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English Summary

Language is one of the most fundamental yet complex domains of human cog-

nition. While gestures, facial expressions, and emotional tone contribute to

communication, language remains the primary tool for expressing intricate and

abstract ideas. Despite its apparent ease in daily life, language relies on highly

specialized and distributed neural mechanisms, many aspects of which are still

being actively investigated. Understanding these mechanisms is particularly

important for developing better diagnostic tools and therapeutic approaches

for individuals with language impairments resulting from conditions such as

stroke, brain tumors, or traumatic brain injury.

Research increasingly shows that language processing is not confined to iso-

lated brain regions but emerges from the dynamic interaction of distributed

neural systems. Processing even a single spoken word consists of multiple

stages, each recruiting multiple brain areas. Early auditory analysis, for exam-

ple, includes the superior temporal cortex, lexical mapping requires the middle

temporal gyrus, semantic retrieval involves the angular gyrus, and syntactic

integration is mediated by the inferior frontal gyrus. Theoretical frameworks

developed by Ellis and Young (auditory processing), De Deyne (semantic net-

works), and Dominey (syntactic parsing) underscore the interconnected nature

of these processes and emphasize the importance of studying language process-

ing in the brain as a network phenomenon.

This dissertation builds upon these frameworks and pursues two major ob-

jectives. The first objective is to characterize the neural dynamics of speech per-

ception, which is a complex and multilayered process that transforms acoustic

signals into meaningful linguistic information within a few hundred millisec-

onds, using electroencephalography (EEG). The second objective addresses key

methodological challenges in EEG research through a series of targeted simula-
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tion studies, aiming to refine techniques for analyzing event-related potentials

(ERPs) and to augment the insights obtained from the improved results.

Chapter 1 serves as a general introduction to the topic and outlines the

broader context of the dissertation. Part I: From Neural Activity to Measured

Brain Signals lays the groundwork by explaining how brain activity is recorded

and interpreted using EEG. Chapter 2 introduces key neurophysiological princi-

ples, covering the generation of electrical activity in the brain, the fundamentals

of electroencephalography, and the concept of event-related potentials (ERPs).

Chapter 3 then provides more details about EEG signal processing, focusing on

EEG source imaging and functional connectivity. It discusses methods for esti-

mating the sources of brain signals, including the formulation of the forward

model and solutions to the inverse problem, as well as techniques for assessing

how different brain regions interact.

In Part II: Source reconstruction and functional connectivity of language

ERP components, speech perception is investigated empirically using EEG,

which offers the temporal resolution needed to track fast-evolving cognitive

processes. Chapter 4 examines three well-established ERP components — the

Mismatch Negativity (MMN), the P300, and the N400 — each reflecting distinct

stages of linguistic analysis. The MMN captures early, pre-attentive detection

of unexpected auditory changes; the P300 reflects attentive categorization and

task-related decision processes; and the N400 is a robust index of semantic

integration during language comprehension.

Source localization and functional connectivity analysis revealed differenti-

ated but interacting cortical networks for each component. The MMN engaged

a bilateral network comprising auditory, frontal, and parietal regions, consis-

tent with models of automatic prediction error detection. The P300 activated

a broader fronto-parietal-cingulate network, supporting its association with at-

tention and cognitive control. The N400 was predominantly left-lateralized,

involving frontal, temporal, and parietal regions linked to semantic process-

ing. Connectivity analysis showed that these networks are highly dynamic, with

strengthened fronto-parietal and intra-frontal coupling during higher-level lin-

guistic tasks. Taken together, these findings highlight the distributed, flexible

nature of speech processing networks. They offer a reference point for studying

how these systems may be altered in clinical populations, such as individuals

with aphasia or neurodegenerative disorders.

However, several methodological limitations should be acknowledged. First,

the analyses assume a fixed latency for ERP components across all trials, poten-
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tially overlooking meaningful trial-by-trial variability in neural timing. Second,

the analyses focus primarily on time-domain ERPs and do not incorporate time-

frequency methods that could capture oscillatory dynamics relevant to speech

processing. Third, the studies rely on standard head models, without incor-

porating individualized or anatomically detailed forward modeling, which may

limit spatial precision in interpreting EEG signals. These limitations underscore

the need for a deeper examination of the assumptions and constraints inherent

in ERP analysis.

To address these issues, this dissertation also explores methodological aspects

critical to EEG research through simulations. Part III: How simulations can

help us understand the working mechanisms of the brain presents a series of

simulation studies addressing how choices made during the analysis can impact

the interpretation of ERP data.

In Chapter 5, we address the variability in ERP latencies across trials, a

longstanding challenge in EEG research. Conventional averaging methods as-

sume consistent timing across trials, yet cognitive processes often vary sub-

stantially from trial to trial. To address this, we developed artificial neural

network models capable of estimating single-trial ERP latencies. Simulations

demonstrated that these models outperformed traditional methods under vary-

ing noise conditions. Applied to real EEG data, single-trial latency estimates

showed stronger correlations with behavioral performance and revealed group-

level differences that conventional averages failed to detect. These findings

suggest that accounting for latency variability can enhance both the sensitivity

and interpretability of ERP studies.

In Chapter 6, we investigate the relationship between ERPs and oscillatory

activity by combining eLORETA-based ERP source localization with DICS-based

oscillatory source analysis. Traditionally, ERP and oscillation studies have been

treated separately, but emerging evidence suggests they reflect complementary

aspects of brain function. Our findings indicated partial overlap between ERP

components (such as the P300) and low-frequency oscillations (such as delta

rhythms), while also revealing distinct contributions from alpha band activity.

These results highlight the value of integrating multiple source analysis meth-

ods to gain a more comprehensive view of neural dynamics.

Chapter 7 examines how the choice of head model affects source localization

accuracy. In the absence of individualized MRI scans, many EEG studies rely on

standard template head models. However, simulations and empirical analyses

demonstrated that using template models introduced systematic localization
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errors, producing spatially diffuse and sometimes misleading results. Individu-

alized head models significantly improved source specificity, underscoring their

importance, particularly in clinical research settings where precise localization

may guide intervention strategies.

Finally, Chapter 8 explores how structural brain anomalies, such as lesions

resulting from tumors or strokes, affect EEG measurements. Simulations incor-

porating lesion-informed forward models showed significant distortions in ERP

topographies and source estimates near lesion sites. These findings were cor-

roborated by analyses of EEG data from patients with craniotomies. Together,

the results emphasize the necessity of incorporating individualized anatomi-

cal information when conducting source localization in clinical populations to

ensure accurate and reliable interpretations.

In sum, this dissertation contributes both to the empirical understanding of

speech perception and to the advancement of EEG research methodologies. The

empirical results elucidate the dynamic and distributed nature of the networks

in the brain supporting different levels of linguistic processing. The method-

ological work provides practical guidelines for improving the robustness and

interpretability of EEG studies: emphasizing the need to account for trial-to-

trial variability, advocating for individualized head models, encouraging the

integration of multiple source localization approaches, and highlighting the im-

portance of anatomical specificity in clinical contexts.

By combining empirical research with simulation-driven methodological in-

novation, this work aims to support future studies of language networks and

to enhance the clinical relevance of EEG as a tool for diagnosing and treat-

ing language impairments. Through this dual focus, the dissertation advances

our understanding of both the brain’s capacity for language and the methods

needed to study it effectively.
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Taal is een van de meest fundamentele maar toch complexe domeinen van

de menselijke cognitie. Hoewel gebaren, gezichtsuitdrukkingen en emotionele

toon bijdragen aan communicatie, blijft taal het primaire middel om ingewik-

kelde en abstracte ideeën uit te drukken. Ondanks het ogenschijnlijke gemak

waarmee taal in het dagelijks leven wordt gebruikt, berust taal op zeer gespe-

cialiseerde en gedistribueerde neurale mechanismen, waarvan veel aspecten

nog steeds actief worden onderzocht. Inzicht in deze mechanismen is vooral

belangrijk voor het ontwikkelen van betere diagnostische hulpmiddelen en the-

rapeutische methoden voor mensen met taalstoornissen als gevolg van aandoe-

ningen zoals een beroerte, hersentumoren of traumatisch hersenletsel.

Onderzoek toont in toenemende mate aan dat taalverwerking niet beperkt

is tot geïsoleerde hersengebieden, maar voortkomt uit de dynamische interac-

tie van gedistribueerde neurale systemen. Het verwerken van een gesproken

woord verloopt in meerdere stadia, waarbij steeds verschillende hersengebie-

den betrokken zijn. Zo vindt de vroege auditieve analyse plaats in de superi-

eure temporale cortex, is de middelste temporale gyrus betrokken in lexicale

mapping, betrekt semantische oproeping de angulaire gyrus en wordt syntac-

tische integratie gemedieerd door de inferieure frontale gyrus. Theoretische

raamwerken ontwikkeld door Ellis en Young (auditieve verwerking), De Deyne

(semantische netwerken) en Dominey (syntactische verwerking) onderstrepen

de onderlinge verbondenheid van deze processen en benadrukken het belang

van het bestuderen van taal als een netwerkfenomeen.

Dit proefschrift bouwt voort op deze kaders en streeft twee belangrijke

doelstellingen na. De eerste doelstelling is het karakteriseren van de neurale

dynamiek van spraakperceptie, een complex proces dat akoestische signalen

transformeert in betekenisvolle linguïstische informatie binnen een paar

honderd milliseconden, gebruik makend van elektroencephalografie (EEG).
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De tweede doelstelling richt zich op belangrijke methodologische uitdagingen

in EEG-onderzoek door middel van een reeks gerichte simulatiestudies, met

als doel technieken voor het analyseren van event-gerelateerde potentialen

(ERP’s) te verfijnen en de nauwkeurigheid van empirische bevindingen te

verbeteren.

Hoofdstuk 1 dient als algemene inleiding op het onderwerp en schetst de

bredere context van het proefschrift. Deel I: Van neurale activiteit naar ge-

meten hersensignalen legt de basis door uit te leggen hoe hersenactiviteit

wordt geregistreerd en geïnterpreteerd met behulp van EEG. Hoofdstuk 2 in-

troduceert de belangrijkste neurofysiologische principes en behandelt hoe elek-

trische activiteit in de hersenen wordt gegenereerd. Daarnaast komen ook de

basisprincipes van elektro-encefalografie en het concept van event-gerelateerde

potentialen (ERP’s) aan bod. Hoofdstuk 3 gaat vervolgens dieper in op signaal-

verwerking met een focus op EEG bronlokalisatie en functionele connectiviteit,

waarbij methoden worden besproken voor het schatten van de locatie van de

bronnen van hersensignalen, inclusief de formulering van het voorwaartse mo-

del en oplossingen voor het inverse probleem. Daarnaast worden hier ook tech-

nieken voor het beoordelen van de interactie tussen verschillende hersengebie-

den besproken.

In Deel II: Bronlokalisatie en functionele connectiviteit, onderzoeken we

spraakperceptie met behulp van EEG, dat de temporele resolutie biedt die no-

dig is om snel evoluerende cognitieve processen te volgen. Hoofdstuk 4 on-

derzoekt drie bekende ERP-componenten - de Mismatch Negativity (MMN), de

P300 en de N400 - die elk verschillende stadia van taalanalyse weerspiegelen.

De MMN weerspiegelt vroege, pre-attente detectie van onverwachte auditieve

veranderingen; de P300 weerspiegelt aandachtige categorisatie en taakgerela-

teerde besluitvormingsprocessen; en de N400 is een robuuste index van seman-

tische integratie tijdens taalbegrip.

Bronlokalisatie en functionele connectiviteitsanalyses onthulden gedifferen-

tieerde maar interagerende corticale netwerken voor elke component. Het

MMN activeerde een bilateraal netwerk bestaande uit auditieve, frontale en

pariëtale gebieden, wat consistent is met modellen van automatische detectie

van voorspelfouten. De P300 activeerde een breder fronto-pariëtaal-cingulaat

netwerk, wat de associatie met aandacht en cognitieve controle ondersteunt.

De N400 was voornamelijk links-lateraal, waarbij frontale, temporale en pa-

riëtale gebieden betrokken waren die verband houden met semantische ver-

werking. Connectiviteitsanalyses toonden verder aan dat deze netwerken zeer
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dynamisch zijn, met versterkte fronto-pariëtale en intra-frontale koppeling tij-

dens linguïstische taken op een hoger niveau.

De experimentele bevindingen benadrukken de gedistribueerde, flexibele

aard van spraakverwerkingsnetwerken. Ze bieden ook een referentiepunt voor

het bestuderen hoe deze systemen kunnen veranderen in klinische populaties,

zoals mensen met afasie of neurodegeneratieve aandoeningen.

Er moet echter rekening worden gehouden met verschillende methodologi-

sche beperkingen. Ten eerste gaan de analyses uit van een vaste latentie voor

ERP-componenten over alle trials, waarbij geen rekening gehouden wordt met

de trial-tot-trial variabiliteit in neurale timing. Ten tweede richten de analy-

ses zich voornamelijk op ERP’s in het tijdsdomein en bevatten ze geen tijd-

frequentie methoden die de oscillerende dynamiek, die relevant is voor spraak-

verwerking, in kaart zouden kunnen brengen. Ten derde vertrouwen de studies

op template hoofdmodellen, zonder geïndividualiseerde of anatomisch gede-

tailleerde voorwaartse modellering, wat de ruimtelijke precisie kan beperken

bij het interpreteren van EEG signalen. Deze beperkingen tonen de noodzaak

voor een dieper onderzoek naar de aannames en beperkingen die inherent zijn

aan ERP analyse.

Om deze kwesties aan te pakken, verkent dit proefschrift ook methodologi-

sche aspecten die cruciaal zijn voor EEG-onderzoek door middel van simulaties.

Deel III: Hoe simulaties ons kunnen helpen bij het begrijpen van de wer-

kingsmechanismen van de hersenen presenteert een serie simulatiestudies

die onderzoeken hoe keuzes gemaakt tijdens de analyses de interpretatie van

ERP-data kunnen beïnvloeden.

In hoofdstuk 5 gaan we in op de variabiliteit in ERP-latenties over proeven

heen, een reeds lang bestaande uitdaging in EEG-onderzoek. Conventionele

methodes, zoals het uitmiddellen over meerdere trials, gaan uit van een con-

sistente timing over de trials heen, maar cognitieve processen variëren vaak

aanzienlijk van trial tot trial. Om dit aan te pakken, ontwikkelden we kunst-

matige neurale netwerkmodellen die in staat zijn om in een enkele trial ERP

latenties te schatten. Simulaties toonden aan dat deze modellen beter pres-

teerden dan traditionele methoden onder variërende ruiscondities. Toegepast

op echte EEG-gegevens, vertoonden schattingen van enkelvoudige trial laten-

ties sterkere correlaties met gedragsprestaties en onthulden ze verschillen op

groepsniveau die conventionele gemiddelden niet detecteerden. Deze bevin-

dingen suggereren dat rekening houden met de variabiliteit van de latentie
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zowel de gevoeligheid als de interpreteerbaarheid van ERP-studies kan verbe-

teren.

Hoofdstuk 6 onderzoekt hoe de keuze van het anatomisch hoofdmodel de

nauwkeurigheid van de bronlokalisatie beïnvloedt. Bij gebrek aan geïndivi-

dualiseerde MRI scans, vertrouwen veel EEG studies op standaard template

hoofdmodellen. Echter, simulaties en empirische analyses toonden aan dat het

gebruik van template modellen systematische lokalisatie fouten introduceert,

wat leidt tot ruimtelijk diffuse en soms misleidende resultaten. Geïndividua-

liseerde hoofdmodellen verbeterden de bronspecificiteit aanzienlijk, wat hun

belang onderstreept, vooral in klinische onderzoeksomgevingen waar precieze

lokalisatie interventiestrategieën kan sturen.

In hoofdstuk 7 onderzoeken we de relatie tussen ERP’s en oscillerende acti-

viteit door eLORETA-gebaseerde ERP-bronlokalisatie te combineren met DICS-

gebaseerde oscillatoire bronanalyse. Traditioneel worden ERP en oscillatie stu-

dies apart behandeld, maar opkomend bewijs suggereert dat ze complemen-

taire aspecten van de hersenfunctie weerspiegelen. Onze bevindingen gaven

een gedeeltelijke overlap aan tussen ERP-componenten (zoals de P300) en laag-

frequente oscillaties (zoals deltaritmes), terwijl ook afzonderlijke bijdragen van

alfabandactiviteit zichtbaar werden. Deze resultaten benadrukken de toege-

voegde waarde van het integreren van meerdere bronanalysemethoden om een

uitgebreider beeld te krijgen van neurale dynamiek.

Tenslotte wordt in hoofdstuk 8 onderzocht hoe structurele afwijkingen in

de hersenen, zoals laesies als gevolg van tumoren of beroertes, EEG-metingen

beïnvloeden. Simulaties met laesie-geïnformeerde voorwaartse modellen toon-

den significante vervormingen in ERP topografieën en in bron schattingen in

de buurt van laesie locaties. Deze bevindingen werden bevestigd door analy-

ses van EEG-gegevens van patiënten met die na een hersentumor een crani-

otomie ondergingen. Samen benadrukken de resultaten de noodzaak van het

opnemen van geïndividualiseerde anatomische informatie bij het uitvoeren van

bronlokalisatie in klinische populaties om accurate en betrouwbare localisaties

te garanderen.

Samengevat draagt dit proefschrift bij tot zowel het empirisch begrip van

spraakperceptie als tot de vooruitgang van EEG onderzoeksmethodologieën.

De empirische resultaten verhelderen de dynamische en gedistribueerde aard

van de netwerken in de hersenen die verschillende niveaus van taalverwerking

ondersteunen. Het methodologische werk biedt praktische richtlijnen voor het

verbeteren van de robuustheid en interpreteerbaarheid van EEG studies: het
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benadrukt de noodzaak om rekening te houden met de variabiliteit over tri-

als, pleit voor geïndividualiseerde hoofdmodellen, moedigt de integratie van

meerdere bron lokalisatie benaderingen aan, en benadrukt het belang van ana-

tomische specificiteit in klinische contexten.

Door een brug te slaan tussen empirisch onderzoek en simulatiegedreven

methodologische innovatie, beoogt dit werk toekomstige studies van taalnet-

werken te ondersteunen en de klinische relevantie van EEG als hulpmiddel voor

het diagnosticeren en behandelen van taalstoornissen te vergroten. Door deze

tweeledige focus bevordert het proefschrift ons begrip van zowel de hersenca-

paciteit voor taal als van de methoden die nodig zijn om dit effectief te bestu-

deren.
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ANOVA analysis of variance
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ATL anterior temporal lobe

BCI brain-computer interface
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EEG electroencephalography

eLORETA exact low-resolution brain electromagnetic tomography
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ESI EEG source imaging
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PLI Phase Lag Index

PLV Phase Locking Value
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TFR time-frequency representation

TN true negative
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VAN ventral attention networks

wMNE weighted Minimum Norm Estimation
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1 | Introduction

Language is one of the most fundamental aspects of human communication.

While gestures and emotional tone also play a role in conveying meaning, lan-

guage serves as the primary tool that facilitates complex expression (Friederici,

2017). Imagine traveling to a place where you do not share a common lan-

guage — simple transactions, like buying an orange at a market, may be man-

ageable with gestures, but asking for directions to your next destination quickly

becomes much more challenging. Despite its complexity, our native language

is something we acquire effortlessly, without formal instruction, and use daily

without conscious effort.

Our understanding of how language functions in the brain originates from

the study of individuals who have experienced language impairments. The

first significant case was documented by the French scientist Paul Broca, whose

patient, "Monsieur Tan," exhibited a severe language production deficit, being

able to utter only the syllable "tan". Broca analyzed his patient’s condition, but

at the time, neuroscientists had to wait until a patient passed away to conduct

a brain autopsy to identify the underlying neural damage. Upon examination,

Broca identified a lesion in the left inferior frontal gyrus—an area now known as

Broca’s area (Broca, 1861). A few years later, Carl Wernicke studied the brains

of patients with impairments in language comprehension (Wernicke, 1881) and

found lesions in the left temporal cortex, now referred to as Wernicke’s area.

From these findings, Broca’s area was linked to language production, while

Wernicke’s area was associated with language comprehension.

Thanks to the invention of neuroimaging technologies, researchers today

are able to study language processing in living individuals. The classical view

that Broca’s area is solely responsible for production and Wernicke’s area for



32 1. Introduction

comprehension has undergone significant revisions. Contemporary research

suggests that language processing is a complex cognitive function requiring

the integration of multiple neural systems. Understanding a single word

involves various stages—auditory perception, lexical access, and syntactic

integration—each mediated by distinct but interconnected brain regions

(Friederici, 2017). Several theoretical models, such as the Ellis & Young model

for auditory analysis, the De Deyne model for semantic processing, and the

Dominey model for syntactic integration (Ellis and Young, 1996; De Deyne

et al., 2016; Dominey and Inui, 2009), highlight the importance of connectivity

within multimodal neural networks. These findings emphasize that language

processing is not confined to isolated brain regions but rather emerges from a

dynamic interplay between multiple specialized and interconnected areas.

1.1 Understanding a spoken word

Understanding a spoken word is a complex, multi-stage process that begins

with the perception of sound. When we hear speech, auditory information is

first processed by converting sound waves into neural signals. These signals

travel via the auditory nerve to the primary auditory cortex in the superior

temporal gyrus, where early acoustic analysis enables the brain to distinguish

phonemes, the smallest contrastive units of speech that differentiate meaning

(Friederici, 2017).

According to the Ellis & Young model for auditory analysis, the comprehen-

sion of a heard word follows four key stages (Figure 1.1): (1) In the auditory

phonological analysis stage, the continuous speech sound wave is segmented

into individual phonemes. (2) These phonemes are temporarily stored in the

phonological input buffer, a working memory system that maintains the se-

quence of phonemes for further processing. (3) The segmented phonemes then

activate corresponding phonological representations in the phonological input

lexicon, which serves as a mental repository for all known word forms. This

stage facilitates lexical decision-making—determining whether a given speech

sound sequence corresponds to a known word or a pseudoword. (4) If the

phonological input lexicon identifies the sequence as a real word, it is mapped

onto stored meanings in the semantic system, where long-term memory enables

word comprehension by linking the word form with its associated meaning (El-

lis and Young, 1996).
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Figure 1.1. The psycholinguistic model for auditory and written word compre-
hension and production, as introduced by Ellis & Young (1996). The substages
in bold relate to auditory word comprehension. Reprinted from Criel (2024)
with permission from the author.

While this model provides a strong foundation for understanding the differ-

ent stages of auditory word processing, it does not account for the underlying

neural mechanisms. To address this, Hickok and Poeppel (2004) introduced

a dual-stream model that explains how speech processing is organized in the

brain (Figure 1.2). According to this framework, speech perception begins with

the activation of the bilateral dorsal superior temporal gyrus (STG), where in-

coming auditory signals undergo spectrotemporal analysis. This is followed by

phonological processing, primarily supported by the middle posterior superior

temporal sulcus (STS). At this stage, the auditory system splits into two paral-

lel processing streams. The dorsal stream links posterior temporal regions, the

parietal operculum, and frontal areas such as the inferior frontal gyrus (IFG)

and premotor cortex. It acts as a sensory-motor interface, integrating speech

perception with production. Meanwhile, the ventral stream connects the pos-

terior STG to the posterior middle temporal gyrus (pMTG), anterior temporal

lobe (ATL), and IFG, facilitating the mapping of sounds onto meaning. Berwick

et al. (2013) later expanded this model to encompass sentence-level process-

ing, proposing an additional dorsal and ventral stream. In this extended frame-



34 1. Introduction

work, the dorsal stream supports complex syntactic processing, while the ven-

tral stream handles basic syntactic structures, further refining our understand-

ing of language comprehension.

Figure 1.2. Dual stream model of speech processing. The dual stream
model holds that early stages of speech processing occur bilaterally in the
dorsal STG (spectrotemporal analysis; green) and STS (phonological ac-
cess/representation; yellow), and then diverges into two broad streams: a
temporal lobe ventral stream supports speech comprehension (lexical access
and combinatorial processes; pink), whereas a strongly left-dominant dor-
sal stream supports sensory-motor integration and involves structures at the
parietal-temporal junction (Spt) and frontal lobe. The conceptual network
(gray box) is assumed to be widely distributed throughout the cortex. IFG, infe-
rior frontal gyrus; ITS, inferior temporal sulcus; MTG, middle temporal gyrus;
PM, premotor; Spt, Sylvian parietal-temporal; STG, superior temporal gyrus;
STS, superior temporal sulcus. Reprinted from Hickok and Poeppel (2007) with
permission from the publisher.

By integrating the cognitive steps of phonological and lexical processing with

the neural pathways of speech perception, these models provide a more com-

prehensive view of spoken word recognition. While the Ellis & Young model

focuses on the sequential stages of word comprehension, the dual-stream model

maps these processes onto distinct cortical networks. This perspective is par-

ticularly relevant in cases where the brain’s speech processing network is dis-
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rupted, such as in patients with aphasia. Understanding these mechanisms not

only deepens our knowledge of language function but also sheds light on how

the brain can adapt and reorganize in response to injury.

1.2 Neuroplasticity of the language network in pa-

tients with an acquired brain injury

Acquired brain injuries, such as stroke and brain gliomas, can significantly im-

pact the language network (Goldman et al., 2022). However, the brain has a re-

markable ability to reorganize itself through neuroplasticity, enabling patients

to regain language function to varying degrees. This plasticity involves struc-

tural and functional changes within the perilesional cortex, homologous areas

in the opposite hemisphere, and broader language-related networks (Pasquini

et al., 2022).

In the case of stroke, damage to traditional language areas often results in

aphasia. Recovery depends on the recruitment of perilesional areas within the

left hemisphere or the engagement of homologous right-hemispheric regions

(Hamilton et al., 2011; Kiran and Thompson, 2019; Li et al., 2022). Studies

using functional neuroimaging have shown that in the early stages of recov-

ery, increased right hemisphere activation may compensate for left hemisphere

deficits (Schneck et al., 2021). However, optimal recovery is typically associ-

ated with a gradual shift back toward left-hemisphere dominance as language

processing is restored to its primary networks (Schneck et al., 2021; Hamilton

et al., 2011; Kiran and Thompson, 2019). Rehabilitation strategies, such as

speech therapy, aim to facilitate this process by strengthening residual connec-

tions and promoting cortical reorganization.

Another type of acquired brain injuries are brain gliomas. In these patients,

neuroplasticity typically follows a different trajectory. Unlike stroke or trau-

matic brain injury (TBI), where damage is abrupt, gliomas grow gradually,

allowing the brain time to adapt (Duffau et al., 2003; Krishna et al., 2021;

Traut et al., 2019). This slow progression can lead to functional reorganization,

where language-related activity shifts to surrounding cortical areas or even to

homologous regions in the right hemisphere (Figure 1.3; Yuan et al. (2020);

Nieberlein et al. (2023)). Studies using functional magnetic resonance imaging

(MRI) and intraoperative mapping have demonstrated that language functions

can be preserved despite tumor invasion, as the brain dynamically redistributes

linguistic processing. However, the extent of reorganization depends on tumor
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location, size, and growth rate (Noll et al., 2015). Low-grade gliomas, which

develop more slowly, provide a greater window for plasticity, often allowing

significant language recovery following surgical resection. In contrast, high-

grade gliomas, which grow more aggressively, may outpace the brain’s ability

to reorganize, leading to more severe language deficits (Noll et al., 2015; Yuan

et al., 2020, 2022). Understanding these mechanisms is crucial for neurosurgi-

cal planning, as awake brain mapping can help to identify and preserve critical

language areas during tumor removal.

Figure 1.3. Visual representation of language-related reorganization patterns
in relation to glioma growth. Reprinted with permission from Nieberlein et al.
(2023).

1.3 Neuroimaging techniques for studying lan-

guage processing in the brain

Several neuroimaging methods provide insights into how language is processed

in the brain. Electroencephalography (EEG) and magnetoencephalography

(MEG) are two time-sensitive techniques that measure respectively electrical

and magnetic activity in the brain. EEG records electrical signals from the

scalp capturing event-related potentials (ERPs), which reflect neural responses

to linguistic stimuli with millisecond precision. Some key ERP components

include the N100 (acoustic processing), the N400 (semantic processing), and

the P600 (syntactic integration). Because individual ERP responses are small,

they must be averaged across multiple trials to isolate meaningful patterns
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from background neural noise. MEG, while similar to EEG in temporal

resolution, detects the magnetic fields produced by neural activity, offering

improved spatial localization thanks to its high-density sensor array. However,

MEG is significantly more expensive and requires specialized, magnetically

shielded rooms to minimize interference from external magnetic sources,

making the method less accessible.

Functional magnetic resonance imaging (fMRI) is another essential tool

for studying language, offering high spatial resolution. Unlike EEG and

MEG, which track neural activity in real-time, fMRI measures changes in

blood-oxygen-level-dependent (BOLD) signals, reflecting metabolic activity

over seconds rather than milliseconds. This makes it ideal for mapping the

functional anatomy of the language network but less suited for capturing rapid

processing dynamics. Despite its lower temporal resolution, fMRI has been

instrumental in identifying key brain regions involved in language, including

Broca’s area, Wernicke’s area, and other distributed cortical and subcortical

structures.

Each of these non-invasive methods provides either high temporal or high

spatial resolution, but not both. To obtain a more complete understanding of

brain function, researchers often combine techniques, integrating fine-grained

temporal data from EEG and MEG with the detailed spatial mapping provided

by fMRI.

1.4 Objectives and Outline of this dissertation

Language is a fundamental yet complex cognitive process. While we use it

effortlessly in daily life, the neural mechanisms behind it remain a subject of

ongoing research. Understanding these mechanisms is particularly important

for individuals with language impairments, such as stroke survivors or patients

with brain tumors.

The initial goal of this dissertation was to explore speech perception — a

complex process that unfolds across multiple levels of analysis, from early

acoustic-phonetic processing to higher-order lexical processing and semantic

integration. Using event related potentials (ERPs), we investigated the

cortical generators and functional connectivity of the MMN, P300, and N400

components. While state-of-the-art methods were used in this work, certain

challenges and limitations emerged, highlighting the need for further refine-

ment of these methods. This led us to a dual focus: first, on understanding the
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neural basis of speech perception through source localization and functional

connectivity, and second, on exploring some methodological questions that

could have an impact on the obtained results.

The dissertation begins with some foundational background in Part I: From

Neural Activity to Measured Brain Signals. Since our goal is to use non-

invasive methods, Chapter 2 explains how electrical signals in the brain gener-

ate the activity we can measure with EEG, along with a discussion of common

ERP components. Chapter 3 introduces EEG source imaging (ESI) and func-

tional connectivity (FC), key methods used throughout this work.

The empirical work is presented in Part II: Source reconstruction and func-

tional connectivity of language ERP components. In Chapter 4 we investi-

gate the P300, MMN, and N400 components, their cortical generators, and

the underlying networks. However, certain limitations and assumptions could

influence the obtained results, and applying these techniques to patient popu-

lations requires addressing several methodological challenges. To tackle this,

in Part III: How simulations can help us understand the working mech-

anisms of the brain, simulation studies were conducted, each addressing a

specific question:

• Chapter 5: How does latency jitter in single trials affect ERP analyses?

• Chapter 6: How can combining different source reconstruction tech-

niques improve our understanding of the relationship between ERPs and

brain oscillations?

• Chapter 7: How does using template head models instead of subject-

specific models influence EEG source localization?

• Chapter 8: How do craniotomy-induced lesions impact EEG signals?

The findings from these simulation studies were also always applied to real

data in these chapters. This way, we were able to obtain deeper insights into

both the methodological limitations and the neurophysiological mechanisms

underlying the recorded data.

Finally, in Chapter 9, we provide an overall summary of the results obtained

in these chapters and discuss the general findings. By combining simulations

with work on real data, this dissertation provides new insights into the neural

basis of speech perception and the methodological considerations needed for

future research and clinical applications.



Part I

From Neural Activity to

Measured Brain Signals





2 | The brain, electroencephalography and

event-related potentials

Electroencephalography (EEG) is a recording technique used to measure the

electrical activity in the brain. The first EEG recording was made in 1924

by German physiologist and psychiatrist Hans Berger. Experiments by Berger

showed that recorded brain waves differed for healthy participants and pa-

tients with a neurological disorder. Furthermore, he also showed that brain

waves change depending on whether a patient is paying attention, relaxing

or sleeping (Berger, 1929; Sörnmo and Laguna, 2005). In 1934, Fischer and

Löwenbach demonstrated epileptiform spikes, after which EEG found its way

into clinical neuroscience. Since then, it has been one of the most used tech-

niques to study brain activity and to diagnose different neurological disorders

such as epilepsy and sleep disorders. EEG can also be used to check the depth

of a patient’s anaesthesia during surgery or to examine the brain activity of pa-

tients in coma (Kulkarni and Bairagi, 2018). The technique plays an important

role in research fields such as cognitive neuroscience, where it is used to in-

vestigate brain function and cognitive processes. EEG is particularly valuable

for studying the neural mechanisms underlying attention, perception, memory,

and decision-making. Researchers use EEG to investigate how different brain

regions communicate and coordinate during various mental tasks.

This first chapter aims to provide the necessary background to understand

the work in this dissertation. We begin by explaining how electrical activity

is generated in the brain, which helps in understanding EEG signals. Next, we

describe how EEG is measured in the lab and explore the different types of brain

activity it can capture. Finally, we focus on Event-Related Potentials (ERPs), a
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common EEG method used in cognitive neuroscience to study brain responses

to specific events.

2.1 Electrical activity in the brain

Nerve cells or neurons are specialised cells of the nervous system that receive

and transmit information in the body through electrical and chemical signals.

A nerve cell consists of three main components: the dendrites, the cell body

and the axon. The dendrites receive signals sent by other neurons and trans-

mit these signals towards the cell body. Each neuron typically has a number

of dendrites that are strongly branched. This branching of the dendrites in-

creases the contact surface for input from other neurons, allowing input from

a multitude of neurons in proximity. The cell body then combines or processes

this incoming information from the different dendrites. In turn, the neuron can

then send information to other neurons via its axon. The anatomy of a neuron

is illustrated in Figure 2.1.

When we look at this process of information transfer in more detail, typically,

a distinction is made between the pre-synaptic neuron and the post-synaptic

neuron (Figure 2.1). When a pre-synaptic neuron wants to send information

towards post-synaptic neurons, the signal originates at the axon hillock of the

pre-synaptic neuron and travels along the axon towards the axon terminals in

the form of action potentials. During an action potential, the membrane po-

tential at a specific location in the neuron will rise and fall in a very short time

period of about 1 to 2 ms, after which the membrane potential again reaches

its resting state (Hodgkin and Huxley, 1952). Changes in the membrane poten-

tial are caused by the active transport of K+ and Na+ ions over the membrane.

When the action potential reaches the axon terminals, it will trigger the release

of neurotransmitters into the synapse. The neurotransmitters that bind with the

receptors of the post-synaptic dendrites will initiate a post-synaptic potential.

Depending on the type of neurotransmitter that is released, the ion channels

in the neuronal cell wall will increase the inflow of Na+ ions or decrease the

outflow of K+ at the dendrite. This results in two types of post-synaptic poten-

tials. In the first type, the membrane potential will increase, resulting in an

excitatory post-synaptic potential (EPSP), while in the second, the membrane

potential decreases, and an inhibitory post-synaptic potential (IPSP) is gener-

ated. The post-synaptic potentials travel along the dendrites towards the cell

body and the axon hillock. All post-synaptic potentials of the different den-
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Figure 2.1. The anatomy of a neuron. The most important parts of the cell
are the cell body, the axon, the dendrites and the axon hillock. An action po-
tential is generated at the axon hillock after which it travels along the axon
in the direction of the axon terminals. When the action potential reaches the
axon terminals, it will trigger the release of neurotransmitters in the synapse,
where it will bind to the post-synaptic receptors of a second neuron and will
trigger a post-synaptic potential (figure adapted from Tang et al. (2019) with
permission).

drites are summed up at the axon hillock. When the membrane potential at the

axon hillock reaches a certain threshold, an action potential will be generated

(Figure 2.1). More detailed information about these mechanisms can be found

in Marieb and Hoehn (2015).

At the moment excitatory neurotransmitters bind with the receptors, the ex-

tracellular voltage at the dendrite becomes more negative than elsewhere along

the neuron due to the increased inflow of Na+. This means that the neuron be-

comes a dipole, in which a positive charge is separated from a negative charge,

resulting in an electric field. The electric field of a single neuron is too weak to

be measurable at the scalp. The signals measured by EEG are the result of both

spatial and temporal summation of the dipoles of different neurons. Spatial

summation is illustrated in Figure 2.3. In Figure 2.3a, the different neurons
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have a parallel arrangement and are oriented identically. This configuration

allows the dipoles to sum up and create a larger electric field, thus resulting in

a larger signal. Figures 2.3b and 2.3c show two situations where spatial sum-

mation is impossible, as the electric fields will cancel each other out. Different

types of neurons exist in the brain. Pyramidal cells are the largest cells in the

cortex and have a parallel, radial orientation (Figure 2.2). As these specific

characteristics of pyramidal cells are ideal for spatial summation, these neu-

rons are the main generators of the electrical field in the brain (Mark F. Bear,

2006).

Figure 2.2. The summation of excitatory and inhibitory post-synaptic poten-
tials results in an action potential if the threshold is reached. Excitatory post-
synaptic potentials (EPSPs) will increase the membrane potential, and thus
bring it closer to the threshold, while inhibitory post-synaptic potentials (IP-
SPs) will decrease it. The figure also shows that after the action potential, the
membrane potential will return to its resting state (figure adapted from Biga
et al. (2019)).

2.2 Electroencephalography

Electroencephalography (EEG) is a noninvasive method for recording the elec-

trical activity of the brain. Four main hardware components are needed: elec-

trodes placed on the scalp, an amplifier to amplify the measured signals, an

analog-to-digital converter, and a recording device.

In most EEG recording systems, an electrode consists of an Ag/AgCl-metal

disk or pellet that makes an electrical connection to the scalp through a con-
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(a) (b)

(c)

Figure 2.3. Spatial summation depends on the arrangement and orientation of
the different neurons. In the first subfigure, each of the neurons is oriented and
arranged in the same way. This way, the electrical field created by the differ-
ent neurons is summated and becomes measureable. For the other subfigures,
however, the electrical fields cancel each other out (figures based on Jackson
and Bolger (2014)).

ductive gel and has a long lead that allows the electrode to be connected to the

amplifier. While different systems exist to define and name the electrode posi-

tions, the most-used configuration is the International 10-20 system (Malmivuo

and Plonsey, 1995). In its original version, the locations of the electrodes were

determined using 10% and 20% intervals of the distance between different ref-

erence points, namely the nasion, the inion, and the left and right pre-auricular

points (Figure 2.5). In more recent versions, more electrodes are used, and also

5% points are now included. Each electrode is given a label to indicate its posi-

tion on the scalp. The letters ‘P’, ‘T’, ‘F’ and ‘O’ are used to indicate respectively

the parietal, temporal, frontal and occipital lobes of the brain, while the let-

ter ‘C’ is used for the central electrodes. The numbers in the label illustrate

on which side of the brain the electrode is placed. Even numbers are used for

electrodes on the right hemisphere and odd numbers for the left hemisphere.

Larger numbers indicate greater distances from the midline, while electrodes

on the midline are given the letter ‘z’ (zero) instead of a number because the

number zero looks too much like the letter O.
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Figure 2.4. The electrical fields measured by EEG are generated by aligned
pyramidal cells in the cortex (figure adapted from Mark F. Bear (2006)).

Apart from recording or active electrodes, the system also requires a ground

and a reference electrode. The ground electrode serves as a common reference

point for the electrical potential of the body. It helps to reduce electrical noise

and interference from external sources, such as power lines and electronic de-

vices. On the other hand, the reference electrode is used to compare the electri-

cal activity recorded by the other electrodes on the scalp. The EEG will measure

the voltage difference between the active and the reference electrodes. This dif-

ferential measurement helps to isolate the brain’s electrical activity from other

sources of electrical noise.

Once the electrodes pick up the EEG signals, they are amplified and converted

from a continuous, analog voltage into a discrete, digital form that can be stored

in a computer. A typical amplification factor of 10,000 is used, ensuring that

the EEG voltage is in an appropriate range for the analog-to-digital conversion.

In the final step, the digital signal is stored on a recording device, such as a

regular computer, allowing visualization and analysis of the measured signals.

2.2.1 Spontaneous and evoked EEG

When recording EEG data, researchers are typically interested in either spon-

taneous brain activity or in understanding brain activity in response to specific
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Figure 2.5. The international standardized 10-20 system for the placement
of electrodes in EEG. The reference points in this system are the nasion and
the inion. The locations of the electrodes are determined using 10% and 20%
intervals of the distance between these reference points (figure reprinted with
permission from Shriram et al. (2013)).

tasks or stimuli. When EEG is recorded in the absence of external stimuli, it

is typically referred to as resting-state EEG. The primary focus of this disser-

tation, however, is on Event-Related Potentials (ERPs), which are time-locked

brain responses to distinct sensory, motor, or cognitive events (Luck, 2014).

Resting-state EEG

Resting-state EEG (rs-EEG) captures the brain’s ongoing, spontaneous electrical

activity when no specific task is performed. It is typically considered to provide

information on the intrinsic connectivity and the functional organization of the

brain.

As the electrical activity measured by the EEG often shows oscillatory and

repetitive behaviour, rs-EEG is often analysed using spectral analysis methods.

The rhythm of the activity depends, among other things, on the alertness or the

consciousness of the subject and is characterised by its frequency (Figure 2.6.

Five different rhythms or frequency bands are distinguished in EEG research,

namely delta rhythm (0-4 Hz), theta rhythm (4-8 Hz), alpha rhythm (8-12

Hz), beta rhythm (12-30 Hz) and gamma rhythm (30-100 Hz). Delta rhythm

is typically observed during deep sleep, while theta rhythm is associated with

other sleep stages and drowsiness. In awake subjects who are relaxed, activity

in the alpha frequency band is most prominent. The frequency of electrical
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activity in the brain increases further to the beta frequency band when subjects

are having conversations or are focusing on a task. Finally, gamma rhythm

indicates hyper brain activity, which is associated with learning (Sörnmo and

Laguna, 2005).

Figure 2.6. The frequency of the rhythm of brain activity depends on the alert-
ness or the conciousness of the patient (figure adapted from Biorender with
permission).

Changes in the spectral composition of the EEG signals can be observed

across the lifespan. Studies comparing adolescents and adults, for example,

have shown that EEG power typically decreases with increasing age, while func-

tional networks become more organized probably due to structural changes of

the brain. Changes in these features have also been associated with a number

of disorders, including depression and dementia. To give an example, studies

have found a decrease in spectral power in the alpha and beta bands in dif-

ferent types of dementia, such as Alzheimer’s disease and fronto-temporal lobe

dementia (FTLD). However, while patients with Alzheimer’s also showed an in-

crease in spectral power in the theta and delta bands, indicating slowing of the
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brain oscillations, these frequencies were not affected in FTLD (Lindau et al.,

2003; Nishida et al., 2011; Caso et al., 2012).

Task-related EEG

In addition to analyzing spontaneous EEG activity, another widely used ap-

proach in EEG research involves measuring the brain’s responses to specific

sensory, motor, or cognitive events (Luck, 2014). These time-locked responses,

known as Event-Related Potentials (ERPs), provide a noninvasive window into

the neural mechanisms underlying perception, attention, decision-making, and

many other cognitive processes. Given that ERPs form the central focus of this

dissertation, the following section offers a more detailed overview of how they

are measured, interpreted, and applied in experimental research.

2.3 Event-Related Potentials

ERPs are small voltage fluctuations embedded within the ongoing EEG signal.

Since raw EEG data is highly dynamic and contains a mix of background neural

activity and noise, individual event-related responses are very difficult to distin-

guish in single trials. To extract ERPs, researchers use trial averaging, a method

in which multiple EEG epochs (time segments) aligned to the same type of stim-

ulus or event are averaged together. This process enhances the stimulus-related

signal while minimizing the influence of unrelated brain activity and external

noise, revealing characteristic ERP waveforms.

ERP components are defined by their latency (when they occur relative to the

stimulus), polarity (positive or negative deflection), and topography (scalp dis-

tribution). These components are often classified into early and late responses.

Early sensory components, such as P1, N1, and P2, typically occur within the

first 100–200 milliseconds after stimulus onset and reflect the initial stages of

sensory processing. Their amplitude and latency can be influenced by stimulus

properties such as intensity, modality (e.g., visual vs. auditory), and attention.

Cognitive components on the other hand, such as the P300 (associated with at-

tention and decision-making) and the N400 (linked to language comprehension

and semantic processing), appear later and are thought to reflect higher-order

cognitive functions.
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Figure 2.7. Visual representation of some common event-related potential
components

2.3.1 Advantages of ERPs

One of the key advantages of ERPs is their high temporal resolution, allowing

researchers to track neural processing on the millisecond scale. This makes

ERPs particularly useful for studying the sequence and timing of cognitive pro-

cesses that would be difficult to resolve using techniques like fMRI, which has

much lower temporal precision.

ERPs are widely used in both basic and applied research. In cognitive neuro-

science, they help uncover how the brain processes stimuli and how different

mental functions unfold over time. In clinical settings, ERPs are very promising

as biomarkers for neurological and psychiatric disorders, such as schizophrenia,

autism spectrum disorder, and Alzheimer’s disease. Certain ERP abnormalities

can indicate deficits in sensory processing, attention, or memory, making them

valuable tools for early diagnosis and treatment monitoring.

Another important aspect of ERP research is its adaptability to different ex-

perimental paradigms, allowing researchers to study a wide range of cognitive

processes in both healthy individuals and clinical populations. The flexibility

of ERPs comes from their ability to be elicited by carefully designed tasks that

isolate specific cognitive functions while maintaining high temporal precision.
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2.3.2 Common Experimental Paradigms in ERP Research

One widely used paradigm is the oddball task, which is commonly employed

to investigate attention, novelty detection, and cognitive control. In this

paradigm, participants are presented with a sequence of repetitive "standard"

stimuli interspersed with infrequent "oddball" or "deviant" stimuli that differ

in some characteristic, such as pitch in an auditory oddball task or color in

a visual oddball task. When participants are asked to not pay any attention

to the stimuli, this paradigm typically elicits a Mismatch Negativity (MMN)

component, which can be used to study automatic change detection. On

the other hand, when researchers ask the participant to pay attention and

for example press a button when the rare oddball stimulus apprears, these

stimuli will typically elicit a P300 component, a well-known ERP marker of

attentional allocation and context updating. The amplitude and latency of

the P300 provide insights into how quickly and efficiently the brain detects

and responds to unexpected stimuli, making this paradigm useful for studying

attentional processes and clinical conditions such as ADHD and schizophrenia.

Another common approach is the go/no-go task, which is used to study re-

sponse inhibition, cognitive control, and executive function. In this paradigm,

participants must execute a motor response (pressing a button) when they see

a "go" stimulus but withhold their response when a "no-go" stimulus appears.

The difference in ERP responses between go and no-go trials reveals neural

mechanisms of impulse control. The N2 component (a frontocentral negative

deflection occurring around 200–300 ms after the stimulus) is thought to re-

flect conflict detection, while the P3 (or P300) component in no-go trials is

associated with inhibitory control. Go/no-go tasks have been widely applied

in research on impulse control disorders, substance abuse, and developmental

changes in executive function.

ERPs are also extensively used in language comprehension studies, where

they provide insights into how the brain processes different linguistic elements

in real time. For instance, the N400 component, a negative-going wave peak-

ing around 400 ms after word onset, is sensitive to semantic incongruities. It

is larger when a word is unexpected or does not fit the preceding context (e.g.,

"He spread the warm bread with socks"). Another important ERP component

in language research is the P600, which is linked to syntactic processing and

reanalysis, often appearing in response to grammatical errors or complex sen-

tence structures. By using paradigms that manipulate lexical, semantic, and

syntactic information, researchers can investigate the neural basis of language
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comprehension in both typical and impaired populations, such as individuals

with dyslexia or aphasia.



3 | EEG source imaging and functional connec-

tivity

As explained in the previous chapter, EEG provides a non-invasive window into

brain activity with high temporal resolution, making it a valuable tool for study-

ing neural dynamics. However, the interpretation of EEG data is often compli-

cated by the fact that signals recorded at the scalp represent a mixture of con-

tributions from multiple underlying neural sources. EEG source imaging (ESI)

addresses this challenge by estimating the location and strength of the cortical

generators that result in the observed EEG signals. By solving the so-called in-

verse problem, ESI reconstructs brain activity at the source level, allowing for

an easier interpretation of neural processes.

Beyond identifying individual brain regions involved in specific cognitive

functions, a growing interest in neuroscience focuses on how different regions

interact. Functional Connectivity (FC) refers to the statistical dependencies be-

tween signals recorded from different brain regions. These measures provide

insights into the functional neural networks in the brain. FC can be assessed

both at the sensor level, using the original EEG recordings, and at the source

level, following ESI. While sensor-level FC is often easier to compute, it may

be confounded by volume conduction effects. Source-level FC, on the other

hand, allows for network analysis in a more physiologically meaningful way, as

it accounts for the true neural origins of EEG signals.

By combining EEG source imaging with functional connectivity analysis, re-

searchers can study how brain regions coordinate their activity, offering valu-

able insights into cognitive processing, neurological disorders, and brain net-
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work dynamics. In this chapter, both EEG source imaging and functional con-

nectivity will be introduced, highlighting their methodological principles.

3.1 EEG Source Imaging

One of the limitations of EEG is its limited spatial resolution. As the electrical

activity generated by the neurons travels through the brain in different direc-

tions, the activity recorded by each electrode does not represent a single un-

derlying brain source but rather a composite of activities from various brain

regions. To overcome this limitation, EEG source imaging was introduced as

a computational technique to estimate the electrical neuronal activity in the

brain. This technique identifies the underlying generators of the electrophysi-

ological activity recorded at the scalp by combining the EEG signals with struc-

tural MR images. During recent decades, EEG Source Imaging (ESI) has been

an important area of research, and it has introduced significant advances in

multiple research domains such as epilepsy (Mégevand & Seeck, 2020) and

sleep (Del Felice et al., 2014; Fernandez Guerrero & Achermann, 2019).

Source analysis of EEG data consists of two different processes: a forward

model and an inverse model. The forward model, also called the head model,

describes how a known source of electrical activity within the brain contributes

to the signal observed at each EEG electrode on the scalp. Conversely, the in-

verse model estimates the location and strength of the electrical activity within

the brain based on the EEG signals recorded at the scalp and relies on the

forward model to obtain an accurate solution. This is a non-unique problem,

which means that regularisation techniques or constraints are needed to find

plausible solutions. A visual overview of the information flow and the basic

components included in EEG source imaging is given in Figure 3.1.

3.1.1 The forward model

In EEG source imaging, the forward model is a crucial step in understanding

how brain activity results in the electrical signals recorded at the scalp. It estab-

lishes the mathematical relationship between neural sources and the measured

EEG signals, essentially predicting how neuronal activity propagates through

different head tissues to reach the electrodes. This process requires an accurate

representation of both the brain’s electrical sources and the head’s conductive

properties. The forward model is constructed using three key components: the

head model characterizing the geometric and electrical properties of the head,
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Figure 3.1. Information flow and basic components of the forward and inverse
problems (adapted with permission from Zorzos et al. (2021)

the source model defining the possible location of neural activity, and the posi-

tions of the electrodes that were used for the EEG recording.

The head model

To understand how the neuronal sources generate measurable EEG signals at

the scalp, a detailed representation of the head’s structure is necessary. The

head model accounts for the anatomical and electrical properties of different

tissues, determining how electrical currents propagate through, among others,

the brain, skull, and scalp.

Geometry: The complexity of the head model can vary. While simplified

spherical models exist which allow for analytical solutions, they lack the re-

alism and accuracy that is needed for accurate localizations. More detailed,

subject-specific models are typically derived from MRI scans. These models

include multiple layers representing different tissues, such as the brain, cere-

brospinal fluid (CSF), skull, and scalp. Advanced segmentation tools exist in

open source packages, such as FreeSurfer, SPM and Brainstorm, facilitating

the construction of these models. The number of tissue types that are consid-

ered can vary. Some simple models only segment three different tissue types

(i.e. brain, skull, and scalp), while more complex models sometimes include

up to nine different tissues (i.e. white matter, grey matter, CSF, compact bone,

spongiform bone, scalp, eyes, blood and muscle). More detailed models have

been shown to improve accuracy, especially the inclusion of CSF in the model,

however, they also increase computational demands and potential numerical

errors.
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When individual structural brain images are unavailable, which is often the

case in studies with healthy participants, standardized anatomical templates

can be used as a alternative. One commonly used template is fsaverage, a

standard cortical surface template provided by FreeSurfer (Fischl, 2012).

The fsaverage model is based on the alignment of multiple individual brain

scans, resulting in an average cortical surface representation that facilitates

group-level analyses and comparisons across studies. Other standardized

templates, such as the ICBM152 or the Colin27 brain (Mazziotta et al., 2001;

Holmes et al., 1998), offer additional options depending on the specific

requirements of the study.

Electrical Conductivity: Each tissue type has unique electrical conductiv-

ity properties, which influence how the brain’s electric fields propagate to the

scalp. Conductivity values are typically estimated from literature, as direct

in vivo measurements for every patient are currently impossible. Some tis-

sues, like white matter and the skull, exhibit anisotropic conductivity, meaning

their electrical properties also vary depending on direction. While Anwander

et al. (2002) have shown localization errors of 5.1 mm for radial sources when

white matter anisotropy was neglected, most models used today ignore the

anisotropic nature of these tissue types and approximate them using isotropic

conductivity values.

The source model

Neuronal sources in the brain generate electrical activity that can be modeled

to simulate EEG signals. As discussed earlier, the primary generators of EEG are

the pyramidal neurons in the cortex. These neurons create electrical currents

through postsynaptic potentials, which can be represented at a macroscopic

level as current dipoles. A current dipole consists of a paired current source

and sink, separated by a small distance, and is mathematically characterized

by its position, orientation, and intensity. The dipole moment describes both

the direction and strength of this source.

The source space then represents the set of all possible locations where

dipoles can be placed to model brain activity. Since pyramidal neurons are

primarily located in the cortical gray matter, sources are usually restricted to

this region. Dipoles can be positioned on the cortical surface or within a 3D

grid inside the gray matter volume (cf. Figure 3.3). Their orientations may be

fixed perpendicular to the cortical surface, reflecting the natural alignment of
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Subject-specific
head models

Template
head models

9 tissue types
(FEM)

3 tissue types
(BEM)

Figure 3.2. Examples of head models. In the different columns, examples are
shown of head models including respectively 9 and 3 different tissue types,
while in the different rows, examples are given for head models based on tem-
plates (top row) and based on subject-specific MRIs (bottom row).

neurons. The number of dipoles in the source space can range from hundreds

to tens of thousands, depending on the required resolution.

Electrode positions

To accurately calculate the EEG signals resulting from modeled sources, pre-

cise knowledge of electrode positions on the scalp is essential. Standardized

systems, such as the 10-20 system and its higher-density extensions (10-10

and 10-5 systems), provide predefined electrode placements, ensuring consis-

tency across studies and compatibility with existing head models. In this sys-

tem, which was originally designed to balance spatial coverage and practicality,

electrodes are positioned based on distances between anatomical landmarks,

including the nasion, inion, and preauricular points. The 10-10 and 10-5 exten-

sions increase the density of electrodes, allowing for finer spatial resolution and

improved source estimation. While high-density EEG (e.g., 128 or 256 chan-

nels) further enhance spatial sampling, they also introduce challenges related to

setup time, patient comfort, and computational complexity in source modeling.

To take into account individual variability in head shape and size, these stan-

dard electrode positions can be coregistered to the head model and projected on

the scalp based on the anatomical landmarks. A visualization of these coregis-



58 3. EEG source imaging and functional connectivity

Figure 3.3. Examples of source models with a different number of dipoles. The
dipoles are placed within a regular 3D grid inside the gray matter volume.

tered electrodes to the head model is shown in Figure 3.4 for different electrode

set-ups including respectively 32, 64 and 128 electrodes. Alternatively, actual

electrode locations can be measured using 3D digitization techniques. This ap-

proach is considered the most accurate one, and common methods include elec-

tromagnetic tracking systems (e.g., Polhemus), optical tracking (e.g., infrared

cameras), and photogrammetry. These techniques ensure accurate alignment

between the recorded EEG signals and the individual head model, reducing lo-

calization errors in EEG source imaging. By integrating accurate electrode po-

sitioning with detailed head and source models, the forward model can provide

a reliable foundation for EEG source imaging, improving the ability to localize

and interpret underlying neural activity.

32 electrodes 64 electrodes 128 electrodes

Figure 3.4. Visualization of the electrodes placed on the scalp of the head
model based on anatomical landmarks including respectively 16, 64 and 128
electrodes.
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Calculation of the Forward Model

Once the head model, source model, and electrode positions have been defined,

the forward model can be computed. This step determines how electrical ac-

tivity generated within the brain propagates through the head’s tissues to pro-

duce the EEG signals recorded at the scalp electrodes. The fundamental part of

the forward model is the leadfield matrix, which mathematically describes the

contribution of each potential dipole source to the signals at each electrode.

Essentially, the leadfield acts as a transformation between source space (the

neural generators) and sensor space (the observed EEG signals).

Mathematically, the EEG potentials V recorded at the electrodes can be ex-

pressed as a linear combination of the source activities J:

V= LJ+ ε (3.1)

where L is the lead field matrix, which depends on the head model’s geometry

and conductivity, and ε represents measurement noise. Computing L requires

solving Maxwell’s equations, which describe the behavior of electrical fields

within a conductive medium.

For simplified spherical head models, the forward model can be computed

analytically using closed-form solutions. These models assume that the head

consists of concentric spherical shells with uniform conductivity. While com-

putationally efficient, spherical models oversimplify head anatomy, leading to

localization errors and limiting their practical applicability in EEG source imag-

ing. For realistic head models based on MRI-derived anatomy, numerical meth-

ods are needed to solve the electromagnetic field equations. The most widely

used approaches include the Boundary Element Method (BEM), the Finite Ele-

ment Method (FEM) and the Finite Difference Method (FDM). BEM treats the

head as a set of nested surface compartments (e.g., brain, skull, and scalp) and

solves the electrical potential at these boundaries. It assumes that each com-

partment has isotropic conductivity, making it computationally efficient while

capturing some anatomical details. However, BEM cannot model conductivity

variations within each tissue layer and is less accurate when dealing with highly

conductive structures such as cerebrospinal fluid (CSF). FEM divides the head

volume into small finite elements (e.g., tetrahedra or hexahedra) and approx-

imates the electrical field within each element. Unlike BEM, FEM allows for

inhomogeneous and anisotropic conductivity, making it more accurate in mod-

eling complex tissue properties (e.g., anisotropic white matter). However, FEM
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requires computationally intensive meshing and numerical solvers, making it

more demanding in terms of processing time and memory. FDM discretizes

the head volume using a regular grid and approximates differential equations

governing electric potential propagation. While computationally efficient, the

availability of FDM tools in open source software is very limited, making it the

least often used option.

3.1.2 The inverse problem

The second part of the EEG source imaging technique involves solving the in-

verse problem. This problem refers to determining the location, orientation and

magnitude of the cortical dipoles that explain the observed activity at the scalp

(Luck, 2014). This process relies on the forward solution, but is fundamen-

tally ill-posed as the number of possible sources vastly exceeds the number of

electrodes where the EEG is measured, meaning that there is no unique math-

ematical solution. To overcome this limitation, inverse techniques incorporate

certain assumptions or enforce specific constraints to regularize the solution.

The final goal is to minimize the difference between the predicted EEG (based

on the forward model) and the measured EEG, i.e. the residuals, while op-

timizing a particular cost function. Typically, inverse solutions are separated

into two categories: the equivalent current dipole (ECD) approaches and the

distributed dipoles approaches. Where the ECD approaches assume that the

EEG signals are generated by a small number of focal sources, the distributed

dipoles approaches consider all possible source locations simultaneoulsy.

Equivalent Current Dipole Models

ECD models assume that EEG signals arise from a small number of discrete

dipoles, typically fewer than 10, each defined by its position, orientation, and

strength. These dipoles are estimated through optimization techniques that

iteratively adjust their parameters to best fit the observed EEG data. ECD mod-

els are particularly useful in cases where neural activity originates from well-

defined focal sources, such as epileptic spike localization.

The estimation of dipole parameters relies on nonlinear optimization meth-

ods that refine dipole locations and orientations to minimize the residual error

between the predicted EEG signals (derived from the forward model) and the

observed EEG signals. The simplest case, involving a single ECD, is typically

solved by minimizing the relative residual energy (RRE), which quantifies the
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proportion of unexplained signal energy relative to the total measured signal

energy. When multiple dipoles are assumed, the most widely used approach

is multiple emitter location and signal parameter estimation (MUSIC), which

searches for sources that best match the dominant components of EEG activity

(Schmidt, 1986). More advanced techniques, such as Recursively Applied and

Projected MUSIC (RAP-MUSIC), iteratively refine dipole estimates by sequen-

tially localizing multiple sources while minimizing interference between them.

These methods enhance source localization accuracy by iterating through mul-

tiple candidate dipole configurations and projecting out previously identified

sources to improve subsequent estimates (Mosher and Leahy, 1999).

Despite their precision in localizing a small number of sources, ECD mod-

els require an a priori assumption about the number of dipoles present, which

may not always be known. Additionally, the accuracy of the solution is highly

dependent on the initial parameter estimates, as nonlinear optimization tech-

niques can converge to local minima rather than the true global solution. This

sensitivity to initial conditions necessitates careful selection of starting param-

eters and, in some cases, the incorporation of additional constraints or prior

knowledge to guide the optimization process.

Distributed Dipole Models

In contrast to ECD approaches, distributed dipole models assume that brain

activity is generated by a large number of simultaneous sources distributed

across the cortical surface or within a volumetric source space. Instead of esti-

mating a small number of dipoles, these models assign an activation value to

thousands of potential sources and attempt to reconstruct a spatially extended

representation of neural activity. However, since the number of sources exceeds

the number of electrodes, additional constraints must be imposed to obtain a

stable and physiologically plausible solution.

Different inverse methods apply various regularization techniques to achieve

this. The most simple approach to regularization is the Minimum Norm Estima-

tion (MNE) solution (Hämäläinen and Ilmoniemi, 1994), which assumes that

the overall source activity should be as small as possible while still explaining

the observed EEG signals. In other words, this approach tries to find the so-

lution with minimum power. As this solution favours superficial sources over

deep sources, the method was extended by Lin et al. (2006) who introduced

the Weighted Minimum Norm Estimate (wMNE) solution in which the power

of the sources is weighted using a weighting matrix that can be based on the
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depth of the sources or other constraints. Another regularization approach is

Low-Resolution Electromagnetic Tomography (LORETA), which enforces spa-

tial smoothness constraints to enhance the continuity of reconstructed sources

and improve localization accuracy (Pascual-Marqui et al., 1994). In this ap-

proach, if one source is active, there is a high probability that the neighbour-

ing sources are also active. Other methods that build further upon this are the

standardized low-resolution brain electromagnetic tomography (sLORETA) and

exact low-resolution brain electromagnetic tomography (eLORETA) (Pascual-

Marqui, 2002; Pascual-Marqui et al., 2011). Other methods, such as beam-

forming approaches like Linearly Constrained Minimum Variance (LCMV) and

Dynamic Imaging of Coherent Sources (DICS), use spatial filtering techniques

to isolate the contributions of specific brain regions while suppressing interfer-

ence from other areas (Van Veen et al., 1997; Gross et al., 2001).

Distributed models offer the advantage of not requiring a priori assumptions

about the number of active sources, making them particularly well suited for

cognitive studies where multiple brain regions may be simultaneously engaged.

However, they tend to exhibit lower spatial specificity compared to ECD models

due to regularization constraints, which often result in spatially diffuse solu-

tions. Additionally, these models are computationally more demanding, partic-

ularly when high-density EEG recordings are used to improve resolution. While

they provide a more comprehensive picture of brain activity, their accuracy can

be affected by the choice of regularization method and the assumptions that

are made about signal smoothness.

3.2 Functional Connectivity

When looking at connectivity in the brain, two different types of connectiv-

ity can be distuinguished: structural connectivity and functional connectivity.

Structural connectivity investigates the anatomical connections that exist be-

tween different areas of the brain, and is typically measured using diffusion

weighted imaging (DWI). It provides the framework of physical white matter

pathways through which signals in the brain can travel. While changes in these

connections are possible over time, when looking at short time scales, struc-

tural connectivity remains stable. Functional connectivity (FC), on the other

hand, refers to the statistical dependencies between neural signals recorded

from different brain regions, reflecting coordinated activity rather than direct

anatomical connections. Unlike structural connectivity, functional connectivity
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is a dynamic measure that can change over time, depending on cognitive states,

tasks, or pathological conditions, and is typically assessed using EEG or fMRI

time series.

As mentioned in the introduction of this chapter, functional connectivity can

be studied at two levels in EEG research: the sensor level (i.e., between EEG

electrodes) and the source level (i.e., between reconstructed cortical sources).

Sensor-level connectivity is more straightforward but is affected by volume con-

duction, which can introduce artificial correlations. Source-level connectivity,

derived from EEG source imaging techniques, provides a more anatomically

meaningful interpretation by mapping connectivity patterns onto specific brain

regions, reducing the influence of spurious correlations caused by volume con-

duction.

Functional connectivity measures in EEG can be grouped into four different

categories:

• Correlation and coherence methods typically assess the linear relation-

ship between signals recorded from different electrodes or brain regions.

Correlation quantifies the similarity in signal amplitude fluctuations over

time, while coherence measures the consistency of phase relationships

across specific frequency bands. These methods are widely used due to

their simplicity and ability to reveal large-scale network dynamics.

• Phase synchronization measures focus on the temporal alignment of

oscillatory activity between signals, independent of amplitude variations.

Metrics such as the Phase Locking Value (PLV) and the Phase Lag Index

(PLI) quantify how consistently two signals maintain a fixed phase differ-

ence, making them particularly useful for studying neural communication

mechanisms.

• Information based measures capture both linear and nonlinear depen-

dencies between EEG signals by evaluating shared information content.

Mutual Information (MI) is a commonly used approach that detects statis-

tical dependencies beyond simple correlation, offering insights into com-

plex interactions that traditional linear methods might miss.

• Granger causality measures go a step further by estimating the

directional influence between signals, distinguishing between mere

correlation and potential causal relationships. Techniques such as

Granger Causality (GC), directed coherence (DC), partial directed

coherence (PDC) and directed transfer function (DTF) assess whether



64 3. EEG source imaging and functional connectivity

past activity in one signal can predict future activity in another, providing

valuable insights into the directional flow of information in the brain.

Each functional connectivity method has its own strengths and weaknesses,

making the choice of method highly dependent on the research question, the

characteristics of the EEG data, and the brain processes being studied. To help

researchers select the right approach, connectivity measures are often grouped

based on several key differences.

One important distinction is whether the method analyzes connections in the

time domain or frequency domain. Time-domain methods, like correlation and

Granger causality, examine how signals relate to each other over time, making

them useful for studying short-lived neural responses or event-related activ-

ity. Frequency-domain methods, such as coherence and phase synchronization,

break signals down into different frequency bands (e.g., alpha, beta, gamma)

to investigate how brain regions interact through specific rhythmic patterns.

Another key difference is whether a method detects directed or undirected

connectivity. Undirected methods, like correlation and coherence, measure

how strongly two signals are related but do not indicate which one influences

the other. Directed methods, such as Granger causality and Transfer Entropy,

aim to determine whether activity in one brain region helps predict future ac-

tivity in another. These methods are useful for studying causal relationships

in brain networks but require careful interpretation since factors like volume

conduction and hidden sources can complicate the results.

A third distinction is whether a method follows a model-based or model-free

approach. Model-based methods, like Granger causality, rely on mathematical

models that describe how one signal influences another, usually assuming linear

relationships. These methods are useful when data follow predictable patterns

but may not capture more complex interactions. Model-free approaches, like

mutual information or phase synchronization, make fewer assumptions and can

detect both linear and nonlinear connections. While these methods are more

flexible, they are often more computationally demanding and can be harder to

interpret.

Finally, connectivity methods differ in whether they examine bivariate or

multivariate relationships. Bivariate methods assess connections between pairs

of signals independently, making them easier to use and interpret. However,

they do not account for indirect connections, meaning they may overlook com-

plex brain interactions. Multivariate methods, like partial coherence or multi-

variate Granger causality, analyze multiple signals at once, allowing researchers
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to study broader network interactions while reducing the impact of false con-

nections. These methods provide a more complete picture of brain networks

but require more data and computational resources.

By considering these key differences, researchers can choose the most suit-

able functional connectivity measure based on their study goals, the nature of

their EEG data, and the assumptions they are willing to make. This choice

ultimately affects how well the results reflect real brain activity and how mean-

ingful the findings are for understanding neural function.
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4 | Cortical Generators and Connections Under-

lying Phoneme Perception and Semantic Priming: a

Mismatch Negativity, P300 and N400 Investigation

Abstract

Speech perception is a complex process that unfolds across multiple levels
of analysis, from early acoustic-phonetic processing to higher-order lexical pro-
cessing and semantic integration. This study examined the cortical sources
and functional networks underlying three Event-Related Potential (ERP) com-
ponents often used to study different aspects of language: the MMN and P300
during passive and active phoneme discrimination, and the N400 during au-
ditory taxonomic priming. Sixty healthy adults underwent high-density EEG
recording while completing a phonemic oddball task and a categorical prim-
ing task. Source localization was performed using eLORETA, and functional
connectivity was assessed via cross-correlation across ROI pairs.

The MMN, elicited during passive listening, showed activation in bilateral
temporal (insula, superior temporal gyrus, temporal pole), frontal (rostral
middle frontal, pars opercularis), and parietal (postcentral, supramarginal)
cortices. Functional connectivity revealed a network linking right tem-
poroparietal regions with left frontal areas supporting automatic detection
of deviant phonemes. In contrast, the P300—evoked during active phoneme
categorization—engaged frontal (caudal middle frontal, precentral), parietal
(precuneus), and cingulate (posterior, isthmus) cortices, forming a distributed
fronto-parieto-cingulate network for goal-directed speech processing. Finally,
the N400, associated with semantic priming, showed left-lateralized activation
in the frontal cortex and posterior cingulate. Enhanced connectivity within
and between frontal areas, and between frontal and parieto-occipital cortices,
supported efficient retrieval of lexical-semantic representations for primed
words.
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Overall, these results reveal that passive phoneme discrimination and active
categorization recruit distinct yet overlapping bilateral networks, while seman-
tic processing relies more heavily on a left-lateralized frontal system. Together,
the MMN, P300, and N400 reflect complementary neural mechanisms under-
lying the transition from sound to meaning in spoken language.

This chapter is based on the following articles:

Criel, Y., Depuydt, E., Miatton, M., Santens, P., van Mierlo, P., & De Letter, M.
(2024). Cortical generators and connections underlying phoneme perception:
a mismatch negativity and p300 investigation Brain Topography 37(2024):
1089-1117. doi:10.1007/s10548-024-01065-z

Criel, Y., Depuydt, E., Cocquyt, E.-M., Miatton, M., Santens, P., van Mierlo, P.,
& De Letter, M. (2025). Frontal Synchronization Facilitates Taxonomic Priming:
Insights from N400 Source Estimation and Functional Connectivity Language,
Cognition and Neuroscience, 1-18. doi:10.1080/23273798.2025.2501049

For both of these articles, Yana Criel and Emma Depuydt are shared first au-
thors. In this collaboration, Yana Criel focused on interpreting the results and
situating them within the broader scientific context, while Emma Depuydt fo-
cused on designing the methodological approach and processing the data. Both
contributions were essential to the conception and realization of the studies.
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4.1 Introduction

Speech perception is a complex process that unfolds across multiple levels

of analysis, from early acoustic-phonetic processing to higher-order lexical

processing and semantic integration. According to the dual-stream model of

spoken word recognition (Hickok and Poeppel, 2004), the dorsal and ventral

streams play distinct but complementary roles in speech processing. The

initial prelexical stages of spoken word processing provide the foundation for

further lexical analysis in the ventral stream and access to articulatory sound

representations through the dorsal stream. At the core of these processes is

the ability to extract and interpret meaningful linguistic units from continuous

auditory input.

Prelexical speech processing involves three key stages (Pettigrew et al.,

2004). First, the auditory system analyzes the incoming speech signal based

on its spectrotemporal features. Next, acoustic-phonetic cues are extracted,

allowing for the identification of phonetic distinctions. Finally, phonologi-

cal/phonemic representations are activated, enabling the discrimination and

categorization of phonemes based on distinctive features such as articulation

place, manner, and voicing (Becker and Reinvang, 2007). Impairments in

these early stages can significantly impact spoken word recognition and

comprehension, as observed in individuals with aphasia, where deficits in

acoustic-phonetic analysis contribute to broader language impairments (Wertz

et al., 1998; Auther et al., 2000). Understanding the neural circuits supporting

phoneme-level processing is therefore essential for elucidating the mechanisms

underlying speech perception.

Neurophysiological research has extensively relied on electroencephalogra-

phy (EEG) to investigate the temporal dynamics of speech processing. Event-

related potentials (ERPs) provide a powerful tool for examining how the brain

responds to different aspects of auditory input in real-time (Luck, 2014). Two

key ERP components, the mismatch negativity (MMN) and P300 (P3b), have

been widely used to study phoneme discrimination and categorization using

oddball paradigms (Aerts et al., 2013; Criel et al., 2023; Näätänen et al., 1997;

Partanen et al., 2011). In this context, these components have been consid-

ered to reflect respectively passive discrimination (Kujala et al., 2007; Näätänen

et al., 2012) and active categorization (Bledowski et al., 2004; Kok, 2001) of

phonemes. Phoneme discrimination refers to the ability to perceive and distin-

guish acoustic differences between phonemes, irrespective of their categorical
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boundaries. Phoneme categorization entails the perception of these linguistic

units into distinct groups that are based on shared acoustic features. The MMN

(Näätänen et al., 1978) typically occurs in the range of 160 to 220 ms after the

onset of a deviance in an oddball task where attention is directed away from the

auditory modality. In contrast, the P300 (Sutton et al., 1965) emerges between

300 and 700 ms after the presentation of a target when stimuli are actively

attended to. Whereas the MMN is characterized by a frontocentral scalp distri-

bution, the P300 is primarily detectable at parietal electrodes (Polich, 2007).

MMN and P300 cortical generators and the functional connectivity thereof have

been a topic of investigation, albeit mainly in relation to the perception of tonal

contrasts. The question remains whether the same cortical regions and connec-

tions are engaged during phoneme perception, or whether the processing of

speech sounds draws on distinct networks. Evidence on the neural generators

of passive and active auditory deviance processing is provided by EEG/MEG

investigations (Koshiyama et al., 2020; Sabeti et al., 2016; van Dinteren et al.,

2018; Volpe et al., 2007; Wronka et al., 2012), fMRI (Rinne et al., 2005), com-

bined EEG-fMRI investigations (Crottaz-Herbette and Menon, 2006; Doeller

et al., 2003; Li et al., 2019b; Opitz et al., 2002), lesion mapping (Alho et al.,

1994; Ehlers et al., 2015) and intracranial recordings (Halgren et al., 1998).

Beyond phoneme-level processing, successful speech comprehension

requires access to stored semantic knowledge and the ability to integrate

lexical information into meaningful representations. The controlled semantic

cognition (CSC) framework (Jefferies, 2013; Chiou and Lambon Ralph, 2019)

suggests that conceptual knowledge is distributed across modality-specific

regions but is integrated within the anterior temporal lobe (ATL), which acts

as an amodal semantic hub (Patterson and Lambon Ralph, 2016). Accessing

and selecting relevant semantic information depends on a network of regions

involved in semantic control, including the posterior middle temporal gyrus

(pMTG), inferior frontal gyrus (IFG), and inferior parietal cortex (IPC)

(Diveica et al., 2021; Jackson, 2021). The efficiency of semantic retrieval is

often examined using semantic priming paradigms, where reaction times and

ERP responses reveal facilitated processing for semantically related versus

unrelated words (McNamara, 2005).

A key ERP component linked to lexical-semantic processing is the N400, a

negative-going potential peaking around 300–500 ms after word onset (Kutas

and Federmeier, 2000). The N400 is modulated by semantic priming, with

larger amplitudes observed for unprimed or semantically incongruent words
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compared to primed or congruent words (Cocquyt et al., 2022; Chen et al.,

2014; Khateb et al., 2010). This modulation, referred to as the N400 priming

effect, reflects the relative ease of lexical-semantic retrieval and integration.

The N400 component is observed across both visual and auditory modalities,

though its peak manifests differently depending on modality: as a centropari-

etal peak in visual presentation and as a more frontally distributed plateau in

auditory processing (Kutas and Van Petten, 1994). Auditory N400 responses of-

ten show a slight latency shift, attributed to the additional temporal demands

of spoken language processing (Pawlowski et al., 2019).

Theoretical accounts of the N400 have proposed different explanations for

its functional significance. One dominant view holds that the N400 reflects

the processing cost of retrieving lexical-semantic representations from long-

term memory (Lau et al., 2008). In contrast, alternative models suggest that

the N400 reflects post-lexical integration, where a word’s meaning is incor-

porated into the preceding semantic context (Hagoort, 2008). More recent

perspectives propose that the N400 represents an interplay of both automatic

and controlled processes, with varying contributions from automatic spreading

activation (ASA), controlled prediction, and controlled semantic integration

(Steinhauer et al., 2017). ASA occurs when a prime word automatically acti-

vates semantically related target words in memory, such as “dog” pre-activating

“cat.” Prediction involves the controlled pre-activation of specific lexical candi-

dates based on contextual information. Semantic integration, in turn, refers

to the incorporation of the target word’s meaning within the broader semantic

context, which occurs after lexical access. The relative contribution of these

mechanisms to the N400 effect depends on several factors, including stimulus

onset asynchrony (SOA) and the strength of semantic relationships. ASA effects

are most prominent at short SOAs (<300 ms), while controlled prediction re-

quires stronger contextual constraints and is diminished when SOA is too long

(Hill et al., 2002; Steinhauer et al., 2017). Recent studies have also linked the

N400 to predictive coding frameworks, suggesting that it reflects a mismatch

between top-down lexical-semantic predictions and the actual sensory input

(Eddine et al., 2024). In this view, the N400 indexes a prediction error sig-

nal, where more unexpected words generate larger negative amplitudes due to

greater discrepancies between expected and observed input.

In the following sections, we will examine the neurophysiological basis of

each component in greater detail. Specifically, we will explore the underly-

ing sources of the MMN, P300, and N400, drawing from functional MRI, EEG
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source localization, magnetoencephalography (MEG), and lesion studies. Fur-

thermore, we will discuss how these components interact within broader func-

tional networks involved in auditory processing, attention, and semantic mem-

ory. By reviewing the existing literature on the spatial and functional orga-

nization of these ERP components, we aim to provide a more comprehensive

understanding of how the brain transitions from early auditory discrimination

to higher-order language comprehension.

4.1.1 Mismatch Negativity (MMN)

In relation to the MMN, the available evidence on pure tone discrimination

mainly points in the direction of two dominant sources, one in the bilateral tem-

poral cortex and a second generator in the (right) frontal cortex (Doeller et al.,

2003; Fulham et al., 2014; Kim et al., 2017; Koshiyama et al., 2020; Li et al.,

2019b; Opitz et al., 2002; Auther et al., 2000; Rinne et al., 2005). Whereas the

temporal generator has been repeatedly localized to regions in and surround-

ing the auditory cortex, uncertainty remains on the exact nature of the frontal

MMN source. Reviewing the existing literature, Deouell (2007) observed that

in particular the caudal and rostral inferior frontal gyrus (for later evidence, see

Li et al. (2019b)), the medial frontal cortex and the right superior precentral

or motor cortex (for later evidence, see Hsu et al. (2014); Li et al. (2019b);

MacLean and Ward (2016)) were found to underlie the frontal MMN. Accord-

ingly, Fulham et al. (2014) concluded that widespread areas in the frontal cor-

tex can account for the anterior portion of the MMN. The diverse nature of the

component-specific time windows that were investigated and of the auditory

stimuli and contrasts used to elicit the MMN, each addressing specific subsets of

the functional network governing stimulus discrimination, might in part explain

these varying results (MacLean and Ward, 2016; Molholm et al., 2005). The

temporal-frontal engagement has been widely interpreted as evidence for the

predictive coding hypothesis (Garrido et al., 2009). Following this framework,

bottom-up propagations of sensory input are compared to top-down predictions

regarding the incoming stimuli, which are based on memory traces of preced-

ing sounds. If a mismatch emerges between bottom-up and top-down propaga-

tions, a change is detected and the predictive model is adapted. In the context

of predictive coding, the temporal generator is thought to be responsible for

the bottom-up processing of auditory stimulus features. In turn, the frontal

generator is thought to be activated when change detection occurs, subserving

automatic reallocation of attention to the deviant stimulus and updating of the
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predictive model (Fulham et al., 2014). Supporting evidence for this hypothesis

is provided by source localization studies that established different time courses

for the frontal and temporal MMN generator, whereby activation of the tempo-

ral source precedes frontal activation (Fulham et al., 2014; Kim et al., 2017;

Koshiyama et al., 2020). Investigations into the functional networks of pas-

sive auditory discrimination have provided further insight into the interaction

of the temporal and frontal MMN sources. That is, in addition to considerable

evidence pointing to phase synchronization between the bilateral temporal and

(pre)frontal regions during pure-tone discrimination (Choi et al., 2013; Hsiao

et al., 2010; MacLean and Ward, 2014), Choi et al. (2013) observed cortical

synchronization directed from the temporal to the frontal cortex. The anterior

cingulate cortex (Jemel et al., 2002), the hippocampus (Duncan et al., 2009)

and several subcortical structures including the cerebellum (Schall et al., 2003)

and thalamus (Yago et al., 2001) have additionally been mentioned in relation

to the MMN. Finally, Zhang et al. (2018) suggested that the MMN might orig-

inate from the activation of a fronto-temporo-parietal network, rather than a

fronto-temporal network. The authors compared long-range cortical connec-

tions during MMN deviance processing in awake state versus under anesthesia,

based on the idea that the latter would preclude high-level cognitive but not

lower-level sensory processing. A reduced number of long-distance connections

between prefrontal, temporal and centroparietal areas during deviant process-

ing under anesthesia lead them to assume a role of these areas in MMN gener-

ation. Diffuse engagement of the parietal cortex has indeed been reported in

relation to the MMN (Fulham et al., 2014), more specifically in the postcentral

gyrus, the precuneus and the inferior to superior parietal cortex (Levänen et al.,

1996; Marco-Pallarés et al., 2005; Molholm et al., 2005; Schall et al., 2003).

Synchronization between ipsilateral temporo-parietal cortices during deviant

processing, as observed by Hsiao et al. (2010), also supports this theory. Sev-

eral hypotheses have been put forward regarding the role of the parietal cortex

in MMN generation, including the facilitation of multisensory integration and

P3a-related attention reallocation (Fulham et al., 2014). Since evidence in sup-

port of both theories is available, the literature remains inconclusive at present.

While the evidence presented above exclusively stems from the study of tonal

contrast, passive discrimination of speech stimuli essentially relies on a similar

fronto-temporal network (MacLean and Ward, 2016). Nevertheless, a number

of aspects specific to the processing of linguistic stimuli should be highlighted.

Both investigations of MMN scalp topography (Alho et al., 1994; Partanen et al.,
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2011; Tervaniemi et al., 1999), as well as MMN source reconstruction, point

to left-lateralized processing of speech stimuli (overall: Sorokin et al. (2010);

temporal source: Näätänen et al. (1997); Pulvermüller (2001); frontal source:

Deouell (2007)). Considering the predictive coding hypothesis in relation to

phoneme discrimination, top-down predictions are not solely based on the pre-

viously presented speech stimuli, but are also derived from language-specific

memory traces (Näätänen et al., 1997). Stored in the language-dominant au-

ditory cortex (Näätänen et al., 1997; Shestakova et al., 2002), recall of these

traces might explain the generalized lateralization to the left hemisphere. Us-

ing the phase locking value, MacLean and Ward (2016) investigated cortical

connectivity in relation to the discrimination of phonemic articulation place

contrasts and provided evidence for a predominantly left-lateralized network

to underlie both bottom-up and top-down MMN projections. The authors estab-

lished interactions between the left superior temporal gyrus and the left inferior

frontal gyrus (IFG; BA45 and BA47). Moreover, both the left (BA47) and right

(BA45) IFG showed connections with the ipsilateral superior frontal cortex.

4.1.2 P300

Source imaging generally indicates that the P300 in relation to pure tone tar-

get detection, showing a characteristic centroparietal scalp distribution, origi-

nates from the activation of a broad bilateral fronto-parietal network (Wronka

et al. (2012); for a review see Bocquillon et al. (2011) and Linden (2005)).

Within this network, a number of areas have been frequently reported: (1)

widespread areas across the parietal cortex, including the postcentral gyrus

(Ehlers et al., 2015), the precuneus (van Dinteren et al., 2018), the supra-

marginal gyrus (Crottaz-Herbette and Menon, 2006) and the inferior parietal

cortex (Crottaz-Herbette and Menon, 2006; Li et al., 2016); (2) the cingulate

cortex (Peng et al., 2012; Sabeti et al., 2016; van Dinteren et al., 2018; Volpe

et al., 2007; Linden, 2005); and (3) widespread (pre)frontal activity with ev-

idence for the orbitofrontal cortex (van Dinteren et al., 2018), the inferior

frontal cortex (Ehlers et al., 2015; Li et al., 2016), the middle frontal gyrus

(Ehlers et al., 2015; Li et al., 2016) and the precentral gyrus (Crottaz-Herbette

and Menon, 2006; Ehlers et al., 2015). In addition to the source reconstruction

data, a number of studies have investigated neural synchronization at sensor

level, thus providing insight into the interaction of P300 generators. In this

respect, phase synchrony between (temporo)frontal and (temporal-)posterior

electrodes was evidenced during active auditory deviant processing (Choi et al.,
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2010, 2015). Alternatively, Volpe et al. (2007) described early activation in

frontal and cingulate areas, followed by increased parietal activation in the

late P300 time window. In addition to the fronto-parieto-cingulate network,

some evidence points to the role of a number of subcortical structures, specif-

ically the basal ganglia and thalamus (Crottaz-Herbette and Menon, 2006),

the cerebellum (Crottaz-Herbette and Menon, 2006) and hippocampus (Lin-

den, 2005; Volpe et al., 2007) in active auditory discrimination. In view of the

fronto-parieto-cingulate network governing P300 generation, this component

is commonly linked to the process of stimulus categorization (Kok, 2001), and

more specifically the attentional and working memory related aspects of this

process. In this context, (Bledowski et al., 2004) associated the parietal P300

generator with top-down attentional processes that modulate the categoriza-

tion of task-specific stimuli. That is, these processes facilitate the comparison

of the sensory input to the established working memory representation. The

posterior cingulate cortex has likewise been linked to the top-down regulation

of attentional focus (Leech and Sharp, 2014). Alternatively, Sabeti et al. (2016)

attributed activation of the cingulate cortex during active sound categorization

to working memory engagement.

As the P300 indexes a late stage of information processing, the extent to

which it is subject to sensory stimulus modality and specific stimulus character-

istics is a matter of debate. Whereas certain evidence points to the P300 being

a purely cognitive component independent of sensory modality (Linden et al.,

1999; Peng et al., 2012; Sabeti et al., 2016), other studies suggest that the

component contains an additional modality-specific aspect, as they identified

activation of auditory or visual cortices in the P300 time window (Bledowski

et al., 2004; Moores et al., 2003). In this context, Crottaz-Herbette and Menon

(2006) demonstrated activation of Heschl’s gyrus during auditory P300 target

detection, as well as strong connectivity between the auditory cortex to the

cingulate gyrus.

Only a limited number of studies have explored the P300 in relation to speech

stimuli. Investigating auditory target detection using monosyllabic word stim-

uli, Geal-Dor et al. (2006) evidenced greater P300 amplitudes over left com-

pared to right electrode sites in young individuals. Correspondingly, Criel et al.

(2023) found maximal P300 strength over left and midline electrode sites in re-

lation to active phoneme categorization based on an articulation place contrast.

Similar results were also reported by Breier et al. (1999) and Justen and Her-

bert (2018). This raises the question of whether these topographic properties
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stem from a specialization of the commonly described bilateral fronto-parietal

network to the left hemisphere in relation to language processing.

4.1.3 N400

Areas in the frontal and temporal cortex have been demonstrated to govern

semantic priming. A considerable amount of proof stems from (mostly event-

related) functional magnetic resonance imaging (fMRI). Reviews by Holder-

baum (2019) and Lau et al. (2008) point to two areas in specific to support

automatic and controlled priming operations: the left MTG and the left IFG.

Consistent activation of the posterior part of the MTG, and by extension adja-

cent areas in the superior (STG) and inferior (ITG) temporal gyrus, has been

documented for unrelated compared to related target processing at both short

and long SOAs. Activation of the IFG, especially the pars triangularis (BA 45)

and pars orbitalis (BA 47), is specifically observed during semantic priming

at a long SOA. Electroencephalography (EEG) and magnetoencephalography

(MEG) source reconstruction of the scalp-recorded N400 potential has con-

firmed the presence of a dominant generator in the temporal lobe, govern-

ing lexical-semantic retrieval in a priming set-up (Geukes et al., 2013; Khateb

et al., 2010). These reports, however, are less uniform on the precise location

of this generator. In accordance with fMRI research, several studies identified

an activation component in the left MTG, STG and ITG (Ghosh Hajra et al.,

2018; Khateb et al., 2010; Matsumoto and Kakigi, 2014; Silva-Pereyra et al.,

2003). Performing electrocorticographic (ECoG) recordings in a group of in-

dividuals with epilepsy, Khachatryan et al. (2019) likewise designated the left

superior and middle temporal gyri as the main generator region for the N400.

Alternatively, combining evidence from MEG source localization and fMRI, Lau

et al. (2013, 2016) attributed the N400 to an activation cluster in the ATL at

both short and long SOAs. Apart from the temporal generator area, EEG and

MEG studies point to additional generators in the left inferior temporal gyrus

(Ghosh Hajra et al., 2018; Matsumoto and Kakigi, 2014), the left insula (Khateb

et al., 2010), the bilateral middle or superior frontal gyrus (Khateb et al., 2010;

Silva-Pereyra et al., 2003), the posterior cingulate cortex (Khateb et al., 2010)

and the putamen (Khateb et al., 2010). Combined results of fMRI, EEG and

MEG research thus converge to a left dominant temporo-frontal network to un-

derly semantic priming, albeit that the exact locations of these generator areas

are still under debate. The enhanced engagement of frontal and temporal cor-

tices in the retrieval of unprimed compared to primed words has generally been
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interpreted in light of the hypothesis that the N400 (at least partially) reflects

the facilitated access of primed lexical-semantic items (Lau et al., 2008). The

access and retrieval of unprimed targets (i.e., targets preceded by an unrelated

prime) requires more engagement of the semantic control system, which re-

sides in posterior middle temporal and inferior frontal cortices (Ralph et al.,

2017). At short SOAs, only automatic processes aid the retrieval of semantic

representations, which translates to the activation of the temporal cortex. At

long SOAs, frontal cortices additionally mediate the top-down retrieval (ante-

rior IFG) and selection (posterior IFG) of lexical-semantic representations (Lau

et al., 2008).

The above-discussed literature purely focused on areas showing increased

activation during semantic priming. Some researchers have further explored

the functional interaction between frontal and temporal regions that are en-

gaged in semantic priming. Based on functional connectivity investigation of

source localized EEG and MEG signals, Matsumoto et al. (2014) and Kujala et

al. (2012) found evidence for enhanced synchronization between frontal and

temporal N400 generators for the processing of related compared to unrelated

target words. Matsumoto et al. (2014) identified a bidirectional causal flow

between the left IFC and ITC in a sublimal (i.e., masked priming at short SOA)

priming task. Adopting a categorical priming paradigm with a long SOA, Kujala

et al. (2012) identified enhanced coherence between the left superior temporal,

right frontotemporal and right inferior temporal cortex. The authors hypoth-

esized that behavioural priming effects and reduced activation of frontal and

temporal areas observed for primed compared to unprimed items, may result

from a more efficient information transmission within the neural network in

this condition, as manifested in enhanced neural synchronization. Also, some

fMRI investigations targeted priming-related functional connectivity. Roelke &

Hofmann (2020) demonstrated enhanced functional synchronization between

the left inferior frontal cortex on the one hand, and the fusiform gyrus and the

anterior cingulate cortex during the processing of word pairs with low com-

pared to high semantic similarity.

4.1.4 The present study

While the neural generators of the MMN, P300, and N400 components have

been explored in previous research, several questions remain regarding their

precise cortical origins and functional network interactions, particularly in the

context of speech and semantic processing. For the MMN and P300, the exact
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source of the frontal MMN remains uncertain, as well as the precise locus of the

frontal and parietal P300 generators. Moreover, the majority of existing studies

have focused on tonal stimuli rather than speech, leaving open the question

of whether phoneme discrimination and categorization engage distinct neural

networks. Additionally, the temporal dynamics and interregional interactions

underlying these components remain poorly understood. Similarly, while some

source estimation studies have been conducted for the N400, the results are

inconsistent, and little is known about the connectivity between its generator

regions. Most prior studies have examined thematic semantic relations, leaving

it unclear whether taxonomic relations engage a partially distinct network.

The present study aimed to enhance our understanding of the cortical sources

and functional networks associated with the MMN, P300, and N400 compo-

nents. Specifically, we investigated 1) the cortical generators of the MMN and

P300 in relation to phoneme discrimination and categorization, as well as those

of the N400 in relation to the processing of taxonomic semantic relations, and

2) the functional connectivity between cortical regions for each component,

characterizing the interactions between generator areas during phoneme and

semantic processing.

To achieve this, high-density EEG recordings were obtained during two

paradigms: an auditory oddball task with a phonemic articulation place

contrast (for MMN and P300) and an auditory categorical priming task (for

N400). Component-specific cortical activity was reconstructed using exact

low-resolution brain electromagnetic tomography (eLORETA; Pascual-Marqui

et al. (2011)). This method minimizes localization errors, particularly for

deeper sources (Jatoi et al., 2014), and reduces false positive connectivity

estimates (Pascual-Marqui et al., 2018). Given the inherent limitations of

EEG source reconstruction due to the inverse problem and the smoothing

effects of the scalp and skull, spatial resolution remains constrained. However,

recent work suggests that eLORETA provides an estimated spatial resolution

of approximately 2 cm for ERP components, allowing for the identification of

key cortical regions involved in cognitive processing (Depuydt et al., 2024).

We further examined the temporal dynamics of neural activation by segment-

ing reconstructed activity into early, middle, and late component-specific time

windows. Functional connectivity was analyzed in source space by comput-

ing maximal cross-correlation between reconstructed signals across 68 corti-

cal regions, providing insights into task-dependent neural synchronization pat-

terns during phoneme discrimination, categorization, and semantic process-
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ing. By integrating source estimation and functional connectivity approaches

across these ERP components, this study aims to provide a more comprehensive

understanding of the neural mechanisms underlying phoneme perception and

lexical-semantic processing.

4.2 Materials and Methods

4.2.1 Participants

A total of 60 Dutch-speaking adults (30 men, 30 women) participated in this

study. An equal number of male (n = 10) and female (n = 10) participants

was recruited in each of the following age ranges: 20-39 years, 40-59 years

and 60+ years. The age of the participants reached from 23 to 80 years, with

the mean age equal to 49.3 years (SD = 16.84). A wide, balanced sample was

constructed based on sex and age in order to obtain results representative for

the broad population.

Included participants were right-handed, as objectified by a score ≥ 8 on

the Dutch Handedness Inventory (DHI; (Van Strien, 1992)). Participants were

screened for cognitive impairment by means of the Montreal Cognitive Assess-

ment (MoCA; (Nasreddine et al., 2005)), where a cut-off score of 26/30 was

adopted for inclusion (Thissen et al., 2010). General language function was as-

sessed by means of the Dutch version of the Comprehensive Aphasia Test (CAT-

NL; (Swinburn et al., 2014)). A score below the cut-off value for one or more

test items was adopted as an exclusion criterion. Moreover, participants did not

report any hearing impairments, described a normal or corrected to normal vi-

sion, reported a negative history of any neurological or psychiatric disorders,

and did not have a history of any developmental disorders. Table 4.1 provides

an overview of demographic variables, as well as the score on the DHI, MoCA

and CAT-NL, for the participants grouped by age and sex. This study was ap-

proved by the Ghent University Hospital ethical committee (ONZ-2022-0127).

All participants gave their written informed consent.

4.2.2 Electrophysiological recording

Experimental procedure

Participants were subjected to two auditory oddball paradigms containing a

phonemic contrast and an auditory categorical priming task. First, an inatten-
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Table 4.1. Demographic details on the participants, grouped by age and sex
20-39 years 40-59 years 60+ years

Male Female Male Female Male Female

n 10 10 10 10 10 10
Age (years) 30.2 (5.31) 29.2 (4.32) 49.8 (4.39) 49.9 (6.86) 68.4 (4.50) 69.0 (5.89)
Education levela 1.6 (0.84) 1.2 (0.42) 1.9 (0.99) 1.6 (0.70) 2.3 (1.06) 2.3 (0.67)
DHI (/10) 9.8 (0.63) 9.8 (0.63) 9.6 (0.84) 9.8 (0.42) 9.9 (0.32) 10.0 (0.00)
MoCA (/30) 27.6 (1.51) 27.9 (0.74) 28.2 (1.62) 28.4 (1.65) 27.7 (1.16) 27.6 (1.43)
CAT-NL cognition (/40) 38.3 (2.16) 38.5 (1.43) 38.9 (1.20) 37.9 (1.37) 37.3 (1.34) 38.0 (1.56)
CAT-NL language comprehension (/19) 17.1 (2.33) 18.6 (0.70) 17.3 (2.06) 17.2 (1.48) 16.4 (2.12) 17.7 (0.48)
CAT-NL language production (/35) 33.9 (1.37) 34.5 (0.71) 34.3 (0.82) 34.4 (0.70) 33.1 (1.01) 33.3 (1.25)

Reported values are mean (standard deviation); DHI = Dutch Handedness Inventory; MoCA = Montréal
Cognitive Assessment; CAT-NL = Comprehensive Aphasia Test, Dutch Translation.
a Education level was rated on a four-point scale: 1 = higher education-academic, 2 = higher
education-nonacademic, 3 = higher secondary school, 4 = lower educational school.

tive oddball paradigm, eliciting the MMN, was administered, followed by an

attentive paradigm eliciting the P300 to investigate phoneme perception. In

both of these paradigms, the same phonemic stimuli, differing only in terms of

articulation place, were used. The standard stimulus [b@] was presented with

an 80% probability while the deviant stimulus [g@] was presented with a prob-

ability of 20%. Both stimuli had a duration of 250 ms. The stimuli used in the

current study were modified from the experiments of Aerts et al. (2013), who

generated the stimuli from NeXTeNS.

The inattentive oddball paradigm (MMN) comprised 600 standard and 150

deviant stimuli, which were presented with a 500 ms inter stimulus interval

(ISI). During the paradigm, participants were instructed to watch a silent movie

(Donald Duck). The total duration of the inattentive oddball task was approx-

imately 7 minutes. The attentive oddball paradigm (P300) consisted of 160

standard and 40 deviant phonemes, presented with a 2000 ms ISI, leading to

a total duration of 8 minutes. The actual paradigm was preceded by a practice

block, containing 16 standard and 4 deviant stimuli. In order to assess stimu-

lus categorization, participants were instructed to press a button on a Chronos

response box (Psychology Software Tools, Pittsburgh, PA, USA) when hearing

a deviant stimulus.

The auditory categorical priming task used in this work was adapted from

Hagoort et al. (1996) by Cocquyt et al. (2022). The task consisted of 120

Dutch word pairs, each including a prime and target word. In half of the pairs,

the prime and target word were semantically related by being members of the

same semantic category (e.g., cat – horse). In the other 60 pairs, the prime

and target word were unrelated in meaning (e.g., pink – coffee). None of the

word pairs were characterized by a thematic relation. To control for the ef-
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fect of psycholinguistic variables, target words in the related and unrelated

condition were matched for word frequency, phonological length, the number

of phonological neighbours, concreteness, imageability, age of acquisition, va-

lence, arousal, dominance and duration. For additional information on the

stimuli, we refer to Cocquyt et al. (2022). The prime and target words were

presented with a stimulus onset asynchrony (SOA) of 1800 ms, while the inter

stimulus interval (ISI) between the two words ranged from 830 to 1520 ms to

account for variations in word length. Following the presentation of the tar-

get word, participants were required to assess the semantic relatedness of the

prime and target words through a button press response. A delayed response

was adopted to avoid interference of movement artefacts and response-related

potentials (Van Vliet et al., 2014). Button presses were again registered by the

Chronos response box, on which participants were instructed to press a green

button in case of a semantically related word pair and a red button in case of

an unrelated pair. Following the button press, an inter trial interval (ITI) of

2500 ms was applied prior to the start of a new trial. The 120 trials were ad-

ministered over seven blocks, each separated by a pause. The experiment was

preceded by a practice block consisting of eight trials (four related, four unre-

lated pairs) to familiarize subjects with the task procedure. The time required

to complete this task ranged between 15 and 20 minutes.

The auditory stimuli in all paradigms were delivered binaurally at the same

comfortable hearing level in all participants using ER1-insert earphones, and E-

Prime 3.0 (Psychology Software Tools, Pittsburgh, PA, USA) was used to present

the different stimuli at random. Eye movement artifacts were limited by asking

the participants to focus on a white fixation cross presented on a black back-

ground during the auditory stimulus presentation.

EEG Recording

EEG was recorded continuously from 128 electrode sites using an EasyCap

electrode cap (Brain Products, Germany). The ground and online reference

were recorded at AFz and FCz, respectively. Using an abrasive electrolyte gel

(Abralyt 2000, EasyCap), impedances were kept below 20 kΩ. A BrainVision

BrainAmp amplifier (Brain Products, Germany) was used to acquire the EEG

signals, which were digitized with a sampling frequency of 500 Hz. To record

the data, the BrainVision Recorder software was used (Brain Products, Ger-

many).
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4.2.3 Electrophysiological data analysis

Data preprocessing

Similar preprocessing was applied to the MMN, P300 and N400 data. For the

P300 and the N400 data, the practice block preceding the experimental trials

were excluded from analysis. First, bad electrode channels were automatically

detected using different noisy channel detection methods implemented in the

PREP pipeline (Appelhoff et al., 2022; Bigdely-Shamlo et al., 2015). The four

primary measures used in this pipeline are extreme amplitudes (deviation cri-

terion), lack of correlation with any other channel (correlation criterion), lack

of predictability by other channels (predictability criterion), and unusual high

frequency noise (noisiness criterion). The electrodes marked as bad by the al-

gorithm were ignored in the subsequent analysis. The data were band-pass

filtered using a zero phase shift Butterworth filter with half-amplitude cut-off

frequencies of 0.3 Hz and 30 Hz and a 12 dB/octave slope. Also a 50 Hz notch

filter was applied to the data to remove power line noise. Independent compo-

nent analysis using the FastICA algorithm (Ablin et al., 2018) was performed

for eye blink and horizontal eye movement artifact rejection. The number of

independent components calculated per subject ranged between 117 and 128

(mean 124, std 2.8), as bad electrode channels were excluded in the calcu-

lation, and between 2 and 6 (mean 3, std 1.2) of the components have been

identified to contain artefacts. In case bad electrode channels were identified

and excluded in step 1, these channels were interpolated. Subsequently, data

were re-referenced to an average common reference. The continuous EEG was

segmented in 600 ms long epochs (-100 ms to 500 ms) for the MMN, 1500

ms long epochs (-300 to 1200 ms) for the P300 and the N400. Baseline cor-

rection was performed using a 100 ms prestimulus window for the inattentive

paradigm and a 300 ms prestimulus window for the attentive paradigm and

the categorical priming paradigm. Artifact rejection using the following crite-

ria was applied: 75 µV maximum gradient criterion; 100 µV minimal/maximal

amplitude criterion; 150 µV maximum difference criterion; 0.5 µV low activity

criterion during 100 ms. Also trials for which in incorrect response was given

to the stimuli were removed (P300 and N400). For the inattentive paradigm,

these criteria led to the rejection of between 0 and 92 trials (mean 30, std

38) out of the 750 trials in total, in the attentive paradigm between 0 and 33

(mean 4, std 6.9) out of the 200 trials were excluded and finally in the categor-

ical priming task between 0 and 43 trials (mean 14.8, std 9.5) were rejected.
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Standard and deviant trials (MMN and P300), and related and unrelated tri-

als (N400), were segmented separately in view of source reconstruction and

functional connectivity calculation.

ERP Level Analysis

To investigate wheter the administered oddball tasks and the priming task did

elicit the expected MMN, P300 and N400 effects in our participant sample, we

extracted amplitude values from the scalp-recorded ERP signals. For the MMN,

mean amplitude values in response to the standard and deviant condition were

extracted in a 100–300 ms time window at six frontocentral electrode sites (F3,

Fz, F4, C3, Cz, C4). For the P300, mean amplitudes for standard and deviant

waveforms were extracted in a 300–800 ms time window at three parietal elec-

trodes (P3, Pz, P4). Finally, also the mean amplitude of the N400 in response

to the related and unrelated condition was extracted in the 400-800 ms time

window at three central electrode sites (C3, Cz, C4). A paired samples t-test

was performed to assess the presence of the MMN, the P300 effect and the

N400 effect by comparing the average of the mean amplitudes at the different

electrode sites between the two conditions.

ERP source reconstruction

Forward modeling: Source analyses were performed using the MNE-Python

software package (v1.2.1) (Gramfort et al., 2013). As no individual MRI

images were available, Freesurfer’s standard template MRI subject fsaverage

was adopted to create the EEG forward model (Fischl, 2012). A three-layer

head model was created using the inner skull, outer skull, and outer skin as

boundaries for the different compartments. Default electrical conductivity

values were assigned to the scalp (0.3 S/m), skull (0.006 S/m) and brain (0.3

S/m) compartments of the model. Approximately 8200 equivalent current

dipoles were distributed on the cortical surface, resulting in a spacing of about

4.9 mm between the dipoles. Dipole orientations were fixed to be normal to

the cortical surface throughout the study. Finally, the EEG leadfield matrix was

calculated using the boundary element method (BEM).

Inverse modeling: The source reconstruction was performed for each

subject and each condition (standard and deviant, or related and unrelated)

separately using the exact Low-Resolution Tomography (eLORETA) inverse
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method (Pascual-Marqui et al., 2011). As the signal to noise ratio (SNR) of

the signal is affected by the number of trials used for averaging, the number

of epochs was equalized for both conditions before averaging and source

reconstruction. In further analysis, the absolute magnitude of the dipoles, the

current source density (CSD), was investigated, disregarding the orientation

information of the dipoles. As indicated by Fulham et al. (2014), the CSD

at each dipole location is not only proportional to the ERP, but also to noise.

Therefore, we corrected for differences in noise conditions across subjects

by converting the CSD signals to z-scores. This was done by creating a

noise-signal for each subject using 50% of the standard/related trials and

50% of the deviant/unrelated trials. Of each set, the polarity of half of the

trials was switched to obtain a signal that represents the noise. This resulted

in a signal containing no ERP response but only noise with similar statistical

properties as the original signals, which was then source reconstructed. This

process was repeated 100 times to obtain mean and standard deviation values

for the CSD noise bias for each subject separately, which was then used for the

normalization of the original CSD signals in both conditions.

Source clustering: Significant effects of interest were explored in three

separate time windows of 50 ms through statistical clustering analysis in

source space. The early, middle and late time windows were selected based on

the 25%, 50% and 75% fractional area latency of the MMN, P300 and N400

grand average difference wave of all participants in a broad time window of

100-300 ms, 300-800 ms and 400-800 ms, respectively. For the MMN, the

140-190 ms, 190-240 ms and 240-290 ms time windows were investigated.

Clustering analysis for the P300 was performed in the 370-420 ms, 460-510 ms

and 590-640 ms time windows, and for the N400 in the 460-510 ms, 520-570

ms and 630-680 ms time windows. These different time windows allowed us

to investigate how the sources underlying the ERP components change as a

function of time. A data-driven approach was applied by selecting these time

windows based on the fractional area latency of the grand average component,

thus assuring that the selected 50 ms time windows were of interest for early,

middle and late processes underlying the ERPs. The data was averaged over

the time dimension for each participant in each of the different windows. Two

different approaches were used to test for significant differences in source

activation between the standard and deviant condition. The first approach

consisted of a cluster-based non-parametric permutation test, in which the



4. ESI and FC of the MMN, P300 and N400 87

significance probability was computed under the permutation distribution

using the Monte-Carlo method (Maris and Oostenveld, 2007). First, paired

t-tests were performed for each dipole separately. Then, the dipoles for

which the obtained t-value proved larger than the imposed threshold were

selected as cluster candidates. In this study, a data-driven approach was

used to determine the threshold, so that the 5% of the dipoles with the

strongest differences were selected. In the next step, the selected dipoles

were grouped in potential clusters based on spatial adjacency, and the cluster

size was determined for each cluster. To form the permutation distribution,

the standard and deviant conditions were randomly reassigned across all

participants 5000 times and for each of these permutations, the largest

cluster size was calculated. Finally, the differences between the conditions

were considered significant if the cluster size fell into the highest 5% of the

distribution. While the cluster-based permutation test controls the multiple

comparison problem and at the same time maximizes power, no inference is

made over individual dipoles. Consequently, no statements about the spatial

location and extent of the significant effect between both conditions based on

the cluster locations will be completely accurate. Therefore, a second approach

to test for significant differences in source activation between both conditions

was used. Here, paired t-tests are performed for each dipole separately, after

which the obtained p-values are corrected for multiple comparison with False

Discovery Rate (FDR) (Genovese et al., 2002).

Source Data extraction: To investigate activation changes in sources

underlying the MMN, P300 and N400, regions of interest for further analysis

were defined based on both the identified activation clusters and dipoles

identified to have the strongest significant differences between both conditions.

To this end, the cerebral hemispheres were parcelated in 34 regions of interest

(ROIs) each, using the Desikan-Killiany atlas (Desikan et al., 2006). For each

activation cluster identified in relation to the MMN, P300 or N400, the ROI

comprising the majority of cluster dipoles was selected. For each selected

ROI, as well as for the contralateral homologues ROI, the time series for both

the standard and deviant, or related and unrelated conditions were extracted

from the reconstructed signal by applying principle component analysis (PCA)

decomposition to the time courses within the ROI, and using the first mode of

the decomposition as the representative time course. From these ROI-specific

time series, we extracted the mean CSD in the early, middle and late time
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windows (MMN: 140-190 ms, 190-240 ms, 240-290 ms; P300: 370-420 ms,

460-510 ms, 590-640 ms; N400: 460-510 ms, 520-570 ms, 630-680 ms).

Additionally, the mean CSD in the large time window was calculated for each

ROI identified in relation to the MMN (100-300 ms), P300 (300-800 ms) and

N400 (400-800 ms) in both hemispheres.

Functional connectivity analysis

The functional networks underlying phoneme discrimination (MMN) and cat-

egorization (P300), and categorical priming (N400) were mapped based on

the 68 ROIs predefined by the Desikan-Killiany atlas (Desikan et al., 2006).

For each participant and each condition, we extracted the time series for the

different ROIs from the source reconstructed data using PCA decomposition,

selecting the first mode of the decomposition as the representative time series.

The functional networks were then created using the maximal cross-correlation

as functional connectivity measure. The cross-correlation function was calcu-

lated between all ROI-pairs, limiting the signals to the time windows of interest

for each ERP component (MMN: 100-300 ms, P300: 300-800 ms, N400: 400-

800 ms). The correlation coefficients were then calculated by normalizing the

cross-correlation function by the energy of each signal. The connection strength

in the functional network was set to the maximal cross-correlation coefficient

for which the corresponding absolute time lag was larger than 6 ms and smaller

than 100 ms. This restriction on the time lags was imposed to reduce the effect

of instantaneous interactions within the network due to source leakage or the

spreading of the CSD signals over multiple ROIs. Finally, the values within each

functional connectivity network were normalized by subtracting the mean and

dividing by the standard deviation.

To identify significant differences between the networks obtained for the

standard and deviant, or related and unrelated conditions, the Network Based

Statistic (NBS) method was used (Zal, 2010). This method identifies significant

network components that are related to the experimental effect and is based

on a permutation approach. In the first step, paired t-tests are performed for

each connection between the conditions and connections exceeding the chosen

threshold of p < 0.001 are selected. The algorithm then identifies networks

within the set of selected connections, after which permutation-based univari-

ate statistical testing is performed to identify significant networks based on

size. This approach offers a gain in statistical power compared to analyzing
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each connection individually. For more details about the NBS approach, we

refer the reader to Zal (2010).

To quantify and describe the obtained significant network components, we

subdivided the 34 ROIs of each hemisphere into five groups: Frontal, Tem-

poral, Parietal, Occipital and Cingulate (cf. appendix A.1). The number of

connections between and within the different groups in the significant network

component was then calculated. To account for the differences in the number

of ROIs per group, the number of connections was divided by the number of

possible connections between and within the groups, allowing us to identify

the relative importance of each group to the differences in functional networks

between the conditions.

4.3 Results

4.3.1 Behavioral Results

In the P300 task, mean behavioral accuracy was high for the entire participant

group, with 91.67% for standard and 94.08% for deviant trials. In the seman-

tic priming task, participants were more accurate in identifying related (95.8%)

compared to unrelated (97.2%) word pairs, demonstrating a facilitation effect

in processing meaningful associations. Notably, all participants maintained ac-

curacy above 75% for both tasks, confirming overall reliable task performance.

4.3.2 ERP Results

MMN

A repeated-measures ANOVA (rmANOVA) revealed the presence of a MMN ef-

fect in the 100–300 ms time window in the overall participant sample (main

condition effect: F(1,57) = 155.494; p<0.001), as well as each separate age

group (condition by age group interaction effect: F(2,57)=7.307; p=0.001).

Across the entire participant group, MMN amplitude in response to deviant

trials was on average 0.451 µV (95% CI=0.379–0.524) more negative com-

pared to standard trials. Post-hoc pairwise comparison (Bonferroni) revealed

the same pattern for each separate age subgroup. The MMN effect observed in

the current participant sample is visualized at frontocentral sites in Figure 4.1
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Figure 4.1. MMN in response to standard and deviant sound, as well as the
difference, at electrodes Fz and Cz for participants recruited in a young (20-39
years), middle-aged (40-59 years) and elderly(60+ years) age range

P300

Based on an rmANOVA, the presence of a P300 effect was confirmed in the

300–800 ms time window in the overall participant sample (main condition

effect: F(1,57)=145.188; p<0.001), as well as the young, middle-aged and

elderly group participants were recruited in based on their age (condition by

age group interaction effect: F(2,57)=2.806; p=0.069). In the overall group,

the amplitude in response to standard sounds was on average 1.811 µV (95%

CI=1.510–2.112) smaller compared to deviant sounds. Post-hoc pairwise com-

parison of the marginally significant age group by condition interaction effect

revealed that the same pattern was observed in each of the three subgroups

based on the age range participants were recruited in (p<0.001 in all). Figure

4.2 provides a visualization of the P300 effect at parietal electrode sites.

N400

The presence of the N400 effect at the central electrode sites in the 400-800 ms

window in both young, middle-aged and elderly participants was indicated by

a rmANOVA, showing a main effect of condition (F(1,57)= 47.166; p< 0.001)

but no main age group effect (F(2,57) = 0.488; p = 0.616) or condition by age

group interaction effect (F(2,57) = 0.194; p = 0.824). N400 amplitude was
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Figure 4.2. P300 in response to standard and deviant sound, as well as the
difference, at electrode Pz for participants recruited in a young (20-39 years),
middle=aged (40-59 years) and elderly(60+ years) age range

on average 0.996 µV more negative for unrelated compared to related trials.

Likewise, a univariate ANOVA, showing no main effect of age group (F(2,57)=
0.973; p= 0.384) on the onset latency of the N400 difference wave, indicated a

comparable onset for the N400 effect across age groups. The time series of the

N400 (effect) as recorded at the central scalp electrodes, are shown in Figure

4.3.
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Figure 4.3. N400 in response to standard and deviant sound, as well as the
difference, at electrode Cz for participants recruited in a young (20-39 years),
middle=aged (40-59 years) and elderly(60+ years) age range

4.3.3 Source Reconstruction

MMN

Results of eLORETA source reconstruction of the time series in the broad time

window (100-300 ms) in response to the standard and deviant condition, as

well as the difference (deviant minus standard), are visualized in Figure 4.4.

For each subject, the source reconstruction explained between 32.5% and

83.7% of the variance (mean 68.8%, std 9.5%). In both the early (140-190
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ms), middle (190-240 ms) and late (240-290 ms) time windows, dipole

clusters contributing to MMN generation were identified based on spatial

clustering (Figure 4.7). In the early time window, both the cluster-based

permutation test and the paired t-tests followed by fdr-correction revealed

a significant difference between the standard and deviant conditions. This

difference was most pronounced in the left insula and in the right frontal

lobe. Significant differences between both conditions were also identified in

the middle time window, mainly in the left parietal cortex, the left temporal

cortex and the right frontal cortex. Finally, in the late time window, differences

were identified in the left insular cortex and in the right frontal, insular and

temporal cortex. Similar results were found using dipole-level statistical

comparisons followed by fdr-correction (Figure A.1).

Figure 4.4. eLORETA source reconstruction results of the MMN in response to
the standard condition and deviant condition, and the difference between both
in the 100-300 ms time window.

P300

The results of source reconstruction of the P300 time series in response to the

standard condition, deviant condition and difference between both in the 300-

800 ms broad time window using eLORETA are shown in Figure 4.5. In this

case, the source reconstruction explained between 32.1% and 81.5% of the

variance (mean 68.4%, std 7.3%) in each subject. Spatial clustering and paired

t-tests followed by fdr-correction in the early (370-420 ms), middle (460-510

ms) and late (590-640 ms) time windows revealed significant differences to

underlie P300 generation (Figure 4.8 and A.2). In the early window, these

differences were most pronounced in the left cingulate cortex, in the left frontal

cortex, in the right cingulate cortex and in the right parietal cortex. In the

middle time window significant differences were localized to the left cingulate,

right cingulate, right parietal and right occipital cortex. Lastly, the left and
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right cingulate and right parietal cortex were identified to contain significant

differences between both conditions in the late window.

Figure 4.5. eLORETA source reconstruction results of the P300 in response to
the standard condition and deviant condition, and the difference between both
in the 300-800 ms time window.

N400

Results of eLORETA source reconstruction for related trials, unrelated trials and

the difference, in the broad time window (400-800 ms) are visualized in Fig-

ure 4.6. Spatial clustering in early (460-510 ms), middle (520-570 ms) and

late (630-680 ms) component-specific time windows revealed five significant

dipole clusters underlying the generation of the N400 effect (Figure 4.9). In

the early time window, a combination of cluster-based permutation testing and

fdr-corrected paired t-tests (Figure A.3) revealed a difference between the re-

lated and unrelated condition, mainly located in the left lateral orbitofrontal

cortex, the left pars opercularis and left pars triangularis of the inferior frontal

gyrus, and the left precentral gyrus. In the middle time window, significant ac-

tivation differences between related and unrelated trials were predominantly

identified in the left posterior cingulate cortex. In the late time window, no

condition effect could be observed.

Figure 4.6. eLORETA source reconstruction results of the N400 in response to
the standard condition and deviant condition, and the difference between both
in the 400-800 ms time window.
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Figure 4.7. Results of clustering analysis on the eLORETA source reconstruction of the MMN difference in the early (140-190 ms),
middle (190-240 ms) and late (240-290 ms) time window. The time series of each significant cluster, as averaged over all dipoles of the
cluster, is shown.
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Figure 4.8. Results of clustering analysis on the eLORETA source reconstruction of the P300 difference in the early (370-420 ms),
middle (460-510 ms) and late (590-640 ms) time window. Also the time series of each significant cluster, as averaged over all dipoles
of the cluster, is shown.
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Figure 4.9. Results of clustering analysis on the eLORETA source reconstruction of the N400 difference in the early (460-510 ms),
middle (520-570 ms) and late (630-680 ms) time window. Also the time series of each significant cluster, as averaged over all dipoles
of the cluster, is shown.
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4.3.4 Functional Connectivity

MMN

A network encompassing 10 nodes, connected by 12 edges (p = 0.013), was

identified to significantly differ between deviant versus standard phoneme pro-

cessing (Figure 4.10). This network comprised short intrahemispheric connec-

tions within the right temporal and right parietal region, as well as long in-

trahemispheric connections between the right temporal and parietal, and right

parietal and occipital nodes. Interhemispheric connections were established

between the left frontal nodes on the one hand, and the right temporal and

parietal regions on the other hand. The right bank superior temporal sulcus

showed the highest number of connections during deviant processing (n = 6).

No edges were identified showing stronger functional connectivity in the stan-

dard compared to the deviant condition.

P300

A network showing significantly stronger functional connectivity for deviant

compared to standard phoneme processing was identified, comprising 54 edges

that connect 31 nodes (p < 0.001) (Figure 4.11). The network predominantly

involved intra- and interhemispheric connections between temporal, parietal,

cingulate and occipital nodes. More specifically, intrahemispheric connections

were mainly located between cingulate and parietal, cingulate and temporal

and temporal and occipital regions in both the left and right hemisphere, with

additional links between parietal and occipital nodes in only the left hemi-

sphere. The network featured interhemispheric connections between right pari-

etal regions on the one hand and left temporal, occipital, frontal and cingulate

nodes on the other hand. Links were also found between the right cingulate

and left parietal and occipital cortex, as well as between the left cingulate and

right frontal and temporal nodes. Lastly, interhemispheric connections were

established between the left temporal and right occipital, right temporal and

left occipital, and left and right occipital cortex. The left fusiform gyrus was

the most connected node in the network underlying deviant processing (n =
12). Contrasting the standard compared to the deviant condition, a network

containing 19 nodes and 22 edges was identified (p = 0.002) (Figure 4.11).

This network mainly consisted of intrahemispheric connections, with short



98 4. ESI and FC of the MMN, P300 and N400

A.

B.

(a) Functional MMN networks showing a significant effect of condition (p < 0.001).
(A) Graph representation of significant network edges between 68 ROIs for deviant >
standard processing. (B) Normalized connectivity matrix of significant network edges
between frontal, temporal, parietal, cingulate and occipital ROIs for deviant > standard
and processing

Figure 4.10.
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A.

B.

A.

B.

(b) Functional MMN networks showing a significant effect of condition (p < 0.001).
(A) Graph representation of significant network edges between 68 ROIs for standard
> deviant processing. (B) Normalized connectivity matrix of significant network edges
between frontal, temporal, parietal, cingulate and occipital ROIs for standard > deviant
processing

Figure 4.10.
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A.

B.

A.

B.

(a) Functional P300 networks showing a significant effect of condition (p < 0.001).
(A) Graph representation of significant network edges between 68 ROIs for deviant >
standard processing. (B) Normalized connectivity matrix of significant network edges
between frontal, temporal, parietal, cingulate and occipital ROIs for deviant > standard
and processing

Figure 4.11.
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A.

B.

A.

B.

(b) Functional P300 networks showing a significant effect of condition (p < 0.001).
(A) Graph representation of significant network edges between 68 ROIs for standard
> deviant processing. (B) Normalized connectivity matrix of significant network edges
between frontal, temporal, parietal, cingulate and occipital ROIs for standard > deviant
processing

Figure 4.11.
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connections within the left frontal and left temporal lobe, as well long con-

nections between left frontal nodes on the one hand and left cingulate and

occipital nodes on the other hand. Interhemispheric links were established be-

tween the left cingulate and right frontal cortex. The left lateral orbitofrontal

gyrus and left rostral anterior cingulate cortex showed the highest number of

connections during standard processing (n = 5).

N400

Network Based Statistics identified a significant network for related (related

> unrelated) but not unrelated (unrelated > related) target processing, at a

threshold of p< 0.01 (Figure 4.12). The significant network for related process-

ing encompassed 15 nodes, connected by 12 edges (p = 0.014). The network

mainly comprised short connections within the left frontal lobe, connecting

the frontal pole, pars orbitalis, pars triangularis, pars opercularis and lateral

orbitofrontal cortex. Additional short-range connections linked left temporal

areas, specifically the entorhinal and inferior temporal region. Long-range con-

nections essentially linked the left frontal cortex (especially the pars orbitalis

of the IFG) with right frontal (interhemispheric; the frontal pole and medial

orbitofrontal cortex), left parietal (intrahemispheric; the precuneus) and left

occipital (intrahemispheric; the cuneus) cortices.

4.4 Discussion

The present study investigated the neural mechanisms underlying auditory de-

viance processing and speech sound discrimination, focusing on the mismatch

negativity (MMN), P300, and N400 components. Our findings highlight a more

extensive and interconnected neural network than traditionally proposed, ex-

tending beyond temporo-frontal interactions to include significant parietal and

cingulate contributions. In the following sections, we discuss the implications

of these findings for predictive coding theories, attentional modulation, and

the role of parietal and cingulate regions in speech perception and semantic

processing.

4.4.1 Mismatch Negativity

Our combined source reconstruction and connectivity findings suggest that

speech sound discrimination is supported by a temporo-parieto-frontal
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network, rather than the traditionally proposed temporo-frontal circuitry.

While temporo-frontal interactions are well-established as the core network

for passive auditory deviance processing (Doeller et al., 2003; Kim et al.,

2017; Li et al., 2019b; MacLean and Ward, 2016), the present data highlight

parietal involvement, particularly in the left supramarginal and postcentral

gyrus. The possibility of parietal activation being an artifact from temporal

sources cannot be entirely excluded (Fulham et al., 2014), but several factors

argue against this explanation. First, increasing evidence supports parietal

contributions to passive auditory deviance processing (Marco-Pallarés et al.,

2005; Zhang et al., 2018). Second, parietal engagement was corroborated

not only by source localization but also by functional connectivity analyses,

which revealed robust synchronization between parietal, temporal, and frontal

cortices. Given that absolute time lag corrections were applied, potential

spreading effects were minimized. Third, structural connections between the

parietal and other cortical regions (Schmahmann et al., 2008) likely support

functional interactions observed here and in prior research (Hsiao et al.,

2010).

The temporal sources were primarily located in and around the auditory cor-

tex, including the superior temporal sulcus, the insula, and the banks of the

superior temporal sulcus, the latter showing the strongest connectivity dur-

ing deviant processing. Frontal activation was identified in the rostral middle

frontal gyrus (MFG) and pars opercularis of the inferior frontal gyrus (IFGop).

While the MFG has frequently been linked to frontal MMN generation (Deouell,

2007; Takahashi et al., 2013), fewer studies have localized MMN-related activ-

ity to the IFGop (Molholm et al., 2005; Doeller et al., 2003). Given the IFGop’s

well-documented role in motor and phonetic processing (Amunts et al., 2004;

Heim and Alter, 2006; Heim et al., 2010), its involvement in MMN generation

may reflect phoneme-specific computations.

Our findings align with the predictive coding framework of auditory discrim-

ination (Garrido et al., 2009), which posits that bottom-up sensory processing

in the temporal cortex interacts with frontal regions to update predictive mod-

els of auditory stimuli. The observed functional connectivity between temporal

and frontal cortices supports this mechanism (Choi et al., 2013; MacLean and

Ward, 2014). However, unlike previous studies that reported a temporal-to-

frontal directional pattern in MMN activation (Fulham et al., 2014; Kim et al.,

2017; Opitz et al., 2002), we observed persistent frontal activity across all time
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A.

B.

(a) Functional N400 networks showing a significant effect of condition (p < 0.001).
(A) Graph representation of significant network edges between 68 ROIs for related >
unrelated processing. (B) Normalized connectivity matrix of significant network edges
between frontal, temporal, parietal, cingulate and occipital ROIs for related> unrelated
and processing

Figure 4.12.
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(b) Functional N400 networks showing a significant effect of condition (p < 0.001).
(A) Graph representation of significant network edges between 68 ROIs for unrelated
> related processing. (B) Normalized connectivity matrix of significant network edges
between frontal, temporal, parietal, cingulate and occipital ROIs for unrelated> related
processing

Figure 4.12.
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windows. This suggests an early frontal role in processing stimulus predic-

tions, consistent with findings by Xiao et al. (2018), where frontal activation

preceded sensory input processing. Methodological differences in determining

peak latencies versus analyzing time-segmented activation may explain these

discrepancies.

The role of parietal sources within the predictive coding framework remains

less clear. Some authors have linked parietal MMN activation to the P3a re-

sponse, associated with attentional reallocation (Molholm et al., 2005), but

this explanation does not fit our data, as parietal activation was observed in the

middle (190–240 ms) rather than the late (240–290 ms) MMN time window.

Another possibility is that parietal cortices contribute to multisensory integra-

tion during deviance processing (Fulham et al., 2014), aiding in the extrac-

tion of supplementary information from other sensory modalities. Given the

strong temporo-parietal connectivity in our dataset, our results support this

hypothesis. Additionally, the supramarginal gyrus is implicated in phonolog-

ical working memory (Deschamps et al., 2014), which could explain its en-

gagement in the linguistic oddball task. Thus, parietal involvement may reflect

either multisensory integration, phonological working memory, or both, facil-

itating bottom-up processing in the temporal cortex and predictive modeling

via temporo-parietal-frontal connections.

The hemispheric lateralization of phoneme processing was also examined.

Our results indicate a bilateral network, with left-lateralized activation in tem-

poral and parietal areas, but high interhemispheric connectivity in the right

temporo-parietal cortex. Frontal activation clusters were right-lateralized, yet

functional connectivity patterns confirmed engagement of both hemispheres.

This finding contrasts with the conventional view that MMN responses to lin-

guistic stimuli originate from a predominantly left-lateralized network (Pul-

vermüller, 2001; Näätänen et al., 1997; Sorokin et al., 2010). As suggested

by Criel et al. (2023), the inclusion of a non-native phoneme (deviant [g@]
vs. standard [b@]) may have influenced lateralization patterns. The deviant

phoneme, lacking a well-established memory trace in Dutch speakers, might

have been processed similarly to a tonal frequency contrast, engaging a more

bilateral network.

In summary, our findings support a widespread, interconnected network for

speech sound discrimination, including temporal, frontal, and parietal regions.

The engagement of the supramarginal gyrus suggests a role for multisensory in-

tegration and phonological working memory, while bilateral connectivity chal-
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lenges traditional views on lateralization in phoneme processing. Further re-

search should explore whether parietal involvement is specific to linguistic stim-

uli or generalizes to non-speech contrasts.

4.4.2 P300

Broad bilateral activation was observed in the cingulate cortex, particularly the

posterior part and isthmus, the parietal lobule (with maximal activation in the

precuneus), and the frontal cortex (notably the left caudal middle frontal and

right precentral areas) during P300 generation in response to speech sounds.

These findings align with previous accounts of a broad fronto-parietal network,

with cingulate activation contributing to deviant detection (Bocquillon et al.,

2011; Linden, 2005). Similar brain structures are involved in both tonal con-

trast and phoneme processing, suggesting attentional and working memory-

related functions (Bledowski et al., 2004; Leech and Sharp, 2014; Sabeti et al.,

2016).

Justen and Herbert (2018) examined cortical activity related to pure-tone

deviant processing within the dorsal and ventral fronto-parietal attention

networks (DAN and VAN) (Corbetta and Shulman, 2002). The DAN, which

includes the superior parietal lobe/precuneus and inferior frontal junction,

governs top-down perceptual attention, while the VAN, involving the tem-

poroparietal junction, inferior frontal gyrus, and anterior cingulate cortex,

supports bottom-up attention reallocation. The present findings confirm DAN

involvement in deviant categorization, with activation in the caudal middle

frontal gyrus and precuneus, linked to selective attention and voluntary

attention switching (Le et al., 1998; Rossi et al., 2009). No major VAN source

clusters were found, but connectivity analysis identified VAN components

(e.g., right supramarginal gyrus, bilateral inferior parietal cortex, right insula,

and right superior temporal gyrus) as part of the speech sound detection

network. The VAN’s early activation, preceding the P300, might explain

its absence in eLORETA results (Justen and Herbert, 2018). Additionally,

increased connectivity in the superior temporal cortex and insula may reflect

modality-specific processing.

Beyond fronto-parieto-cingulate activation, occipital lobe involvement was

evident, particularly through its connectivity with parietal and cingulate cor-

tices, as well as the lingual gyrus. Occipital contributions to P300 generation

have been noted in prior studies (Justen and Herbert, 2018; Peng et al., 2012).

Given its role in visual processing, this connectivity might be inhibitory or re-
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late to attentional modulation, with effective connectivity from occipital alpha

desynchronization sources to posterior cingulate P300 sources supporting au-

ditory and visual target detection.

Studies on P300 activation timing have reported varying patterns, from early

fronto-cingulate engagement preceding parietal activation (Volpe et al., 2007)

to the reverse sequence (Li et al., 2019a; Tao et al., 2022). Our findings suggest

an early activation of DAN structures (precuneus and caudal middle frontal

gyrus), followed by later engagement of the posterior cingulate cortex, which

exhibited increasing current source density (CSD) in later time windows. This

supports the hypothesis that top-down attentional mechanisms modulate target

categorization (Bledowski et al., 2004; Donchin and Coles, 1988; Kok, 2001;

Li et al., 2016).

The functional role of the posterior cingulate in P300 remains complex. In-

creased activation in the late P300 phase may reflect attention reallocation fol-

lowing deviant detection or working memory updating (Sabeti et al., 2016).

Our hemispheric analysis revealed a largely bilateral network, mirroring MMN

results. Despite left hemispheric dominance in the posterior cingulate (possibly

due to phonemic stimuli), active speech categorization did not rely on a strongly

lateralized system. This aligns with the view that P300 reflects domain-general

cognitive functions rather than modality-specific processes (Linden et al., 1999;

Peng et al., 2012; Sabeti et al., 2016).

The oddball task design, requiring a button press for deviants, likely influ-

enced observed activation. Precentral cortex activation in the late P300 win-

dow suggests motor-related processing. Additionally, inhibition of a behavioral

response to standard stimuli may have contributed to observed frontal connec-

tivity patterns. Future studies should compare tasks requiring responses to both

standard and deviant stimuli to clarify methodological effects.

4.4.3 N400

Significant N400 source clusters were identified in the left frontal and left pos-

terior cingulate cortices, supporting a left-dominant network for semantic pro-

cessing (Binder et al., 2009) and N400 elicitation during semantic priming

(Geukes et al., 2013; Ghosh Hajra et al., 2018). Frontal and temporal areas

govern semantic priming at long SOAs (Kircher et al., 2009; O’Hare et al.,

2008), with the inferior frontal gyrus (IFG) emerging as a major N400 gen-

erator. The IFG consists of the pars opercularis (BA 44), pars triangularis (BA

45), and pars orbitalis (BA 47) (Petrides and Pandya, 2004), which are involved
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in semantic retrieval and selection (Moss et al., 2005; Noppeney et al., 2004).

As part of the semantic control network (Diveica et al., 2021; Jackson, 2021),

the IFG mediates top-down retrieval and selection, with reduced activation for

primed targets due to facilitated processing (Lau et al., 2008). Increased poste-

rior IFG activation for unrelated targets suggests heightened semantic control

demands. However, given the inherent localization errors in EEG source es-

timation (Asadzadeh et al., 2020), caution is warranted in interpreting these

results.

The absence of a priming-related N400 generator in the temporal cortex,

particularly in the posterior middle temporal gyrus (pMTG), contrasts with

previous findings (Ghosh Hajra et al., 2018; Holderbaum, 2019). However,

some fMRI studies on long SOA priming also identified only frontal generators

(Kircher et al., 2009). A more liberal analysis revealed bilateral pMTG activa-

tion in later time windows, suggesting that while temporal contributions exist,

semantic control processes may dominate long SOA priming effects. No acti-

vation was observed in the anterior temporal lobe, contradicting its proposed

role in taxonomic semantic processing (Lau et al., 2013; Mirman et al., 2017).

Another cluster was identified in the left posterior cingulate cortex (PCC),

with delayed activation relative to the IFG. The PCC is generally linked to the

default mode network (Buckner et al., 2008) and domain-general attention

(Corbetta and Shulman, 2002), with functional segregation into ventral and

dorsal subregions (Vogt et al., 2006). The ventral PCC interfaces semantic re-

trieval and episodic memory encoding (Binder et al., 2009), potentially explain-

ing its reduced activation for primed targets due to facilitated encoding. The

dorsal PCC, implicated in response control, has been suggested to categorize

stimuli (O’Hare et al., 2008). Increased PCC activation for unrelated targets

may reflect response selection demands, though the lack of an oddball task de-

sign challenges this interpretation. Alternatively, activation in the late 630–680

ms window may relate to extended semantic integration demands (Yacovone

et al., 2021) or working memory and cognitive control processes (Coulson and

Kutas, 2021; Lee and Federmeier, 2009).

Enhanced functional connectivity was observed among left intrahemispheric

and interhemispheric frontal areas for related targets, aligning with findings by

Kujala et al. (2012). Increased connectivity between distinct neuronal assem-

blies in primed conditions reduces local processing demands, supporting the

hypothesis that semantic priming relies on efficient information transfer rather

than localized activation (Matsumoto and Kakigi, 2014). The strongest connec-
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tivity was in the left IFG, consistent with its role in top-down retrieval (Moss

et al., 2005).

Additionally, enhanced connectivity was observed between the left pars or-

bitalis and left parieto-occipital areas (precuneus, cuneus). This aligns with

the hub-and-spoke model (Patterson and Lambon Ralph, 2016), where parietal

and occipital cortices encode modality-specific representations, particularly vi-

sual object features (Dilkina and Lambon Ralph, 2012). The auditory nature of

the priming task suggests this connectivity reflects facilitated retrieval of visual

representations rather than direct stimulus processing. Alternatively, fronto-

parietal synchronization may indicate engagement of domain-general control

processes (Bulut, 2023), as the IFG participates in both domain-specific lan-

guage processing and broader cognitive control functions (Belyk et al., 2017).

4.4.4 Limitations and directions for future research

This study provides insight into the cortical sources and functional networks

underlying speech sound perception and semantic priming. However, several

limitations must be acknowledged, along with directions for future research.

Methodological Considerations

The study design did not allow for a full investigation of stimulus modality ef-

fects. For instance, different subareas in the auditory cortex respond to specific

deviant types (Frodl-Bauch et al., 1997), but the present findings do not clar-

ify whether the activation of certain regions (e.g., the supramarginal gyrus) is

specific to linguistic stimuli. Additionally, the question of whether the P300 is

modality-specific (Crottaz-Herbette and Menon, 2006; Peng et al., 2012; Sabeti

et al., 2016) remains unresolved, highlighting the need for comparative studies

on tonal versus phonemic contrasts. Furthermore, our paradigms, while con-

trolled, do not fully replicate natural speech perception (Hickok and Poeppel,

2007), raising concerns about generalizability beyond the phoneme level.

Furthermore, we employed the Desikan-Killiany atlas (Desikan et al., 2006)

for cortical parcellation, balancing spatial resolution with EEG localization error

constraints (Pascual-Marqui et al., 2018). However, this atlas does not differ-

entiate between anterior and posterior portions of the lateral temporal lobe,

which is significant for semantic processing research. Although our analysis

did not reveal significant activation clusters in the temporal cortex, future stud-

ies should consider alternative atlases, such as the Destrieux (Destrieux et al.,
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2010) or Brainnetome (Fan et al., 2016) atlases, for finer parcellation of se-

mantic networks.

Influence of Age and Biological Factors

Our participant pool spanned a wide age range (20-80 years), allowing for

generalizable findings. However, aging-related neural changes may have

influenced our results. Structural (Fjell and Walhovd, 2010) and functional

(Cabeza, 2002; Davis et al., 2008) network alterations, such as the Posterior-

to-Anterior Shift in Aging (PASA; Davis et al. (2008)) and Hemispheric

Asymmetry Reduction in Older Adults (HAROLD; Cabeza (2002)), could

impact phoneme and semantic processing. Notably, Hoffman and Morcom

(2018) observed reduced activation in key semantic areas (e.g., the left

inferior prefrontal and posterior temporal cortex) in older adults. While our

scalp-level results do not suggest age-related N400 differences, the absence of

a temporal N400 source cluster could reflect reduced engagement of this area

in elderly participants. This warrants further investigation into age-related

semantic processing changes.

Previous studies (Criel et al., 2023; Geal-Dor et al., 2006; Tsolaki et al., 2015)

have also documented age-related shifts in P300 amplitude, latency, and source

localization. Tsolaki et al. (2015) found that aging alters P300 generators in

tonal contrast tasks but not MMN sources. While our study did not focus on

biological influences, future research could explore how age and sex modulate

the neural architecture of speech perception and semantic priming.

Functional Connectivity and Directionality

The functional connectivity approach used in this study provided valuable in-

sights but also had limitations. While our connectivity analysis considered all

68 ROIs, an alternative approach could involve targeted assessments of interac-

tions between key N400 generator sites, such as the inferior frontal gyrus and

the posterior temporal cortex, as well as their connections with the posterior

cingulate area. Exploring directional connectivity (e.g., using Granger Causal-

ity or transfer entropy) could clarify the dynamic interactions within semantic

networks.

Additionally, our methodology did not capture high-frequency synchroniza-

tion, as trial averaging eliminates high-frequency activity. Since synchroniza-

tion in specific frequency bands may play a role in MMN and P300 generation,
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future studies should apply alternative connectivity measures that retain high-

frequency information. Moreover, while maximal cross-correlation was used to

assess connectivity, this measure is not well-suited for networks with bidirec-

tional interactions (Bastos and Schoffelen, 2015), limiting its reliability in the

context of higher-order cognitive processing.

4.5 Conclusion

Our results support a broader conceptualization of speech sound discrimina-

tion and auditory deviance detection, emphasizing the contributions of pari-

etal, frontal, and cingulate cortices alongside traditional temporo-frontal path-

ways. The identification of temporo-parietal-frontal interactions in MMN gen-

eration suggests an expanded role for the parietal cortex in predictive coding

and phonological working memory. Similarly, P300-related activation patterns

reinforce the involvement of attentional networks in deviant categorization,

while N400 findings underscore the IFG’s role in semantic priming and retrieval.

The observed bilateral connectivity patterns challenge classical lateralization

models, suggesting a more distributed and adaptable neural framework for au-

ditory processing. Future research should investigate whether these findings

generalize across different linguistic contexts and non-speech auditory stimuli,

further refining our understanding of the neural architecture underlying speech

perception.
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Abstract

Traditional approaches to quantify components in Event-Related Potentials
(ERPs) are based on averaging EEG responses. This, however, ignores the
trial-to-trial variability in the component’s latency, leading to a smeared
version of the component’s shape and underestimations of its amplitude.
Therefore, different techniques to quantify ERP components in single trials
have been described in literature. In this study, two approaches based on
neural networks are proposed. We compared the neural networks’ perfor-
mance with other techniques using both simulated data and two experimental
datasets. The results on simulated data showed that both neural networks
outperformed other techniques for most signal-to-noise ratios. Furthermore,
the single-trial latency quantification methods resulted in better estimates of
the topography and shape of the ERP component compared to those obtained
using averaging-based methods. In the first experimental dataset, the highest
correlation values between the estimated latencies and the reaction times were
found using the neural networks, while in the second dataset, the networks
allowed us to better investigate the changes in amplitude of the component
with age. Here, we were able to show significant differences in amplitude
between the age groups, that were not found using the traditional averaging
approaches. Our results illustrate the applicability and the added value of
neural network-based approaches for the quantification of ERP components in
single trials. A limitation, however, is that simulated data is needed to train
the networks, which can be difficult when the ERP components to be found are
not known a-priori. Nevertheless, we have illustrated that single-trial latency
estimation methods offer more information on the variability of the timing of
the component and result in better estimates of their shape and topography.



116 5. Single-trial ERP quantification using neural networks

This chapter is based on the following article:

Depuydt, E., Criel, Y., De Letter, M., & van Mierlo, P. (2023). Single-trial ERP
quantification using neural networks Brain Topography 36.6: 767-790. doi:
10.1007/s10548-023-00991-8
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5.1 Introduction

Event-related potentials (ERPs) are responses in the brain that directly result

from a specific sensory, cognitive, or motor event and consist of multiple peaks

and troughs that are referred to as the ERP components (Luck, 2014). These

responses can be measured using electroencephalography (EEG), a technique

in which electrical brain activity is recorded by electrodes placed on the scalp.

Because of the high temporal resolution of EEG, ERPs are extensively used in

neuroscience to study the timing of neural responses.

When recording ERPs during tasks, EEG signals not only capture the activ-

ity associated with the stimuli, but also the ongoing spontaneous brain activity

and noise. Unfortunately, the amplitude of the ERP components is often small

in comparison to the background EEG, which makes it challenging to extract

reliable and meaningful information. In order to characterize ERPs accurately,

signal processing techniques that improve the signal-to-noise ratio (SNR) are

required. One of the most commonly used approaches is to average the EEG

signals across multiple trials. This technique is based on the assumptions that

event-induced responses are consistent across different trials, and that sponta-

neous brain activity unrelated to the event is random and thus can be attenu-

ated by averaging. After averaging, the ERP component of interest is typically

quantified by measuring the amplitude and latency of this component in the

averaged ERP. For this quantification, different measures can be used, such as

the amplitude and the latency of the peak voltage, or the mean amplitude and

fractional area latency (Luck, 2014; Hansen and Hillyard, 1980; Kiesel et al.,

2008). Also other analysis techniques, such as ERP topographic analyses of

variance and microstate analyses (Murray et al., 2008), have been proven to

be effective, but still rely on single trial averaging in most cases.

In practice, the assumption that the ERP component is identical across trials

often proves invalid, as it is known that both the latency and the amplitude

of different ERP components show significant variability across single trials

(Handy, 2005; Brazier, 1964). This is especially the case for later components,

such as the P300, N400 and P600 components, that express more complex

cognitive processing in the brain (Polich, 2012). The variability has multiple

implications on the averaging approach (D’Avanzo et al., 2011). First, in order

to obtain robust estimations of the latency and the amplitude of the ERP compo-

nent, a large number of trials needs to be included (Clayson et al., 2013). This
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however increases the recording time, which may be challenging for certain

patient groups.

Another limitation of the averaging technique is that it is unable to provide

detailed information on the mechanisms underlying differences in ERP com-

ponents between subject groups. For instance, in schizophrenic patients, P3

amplitudes are often smaller compared to healthy controls (Jeon and Polich,

2003). However, as schizophrenic patients also typically show a higher vari-

ability in reaction times (Ford et al., 1994; Roth et al., 2007), the amplitude

variation in the averaged ERP waveform could also in part be caused by the

variability in latency jitter (Ouyang et al., 2016). This variability in latency

jitter has also been observed in other populations, such as aging populations

(MacDonald et al., 2008) or in individuals suffering from brain damage (Fjell

et al., 2011). Also here, variations in the amplitude of an average ERP compo-

nent may be due to changes in the amplitudes of individual trials, variability

in latency, or a combination of both factors (Walhovd et al., 2008). Correcting

for this latency variability may help to better understand the neural mecha-

nisms underlying different tasks. For example, in a recent study Murray et al.

(2019) have shown the parietal retrieval success effect to be both variable and

thresholded in older adults by compensating for the trial-to-trial latency jitter.

Many different single-trial estimation algorithms have been proposed in liter-

ature. One of the currently most widely used techniques to quantify the single-

trial latency consists of an iterative approach based on template matching and

was proposed by Woody et al. (1967). The component’s latency is estimated

using the cross-correlation between a template and the single trial, after which

all single trials are realigned to the estimated latencies and averaged, result-

ing in a new template. The assumption behind this method is that while the

latency of the ERP component varies in different trials, its shape does not. This

iterative scheme results in a subject-specific estimation of the shape of the ERP

component, which has, however, proven to be sensitive to noise. Errors made

in the latency estimation can deform the shape of the template, enlarging the

error made in subsequent iterations (Möucks et al., 1988). Another impor-

tant drawback of this method is that it relies on the analysis of the EEG data

in a single channel. Given that in most recording set-ups multiple electrodes

are used and that different electrodes instantaneously capture the evoked re-

sponse, only a fraction of the available information is thus used. Therefore,

techniques that also consider the topographic information in the EEG data have

been extensively explored. For example, the cross-correlation curves calculated
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in Woody’s method can be obtained for multiple electrodes and averaged, after

which the peak lag is extracted from the averaged curve (Ouyang et al., 2017).

A similar template matching technique that has been proposed is dynamic time

warping (DTW) (Zoumpoulaki et al., 2015). This alignment algorithm matches

the different components of the template to the single trial through local com-

pressions and extensions of the signal, allowing to estimate the time-points in

the single trial that best resemble the ERP component. The algorithm can be

extended to include topographic information by using a multi-dimensional gen-

eralization of the algorithm as proposed in (Shokoohi-Yekta et al., 2017). Dif-

ferent spatiotemporal filters have also been proposed, including multi-channel

Wiener filters (Maki et al., 2015) and spatiotemporal LCMV beamformers (van

Vliet et al., 2016). Another group of techniques exploiting the spatiotemporal

information in the EEG data are decomposition techniques, such as principal

component analysis (PCA) (Dien, 2010) and independent component analysis

(ICA) (De Lucia et al., 2010). While PCA decomposes the signal in orthogonal

components that capture the maximum amount of variance in the data, ICA

decomposition is based on the idea that the recorded signal in the different

electrodes is a mixture of the signals generated by several independent sources

in the brain and that one or a combination of multiple of these sources corre-

sponds to the ERP component (Bugli and Lambert, 2007).

It is interesting to note that many of the methods for the quantification of

ERP components in single trials have also been used in research focusing on

Brain-Computer Interfaces (BCIs). Here, for each trial, a decision has to be

made whether a certain ERP component is present in the data or not. Most

recent advances in this field, however, have been made using deep learning

techniques, such as convolutional NNs (CNN) (Lawhern et al., 2018; Vařeka,

2020), recurrent CNNs (Maddula et al., 2017) and convolutional Long Short-

Term Memory (convLSTM) NNs (Joshi et al., 2018). This research has shown

that neural networks are able to learn the pattern of the ERP component from

the data. Therefore, deep learning approaches might also be able to improve

the quantification of ERP components in single trials.

The aim of this work is to investigate the applicability of neural networks to

the quantification of ERP components in single trials. Therefore, we will adapt

two existing neural networks described in literature for BCIs, namely the

compact convolutional neural network, EEGNet, introduced by Lawhern et al.

(2018) and the convolutional LSTM neural network proposed by Joshi et al.

(2018). We will compare these neural networks to other single-trial latency
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estimation techniques described in literature, such as (iterative) template

matching using cross-correlation and DTW, an (iterative) spatiotemporal LCMV

beamformer and a decomposition based approach using ICA. Furthermore,

the different single-trial latency estimation techniques will be compared to the

traditional averaging approach to assess the added value of single-trial ERP

quantification by evaluating the topography and morphology of the obtained

ERP components, using both simulated and experimental data. While we

will focus on the P300 and N400 components in the remainder of the study,

we believe that the proposed methods could easily be adapted for other ERP

components.

5.2 Materials and Methods

5.2.1 Experimental data

In our study, we have used two different datasets. In the first dataset, an atten-

tive oddball task was used in which two types of phonemes were presented

to the subjects, while in the second dataset, a semantic sentence congruity

task was used. The collection of both datasets and the analysis of the data

in this study were carried out in accordance with the Declaration of Helsinki

and were approved by the Ethical Committee of the University Hospital Ghent

(BC-11771). All participants signed an informed consent.

Dataset 1: Oddball task eliciting a P300 component

Different methods to quantify the P300 component were compared and evalu-

ated on both simulated and experimental data. The normative dataset collected

by Aerts et al. (2013) for phonological input, consisting of 71 healthy subjects,

was used in this work both as the experimental dataset and to generate the

simulated trials. In the experiment, an attentive oddball paradigm for auditory

phoneme discrimination was used. The participants had to discriminate the

deviant phoneme [g@] from the standard phoneme [b@]. In total, 150 stimuli

of 250 ms were presented to the participants with an interstimulus interval of

2000 ms and a deviant/standard ratio of 1/4. Participants were asked to press

a button each time a deviant stimulus was presented, allowing us to measure

the reaction times to the stimuli. The data was recorded using 20 electrodes:

Fp1, Fpz, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1 and
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Oz, at a sampling rate of 500 Hz. More details about the recording procedure

can be found in (Aerts et al., 2013).

Dataset 2: Semantic sentence congruity task eliciting an N400 component

For the second experimental dataset involving an N400 component, we used

the dataset recorded by Cocquyt et al. (2023) who used a semantic sentence

congruity task (SSCT). Briefly, 120 sentences, half of which were semantically

correct while the other half contained a semantic violation at the end, were

presented to 110 individuals. After the final word of each sentence, the Dutch

word ‘Druk’ (‘press’) appeared on the screen, asking participants to press the

green (correct sentences) or red (incorrect sentences) button. In this experi-

ment, the response was thus delayed to avoid influence of the button press to

the ERPs of experimental interest. More details about the complete experiment

can be found in Cocquyt et al. (2023).

Data preprocessing

The offline preprocessing of the data was done using the MNE-Python library

(Gramfort et al., 2013). Bad electrode channels were automatically detected

and removed. The data was then band-pass filtered between 0.3 Hz and 30 Hz

(half-amplitude cut-off, 12 dB/octave roll-off), as well as notch-filtered at 50

Hz. Independent component analysis was performed to remove both eye blinks

and horizontal eye movements. The data was re-referenced to an average com-

mon reference, after which the data was segmented. For the oddball paradigm,

the data was segmented into 1100 ms long epochs, starting from 100 ms before

the stimulus onset to 1000 ms post-onset, while for the SSCT dataset, the data

was segmented into epochs of 300 ms pre- and 1200 ms post-presentation of

the critical nouns. Baseline correction was performed using the pre-stimulus

window for both paradigms. Finally, automatic artefact rejection was applied,

rejecting epochs where the signal exceeded ±100 µV, where the peak-to-peak

signal amplitude exceeded 150 µV or where the peak-to-peak signal amplitude

was less than 0.5 µV. Figure 5.1 depicts the averages across all trials and all

subjects of both conditions, and the difference between these conditions, are

shown for both datasets.
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Figure 5.1. The averaged waveforms across all trials and subjects for both
conditions, and the difference between these conditions for both experimental
datasets used in this work. For both datasets, also the topography at 0.400 s
after the stimulus onset is shown.

5.2.2 Methods for ERP component quantification

The methods used for the quantification of the ERP components can be split

up in two different groups. The first group of methods follows the traditional

approach where the individual trials for each subject are averaged before quan-

tifying the latency, the topography and the shape of the ERP component using

the average waveform. The second group are methods that first estimate the

latency of the ERP component in single trials. Based on these estimations, the

different trials are realigned for each subject before averaging, after which the

obtained waveform is used to quantify the topography and the shape of the ERP

component.

Averaged trial ERP component quantification

Two different techniques were used to quantify the ERP component’s latency

after averaging, namely the peak latency and the 50%-area latency.

M1: Peak latency: The most commonly used technique for measuring the

latency of ERP components is by defining a time window and finding the

latency of the maximal value in this time window at a specific electrode. For

the P300 component, we used the time window between 250 ms and 650 ms

post-stimulus at the Pz electrode, while for the N400 component, we focussed

on the Cz electrode using the 200 ms-600 ms time window. This measurement

window was chosen based on visual inspection of the data averaged across

patients (Luck, 2014), while the Pz and Cz electrodes were chosen as the P300
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and N400 components typically reach maximum values over the parietal and

central electrodes, respectively (Polich, 2012).

M2: 50%-Area latency: An alternative method for calculating the compo-

nent latency on the averaged waveform is by calculating the area under the ERP

waveform over a specified time-window and then finding the time point where

a fraction of this area is reached (Luck, 2014). In this work, the 50%-area was

used. As for the calculation of the peak latency, a time window from 250 ms to

650 ms post-stimulus was used and the ERP waveform was considered at the

Pz and Cz electrodes for the P300 and N400 components, respectively.

Single trial ERP component quantification based on template matching

Seven different approaches were selected for the single-trial latency estima-

tion: non-iterative and iterative template matching using cross-correlation,

non-iterative and iterative template matching using DTW, a non-iterative and

an iterative spatiotemporal LCMV beamformer and template matching after

decomposition using ICA.

M3: Template matching using the cross-correlation curve: In this

method, the resemblance between the template and the single trials was

measured by calculating the correlation between both at each time lag. This

corresponds to calculating the cross-correlation curve between the template

and the signal. To take the spatial information present in the data into

account, the approach proposed by Ouyang et al. (2017) was used. Here,

cross-correlation curves were calculated for all electrodes, after which they

were averaged. The optimal latency was then determined as the latency

corresponding to the peak in this averaged cross-correlation curve.

M4: Template matching using subsequence Dynamic Time Warping

(DTW): A second template matching approach that was used is based on

DTW. Different variants of the DTW algorithm exist that differ in the posed

constraints. In the original version, one of these constraints is the boundary

condition. This states that in the alignment, the first and the last indices

of the first sequence must be matched with the first and last indices of the

second time series (Müller, 2007). However, the goal in this work is to find

a subsequence, i.e. a template, within a longer sequence, namely the EEG

signal. Therefore, the subsequence DTW variant, in which this constraint is
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dropped, was used as implemented in the tslearn library (Tavenard et al.,

2020) in Python. The optimal alignment between the template and the single

trial is expressed as a mapping between the time indices of the two signals.

The latency of the ERP component is then estimated as the time-point to which

the peak latency of the template is matched in the optimal alignment path.

M5: Spatiotemporal LCMV Beamformer: The spatiotemporal linearly

constrained minimum variance (LCMV) beamformer is a flexible spatiotem-

poral filter developed by van Vliet et al. (2016) to estimate the amplitude

of ERP components. We have extended their method to allow estimation of

the latency of the ERP component by shifting the template in time. For each

time-shift, the amplitude of the ERP component is estimated after which the

time-shift with the highest amplitude is selected as the latency of the ERP

component in the single trial.

M6, M7 and M8: Iterative approaches: Each of the single-trial latency

estimation algorithms M3, M4 and M5 can be extended by iteratively applying

the methods. This approach was first described for the cross-correlation by

Woody in 1967 (Woody, 1967) and allows the estimation of a subject-specific

template. In each iteration, the different trials were realigned based on the

estimated latencies to obtain a subject-specific estimate of the ERP compo-

nent. However, incorrectly estimated latencies can have a large influence

and distort the shape of the obtained component estimate. Therefore, a

weighted average of the old template (80%) and the subject-specific com-

ponent estimate (20%) was used as the new template in the following iteration.

M9: Template matching after Independent Component Analysis: Multi-

ple ICA decomposition approaches can be used for the latency quantification

of the ERP component in single trials. The first choice that can be made is

the specific ICA algorithm that is used for the decomposition. Algorithms

that are typically used for EEG data include FastICA (Hyvarinen, 1999),

extended Infomax (Lee et al., 1999), picard (Ablin et al., 2018) and adaptive

mixture ICA (AMICA) (Palmer et al., 2012; Delorme et al., 2012). Secondly,

we can consider the ERP component either a single peak within the ICA

decomposition, or as a combination of several components, each with an

independent topography, which are mixed at the scalp level due to volume

conduction (Onton et al., 2006). In the first case, we can determine the
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latency of the ERP component by determining the ICA component which has

the highest cross-correlation with the template. The latency is then estimated

as the time lag for which this correlation value was obtained. In the second

case, several components from the ICA decomposition were combined before

calculating the cross-correlation with the template to determine the latency of

the ERP component. To determine which components to take into account, i.e.

which subspace of the ICA components form the ERP component, two different

criteria were used: the correlation between the IC topography after backpro-

jection to the scalp and the template should be positive, and the p-value should

be less than 0.01 (Ouyang et al., 2017). The different ICA algorithms and the

two latency quantification approaches were evaluated in this work using the

simulated data. These results can be found in appendix. Based on these re-

sults, we decided to focus in this article on the extended Infomax ICA algorithm.

Single trial ERP component quantification using neural networks

Finally, two deep learning approaches, namely the EEGNet network and

a convLSTM neural network, were used for the quantification of the ERP

components in single trials.

M10: EEGNet, a convolutional neural network: EEGnet is a compact con-

volutional neural network that was developed by Lawhern et al. (2018) for

EEG-based BCIs. The network combines depthwise and separable convolu-

tions, allowing the model to combine spatial and temporal information present

in the data. It consists of two convolutional blocks, followed by a Softmax clas-

sification layer. In the first convolutional block, two convolutional steps are

performed in sequence. First, a number of 2D convolutional filters are fitted to

the data to capture the frequency information present in the data. A depthwise

convolution is then used to learn a spatial filter. This combination of convolu-

tional layers allows the model to learn frequency-specific spatial filters for each

feature map. In the next layer, batch normalization is used, before applying the

exponential linear unit non-linearity and reducing the dimensionality using Av-

erage Pooling. Finally, to reduce overfitting of the model, the dropout technique

is applied with a probability of 0.5. The second convolutional block consists of a

separable convolution, both decoupling the relationship between feature maps

and reducing the number of parameters. This convolutional layer is again fol-

lowed by batch normalization, ELU activation, average pooling and dropout, af-
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ter which the features are passed to the classification block (Alvarado-Gonzalez

et al., 2021).

In this work, the two convolutional blocks will be kept as in the original

model, but the classification block is adapted to allow the estimation of

the P300 latency by flattening the data and using a dense layer with linear

activation instead of the Softmax classification layer. To reduce the number of

parameters in the model, the EEG data is downsampled to 250 Hz. The model

was fitted using the Adam optimizer, with the default parameters available in

the Keras API, to minimize the mean squared error loss function. An overview

of the final architecture of the model and the chosen parameters is shown in

table 5.1.

M11: Convolutional LSTM neural network (ConvLSTM): ConvLSTM is a

specific type of recurrent neural network that is used for spatiotemporal pre-

dictions and was first introduced in precipitation nowcasting (Shi et al., 2015).

The model can learn both spatial and temporal features at the same time. Fur-

thermore, as convolution operations share parameters, the number of param-

eters in a convLSTM is greatly reduced compared to the traditional LSTM ap-

proach. As mentioned in the introduction, the model was recently used by Joshi

et al. (2018) in the area of BCIs to determine the presence of the P300 com-

ponent in single trials. In this work, the proposed architecture was adapted to

allow estimation of the latency of the ERP components.

As convLSTM networks perform better on shorter sequences, the trials were

again downsampled to 250 Hz. To preserve the spatial information present in

the data, the electrodes were mapped to a 5x5 2D map as shown in figure 5.2.

This was done for each time sample, converting each trial to a (number of time

samples x 5 x 5) 3D matrix that can be used as input for the neural network. The

first layer of the network was a convLSTM layer in which the sequence of 2D

input maps was passed through the recurrent convolutions of 6 filters with size

2x2. Here, the tanh-function was used as the activation function. In order to

reduce overfitting, a dropout of 0.2 was used together with a recurrent dropout

of 0.1. In the second layer, the data was batch normalized with the batch size

set to 128 samples. The convLSTM and the batch normalization layers were

repeated in the third and fourth layers of this network. For each time index,

the maximum value obtained across the different filters is selected, after which

the data is flattened into a 1D array of size (number of time samples). The

final layer of the model was a dense layer that outputs the estimate of the P300
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Table 5.1. Full details of the EEGNet architecture. The network starts in the first block with a temporal convolution (Conv2D) to learn
the frequency filters, after which the depthwise convolutions (DepthwiseConv2D) are used to learn frequency-specific spatial filters.
The second block initially learns a temporal summary for each feature map individually (SeperableConv2D), and finally learns to mix
the feature maps together. More details about the network architecture can be found in the work of Lawhern et al. (2018).

Block Layer No. filters Size No. params Output Activation function Options
1 Input 1 x 20 x 101

Conv2D 8 1 x 64 512 (8, 20, 101) Linear padding = same, use_bias = False
BatchNorm 32 (8, 20, 101)
DepthwiseConv2D 20 x 1 320 (16, 1, 101) Linear use_bias = False, number of depth wise convolution output channels = 2,

max norm constraint function = 1
BatchNorm 64 (16, 1, 101)
Activation (16, 1, 101) ELU
AveragePool2D 1 x 4 (16, 1, 25)
Dropout (16, 1, 25) p = 0.5

2 SeperableConv2D 16 1 x 16 512 (16, 1, 25) Linear padding = same, use_bias = False
BatchNorm 64 (16, 1, 25)
Activation (16, 1, 25) ELU
AveragePool2D 1 x 8 (16, 1, 3)
Dropout (16, 1, 3) p = 0.5
Flatten (48)

Latency Dense 1 49 (1) Linear
estimation
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latency. The model was again fitted using the Adam optimizer, with the default

parameters available in the Keras API, to minimize the mean squared error

loss function. A summary of the network architecture is given in table 5.2 and

shown in figure 5.2.
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Figure 5.2. Overall visualization of the ConvLSTM network. Full details of the
architecture can be found in table 5.2. The network consists of two consecu-
tive ConvLSTM layers followed by a pooling layer and a linear dense layer to
estimate the latency of the ERP component. In this type of recurrent neural
network, the model can hold and use information obtained from previous time
points it has seen to make decisions.

5.2.3 Experimental pipeline

Data simulation

In this work, simulated data is needed 1) to train the neural networks and 2)

to quantify the performance of the different methods. The general approach

that is used here is to add an ERP waveform at a known latency to background

EEG data. A visual overview of the process described here is shown in figure
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Table 5.2. Full details of the ConvLSTM architecture. The network consists of two consecutive convolutional LSTM layers followed by
a pooling layer and a linear dense layer to estimate the latency of the ERP component.

Layer No. filters Size No. params Output Activation function Options
Input 101 x 1 x 5 x 5
ConvLSTM2D 6 2 x 2 696 (101, 6, 4, 4) hyperbolic tangent dropout = 0.2, recurrent_dropout = 0.1
BatchNorm 16 (101, 6, 4, 4)
ConvLSTM2D 6 2 x 2 1176 (101, 6, 3, 3) hyperbolic tangent dropout = 0.2, recurrent_dropout = 0.1
BatchNorm 12 (101, 6, 3, 3)
MaxPooling3D 6 x 3 x 3 (101, 1, 1, 1)
Flatten (101)
Dense 1 102 (1) Linear



130 5. Single-trial ERP quantification using neural networks

5.3. To create the simulated ERP waveform, we start by calculating the average

response over trials and participants for both conditions separately, i.e. for the

standard and deviant stimuli in the oddball paradigm (P300 dataset) and the

correct and incorrect stimuli in the SSCT (N400 dataset). We then calculate

the difference between both conditions to obtain the topography of the ERP

waveform that will be used. The shape of the ERP component is simulated as a

half-cycle sinusoidal wave. As the goal is to generate a dataset that resembles

the experimental data, we decided to use the epochs recorded while presenting

the standard phoneme (P300 dataset) and the correct sentences (N400 dataset)

as background EEG data.

Simulated epochs were then generated using the EEG data of all participants

in the experimental dataset. For each simulated subject, the EEG data of only

one participant was used as background EEG data. To introduce inter-subject

variability, the frequency of the sinusoidal waves used for the ERP component

was uniformly drawn to obtain a signal length between 100 ms and 300 ms.

Furthermore, different uniform latency distributions were simulated for each

participant by sampling a mean latency between 350 ms and 550 ms and a

standard deviation between 40 ms and 80 ms. For the mean latency, the shape

of the grand-average of the experimental data within this time window was

used as the sampling distribution, while a uniform distribution was used for

the standard deviation. After randomly selecting half of the standard/correct

trials, the ERP component was added to the data using latencies sampled from

the previously created distribution. In order to keep the latency of the ERP

component within the expected range for healthy controls, trials for which the

generated latency was outside the time window of 300 ms to 600 ms were

excluded from the dataset (Aerts et al., 2015). Finally, to increase the amount

of generated data, this process was repeated 30 times.

Pipeline for the performance evaluation on simulated data

We evaluated the performance of each of the different ERP quantification meth-

ods on a simulated dataset using different SNRs. For the simulated data, the

P300 dataset was used as the basis. The proposed approach for data simulation

easily allows generating data with different SNRs by scaling the amplitude of

the ERP component that is added to the data. Here, the SNR of the original

dataset was determined as the ratio of the power at the peak of the grand-

average deviant waveform and the power of the standard trials. Five different

SNRs were simulated, namely -6dB, -3dB, +0dB, +3dB and +6dB. For each
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C) SIMULATE DATA

1) Scale and shift ERP waveform

Scale:
- Amplitude: based on SNR
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1) Average all deviant trials
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SIMULATE DATA

Figure 5.3. Visual overview of the approach used to generate simulated data.
The images used in this overview figure are generated using the P300 dataset,
however, the same approach can be used to simulate data based on other
datasets and other ERP components. The general approach that is used here is
to add an ERP waveform at a known latency to background EEG data. (A) To
do this, we start by pre-processing the original data and extracting the epochs
for both conditions. (B) We then generate the topography of the ERP wave-
form by calculating the average response over trials and participants for both
conditions separately, after which the difference between both conditions is cal-
culated. The topography at the time of the peak in this difference waveform is
then used for the ERP waveform. (C) Finally, the simulated trials are generated
by first scaling the amplitude of the ERP waveform according to the SNR and
the width. The ERP waveform is then shifted to the correct latency, after which
it is added to the data of a standard trial, serving as background EEG data, to
construct the deviant trials.

SNR, the topography of the added ERP component was scaled so that the ra-

tio of the power at the peak of a waveform obtained after averaging the same

amount of trials as in the original dataset, and the power of the standard trials

was respectively -6dB smaller, -3dB smaller, equal, +3dB larger, or +6dB larger

compared to the SNR of the original dataset.

As each of the proposed latency estimation techniques needs a form of train-

ing or learning from the data (i.e. defining the template or learning the model

parameters), the performance of the different ERP quantification techniques

was evaluated using a seven-fold cross-validation approach. The simulated

data was split into seven different groups, so that all data generated using the

original data from a particular subject was included within the same split. This
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was done to guarantee independence between the train and test sets. For each

fold, the (initial) template used by the template matching methods was cre-

ated using only the data in the training set. This was done by calculating the

difference wave between the grand averages of the deviant and standard trials

between 300 ms and 600 ms, after which a 5 Hz low-pass filtered was applied.

The obtained template was then used to estimate the latency of the ERP com-

ponent in the trials of the test set. Similarly, both the EEGNet network and the

convLSTM network were trained using the data in the training set after which

the model was used to estimate the ERP latencies in the test set.

Different evaluation criteria were used to evaluate the performance of the

methods on the simulated trials. First, to assess the latency estimation in the

single trials, the mean absolute error between the true and the estimated laten-

cies were calculated for the different SNRs. This was done by calculating the

absolute error for each trial separately and then averaging the errors over all

trials and all subjects. The different methods were also evaluated at the level of

individual subjects. After estimating the latencies in the single trials, the mean

latency was calculated per subject. This approach allows us to compare the

latencies obtained using the averaging-based methods with the single-trial es-

timation methods. To do this, the mean absolute error between the true mean

latency and the estimated mean latency was calculated for each subject and

each SNR. Also the topography and the shape of the ERP component obtained

with the different methods were evaluated. First the correct topography and

shape of the ERP component were calculated by realigning all trials of a specific

subject according to the correct latencies. For the averaging-based methods,

no realignment was done, and the average waveform was used to quantify the

topography and shape of the ERP component. For the single-trial estimation

methods, on the other hand, the different trials were realigned according to

the estimated latencies before averaging and quantifying the topography and

shape of the component. The topographies obtained with the different meth-

ods were then compared with the true topography using the mean absolute

error. The obtained P300 shapes were compared over the specified time win-

dow by calculating the mean absolute error between the true realignment and

the realignment based on the estimated latencies. As the SNR of the dataset

influences the obtained metrics, the measures were normalized by the absolute

amplitude and the area of the true P300 component, respectively, resulting in

the relative mean absolute error (RMAE). This approach allows comparing the

methods over the different datasets in the simulated data. A visual overview of
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this pipeline is shown in figure 5.4. The process was repeated for each of the

different train-test splits, allowing us to also evaluate if the results are biased

by the specific selection of samples within each fold.

Finally, the (realigned) average waveforms of all subjects were realigned to

the estimated mean latencies before averaging to obtain the realigned grand-

average waveform for each method. Then, the relative absolute error between

the true and the estimated grand-average for each of the different methods was

calculated to evaluate the obtained shape of the P300 component.

Pipeline for the performance evaluation on experimental data

The different proposed methods were also applied to both experimental

datasets. In these datasets, the true latency of the P300 component in the

individual trials is unknown, making it impossible to use this data to train

the parameters in the convLSTM network and to use error-based metrics

to evaluate the performance of the different methods. A visual overview of

the pipeline used in this scenario is shown in figure 5.5. For the template

matching-based methods, the (original) template is created by calculating

the difference between averages of the deviant and standard trials across all

subjects, after which a 5 Hz low-pass filtered is applied to smooth the template.

For the neural network based approaches, simulated data is created to train

the parameters in the networks using the approach described before. The

latencies of the ERP component in the experimental trials are then calculated

using the trained networks.

Dataset 1: Oddball paradigm eliciting a P300 component: To evaluate

the performance of the methods on the P300 dataset, the approach proposed

by Ouyang et al. (2017) was used. Here, the correlation between the estimated

latency and the reaction time of the subject was calculated and used to evaluate

each of the different methods. This approach is based on the knowledge that,

under particular conditions, the neurocognitive processing stream that under-

lies the stimulus evaluation affects the response time of subjects (Da Pelo et al.,

2018). Furthermore, to evaluate the ability of the different methods to estimate

the shape of the P300 component on the experimental dataset, all trials were

realigned according to the estimated latencies and averaged across all subject,

after which the obtained waveforms were visually compared.

Since the first description of the P300 component in 1965 (Sutton et al.,

1965), an abundant amount of research has been done to study the component.
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Figure 5.4. Visual overview of the approach used to evaluate the performance
of the different single-trial latency estimation methods using simulated data. In
the first step, the simulated data is split into seven different folds. To guarantee
the independence between the train and test sets, this was done in a way so
that all data generated using the original data from a particular subject was
included within the same split. For each fold, the (initial) template are created
and the neural networks are trained using only the data in the training set.
In the next step, these templates and networks are then used to estimate the
latencies of the individual trials in the test set. Finally, the performance of each
of the different latency estimation techniques is evaluated. By repeating this
process for each of the different folds, we can assess the variance across folds.

An important finding is that the P300 latency is sensitive to neural changes

in both development and aging. Different studies have shown that while the

P300 latency decreases with age during childhood and adolescence (Polich

et al., 1990; Sangal et al., 1998; van Dinteren et al., 2014), it starts increasing

again in early adulthood (Rossini et al., 2007; Walhovd et al., 2008; van
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Figure 5.5. Visual overview of the approach used to estimate the latencies
of the individual trials on experimental data. Starting from the pre-processed
data, the templates used by the template matching methods are created by cal-
culating the average response over trials and participants for both conditions
separately, after which the difference between both conditions is calculated.
This difference waveform is then filtered to remove noise and cropped to the
time window of interest. For the neural networks, first simulated trials are
created following the approach described before, after which the networks are
trained using this simulated dataset with known latencies. The obtained tem-
plates and trained networks are then used to estimate the latencies of the de-
viant trials, after which the performance of the different methods is evaluated
using different methods depending on the dataset that is used.
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Dinteren et al., 2014; Brown et al., 1983; Hirayasu et al., 2000). We will use

the mean latencies estimated on the experimental data by each of the different

methods to model the effect of age on the latency of the P300 component and

to see which method results in the best fit of the model. For each method, a

linear regression line is fitted to the data and the slope of the curve is observed

to evaluate whether an increase of latency with age is found. The goodness of

fit of the regression lines is then evaluated using the root mean squared error

(RMSE).

Dataset 2: SSCT paradigm eliciting an N400 component: As the button

press response was delayed in the SSCT task, it is not possible in this case to use

the reaction times as a measure to evaluate the single trial latency estimation

methods. Instead, in this dataset we will investigate the effect of age on the

N400 component using the different single trial latency estimation methods.

In the paper of Cocquyt et al. (2023), the authors found that the amplitude

of the N400 effect, i.e. the difference between the incorrect and correct evoked

responses between 0.3 s and 0.5 s after stimulus onset, was significant smaller

in the older subjects (ages 60-79) compared to the young subjects (ages 20-

39). Furthermore, also the latency of the N400 effect was significantly delayed

in elderly compared to both the young and the middle-aged subjects (ages 40-

59). In this study, we will try to replicate these findings and investigate if the

changes in amplitude across age are caused by changes in the amplitudes of

individual trials, by variability in latency, or by a combination of both factors.

To do this, we will estimate the latency of the N400 effect using both the av-

eraging based methods and the single-trial latency estimation methods. As in

this case the N400 effect is investigated, we will subtract the averaged response

to the correct trials from the incorrect trials for each subject before estimating

the latency of the N400 effect. The amplitude of the N400 effect will be calcu-

lated as the mean amplitude of the difference in evoked responses between the

incorrect and correct conditions within the 0.3 s-0.5 s time window at the Cz

electrode for the averaging-based method. For the single-trial latency estima-

tion techniques, the averaged response to the correct trials will be subtracted

from the incorrect trials before realignment. The amplitude of the N400 ef-

fect is then again calculated as the mean amplitude of this realigned waveform

within the 0.3 s-0.5 s time window at the Cz electrode. For each method, the

effect of aging on both the latency and the amplitude of the N400 effect will

be investigated using a univariate analysis of variance (ANOVA) approach with
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age group as independent variable. Significant main effects will be investigated

by post hoc multiple comparisons with a Bonferroni correction.

5.3 Results

5.3.1 Simulated data

Performance at single trial level

In figure 5.6, the mean absolute error between the true and the estimated la-

tencies are shown for each single-trial latency estimation method in function of

the SNR level of the trials averaged of the different folds. Also the standard de-

viation of the mean absolute errors over the different folds is shown. The figure

indicates that for the lower SNRs, both neural network-based approaches and

single component ICA outperform all other methods. For higher SNRs, similar

performance is also achieved by the cross-correlation based techniques. As ex-

pected, in general the estimated latencies improved for higher SNRs. However,

only limited improvement is obtained using single component ICA and even

a small decrease in performance is found using DTW-based template match-

ing. For the single component ICA approach, this effect might be caused by

the nature of the simulated data, as these simulations were created by adding

an independent P300 component with varying amplitude to background noise.

The results suggest that the decomposition algorithm might be able to extract

this P300 component from the data even for very low SNRs. For the multiple

component ICA approach, the performance does improve with increasing SNR,

but large differences in performance are found compared to the single com-

ponent ICA approach. It is probable that by selecting multiple components to

create the P300 ICA subspace, also non-P300 related activity and noise are in-

cluded, disrupting the time-series that are subsequently used to correlate with

the template.

The DTW-based approach leads to large errors in the latency estimation for

all SNRs, with the method performing only slightly better or even worse than

randomly estimating the single trial latency. This is probably caused by the

difference in amplitude of the template and the P300 component in single tri-

als. The template is created by calculating the difference wave between the

grand-averages of the deviant and standard trials within a time window and

therefore represents a smeared version of the P300 component. As the DTW

algorithm calculates the Euclidean distance between the template and the time
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series to obtain the optimal warping path, this difference in amplitude strongly

influences the latency estimates obtained.

Finally, comparing the template-matching techniques with their iterative

variants, the results indicate that the performance of the DTW technique is

improved by iteratively updating the template, especially for larger SNRs.

Likely, the amplitude difference between the template and the single-trial

P300 component becomes smaller, as fewer trials are taken into account when

updating the template per subject, improving the performance of the DTW

algorithm in the estimation of the P300 latency. The performance of the

beamformer, on the other hand, decreases when the template is updated for

each subject, while the performance of the correlation method and that of its

iterative variant are similar.
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Figure 5.6. Comparison of the different methods regarding the mean absolute
error between the estimated latencies and the true latencies in single trials for
each each SNR in the simulated data.

Performance at subject level

The different latency estimation approaches were also compared at the level

of individual subjects. In figures 5.7A, B and C respectively, the mean abso-

lute error in mean latency, the relative absolute error in the topography and

the relative absolute error between the shapes of the estimated and correct

realignments are shown for the different SNR levels of the trials. Looking at

the error in the mean latency, the figure shows that the EEGNet network, the

convLSTM network and the single component ICA-based approach all outper-

form both averaging-based methods. The results also indicate that using the

peak method, larger errors in the estimated mean latency are made and more
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variability across the different cross-validation folds are found compared to all

other methods, especially for small SNRs.

Figures 5.7B and C indicate that both the topography and the shape of the

estimated P300 component after realignment improve with increasing SNR for

all methods except the DTW-based approach. As for the latency estimations,

best results regarding the estimation of topography and shape of the component

are obtained using the neural network approaches and the single component

ICA-based method. Furthermore, figure 5.7C indicates that the shape of the

P300 component is better approximated using these methods compared to the

averaging approach, even for low SNRs. Estimating the latency of the P300

component at the level of single trials thus not only offers more information on

the variability of the timing of the P300 component within a subject, but also

results in a better estimate of the shape of the component.
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Figure 5.7. Comparision of the P300 quantification results of the different
methods on the simulated datasets on subject level. (A) Mean absolute error
between the estimated mean latencies and the true mean latencies for each
method and each dataset. (B) Relative absolute error in topography between
the estimated topography and the true topography for each method and each
dataset. (C) Relative absolute error in shape between the estimated shape of the
P300 component and the true shape of the P300 component for each method
and each dataset.

Finally, in figure 5.8 the realignment of the single trials averaged across all

subjects with SNR +0dB is shown for each of the different methods, along with

the topography at the time of the peak. Also the non-realigned grand-average

and a random realignment are plotted as a reference. The realigned grand-

averages are compared with the correct realignment to check how well the

shape of the P300 component is estimated by each of the different methods

by calculating the mean relative absolute error (MRAE). The figures show that

the realignment based on the convLSTM network gives the best results. While
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the topographies at the peak are very similar across all methods, apart from

a scaling factor due to smearing, the shape of the obtained P300 component

clearly varies. In the iterative cross-correlation, the (iterative) beamformer and

the multiple component ICA based approaches, artefacts are being introduced

into the shape of the component due to errors in latency estimations. The

figures for the other SNRs are added in appendix B.
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Figure 5.8. Realignment of the single trials averaged across all subjects with
SNR +0dB for each of the different methods. Grey lines represent the different
channels, with Pz being marked in black. Also the topography of the realign-
ment at 0.420 s after the stimulus onset is shown. The realigned waveforms
are compared to the correct realignment to evaluate how well the shape of the
simulated P300 component is estimated. For each method, the mean relative
absolute error between the true and the estimated realigned waveforms across
all subjects is reported.
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5.3.2 Experimental data

Dataset 1: Oddball task eliciting a P300 component

The performance of each of the different methods on the experimental data

was first evaluated by looking at the correlation of single-trial latencies with the

corresponding reaction times (table 5.3). The highest correlations were found

for the neural network approaches, followed by the iterative cross-correlation

method and the beamformer technique. Comparing the template matching

techniques with their iterative variants, we see that iteratively updating the

template improves the correlation value for the cross-correlation method and

DTW, which is in line with the results obtained using the simulated data. While

the performance of the neural networks and that of the single component ICA-

based approach was similar on the simulated data, the correlation between

the latencies estimated by single component ICA and the reaction times is very

low in the experimental dataset. Furthermore, while the performance of single

component ICA was better than the multiple component approach on the sim-

ulated data, the opposite is found on the experimental data. This confirms our

theory of the excellent performance of single component ICA on the simulated

dataset being due to the nature of the simulations.

Next, figure 5.9 shows the realigned averaged waveforms across all subjects,

using the estimates of the different methods. By visually inspecting the figures,

we see that most single-trial methods result in a more narrow P300 compo-

nent with similar topography to that obtained without realignment of the tri-

als. While the realigned waveforms using the peak and area method are slightly

more narrow than the waveform without realignment, the effect is clearer for

the single-trial methods. This indicates that there is indeed within-subject vari-

ability of the P300 latency. The figures also show that the realignments using

the DTW- and single component ICA-based approaches result in a more smeared

out version of the P300 component, resembling the waveform obtained using

random latencies in the simulated dataset. This suggests that the latencies ob-

tained using these methods might be incorrect. On the other hand, realigning

the epochs using the iterative cross-correlation, the iterative beamformer or

the peak methods results in peaks in the realignment, which are similar to the

shapes obtained with these methods on the simulated data, indicating that this

might be an artefact induced due to errors in the latency estimation.

Finally, the relationship between the mean estimated P300 latency and age of

the subjects for each of the different methods is shown in figure 5.10. For each
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Table 5.3. The correlation between the reaction time and the latencies esti-
mated by the different methods for each single trial in the P300 experimental
dataset

Method Correlation with RT
Cross-correlation 0.20
DTW 0.08
Beamformer 0.25
Cross-correlation (iterative) 0.26
DTW (iterative) 0.14
Beamformer (iterative) 0.23
ICA (single component) 0.10
ICA (multiple components) 0.17
EEGNet 0.29
convLSTM 0.30

method, a linear regression line was fitted to the data. The goodness-of-fit of

the regression is evaluated using the RMSE, and the slope of the curve is used

to evaluate the relationship between the mean estimated P300 latency and the

age of the subject. As expected based on literature (van Dinteren et al., 2014),

most methods show an increase in estimated P300 latency with age. However,

this is not the case for single component ICA and iterative DTW, where even a

small decrease is found. The effect is also very limited for the multiple com-

ponent ICA approach. These results further illustrate that these approaches to

estimate the latency in single trials may lead to incorrect results. The strongest

increases in latency with age are found for the averaging-based methods and

for the cross-correlation techniques. Comparing the results of the peak method

and the 50%-area latency estimation method, a better fit is found for the 50%-

area method, as the RMSE is smaller, illustrating that the 50%-area latency

estimation technique should be preferred over the peak method when using

averaging-based approaches. While these methods result in the largest slope,

the best fits to the regression line are found using the neural networks and the

ICA-based approaches.

Dataset 2: Semantic sentence congruity task eliciting an N400 component

Also for the second experimental dataset, the realigned averaged waveforms

across all subjects were visually compared, using the estimates of the differ-

ent methods. This result is shown in figure 5.11. We again notice more narrow

ERP components when realigning according to the single trial latency estimates

for the neural network based approaches, as well as for the (iterative) cross-
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Figure 5.9. Realignment of the single trials averaged across all subjects in the
P300 experimental dataset, obtained with the different methods. Grey lines
represent the different channels, with Pz being marked in black. Also the to-
pography of the realignment at 0.420 s after the stimulus onset is shown.

correlation and (iterative) DTW based template matching methods. The fig-

ure also indicates that realignments using the ICA based techniques result in

smeared out versions of the N400 effect, again resembling the waveform ob-

tained using random latencies in the simulated dataset.

Furthermore, we investigated the effect of using single-trial latency estima-

tion techniques compared to the classical averaging approach on the statistical

analysis of the effect of age on the latency and the amplitude of the N400 effect.

To do this, we estimated for each subject the mean and the standard deviation

of the estimated latency, and compared the obtained results over three differ-

ent age categories: young (ages 20-39), middle-aged (ages 40-59) and elderly
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Figure 5.10. Scatterplot and regression lines of the relationship between the
mean estimated latency of the P300 component and the age of the subject for
each of the different methods.

(60-79). The results are shown in table 5.4. The original paper by Cocquyt et

al. 2023 reported a significant effect of age group on the latency of the N400

effect, with post hoc pairwise comparisons using bonferroni correction reveal-

ing a significant delay in elderly compared to both the young and middle-aged

subjects. We reproduced these results using the 50%-area approach, as was

done in the original paper, and were able to find similar results using the EEG-

Net and the convLSTM networks. While significant effects of age were also

found using the DTW and iterative beamformer approaches, post-hoc analy-

ses in these cases only reported significant delays between the elderly and the

young subjects. Looking at the standard deviation per subject over the esti-

mated latencies, significant effects of age are found using the cross-correlation,
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Figure 5.11. Realignment of the single trials averaged across all subjects in the
N400 experimental dataset obtained with the different methods. Grey lines
represent the different channels, with Cz being marked in black. Also the to-
pography of the realignment at 0.400 s after the stimulus onset is shown. The
realigned waveforms are compared to the correct realignment to check how
well the shape of the N400 component is estimated.

beamformer and multiple component ICA approaches, as well as for the neu-

ral networks. Post-hoc analyses reveal increased variations in latency in the

young subjects compared to the middle-aged (EEGNet and convLSTM) as well

as compared to the elderly subjects (cross-correlation, multiple component ICA,

EEGNet and convLSTM).

Finally, we compared the effect of age on the amplitude of the N400 effect

using both the classical averaging approach and using the estimated latencies

to realign the single trials before calculating the amplitude. Here, we found a
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significant effect of age for the classical averaging approach, as well as after re-

alignment using the (iterative) cross-correlation techniques, the iterative DTW

and both neural networks. As in the original paper, post-hoc analyses showed

that the young subjects had a significant larger N400 effect compared to the

elderly subjects (all methods with significant effect of age). However, using the

(iterative) cross-correlation methods and the neural networks, also significant

differences were found between the young and the middle-aged subjects, with

the young subjects having a larger N400 effect.

Table 5.4. Overview of the statistical results on the mean and standard de-
viations of the estimated latencies, and on the amplitudes of the N400 effect,
elicited during the semantic sentence congruity task.

Mean latency Standard deviation latency Amplitude
F-values p-values F-values p-values F-values p-values

Cross-correlation 0.355 ns 7.154 *** 4.277 *
DTW 3.828 * 0.167 ns 0.257 ns
Beamformer 2.227 ns 3.284 * 2.528 ns
Cross-correlation (iterative) 1.386 ns 2.024 ns 4.295 *
DTW (iterative) 0.564 ns 1.052 ns 3.831 *
Beamformer (iterative) 3.759 * 1.733 ns 2.060 ns
ICA (single component) 0.872 ns 2.321 ns 1.892 ns
ICA (multiple components) 2.636 ns 4.566 * 1.992 ns
EEGNet 9.355 *** 4.581 * 6.585 **
convLSTM 7.308 *** 12.360 *** 7.230 ***
Peak 1.149 ns NA NA 5.501 **
50%-area 6.095 ** NA NA 5.501 **

5.4 Discussion

Different methods for the quantification of the ERP component were evaluated

both on simulated data and on experimental data. We have shown that deep

learning-based methods, namely the EEGNet approach and the convLSTM net-

work, perform very well on all, proving the applicability of these neural net-

works to quantify ERP components in single trials. For low SNRs in the simu-

lated dataset, the single component ICA approach worked slightly better than

the neural networks. However, only limited differences were found between the

estimated latencies, the topographies and the shapes of the ERP components

obtained using these approaches. Interesting to notice is that while single com-

ponent ICA gave excellent results on the simulated dataset for all SNRs, the

performance of this method is much lower on the experimental data. This dis-

crepancy between the results could be explained by the nature of the simulated

dataset. As this dataset was created by adding an independent ERP compo-
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nent to background EEG data, the ICA algorithm was probably able to clearly

separate this component. Therefore, it is likely that a good fit between this

component and the template was found. In the experimental dataset, however,

the data is more complex. There is likely more variability in the topography

of the ERP component, resulting in a mismatch between the template and the

selected ICA component containing the ERP. This is further confirmed by the

differences in performance between the single and multiple component ICA

approaches, as the multiple component ICA approach performed better than

the single component approach on the experimental data.

The performance of the single-trial latency estimation techniques was also

compared to that of averaging-based approaches in terms of the estimated la-

tencies, and the topography and shape of the obtained ERP component after

realignment. The results on both the experimental datasets and the simulated

data showed that the neural network based approaches typically performed

better than the averaging approaches. The results also clearly indicate that

when using averaging-based approaches, the 50%-area based approach should

be preferred over the peak-based method. The drawback of this averaging ap-

proach, however, is still that it is unable to correctly capture the shape of the

ERP component and that it does not provide information on the variability of

the latency of the ERP component.

The added value and the usability of single trial latency estimation using the

neural networks was proven on the SSCT dataset, where we were able to show

a larger N400 effect in the young subjects compared to both the middle-aged

and elderly subject, while only significant differences between the young and

elderly subjects were found using the averaging approach in both the original

paper and this work. This amplitude reduction of the N400 effect with age from

middle age on, was already shown by Gunter et al. (1992), and Cocquyt et al.

(2023) attributed the discrepancy in the result to differences in the age range

under investigation. However, our results using the neural networks showed

that the effect of age on the amplitude of the N400 effect is indeed present in the

data from the middle age on. Furthermore, by including the information from

the standard deviation of the estimated latencies in the single trials, which was

found to be larger in younger subjects compared to both the middle-aged and

elderly subject, we are able to confirm that the significant changes in the am-

plitude of the N400 effect are indeed due to changes in amplitude and are not

caused by latency jitter of the N400 effect. This is also in line with the findings

of Hoffman & Morcom (2018), who reported reduced activity in some regions
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of the typical left-hemisphere semantic network which have been reported as

potential generators of the N400 effect, namely the inferior prefrontal, poste-

rior temporal and inferior parietal cortex, in older subjects compared to the

younger. These findings show the added value of including single trial latency

estimations in the analysis of the data.

In this paper, we adapted different neural networks to quantify the ERP com-

ponent in single trials and compared it to other methods commonly used in liter-

ature using both simulated and experimental data. Even though we attempted

to create the simulated dataset as realistic as possible, certain assumptions,

such as the topography and simplified shape of the ERP component, influence

the obtained dataset and the performance of the different methods. Further-

more, these assumptions also affect the results obtained on the experimental

dataset. As no information on the component latency is present in the experi-

mental data, the parameters of the neural networks can only be learned based

on simulated data. This is an important limitation of deep learning approaches

for single-trial ERP component quantification. If the assumptions about the

shape or the topography of the ERP component in the simulated data are in-

correct, the network will not be able to perform well on the experimental data.

The need for the simulated data also limits the applicability of the networks

on datasets where the ERP components of interest are not known a-priori. In

this case, data-driven approaches, such as topographic analyses of variance and

microstate analyses, have a clear advantage, as they allow to estimate the ERPs

without being limited to one peak selected beforehand. Another remark that

can be made is that the same ERP component may have different characteris-

tics in different populations. In this case, however, it would be possible to train

different networks for the different populations, or to include characteristics

of both populations under investigation in the simulated data, thereby mak-

ing the network more robust. Also more advanced methods to generate the

simulated data could be used, for example using ICA to extract one or more

subcomponents of the ERP component from the original data and using them

as ERP waveform that is added to the background EEG data that is used to train

the network.

A final limitation of the neural networks approaches is that they work as a

so-called black box, returning an estimation of the latency of the ERP compo-

nent without giving insight into what the network’s decision is based upon.

This makes the deep learning approaches less interpretable compared to other

methods such as the (iterative) cross-correlation method. Lastly, it is important
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to note that each method always returns an estimate of the component latency

even when no ERP component is present in the data. Therefore, it could be

useful in future work to combine the ERP component classifiers used in BCIs

with these latency estimation techniques.

5.5 Conclusion

Two deep learning approaches were proposed for single-trial latency estimation

in ERP data. Application of these methods on both simulated and experimental

data has shown that the neural networks outperform other single-trial latency

estimation methods and thus that deep learning techniques can be used as a

new approach to estimate the latency of ERP components in single trials. More

specifically, we were able to show that the proposed approaches to quantify the

ERP components resulted in better estimates of the topography and the shape

of the components. On the P300 experimental data, higher correlations were

found between the P300 single trial latencies and the reaction times of the sub-

ject. Furthermore, using the N400 dataset, we were able to show a larger N400

effect in the young subjects compared to both the middle-aged and elderly sub-

jects, while only significant differences between the young and elderly subjects

were found using the averaging approach. By including the information from

the standard deviation of the estimated latencies in the single trials, we were

also able to confirm that the significant changes in the amplitude of the N400

effect are indeed due to changes in amplitude and are not caused by latency

jitter of the N400 effect, showing the added value of the neural networks for

single-trial latency estimation compared to the averaging-based approaches.

While the EEGNet network and the convLSTM network are more complex than

other techniques proposed in literature, it allows researchers to better study

the trial-to-trial latency variability of the ERP component, even in data with

a low SNR. A drawback, however, is that simulated data needs to be created

upfront to train the network, limiting the applicability of the proposed network

to study ERP components about which limited information is known. In future

work, the proposed neural network approach could be applied to both other

ERP components, as well as to other populations where the ERP components

may have different characteristics, to further study its validity.
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with eLORETA and DICS: A Comparative Study with

Simulations and Empirical Data

Abstract

Event-related potentials (ERPs) and oscillations are often-used tools for inves-
tigating neural processing. The relationship between these two phenomena,
however, remains debated: while some argue they reflect the same underlying
neural processes, others suggest they arise from distinct mechanisms. In this
work, we show that combining different EEG source imaging methods, namely
eLORETA and DICS, can help us address this open question. We use simula-
tions to illustrate the strengths and limitations of both methods, and real data
to show how the complementarity of eLORETA and DICS can help us identify if
the ERP and the oscillations originate from common or distinct neural sources.
The source localization results for the P300 ERP component using eLORETA
and DICS in the delta range converge. In this case, while the time-course of
the alpha desynchronization aligns closely with that of the P300, the obtained
localizations do not overlap. For the auditory N1, bilateral activation is found
using eLORETA. While similar activity is found when localizing theta power in
the corresponding time window using DICS, the accuracy in this case seems to
be better when using eLORETA. Finally, the eLORETA and DICS localization re-
sults converge on a view of the N400 as a product of oscillatory dynamics within
a distributed semantic network. The DICS localizations of the delta power in-
crease, and the alpha and beta power decreases, all overlap with the obtained
sources found using eLORETA. These findings point towards amplitude asym-
metry mechanisms responsive to task demands. In sum, this study provides
empirical and conceptual evidence for the complementary use of eLORETA and
DICS in ERP research. By harnessing the strengths of both methods, we gain a
richer, more mechanistic understanding of the temporal and spectral processes
that give rise to stimulus-locked brain responses.
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6.1 Introduction

Event-related potentials (ERPs) are a powerful tool for investigating the tem-

poral dynamics of neural processing, offering millisecond-level resolution of

brain activity. ERPs are time-locked responses to specific events, which can

interact with oscillatory activity—both evoked and induced—and can be quan-

tified using time-frequency analysis (TFA). The relationship between ERPs and

oscillations remains debated: some researchers argue they reflect the same un-

derlying neural processes (Hagoort et al., 2004; Roehm et al., 2007; Schneider

et al., 2016), while others suggest they arise from distinct mechanisms (Basti-

aansen and Hagoort, 2015; Wang et al., 2012).

Three prominent theoretical accounts have emerged to explain this relation-

ship (Cohen, 2014). The additive model proposes that ERPs are generated by

neural activity that is elicited by a stimulus and simply added to ongoing back-

ground oscillations, which are then attenuated through averaging. In contrast,

the phase-resetting model suggests that ERPs arise when the phase of ongoing

oscillations is reset by a stimulus, leading to a consistent phase alignment across

trials without requiring an increase in overall power (Makeig et al., 2002).

A third perspective highlights the role of amplitude asymmetry and baseline

shifts. Although neural currents are theoretically balanced in polarity, outward-

directed currents may be less detectable at the scalp surface (Mazaheri and

Jensen, 2008). This detection bias can introduce asymmetries in the recorded

oscillatory waveform, such that peaks and troughs are unequally represented.

Such asymmetries, or subtle shifts in the oscillatory baseline, could generate

ERP-like signals even in the absence of stimulus-locked activity (Nikulin et al.,

2010). Fluctuations in oscillatory power, when averaged across trials, might

therefore mimic slow ERP components through mechanisms unrelated to tra-

ditional evoked responses (van Dijk et al., 2010; Mazaheri and Jensen, 2010).

Despite these differing accounts, conclusive evidence supporting one over the

others remains limited, and the neural underpinnings of ERP generation are

still not fully understood.

A major obstacle in resolving this debate lies in the ambiguity of scalp-level

EEG data. Due to volume conduction and spatial smearing, it is often un-

clear which neural sources contribute to observed signals. Electrophysiological

source imaging (ESI) has therefore become a crucial tool in disentangling these

processes. By reconstructing the cortical origins of EEG activity, ESI can help
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identify whether the same or different sources give rise to ERPs and oscillatory

dynamics.

Various source localization methods have been developed to address the in-

verse problem of estimating cortical sources from scalp-recorded potentials.

Minimum-norm-based approaches like sLORETA, dSPM, and eLORETA estimate

distributed source activity by minimizing the overall power of the source so-

lution, typically under a smoothness constraint (Hämäläinen and Ilmoniemi,

1994; Dale et al., 2000; Pascual-Marqui et al., 2011). eLORETA (exact Low

Resolution Electromagnetic Tomography), in particular, improves on earlier

variants by providing zero localization error for single sources under ideal con-

ditions and reducing depth bias, making it well-suited for time-domain anal-

yses of event-related potentials (ERPs). It computes current density estimates

assuming that neighboring neuronal populations exhibit highly correlated ac-

tivity. This allows for a spatially smooth yet temporally precise reconstruction

of source activity across time. In contrast, spatial filtering techniques such as

LCMV (Linearly Constrained Minimum Variance) and DICS (Dynamic Imaging

of Coherent Sources) take a beamforming approach (Van Veen et al., 1997;

Gross et al., 2001). DICS operates in the frequency domain and constructs

adaptive spatial filters based on the cross-spectral density (CSD) matrix of the

EEG data to localize oscillatory sources at specific frequencies. Unlike dis-

tributed methods like eLORETA that tend to produce spatially extended so-

lutions, DICS provides more focal source estimates by maximizing the signal-

to-noise ratio for narrowband oscillatory activity. This makes it particularly

suitable for analyzing sustained or transient oscillations and inter-regional co-

herence, allowing for detailed mapping of frequency-specific neural dynamics.

While several studies have compared these methods in terms of spatial accu-

racy, precision and resolution (e.g. Halder et al. (2019); Pellegrini et al. (2023);

Babajani-Feremi et al. (2023)), fewer have explored how their complementary

strengths can be leveraged to clarify the relationship between ERPs and oscil-

lations. Notably, minimum-norm-based inverse solutions have been used to

localize ERP components such as the P300 (Criel et al., 2024; Bocquillon et al.,

2011; Ehlers et al., 2015; van Dinteren et al., 2018) and N400 (Criel et al.,

2025; Khateb et al., 2010; Geukes et al., 2013), while DICS has been applied

to identify task-related alpha and beta oscillations in attention and language

paradigms (Wang et al., 2012; Mazaheri et al., 2014). However, relatively few

studies have used both methods in tandem to disentangle whether time-domain

and frequency-domain activity stem from shared or distinct cortical generators.
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Interesting though is that other works have tried to link the oscillatory dy-

namics and event-related responses in other ways. Schneider and Maguire

(2018), for example, identified a significant relationship between the N400

and P600 ERPs and theta and beta oscillatory dynamics during respectively se-

mantic and syntactic processing using Pearson’s r correlation analyses. Based

on these findings, they suggested that ERPs and neural oscillations measure

similar neural processes. Similarly, Torrence et al. (2021) investigated the link

between theta oscillations and N170 amplitudes in a dot-probe task, and found

that greater N170 amplitudes were associated with greater theta oscillations,

indicating that both are related to each other. Studenova et al. (2023) stated

that the P300 evoked response and alpha oscillations (8–12 Hz) can be linked

through the amplitude asymmetry model. They showed that the temporal evo-

lution of the P300 and alpha amplitude is similar, and that their spatial localisa-

tions overlap. Additionally, they showed that the oscillations exhibit a non-zero

mean, and both the P300 and alpha amplitude correlate with cognitive scores

in a similar manner, further supporting the view that these two phenomena

may share a common underlying neural mechanism.

While these studies offer valuable insights into the potential relationship be-

tween ERPs and oscillatory activity, they often infer this link indirectly -through

correlations between ERP components and power in specific frequency bands-

rather than explicitly examining whether these signals originate from common

or distinct neural generators. As such, these associations do not clarify the

mechanistic or spatial overlap between ERP and oscillatory sources. Without

source-level analyses, it remains unclear whether these signals reflect shared

cortical origins or merely co-occur due to parallel processes. Thus, a more inte-

grated methodological approach is needed to directly test the extent of overlap

between ERP and oscillatory sources.

We argue that combining different ESI methods offers a promising approach

to address the open question of how ERPs and neural oscillations are related. In

this study, we use both simulations to illustrate the strengths and limitations of

eLORETA and DICS, and demonstrate how these tools can be applied to localize

the sources of the P300 and N400 ERP components in real data. Through this,

we aim to provide new insights into the interplay between phase-locked and

non-phase-locked activity, and to assess whether distinct neural mechanisms

contribute to each.
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6.2 Methods

6.2.1 Simulations

To illustrate how ESI can help us understand the relationship between ERPs and

neural oscillations, we simulated the three prominent theoretical accounts. In

short, our simulation approach consists of generating neural activity in distinct

brain regions, adding realistic noise, and projecting the resulting signals to the

scalp using a template head model.

This head model was based on Freesurfer’s standard template brain, fsav-

erage (Fischl, 2012). A three-layer boundary element model (BEM) was con-

structed, using the inner skull, outer skull, and scalp surfaces to define the

compartments. Standard conductivity values were assigned to each layer: 0.3

S/m for both the brain and scalp, and 0.006 S/m for the skull. Dipoles were

placed across the cortical surface with approximately 3 mm spacing, resulting

in roughly 10,000 dipoles per hemisphere. Each dipole was constrained to be

oriented normal to the cortical surface. The EEG leadfield matrix was then

computed using the BEM approach.

Two different scenarios were simulated. In each scenario, we simulated a

network involving two active brain regions: the left occipital pole and the left

inferior temporal sulcus for the first scenario, and the right inferior frontal cor-

tex (pars opercularis) and the left supramarginal gyrus in the second scenario.

These regions were defined using the Destrieux cortical atlas (Destrieux et al.,

2010), and for each region of interest (ROI), dipoles within a 10 mm radius

of the parcellation center were selected. Additionally, we modeled a change in

the amplitude of an ongoing oscillation. In Scenario 1, we included an increase

in the amplitude of a 9 Hz oscillation in the frontal lobe between 400–800 ms,

and in Scenario 2, a decrease in amplitude of a 22 Hz oscillation was modeled

in the precentral gyrus, again between 400–800 ms.

In each simulation scenario, 80 epochs of 1600 ms were simulated, half of

which contained the ERP as well as pink noise and ongoing oscillatory activity,

while only the noise and ongoing oscillations were included in the other half.

In each epoch, a pre-stimulus window of 300 ms was considered. By including

epochs which only contain noise, and thus simulating two different conditions,

it is possible to investigate the difference between the localizations obtained for

both conditions. The noise amplitude was adjusted to achieve a signal-to-noise

ratio (SNR) of -5 dB. The SNR was defined as the ratio of the peak ampli-
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tude of the ERP component to the peak-to-peak amplitude measured within

the pre-stimulus window. This approach helps in reducing systematic biases

in the source reconstruction process. If certain types of noise or non-specific

activity consistently affect the EEG data, this might lead to similar localization

errors across both conditions. By subtracting one condition from another, these

systematic errors can be reduced, leading to a more accurate estimate of the

neural sources.

The additive model:

The additive model assumes that ERPs arise from stimulus-evoked neural activ-

ity that is linearly added to ongoing background oscillations, which are attenu-

ated through trial averaging (Cohen, 2014). In this simulation, ERP waveforms

were modeled using half-cycle sinusoidal signals.

As stated before, two different scenarios were simulated. In Scenario 1, we

simulated a network involving the left occipital pole and the left inferior tempo-

ral sulcus. ERP activity was generated as a 4 Hz half-cycle sinusoidal waveform

lasting 125 ms. To mimic a simple propagation pattern, a temporal delay was

introduced: the ERP began in the first ROI at 200 ms post-stimulus and in the

second ROI 10 ms later. Additionally, we modeled an increase in the amplitude

of a 9 Hz ongoing oscillation in the frontal lobe between 400–800 ms.

In Scenario 2, a different network was simulated involving the right inferior

frontal cortex (pars opercularis) and the left supramarginal gyrus. ERP activity

here was modeled using a 6 Hz half-cycle sinusoid, and an amplitude decrease

was applied to an ongoing 22 Hz oscillation in the precentral gyrus, again be-

tween 400–800 ms.

The phase-resetting model:

The phase-resetting model, on the other hand, suggests that ERPs arise when

the phase of ongoing oscillations is reset by a stimulus, leading to a consistent

phase alignment across trials without requiring an increase in overall power

(Makeig et al., 2002).

In this case, again two different scenarios were simulated. An ongoing oscil-

lation of respectively 4 Hz (Scenario 1) and 6 Hz (Scenario 2) was simulated

in the same ROIs as before, i.e. the left occipital pole and the left inferior tem-

poral sulcus for Scenario 1 and the right inferior frontal cortex pars opercularis

and the left supramarginal gyrus for Scenario 2. The phases of the oscillations
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were in both scenarios reset at 200 ms post stimulus onset, eliciting an ERP.

As in the additive model scenarios, also here an increase in the amplitude of

a 9 Hz ongoing oscillation at the frontal lobe was added between 400 ms and

800 ms in the first scenario, while a decrease in the amplitude of an ongoing

oscillation in the precentral gyrus at 22 Hz was added in the second scenario.

The amplitude asymmetry model:

The amplitude asymmetry model posits that ERPs can emerge from a stimulus-

induced bias in the amplitude distribution of ongoing oscillations, without nec-

essarily involving additive activity or phase resetting. In this account, even a

symmetric oscillation can produce ERP-like components if it exhibits a non-zero

mean, such that post-stimulus amplitude increases result in a consistent shift

in the trial-averaged signal (Mazaheri and Jensen, 2008).

For these simulations, we used the same two ROIs as in the previous mod-

els. In both scenarios, we simulated ongoing oscillatory activity at either 4 Hz

(Scenario 1) or 6 Hz (Scenario 2), using sinusoidal waveforms with a small

positive baseline shift. This offset caused the oscillations to have a slightly pos-

itive mean, thereby introducing an asymmetry in the waveform. No explicit

ERP waveform was added, and no phase resetting was applied.

A transient increase in the amplitude of the ongoing oscillation was intro-

duced starting at 200 ms post-stimulus and lasting for 250 ms. Due to the

baseline shift, this amplitude modulation led to a consistent deflection in the

averaged signal, mimicking an ERP component while remaining purely oscilla-

tory in origin.

In parallel with the other models, both scenarios included modulation of

ongoing oscillations: an increase in amplitude of a 9 Hz oscillation in the frontal

lobe between 400 ms and 800 ms in Scenario 1, and a decrease in amplitude of

a 22 Hz oscillation in the precentral gyrus in the same time window in Scenario

2. This allowed consistent control over non-specific oscillatory activity across

all simulation models.

6.2.2 Real data

Participants and data

To assess the complementarity of eLORETA and DICS, as well as if this ap-

proach allows us to get a better understanding of the link between the ERPs
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and the oscillations in real data, we incorporated datasets from our previous

research exploring the cortical generators and functional connectivity associ-

ated with the P300 and N400 ERP components (Criel et al., 2024, 2025). The

dataset includes 60 Dutch-speaking adults (30 men and 30 women), with an

equal number of male and female participants represented in each of the fol-

lowing age brackets: 20–39 years, 40–59 years, and 60+. Participants ranged

in age from 23 to 80 years, with a mean age of 49.3 years (SD = 16.84). This

balanced sample, stratified by age and sex, was designed to ensure the gen-

eralizability of the findings to the broader population. All participants were

right-handed, as confirmed by a score of ≥ 8 on the Dutch Handedness Inven-

tory (DHI; (Van Strien, 1992)). Cognitive status was screened using the Mon-

treal Cognitive Assessment (MoCA; (Nasreddine et al., 2005)), with a minimum

score of 26 required for inclusion (Thissen et al., 2010). General language func-

tioning was evaluated using the Dutch version of the Comprehensive Aphasia

Test (CAT-NL; (Swinburn et al., 2014)). Participants scoring below the cut-

off on any test item were excluded. Additionally, participants self-reported no

hearing impairments, normal or corrected-to-normal vision, and no history of

neurological, psychiatric, or developmental disorders. The study was approved

by the Ethics Committee of Ghent University Hospital (ONZ-2022-0127), and

all participants provided written informed consent.

For each participant, high-density EEG was recorded from 128 electrodes us-

ing an EasyCap system (Brain Products, Germany). The ground electrode was

placed at AFz, and the online reference at FCz. Impedances were maintained

below 20 kΩ using an abrasive electrolyte gel (Abralyt 2000, EasyCap). EEG

signals were acquired with a BrainVision BrainAmp amplifier (Brain Products,

Germany) and digitized at a sampling rate of 500 Hz. Data collection was per-

formed using the BrainVision Recorder software.

Participants completed two experimental tasks: an attentive auditory odd-

ball paradigm designed to elicit a P300 response, and an auditory categorical

priming task targeting the N400 component. In the oddball task, the standard

stimulus [b@] was presented with a probability of 80%, while the deviant stim-

ulus [g@] appeared in 20% of the trials. Both types stimuli lasted 250 ms. The

main experiment consisted of 160 standard and 40 deviant trials, presented

with a 2000 ms interstimulus interval (ISI), resulting in a total duration of 8

minutes. A brief practice block (16 standard and 4 deviant trials) preceded the

main task. Participants were instructed to press a button on a Chronos response
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box (Psychology Software Tools, Pittsburgh, PA, USA) whenever they detected

a deviant stimulus, allowing assessment of stimulus categorization.

The auditory categorical priming task was adapted from Hagoort et al.

(1996) by Cocquyt et al. (2022). It consisted of 120 Dutch word pairs, each

comprising a prime and a target word. Half of the pairs were semantically

related (e.g., cat – horse), while the other half were unrelated (e.g., pink

– coffee), with no pairs exhibiting thematic associations. Psycholinguistic

properties of the target words were carefully matched across conditions for

word frequency, phonological length, number of phonological neighbors,

concreteness, imageability, age of acquisition, valence, arousal, dominance,

and duration. For more details on stimulus selection, see Cocquyt et al.

(2022). Word pairs were presented with a stimulus onset asynchrony (SOA) of

1800 ms. The interstimulus interval (ISI) between the prime and target words

varied from 830 to 1520 ms to account for differences in word length. After

the target word, participants were asked to judge the semantic relatedness

of the word pair via button press. A delayed response design was employed

to minimize movement artifacts and avoid contamination of the ERP by

motor-related activity (Van Vliet et al., 2014). Responses were again collected

using the Chronos response box, with participants pressing a green button for

related word pairs and a red button for unrelated pairs.

ERP Preprocessing

The high-density EEG data recorded during an auditory oddball task (P300) and

an auditory categorical priming task (N400) were processed using the MNE-

python library (Gramfort et al., 2013). Bad electrode channels were automati-

cally detected using the different noisy channel detection methods in the PREP

pipeline (Bigdely-Shamlo et al., 2015). The electrodes indicated as bad were

excluded from further analysis. The data was band-pass filtered using a zero

phase shift Butterworth filter with half-amplitude cut-off frequencies of 0.3 Hz

and 100 Hz and a 12 dB/octave slope. The power line noise was then removed

using a 50 Hz notch filter. Independent component analysis was applied for

eye blink and horizontal eye movement artefact removal. In case bad electrode

channels were identified and excluded in the first step, these channels were

interpolated at this stage. Subsequently, data were re-referenced to an average

common reference. In the next step, the data was segmented into epochs going

from 200 ms before the stimulus onset to 1000 ms after. Finally, epochs con-

taining artefacts were rejected using the following criteria: 75 µV maximum
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gradient criterion; 100 µV minimal/maximal amplitude criterion; 150 µV max-

imum difference criterion; 0.5 µV low activity criterion during 100 ms.

6.2.3 Time-Frequency Analysis

To examine the spectral dynamics associated with both the simulated data and

the experimental data, time-frequency analysis was performed using Morlet

wavelet convolution. The analysis was applied to the epoched EEG data from

the simulations as well as from all participants, separately for the different con-

ditions. For each epoch, time-frequency representations (TFRs) of oscillatory

power were computed using the MNE-Python package. A total of 75 logarith-

mically spaced frequencies were analyzed, ranging from 3 to 80 Hz. To balance

temporal and spectral resolution across frequencies, the number of cycles per

frequency increased linearly from 1.5 cycles at the lowest frequency to 15 cy-

cles at the highest frequency. Wavelet transforms were computed using the fast

Fourier transform (FFT) with downsampling (decimation factor = 3) to reduce

computational load. The resulting TFRs were then cropped to a time window

from -0.1 to 1.0 seconds relative to stimulus onset to remove edge artifacts.

The obtained TFRs were then averaged, over all trials and channels in the

case of the simulations and over trials, channels and subjects for the experimen-

tal data, after which the data was baseline-corrected using a log-ratio trans-

formation. To identify the time-frequency windows of interest, we applied a

data-driven clustering approach to the grand-average TFR. Specifically, we se-

lected the top 5% of absolute power values based on a percentile threshold. A

binary mask was then created, marking these high-power values. Using con-

nected component labeling, contiguous clusters of high activity were identified

in the time-frequency plane. For each resulting cluster, we extracted the corre-

sponding time and frequency boundaries. This allowed us to objectively define

windows of interest that captured the most prominent task-related modulations

in spectral power.

6.2.4 Source Reconstruction

Since individual MRI scans were not available for the real dataset, the same

BEM head model used in the simulation setup—based on Freesurfer’s standard

template subject fsaverage—was also applied for source localization in the real

data (Fischl, 2012).
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Two complementary inverse methods were applied for source reconstruc-

tion of both the real and the simulated EEG datasets: exact Low-Resolution

Electromagnetic Tomography (eLORETA) and Dynamic Imaging of Coherent

Sources (DICS). These methods target different aspects of the neural signal,

with eLORETA focusing on time-locked evoked potentials and DICS estimating

oscillatory power in specific frequency bands.

eLORETA:

Source reconstruction was performed separately for each subject and condi-

tion (ERP vs. noise, standard vs. deviant, or related vs. unrelated) using the

eLORETA algorithm (Pascual-Marqui et al., 2011). Given that the signal-to-

noise ratio (SNR) is influenced by the number of epochs, an equal number of

trials was used for both conditions before averaging and applying the inverse

model.

Subsequent analyses focused on the absolute magnitude of the reconstructed

dipoles—i.e., current source density (CSD)—ignoring dipole orientation. As

highlighted by Fulham et al. (2014), CSD reflects both signal and noise com-

ponents. To account for inter-subject differences in noise levels, CSD values

were normalized using z-scores. This normalization was based on a noise esti-

mate generated per subject: 50% of trials from each condition were randomly

selected, and half of those were polarity-inverted to cancel out the ERP signal,

yielding a noise-only signal with similar statistical characteristics. This syn-

thetic noise signal was source-reconstructed, and the procedure was repeated

100 times to compute a mean and standard deviation for noise at each dipole

location. The original CSD values were then z-transformed using these subject-

specific noise estimates.

DICS:

To investigate oscillatory activity in source space, Dynamic Imaging of Coherent

Sources (DICS; Gross et al. (2001)) was applied. This method was used to

reconstruct frequency-specific power differences between conditions—ERP vs

noise for the simulations, standard vs. deviant for the P300 oddball paradigm,

and related vs. unrelated for the N400 paradigm.

Cross-spectral density (CSD) matrices were computed using Morlet wavelet

convolution, with the number of cycles and frequency ranges tailored to

the frequencies of interest identified in the prior time–frequency analysis.
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For each subject, CSDs were estimated separately for each condition and

for a pre-stimulus baseline period, providing both condition-specific and

noise-related CSDs. Spatial filters were then computed using the forward

model, the average CSD across all epochs, and the baseline CSD as the noise

estimate. These filters were subsequently applied to the condition-specific

CSDs to obtain source-level power estimates. To enable group-level compar-

isons and normalize for individual variability, the power difference between

conditions (e.g., ERP minus noise, deviant minus standard, or unrelated minus

related) was divided by the baseline power at each source location. The

resulting normalized power changes were averaged across subjects to obtain a

group-level source estimate for time-frequency window of interest.

6.3 Results

6.3.1 Simulations

Figure 6.1 displays the average ERP waveforms obtained from each of the

three simulation models—additive, phase-resetting, and amplitude asymme-

try—across both scenarios. As expected, all models produced clear ERP-like

components, with peak amplitudes occurring around 265 ms in Scenario 1 and

approximately 240 ms in Scenario 2. Each model exhibited distinct temporal

profiles, consistent with their underlying generative mechanisms. In the phase-

resetting model, oscillatory activity with similar frequency and spatial distribu-

tion persisted throughout the entire epoch, reflecting the continuous presence

of the underlying rhythm. Due to the relatively small number of simulated

epochs (n = 40), the non-phase-aligned oscillations were not fully averaged

out, though a noticeable reduction in amplitude was observed outside the reset

window. In the amplitude asymmetry model, the ERP component arose from

transient amplitude modulations of an ongoing oscillation with a slight baseline

shift. As a result, the evoked waveforms also exhibited lower-amplitude deflec-

tions at other time points, mirroring the same topographical distribution as

the main component. Finally, subtle effects of the additional frontal oscillation

modulations were visible in the waveforms for Scenario 1, where an amplitude

increase was introduced. This was less evident in Scenario 2, where a decrease

in oscillatory amplitude was simulated.

The corresponding time-frequency representations are displayed in Figure

6.2. In both the additive and amplitude asymmetry models, prominent tran-
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Figure 6.1. The average ERP waveforms for each simulation model and sce-
nario, showing distinct temporal patterns linked to their underlying mecha-
nisms.

sient increases in low-frequency power were observed around the time of the

ERP component. Notably, these increases extended beyond the specifically sim-

ulated frequency band, affecting adjacent frequencies as well. This spread can

be attributed to the inherent time-frequency trade-off associated with the spec-

tral decomposition method, as well as the use of a finite time window that

introduces spectral leakage. In contrast, the phase-resetting model did not ex-

hibit a marked increase in power around the ERP component. This aligns with

its theoretical basis, where ERP-like features emerge primarily through phase

alignment across trials rather than changes in amplitude. As expected, across

all simulation models, modulations were also detected in the ongoing oscilla-

tory activity during the post-stimulus window (e.g., 400–800 ms), with peaks

centered at 9 Hz and 22 Hz, depending on the scenario. These changes reflect

the background oscillatory dynamics that were explicitly embedded into the

simulated data.

To identify time-frequency windows of interest, we applied a percentile-based

clustering procedure to the average time-frequency representations (TFRs).

This revealed consistent clusters within the expected frequency bands and time

windows for each model. In the additive model, the ERP-related cluster in

Scenario 1 spanned 3–8.7 Hz and 146–392 ms, while in the amplitude asym-

metry model it appeared between 3–7 Hz and 122–404 ms. In Scenario 2, the

corresponding clusters were found between 3–15.5 Hz and 108–394 ms for

the additive model, and 3–10 Hz and 150–344 ms for the amplitude asymme-

try model. As expected, no ERP-related clusters were identified in the phase-
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Figure 6.2. The time-frequency plots corresponding to the simulated data,
showing transient power increases in the additive and amplitude asymmetry
models, with the phase-resetting model reflecting phase-based alignment.

resetting model for either scenario. For ongoing oscillations, power-related

clusters were detected in Scenario 1 at 550–640 ms / 8.7–10.0 Hz (additive),

252–808 ms / 7.3–13.6 Hz (phase-resetting), and 526–664 ms / 8.3–10.4 Hz

(amplitude asymmetry). In Scenario 2, the clusters were located at 456–746

ms / 19.3–25.2 Hz (additive), 474–732 ms / 20.2–24.1 Hz (phase-resetting),

and 496–718 ms / 21.1–23.1 Hz (amplitude asymmetry).

Based on these results, we selected 130–400 ms as the time window for ERP

source localization in Scenario 1, using eLORETA, and 130–400 ms / 3–8 Hz

for DICS. For Scenario 2, we used 100–450 ms for eLORETA and 100–450 ms

/ 3–12 Hz for DICS. For localizing ongoing oscillations with power changes,

we used 450–800 ms / 8–10 Hz in Scenario 1 and 480–750 ms / 21–23 Hz in

Scenario 2 for DICS and used the same time windows for eLORETA.

Figure 6.3 presents the source localization results for the ERP time window

using both eLORETA and DICS. For all three simulation models, eLORETA suc-

cessfully localized source activity to the two simulated ROIs—the left occipital

pole and left inferior temporal sulcus in Scenario 1, and the right inferior frontal

cortex (pars opercularis) and left supramarginal gyrus in Scenario 2—closely

matching the ground truth. In contrast, DICS yielded more variable results. In

Scenario 1, both the additive and amplitude asymmetry models showed source

activity in the simulated ROIs, but also exhibited spurious activations outside

these regions. For the phase-resetting model, no clear or consistent source lo-

calization was observed. A similar pattern emerged in Scenario 2: while DICS

captured activity near the simulated sources for the additive and amplitude
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asymmetry models, localization was less accurate and more spatially diffuse

compared to eLORETA. Again, no meaningful localization was achieved for the

phase-resetting model.

Figure 6.4 shows the source localization results for the ongoing oscillations

using both eLORETA and DICS. In this case, DICS successfully identified the

simulated ROIs, accurately localizing the amplitude changes in the ongoing

oscillations across all models. In contrast, eLORETA did not yield clear local-

ization results for the additive model. Interestingly, for the phase-resetting and

amplitude asymmetry models, eLORETA localized some of the same regions

involved in the ERP simulation. This is not entirely unexpected, as in these

models, the oscillations underlying the ERP are not confined to the ERP time

window but persist throughout the trial.
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Figure 6.3. The source localization results for the simulated ERP components using both eLORETA and DICS. In the first column,
the ground truth of the simulated sources is shown. In Scenario 1, a 130–400 ms / 3–8 Hz time-frequency window was used for the
localization using DICS, and a 100–450 ms / 3–12 Hz time-frequency window in Scenario 2. The same time windows were also used
for the localizations using eLORETA.
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Figure 6.4. The source localization results for the simulated ongoing oscillations using both eLORETA and DICS. In the first column,
the ground truth of the simulated sources is shown. In Scenario 1, a 450–800 ms / 8–10 Hz time-frequency window was used for the
localization using DICS, and a 480–750 ms / 21–23 Hz time-frequency window in Scenario 2. The same time windows were also used
for the localizations using eLORETA.
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6.3.2 Real Data

Grand-average ERP waveforms for the oddball (P300) and semantic priming

(N400) tasks are shown in Figure 6.5. As expected, the P300 was characterized

by a positive deflection between approximately 300-800 ms post-stimulus at

parietal electrodes, while the N400 showed a negative deflection between 400-

800 ms at central-posterior sites.

Related UnrelatedStandard Deviant

N400P300

CzPz

Figure 6.5. Grand-average evoked potentials for the P300 and N400
paradigms, showing characteristic stimulus-locked components.

Figure 6.6 displays the average time-frequency representations (TFRs) across

participants for both the standard and deviant trials in the P300 paradigm, as

well as the related and unrelated trials in the N400 paradigm. In both tasks,

stimulus-related spectral modulations were evident. The P300 task revealed

post-stimulus increases in low-frequency power (3–8 Hz), along with modu-

lations in the alpha (8–12 Hz) and beta (15–30 Hz) bands. In the N400 task,

broader frequency changes were observed, extending across delta, theta, alpha,

and beta ranges.

Cluster analysis of the TFRs revealed distinct time-frequency windows of in-

terest for each condition. For the P300, a prominent cluster was identified in

standard trials between 3 and 6.3 Hz and 96–900 ms. In the deviant trials,

three clusters were found: a low-frequency cluster between 3 and 5.8 Hz from
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228 to 552 ms, an alpha-band cluster between 7.6 and 11.4 Hz from 408 to 948

ms, and a beta-band cluster between 17.7 and 25.2 Hz from 354 to 594 ms.

In the N400 paradigm, both the related and unrelated trials showed an early

theta cluster between 3 and 5.8 Hz from 132 to 336 ms, as well as a broader

cluster from 6.1 to 19.3 Hz between 330 and 1002 ms. Also a smaller cluster

from 3 to 3.9 Hz between 600 and 756 ms was found in both conditions.

These cluster results were used to guide the selection of time-frequency win-

dows for source localization using DICS. For the P300 task, we localized delta/
theta power (3–7 Hz) between 200 and 400 ms across both conditions. We

also examined alpha desynchronization (6–13 Hz) between 300 and 1000 ms

and beta desynchronization (20–22 Hz) between 400 and 500 ms, both derived

from the deviant-minus-standard contrast. In parallel, we applied eLORETA to

localize temporally defined ERP components, i.e. the P300 was localized be-

tween 300 and 800 ms. This dual approach allowed us to separately capture

the spatial patterns of both evoked and induced activity.

For the N400 dataset, we adopted a similar approach. DICS windows were

again based on the cluster findings, while eLORETA was informed by the tim-

ing of components in the grand-average evoked potentials. DICS was used to

localize delta power between 600 and 1000 ms (3-4 Hz), theta power between

100 and 300 ms (4–6 Hz), alpha desynchronization between 300 and 1000 ms

(6–12 Hz), and beta desynchronization between 300 and 1000 ms (15–20 Hz).

The N1 and N400 were localized using eLORETA within the 120–180 ms and

400–800 ms windows, respectively.

The results of the source localization analyses for both the P300 and N400

paradigms are summarized in Figures 6.7 and 6.8. In the P300 paradigm,

eLORETA localized the P300 component to the left and right cingulate cor-

tex, with additional activity observed in the left superior premotor cortex. The

DICS results revealed condition-specific power changes across frequency bands.

Delta/Theta-band activity (3–7 Hz) between 200 and 400 ms was localized to

the left superior premotor and frontal cortex. Alpha desynchronization (6–13

Hz) between 300 and 1000 ms was observed in the left superior parietal lobe,

while beta desynchronization (20–22 Hz) between 400 and 500 ms was pri-

marily localized to the left motor cortex.

In the N400 paradigm, eLORETA localized the N1 component to the bilat-

eral auditory cortices. The N400 component was primarily found in the left

frontal cortex, with additional activation in the right frontal and right middle

temporal regions, and weaker involvement of the left temporal cortex. DICS
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Figure 6.6. Time-frequency representations for the P300 and N400 tasks,
revealing distinct patterns of low- and high-frequency modulations following
stimulus onset.

analysis revealed theta-band power changes (4–6 Hz, 100–300 ms) in the left

and right auditory cortices, extending toward the supramarginal gyrus. These

early components—the N1 and theta activity—were analyzed by combining

both conditions and comparing them to baseline, based on the expectation that

they reflect shared auditory processing mechanisms present in both conditions.

In contrast, delta synchronization (3-4 Hz, 600-1000 ms) and alpha desynchro-

nization (6–12 Hz, 300–1000 ms), primarily observed in the left frontal cortex

with some extension to the left middle temporal gyrus, and beta desynchroniza-

tion (15–20 Hz, 300– 1000 ms), localized bilaterally to the posterior temporal

poles, were analyzed by comparing the two conditions directly. This approach

was taken to capture condition-specific neural dynamics associated with the

N400 time window.

6.4 Discussion

In this work, we combined simulation-based and empirical approaches to ex-

plore how different neurophysiological mechanisms underlying event-related

potentials can be disentangled using two complementary source localization

methods: eLORETA and DICS. By systematically simulating ERPs based on
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Figure 6.7. Source localization results for the P300 paradigm using
eLORETA and DICS, showing distinct regions involved in evoked responses and
frequency-specific activity. All results were obtained by comparing the localiza-
tions obtained for both conditions.

three models, namely the additive, phase-resetting, and amplitude asymmetry

models, and applying these source reconstruction methods to both simulated

and real EEG data, we gained novel insights into how each method captures

different facets of brain activity, and how they can be jointly used to better infer

the origins of observed ERPs.

6.4.1 Complementarity of eLORETA and DICS in ERP Local-

ization

Our simulations demonstrated a clear dissociation in the localization per-

formance of eLORETA and DICS depending on the underlying mechanism.

eLORETA, which localizes activity based on evoked signals, reliably recovered

the known sources of ERP components across all three models, regardless

of whether the ERP was generated through additive, phase-resetting, or

amplitude asymmetry mechanisms. In contrast, DICS—which localizes sources

based on oscillatory power changes in the frequency domain—was particularly

sensitive to amplitude-related changes, showing accurate localization only
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Figure 6.8. Source localization results for the N400 paradigm using eLORETA
and DICS, highlighting frontal and temporal contributions to semantic process-
ing. Note that the early components—the N1 and theta activity—were analyzed
by combining both conditions and comparing them to baseline, based on the
expectation that they reflect shared auditory processing mechanisms present
in both conditions. In contrast, the N400 effect, delta synchronization, alpha
desynchronization and beta desynchronization were analyzed by comparing
the two conditions directly.

in the additive and amplitude asymmetry models. Notably, DICS failed to

recover meaningful sources in the phase-resetting model, aligning with the

theoretical understanding that phase-resetting does not necessarily produce

power changes detectable by spectral methods. These results are consistent

with, and expected from, the patterns observed in our time-frequency analysis,

which likewise showed no power changes in the phase-resetting condition,

underscoring this limitation of DICS.

This divergence underscores the methodological complementarity of

eLORETA and DICS. Whereas eLORETA is well-suited to identify sources of

time-locked ERP components, DICS is more sensitive to stimulus-induced

modulations in oscillatory power, even when they are not strictly phase-

locked. Therefore, interpreting ERP components solely through one method

may lead to incomplete conclusions about their neural generators. When

used together, these methods provide a more nuanced picture—eLORETA

highlights the evoked, time-locked responses, while DICS reveals the induced,

frequency-specific dynamics that may underlie or accompany ERP generation.



6. Disentangling ERP and Oscillatory Sources 173

6.4.2 ERP Mechanisms in Light of Source Localization

The different localization patterns observed across simulation models also in-

form the longstanding debate on what generates ERPs. While simulations can-

not confirm any single model of ERP generation, they offer a controlled frame-

work for probing how different mechanisms, such as additive activity or am-

plitude asymmetry, interact with different source localization techniques. The

additive model, which assumes that ERPs result from the addition of transient

activity to ongoing background oscillations, led both eLORETA and DICS to

localize activity to the simulated sources within the ERP time window and dur-

ing ongoing oscillation. Similarly, in the amplitude asymmetry model—which

assumes transient amplitude increases in ongoing oscillations—both methods

again identified meaningful source patterns, with DICS accurately capturing

power changes and eLORETA detecting the consistent topography of the evoked

component.

In contrast, the phase-resetting model—where ERPs emerge through trial-

wise realignment of ongoing oscillatory phase—showed a clear dissociation:

only eLORETA captured the simulated sources, while DICS yielded no consis-

tent results. This reflects a fundamental limitation of DICS, which relies on

changes in spectral power and is insensitive to phase-based dynamics. Since

phase-resetting does not necessarily produce measurable power changes, DICS

is unable to detect such activity. Interestingly, eLORETA also identified some

of the ERP-related sources in the later (post-ERP) time windows, particularly

in the phase-resetting and amplitude asymmetry models, suggesting that these

mechanisms involve more sustained spatially-specific dynamics, even beyond

the ERP time window.

Taken together, these findings suggest that the additive and amplitude asym-

metry models are more readily detectable using both evoked and induced mea-

sures, while the phase-resetting model cannot be adequately assessed using

frequency-based source localization methods like DICS, due to their insensitiv-

ity to phase dynamics. Therefore, multimethod source reconstruction provides

critical leverage for adjudicating between competing mechanistic accounts of

ERP generation.

6.4.3 Insights from Real Data: The P300

In the P300 oddball paradigm, we observed partial convergence between the

source localization results obtained with eLORETA and DICS, particularly in the
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delta/theta band. While the peak time windows of these effects were not iden-

tical, they nonetheless point to potentially overlapping neural sources. This

discrepancy in timing is likely due to the intrinsic trade-off in frequency-based

methods—lower frequency components such as delta inherently suffer from

reduced temporal resolution due to time–frequency smearing. Despite this,

the spatial overlap between eLORETA’s evoked activity and DICS’s delta-band

power increase suggests that both methods may be tapping into the same un-

derlying neural process that supports the generation of the P300.

Moreover, time-frequency analysis and DICS revealed additional frequency-

specific changes: an alpha-band desynchronization localized to the superior

parietal cortex, and a beta-band desynchronization localized to the left mo-

tor cortex. These findings align with the cognitive and motor demands of the

task. Alpha desynchronization in the parietal cortex has been robustly asso-

ciated with attentional allocation (van Winsun et al., 1984; Capotosto et al.,

2016; Woodman et al., 2022), which is expected to be enhanced in response

to deviant stimuli in an oddball paradigm. The beta desynchronization ob-

served in the motor cortex during deviant trials also fits this model: beta sup-

pression is classically linked to motor preparation and execution (Stancák Jr

and Pfurtscheller, 1996; Gross et al., 2005; Engel and Fries, 2010; Heinrichs-

Graham and Wilson, 2016). Given that participants were required to press a

button only in response to deviant tones, the beta decrease in these trials likely

reflects the engagement of motor systems, again through transient amplitude

modulations of ongoing oscillations.

These real data observations provide evidence for both additive and ampli-

tude asymmetry mechanisms in the generation of the P300. The convergence

of eLORETA and DICS in the delta range supports the additive model, where

evoked components are superimposed on ongoing oscillations and lead to both

increased ERP amplitude and low-frequency power. More surprising though is

that while the time-course of the alpha desynchronization aligns closely with

that of the P300, the obtained localizations do not overlap. It is however not

possible to rule out the amplitude asymmetry model in this case, as it is possible

that both models are involved in the P300 component generation and that the

obtained amplitude shift gets lost in the combination with the additive model.

6.4.4 Insights from Real Data: The N400

In the N400 paradigm, eLORETA localized the early N1 component to the bi-

lateral auditory cortices, in line with its well-established role in early auditory
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processing (Bertrand et al., 1991; Giard et al., 1994). The N400 component

was primarily found in the left frontal cortex, with additional activation in the

right frontal and right middle temporal regions, and weaker involvement of

the left temporal cortex. This spatial pattern is consistent with prior studies

implicating a predominantly left-lateralized frontotemporal network in seman-

tic processing and integration (Kutas and Federmeier, 2011; Lau et al., 2008).

DICS analysis revealed theta-band power changes (4–6 Hz, 100–300 ms)

localized to the left and right auditory cortices, extending toward the supra-

marginal gyrus. These results closely align with the N1 findings from eLORETA,

and were similarly analyzed by collapsing across conditions and comparing

them to baseline. This approach was based on the expectation that these early

components reflect shared auditory and early context-processing mechanisms

that are not specific to semantic deviation (Bastiaansen et al., 2005).

In contrast, delta synchronization (3-4 Hz, 600-1000 ms), alpha desynchro-

nization (6–12 Hz, 300–1000 ms) and beta desynchronization (15–20 Hz, 300–

1000 ms) were evaluated by directly contrasting the deviant and standard

conditions, aiming to isolate neural dynamics specific to the semantic devia-

tion captured by the N400. Alpha desynchronization was predominantly ob-

served in the left frontal cortex, with some spread to the left middle temporal

gyrus—regions associated with semantic control and attentional engagement

(Klimesch, 2012). This suggests that increased semantic or cognitive demands

in unrelated trials may drive greater alpha suppression, consistent with theo-

ries linking alpha decreases to active information processing. Interestingly is

that the same cortical generators were found for the delta synchronization (3-4

Hz, 600-1000 ms).

The convergence of neural sources for both delta and alpha activity strongly

supports the amplitude asymmetry model. In this framework, fluctuations in

alpha amplitude can modulate the phase or amplitude of delta oscillations in

the same regions, reflecting a cross-frequency coupling mechanism. This inter-

dependence suggests that high-frequency alpha and low-frequency delta oscil-

lations interact nonlinearly, providing a shared neural mechanism for cognitive

processes. These findings align with existing literature, such as the work of

Varga and Manns (2021) on delta-modulated alpha oscillations in memory in-

tegration, where delta-phase modulation of alpha amplitude contributes to the

synchronization of distributed cortical networks. A similar interaction may also

apply to the N400 component during semantic processing.



176 6. Disentangling ERP and Oscillatory Sources

Beta desynchronization was found bilaterally in the posterior temporal poles,

a region increasingly implicated in conceptual integration and context updat-

ing during language comprehension (Lewis and Bastiaansen, 2015; Lam et al.,

2016). The observed beta suppression may reflect a mismatch between pre-

dicted and incoming semantic content or the need to reconfigure the current

context, both of which are heightened during unrelated trials.

Together, the eLORETA and DICS results converge on a view of the N400 as

a product of both evoked potentials and induced oscillatory dynamics within a

distributed semantic network. The N1 evoked component seems to correspond

to additive neural activity, as we find an increase in theta power in the corre-

sponding window, while the alpha and beta desynchronizations in the N400

time window point toward amplitude asymmetry mechanisms responsive to

task demands.

6.4.5 Implications and Future Directions

This study highlights the value of multimodal source localization for disentan-

gling the neural basis of ERPs. While eLORETA provides reliable localization

of phase-locked responses, DICS offers complementary insights into frequency-

specific, non-phase-locked processes. The divergence in performance across

different simulation models further illustrates that observed ERP components

could arise from distinct and overlapping mechanisms, each with unique impli-

cations for how brain dynamics are temporally organized.

Moreover, the interaction between different frequency bands—such as cross-

frequency coupling—emerges as a critical factor in understanding ERP compo-

nents. Specifically, the interplay between higher-frequency oscillations (e.g., al-

pha desynchronization) and lower-frequency rhythms (e.g., delta synchroniza-

tion) may help explain the dynamic coordination of brain networks engaged in

cognitive processing. This cross-frequency coupling provides insight into the

neural mechanisms underlying complex ERP components like the N400, high-

lighting the importance of studying both spectral and temporal dynamics in

tandem.

Moving forward, this dual-method approach can be used to characterize ERPs

in clinical or cognitive populations, helping to identify whether atypical ERP

responses arise from altered evoked activity, disrupted oscillatory dynamics, or

both. Moreover, combining these tools with techniques like dynamic causal

modeling or intracranial recordings may further deepen our understanding of

the causal architecture underlying ERP phenomena.
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In sum, this study provides empirical and conceptual evidence for the comple-

mentary use of eLORETA and DICS in ERP research. By harnessing the strengths

of both methods, we gain a richer, more mechanistic understanding of the tem-

poral and spectral processes that give rise to stimulus-locked brain responses.





7 | Investigating the effect of template head

models on Event-Related Potential source localiza-

tion: A simulation and real-data study

Abstract

Event-Related Potentials (ERPs) are valuable for studying brain activity with
millisecond-level temporal resolution. While the temporal resolution of this
technique is excellent, the spatial resolution is limited. Source localization
aims to identify the brain regions generating the EEG data, thus increasing the
spatial resolution, but its accuracy depends heavily on the head model used.
This study compares the performance of subject-specific and template-based
head models in both simulated and real-world ERP localization tasks. Simu-
lated data mimicking realistic ERPs was created to evaluate the impact of head
model choice systematically. The results indicate that the template models cap-
ture the simulated activity less accurately, producing more spurious sources
and identifying less true sources correctly. Furthermore, the results show that
while creating more accurate and detailed head models, such as finite element
method (FEM) models instead of boundary element method (BEM) models,
improves the localization accuracy for subject-specific head models, this ad-
vantage is less pronounced when using template head models. The different
modelling approaches were also applied to a face recognition dataset. The main
N170 source was correctly localized to the fusiform gyrus, a known face pro-
cessing area, using the subject-specific models. Apart from the fusiform gyrus,
the template models also reconstructed several other sources, illustrating the
localization inaccuracies. While template models allow researchers to investi-
gate the neural generators of ERP components when no subject-specific MRIs
are available, it could lead to misinterpretations. Therefore, it is important to
consider a priori knowledge and hypotheses when interpreting results obtained
with template head models, acknowledging potential localization errors.
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7.1 Introduction

Electroencephalography (EEG) is an essential tool for analyzing brain activity,

which allows researchers to study the neuronal mechanisms at work when ex-

ecuting specific tasks at a millisecond scale (Luck, 2014). While this technique

offers excellent temporal resolution, its spatial resolution is limited, as the sig-

nals are measured at the scalp using a limited number of electrodes. Moreover,

due to volume conduction, the activity recorded by each electrode does not

represent a single underlying brain source, but rather a composite of activities

from various brain regions, again limiting the spatial accuracy of EEG. EEG

source imaging was introduced to overcome this limitation as a computational

technique to estimate the electrical neuronal activity in the brain. This tech-

nique identifies the underlying generators of the electrophysiological activity

recorded at the scalp by combining the EEG signals with structural MR images.

During recent decades, EEG Source Imaging (ESI) has been an important area

of research. However, while it has introduced significant advances in multiple

research domains such as epilepsy (Mégevand and Seeck, 2020) and sleep (Del

Felice et al., 2014; Fernandez Guerrero and Achermann, 2019), the precise lo-

calization of the neuronal activity is still a challenge, and the spatial resolution

remains unclear.

Source analysis of EEG data consists of two different processes, namely a

forward model and an inverse model. The forward or head model describes

how a known source of electrical activity within the brain contributes to the

signal observed at each EEG electrode on the scalp. The inverse model then

estimates the location and the strength of the electrical activity within the

brain based on the EEG signals recorded at the scalp, and relies on the for-

ward model to obtain an accurate solution. As this is a non-unique problem,

regularization techniques or constraints are needed to find plausible solutions.

Many different techniques have been proposed for solving the inverse prob-

lem, such as single dipole models, multiple dipole models, including multiple

emitter location and signal parameter estimation (MUSIC) (Schmidt, 1986),

and distributed source estimation methods, including the minimum norm es-

timate (MNE), dynamic statistical parametric mapping (dSPM), standardized

low-resolution brain electromagnetic tomography (sLORETA) and exact low-

resolution brain electromagnetic tomography (eLORETA) (Hämäläinen and Il-

moniemi, 1994; Dale et al., 2000; Pascual-Marqui, 2002; Pascual-Marqui et al.,
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2011). However, the accuracy of the EEG reconstruction obtained with each of

these techniques still depends on the accuracy of the forward model.

The construction of the forward model is thus a critical step in the source

reconstruction. The model takes into account the anatomical structure of the

head, as well as the electrical conductivity of the different tissue types. Many

different studies have investigated the effect of the head model on the obtained

localization errors. Vorwerk et al. (2012) and Birot et al. (2014), for example,

have investigated the effect of using different methods for the creation of the

head model, such as boundary element models (BEMs), finite difference mod-

els (FDMs) or finite element models (FEMs). In other studies, the influence of

including more head tissue compartments in the model was investigated (Vorw-

erk et al., 2014; Neugebauer et al., 2017). Recently, Nielsen et al. (2023) specif-

ically investigated the influence of anatomical accuracy and electrode positions

on the accuracy of the forward solutions. Other work by (Montes-Restrepo

et al., 2014) and (Montes-Restrepo et al., 2016), for example, studied the influ-

ence of different skull modelling approaches on EEG source localization, while

Stenroos and Hauk (2013) looked into the robustness of source estimation in

the case of skull conductivity errors. Also the influence of head tissue conduc-

tivity uncertainties on dipole reconstructions has been investigated (Vorwerk

et al., 2019), as McCann et al. (2019) have shown that the electrical conduc-

tivity values assumed for each compartment likely vary between individuals. It

is clear that the ideal head model for the most accurate reconstruction of the

neural activity is a realistic head model created using the subject’s individual

MRI and accurate electrical properties of the different tissue types (Akalin Acar

and Makeig, 2013; Vorwerk et al., 2018; Conte and Richards, 2021).

Unfortunately, in many EEG studies the additional acquisition of MRI data

proves difficult. The acquisition of MRI data for each subject would require

more time, research funds, and the availability of an MRI scanner. Therefore,

many studies using ESI to source localize ERP data use an approximate, av-

erage or template-based head model (Sabeti et al., 2016; Dorme et al., 2023;

Criel et al., 2024). The effect of this simplification has been studied exten-

sively before. Valdés-Hernández et al. (2009), for example, investigated the

performance of approximate models of the head in ESI using simulations and

showed that the average of many individual MRI-based models outperforms a

randomly selected individual model. Liu et al. (2023) quantified source local-

ization discrepancies introduced by using template head models, inexact elec-

trode locations, and inaccurate skull conductivity for both younger and older
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adults using real EEG data. They found that using template MRIs led to lo-

calization discrepancies of up to 2 cm compared to the anatomically accurate

subject-specific head models for both younger and older adults.

However, most studies investigating EEG source localization accuracy have

focused on the localization of a single source and quantified the localization

error associated with each source modelled within the brain (Vorwerk et al.,

2014; Hauk et al., 2022). This approach is motivated by applications in which

the activity is dominated by a single source, e.g. in the localization of epilep-

tiform interictal discharges. However, it is known that in multiple applications

of ESI, such as Event-Related Potential (ERP) research, typically more than one

source is involved in the observed waveform, as more than one brain region

is involved in processing the stimuli. It is therefore important to investigate

the effect of the head model that is used particularly when multiple sources of

activity are present. In a study by Cho et al. (2015), the influence of imperfect

head models on EEG source connectivity analyses has been studied with multi-

source scenarios, where they found that neglecting the distinction between gray

and white matter or neglecting CSF causes large connectivity errors. However,

they only used a single subject in this study, and they did not yet investigate

the effect of using a template head model.

The objective of this study is therefore to investigate the effect of using a

template head model instead of subject-specific head models, particularly in

the context of Event-Related Potentials (ERPs) involving multiple brain regions,

and to quantify the localization error associated with this simplification. By

using both simulated and real task data, the aim is to quantify the localization

errors introduced by this simplification and assess the interpretability of the

reconstructed neural activity.

7.2 Materials and Methods

7.2.1 Participants and data

In this work, the open-source multimodal neuroimaging dataset VEPCON

(OpenNeuro Dataset ds003505) was used (Pascucci et al., 2022), in which

visual evoked potentials were recorded while the subjects discriminated faces

from scrambled faces. This dataset has previously been used in different

studies, for example, to improve and validate EEG source imaging methods and

time-varying functional connectivity methods (Rubega et al., 2019; Pascucci
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et al., 2020). The dataset includes raw data, derivatives of high-density

EEG, structural MRI and diffusion-weighted images (DWI), and single-trial

behaviour.

The dataset includes the data of twenty participants (3 males, mean age =
23±3.5) who were recruited from the student population at the University of

Fribourg, Switzerland. In this work, only the raw high-density EEG, recorded

during a face detection task, and the derivatives of the T1-weighted structural

MRI data, obtained using the Freesurfer software, were used. Subjects for

whom (part of) this data was missing were excluded, resulting in a total of

eighteen participants. The EEG data were recorded at a sampling rate of 2048

Hz with a 128-channel Biosemi Active Two EEG system (Biosemi, Amsterdam,

The Netherlands) in a dimly lit and electrically shielded room. More informa-

tion regarding the dataset and recording procedures can be found in the data

descriptor provided by Pascucci et al. (2022).

7.2.2 MRI Processing and Head Model Reconstruction

Preprocessed structural MRI data was included in the open-source dataset.

For each subject, Pascucci et al. (2022) resampled the T1w images using the

Connectome Mapper v3.0.0-beta-RC1 pipeline (Tourbier et al., 2022), and seg-

mented gray and white matter using Freesurfer 6.0.1 (Fischl, 2012). The struc-

tures were then parcellated into 83 cortical and subcortical areas according to

the Desikan-atlas. Also other parcellations were included in the dataset, such

as the parcellation following the Destrieux atlas.

Multiple approaches were used for the construction of the forward model,

namely the finite element method (FEM) and the boundary element method

(BEM). The FEM method uses a realistic volume mesh of the head, which is

generated from the MRI segmentation, and results in anatomically accurate

models. The BEM model, on the other hand, relies on the creation of three

BEM surfaces (inner skull, outer skull, and skin) and thus includes less detailed

segmentations in the model.

FEM

A finite element method (FEM) head model was constructed for each subject

in Brainstorm (Tadel et al., 2011), which is documented and freely available

for download online under the GNU general public license. In the first step,

the tetrahedral FEM meshes were generated using the SimNIBS-charm pipeline
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(Puonti et al., 2020). The MRI data was segmented into nine different tissue

types: white matter, gray matter, CSF, compact bone, spongy bone, scalp, eyes,

blood and muscle, after which the meshes representing the geometry of the

head were created. Equivalent current dipoles were then distributed within

the grey matter. The dipoles were spaced approximately 3 mm apart, resulting

in a dense and uniform grid of dipoles throughout the cortical surface. The

forward model was subsequently generated from the obtained mesh using the

DUNEuro-FEM computation within Brainstorm (Medani et al., 2023).

Two different forward models were created based on the FEM meshes. In the

first model, the conductivity values for the different tissue types were based on

the weighted average means from the meta-analysis by McCann et al. (2019):

0.22 S/m for white matter, 0.47 S/m for grey matter, 1.71 S/m for the CSF,

0.006 S/m for the compact bone and 0.048 S/m for the spongiform bone, 0.41

S/m for the scalp, 0.33 S/m for the eyes, 0.57 S/m for blood and finally 0.32

S/m for the muscle layer. In the second model, the default conductivity val-

ues as proposed by Brainstorm were used: 0.14 S/m for white matter, 0.33

S/m for grey matter, 1.79 S/m for the CSF, 0.008 S/m for the compact bone

and 0.025 S/m for the spongiform bone, 0.43 S/m for the scalp, 0.33 S/m
for the eyes, 0.33 S/m for blood and 0.33 S/m for the muscle layer (Vorwerk

et al., 2014). By including two models with different conductivity values, it is

possible to investigate the effect of using slightly deviant conductivities on the

reconstructions.

In addition to individual head models, the same approach was applied to the

average MRI, fsaverage, available in Freesurfer. This template brain is based on

a combination of 40 MRI scans of real brains. More information on the creation

of the fsaverage template and details about the subjects used in this template

can be found in the official Freesurfer documentation (Fischl, 2012).

BEM

For each individual, a three-layered head model was created using Freesurfer

6.0.1 and MNE-python (Fischl, 2012; Gramfort et al., 2013). The inner skull,

outer skull and outer skin surfaces were obtained from the dataset and then

used as boundaries for the different compartments, assigning default electrical

conductivity values to the scalp (0.33 S/m), skull (0.006 S/m) and brain (0.33

S/m) compartments of the head model. The same equivalent current dipole

locations as used in the FEM models were used here, i.e. the dipoles were

distributed in the grey matter with a spacing of 3 mm. Finally, the boundary
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element method (BEM) was used to obtain the EEG leadfield matrix. As before,

this approach was also applied to the average MRI, fsaverage, to obtain the

leadfield matrix for the average head model.

7.2.3 ERP Preprocessing

The high-density EEG data recorded during the face recognition task was

processed using the MNE-python library (Gramfort et al., 2013). The data were

first downsampled to 250 Hz and bad electrode channels were automatically

detected using the different noisy channel detection methods in the PREP

pipeline (Bigdely-Shamlo et al., 2015). The electrodes indicated as bad were

excluded from further analysis. The data was band-pass filtered using a zero

phase shift Butterworth filter with half-amplitude cut-off frequencies of 0.3

Hz and 30 Hz and a 12 dB/octave slope. The power line noise was then

removed using a 50 Hz notch filter. Independent component analysis was

applied for eye blink and horizontal eye movement artefact rejection. In

case bad electrode channels were identified and excluded in the first step,

these channels were interpolated at this stage. Subsequently, data were

re-referenced to an average common reference. In the next step, the data was

segmented into epochs going from 100 ms before the stimulus onset to 500

ms after. Finally, epochs containing artefacts were rejected using the following

criteria: 75 µV maximum gradient criterion; 100 µV minimal/maximal

amplitude criterion; 150 µV maximum difference criterion; 0.5 µV low activity

criterion during 100 ms.

7.2.4 Simulation

Simple ERP waveforms were simulated using half-cycle sinusoidal waveforms

to allow the objective quantification of the localization error associated with

the subject-specific and average head models. This was done by simulating

activity in different regions of the brain, including noise, and projecting this

activity to the scalp surface using the individual head models. For each subject,

80 epochs of 1000 ms were simulated, half of which contained the ERP wave-

form as well as pink noise, while only the noise was included in the other half.

In each epoch, a pre-stimulus window of 200 ms was considered. By including

epochs which only contain noise, and thus simulating two different conditions,

it is possible to investigate the difference between the localizations obtained

for both conditions. This approach helps in reducing systematic biases in the
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source reconstruction process. If certain types of noise or non-specific activity

consistently affect the EEG data, this might lead to similar localization errors

across both conditions. By subtracting one condition from another, these sys-

tematic errors can be reduced, leading to a more accurate estimate of the neural

sources.

Different networks responsible for generating ERP activity were simulated,

each involving four symmetrically active brain regions, with two regions in each

hemisphere. These regions were identified using the Destrieux cortical atlas

parcellations. For each region of interest (ROI), the center of the parcellation

was determined, and dipoles within a 10 mm radius around this center were

selected. The ERP activity in these selected dipoles was simulated as a 5 Hz

half-cycle sinusoidal waveform lasting 100 ms. A small delay was introduced

across the ROIs: the ERP waveform began in the first ROI at 100 ms post-

stimulus, followed by the second ROI 10 ms later, and then in the third and

fourth ROIs at 120 ms. Additionally, the signal amplitude in the third and

fourth ROIs was reduced to 80% of the amplitude in the first two ROIs. Table

1 provides an overview of the different ROIs selected for each network. The

obtained ERP waveforms and the simulated ROIs can be found in respectively

Figure 7.2 and the first column of Figure 7.3. These networks were designed

to investigate localization errors across different ROIs, as previous studies have

shown that localization errors are typically larger for temporal sources (Cuffin

et al., 2001; Kobayashi et al., 2003). To simulate realistic conditions, pink

noise was added to all epochs. The noise amplitude was adjusted to achieve

different signal-to-noise ratios (SNRs) ranging from -20 dB to +0 dB. The SNR

was defined as the ratio of the peak amplitude of the ERP component to the

peak-to-peak amplitude measured within the pre-stimulus window. This SNR-

range was chosen based on the VEPCON dataset, where an SNR of about -10

dB was observed for the N170 component.

After creating the simulated activity in source space, the source time series

were projected to the scalp by applying the subject-specific FEM forward model

created using the individual MRI for each subject and using the conductivity

values based on the meta-analysis by McCann et al. (2019). This step results

in individual epochs in sensor space, or thus the simulated EEG data.

7.2.5 Brain Activity Reconstruction

For the reconstruction of the brain activity, the MNE-python implementation

of the exact Low-Resolution Tomography (eLORETA) inverse method was used
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Table 7.1. Overview of the different ROIs used for the simulation of the net-
works. lh: left hemisphere, rh: right hemisphere

Network ROI 1 ROI 2 ROI 3 ROI 4

Temporo-Occipital
network

Occipital Pole (lh) Occipital Pole (rh) Inferior Temporal Sulcus
(lh)

Inferior Temporal Sulcus
(rh)

Fronto-Parietal
network

Inferior Frontal Gyrus,
pars opercularis (rh)

Inferior Frontal Gyrus,
pars opercularis (lh)

Supramarginal gyrus (lh) Supramarginal gyrus (rh)

Fronto-Occipital
network

Occipital Pole (lh) Occipital Pole (rh) Inferior Frontal Gyrus,
pars opercularis (rh)

Inferior Frontal Gyrus,
pars opercularis (lh)

Temporo-Parietal
network

Inferior Temporal Sulcus
(lh)

Inferior Temporal Sulcus
(rh)

Supramarginal gyrus (lh) Supramarginal gyrus (rh)

(Pascual-Marqui et al., 2011). The source reconstruction was done for each

epoch separately, using both the subject-specific head models and the average

head models that were previously constructed using the three different mod-

elling pipelines. Noise pre-whitening of the leadfield matrix was applied using

the noise covariance matrix before calculating the inverse solution. Next, the

absolute magnitude of the dipoles or the current source density (CSD) was cal-

culated, disregarding the orientation information of the dipoles in subsequent

analyses. In a final step, for each subject, each condition and for each head

model, the average response was calculated. In the case of the simulated data,

an evoked response was obtained for the ERP and the noise condition for each

subject and both the subject-specific and the average head models, while for

the experimental data, an evoked response in source space to the faces and to

the scrambled images was obtained, again for each subject and for both the

subject-specific and the average head models.

7.2.6 Evaluation of the Source Reconstruction

Simulated Data

Different aspects are taken into account in the evaluation of the source recon-

struction: the correspondence between the obtained sources and the simulated

sources, the localization error and the spatial dispersion of these reconstructed

sources, and the correlation between the originally simulated activity and the

reconstructed activity.

For each subject, the difference in source space activity between the ERP and

the noise condition is calculated, after which the data is averaged over the time

window of interest, in this case from 100 ms to 220 ms post-stimulus. The

data is then thresholded so that only the 5% strongest differences between the
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ERP and noise conditions remain, after which the remaining active dipoles are

grouped into potential clusters based on the spatial adjacency. Two dipoles are

considered to be adjacent if the distance between both dipoles is smaller than

5 mm. Finally, only clusters containing at least five dipoles are retained.

For each of the obtained dipole clusters, the distance between the centre of

the cluster and the centre of the simulated ROIs is calculated. Each ROI for

which at least one reconstructed cluster is found within a 3 cm distance is con-

sidered a true positive (TP), while ROIs without a cluster within this distance

are considered false negatives (FN). Similarly, clusters that are not within a 3

cm distance of a simulated ROI are annotated as false positives (FP). Based on

this classification of the clusters, the sensitivity and the precision of the local-

ization are then calculated as respectively the ratio of the number of TPs over

the sum of the TPs and the FNs and the ratio of the number of TPs over the sum

of the TPs and FPs. These measures are used to quantify the correctness of the

reconstructed activity. To clarify these metrics further, a figure illustrating the

calculation of sensitivity and precision is provided (Figure 7.1). As the maxi-

mal distance is an important parameter, also the effect of this parameter was

investigated by including the results of using a maximal distance of 1 cm and

5 cm in the appendix.

ROI 1

ROI 2

REC 1

REC 2

REC 3

REC 5

Max distance

Number of ROIs = 3
Number of reconstructed 
clusters = 5

True Positive (TP) = 2
for ROI 1 and ROI 2
False Positive (FP) = 2
REC 4 and REC 5
False Negative (FN) = 1
for ROI 3

Sensitivity = TP / (TP + FN)
Precision = TP / (TP + FP)ROI 3

REC 4

Figure 7.1. Illustration of the calculation of sensitivity and precision of the
source reconstructions for the simulated data. True positives (TPs) are defined
as reconstructed clusters within a 3 cm distance from the center of the simulated
ROIs, while false negatives (FNs) are ROIs without a nearby cluster, and false
positives (FPs) are clusters not within 3 cm of any ROI. Sensitivity is calculated
as the ratio of TPs to the sum of TPs and FNs, and precision is calculated as the
ratio of TPs to the sum of TPs and FPs.

For the calculation of the localization error and the spatial dispersion, only

the true positive ROIs are taken into account. The localization error is calcu-
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lated as the Euclidean distance between the centre of the simulated ROI and the

reconstructed cluster. When more than one cluster is within the 3 cm distance

of the ROI, the average of the localization errors is taken into account. The spa-

tial dispersion, on the other hand, is calculated as the difference between the

total volume of all reconstructed clusters within the 3 cm distance of the ROI

and the total volume of the ROI. This measure is then normalized by dividing

by the total volume of the simulated ROI to take into account differences in the

dispersion of the original activity.

VEPCON data

As no ground truth data exists for the sources underlying the signals measured

during the face task, the evaluation of the reconstructed activity can only be

evaluated descriptively. One of the ERP components elicited by the faces task

that is used in the VEPCON dataset is the N170. This component is larger

when the eliciting stimulus is a face compared to when the stimulus is a non-

face object, such as a scrambled face or a car (Rossion and Jacques, 2012).

Many researchers have investigated the sources underlying this component.

Using a dipolar fit method, Taylor et al. (2001) have located the N170 in the

middle part of the fusiform gyrus. This localization corresponds to the fusiform

face area that was identified in fMRI studies (Haxby et al., 2000), as well as

in intracranial EEG studies (Engell and McCarthy, 2014). Similarly, Henson

et al. (2007) found differences between the localization of faces and scrambled

faces in the anterior fusiform gyrus, with a strong dominance towards the right

hemisphere .

In this work, each of the individual epochs will be source-localized using both

the subject-specific head models and the average head models. The obtained

localization will then be averaged for each condition dataset and, in the case the

subject-specific head model was used, the obtained results will be morphed to

the average head model after which averaging can be applied over all subjects.

The 5% dipoles with the strongest difference in activation between the two

conditions within a time window of 150 ms to 170 ms post-stimulus will then

be visualized and compared to the regions identified in the literature.
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7.3 Results

7.3.1 Simulated data

The simulated EEG data of the different networks was source localized for each

subject using both the subject-specific and the template head models, using both

of the FEM models and a BEM model for the reconstruction. Figure 7.2 shows

the simulated data at the sensor level. In the figure, the symmetric nature of the

simulated data is visible. While in most networks the activity of the different

ROIs of a single hemisphere is blended at the surface, for the fronto-occipital

network a clear distinction is visible between the frontal and the occipital sub-

components of the simulated ERP waveform, both when looking at the topog-

raphy of the obtained signal and when inspecting the waveform. This effect

might facilitate the source localization compared to the other networks, where

the activity from the different sources is less separated spatially at the scalp

level.

In Figure 7.3, both the originally simulated data in source space and the re-

constructed activity averaged over all subjects for the different networks for

an SNR level of -10dB are shown. To reduce systematic biases in the source

reconstruction, the difference between the reconstructed activity for the ERP

and noise conditions is shown. As averaging over subject-specific anatomies

is not possible, the source activity of both the original simulated data and the

subject-specific reconstruction was morphed into the anatomy of the average

head model before averaging. The figure illustrates the differences between the

obtained reconstruction when using the different models. The results obtained

with the two FEM models, constructed using different conductivity values, are

very similar for most of the networks. While differences in the intensity of the

activity can be observed, the location of the activity averaged over all subjects is

very similar when using the FEM models with different conductivities. Looking

at the different networks, the figures show that the location of the ROI influ-

ences on the accuracy of the localization. For the temporo-parietal network,

for example, the activity in the temporal lobes is not reconstructed using the

subject-specific FEM-based models, while it is clearly present for the temporo-

occipital network. The differences between the subject-specific reconstructions

and the template reconstructions illustrate that for both FEM approaches bet-

ter results are obtained using the subject-specific reconstructions. It is clear

that while most simulated are reconstructed, i.e. taking into account some
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mislocalizations, also many false positive clusters are reconstructed. Finally,

the figure shows that the results obtained using the BEM models perform quite

poorly. Limited differences are found between the subject-specific reconstruc-

tions and the template reconstructions in this case in terms of the location of

the reconstructed activity. Upward mislocalizations seem to be present for all

of the different networks when using BEM models. The occipital sources are

localized more towards the superior parietal lobe, for example, while no clear

reconstruction can be found for the temporal ROIs. Finally, the figure also

shows that only for the fronto-occipital network two distinct ROIs are local-

ized per hemisphere, while only a single spread-out ROIs is reconstructed per

hemisphere for the other networks.

Figure 7.2. Overview of the simulated data at sensor level averaged over all
subjects. The simulated epochs in the ERP condition at SNR = -10dB are aver-
aged.

The quantification results of the localization errors associated with the local-

izations for the individual subjects are shown in Figure 7.4. In this evaluation of

the source reconstructions, different aspects were taken into account: the sen-

sitivity and the precision of the obtained sources, the localization error and the

spatial dispersion of these reconstructed sources. For each of these measures,

the difference between using the subject-specific and the average head models

was investigated, as well as the differences between the different modelling

approaches. Clusters of activity were considered correctly localized when the

difference between the centre of the reconstructed cluster was within 3 cm of

the centre of the simulated ROIs. As this maximal distance is an important pa-

rameter, the results when using a maximal distance of both 1 cm and 5 cm were



7.
The

effects
of

tem
plate

head
m

odels
on

ER
P

source
localization

193

Figure 7.3. Overview of the original simulated data and the reconstructed activity averaged over all subjects for the different networks
at SNR = -10dB. For the reconstructed activity, the difference between the ERP- and the noise-conditions is shown. In the case of the
simulations and the subject-specific reconstructions, the source activity was morphed to the anatomy of the average head model before
averaging.
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Figure 7.3. (Continued) Overview of the original simulated data and the reconstructed activity averaged over all subjects for the
different networks at SNR = -10dB. For the reconstructed activity, the difference between the ERP- and the noise-conditions is shown.
In the case of the simulations and the subject-specific reconstructions, the source activity was morphed to the anatomy of the average
head model before averaging.
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included in the appendix. Looking at the different FEM models, higher sensitiv-

ity and precision, as well as smaller localization errors were found when using

the subject-specific head models compared to the template head model. These

trends were found for the different simulated networks, however, some indi-

vidual differences were observed. For most subject-specific reconstructions, a

sensitivity value of about 0.75 is achieved, meaning that one out of the four sim-

ulated ROIs was not reconstructed for most subjects. The mean sensitivity ob-

tained using the template-based head models is lower, around 0.5, illustrating

that only two ROIs are correctly reconstructed. The sensitivity of the template-

based reconstructions however increases for all models when increasing the

maximal distance to consider reconstructed activity to 50 mm, indicating that

the ROIs are reconstructed with a large localization error. The precision of the

localizations is quite high for all of the subject-specific reconstructions, for all

networks, indicating that only a limited number of false positive reconstructed

sources were found. Very low precision values are found however when using

the template head models. This result again illustrates that while the different

ROIs are reconstructed, the localization error associated with them is too large

to consider them as true positives.

Only considering the clusters located closely to the simulated ROIs, the lo-

calization error and the spatial dispersion were investigated. These results are

shown in respectively the third and the fourth row of Figure 7.4. It is clear

that for both FEM-based head modelling approaches, the localization error is

smaller for subject-specific reconstructions compared to the template recon-

structions. Surprisingly, higher spatial dispersion is found when using subject-

specific headmodels compared to using the template head models, meaning

that larger volumes of reconstructed activity are found compared to the simu-

lated data.

Looking at the BEM models, higher sensitivity values are found when using

the template head models compared to the subject-specific head models, while

the opposite effect is found for the precision. A large range of precision values

is found when using the subject-specific head models, indicating that in this

case, the number of false positive reconstructed clusters is very dependent on

the individual subject. As expected based on the results shown in Figure 7.3,

similar localization errors are found for the subject-specific and the template-

based BEM models. Interesting to note is that the quantitative results for all

template-based head models in terms of sensitivity, precision, localization error

and spatial dispersion are similar for the two FEM models and the BEM model,
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Figure 7.4. Results of the quantification of the localization errors for the SNR
= -10dB. In this evaluation the sensitivity and the precision of the obtained
sources, the localization error and the spatial dispersion of these reconstructed
sources were taken into account. For each of these measures, the difference be-
tween using the subject-specific and average head models is shown for each of
the different modelling approaches. Clusters of activity were considered to be
correctly localized when the difference between the center of the reconstructed
cluster was within 3 cm of the center of the simulated ROIs.

while different errors are made in terms of the location of the reconstructed

sources (cf. Figure 7.3).

Finally, also the effect of the SNR of the simulated data on the reconstructions

is quantified in Figure 7.5. In this figure, the results obtained for the different

networks are aggregated. As before, the results when using a maximal distance

of both 1 cm and 5 cm are included in the supplementary materials. The figures

indicate only a limited effect of the SNR for most measures. A slight increase

in sensitivity with increasing SNR can be found for the subject-specific FEM
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models, as the boxplots indicate that there are fewer subjects for whom only

one or two of the simulated ROIs are reconstructed. Also, an increasing trend

with increasing SNR was found when looking at the precision. Finally, a limited

improvement can be found in the localization error when increasing the SNR

from -20 dB to -10 dB. Further increase of the SNR has almost no effect. The

most prominent conclusions that can be drawn from this figure, however, are

again that for both FEM-based modelling approaches, the subject-specific head

models perform better than the template-based methods in terms of sensitivity,

precision and localization errors, while the BEM-based modelling approaches

perform worse in the case of subject-specific models but perform similarly when

using template-based models compared to the FEM-models.

7.3.2 Real task data

The evoked potentials averaged over all subjects are shown in Figure 7.6 both

for the faces and the scrambled faces. A clear difference between both con-

ditions was found between 150 ms and 170 ms after the stimulus onset. The

N170 component is thus clearly present in the data when faces were presented

to the subjects, while it is not for the scrambled faces. Figure 7.7 shows the dif-

ference of the obtained reconstructions between both conditions averaged over

all subjects using both the subject-specific head models and the template head

model. In the first column of the figure the expected reconstructed area, i.e. the

fusiform area, is shown. The figures show that in the case of the subject-specific

FEM head models, most activity is found in the left and right fusiform area while

using the subject-specific BEM model, most activity is found more occipitally.

When using the template head model, on the other hand, the reconstructed

activity is more spread out compared to the subject-specific reconstructions. In

the case of the FEM-models, activity is found not only in the fusiform area,

but also at the frontal and temporal poles as well as in occipital lobe. In case

of the template BEM models, the largest differences in activity between both

conditions are again found occipitally.

7.4 Discussion

The goal of this work was to investigate the effect of using template head mod-

els instead of subject-specific head models when localizing ERPs and to quan-

tify the localization error associated with this simplification. To this end, both

simulated data and real task data were used. Different activity networks were
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Figure 7.5. Results of the quantification of the localization errors. In this eval-
uation the sensitivity and the precision of the obtained sources, the localization
error and the spatial dispersion of these reconstructed sources were taken into
account. For each of these measures, the effect of both the SNR of the simu-
lated data and the difference between using the subject-specific and average
head models is shown for each of the different modelling approaches. Clus-
ters of activity were considered to be correctly localized when the difference
between the center of the reconstructed cluster was within 3 cm of the center
of the simulated ROIs.

simulated, each with four ROIs and specific SNRs using subject-specific head

models created using FEM. We found that subject-specific head models per-

form significantly better than template head models, and that the modelling

approach (FEM or BEM) only has a limited influence on the accuracy of the

results when using template head models.
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Figure 7.6. Visualization of the evoked potentials averaged over all subjects
for both the faces and scrambled faces conditions of the face-detection task in
the VEPCON dataset. Also the topography at 160 ms post-stimulus is indicated,
as this is considered the peak of the N170 component in the faces condition.
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Figure 7.7. Illustration of the fusiform area and the difference in the recon-
structed activity between both conditions for the N170 component averaged
over all subjects.

7.4.1 Simulated data

Effect of template head model vs. subject-specific models

Looking at the simulations, the results indicate there is a significant decrease

in both the sensitivity and precision when using template head models instead

of subject-specific head models when using FEM-based head models. Interest-

ingly, when using BEM models the sensitivity is better when using the template

head model. Also, clear differences in the localization error were found be-

tween the subject-specific and the template FEM models, as values between

±5-20 mm are found using the subject-specific headmodels compared to local-

ization errors between ±15-30 mm are found for the template-based models.

These results correspond with our hypothesis and with results found in litera-

ture, as many researchers report that the ideal head model for the most accurate

reconstruction of the neural activity is a realistic head model created using the

subject’s individual MRI (Akalin Acar and Makeig, 2013; Conte and Richards,

2021). However, it is also important to note that, as subject-specific models
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were used in the simulations, this is also the case for which the best results

were expected.

Looking at the results at the group level (Figure 7.3), it is clear that not all

simulated ROIs are present, especially when using template-based models, and

that a localization error is associated with other reconstructed ROIs. As in most

ERP research, the MRI data of individual subjects is not available, it is important

to take these limitations into account in the interpretation of obtained results.

In cases where no subject-specific data is available, it might be helpful to use

a hypothesis-driven approach to investigate the cortical generators of a certain

ERP component. This approach can help in identifying FPs and possible FNs in

the reconstructed sources.

Effect of using different conductivity values

As mentioned in the introduction, studies have shown that accurate electrical

conductivity values for the different tissue types included in the head model are

important for accurate source localization of the EEG signals (Vorwerk et al.,

2019). Furthermore, McCann et al. (2019) have shown that the electrical con-

ductivities assumed for each compartment likely vary between individuals. As

the measurement of the electrical conductivities of the different tissue types

in individuals is not feasible, the conductivity values used in the created head

models will thus always be (slightly) off. To investigate the effect of this error

on the localization accuracy, two different FEM models with different conduc-

tivity values assigned to the tissues were used in this work. Differences were

found in all of the measures used in the quantification of the results with the

models using the ’true’ conductivities giving better results. These found differ-

ences are however small, both when the subject-specific and the template-based

head models are used.

Furthermore, it should be noted that the subject-specific FEM model using the

’true’ conductivities was also used in the simulation of the data. This model was

thus also expected to yield the best outcome, as an identical transformation was

applied to reconstruct the data. Differences between the simulated data and

the reconstructed activity in this case can thus be attributed to the assumptions

made by the inverse solutions, as this is a non-unique problem. These results

thus indicate that, while it is important to use the most accurate conductivity

values possible, the effect of deviations in these values is much smaller than the

effect of using subject-specific vs. template-based head models.
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Effect of FEM vs. BEM models

In this work, different head modelling approaches were used for the reconstruc-

tion of the simulated data, namely two FEM models with different conductivity

values and a BEM model. As discussed in the previous section, the effect of

using different conductivity values for the different tissue types in the FEM

models is more limited than the use of subject-specific head models. However,

much larger differences are found between the results obtained using the FEM-

based head models and the results using the BEM-based models. Looking at

the subject-specific reconstruction, the FEM-based models perform better than

the BEM-based models across all measures. This result was expected, as BEM

models are much less accurate than the FEM-based models that were used be-

cause they are unable to take into account cerebrospinal fluid (CSF). Also the

influence of including more head tissue compartments in the model has been

studied extensively before (Vorwerk et al., 2014; Neugebauer et al., 2017).

However, again it is also important to note that, as FEM models were used in

the simulations, this is also the case for which the best results were expected.

It is however interesting to note that the quantitative results obtained us-

ing the template-based head models are similar across the different modelling

approaches. For some networks, the template-based BEM models even per-

form slightly better than the template-based FEM models in terms of sensitiv-

ity. These quantitative results were not what was expected based on the results

that were plotted at the group level (Figure 7.3), where the localization errors

seem larger for the template-based BEM models compared to the FEM-models.

Combining these results indicates that the localization errors made using the

template-BEM model are less systematic than those made using the template-

FEM models, i.e. the localizations and the associated errors that are obtained

at the individual level are more random than in the case of the FEM models.

This will cause some of the reconstructed ROIs to cancel out at the group level,

seemingly indicating that these ROIs were not reconstructed using these mod-

els.

Effect of the Signal-to-Noise Ratio

While the effect of the SNR is limited in this simulated dataset, some differ-

ences are still observed between the lowest simulated SNR, -20 dB, and the

other SNR levels. For the subject-specific FEM models, for example, lower pre-

cision, higher localization errors and less spatial dispersion are found for the
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lowest SNR level compared to the others, indicating that more FPs are found

for the lower SNRs. It is important to take these results into account when in-

terpreting findings obtained from real data. In the case of low SNRs, multiple

sources may be reconstructed which are not related to the true underlying ac-

tivity of the ERP, even after averaging over all subjects (cf. Figures C3 to C6 in

appendix). Another possibility is that due to the larger localization errors and

smaller reconstructed volumes, the obtained sources are not pertained after av-

eraging over all subjects, giving the impression that this source is not present in

the data. The differences between the averaged results and the quantifications

illustrate the importance of also looking at the results of the reconstruction at

the level of the individual subject. Furthermore, these results again illustrate

that using a hypothesis-driven approach for interpreting the findings can help.

Other methods to increase the SNR of the data might be useful, such as using

averaged data instead of individual trials when possible.

However, more and more interest is found in functional connectivity analysis

in source space to investigate the networks underlying brain activity. As many

functional connectivity measures focus on spectral features of the data, in this

case, a priori averaging of the epochs is not possible, as high-frequency infor-

mation would be averaged out in the data, as well as time- but not phase-locked

activity (Simoes et al., 2003). While researchers have already investigated the

influence of the head model in terms of neglecting white/grey matter distinc-

tion or CSF on EEG source connectivity analyses (Cho et al., 2015), this work

shows that also the SNR of the data should be taken into account.

Effect of different networks

Finally, the results show some differences in localization performance for the

different networks that were simulated. Looking at the averaged reconstruc-

tions, it is clear that not all ROIs were reconstructed for the different net-

works. When using the template-based FEM models for the reconstruction

of the fronto-parietal and the fronto-occipital networks, no frontal ROIS were

found in the right hemisphere in the averaged reconstructions. However, the

quantitative results found for these networks indicate mean sensitivity values

of 0.75. One possible explanation for the absence of the frontal sources could

be the reduced amplitude of the simulated signals in these ROIs compared to

the signals in the respectively parietal and occipital sources.

Looking at the results obtained using the BEM-based head models, large lo-

calization errors were found across the different networks. For all networks
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except the fronto-occipital network, the different ROIs appear to have been lo-

calized as single clusters per hemisphere, indicating that the BEM-based models

have more difficulty separating sources of activity. This seems probable, as in

the simulated ERP-data at the sensor level, also the fronto-occipital network is

the only network in which a clear separation of the underlying sources could

be seen in the topography and the waveform of the obtained ERP. Furthermore,

for the networks including occipital sources, an upward displacement of these

sources could be seen when using the BEM-based head models. Similar mis-

localization results were also found by Huang et al. (2016) and Akalin Acar

and Makeig (2013), who both identified larger localization errors for occipital

sources when using less accurate head models. Multiple explanations can be

found in literature for these errors in the localization of occipital sources. The

occipital lobes are complex structures with many folds and curves with signif-

icant inter-subject variability. Using less accurate head models in this case can

thus increase the mislocalization of the sources. In addition to this, also the oc-

cipital bone is in general thicker with again significant inter-subject variability.

Modelling this using a non-accurate head model will again lead to larger er-

rors in the head model, reducing the localization precision (Michel and Brunet,

2019).

A limitation of this study was that only a limited number of ROIs were in-

vestigated. As it was shown that the underlying sources influence the accuracy

of the reconstruction, in future work, a more generalized approach should be

developed to investigate the effect of different networks more systematically.

While such approaches have already been proposed for focal sources (Samuels-

son et al., 2021), this problem is much more challenging when considering si-

multaneous activations and remains, to the best of our knowledge, currently

unsolved.

7.4.2 Real task data

Localization of the high-density EEG data in the VEPCON dataset, recorded

while presenting faces and scrambled faces to subjects, resulted in different

sources using the subject-specific head models and the average head model.

Using the subject-specific FEM head models, the N170 component was mainly

localized to the left and right fusiform areas. These results correspond to

the sources found in other studies (Rossion and Jacques, 2012), both using

EEG/MEG data (Henson et al., 2007) and fMRI (Haxby et al., 2000). While the

fusiform area is considered the core generator of the N170, there is evidence
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suggesting that also the prefrontal cortex plays a role in the processing of faces

and that this region contributes to the top-down modulation of face processing

(Kornblith and Tsao, 2017; Gazzaniga et al., 2009). There was however no

activation found in this region in this work.

Looking at the results obtained using the template FEM models, again the

left and right fusiform areas were found as generating sources of the N170.

However in this case, also multiple other sources were found, such as the frontal

and temporal pole and the occipital lobe. Finally, using both the subject-specific

and the template-based BEM models, the N170 component was localized more

in the occipital lobe with the activity extending towards the posterior inferior

temporal lobe, rather than in the fusiform area. As the results obtained using

the subject-specific FEM head models correspond well to results reported in the

literature, these results indicate that while the template-based head model can

be used for the localization of ERP sources, interpretations should be done with

care, as mislocalizations of the sources and localization errors can be present.

7.5 Conclusion

In this study, the effect of using template head models instead of subject-specific

head models was investigated in localizing event-related potentials (ERPs) and

in quantifying the associated localization error using both simulated and real

data. As expected, the results indicated that subject-specific head models out-

perform template head models in terms of localization accuracy. Using template

head models also increases both false positives and false negatives in source re-

constructions. Also the effect of using more accurate FEM models compared

to simple BEM models was investigated. As found in previous studies, more

anatomically accurate head models result in better localization performance.

When template-based head models are used however, similar quantitative re-

sults in terms of sensitivity, precision, localization error and spatial dispersion

were found for the FEM- and BEM-based head models, even though the pat-

terns of mislocalizations are different. Furthermore, the role of the SNR on the

localization performance was investigated, with the results showing that low

SNRs may lead to larger errors. Finally, the influence of the simulated network

also has a significant effect on the accuracy of the source localization, with the

results indicating that some regions, such as the temporal and occipital lobes

are more prone to mislocalization when using template head models.
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While template head models offer a practical alternative for ERP source local-

ization when no subject-specific MRI data is available, their limitations should

be considered, and the results should be interpreted with caution. A priori

knowledge and hypothesis-driven approaches are crucial for interpreting re-

sults obtained with average head models. Interestingly, however, is that while

creating more accurate and detailed head models is beneficial for the localiza-

tion accuracy when using subject-specific head models, this is not the case for

template head models. As many studies investigating the effect of modelling

approaches for ESI focus on focal sources, it would be beneficial if systematic

approaches to assess the influence of multiple sources on localization accuracy

would become more prominent.





8 | The impact of brain tumors and craniotomy

lesions on scalp ERPs

Abstract

Electroencephalography (EEG) is widely used in both research and clinical set-
tings, yet its accuracy can be significantly impacted by subject-specific anatom-
ical anomalies such as brain lesions and skull defects. This study investigates
the effects of glioma-related brain lesions and craniotomy-induced bone dis-
continuities on scalp-recorded EEG signals. To do this, single- and multi-source
simulations were created using individualized forward models with and with-
out these structural anomalies. We assessed changes in signal amplitude and
topography, and identified the most affected electrodes. Real EEG recordings
were also analyzed to evaluate how these anomalies influence the topography
and source localization of early auditory evoked responses (P1 and N1 ERP
components). Both single- and multi-source simulations showed that the dis-
tortions in the EEG signals depend on the location of the neural source and the
location of the lesion. Electrode-level analyses showed that these distortions
were most pronounced at the electrodes near the bone flap, and thus near the
lesions. Real ERP data supported these findings: a subject with lesions near
the auditory cortex showed notable topographic deviations over time for the P1
and N1 ERP components, while a subject with a frontal lesion showed minimal
changes in the scalp EEG. These results highlight the need to include detailed
brain and skull anatomy in EEG models, especially in studies that track changes
over time in clinical populations.
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8.1 Introduction

Event-Related Potentials (ERPs) are a valuable tool for investigating brain activ-

ity. Recorded using electroencephalography (EEG), they enable researchers to

study neuronal processes underlying cognitive functions with millisecond pre-

cision (Luck, 2014). Due to its excellent temporal resolution and direct link to

neural activity, EEG has played a critical role in advancing our understanding of

cognitive processing. Beyond cognitive neuroscience, EEG is increasingly used

in clinical and translational research for studying neuroplasticity in individuals

with brain damage caused by a stroke or brain tumor.

Neuroplasticity refers to the brain’s ability to reorganize itself in response to

injury, involving structural and functional adaptations that help maintain or re-

store brain functions, such as cognitive and motor functions. In the context of

gliomas, Cirillo et al. (2019) defined neuroplasticity as "the biological dynamic

ability of the central nervous system to reorganize itself in response to injuries."

Understanding neuroplasticity is essential for optimizing treatment strategies,

including neurosurgical interventions, and for tracking recovery and functional

reorganization over time. Given its excellent temporal resolution and sensi-

tivity to dynamic changes in neural activity, EEG is well-suited for studying

neuroplasticity. Unlike fMRI, which primarily reflects slow hemodynamic re-

sponses, EEG captures rapid changes in brain function and can provide insights

into functional reorganization. Moreover, EEG’s non-invasive nature makes it

particularly useful for longitudinal studies that monitor neuroplasticity over

extended periods.

For patients with gliomas located in eloquent brain areas, i.e. regions respon-

sible for critical functions such as language, motor control, and sensory process-

ing, neurosurgical approaches aim to maximize tumour resection while preserv-

ing critical functions, such as language processing. Awake craniotomy with in-

traoperative direct electrical stimulation (DES) has become the gold standard

for glioma resection in these cases. This technique allows functional mapping

of the brain to identify and spare essential cortical and subcortical structures,

thereby reducing the risk of postoperative neurological deficits (Rahimpour

et al., 2019; Surbeck et al., 2015). Compared to resections performed un-

der general anaesthesia, awake craniotomy has been shown to improve both

the extent of tumour resection and functional outcomes (De Witt Hamer et al.,

2012).



8. The impact of brain tumors and craniotomy lesions on scalp ERPs 209

While these surgical advancements have improved patient outcomes, they

also introduce challenges for EEG research. A craniotomy—the surgical re-

moval of part of the skull—creates structural changes that can significantly

affect EEG recordings. The (temporary) removal of a portion of the skull al-

ters the conductivity profile of the head. Previous research has demonstrated

the importance of accurate head modelling in EEG source reconstruction, par-

ticularly with respect to skull conductivity (Dannhauer et al., 2011; Vorwerk

et al., 2014; Montes-Restrepo et al., 2014). Additionally, studies have shown

that skull defects, such as those resulting from craniotomy or traumatic in-

jury, can distort the measured EEG signals (Flemming et al., 2005). In stroke

patients, Piai et al. (2024) highlighted the impact of cerebrospinal fluid (CSF)-

filled lesions on EEG amplitude and topography, further emphasizing the role

of structural abnormalities in shaping electrophysiological recordings.

Despite growing awareness of these structural influences, the extent to which

lesions caused by gliomas and craniotomies distort EEG/ERP signals remains in-

sufficiently understood. Given that EEG is frequently used to assess neuroplas-

ticity in glioma patients before and after surgery, it is crucial to determine how

these anatomical alterations influence EEG measurements. The present study

aims to quantify the impact of glioma-related lesions and craniotomy-induced

skull defects on EEG, particularly in terms of amplitude (magnitude difference,

MAG%) and topographic distortions (relative difference measure, RDM%). By

simulating EEG signals using different head models, we assess how lesion-

related structural changes influence scalp-level recordings and identify the elec-

trodes most affected by these alterations. We also evaluate if the predictions

based on the simulations correspond to the results found using real EEG data

recorded in an auditory task in two different subjects, one with a lesion near the

left auditory cortex and one with a left frontal lesion. Understanding these ef-

fects is essential for improving the accuracy of EEG-based assessments in glioma

patients and ensuring reliable interpretations of neuroplasticity-related changes

over time.

8.2 Methods

8.2.1 Participants and Data acquisition

For this study, two patients diagnosed with a brain glioma in an eloquent lan-

guage area were recruited from the department of Neurosurgery at the Ghent
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University Hospital in Belgium. The patients were diagnosed by an experi-

enced neurosurgeon and neuroradiologist based on magnetic resonance imag-

ing (MRI) and diffusion tenson imaging (DTI). These images were also used to

establish the tumour location and to assess the subcortical glioma infiltration.

Based on this information, an awake craniotomy with intraoperative language

mapping was selected as part of the course of treatment. Both participants are

Dutch native speakers and were between 40 and 60 years of age at the time

of surgery. This study was approved by the Ghent University Hospital Ethical

Committee (ONZ-2022-0127) and all participants provided informed consent.

Anatomical T1-weighted MRI images were collected for both patients at the

Ghent University Hospital with a 1.5T SIEMENS-MAGNETOM Avanto scanner

both pre- and postoperatively. The preoperative image was taken 1 day before

the surgery, while postoperative images were collected both three and nine

months after the surgery. In Figure 8.1, these images are shown for both pa-

tients, allowing us to evaluate the changes in the brain anomaly over time. In

the pre-op image, the tumor itself is visible, while in the post-op images a lesion

filled with oedema and/or cerebrospinal fluid (CSF) can be seen. At each of

these evaluation moments, also EEG data was recorded for both patients. An

attentive auditory oddball paradigm with phonemic contrasts was used to ob-

tain an electrophysiological language assessment through the recording of the

P300 ERP component. The EEG data was recorded at a sampling rate of 500 Hz

with a 128-channel EasyCap electrode cap using a BrainVision BrainAmp am-

plifier in combination with the BrainVision Recorder software (Brain Products,

Germany). Impedances were kept below 20 kΩ throughout the recording.

8.2.2 MRI processing and head model construction

For both patients, four individual forward models were computed: one for each

of the three time points (T1 – pre-op; T2 – 3 months post; T3 – 9 months post),

and one in which the lesion was not considered, creating a “normal”, refer-

ence brain. The T1-weighted MRI images at the different evaluation moments

were used to create three finite element method (FEM) head models for each

patient. In the first step, the SimNIBS-charm pipeline (Saturnino et al., 2019)

as implemented in the Brainstorm toolbox (Tadel et al., 2011) was used to

segment the MRI images into nine different tissue types: white matter, grey

matter, CSF, compact bone, spongy bone, scalp, eyes, blood and muscle. As this

tool is unable to segment other tissue types, manual segmentations of the tu-

mour (preop), and oedematous tissue, CSF, titanium fixtures and the bone flap
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Figure 8.1. Multislice images of the brain tumours and post-surgery lesions on
a structural T1 MRI scan of both subjects.

(postop) were created in ITK-snap (Yushkevich et al., 2006) based on the cor-

responding MRIs. Subsequently, hexahedral volumetric meshes representing

the geometry of the head were created with a resolution of 1 mm3. Conduc-

tivity values were specified for each tissue type based on the weighted average

means from the meta-analysis by McCann et al. (2019): 0.22 S/m for white

matter, 0.47 S/m for grey matter, 1.71 S/m for the CSF, 0.006 S/m for the

compact bone, 0.048 S/m for the spongiform bone, 0.41 S/m for the scalp,

0.33 S/m for the eyes, 0.57 S/m for blood and finally 0.32 S/m for the muscle

layer. For the gliomas, a conductivity value of 0.50 S/m was used based on

values found for low-grade gliomas in the work of Latikka and Eskola (2019),

where the resistivity of different types of human brain tumours was investigated

in vivo. Conductivity values for titanium (2.38×106S/m), oedematous tissue

(0.80 S/m), and the bone flap (0.50 S/m) were determined based on literature

values and physiological reasoning. The conductivity for titanium is consistent

with values reported for commercially pure titanium. A conductivity value of

0.80 S/m was assigned to oedematous tissue, as a physiologically plausible es-

timate lying between the reported values for vasogenic edema (≈0.71S/m) and

interstitial edema (≈2.0S/m) (Lok et al., 2023), under the assumption that the

postoperative edema present in our subjects likely exhibits mixed characteris-

tics of these two types. The conductivity value for the bone flap was obtained

from averaging the conductivities of dominant bone defect constituents during

early bone healing, namely extracellular fluid, hematoma, and cartilage (Verma
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et al., 2022). Equivalent current dipoles were distributed within the grey mat-

ter to create the source model. The dipoles were spaced 3 mm apart, resulting

in a dense and uniform grid of dipoles throughout the cortical surface. The

forward model was subsequently calculated using the finite element method

based on the SimBio software as implemented in the FieldTrip toolbox (Oost-

enveld et al., 2011; Vorwerk et al., 2018). All intermediate steps were visually

inspected to ensure correct tissue segmentations, mesh generations and proper

alignment of the head, source model and electrode positions.

8.2.3 Simulations

Single-source simulations

To examine how individual cortical sources contribute to the scalp EEG signal,

we conducted single-source simulations by systematically activating dipoles

across the cortical surface. Each dipole was assigned unit-amplitude activity.

The forward models, both with (T1, T2, T3) and without (T0) lesions, were

used to project these source activations to the scalp, simulating the resulting

EEG topographies. The single-source simulations provided a baseline reference

for understanding how dipole locations affect EEG scalp distributions. These

simulations also allowed us to establish a controlled dataset for later compar-

isons, particularly in evaluating how lesions influence signal propagation.

Multisource ERP simulations

While single-source simulations provide valuable insight into how anomalies

affect the forward model, they do not capture the complexity of cognitive event-

related potentials (ERPs), which typically involve multiple simultaneously ac-

tive brain regions. Given that cognitive ERPs are commonly the primary focus

when assessing patients after brain surgery, we developed a set of simulations

involving four distinct active cortical regions. The time courses of the differ-

ent regions-of-interest were derived from an auditory oddball paradigm dataset

(Abrahamse et al., 2021) and previously used to generate simulations by Piai

et al. (2024) to study CSF-filled lesion effects. Artifact-free EEG data was seg-

mented into epochs from 300 ms before to 1000 ms after the auditory stimulus

onset. ICA decomposition was applied to all epochs and used to identify four

primary components, assumed to represent cortical source activity from four

different sources. The component time courses were then averaged over tri-
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als for the two different experimental conditions (362 standard and 57 deviant

trials), resulting in four distinct time courses per condition.

Four different dipole configurations were simulated, representing potential

neuronal sources of a cognitive ERP. In the first scenario, dipoles were posi-

tioned in the left superior temporal lobe, the left inferior frontal lobe, and the

left and right supramarginal gyrus (parietal lobe), as indicated in Figure 8.2.

The second scenario maintained the same dipole locations but swapped the

time courses of the first and second dipoles. In the third scenario, we returned

to the first configuration but relocated the left supramarginal gyrus dipole to

the right temporal lobe. Finally, in the fourth scenario, the right supramarginal

gyrus dipole from the third scenario was moved to the right inferior frontal

gyrus, creating a symmetrical dipole distribution. Each dipole was assigned

distinct time courses for two experimental conditions. The simulated activity

was then projected to the scalp using the different forward models, allowing us

to investigate the effects of dipole location and time course variability on the

resulting scalp EEG.

8.2.4 Evaluation of the effect of tumour- and craniotomy-

induced lesions on simulated data

As we were interested in the effect of the tumour- and craniotomy-induced le-

sions on the measured EEG signals, we evaluated the differences in magnitude

and topography of the signals obtained using the forward models that accu-

rately incorporated these lesions and the reference model (T0), in which no

lesions were considered. To quantify these differences, we used the magnitude

difference measure (MAG%) and the relative difference measure (RDM%). The

magnitude difference measure (MAG%) captures variations in overall signal

strength and is defined as

MAG%i = 100 ·
�∥VTi
∥ − ∥VT0

∥
∥VT0
∥

�

(8.1)

where ∥.∥ denotes the Euclidean norm and VTi
represents the (Nx1)-vector

of the EEG signal, with N the number of electrodes, for the model based on

the MRI-scan taken before the operation (T1), three months after the opera-

tion (T2) and nine months after the surgery (T3). A high MAG% indicates a

substantial difference in signal magnitude due to the presence of lesions.
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Figure 8.2. Time courses of the activity for four sources in a cognitive paradigm
with conditions 1 and 2 (taken from an empirical P300 oddball task). Each
set of the standard and deviant dipole activity time courses was assigned to a
dipole, as indicated for scenario 1.

To assess differences in EEG topography, we used the relative difference mea-

sure (RDM%), which is independent of absolute magnitude and quantifies dis-

crepancies in the spatial distribution of EEG signals. It is defined as

RDM%i = 50 ·
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A low RDM% value indicates a similar topographical distribution between

the two models, whereas higher values suggest significant alterations due to

the lesions.

Single-source evaluation

To evaluate the impact of lesions on the measured EEG, we conducted two

analyses: one focusing on how lesion-induced differences in simulated EEG
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signals varied depending on dipole location, and another examining how the

presence of lesions affected each electrode’s sensitivity to brain-wide activity.

In the first analysis, we assessed how lesion-induced differences in simulated

EEG signals varied depending on dipole location. As previously described, we

simulated unit dipole activity at each cortical source, oriented perpendicular

to the cortical surface, and computed the resulting EEG signals for both the

lesion (T1, T2, T3) and no-lesion (T0) models. We then calculated MAG%

and RDM% values at the scalp level for the simulated data of each individ-

ual dipole to quantify changes in signal strength and spatial distribution, re-

spectively. Higher values indicated greater discrepancies between the models,

allowing us to identify the sources in the brain on which the presence of the

lesions had the most significant impact. In addition, to disentangle the influ-

ence of the different types of lesions, we also constructed additional forward

models in which either the tumour lesion or the craniotomy-related bone flap

lesion was omitted. Specifically, when excluding the tumour lesion, the affected

region was modeled as if it consisted of gray matter, based on the tissue seg-

mentations produced by SimNIBS, Similarly, when excluding the bone flap le-

sion, the corresponding region was modeled as compact and spongiform bone,

again following the SimNIBS tissue segmentations. These additional models

were generated for T2 and T3, as those are the only time points where both

lesion types were present, allowing us to assess their individual contributions

to the observed EEG alterations.

While the first evaluation focused on differences per dipole (i.e., across elec-

trodes), the second analysis reversed the perspective to assess lesion-induced

changes per electrode, across all dipoles. For each electrode, we extracted

the corresponding row of the lead field matrix, representing the spatial pat-

tern of contributions from all dipole sources. By computing MAG% and RDM%

across these electrode-specific vectors, we quantified, respectively, changes in

the overall sensitivity and in the spatial distribution of contributing sources to

each electrode. This allowed us to identify electrodes for which the aggregate

cortical input was most altered due to the tumour and craniotomy lesions.

Multisource evaluation

In the evaluation of the multi-source simulations, we first computed the ERP

difference wave between condition 1 and condition 2, averaged between 0.340

s and 0.360 s post-stimulus. Then, as in previous analyses, we calculated the
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MAG% and RDM% for each scenario by comparing simulations with and with-

out modelled lesions.

8.2.5 Evaluation of the tumour- and craniotomy-induced le-

sions on real data

To evaluate the effects of the tumour- and craniotomy-induced lesions on the

measured EEG activity, we focused on the auditory P1 and N1 components that

were obtained from the auditory oddball task with phonemic contrasts. These

early components were selected because they have relatively well-defined and

focal generators in the left and right auditory cortices, making them easier to

localize and interpret compared to later or more distributed ERP components.

For each subject and at each evaluation time point, we assessed the P1 and

N1 responses in terms of amplitude and scalp topography, and compared these

measures to those obtained from a normative dataset of 60 healthy controls.

Additionally, we performed electrical source imaging (ESI) using eLORETA

to estimate the neural generators of the components. We compared source

reconstructions obtained at each time point using both the model including the

lesion (T1, T2, T3) and the one (T0) that did not. To provide a reference for

interpreting patient data, we also estimated the generators of the components

in the healthy control group. This allowed us to assess the impact of lesion

inclusion on source localization accuracy.

The auditory oddball paradigm

In the attentive auditory oddball paradigm designed to elicit the P300 com-

ponent, the stimuli consisted of phonemes that differed only in place of artic-

ulation. The standard stimulus [b@] was presented in 80% of trials, and the

deviant stimulus [g@] in 20% of trials. Both auditory stimuli were 250 ms in

duration.

The paradigm included 160 standard and 40 deviant stimuli, presented in

pseudorandom order with an interstimulus interval (ISI) of 2000 ms, resulting

in a total duration of approximately 8 minutes. Prior to the main task, partici-

pants completed a practice block consisting of 16 standard and 4 deviant trials

to familiarize themselves with the task.

To assess stimulus categorization, participants were instructed to press a but-

ton (Chronos response box, Psychology Software Tools, Pittsburgh, PA, USA)

whenever they detected a deviant stimulus. All stimuli were delivered binau-
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rally at a comfortable listening level via ER1-insert earphones. Stimulus presen-

tation was controlled using E-Prime 3.0 (Psychology Software Tools, Pittsburgh,

PA, USA). To minimize eye movement artifacts, participants were instructed to

focus on a central white fixation cross displayed on a black background through-

out the task.

ERP data processing

The EEG preprocessing was performed in MNE-Python (Gramfort et al.,

2013). Initially, noisy electrode channels were automatically detected based

on four criteria: extreme amplitude deviations, low correlation with other

channels, low predictability from surrounding channels, and the presence of

unusually high-frequency noise (Appelhoff et al., 2022; Bigdely-Shamlo et al.,

2015). Channels identified as bad were excluded from further analysis and

interpolated only after artifact correction had been completed. Continuous

EEG data were bandpass filtered using a zero-phase Butterworth filter with

cut-off frequencies of 0.3 Hz and 30 Hz and a 12 dB/octave slope. Additionally,

a 50 Hz notch filter was applied to remove line noise. To remove ocular

and other stereotypical artifacts, independent component analysis (ICA)

was performed using the FastICA algorithm (Ablin et al., 2018). The data

were then re-referenced to the common average reference. Finally, the EEG

recordings were segmented into 1500 ms epochs, from 300 ms before to 1200

ms after stimulus onset. Baseline correction was applied using the 300 ms

pre-stimulus interval. Trials were excluded based on the following artifact

criteria: a maximum gradient exceeding 75 µV, a peak-to-peak amplitude over

150 µV, amplitudes beyond ±100 µV, or low activity below 0.5 µV sustained

for at least 100 ms.

As we are interested in the P1 and N1 components, which are associated with

auditory processing and are thus elicited in both of the conditions, we averaged

over all trials to obtain the evoked responses (i.e. we did not average separately

for both conditions). To quantify and visualize the P1 and N1 component, we

evaluated the evoked response in a 40 ms time window around the peak at six

frontocentral electrode sites (F3, Fz, F4, C3, Cz, C4). The latency of the peak

was calculated between 70 ms to 110 ms after stimulus onset for the P1 and

between 120 ms and 180 ms post-stimulus onset for the N1 component.
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ERP source reconstruction

Source localization of the evoked responses was performed using the eLORETA

inverse solution as implemented in MNE-Python (Pascual-Marqui et al., 2011).

For each patient and at each evaluation time point, i.e. pre-op (T1), three

months post-op (T2) and nine months post-op (T3), source reconstruction was

conducted twice: once using a head model that included the lesion and once

using a model that did not. This comparison enabled us to assess the effect

of incorporating the lesion into the forward model on the accuracy and spatial

distribution of the estimated sources.

Noise pre-whitening was applied using the noise covariance matrix to sta-

bilize the inverse solution. The resulting source estimates were represented

as the absolute current source density (CSD), computed as the magnitude of

dipole activity, regardless of orientation. This approach ensures that the analy-

ses focused solely on source intensity.

For the normative dataset, no individual anatomical scans were available,

so we used the fsaverage template brain provided by FreeSurfer to construct a

common forward model. Evoked source activity was averaged across all healthy

controls to provide a normative reference for comparison.

8.3 Results

8.3.1 Simulations

Single-source simulations

In Figure 8.3, the MAG% and RDM% values at the scalp level are presented

for the simulated data of each individual dipole in Subject 1, while correspond-

ing figures for Subject 2 can be found in the supplementary materials (Figure

S1). The first row of Figure 8.3 represents a model incorporating all lesions,

including those resulting from tumor resection as well as craniotomy-induced

lesions. The second row isolates the effects of tumor-related lesions, while the

third row focuses solely on the impact of craniotomy-related lesions.

The results indicate that dipoles located near the lesions exhibit the most pro-

nounced differences in both magnitude and topography. However, these effects

are not limited to the immediate vicinity of the lesions but extend across much

of the left hemisphere. This widespread influence appears to be predominantly
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Figure 8.3. The differences in magnitude (left) and topography (right) of the EEG signals generated for each dipole using models with
(T1, T2, T3) and without (T0) lesions.
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driven by craniotomy-related lesions, while the effects of tumor-related lesions

are more localized.

To further investigate how the presence of lesions affected each electrode’s

sensitivity to brain-wide activity, we quantified changes in the overall sensi-

tivity and in the spatial distribution of contributing sources to each electrode.

This was done by calculating MAG%- and RDM%-values for each electrodes

across all dipoles. High MAG% values indicate substantial changes in signal

magnitude at a given electrode, while elevated RDM% values reflect significant

shifts in the distribution of cortical sources influencing that electrode. These

results are shown in Figure 8.4. The electrodes exhibiting the highest changes

are mainly located near the lesion site and demonstrate significant disruption

in sensitivity profiles, with elevated MAG% indicating overall amplitude differ-

ences and increased RDM% reflecting shifts in cortical input patterns.

Notably, both the magnitude and spatial pattern of lesion-induced sensitivity

changes, as captured by MAG% and RDM% values, varied across the different

time point comparisons (T1 vs. T0, T2 vs. T0, and T3 vs. T0). In the pre-

operative phase (T1 vs. T0), changes were minimal and largely restricted to

a small subset of electrodes in close proximity to the tumour site. In contrast,

comparisons at later stages—T2 vs. T0 and T3 vs. T0—revealed more extensive

and topographically coherent patterns of change. In these conditions, elevated

MAG% and RDM% values were concentrated around electrodes along the mar-

gins of the craniotomy site.

Multisource simulations

To investigate the influence of dipole location, time-course, and lesion location

on magnitude and topography differences, multiple multisource simulations

were conducted. Figure 8.5 provides an overview of these simulations, com-

paring the differences observed between the T0 model (without lesions) and

the T1, T2, and T3 models (with lesions). Additionally, it presents the calcu-

lated MAG% and RDM% values for each case.

In the first scenario, the largest discrepancies between EEGs obtained using

the T0 and T1/T2/T3 models were observed at electrodes positioned near the

bone flap. This suggests that lesion-induced effects are predominantly local-

ized. In the second scenario, the time-courses associated with the first two

dipoles were swapped. This alteration led to distinct difference patterns com-

pared to scenario 1, indicating that the time series of dipole activity significantly

influences the results. In the third scenario, a dipole was moved from the left
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Differences in signal MAGNITUDE

Differences in DISTRIBUTION of sources

Figure 8.4. Lesion-induced changes in electrode sensitivity to cortical sources.
MAG% (top) and RDM% (bottom) values are shown for each electrode, quan-
tifying alterations in signal magnitude and spatial distribution of contributing
sources, respectively. The topographic plots visualize the spatial distribution
of sensitivity changes across the scalp. The electrodes marked as dark grey
hexagons indicate electrodes closer than 2 cm to the boneflap
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Figure 8.5. Overview of multisource EEG simulations comparing the T0 model (without lesions) to the T1, T2, and T3 models (with
lesions). The figure displays the differences in the EEG, along with the calculated MAG% and RDM% values for each scenario.
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hemisphere to the right hemisphere. This relocation introduced notable but

localized effects on the recorded EEG, again particularly at electrodes near the

lesion. In the fourth scenario, the observed effects closely resembled those in

scenario 3. When a dipole was shifted within the right hemisphere, the over-

all impact on EEG measurements was relatively minor, suggesting that dipole

movement within the right hemisphere has a limited influence compared to

changes within the left hemisphere. Finally, in the fifth scenario, simulations

were conducted on a different subject while maintaining the same dipole lo-

cations and time courses as in scenario 1. The results revealed similar overall

trends, with the most prominent differences localized around the electrodes

near the bone flap. However, subject-specific variability influenced the magni-

tude of these differences.

8.3.2 Real data

For each patient, real EEG data were recorded during an auditory oddball task.

We analyzed the early auditory components—specifically the P1 and N1—for

both patients and compared them to data from a normative dataset of healthy

controls. The results are presented in Figure 8.6.

Regarding the P1 component, the topography for Subject 1 at T1 closely re-

sembles that of the healthy controls. In contrast, at time points T2 and T3,

an increase in lateralized activity is evident in the electrodes located near the

bone flap. While the healthy controls and recordings at T1 exhibit symmet-

rical activation, T2 and T3 show a pronounced increase in activity in the left

hemisphere, particularly over the electrodes close to the bone flap.

A similar pattern is observed for the N1 component. Across all time points,

a disruption in hemispheric symmetry is present, with the most pronounced

deviations from the normative data again localized to the electrodes near the

tumor site and bone flap lesions. For Subject 2, on the other hand, no clear

disruptions can be found. While the overall amplitude of the components shifts

slightly over time, the topographies remain similar.

Both ERP components were then also source localized to see which sources

are identified (Figure 8.7). For the healthy controls, both the P1 and the N1

were localized to the temporal cortex, as expected from literature (Eggermont

and Ponton, 2002). For both patients and at each evaluation point, the source

localization of the ERP components was performed twice, i.e. once using the

forward models in which the lesions were incorporated and once using the mod-

els without the lesions. The results show that the sources obtained at T1 using
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Figure 8.6. The topographies of the P1 and N1 ERP components of the healthy
controls, and of both patients at the different evaluation moments.

each of the models are very similar. For T2 and T3 however, clear differences

can be found in the obtained localizations, particularly for Subject 1. When not

taking into account the lesions in the forward model, only the sources close to

the left temporal cortex are found, while no activity in the right temporal cor-

tex was identified. In contrast, when the head model accounted for the lesions,

activity was also detected in the contralateral (right) temporal cortex for both

the P1 and N1 components, suggesting that lesion-aware modeling enables a

more complete and accurate reconstruction of bilateral cortical activity.

8.4 Discussion

This study evaluated the impact of glioma-related lesions and craniotomy-

induced skull defects on scalp-recorded EEG signals through individualized

forward modeling. By simulating EEG activity using head models both with

and without these structural abnormalities, we assessed how lesion-induced

changes affect scalp-level recordings and identified the electrodes most

influenced by such alterations. Additionally, we examined real EEG data to

investigate how the topographies of the P1 and N1 components, as well as
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T2 T3T1

P1
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Subject 1

Subject 2

N1
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Subject 2
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Without lesions
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Without lesions
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Without lesions

With lesions

Without lesions

Figure 8.7. The obtained localizations of the P1 and N1 ERP components of
the healthy controls, and of both patients at the different evaluation moments.
For both patients, source localization was performed using both the accurate
models, i.e. including the lesions, and using the forward models in which the
lesions were ignored.

their source localizations, are affected by the inclusion or exclusion of lesions

in the forward model.

Our single-source simulations demonstrated that both tumor presence and

craniotomy-related skull discontinuities can significantly alter the amplitude

and spatial distribution of scalp EEG signals. While the effect was quite local-

ized for the tumor-related lesions, i.e. mainly for the dipoles close to the tumor

changes in the measured scalp-EEG were observed, the effect of the boneflap

was spread out across the left hemisphere. The changes in magnitude and to-

pography were still most strongly present for the dipoles close to the boneflap,

but also smaller changes in MAG% and RDM% were found for dipoles located

further away.

To investigate how the presence of lesions affected each electrode’s sensitivity

to brain-wide activity, we quantified changes in the overall sensitivity and in the

spatial distribution of contributing sources to each electrode. By quantifying

electrode-wise changes in both signal magnitude (MAG%) and spatial source

distribution (RDM%), we provide evidence that the presence of a tumour and
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subsequent craniotomy can induce both localized and evolving distortions in

the leadfield. The minimal changes observed in the pre-operative phase (T1 vs.

T0) suggest that the tumour alone exerts only subtle effects on sensitivity, likely

constrained to areas immediately adjacent to the lesion. However, the broader

and more pronounced alterations observed at later time points (T2 vs. T0 and

T3 vs. T0) imply a significant influence of the surgical intervention and post-

operative healing processes. These shifts were particularly evident around the

bone flap and lesion site. Importantly, such spatially heterogeneous changes in

sensitivity may affect the interpretability and accuracy of source localization in

lesioned brains, underscoring the need for individualized forward models that

account for patient-specific anatomy and post-surgical changes over time.

These observations were further supported by the multisource EEG simula-

tions, which revealed that the effects of omitting lesions in forward models

depend on the location of the dipoles, their associated time series, and the

anatomical characteristics of the lesions themselves. These simulations illus-

trated that changes in the timeseries or locations of dipoles close to the lesions

have a much stronger influence on the measured scalp-EEG than changes of

dipole locations in the right hemisphere. They also showed that the obtained

results depend heavily on the specific lesion, highlighting that it is important

to evaluate subject data at the individual level. These results are in line with

those obtained for the single dipole simulations.

Finally, we evaluated the results obtained using the real data. In the case of

Subject 1, the topography of the P1 component at T1 closely resembled that

of the healthy controls. At T2 and T3 however, we observed an increase in

lateralized activity in the electrodes near the bone flap. A similar pattern was

found for the N1 component. For this subject, the results showed the most pro-

nounced deviations from the normative data at the electrodes near the tumor

site and bone flap lesions. In contrast, Subject 2 showed no clear disruptions

in topography. Although there is a slight shift in the overall amplitude of the

components over time, the topographies remained consistent across measure-

ments. These findings align with our predictions based on the simulation study.

Specifically, the simulations (Figure 8.3) indicated that dipoles located near the

left auditory cortex lead to substantial changes in both magnitude and topog-

raphy of the scalp-EEG. This is consistent with the observed results for both

the P1 and N1 components, where the expected sources lead to topographical

distortions at T2 and T3. For Subject 2, the most affected dipoles are located

more frontally, and the simulations predict only minor differences in magni-
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tude and topography for dipoles in the auditory cortex. This is again supported

by the real data, which shows only slight differences in the scalp-EEG over the

different time points. Taken together, these results provide further support for

the influence of localized dipoles on the scalp-EEG topography, with variations

in the extent of the distortion depending on the location of the dipoles.

Together, these findings have important implications for EEG research in clin-

ical settings. They emphasize the need for individualized head models when an-

alyzing EEG in patients with structural brain abnormalities and caution against

relying solely on normative datasets or healthy-subject-based models for com-

parisons in neurosurgical populations. Although our simulations were con-

ducted in simplified scenarios without considering channel noise, they clearly

highlight the effects of lesions on EEG signals. Furthermore, the real data col-

lected from patients provides evidence that these observations extend to more

realistic situations.

The single-source simulations revealed how the presence of lesions influences

both the magnitude and topography of EEG signals. In the case of simple multi-

source generator configurations, such as the P1 and N1 components, these

simulations allowed us to predict the impact of lesions on scalp-level measure-

ments. As seen in Subject 2, no dramatic changes in amplitude or topography

occurred for the early auditory evoked responses (P1 and N1) in an individual

with a frontal-lobe lesion. In Subject 1, who had a lesion close to the temporal

cortex were the neural sources of the P1 and N1 are expected, however, a clear

increase in the amplitude measured at electrodes close to the lesion was found.

It is important to note that most cognitive processes are driven by complex, of-

ten unknown sources. Some of these sources may be located near the lesions,

and their distortion will affect the overall EEG signal in nontrivial ways.

The results suggest that the impact of tumors and craniotomy lesions on mul-

tisource configurations—commonly used in cognitive neuroscience—cannot be

ignored. When making group-level comparisons, the heterogeneity in the loca-

tion, size, and shape of lesions complicates the interpretation of scalp-level ef-

fects. This complexity is even more pronounced in longitudinal studies, where

structural changes are expected over time. In such cases, it is crucial to assess

anatomical changes between time points before making valid comparisons.

To accurately account for anatomical changes, it is essential to perform

source-level analyses, where the effects of lesions can be directly modeled. This

approach aligns with findings by Piastra et al. (2022) and Piai et al. (2024)

regarding CSF-filled lesions. Piastra et al. (2022) demonstrated the critical
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impact of accounting for anatomical abnormalities, such as CSF-filled cavities,

in source reconstruction for MEG data. Their study used accurate FEM-based

head models in which they modeled the lesions to simulate MEG data from

subjects with stroke-related CSF-filled cavities, after which they calculated

the reconstructions using models without the cavity. When comparing the

obtained reconstructions to the simulated ground truth, they found that

excluding the cavity led to significant displacement of the reconstructed

dipoles and differences in signal magnitude. Their findings underscore the

importance of accurately modeling anatomical features in neuroimaging,

as ignoring such abnormalities can distort source localization and signal

interpretation. Although their study focused on MEG, the same principles

apply to, and are even more important in, EEG. Just as CSF cavities must be

considered in EEG/MEG source reconstruction, tumors, lesions, and surgical

defects must be accounted for in EEG modeling to ensure reliable results

in clinical populations. Our study builds on these insights by highlighting

the necessity of individualized modeling approaches to address the specific

challenges posed by structural brain abnormalities in EEG analysis.

It is important to note however that performing these analyses at the source

level requires having detailed anatomical information, including an anatomical

scan as well as the expertise in source reconstruction to create these advanced

forward models that include the lesions in the data.

In conclusion, our findings highlight the critical role of individualized mod-

eling for reliable EEG analysis in clinical populations affected by tumors and

craniotomy-induced abnormalities. These results support calls for anatomically

realistic modeling frameworks and contribute to the growing body of literature

emphasizing the need for precision in neuroimaging. Just as previous research

has demonstrated the importance of modeling anatomical features like CSF cav-

ities, our study underscores that pathological and surgical changes to the brain

significantly alter EEG signals. Therefore, these factors must be accounted for

in both research and clinical contexts to ensure accurate interpretations.
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The goal of this dissertation was to investigate the neural mechanisms under-

lying speech perception and to critically examine the methodological tools

used to explore these mechanisms using EEG. Speech perception is a complex,

multi-level process that spans from early auditory processing to higher-order

semantic integration. By focusing (mainly) on three well-established ERP

components—the MMN, P300, and N400—we sought to characterize the

cortical generators and their dynamic interactions that support this trans-

formation from sound to meaning. At the same time, the work addressed

a series of methodological challenges that influence how accurately we can

localize and interpret neural activity. Through a combination of empirical EEG

studies and simulation experiments, this dissertation aimed to advance both

our neuroscientific understanding of these ERP components, as well as our

analytic approaches in this type of EEG research.

In this discussion, I will briefly summarize the findings of the different stud-

ies, integrate them within the broader context of cognitive neuroscience and

EEG methodology, and reflect on their implications for future research and clin-

ical applications. First, I will revisit the empirical findings presented in Part II,

highlighting how the MMN, P300, and N400 components reflect distinct but

interconnected stages of speech processing, and how their underlying corti-

cal sources and connectivity patterns contribute to our understanding of the

neural architecture of language. Second, I will focus on the methodological

insights gained from the simulation studies in Part III. These simulations ad-

dressed specific limitations of EEG analysis—namely latency variability, head

model accuracy, choise of inverse methods, and anatomical distortions due to
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lesions—and demonstrated how such factors can impact the interpretation of

ERP data. Special attention will be given to the value of simulations as tools

for validating and improving EEG methodologies. Finally, I will reflect on how

the integration of empirical and simulated data informs the future of EEG re-

search in both healthy and clinical populations. This includes a discussion of

the practical implications for studies involving patients with brain lesions, the

importance of personalized modeling, and the broader relevance of this work

for non-invasive neuroimaging approaches.

9.1 General overview of the findings

The findings presented in Part II provide important insights into how the brain

processes speech at different levels of linguistic complexity. Each of the in-

cluded ERP components was associated with distinct patterns of cortical acti-

vation and connectivity, reflecting their respective functional roles in speech

perception.

In Chapter 4, the MMN elicited during passive phoneme discrimination, re-

vealed a bilateral network including temporal, frontal, and parietal regions.

This suggests that even in the absence of active attention, the brain engages

a distributed system to detect auditory deviations, consistent with theories of

automatic prediction error signaling. In contrast, the P300, associated with ac-

tive categorization, engaged a broader fronto-parietal-cingulate network. This

aligns with prior work linking the P300 to attentional allocation and task-

relevant processing, and highlights how active listening demands greater in-

tegration across cognitive control and sensory regions. Finally, the N400 com-

ponent, elicited during a taxonomic semantic priming task, was predominantly

left-lateralized and involved frontal and parietal cortices, including enhanced

intra-frontal and fronto-parieto-occipital connectivity. These findings reinforce

the view of the N400 as a marker of semantic integration, grounded in a left-

lateralized network optimized for linguistic processing.

Together, these results emphasize that speech perception is not localized to

a single brain area or stage, but instead unfolds across overlapping, dynamic

networks that adapt to task demands and linguistic context. Importantly,

they also lay the foundation for investigating how these networks may be

disrupted or reorganized in clinical populations, such as patients with language

impairments.



9. General discussion 233

A significant part of this dissertation focussed on demonstrating how simu-

lation studies can be used to evaluate, refine, and improve EEG analysis tech-

niques. While empirical EEG provides valuable insight into brain function, in-

terpreting its results accurately depends on the quality and appropriateness of

the analytic tools used. The simulations presented in Part III addressed several

core issues that directly impact the reliability of ERP-based inferences.

In Chapter 5, we investigated single-trial variability and latency estimation

using artificial neural networks. Traditional ERP analysis relies on averaging

across trials, which ignores trial-to-trial variability and can lead to underesti-

mation of component amplitudes. Chapter 5 addressed this issue by developing

artificial neural network-based methods to quantify ERP latencies at the single-

trial level. Simulation results showed that these methods outperformed con-

ventional techniques across a range of signal-to-noise ratios, providing more

accurate estimates of both component timing and topography. Applied to real

data, these single-trial estimates correlated more strongly with behavioral mea-

sures (e.g., reaction times) and revealed group differences (e.g., age-related

changes) that were not detected using average-based methods. These findings

demonstrate how simulations can guide the development of more sensitive and

informative ERP quantification approaches, potentially enabling richer inter-

pretations of cognitive and clinical data.

In Chapter 6, we explored the possibility of combining multiple source local-

ization techniques to bridge ERPs and oscillations. ERP components and oscil-

latory brain activity are often studied separately, yet their relationship remains

an open question. In this chapter, we studied this relationship using a combi-

nation of source localization methods—eLORETA for ERPs and DICS for oscil-

lations—applied to both simulations and real data. The results illustrated both

convergence and divergence between ERP and oscillatory sources, depending

on the component and frequency band. For instance, while the P300 and delta

oscillations showed overlapping sources, alpha desynchronization during the

same period was spatially distinct. These findings suggest that ERPs and os-

cillations can reflect complementary yet partially dissociable neural processes.

More broadly, this work demonstrates how simulation-based evaluations of dif-

ferent methods can enhance our mechanistic understanding of EEG data and

inform best practices for multi-algorithm analysis.

Chapter 7 focussed on the impact of the head model choice on source local-

ization results. Accurate source localization depends heavily on the head model

used to compute the EEG forward solution. While template-based models are
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commonly used when subject-specific MRIs are unavailable, Chapter 7 demon-

strated—through simulations and real data—that these models introduce sys-

tematic localization errors. Simulated data showed that template models failed

to accurately reconstruct the underlying sources and produced more diffuse and

less specific activations. These limitations were also evident in real EEG data,

where template-based localization led to incorrect interpretations of ERP gen-

erators. These findings highlight the importance of using subject-specific head

models whenever possible, and suggest that researchers using template mod-

els should interpret results cautiously, particularly in clinical or patient-specific

contexts.

Finally, in Chapter 8 we looked at the influence of structural anomalies in

the brain on the measured ERPs. In clinical populations, EEG interpretation

is further complicated by individual anatomical differences such as lesions or

craniotomies. Chapter 8 used individualized forward models to simulate the ef-

fects of these structural anomalies on EEG signals. The results showed that such

disruptions can significantly alter the amplitude and topography of recorded

signals, particularly near the lesion site. These distortions were evident in both

simulated and real data, underscoring the necessity of accounting for patient-

specific anatomy in source localization. The findings support the use of lesion-

informed modeling as a critical step toward more accurate and clinically mean-

ingful EEG interpretations, especially in longitudinal or treatment-monitoring

studies.

9.2 Integration of Empirical and Methodological

Contributions

A key part of this dissertation is the interdependence between empirical neu-

roscience and methodological innovation. The insights into speech perception

presented here could only be achieved through careful attention to the ways in

which neural data are recorded, processed, and interpreted. At the same time,

methodological challenges encountered during empirical studies motivated the

development of targeted simulations, which helped us to refine and contextu-

alize our findings.

Analyzing brain data—especially EEG—is inherently complex. Neural sig-

nals are dynamic, noisy, and are the result of activity in distributed networks

rather than single, isolated regions. Part of this complexity also arises from

the fact that we do not measure directly within the brain, but instead use
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electrodes placed on the scalp around the skull. Mathematically, it is impos-

sible to uniquely determine the number and amplitude of the neural sources

responsible for the measured signals. As a result, extracting meaningful in-

formation from EEG recordings requires complex and advanced analysis tech-

niques. Methods for quantifying and localizing ERP components must be sensi-

tive enough to capture subtle variations, yet robust enough to handle the noise

and variability in brain signals. Without careful methodological choices, there

is a real risk of misinterpreting the underlying neural processes.

Throughout this work, simulations served as critical tools for evaluating and

improving the analytic strategies used. They were not treated as purely tech-

nical exercises, but were closely integrated with specific research questions.

Whether improving single-trial latency estimates, assessing the impact of head

model selection, combining source localization methods for ERPs and oscilla-

tions, or modeling the effects of anatomical anomalies, each simulation pro-

vided practical insights that enhanced the reliability of the empirical findings.

This integrated approach underscores that methodological refinement is not

an optional add-on to empirical research—it is fundamental to it. Advances

in the study of brain function depend on the development and validation of

analysis methods that are capable of dealing with the complexity of neural data.

Furthermore, the work presented here highlights the importance of tailoring

methods to the specific demands of the scientific questions and populations

under study.

Overall, this dissertation emphasizes that a strong link between empirical

investigation and methodological rigor is essential for advancing both our the-

oretical understanding of speech perception and the broader field of cognitive

and clinical neuroscience.

9.3 Clinical Implications and Future Directions

The findings presented in this dissertation have several important implications

for the use of EEG in clinical populations. By mapping how speech-related ERP

components are organized across distributed cortical networks, this work pro-

vides a framework for understanding how these networks may be affected by

neurological conditions such as stroke, brain tumors, or degenerative diseases.

Identifying disruptions in these well-characterized pathways could in the future

aid in diagnosing specific types of language impairment or predicting recovery

trajectories.
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Beyond the empirical insights, the methodological simulations developed

throughout this dissertation—particularly to investigate source localization,

single-trial analysis, and lesion-informed modeling—open the door for more

personalized and clinically meaningful EEG applications. Accurate localization

of neural generators, better handling of variability in ERP data, and individu-

alized head modeling are all critical steps toward making EEG a reliable tool

for patient-specific diagnosis, monitoring, and treatment planning.

Looking ahead, several promising directions for future research become

clear. One important direction lies in the development of adaptive or hybrid

head models that can approximate individual brain anatomy in healthy partic-

ipants, particularly in situations where acquiring high-resolution MRI scans

is not feasible. While this approach could greatly improve the accessibility of

personalized EEG analysis for healthy controls, the findings in this dissertation

also underscore that truly individualized head models remain essential for

clinical populations, especially when structural brain alterations—such as

lesions, tumors, or surgical resections—are present. In such cases, deviations

from normal anatomy can significantly distort EEG signals, making detailed,

patient-specific modeling critical for accurate interpretation. Nonetheless,

for large-scale studies or normative research involving healthy individuals,

adaptive modeling techniques—leveraging machine learning and initial

population-based templates, or simplified anatomical markers—could offer a

practical compromise between accuracy and feasibility, thereby broadening

the applicability of advanced source localization methods.

In addition, the artificial neural network approaches developed for single-

trial latency estimation in this dissertation hold great potential for advancing

EEG analysis. These methods could be expanded to handle a wider range of

ERP components beyond those studied here, addressing more complex noise

conditions and improving the precision of data in clinical populations with ir-

regular or pathological brain activity. Single-trial latency analysis is especially

important in these populations, as greater variability in latency across trials can

lead to more smeared and reduced ERP components at the group level. These

attenuated responses may still reflect activation of the same underlying brain

regions and should not necessarily be interpreted as reduced neural activity. By

enhancing the capability of neural networks to adapt to diverse ERP patterns,

this approach could significantly enhance our ability to measure brain activity

in a variety of contexts, from basic cognitive neuroscience research to clinical

diagnostics.
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Finally, strengthening the test-retest reliability of these advanced EEG mea-

sures is an essential area for future exploration. While test-retest reliability has

been well established at the group level, where ERP components are averaged

over multiple participants, this consistency has yet to be fully demonstrated at

the individual level. Given the high noise levels and inherent variability in EEG

data, achieving reliable, stable ERP components for individual subjects remains

a significant challenge. Moreover, to interpret longitudinal changes effectively

in clinical settings, it is crucial to better understand the sources of variability in

test-retest results. Only by distinguishing between variability that reflects gen-

uine neurological change and variability that arises from measurement noise

or other external factors can we ensure that observed shifts in ERP components

are clinically meaningful. This understanding will be critical for using EEG to

monitor disease progression or recovery. As clinical applications of EEG ex-

pand, particularly in the context of neurodegenerative diseases or post-surgical

recovery, ensuring the stability of ERP components across repeated measures in

individual patients will be crucial for their usefulness in patient care. Overcom-

ing these challenges in individual reliability and understanding the underlying

variability will be a key step toward making advanced EEG measures more use-

ful in clinical diagnostics and treatment monitoring.

Together, these developments—ranging from hybrid head models for healthy

participants to expanded neural network approaches and improved test-retest

reliability—could significantly enhance the diagnostic, prognostic, and thera-

peutic potential of EEG in both research and clinical practice. As these inno-

vations unfold, the continued integration of empirical research with method-

ological advancements will pave the way for more precise, personalized, and

effective applications of EEG across diverse settings.

9.4 General conclusion

This dissertation has advanced both our theoretical understanding of speech

perception and our methodological approaches for studying neural activity

using EEG. By examining how key ERP components—MMN, P300, and

N400—reflect distinct stages of speech processing and the neural networks

that support them, we have contributed to a more nuanced understanding

of how the brain processes auditory information and maps it to meaning.

Furthermore, through rigorous simulation studies, we have critically assessed
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and refined EEG analysis techniques, providing valuable insights into the

challenges and opportunities of interpreting EEG data accurately.

The integration of empirical findings with simulation-based methodology

highlights the importance of continually advancing EEG techniques in order

to keep pace with the complexity of neural data. The development of more ro-

bust methods for single-trial analysis, source localization, and lesion-informed

modeling have the potential to revolutionize the clinical use of EEG, making

it a more reliable and personalized tool for patient diagnosis, monitoring, and

treatment planning. In particular, by addressing key issues such as the impact

of head model choice, noise conditions, and test-retest variability, this work lays

the groundwork for more precise and clinically applicable EEG measures.

As the field progresses, future research will be crucial in refining these meth-

ods, expanding the range of ERP components studied, and improving test-retest

reliability at the individual level. The development of adaptive or hybrid head

models for healthy controls, as well as the application of advanced machine

learning techniques to handle diverse ERP patterns, holds great promise for

both basic research and clinical practice. Understanding the variability in test-

retest results will also be a key factor in interpreting longitudinal changes, espe-

cially in the context of neurodegenerative diseases and post-surgical recovery.

In conclusion, this dissertation underscores the interdependence between

empirical research and methodological innovation. By continuing to refine EEG

analysis tools, we can unlock deeper insights into the neural processes underly-

ing speech perception, as well as enhance the clinical utility of EEG for diagnos-

ing and monitoring neurological conditions. The future of EEG research—both

in healthy individuals and clinical populations—depends on the continued evo-

lution of methods that are both scientifically rigorous and clinically relevant,

paving the way for more effective, personalized applications in neuroscience

and medicine.
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A | Cortical Generators and Connections Under-

lying Phoneme Perception and Semantic Priming: a

Mismatch Negativity, P300 and N400 Investigation

Source reconstruction of the MMN, P300 and N400

As described in the main text, significant effects of interest in the results of

the source reconstructions were explored in three separate time windows of

50 ms through statistical clustering analysis in source space. The early, mid-

dle and late time windows were selected based on the 25%, 50% and 75%

fractional area latency of the MMN, P300 and N400 grand average difference

wave of all participants in a broad time window of 100-300 ms, 300-800 ms

and 400-800 ms, respectively. Two different approaches were used to test for

significant differences in source activation between the standard and deviant

condition. The first approach consisted of a cluster-based non-parametric per-

mutation test, in which the significance probability was computed under the

permutation distribution using the Monte-Carlo method, and was described in

the main text. While the cluster-based permutation test controls the multiple

comparison problem and at the same time maximizes power, no inference is

made over individual dipoles. Consequently, no statements about the spatial

location and extend of the significant effect between both conditions based on

the cluster locations will be completely accurate. Therefore, a second approach

to test for significant differences in source activation between both conditions

was used. Here, paired t-tests are performed for each dipole separately, after

which the obtained p-value are corrected for multiple comparison with False
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Discovery Rate (FDR). The results of these analyses are shown for the MMN,

P300 and N400 respectively in Figures A.1, A.2 and A.3

Figure A.1. Results of the paired t-tests analysis on the eLORETA source recon-
struction of the MMN to identify significant differences between both conditions
in the early (140-190 ms), middle (190-240 ms) and late (240-290 ms) time
window.

Figure A.2. Results of the paired t-tests analysis on the eLORETA source recon-
struction of the P300 to identify significant differences between both conditions
in the early (370-420 ms), middle (460-510 ms) and late (590-640 ms) time
window.

Functional connectivity analysis of the MMN, P300

and N400

In this study, the functional networks underlying phoneme discrimination

(MMN) and categorization (P300), and categorical priming (N400) were

mapped based on the 68 ROIs predefined by the Desikan-Killiany atlas (De-

sikan et al., 2006). To identify significant differences between the networks

obtained for the standard and deviant, or related and unrelated conditions,
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Figure A.3. Results of the paired t-tests analysis on the eLORETA source recon-
struction of the N400 to identify significant differences between both conditions
in the early (460-510 ms), middle (520-570 ms) and late (630-680 ms) time
window.

the Network Based Statistic (NBS) method was used in the main text of the

paper (Zal, 2010). To quantify and describe the obtained significant network

components, we subdivided the 34 ROIs of each hemisphere into five groups:

Frontal, Temporal, Parietal, Occipital and Cingulate. How each ROI was

assigned to each group is shown in Table A.1.



244 A. ESI and FC of the MMN, P300 and N400

Table A.1. Grouping of regions of interest from Desikan-Killiany atlas (34 ROIs
in each hemisphere) based on lobe.

frontal caudal middle frontal gyrus temporal banks superior temporal sulcus

frontal pole entorhinal cortex

lateral orbitofrontal cortex fusiform gyrus

medial orbitofrontal cortex inferior temporal gyrus

paracentral lobule insula

pars opercularis middle temporal gyrus

pars orbitalis parahippocampal gyrus

pars triangularis superior temporal gyrus

precentral gyrus temporal pole

rostral middle frontal gyrus transverse temporal cortex

superior frontal gyrus

parietal inferior parietal cortex cingulate isthmus-cingulate cortex

postcentral gyrus posterior-cingulate cortex

precuneus cortex rostral anterior cingulate cortex

superior parietal cortex caudal anterior-cingulate cortex

supramarginal gyrus

occipital cuneus cortex

lateral occipital cortex

lingual gyrus

pericalcarine cortex



B | Single-trial ERP quantification using neural

networks

Template matching using ICA: comparison of algo-

rithms and methods

Multiple ICA decomposition approaches for the latency quantification of the

ERP component in single trials were compared in this work using the simu-

lated data. The ICA algorithms that were considered in this work included

FastICA (Hyvarinen, 1999), extended infomax (Lee et al., 1999), picard (Ablin

et al., 2018) and adaptive mixture ICA (AMICA) (Palmer et al., 2012; Delorme

et al., 2012). Furthermore, we also compared the effect of using only a single

ICA component for the latency estimation or using a combination of multiple

components. In figure B.1, the mean absolute error between the true and the

estimated latencies are shown in function of the SNR level of the dataset. The

figure shows that when we consider only a single ICA component, the SNR level

of the dataset has a limited influence on the performance of the latency esti-

mation. This might be caused by the nature of the simulated data, as a single

independent P300 component was added to background noise. In this case,

the extended Infomax algorithm performs best, and only small differences are

found between the fastICA and picard implementations. A clear trend is how-

ever found between the performance of the methods and the SNR of the data

when considering multiple ICA components. Here, the extended Infomax, fas-

tICA and picard implementations gave almost identical results for all SNRs,

with the performance of the AMICA algorithm being slightly worse. This trend

is very similar to the one observed for the cross-correlation latency estimation
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method (figure 5.6). Therefore, it is probable that by selecting multiple ICA

components, not only the ERP component but also noise is included in the com-

bined signal, which leads to larger errors in the single-trial latency estimation

for lower SNRs. Based on these results, we decided to use the extended Info-

max algorithm for the further comparison of the different latency estimation

methods.
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Figure B.1. Comparison of the different ICA decomposition algorithms (ex-
tended Infomax, picard, fastica and AMICA) regarding the mean absolute error
between the estimated latencies and the true latencies in single trials for each
each SNR in the simulated data.

Realigned grand-averages of the simulated data for

different SNRs

In figures B.2 and B.3 the realignment of the single trials averaged across all

subjects for each of the different SNRs are shown, along with the topography

at the time of the peak, comparing the different latency estimation techniques.

Also the non-realigned grand-average and a random realignment are plotted

as a reference. The realigned grand-averages are compared with the correct

realignment to check how well the shape of the P300 component is estimated

by each of the different methods by calculating the mean relative absolute er-

ror (MRAE). The figures show that the realignment based on the convLSTM

network gives the best results. Similar results are found across the different

SNRs. While the topographies at the peak are very similar across all meth-

ods, apart from a scaling factor due to smearing, the shape of the obtained

P300 component clearly varies. In the iterative cross-correlation, the (itera-

tive) beamformer and the multiple component ICA based approaches, artefacts
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are being introduced into the shape of the ERP component due to errors in

latency estimations.



248
B

.
Single-trialER

P
quantification

using
neuralnetw

orks

time
10

5

0

5

10

V
True

MRAE: 0.75 µV

No Realignment
MRAE: 0.62 µV

Random

10

5

0

5

10

V

MRAE: 0.78 µV

Cross-correlation
MRAE: 0.47 µV

DTW
MRAE: 0.56 µV

Beamformer

10

5

0

5

10

V

MRAE: 0.69 µV

Cross-correlation (iterative)
MRAE: 0.51 µV

DTW (iterative)
MRAE: 0.66 µV

Beamformer (iterative)

10

5

0

5

10

V

MRAE: 0.22 µV

ICA (single component)
MRAE: 0.46 µV

ICA (multiple components)
MRAE: 0.40 µV

EEGNet

0.0 0.2 0.4 0.6 0.8 1.0
time

10

5

0

5

10

V

MRAE: 0.30 µV

convLSTM

0.0 0.2 0.4 0.6 0.8 1.0
time

MRAE: 0.34 µV

Peak

0.0 0.2 0.4 0.6 0.8 1.0
time

MRAE: 0.45 µV

50%-Area

(a) -6dB

time
10

5

0

5

10

V

True
MRAE: 0.72 µV

No Realignment
MRAE: 0.67 µV

Random

10

5

0

5

10

V

MRAE: 0.59 µV

Cross-correlation
MRAE: 0.49 µV

DTW
MRAE: 0.46 µV

Beamformer

10

5

0

5

10

V

MRAE: 0.53 µV

Cross-correlation (iterative)
MRAE: 0.51 µV

DTW (iterative)
MRAE: 0.59 µV

Beamformer (iterative)

10

5

0

5

10

V

MRAE: 0.21 µV

ICA (single component)
MRAE: 0.43 µV

ICA (multiple components)
MRAE: 0.33 µV

EEGNet

0.0 0.2 0.4 0.6 0.8 1.0
time

10

5

0

5

10

V

MRAE: 0.21 µV

convLSTM

0.0 0.2 0.4 0.6 0.8 1.0
time

MRAE: 0.34 µV

Peak

0.0 0.2 0.4 0.6 0.8 1.0
time

MRAE: 0.45 µV

50%-Area

(b) -3dB

Figure B.2. Realignment of the single trials averaged across all subjects with SNR -6dB and -3dB for each of the different methods.
Grey lines represent the different channels, with Pz being marked in black. Also, the topography of the realignment at 0.420 s after
the stimulus onset is shown. The realigned waveforms are compared to the correct realignment to evaluate how well the shape of
the simulated P300 component is estimated. For each method, the mean relative absolute error between the true and the estimated
realigned waveforms across all subjects is reported.
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Figure B.3. Realignment of the single trials averaged across all subjects with SNR +3dB and +6dB for each of the different methods.
Grey lines represent the different channels, with Pz being marked in black. Also the topography of the realignment at 0.420 s after
the stimulus onset is shown. The realigned waveforms are compared to the correct realignment to evaluate how well the shape of
the simulated P300 component is estimated. For each method, the mean relative absolute error between the true and the estimated
realigned waveforms across all subjects is reported.





C | Investigating the effect of template head

models on Event-Related Potential source localiza-

tion: A simulation and real-data study

Simulated epochs for of the different networks for

all SNRs

Simple ERP waveforms were simulated using half-cycle sinusoidal waveforms

to allow the objective quantification of the localization error associated with

the subject-specific and average head models. This was done by simulating

activity in different regions of the brain, including noise, and projecting this

activity to the scalp surface using the individual head models. Different net-

works responsible for generating ERP activity were simulated, each involving

four symmetrically active brain regions, with two regions in each hemisphere.

These regions were identified using the Destrieux cortical atlas parcellations.

For each region of interest (ROI), the center of the parcellation was determined,

and dipoles within a 10 mm radius around this center were selected. The ERP

activity in these selected dipoles was simulated as a 5 Hz half-cycle sinusoidal

waveform lasting 100 ms. A small delay was introduced across the ROIs: the

ERP waveform began in the first ROI at 100 ms post-stimulus, followed by the

second ROI 10 ms later, and then in the third and fourth ROIs at 120 ms. Addi-

tionally, the signal amplitude in the third and fourth ROIs was reduced to 80%

of the amplitude in the first two ROIs. To simulate realistic conditions, pink

noise was added to all epochs. The noise amplitude was adjusted to achieve

different signal-to-noise ratios (SNRs) ranging from -20 dB to +0 dB. Figure

7.2 in the main text shows the simulated data at the sensor level for the SNR
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equal to -10 dB. Here, the simulated data is visualized for the SNRs equal to

-20 dB (Figure C.1) and 0 dB (Figure C.2).

Figure C.1. Overview of the simulated data at sensor level averaged over all
subjects. The simulated epochs in the ERP condition at SNR = -20dB are aver-
aged.

Figure C.2. Overview of the simulated data at sensor level averaged over all
subjects. The simulated epochs in the ERP condition at SNR = 0dB are aver-
aged.



C. The effects of template head models on ERP source localization 253

Localization results of the different networks for all

simulated SNRs

Different aspects are taken into account in the evaluation of the source recon-

struction: the correspondence between the obtained sources and the simulated

sources, the localization error and the spatial dispersion of these reconstructed

sources, and the correlation between the originally simulated activity and the

reconstructed activity. For each subject, the difference in source space activity

between the ERP and the noise condition was calculated, after which the data is

averaged over the time window of interest. The results of the localizations ob-

tained for the simulated dataset with SNR equal to -10 dB were included in the

main text. Here, we also include the obtained localizations for the other SNRs,

namely -20 dB and 0 dB, for each of the four simulated networks. The results for

the temporo-occipital network, the fronto-parietal network, the fronto-occipital

network and the temporo-parietal network at each of the different SNRs can be

found respectively in Figures C.3, C.4, C.5 and C.6.

The quantification results of the localization errors associated with the local-

izations for the individual subjects were shown in the main text in Figure 7.4.

In this evaluation of the source reconstructions, different aspects were taken

into account: the sensitivity and the precision of the obtained sources, the lo-

calization error and the spatial dispersion of these reconstructed sources. For

each of these measures, the difference between using the subject-specific and

the average head models was investigated, as well as the differences between

the different modelling approaches. In the main text, clusters of activity were

considered correctly localized when the difference between the centre of the

reconstructed cluster was within 3 cm of the centre of the simulated ROIs. As

this maximal distance is an important parameter, the results when using a max-

imal distance of both 1 cm and 5 cm are included here in Figures C.7 and C.8.

Finally, also the effect of the SNR of the simulated data on the reconstructions

was quantified in the main text (Figure 7.5). In this figure, the results obtained

for the different networks were aggregated. Again, the results when using a

maximal distance of both 1 cm and 5 cm are included here, respectively in

Figures C.9 and C.10.
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Figure C.3. Overview of the original simulated data and the reconstructed activity averaged over all subjects for the
temporo-occipital network at the different SNRs. In the case of the simulations and the subject-specific reconstructions, the
source activity was morphed to the average head model before averaging.
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Figure C.4. Overview of the original simulated data and the reconstructed activity averaged over all subjects for the fronto-
parietal network at the different SNRs. In the case of the simulations and the subject-specific reconstructions, the source
activity was morphed to the average head model before averaging.
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Figure C.5. Overview of the original simulated data and the reconstructed activity averaged over all subjects for the fronto-
occipital network at the different SNRs. In the case of the simulations and the subject-specific reconstructions, the source
activity was morphed to the average head model before averaging.
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Figure C.7. Results of the quantification of the localization errors. In this eval-
uation sensitivity and the precision of the obtained sources, the localization
error and the spatial dispersion of these reconstructed sources were taken into
account. For each of these measures, the difference between using the subject-
specific and average head models is shown for each of the simulated networks.
Clusters of activity were considered to be correctly localized when the differ-
ence between the center of the reconstructed cluster was within 1 cm of the
center of the simulated ROIs.
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Figure C.8. Results of the quantification of the localization errors. In this eval-
uation sensitivity and the precision of the obtained sources, the localization
error and the spatial dispersion of these reconstructed sources were taken into
account. For each of these measures, the difference between using the subject-
specific and average head models is shown for each of the simulated networks.
Clusters of activity were considered to be correctly localized when the differ-
ence between the center of the reconstructed cluster was within 5 cm of the
center of the simulated ROIs.
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Figure C.9. Results of the quantification of the localization errors. In this
evaluation sensitivity and the precision of the obtained sources, the localization
error and the spatial dispersion of these reconstructed sources were taken into
account. For each of these measures, the effect of both the SNR of the simulated
data and the difference between using the subject-specific and average head
models is shown. Clusters of activity were considered to be correctly localized
when the difference between the center of the reconstructed cluster was within
1 cm of the center of the simulated ROIs.
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Figure C.10. Results of the quantification of the localization errors. In this
evaluation sensitivity and the precision of the obtained sources, the localization
error and the spatial dispersion of these reconstructed sources were taken into
account. For each of these measures, the effect of both the SNR of the simulated
data and the difference between using the subject-specific and average head
models is shown. Clusters of activity were considered to be correctly localized
when the difference between the center of the reconstructed cluster was within
5 cm of the center of the simulated ROIs.



D | The impact of brain tumors and craniotomy

lesions on scalp ERPs

Single-source simulations

In the main text, the MAG% and RDM% values at the scalp level were presented

for the simulated data of each individual dipole in Subject 1. Here, we present

the corresponding figures for Subject 2. The first row of Figure D.1 represents

a model incorporating all lesions, including those resulting from tumor resec-

tion as well as craniotomy-induced lesions. The second row isolates the effects

of tumor-related lesions, while the third row focuses solely on the impact of

craniotomy-related lesions.

These results again indicate that dipoles located near the lesions exhibit the

most pronounced differences in both magnitude and topography, and that these

effects are not limited to the immediate vicinity of the lesions but extend across

much of the left hemisphere. This widespread influence appears to be predom-

inantly driven by craniotomy-related lesions, while the effects of tumor-related

lesions are more localized.
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Differences in MAGNITUDE Differences in TOPOGRAPHY

Differences in MAGNITUDE Differences in TOPOGRAPHY

Figure D.1. The differences in magnitude and topography of the EEG signals
generated for each dipole using models with and without lesions.
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