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CURRENT ISSUES

̶ Variability is introduced by the 

manufacturing process

̶ Monte Carlo analysis 

(measurement/simulation) can be slow 

to impossible

̶ Source of variability is often unknown 

or difficult to determine
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PROPOSED SOLUTION
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To overcome these issues, we propose the following modeling method:
small set of expensive training samples large set of cheap generated samples

Three-step model:

̶ Vector Fitting (VF)

̶ Principal Component Analysis (PCA)

̶ Kernel Density Estimate (KDE)

Selection of passive samples in post-processing



PROPOSED MODEL
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 Vector Fitting [1,2]:

Expand S-parameters of training samples into partial fractions:

 𝑆 ≈  

𝑘=1

𝑁
𝑅𝑘
𝑠 − 𝑎𝑘

with stable, complex conjugate pole pairs 𝑎𝑘, and common poles for all training samples

 Set of N residue matrices 𝑅𝑘 for each training sample (frequency-independent)

[1] B. Gustavsen and A. Semlyen, IEEE Transactions on Power Delivery, vol. 14, pp. 1052-1061 (1999)

[2] D. Deschrijver et al., IEEE Microwave and Wireless Components Letters, vol. 18, pp. 383–385 (2008)
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 Principal Component Analysis (PCA) [3,4]:

N 𝑁𝑝 × 𝑁𝑝 complex symmetric matrices 𝑅𝑘  𝑁𝑁𝑝(𝑁𝑝 + 1) real variables

 Apply PCA to reduce dimensionality and remove linear correlations

[3] H. Hotelling, Journal of Educational Psychology, vol. 24, pp. 417–441 (1933)

[4] H. Abdi and L. J. Williams, Wiley Interdisciplinary Reviews: Computational Statistics, vol. 2, pp. 433-459 (2010)



PROPOSED MODEL

12

 Kernel Density Estimation (KDE) [5]:

̶ Estimates a distribution by placing a multivariate ‘kernel’ (e.g. Gaussian) on each training point.

The estimated PDF is a normalized sum of the kernels.

̶ models nonlinear correlations 

[5] M. Kristan et al., Pattern Recognition, vol. 44, pp. 2630–2642 (2011)
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Generative model:

̶ Generate new samples from KDE

̶ After inverse PCA, build S-parameters

using common poles

̶ Passivity selection in post-processing:

̶ Nonpassive samples are rejected (no bias)

̶ New samples are generated

until goal is reached



APPLICATION 1: STRIPLINE
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Stripline MTL:

̶ 4 pairs of lines

̶ 16 ports

̶ Differential signaling

̶ Varying 𝜀𝑟

̶ Modeled through RLGC-parameters

̶ Length: 10.0 cm

̶ 1000 simulated RLGC-parameters

̶ 50 training samples
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Connector footprint:

̶ 4 pairs of lines

̶ 16 ports

̶ Differential signaling

̶ 40 varying input parameters (uniform)

̶ 450 simulated S-parameters

̶ 50 training samples
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Cascade footprint – stripline - footprint:

̶ 3 sets of generated and simulated S-parameters

vs

50 Training samples

950 Simulated validation samples

1000 Generated samples
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Efficient and accurate stochastic generative modeling technique

̶ Does not require a-priori knowledge of stochastic distribution of input 

parameters 

̶ only requires a few (possibly expensive/time-consuming) response samples

̶ Applicable to both S- & RLGC-parameters

̶ Modular for use in cascades

̶ Remains accurate in time domain applications
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