presented in
pseudorandom order with an interstimulus interval (ISI) of 2000 ms, resulting
in a total duration of approximately 8 minutes. Prior to the main task, partici-
pants completed a practice block consisting of 16 standard and 4 deviant trials
to familiarize themselves with the task.

To assess stimulus categorization, participants were instructed to press a but-
ton (Chronos response box, Psychology Software Tools, Pittsburgh, PA, USA)

whenever they detected a deviant stimulus. All stimuli were delivered binau-
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rally at a comfortable listening level via ER1-insert earphones. Stimulus presen-
tation was controlled using E-Prime 3.0 (Psychology Software Tools, Pittsburgh,
PA, USA). To minimize eye movement artifacts, participants were instructed to
focus on a central white fixation cross displayed on a black background through-
out the task.

ERP data processing

The EEG preprocessing was performed in MNE-Python (Gramfort et al.,
2013). Initially, noisy electrode channels were automatically detected based
on four criteria: extreme amplitude deviations, low correlation with other
channels, low predictability from surrounding channels, and the presence of
unusually high-frequency noise (Appelhoff et al., 2022; Bigdely-Shamlo et al.,
2015). Channels identified as bad were excluded from further analysis and
interpolated only after artifact correction had been completed. Continuous
EEG data were bandpass filtered using a zero-phase Butterworth filter with
cut-off frequencies of 0.3 Hz and 30 Hz and a 12 dB/octave slope. Additionally,
a 50 Hz notch filter was applied to remove line noise. To remove ocular
and other stereotypical artifacts, independent component analysis (ICA)
was performed using the FastICA algorithm (Ablin et al.,, 2018). The data
were then re-referenced to the common average reference. Finally, the EEG
recordings were segmented into 1500 ms epochs, from 300 ms before to 1200
ms after stimulus onset. Baseline correction was applied using the 300 ms
pre-stimulus interval. Trials were excluded based on the following artifact
criteria: a maximum gradient exceeding 75 11V, a peak-to-peak amplitude over
150 pV, amplitudes beyond £100 1V, or low activity below 0.5 nV sustained
for at least 100 ms.

As we are interested in the P1 and N1 components, which are associated with
auditory processing and are thus elicited in both of the conditions, we averaged
over all trials to obtain the evoked responses (i.e. we did not average separately
for both conditions). To quantify and visualize the P1 and N1 component, we
evaluated the evoked response in a 40 ms time window around the peak at six
frontocentral electrode sites (F3, Fz, F4, C3, Cz, C4). The latency of the peak
was calculated between 70 ms to 110 ms after stimulus onset for the P1 and
between 120 ms and 180 ms post-stimulus onset for the N1 component.
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ERP source reconstruction

Source localization of the evoked responses was performed using the eLORETA
inverse solution as implemented in MNE-Python (Pascual-Marqui et al., 2011).
For each patient and at each evaluation time point, i.e. pre-op (T1), three
months post-op (T2) and nine months post-op (T3), source reconstruction was
conducted twice: once using a head model that included the lesion and once
using a model that did not. This comparison enabled us to assess the effect
of incorporating the lesion into the forward model on the accuracy and spatial
distribution of the estimated sources.

Noise pre-whitening was applied using the noise covariance matrix to sta-
bilize the inverse solution. The resulting source estimates were represented
as the absolute current source density (CSD), computed as the magnitude of
dipole activity, regardless of orientation. This approach ensures that the analy-
ses focused solely on source intensity.

For the normative dataset, no individual anatomical scans were available,
so we used the fsaverage template brain provided by FreeSurfer to construct a
common forward model. Evoked source activity was averaged across all healthy

controls to provide a normative reference for comparison.

8.3 Results

8.3.1 Simulations

Single-source simulations

In Figure 8.3, the MAG% and RDM% values at the scalp level are presented
for the simulated data of each individual dipole in Subject 1, while correspond-
ing figures for Subject 2 can be found in the supplementary materials (Figure
S1). The first row of Figure 8.3 represents a model incorporating all lesions,
including those resulting from tumor resection as well as craniotomy-induced
lesions. The second row isolates the effects of tumor-related lesions, while the
third row focuses solely on the impact of craniotomy-related lesions.

The results indicate that dipoles located near the lesions exhibit the most pro-
nounced differences in both magnitude and topography. However, these effects
are not limited to the immediate vicinity of the lesions but extend across much

of the left hemisphere. This widespread influence appears to be predominantly
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Figure 8.3. The differences in magnitude (left) and topography (right) of the EEG signals generated for each dipole using models with
(T1, T2, T3) and without (TO) lesions.
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driven by craniotomy-related lesions, while the effects of tumor-related lesions
are more localized.

To further investigate how the presence of lesions affected each electrode’s
sensitivity to brain-wide activity, we quantified changes in the overall sensi-
tivity and in the spatial distribution of contributing sources to each electrode.
This was done by calculating MAG%- and RDM%-values for each electrodes
across all dipoles. High MAG% values indicate substantial changes in signal
magnitude at a given electrode, while elevated RDM% values reflect significant
shifts in the distribution of cortical sources influencing that electrode. These
results are shown in Figure 8.4. The electrodes exhibiting the highest changes
are mainly located near the lesion site and demonstrate significant disruption
in sensitivity profiles, with elevated MAG% indicating overall amplitude differ-
ences and increased RDM% reflecting shifts in cortical input patterns.

Notably, both the magnitude and spatial pattern of lesion-induced sensitivity
changes, as captured by MAG% and RDM% values, varied across the different
time point comparisons (T1 vs. TO, T2 vs. TO, and T3 vs. TO). In the pre-
operative phase (T1 vs. TO), changes were minimal and largely restricted to
a small subset of electrodes in close proximity to the tumour site. In contrast,
comparisons at later stages—T2 vs. TO and T3 vs. TO—revealed more extensive
and topographically coherent patterns of change. In these conditions, elevated
MAG% and RDM% values were concentrated around electrodes along the mar-

gins of the craniotomy site.

Multisource simulations

To investigate the influence of dipole location, time-course, and lesion location
on magnitude and topography differences, multiple multisource simulations
were conducted. Figure 8.5 provides an overview of these simulations, com-
paring the differences observed between the TO model (without lesions) and
the T1, T2, and T3 models (with lesions). Additionally, it presents the calcu-
lated MAG% and RDM% values for each case.

In the first scenario, the largest discrepancies between EEGs obtained using
the TO and T1/T2/T3 models were observed at electrodes positioned near the
bone flap. This suggests that lesion-induced effects are predominantly local-
ized. In the second scenario, the time-courses associated with the first two
dipoles were swapped. This alteration led to distinct difference patterns com-
pared to scenario 1, indicating that the time series of dipole activity significantly
influences the results. In the third scenario, a dipole was moved from the left
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Differences in signal MAGNITUDE

Differences in DISTRIBUTION of sources

Figure 8.4. Lesion-induced changes in electrode sensitivity to cortical sources.
MAG% (top) and RDM% (bottom) values are shown for each electrode, quan-
tifying alterations in signal magnitude and spatial distribution of contributing
sources, respectively. The topographic plots visualize the spatial distribution
of sensitivity changes across the scalp. The electrodes marked as dark grey
hexagons indicate electrodes closer than 2 c¢m to the boneflap
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Figure 8.5. Overview of multisource EEG simulations comparing the TO model (without lesions) to the T1, T2, and T3 models (with
lesions). The figure displays the differences in the EEG, along with the calculated MAG% and RDM% values for each scenario.
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hemisphere to the right hemisphere. This relocation introduced notable but
localized effects on the recorded EEG, again particularly at electrodes near the
lesion. In the fourth scenario, the observed effects closely resembled those in
scenario 3. When a dipole was shifted within the right hemisphere, the over-
all impact on EEG measurements was relatively minor, suggesting that dipole
movement within the right hemisphere has a limited influence compared to
changes within the left hemisphere. Finally, in the fifth scenario, simulations
were conducted on a different subject while maintaining the same dipole lo-
cations and time courses as in scenario 1. The results revealed similar overall
trends, with the most prominent differences localized around the electrodes
near the bone flap. However, subject-specific variability influenced the magni-

tude of these differences.

8.3.2 Real data

For each patient, real EEG data were recorded during an auditory oddball task.
We analyzed the early auditory components—specifically the P1 and N1—for
both patients and compared them to data from a normative dataset of healthy
controls. The results are presented in Figure 8.6.

Regarding the P1 component, the topography for Subject 1 at T1 closely re-
sembles that of the healthy controls. In contrast, at time points T2 and T3,
an increase in lateralized activity is evident in the electrodes located near the
bone flap. While the healthy controls and recordings at T1 exhibit symmet-
rical activation, T2 and T3 show a pronounced increase in activity in the left
hemisphere, particularly over the electrodes close to the bone flap.

A similar pattern is observed for the N1 component. Across all time points,
a disruption in hemispheric symmetry is present, with the most pronounced
deviations from the normative data again localized to the electrodes near the
tumor site and bone flap lesions. For Subject 2, on the other hand, no clear
disruptions can be found. While the overall amplitude of the components shifts
slightly over time, the topographies remain similar.

Both ERP components were then also source localized to see which sources
are identified (Figure 8.7). For the healthy controls, both the P1 and the N1
were localized to the temporal cortex, as expected from literature (Eggermont
and Ponton, 2002). For both patients and at each evaluation point, the source
localization of the ERP components was performed twice, i.e. once using the
forward models in which the lesions were incorporated and once using the mod-
els without the lesions. The results show that the sources obtained at T1 using
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Figure 8.6. The topographies of the P1 and N1 ERP components of the healthy
controls, and of both patients at the different evaluation moments.

each of the models are very similar. For T2 and T3 however, clear differences
can be found in the obtained localizations, particularly for Subject 1. When not
taking into account the lesions in the forward model, only the sources close to
the left temporal cortex are found, while no activity in the right temporal cor-
tex was identified. In contrast, when the head model accounted for the lesions,
activity was also detected in the contralateral (right) temporal cortex for both
the P1 and N1 components, suggesting that lesion-aware modeling enables a
more complete and accurate reconstruction of bilateral cortical activity.

8.4 Discussion

This study evaluated the impact of glioma-related lesions and craniotomy-
induced skull defects on scalp-recorded EEG signals through individualized
forward modeling. By simulating EEG activity using head models both with
and without these structural abnormalities, we assessed how lesion-induced
changes affect scalp-level recordings and identified the electrodes most
influenced by such alterations. Additionally, we examined real EEG data to
investigate how the topographies of the P1 and N1 components, as well as
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Figure 8.7. The obtained localizations of the P1 and N1 ERP components of
the healthy controls, and of both patients at the different evaluation moments.
For both patients, source localization was performed using both the accurate
models, i.e. including the lesions, and using the forward models in which the
lesions were ignored.

their source localizations, are affected by the inclusion or exclusion of lesions
in the forward model.

Our single-source simulations demonstrated that both tumor presence and
craniotomy-related skull discontinuities can significantly alter the amplitude
and spatial distribution of scalp EEG signals. While the effect was quite local-
ized for the tumor-related lesions, i.e. mainly for the dipoles close to the tumor
changes in the measured scalp-EEG were observed, the effect of the boneflap
was spread out across the left hemisphere. The changes in magnitude and to-
pography were still most strongly present for the dipoles close to the boneflap,
but also smaller changes in MAG% and RDM% were found for dipoles located
further away.

To investigate how the presence of lesions affected each electrode’s sensitivity
to brain-wide activity, we quantified changes in the overall sensitivity and in the
spatial distribution of contributing sources to each electrode. By quantifying
electrode-wise changes in both signal magnitude (MAG%) and spatial source

distribution (RDM%), we provide evidence that the presence of a tumour and
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subsequent craniotomy can induce both localized and evolving distortions in
the leadfield. The minimal changes observed in the pre-operative phase (T1 vs.
TO) suggest that the tumour alone exerts only subtle effects on sensitivity, likely
constrained to areas immediately adjacent to the lesion. However, the broader
and more pronounced alterations observed at later time points (T2 vs. TO and
T3 vs. TO) imply a significant influence of the surgical intervention and post-
operative healing processes. These shifts were particularly evident around the
bone flap and lesion site. Importantly, such spatially heterogeneous changes in
sensitivity may affect the interpretability and accuracy of source localization in
lesioned brains, underscoring the need for individualized forward models that
account for patient-specific anatomy and post-surgical changes over time.

These observations were further supported by the multisource EEG simula-
tions, which revealed that the effects of omitting lesions in forward models
depend on the location of the dipoles, their associated time series, and the
anatomical characteristics of the lesions themselves. These simulations illus-
trated that changes in the timeseries or locations of dipoles close to the lesions
have a much stronger influence on the measured scalp-EEG than changes of
dipole locations in the right hemisphere. They also showed that the obtained
results depend heavily on the specific lesion, highlighting that it is important
to evaluate subject data at the individual level. These results are in line with
those obtained for the single dipole simulations.

Finally, we evaluated the results obtained using the real data. In the case of
Subject 1, the topography of the P1 component at T1 closely resembled that
of the healthy controls. At T2 and T3 however, we observed an increase in
lateralized activity in the electrodes near the bone flap. A similar pattern was
found for the N1 component. For this subject, the results showed the most pro-
nounced deviations from the normative data at the electrodes near the tumor
site and bone flap lesions. In contrast, Subject 2 showed no clear disruptions
in topography. Although there is a slight shift in the overall amplitude of the
components over time, the topographies remained consistent across measure-
ments. These findings align with our predictions based on the simulation study.
Specifically, the simulations (Figure 8.3) indicated that dipoles located near the
left auditory cortex lead to substantial changes in both magnitude and topog-
raphy of the scalp-EEG. This is consistent with the observed results for both
the P1 and N1 components, where the expected sources lead to topographical
distortions at T2 and T3. For Subject 2, the most affected dipoles are located
more frontally, and the simulations predict only minor differences in magni-
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tude and topography for dipoles in the auditory cortex. This is again supported
by the real data, which shows only slight differences in the scalp-EEG over the
different time points. Taken together, these results provide further support for
the influence of localized dipoles on the scalp-EEG topography, with variations
in the extent of the distortion depending on the location of the dipoles.

Together, these findings have important implications for EEG research in clin-
ical settings. They emphasize the need for individualized head models when an-
alyzing EEG in patients with structural brain abnormalities and caution against
relying solely on normative datasets or healthy-subject-based models for com-
parisons in neurosurgical populations. Although our simulations were con-
ducted in simplified scenarios without considering channel noise, they clearly
highlight the effects of lesions on EEG signals. Furthermore, the real data col-
lected from patients provides evidence that these observations extend to more
realistic situations.

The single-source simulations revealed how the presence of lesions influences
both the magnitude and topography of EEG signals. In the case of simple multi-
source generator configurations, such as the P1 and N1 components, these
simulations allowed us to predict the impact of lesions on scalp-level measure-
ments. As seen in Subject 2, no dramatic changes in amplitude or topography
occurred for the early auditory evoked responses (P1 and N1) in an individual
with a frontal-lobe lesion. In Subject 1, who had a lesion close to the temporal
cortex were the neural sources of the P1 and N1 are expected, however, a clear
increase in the amplitude measured at electrodes close to the lesion was found.
It is important to note that most cognitive processes are driven by complex, of-
ten unknown sources. Some of these sources may be located near the lesions,
and their distortion will affect the overall EEG signal in nontrivial ways.

The results suggest that the impact of tumors and craniotomy lesions on mul-
tisource configurations—commonly used in cognitive neuroscience—cannot be
ignored. When making group-level comparisons, the heterogeneity in the loca-
tion, size, and shape of lesions complicates the interpretation of scalp-level ef-
fects. This complexity is even more pronounced in longitudinal studies, where
structural changes are expected over time. In such cases, it is crucial to assess
anatomical changes between time points before making valid comparisons.

To accurately account for anatomical changes, it is essential to perform
source-level analyses, where the effects of lesions can be directly modeled. This
approach aligns with findings by Piastra et al. (2022) and Piai et al. (2024)
regarding CSF-filled lesions. Piastra et al. (2022) demonstrated the critical
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impact of accounting for anatomical abnormalities, such as CSF-filled cavities,
in source reconstruction for MEG data. Their study used accurate FEM-based
head models in which they modeled the lesions to simulate MEG data from
subjects with stroke-related CSF-filled cavities, after which they calculated
the reconstructions using models without the cavity. When comparing the
obtained reconstructions to the simulated ground truth, they found that
excluding the cavity led to significant displacement of the reconstructed
dipoles and differences in signal magnitude. Their findings underscore the
importance of accurately modeling anatomical features in neuroimaging,
as ignoring such abnormalities can distort source localization and signal
interpretation. Although their study focused on MEG, the same principles
apply to, and are even more important in, EEG. Just as CSF cavities must be
considered in EEG/MEG source reconstruction, tumors, lesions, and surgical
defects must be accounted for in EEG modeling to ensure reliable results
in clinical populations. Our study builds on these insights by highlighting
the necessity of individualized modeling approaches to address the specific
challenges posed by structural brain abnormalities in EEG analysis.

It is important to note however that performing these analyses at the source
level requires having detailed anatomical information, including an anatomical
scan as well as the expertise in source reconstruction to create these advanced
forward models that include the lesions in the data.

In conclusion, our findings highlight the critical role of individualized mod-
eling for reliable EEG analysis in clinical populations affected by tumors and
craniotomy-induced abnormalities. These results support calls for anatomically
realistic modeling frameworks and contribute to the growing body of literature
emphasizing the need for precision in neuroimaging. Just as previous research
has demonstrated the importance of modeling anatomical features like CSF cav-
ities, our study underscores that pathological and surgical changes to the brain
significantly alter EEG signals. Therefore, these factors must be accounted for
in both research and clinical contexts to ensure accurate interpretations.
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9 | General discussion

The goal of this dissertation was to investigate the neural mechanisms under-
lying speech perception and to critically examine the methodological tools
used to explore these mechanisms using EEG. Speech perception is a complex,
multi-level process that spans from early auditory processing to higher-order
semantic integration. By focusing (mainly) on three well-established ERP
components—the MMN, P300, and N400—we sought to characterize the
cortical generators and their dynamic interactions that support this trans-
formation from sound to meaning. At the same time, the work addressed
a series of methodological challenges that influence how accurately we can
localize and interpret neural activity. Through a combination of empirical EEG
studies and simulation experiments, this dissertation aimed to advance both
our neuroscientific understanding of these ERP components, as well as our

analytic approaches in this type of EEG research.

In this discussion, I will briefly summarize the findings of the different stud-
ies, integrate them within the broader context of cognitive neuroscience and
EEG methodology, and reflect on their implications for future research and clin-
ical applications. First, I will revisit the empirical findings presented in Part II,
highlighting how the MMN, P300, and N400 components reflect distinct but
interconnected stages of speech processing, and how their underlying corti-
cal sources and connectivity patterns contribute to our understanding of the
neural architecture of language. Second, I will focus on the methodological
insights gained from the simulation studies in Part III. These simulations ad-
dressed specific limitations of EEG analysis—namely latency variability, head
model accuracy, choise of inverse methods, and anatomical distortions due to
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lesions—and demonstrated how such factors can impact the interpretation of
ERP data. Special attention will be given to the value of simulations as tools
for validating and improving EEG methodologies. Finally, I will reflect on how
the integration of empirical and simulated data informs the future of EEG re-
search in both healthy and clinical populations. This includes a discussion of
the practical implications for studies involving patients with brain lesions, the
importance of personalized modeling, and the broader relevance of this work

for non-invasive neuroimaging approaches.

9.1 General overview of the findings

The findings presented in Part II provide important insights into how the brain
processes speech at different levels of linguistic complexity. Each of the in-
cluded ERP components was associated with distinct patterns of cortical acti-
vation and connectivity, reflecting their respective functional roles in speech
perception.

In Chapter 4, the MMN elicited during passive phoneme discrimination, re-
vealed a bilateral network including temporal, frontal, and parietal regions.
This suggests that even in the absence of active attention, the brain engages
a distributed system to detect auditory deviations, consistent with theories of
automatic prediction error signaling. In contrast, the P300, associated with ac-
tive categorization, engaged a broader fronto-parietal-cingulate network. This
aligns with prior work linking the P300 to attentional allocation and task-
relevant processing, and highlights how active listening demands greater in-
tegration across cognitive control and sensory regions. Finally, the N400O com-
ponent, elicited during a taxonomic semantic priming task, was predominantly
left-lateralized and involved frontal and parietal cortices, including enhanced
intra-frontal and fronto-parieto-occipital connectivity. These findings reinforce
the view of the N400 as a marker of semantic integration, grounded in a left-
lateralized network optimized for linguistic processing.

Together, these results emphasize that speech perception is not localized to
a single brain area or stage, but instead unfolds across overlapping, dynamic
networks that adapt to task demands and linguistic context. Importantly,
they also lay the foundation for investigating how these networks may be
disrupted or reorganized in clinical populations, such as patients with language

impairments.
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A significant part of this dissertation focussed on demonstrating how simu-
lation studies can be used to evaluate, refine, and improve EEG analysis tech-
niques. While empirical EEG provides valuable insight into brain function, in-
terpreting its results accurately depends on the quality and appropriateness of
the analytic tools used. The simulations presented in Part III addressed several
core issues that directly impact the reliability of ERP-based inferences.

In Chapter 5, we investigated single-trial variability and latency estimation
using artificial neural networks. Traditional ERP analysis relies on averaging
across trials, which ignores trial-to-trial variability and can lead to underesti-
mation of component amplitudes. Chapter 5 addressed this issue by developing
artificial neural network-based methods to quantify ERP latencies at the single-
trial level. Simulation results showed that these methods outperformed con-
ventional techniques across a range of signal-to-noise ratios, providing more
accurate estimates of both component timing and topography. Applied to real
data, these single-trial estimates correlated more strongly with behavioral mea-
sures (e.g., reaction times) and revealed group differences (e.g., age-related
changes) that were not detected using average-based methods. These findings
demonstrate how simulations can guide the development of more sensitive and
informative ERP quantification approaches, potentially enabling richer inter-
pretations of cognitive and clinical data.

In Chapter 6, we explored the possibility of combining multiple source local-
ization techniques to bridge ERPs and oscillations. ERP components and oscil-
latory brain activity are often studied separately, yet their relationship remains
an open question. In this chapter, we studied this relationship using a combi-
nation of source localization methods—eLORETA for ERPs and DICS for oscil-
lations—applied to both simulations and real data. The results illustrated both
convergence and divergence between ERP and oscillatory sources, depending
on the component and frequency band. For instance, while the P300 and delta
oscillations showed overlapping sources, alpha desynchronization during the
same period was spatially distinct. These findings suggest that ERPs and os-
cillations can reflect complementary yet partially dissociable neural processes.
More broadly, this work demonstrates how simulation-based evaluations of dif-
ferent methods can enhance our mechanistic understanding of EEG data and
inform best practices for multi-algorithm analysis.

Chapter 7 focussed on the impact of the head model choice on source local-
ization results. Accurate source localization depends heavily on the head model
used to compute the EEG forward solution. While template-based models are
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commonly used when subject-specific MRIs are unavailable, Chapter 7 demon-
strated—through simulations and real data—that these models introduce sys-
tematic localization errors. Simulated data showed that template models failed
to accurately reconstruct the underlying sources and produced more diffuse and
less specific activations. These limitations were also evident in real EEG data,
where template-based localization led to incorrect interpretations of ERP gen-
erators. These findings highlight the importance of using subject-specific head
models whenever possible, and suggest that researchers using template mod-
els should interpret results cautiously, particularly in clinical or patient-specific
contexts.

Finally, in Chapter 8 we looked at the influence of structural anomalies in
the brain on the measured ERPs. In clinical populations, EEG interpretation
is further complicated by individual anatomical differences such as lesions or
craniotomies. Chapter 8 used individualized forward models to simulate the ef-
fects of these structural anomalies on EEG signals. The results showed that such
disruptions can significantly alter the amplitude and topography of recorded
signals, particularly near the lesion site. These distortions were evident in both
simulated and real data, underscoring the necessity of accounting for patient-
specific anatomy in source localization. The findings support the use of lesion-
informed modeling as a critical step toward more accurate and clinically mean-
ingful EEG interpretations, especially in longitudinal or treatment-monitoring
studies.

9.2 Integration of Empirical and Methodological
Contributions

A key part of this dissertation is the interdependence between empirical neu-
roscience and methodological innovation. The insights into speech perception
presented here could only be achieved through careful attention to the ways in
which neural data are recorded, processed, and interpreted. At the same time,
methodological challenges encountered during empirical studies motivated the
development of targeted simulations, which helped us to refine and contextu-
alize our findings.

Analyzing brain data—especially EEG—is inherently complex. Neural sig-
nals are dynamic, noisy, and are the result of activity in distributed networks
rather than single, isolated regions. Part of this complexity also arises from
the fact that we do not measure directly within the brain, but instead use
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electrodes placed on the scalp around the skull. Mathematically, it is impos-
sible to uniquely determine the number and amplitude of the neural sources
responsible for the measured signals. As a result, extracting meaningful in-
formation from EEG recordings requires complex and advanced analysis tech-
niques. Methods for quantifying and localizing ERP components must be sensi-
tive enough to capture subtle variations, yet robust enough to handle the noise
and variability in brain signals. Without careful methodological choices, there
is a real risk of misinterpreting the underlying neural processes.

Throughout this work, simulations served as critical tools for evaluating and
improving the analytic strategies used. They were not treated as purely tech-
nical exercises, but were closely integrated with specific research questions.
Whether improving single-trial latency estimates, assessing the impact of head
model selection, combining source localization methods for ERPs and oscilla-
tions, or modeling the effects of anatomical anomalies, each simulation pro-
vided practical insights that enhanced the reliability of the empirical findings.

This integrated approach underscores that methodological refinement is not
an optional add-on to empirical research—it is fundamental to it. Advances
in the study of brain function depend on the development and validation of
analysis methods that are capable of dealing with the complexity of neural data.
Furthermore, the work presented here highlights the importance of tailoring
methods to the specific demands of the scientific questions and populations
under study.

Overall, this dissertation emphasizes that a strong link between empirical
investigation and methodological rigor is essential for advancing both our the-
oretical understanding of speech perception and the broader field of cognitive
and clinical neuroscience.

9.3 Clinical Implications and Future Directions

The findings presented in this dissertation have several important implications
for the use of EEG in clinical populations. By mapping how speech-related ERP
components are organized across distributed cortical networks, this work pro-
vides a framework for understanding how these networks may be affected by
neurological conditions such as stroke, brain tumors, or degenerative diseases.
Identifying disruptions in these well-characterized pathways could in the future
aid in diagnosing specific types of language impairment or predicting recovery
trajectories.
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Beyond the empirical insights, the methodological simulations developed
throughout this dissertation—particularly to investigate source localization,
single-trial analysis, and lesion-informed modeling—open the door for more
personalized and clinically meaningful EEG applications. Accurate localization
of neural generators, better handling of variability in ERP data, and individu-
alized head modeling are all critical steps toward making EEG a reliable tool
for patient-specific diagnosis, monitoring, and treatment planning.

Looking ahead, several promising directions for future research become
clear. One important direction lies in the development of adaptive or hybrid
head models that can approximate individual brain anatomy in healthy partic-
ipants, particularly in situations where acquiring high-resolution MRI scans
is not feasible. While this approach could greatly improve the accessibility of
personalized EEG analysis for healthy controls, the findings in this dissertation
also underscore that truly individualized head models remain essential for
clinical populations, especially when structural brain alterations—such as
lesions, tumors, or surgical resections—are present. In such cases, deviations
from normal anatomy can significantly distort EEG signals, making detailed,
patient-specific modeling critical for accurate interpretation. Nonetheless,
for large-scale studies or normative research involving healthy individuals,
adaptive modeling techniques—leveraging machine learning and initial
population-based templates, or simplified anatomical markers—could offer a
practical compromise between accuracy and feasibility, thereby broadening
the applicability of advanced source localization methods.

In addition, the artificial neural network approaches developed for single-
trial latency estimation in this dissertation hold great potential for advancing
EEG analysis. These methods could be expanded to handle a wider range of
ERP components beyond those studied here, addressing more complex noise
conditions and improving the precision of data in clinical populations with ir-
regular or pathological brain activity. Single-trial latency analysis is especially
important in these populations, as greater variability in latency across trials can
lead to more smeared and reduced ERP components at the group level. These
attenuated responses may still reflect activation of the same underlying brain
regions and should not necessarily be interpreted as reduced neural activity. By
enhancing the capability of neural networks to adapt to diverse ERP patterns,
this approach could significantly enhance our ability to measure brain activity
in a variety of contexts, from basic cognitive neuroscience research to clinical
diagnostics.
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Finally, strengthening the test-retest reliability of these advanced EEG mea-
sures is an essential area for future exploration. While test-retest reliability has
been well established at the group level, where ERP components are averaged
over multiple participants, this consistency has yet to be fully demonstrated at
the individual level. Given the high noise levels and inherent variability in EEG
data, achieving reliable, stable ERP components for individual subjects remains
a significant challenge. Moreover, to interpret longitudinal changes effectively
in clinical settings, it is crucial to better understand the sources of variability in
test-retest results. Only by distinguishing between variability that reflects gen-
uine neurological change and variability that arises from measurement noise
or other external factors can we ensure that observed shifts in ERP components
are clinically meaningful. This understanding will be critical for using EEG to
monitor disease progression or recovery. As clinical applications of EEG ex-
pand, particularly in the context of neurodegenerative diseases or post-surgical
recovery, ensuring the stability of ERP components across repeated measures in
individual patients will be crucial for their usefulness in patient care. Overcom-
ing these challenges in individual reliability and understanding the underlying
variability will be a key step toward making advanced EEG measures more use-
ful in clinical diagnostics and treatment monitoring.

Together, these developments—ranging from hybrid head models for healthy
participants to expanded neural network approaches and improved test-retest
reliability—could significantly enhance the diagnostic, prognostic, and thera-
peutic potential of EEG in both research and clinical practice. As these inno-
vations unfold, the continued integration of empirical research with method-
ological advancements will pave the way for more precise, personalized, and

effective applications of EEG across diverse settings.

9.4 General conclusion

This dissertation has advanced both our theoretical understanding of speech
perception and our methodological approaches for studying neural activity
using EEG. By examining how key ERP components—MMN, P300, and
N400—reflect distinct stages of speech processing and the neural networks
that support them, we have contributed to a more nuanced understanding
of how the brain processes auditory information and maps it to meaning.

Furthermore, through rigorous simulation studies, we have critically assessed
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and refined EEG analysis techniques, providing valuable insights into the
challenges and opportunities of interpreting EEG data accurately.

The integration of empirical findings with simulation-based methodology
highlights the importance of continually advancing EEG techniques in order
to keep pace with the complexity of neural data. The development of more ro-
bust methods for single-trial analysis, source localization, and lesion-informed
modeling have the potential to revolutionize the clinical use of EEG, making
it a more reliable and personalized tool for patient diagnosis, monitoring, and
treatment planning. In particular, by addressing key issues such as the impact
of head model choice, noise conditions, and test-retest variability, this work lays
the groundwork for more precise and clinically applicable EEG measures.

As the field progresses, future research will be crucial in refining these meth-
ods, expanding the range of ERP components studied, and improving test-retest
reliability at the individual level. The development of adaptive or hybrid head
models for healthy controls, as well as the application of advanced machine
learning techniques to handle diverse ERP patterns, holds great promise for
both basic research and clinical practice. Understanding the variability in test-
retest results will also be a key factor in interpreting longitudinal changes, espe-
cially in the context of neurodegenerative diseases and post-surgical recovery.

In conclusion, this dissertation underscores the interdependence between
empirical research and methodological innovation. By continuing to refine EEG
analysis tools, we can unlock deeper insights into the neural processes underly-
ing speech perception, as well as enhance the clinical utility of EEG for diagnos-
ing and monitoring neurological conditions. The future of EEG research—both
in healthy individuals and clinical populations—depends on the continued evo-
lution of methods that are both scientifically rigorous and clinically relevant,
paving the way for more effective, personalized applications in neuroscience
and medicine.
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A | Cortical Generators and Connections Under-
lying Phoneme Perception and Semantic Priming: a
Mismatch Negativity, P300 and N400 Investigation

Source reconstruction of the MMN, P300 and N400

As described in the main text, significant effects of interest in the results of
the source reconstructions were explored in three separate time windows of
50 ms through statistical clustering analysis in source space. The early, mid-
dle and late time windows were selected based on the 25%, 50% and 75%
fractional area latency of the MMN, P300 and N400 grand average difference
wave of all participants in a broad time window of 100-300 ms, 300-800 ms
and 400-800 ms, respectively. Two different approaches were used to test for
significant differences in source activation between the standard and deviant
condition. The first approach consisted of a cluster-based non-parametric per-
mutation test, in which the significance probability was computed under the
permutation distribution using the Monte-Carlo method, and was described in
the main text. While the cluster-based permutation test controls the multiple
comparison problem and at the same time maximizes power, no inference is
made over individual dipoles. Consequently, no statements about the spatial
location and extend of the significant effect between both conditions based on
the cluster locations will be completely accurate. Therefore, a second approach
to test for significant differences in source activation between both conditions
was used. Here, paired t-tests are performed for each dipole separately, after
which the obtained p-value are corrected for multiple comparison with False
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Discovery Rate (FDR). The results of these analyses are shown for the MMN,
P300 and N400 respectively in Figures A.1, A.2 and A.3

Figure A.1. Results of the paired t-tests analysis on the eLORETA source recon-
struction of the MMN to identify significant differences between both conditions
in the early (140-190 ms), middle (190-240 ms) and late (240-290 ms) time
window.

Figure A.2. Results of the paired t-tests analysis on the eLORETA source recon-
struction of the P300 to identify significant differences between both conditions
in the early (370-420 ms), middle (460-510 ms) and late (590-640 ms) time
window.

Functional connectivity analysis of the MMN, P300
and N400

In this study, the functional networks underlying phoneme discrimination
(MMN) and categorization (P300), and categorical priming (N400) were
mapped based on the 68 ROIs predefined by the Desikan-Killiany atlas (De-
sikan et al., 2006). To identify significant differences between the networks
obtained for the standard and deviant, or related and unrelated conditions,
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Figure A.3. Results of the paired t-tests analysis on the eLORETA source recon-
struction of the N400 to identify significant differences between both conditions
in the early (460-510 ms), middle (520-570 ms) and late (630-680 ms) time
window.

the Network Based Statistic (NBS) method was used in the main text of the
paper (Zal, 2010). To quantify and describe the obtained significant network
components, we subdivided the 34 ROIs of each hemisphere into five groups:
Frontal, Temporal, Parietal, Occipital and Cingulate. How each ROI was
assigned to each group is shown in Table A.1.
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Table A.1. Grouping of regions of interest from Desikan-Killiany atlas (34 ROIs
in each hemisphere) based on lobe.

frontal

parietal

caudal middle frontal gyrus
frontal pole

lateral orbitofrontal cortex

medial orbitofrontal cortex
paracentral lobule

pars opercularis

pars orbitalis

pars triangularis

precentral gyrus

rostral middle frontal gyrus

superior frontal gyrus

inferior parietal cortex
postcentral gyrus
precuneus cortex
superior parietal cortex

supramarginal gyrus

temporal

cingulate

occipital

banks superior temporal sulcus
entorhinal cortex

fusiform gyrus

inferior temporal gyrus

insula

middle temporal gyrus
parahippocampal gyrus
superior temporal gyrus
temporal pole

transverse temporal cortex

isthmus-cingulate cortex
posterior-cingulate cortex
rostral anterior cingulate cortex

caudal anterior-cingulate cortex

cuneus cortex
lateral occipital cortex
lingual gyrus

pericalcarine cortex



B | Single-trial ERP quantification using neural

networks

Template matching using ICA: comparison of algo-

rithms and methods

Multiple ICA decomposition approaches for the latency quantification of the
ERP component in single trials were compared in this work using the simu-
lated data. The ICA algorithms that were considered in this work included
FastICA (Hyvarinen, 1999), extended infomax (Lee et al., 1999), picard (Ablin
et al., 2018) and adaptive mixture ICA (AMICA) (Palmer et al., 2012; Delorme
et al., 2012). Furthermore, we also compared the effect of using only a single
ICA component for the latency estimation or using a combination of multiple
components. In figure B.1, the mean absolute error between the true and the
estimated latencies are shown in function of the SNR level of the dataset. The
figure shows that when we consider only a single ICA component, the SNR level
of the dataset has a limited influence on the performance of the latency esti-
mation. This might be caused by the nature of the simulated data, as a single
independent P300 component was added to background noise. In this case,
the extended Infomax algorithm performs best, and only small differences are
found between the fastICA and picard implementations. A clear trend is how-
ever found between the performance of the methods and the SNR of the data
when considering multiple ICA components. Here, the extended Infomax, fas-
tICA and picard implementations gave almost identical results for all SNRs,
with the performance of the AMICA algorithm being slightly worse. This trend

is very similar to the one observed for the cross-correlation latency estimation
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method (figure 5.6). Therefore, it is probable that by selecting multiple ICA
components, not only the ERP component but also noise is included in the com-
bined signal, which leads to larger errors in the single-trial latency estimation
for lower SNRs. Based on these results, we decided to use the extended Info-
max algorithm for the further comparison of the different latency estimation
methods.
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Figure B.1. Comparison of the different ICA decomposition algorithms (ex-
tended Infomax, picard, fastica and AMICA) regarding the mean absolute error
between the estimated latencies and the true latencies in single trials for each
each SNR in the simulated data.

Realigned grand-averages of the simulated data for
different SNRs

In figures B.2 and B.3 the realignment of the single trials averaged across all
subjects for each of the different SNRs are shown, along with the topography
at the time of the peak, comparing the different latency estimation techniques.
Also the non-realigned grand-average and a random realignment are plotted
as a reference. The realigned grand-averages are compared with the correct
realignment to check how well the shape of the P300 component is estimated
by each of the different methods by calculating the mean relative absolute er-
ror (MRAE). The figures show that the realignment based on the convLSTM
network gives the best results. Similar results are found across the different
SNRs. While the topographies at the peak are very similar across all meth-
ods, apart from a scaling factor due to smearing, the shape of the obtained
P300 component clearly varies. In the iterative cross-correlation, the (itera-

tive) beamformer and the multiple component ICA based approaches, artefacts
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are being introduced into the shape of the ERP component due to errors in

latency estimations.
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Figure B.2. Realignment of the single trials averaged across all subjects with SNR -6dB and -3dB for each of the different methods.
Grey lines represent the different channels, with Pz being marked in black. Also, the topography of the realignment at 0.420 s after
the stimulus onset is shown. The realigned waveforms are compared to the correct realignment to evaluate how well the shape of
the simulated P300 component is estimated. For each method, the mean relative absolute error between the true and the estimated
realigned waveforms across all subjects is reported.
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Figure B.3. Realignment of the single trials averaged across all subjects with SNR +3dB and +6dB for each of the different methods.
Grey lines represent the different channels, with Pz being marked in black. Also the topography of the realignment at 0.420 s after
the stimulus onset is shown. The realigned waveforms are compared to the correct realignment to evaluate how well the shape of
the simulated P300 component is estimated. For each method, the mean relative absolute error between the true and the estimated
realigned waveforms across all subjects is reported.
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C | Investigating the effect of template head
models on Event-Related Potential source localiza-

tion: A simulation and real-data study

Simulated epochs for of the different networks for
all SNRs

Simple ERP waveforms were simulated using half-cycle sinusoidal waveforms
to allow the objective quantification of the localization error associated with
the subject-specific and average head models. This was done by simulating
activity in different regions of the brain, including noise, and projecting this
activity to the scalp surface using the individual head models. Different net-
works responsible for generating ERP activity were simulated, each involving
four symmetrically active brain regions, with two regions in each hemisphere.
These regions were identified using the Destrieux cortical atlas parcellations.
For each region of interest (ROI), the center of the parcellation was determined,
and dipoles within a 10 mm radius around this center were selected. The ERP
activity in these selected dipoles was simulated as a 5 Hz half-cycle sinusoidal
waveform lasting 100 ms. A small delay was introduced across the ROIs: the
ERP waveform began in the first ROI at 100 ms post-stimulus, followed by the
second ROI 10 ms later, and then in the third and fourth ROIs at 120 ms. Addi-
tionally, the signal amplitude in the third and fourth ROIs was reduced to 80%
of the amplitude in the first two ROIs. To simulate realistic conditions, pink
noise was added to all epochs. The noise amplitude was adjusted to achieve
different signal-to-noise ratios (SNRs) ranging from -20 dB to +0 dB. Figure
7.2 in the main text shows the simulated data at the sensor level for the SNR
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equal to -10 dB. Here, the simulated data is visualized for the SNRs equal to
-20 dB (Figure C.1) and 0 dB (Figure C.2).

Fronto-Parietal network 0.160 s

Time (s) Time (s)

Fronto-Occipital network 0.160s |y Temporo-Parietal network

Time (s) Time (s)

Figure C.1. Overview of the simulated data at sensor level averaged over all

subjects. The simulated epochs in the ERP condition at SNR = -20dB are aver-
aged.
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Figure C.2. Overview of the simulated data at sensor level averaged over all

subjects. The simulated epochs in the ERP condition at SNR = 0dB are aver-
aged.
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Localization results of the different networks for all
simulated SNRs

Different aspects are taken into account in the evaluation of the source recon-
struction: the correspondence between the obtained sources and the simulated
sources, the localization error and the spatial dispersion of these reconstructed
sources, and the correlation between the originally simulated activity and the
reconstructed activity. For each subject, the difference in source space activity
between the ERP and the noise condition was calculated, after which the data is
averaged over the time window of interest. The results of the localizations ob-
tained for the simulated dataset with SNR equal to -10 dB were included in the
main text. Here, we also include the obtained localizations for the other SNRs,
namely -20 dB and 0 dB, for each of the four simulated networks. The results for
the temporo-occipital network, the fronto-parietal network, the fronto-occipital
network and the temporo-parietal network at each of the different SNRs can be
found respectively in Figures C.3, C.4, C.5 and C.6.

The quantification results of the localization errors associated with the local-
izations for the individual subjects were shown in the main text in Figure 7.4.
In this evaluation of the source reconstructions, different aspects were taken
into account: the sensitivity and the precision of the obtained sources, the lo-
calization error and the spatial dispersion of these reconstructed sources. For
each of these measures, the difference between using the subject-specific and
the average head models was investigated, as well as the differences between
the different modelling approaches. In the main text, clusters of activity were
considered correctly localized when the difference between the centre of the
reconstructed cluster was within 3 cm of the centre of the simulated ROIs. As
this maximal distance is an important parameter, the results when using a max-
imal distance of both 1 cm and 5 cm are included here in Figures C.7 and C.8.
Finally, also the effect of the SNR of the simulated data on the reconstructions
was quantified in the main text (Figure 7.5). In this figure, the results obtained
for the different networks were aggregated. Again, the results when using a
maximal distance of both 1 cm and 5 cm are included here, respectively in
Figures C.9 and C.10.
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Temporo-Parietal network

FEM FEM BEM
(true conductivities) (default conductivities)
Original Subject-Specific Template Subject-Specific Template Subject-Specific Template
simulated data reconstruction reconstruction reconstruction reconstruction reconstruction reconstruction
SNR = -20dB
Original Subject-Specific Template Subject-Specific Template Subject-Specific Template
simulated data reconstruction reconstruction reconstruction reconstruction reconstruction reconstruction
SNR = -10dB
Original Subject-Specific Template Subject-Specific Template Subject-Specific Template
simulated data reconstruction reconstruction reconstruction reconstruction reconstruction reconstruction
SNR = 0dB

Figure C.3. Overview of the original simulated data and the reconstructed activity averaged over all subjects for the
temporo-occipital network at the different SNRs. In the case of the simulations and the subject-specific reconstructions, the
source activity was morphed to the average head model before averaging.
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simulated data reconstruction reconstruction reconstruction reconstruction reconstruction reconstruction
SNR = -10dB
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Figure C.4. Overview of the original simulated data and the reconstructed activity averaged over all subjects for the fronto-
parietal network at the different SNRs. In the case of the simulations and the subject-specific reconstructions, the source
activity was morphed to the average head model before averaging.



Fronto-Occipital network

FEM FEM BEM
(true conductivities) (default conductivities)
Original Subject-Specific Template Subject-Specific Template Subject-Specific Template
simulated data reconstruction reconstruction reconstruction reconstruction reconstruction reconstruction
SNR = -20dB
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simulated data reconstruction reconstruction reconstruction reconstruction reconstruction reconstruction
SNR = -10dB
Original Subject-Specific Template Subject-Specific Template Subject-Specific Template
simulated data reconstruction reconstruction reconstruction reconstruction reconstruction reconstruction
SNR = 0dB

Figure C.5. Overview of the original simulated data and the reconstructed activity averaged over all subjects for the fronto-
occipital network at the different SNRs. In the case of the simulations and the subject-specific reconstructions, the source
activity was morphed to the average head model before averaging.
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Temporo-Parietal network

FEM FEM BEM
(true conductivities) (default conductivities)
Original Subject-Specific Template Subject-Specific Template Subject-Specific Template
simulated data reconstruction reconstruction reconstruction reconstruction reconstruction reconstruction
SNR = -20dB
Original Subject-Specific Template Subject-Specific Template Subject-Specific Template
simulated data reconstruction reconstruction reconstruction reconstruction reconstruction reconstruction
SNR = -10dB
Original Subject-Specific Template Subject-Specific Template Subject-Specific Template
simulated data reconstruction reconstruction reconstruction reconstruction reconstruction reconstruction
SNR = 0dB

Figure C.6. Overview of the original simulated data and the reconstructed activity averaged over all subjects for the
temporo-parietal network at the different SNRs. In the case of the simulations and the subject-specific reconstructions, the
source activity was morphed to the average head model before averaging.
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Figure C.7. Results of the quantification of the localization errors. In this eval-
uation sensitivity and the precision of the obtained sources, the localization
error and the spatial dispersion of these reconstructed sources were taken into
account. For each of these measures, the difference between using the subject-
specific and average head models is shown for each of the simulated networks.
Clusters of activity were considered to be correctly localized when the differ-
ence between the center of the reconstructed cluster was within 1 cm of the
center of the simulated ROIs.
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SNR = -10dB, maximal distance = 50mm
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Figure C.8. Results of the quantification of the localization errors. In this eval-
uation sensitivity and the precision of the obtained sources, the localization
error and the spatial dispersion of these reconstructed sources were taken into
account. For each of these measures, the difference between using the subject-
specific and average head models is shown for each of the simulated networks.
Clusters of activity were considered to be correctly localized when the differ-
ence between the center of the reconstructed cluster was within 5 cm of the
center of the simulated ROIs.
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All simulated networks, maximal distance = 10mm
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Figure C.9. Results of the quantification of the localization errors. In this
evaluation sensitivity and the precision of the obtained sources, the localization
error and the spatial dispersion of these reconstructed sources were taken into
account. For each of these measures, the effect of both the SNR of the simulated
data and the difference between using the subject-specific and average head
models is shown. Clusters of activity were considered to be correctly localized
when the difference between the center of the reconstructed cluster was within
1 cm of the center of the simulated ROIs.
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All simulated networks, maximal distance = 50mm
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Figure C.10. Results of the quantification of the localization errors. In this
evaluation sensitivity and the precision of the obtained sources, the localization
error and the spatial dispersion of these reconstructed sources were taken into
account. For each of these measures, the effect of both the SNR of the simulated
data and the difference between using the subject-specific and average head
models is shown. Clusters of activity were considered to be correctly localized
when the difference between the center of the reconstructed cluster was within
5 cm of the center of the simulated ROIs.
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lesions on scalp ERPs

Single-source simulations

In the main text, the MAG% and RDM% values at the scalp level were presented
for the simulated data of each individual dipole in Subject 1. Here, we present
the corresponding figures for Subject 2. The first row of Figure D.1 represents
a model incorporating all lesions, including those resulting from tumor resec-
tion as well as craniotomy-induced lesions. The second row isolates the effects
of tumor-related lesions, while the third row focuses solely on the impact of
craniotomy-related lesions.

These results again indicate that dipoles located near the lesions exhibit the
most pronounced differences in both magnitude and topography, and that these
effects are not limited to the immediate vicinity of the lesions but extend across
much of the left hemisphere. This widespread influence appears to be predom-
inantly driven by craniotomy-related lesions, while the effects of tumor-related
lesions are more localized.
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Differences in MAGNITUDE

Differences in TOPOGRAPHY

Figure D.1. The differences in magnitude and topography of the EEG signals
generated for each dipole using models with and without lesions.
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