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Abstract— In this paper we consider implementing optical burst
switching as a technology for building Grids with computationally
intensive requirements. This architecture has been referred to as
Grid-over-OBS (GoOBS). First, we briefly describe the proposed
layered Grid architecture and show how OBS can be positioned
within the Grid architecture. Then, we present a generic framework
for anycast routing in the context of GoOBS when requests don’t
have an explicit destination address and they can be serviced by any
appropriate Grid resource. We also develop several algorithms to
support anycasting when only a single copy of a request is trans-
mitted. Through simulation analysis, we show the performance of
our anycast algorithms and compare them with traditional shortest-
path unicast routing in which all jobs have specific addresses. Our
performance analysis focuses on blocking probability of requests and
average end-to-end delay.

I. INTRODUCTION

The astonishing advances in telecommunications and develop-

ment of countless communication devices, has demanded massive

computational power, data storage capacity, and networking capa-

bility. Such requirements have motivated researchers to develop

the Grid. The Grid provides a practical and cost efficient infras-

tructure to accommodate scientific and business communities with

their integrated computer-intensive requirements.

At the heart of the Grid is the network. Adequate networking al-

lows geographically dispersed resources to be utilized collectively

in order to satisfy a given application. Clearly, resource utilization

of the Grid is limited by the available link bandwidth. Hence,

integrating Grid resources with emerging high-performance opti-

cal network technologies, including optical switching and Dense

Wavelength Division Multiplexing (DWDM), appears to be the

natural choice [1]. A number of experimental testbeds, such

as TransLight [2], have focused on developing such high-

performance network elements for the Grid.

In general, the enabling technologies in the optical network

infrastructure of the Grid, including the switching and resource

allocation mechanisms, may be different depending on the Grid

application. For example, a particular application may require

moving large amounts of data (e.g. transferring multiple petabytes

of astronomical data from multiple observation sites for analysis).

For such applications, efficient and dynamic reservation of light-

paths is required at the Grid network level to guarantee sufficient

bandwidth throughout the duration of the requests. A lightpath

is typically defined as a dedicated end-to-end optical connection

between two or more optical nodes. We refer to such a Grid-

enabling architecture as Optical Circuit Switched (OCS)-based

Grid or Grid over Optical Circuit Switching (GoOCS).

Many other Grid applications have computationally intensive

requirements (e.g. mathematical problems requiring large number

crunching). In fact, it is conceivable to imagine a number of

users each with sub-wavelength bandwidth requirements but large

processing power needs. In this case, the data is transmitted to

suitable Grid resources and results are sent back to the clients

after data processing has been completed. Such applications are

often small in size, sensitive to latency, and require guarantee

of service. Hence, satisfying them through establishing dedicated

lightpaths, which include path setup and teardown and can take

as many as tens of seconds, may not be efficient.

An alternative approach to meet computationally intensive

Grid applications with moderate data size is to implement a

new optical switching paradigm called Optical Burst Switching

(OBS) [3]. In this architecture, referred to as Grid over Optical
Burst Switching (GoOBS), one or more application requests, or

jobs, are assembled into a super-size packet called data burst,
which is then transported over the optical core network and

forwarded to the appropriate Grid resources. Each data burst has

an associated control packet containing information such as the

burst’s duration, source node, the type of Grid resources the burst

requires, etc. Typically, the control packet is separated from the

burst in space and time, i.e. transmitted on a dedicated control

channel and apart from its associated burst by a time offset.

An attractive feature of GoOBS is its support of existing

DWDM optical networking infrastructure and minimizing the

need for optical-electrical converters at intermediate nodes. An-

other important advantage of GoOBS is its ability to utilize link

bandwidth and Grid resources efficiently and provide low end-

to-end latency. Such advantages have led a working group in the

Global Grid Forum (GGF) to pursue the standardization of OBS

in the context of Grid computing [4].

Fig. 1 shows the ratio of the signaling time, including the
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Fig. 1. The ratio of signaling time over total transmission time of a request (job)
between the client and Grid resources as the job size varies.

time required to setup and teardown lightpaths, over request (job)

transmission time between the client and Grid resources as a

function of job size. As demonstrated in this figure, if the ratio is

reasonably small, say 5%, it is feasible to utilize OCS-based Grid.

However, as the data size reduces and applications become more

latency-sensitive, OBS-based Grid tends to be more efficient.

Implementing OBS as the transport mechanism for the Grid is

a relatively new area and many important issues pertaining the

GoOBS architecture are still uncovered. For example, it is not

well understood how to aggregate multiple jobs in a single burst,

how to retransmit a job in case of data burst loss, or how to route

jobs to unspecified Grid resources in order to optimize the Grid’s

utilization; the latter issue is known as anycast routing.

GoOBS has been discussed previously in literature. In [4] the

authors discuss solutions towards an efficient and intelligent net-

work infrastructure for the Grid and propose taking advantage of

recent developments in optical networking technologies, including

OBS. Basic advantages of an OBS-based Grid are mentioned

in [5], together with a discussion on the generic architecture. An

OBS-like signaling protocol, called Just-In-Time, is introduced

in [6] to enable optical networking for Grids.

In this paper, we position the OBS protocol within the frame-

work of the layered Grid architecture. The main contribution of

this paper is to present a generic framework for anycast routing

in the context of GoOBS when jobs don’t have explicit addresses

and they can be serviced by any appropriate Grid resource. We

develop several routing algorithms to support anycasting when

only a single copy of a job is transmitted. Through simulation

analysis, we show the performance of our anycast algorithms and

compare them with the shortest-path unicast routing in which all

jobs have specific addresses. This performance comparison will

be based on average end-to-end delay and blocking probability

of jobs.

The rest of this paper is organized as follows. In section II,

we briefly review the general layered Grid architecture and how

the OBS protocol can be positioned within the layered Grid

architecture. In section III, we present a formal formulation of

the anycast routing problem and introduce several anycast routing

algorithms. Finally, Section IV discusses performance results
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Fig. 2. A Grid-over-OBS architecture.

obtained for the algorithms by means of simulations, followed

by concluding remarks in Section V.

II. GRID-OVER-OBS ARCHITECTURE (GOOBS)

In this section, we briefly review the proposed layered Grid

architecture [7]. The Global Grid Forum (GGF) has considered a

layering approach in developing such architectures, giving upper

layers access to common lower-level functionality. The resulting

layered Grid architecture, as proposed by GGF, is shown in Fig. 2.

We briefly describe each layer from bottom to top and indicate

its basic functionalities.

• Fabric: provides the underlying base structure including the

storage systems, computers, networks, and system descrip-

tors.

• Connectivity: defines core communication and the capabil-

ities of resources. It also defines the authentication, autho-

rization and delegation utilities of the users. Communication

protocols enable the exchange of data between Fabric layer

resources and includes transport, routing and naming.

• Resource: provides access to information and computation.

This layer provides information about the state, performance,

and structure of the Grid system.

• Collective: deals with interactions that are global in nature,

such as resource discovery, brokering, system monitoring,

etc. This layer also enables application-specific tasks, in-

cluding archiving, checkpointing and management.

• Application: refers to the many different commercial, sci-

entific and engineering applications requiring one or more

resources such as computing power and data storage, which

are provided by the Fabric layer.

As demonstrated in Fig. 2, OBS can be considered as the

networking technology at the lower layers of the protocol model

providing alternatives for the physical, data link, and network

layers. In our model, the layered OBS is used to perform similar

services and interfaces as the Connectivity and Resource layers of

the Grid architecture. A comprehensive treatment of the layered

OBS is provided in [8].
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III. ANYCASTING ROUTING PROTOCOLS IN GOOBS

A. Network Assumptions

A generic network architecture of GoOBS, including DWDM

links, Grid edge nodes and its interfaces to Grid resources, and

OBS core nodes is provided in [5]. We consider the following

network assumptions: the network consists of |N | nodes and |L|
links; each burst with unprocessed jobs has a maximum tolerable

end-to-end delay (slack time, Tslack) upon processing. A network

node or router consists of one or more ports, which form the

interface through which data is sent and received.

An OBS-based Grid is fundamentally different from the tradi-

tional IP-centric OBS network in a number of ways. For example,

in GoOBS processed jobs embedded in a burst must be returned

to their original source nodes (clients). In addition, a burst can

be discarded for (at least) two reasons: burst contention at an

intermediate node or lack of sufficient Grid resources throughout

the network within a predetermined time period (slack time). We

refer to the latter as burst starvation.

Another fundamental difference is that unlike IP-centric OBS

networks, unprocessed jobs in the Grid may be assigned no

explicit destination address, as long as they are properly processed

and returned to their clients. Consequently, instead of requiring

shortest-path-based unicast routing protocols to transmit a burst

to a specific destination node, GoOBS supports deflection-based
anycast protocols as its underlying communication mechanism.

In such protocols, a burst can be sent to any OBS node with

appropriate Grid resources and intermediate nodes, which lack

sufficient resources, simply deflect the burst to the next proper

hop.

B. Problem Formulation

IP-based anycasting has been considered and discussed previ-

ously in literature, including [9]. Using the same basic concept,

we informally define anycasting in the context of GoOBS as

follows: a client transmits a job to an anycast address and the

OBS network is responsible to provide best-effort delivery of the

job to at least one, and preferably only one, of the suitable Grid

resources accepting requests for that anycast address. It is, hence,

evident that, unicast and multicast routing are both special cases

of anycast routing.

The following formulation can be derived for GoOBS any-

casting. Assuming the entire GoOBS network (including the

physical topology, full routing knowledge, and all available Grid

resources associated with each core node) is known; given a

burst B(s,D) with source node s, s ∈ N , and all possible

nodes D = {r1, r2, ..., rd}, where D ⊆ N , with available Grid

resources; find a subset r of D, to which we should send copies

of the burst and the routing policy, which indicates how to route

the burst to the set of destinations specified by subset r, such that

the probability of the burst (jobs) being processed by at least one

of the r nodes is maximized, subject to burst’s slack time.

In the above formulation, subset r, called the anycast destina-
tion group, can be variable or fixed. When the anycast destination

group is variable, the burst is directed to nodes defined by r,

however, any other node in set D is also allowed to process the

burst. On the other hand, when the anycast destination group is

fixed, only the nodes specified in r are allowed to process the

burst.

Furthermore, depending on the size of the anycast destination

group |r|, a number of different anycast protocols can be consid-

ered:

• Single-copy anycast, (|r| ≤ 1): A single copy of the data

burst is transmitted by the source;

• Multiple-copy anycast, (|r| > 1): Multiple copies of the data

burst are sent to multiple nodes with proper resources.

Clearly, when multiple number of bursts are generated, care must

be taken to avoid looping and unintentional processing of the

same burst by multiple nodes. In this paper, we only focus on

single-copy anycast, where |r| ≤ 1 and subset r can be variable

or fixed.

An important aspect of the aforementioned anycast problem is

the routing policy. Upon selection of the anycast destination group

and its size, it is necessary to establish a routing mechanism in

which bursts with embedded jobs can reach nodes with sufficient

Grid resources. In this paper, we assume shortest path routing

is available when destination nodes are specified. Furthermore,

alternative deflection policies may also may be allowed.

C. Anycasting Algorithm Description

In this subsection, we propose a number of heuristic anycast

routing algorithms. These algorithms differ in the way they

perform the following two basic operations: destination assign-
ment and burst deflection. The functionalities of each operation

vary depending on burst type and whether nodes are stateful or

stateless, that is if network status is communicated between nodes

or not, respectively.

We consider three distinct burst destination assignment

schemes performed by the source node.

• Soft assignment (SA): The source selects a destination node

with available Grid resources for the burst. This selection

can be random or according to some weighted function. The

assigned soft destination can be altered by other nodes due

to contention or starvation. In addition, an intermediate node

can accept a burst with a different soft destination, if the node

has sufficient processing resources. SA is an example of the

case where r is variable and |r| = 1, indicating that besides

the node assigned by r, any node in D is allowed to process

the burst.

• Hard assignment (HA): This is similar to SA, however, the

assigned destination node by the source cannot be altered by

any intermediate node. Note that HA is basically unicasting,

which is considered to be a special case of anycasting.

Clearly, HA constitutes the case where r is fixed and |r| = 1.

• No assignment (NA): The source assigns no explicit desti-

nation node to the outgoing burst and simply hands over

the burst (containing one or more jobs) to the network.

Therefore, the burst will wander in the network until it finds

appropriate Grid resources. If the slack time of the burst is

expired, the burst will be discarded. When the burst arrives at

an intermediate node, the node checks its available resources

and if sufficient resources are not available, the burst is
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forwarded to the next selected hop. NA is an example of

the case where |r| = 0 and any node in D can process the

burst.

The basic motivation for implementing NA is to ensure that job

processing throughout the network is not restricted to particular

destination node(s). This is particularly important when some

nodes appear to be overloaded. Hence, the NA mechanism must

be implemented based on the assumption that the network has

prior knowledge regarding the availability of its resources and it

is able to intelligently direct a burst to any one of the possible

destinations without guidance from the source node.

Let us now examine the burst routing and deflection policies.

In general, burst deflection operation can be triggered at an

intermediate or destination node due to contention or lack of

sufficient processing resources, respectively.

Fig. 3 abstracts the general treatment of an incoming burst by

an intermediate node. Note that the burst is initially checked for

its slack time, Tslack, to ensure the burst is valid.

An important issue in burst deflection in case of contention is

determining where to deflect the burst to. We consider three burst

deflection schemes according to different resource availability

criteria:

• Random port availability (RPD): In this case, upon con-

tention, the burst is deflected to an available and randomly

selected egress port. This scheme is similar to the hot-potato

protocol in the sense that the node forwards the burst to the

first available channel on any randomly selected egress port.

• Weighted port availability (WPD): This is very similar to

RPD, except the port selection is based on some weighted

function. Such function can include, for example, the port’s

blocking probability, whether the port is on an alternative

shortest path to the original destination, etc.

• Weighted Grid-resource availability (WGD): In this case the

node examines all available Grid resources throughout the

network. Then, according to a weighted function, the node

decides which egress port should be selected in order to

forward the contending burst. The weight function can be

shifted in favor of the ports providing alternative shortest

paths to the original destination node.

Using the above framework, we consider a number of algo-

rithms and describe their details below. We emphasize that our

motivation in selecting these algorithms is to focus on anycasting

and comparing its performance with the traditional shortest-path-

based unicast algorithms.

We consider two sets of algorithms depending on whether

deflection is allowed or not. We first describe algorithms with

no deflection capacity.

Soft destination assignment with no deflection (SA-ND): In this

case, a randomly selected destination is assigned to each outgoing

burst and the burst will be routed on its shortest path toward the

assigned destination. However, the burst can be processed by the

first node with available resources along the shortest path. If the

burst reaches its destination node and no processing resources

were available, a new soft destination will be assigned.

Hard destination assignment with no deflection (HA-ND): In

this case, each burst has a randomly assigned destination and it

is forwarded along the shortest path to the assigned destination.

If the assigned destination did not have sufficient resources to

process the jobs embedded in the burst, a new destination will

be assigned to the burst. Note that HA-ND is equivalent to the

traditional shortest path based unicast routing algorithm.

No destination assignment with no deflection (NA-ND): In this

case, we assume that no burst has an assigned destination, as in

NA. Upon arrival at an intermediate node, the burst is processed

if the node has sufficient capacity. If not, the burst is randomly

assigned to an egress port which may or may not be available.

If the selected port is not available, the burst will be dropped.

The motivation for studying this algorithm is two-fold: to ensure

that the load is properly balanced throughout all the egress ports

at each node; and to use NA-ND as a baseline to study other

variations of anycasting algorithms where no explicit destinations

are assigned.

Next, we describe algorithms which support deflection. De-

pending on the deflection mechanism, we consider three different

variations of the NA anycasting algorithm:

No destination assignment with random port deflection (NA-
RPD): This is similar to NA-ND. However, in case the first

randomly selected egress port was not available, the burst can be

deflected to another randomly selected egress port on the node.

The selection will continue until an available port is found. If no

such port was found, the burst will be discarded.

No destination assignment with weighted port deflection (NA-
WPD): In this case, if the first selected egress port is busy, the

node will assign an alternative egress port. The port selection is

based on finding the least congested egress port having the lowest

measured blocking probability.

No destination assignment with weighted Grid-resource avail-
ability deflection (NA-WGD): In this case, when contention occurs

at node i and the first selected egress port is no longer available,

the node must find an alternative egress port. This is performed by

calculating the Grid-resource availability function, Γp, for each

remaining port p:

Γp = Σj,j �=i
Ωj

Hp(i, j)
, (1)

In this equation, Ωj is the available Grid-resources of node j,

which has not been visited by the contending burst; Hp(i, j)
equals the number of hops of the shortest path from node j to

node i through port p. If there is no path between node pair (i, j),

or such a path is not the shortest path through port p, Hp(i, j) will

be set to infinity. Using the above function, the alternative port
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will be the one with the largest Γ value. Intuitively, this weighing

function will direct a job towards the network region containing

the nearest resources with the largest available capacity.

IV. PERFORMANCE RESULTS

In this section, we present the simulation results obtained by

implementing the aforementioned six algorithms. We consider

the European core network (Fig. 4), containing 16 nodes and

23 bidirectional links. We assume all ports have 1 wavelength

each operating at 40 Gbps, and Horizon [10] was implemented

as wavelength reservation technology. Furthermore, 4 nodes were

randomly selected to function as computational Grid resource,

capable of processing a limited number of jobs (at most 50)

in parallel. We consider both Poisson job arrivals and Pareto

distributed interarrival times (Hurst parameter H = 0.9) at each

network node, and assume each job is converted into a single

optical burst. Both job data sizes and job execution times are

exponentially distributed. The former has a mean of 1 MB, while

the latter is initialised to generate a combined load of 80% on

the computational resources, unless specified otherwise. In the

following figures, one unit of network load (1 Erlang) equals

one hour of network traffic collectively generated by all clients.

Finally, the slack time is enforced by limiting each job to travel

at most 10 hops in the network. Our results are focused on two

performance metrics: the job blocking probability and average job

hop count.

A. Destination Assignment

Fig. 5 compares the blocking probability of jobs obtained

for the different destination assignment mechanisms when no

deflection is implemented (NA-ND, SA-ND and HA-ND) and

as the network load varies. An interesting observation is that

the performance of both NA-ND and SA-ND is much higher

than HA-ND. This is because hard destination assignment is not

sufficiently adaptive to the dynamic behaviour of Grid resources.

Also note that SA-ND consistently outperforms NA-ND, since

the inclusion of a soft destination increases the probability of a

burst to reach a suitable resource. The generation of bursty traffic
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Fig. 6. Job average hop count versus generated network load using different
destination assignment techniques without deflection.

(Pareto) causes a consistent increase in blocking probability when

compared to non-bursty traffic (Poisson).

The average hop count obtained by implementing NA-ND, SA-

ND, and HA-ND for varying network loads is shown in Fig. 6.

The lowest average hop count is achieved by NA-ND, which

realizes a considerable improvement over the case when bursts

are given specific destination nodes.

Fig. 7 shows the job blocking probability for different values

of generated resource load, when the total resource capacity and

the generated network load remain constant (2.5 Erlang). As

before, HA-ND is outperformed by both NA-ND and SA-ND for

the same reason given above. However, the initial improvement

in performance of SA-ND over NA-ND is overturned as com-

putational resources become continuosly overloaded (> 140%).

The reason for this is provided by Fig. 8, which shows a much

sharper increase in the average hop count for SA-ND than for

NA-ND. The resulting increase in network utilisation of SA-ND

consequently leads to a higher job blocking probability in the

network.

B. Deflection

Next, we examine the performance of the NA anycasting

algorithm. Fig. 9 shows the blocking probability of NA with
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Fig. 8. Job average hop count versus generated resource load using different
destination assignment techniques without deflection.

different deflection mechanisms (NA-ND, NA-RPD, NA-WPD,

and NA-WGD) for varying network loads. Our results indicate

that NA-WGD results in the lowest blocking probability. Also,

Fig. 9 demonstrates that the performance of NA-RPD and NA-

WPD is very similar, in spite of the fact that NA-WPD is more

complex in terms of hardware implementation because it requires

maintaining port statistics.

The main drawback of deflection is that it increases the average

hop count, as shown in Fig. 10. Note that NA-WGD appears to

be a good tradeoff between job blocking and average hop count.

A final observation is the similarity between results for Poisson

and Pareto job arrivals. Even though bursty traffic generally

decreases performance when compared to a Poisson arrival pro-

cess, the behaviour of the algorithms remains consistent over all

presented alternatives.

V. CONCLUSION

In this paper, the concept of a layered OBS network to support

future Grids, has been presented. In this context, a generic frame-

work for anycast routing was introduced. The gain in performance

when jobs are given flexible (soft) destinations was demonstrated

through simulation for different network and resource loads.

10-2

10-1

100

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

Jo
b 

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

Generated network load (Erlang)

NA-ND (Poisson)
NA-RPD (Poisson)
NA-WPD (Poisson)
NA-WGD (Poisson)

NA-ND (Pareto)
NA-RPD (Pareto)
NA-WPD (Pareto)
NA-WGD (Pareto)
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Fig. 10. Job average hop count versus generated network load for no-destination
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Finally, a novel deflection technique, incorporating both network

and Grid state information, was introduced. Simulation was

used to show the improved performance over more traditional

deflection techniques.
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