
Co-operative Proxy Caching Algorithms for Time-Shifted IPTV Services

T. Wauters, W. Van de Meerssche, F. De Turck, Bart Dhoedt, P. Demeester
Dept. Information Technology (INTEC), Ghent University – IMEC – IBBT,

Gaston Crommenlaan 8, bus 201, B-9050 Ghent, Belgium,
{tim.wauters, wim.vandemeerssche, filip.deturck, bart.dhoedt, piet.demeester}@intec.ugent.be.

T. Van Caenegem, E. Six
Alcatel R&I, Access and Edge, Francis Wellesplein 1, B-2018 Antwerp, Belgium,

{tom.van_caenegem, erwin.six}@alcatel.be.

Abstract

The increasing popularity of multimedia streaming
applications introduces new challenges in content
distribution networks. Streaming services such as
Video on Demand (VoD) or digital television over the
Internet (IPTV) are very bandwidth-intensive and
cannot tolerate the high delays and poor loss
properties of today’s Internet. To solve these problems,
caching (a sliding segment of) popular streams at
proxies could be envisaged. This paper presents a
novel caching algorithm and architecture for time-
shifted television (tsTV) and its implementation using
the IETF's Real-Time Streaming Protocol (RTSP). The
algorithm uses sliding caching windows with sizes
depending on content popularity and/or distance
metrics. The caches can work in stand-alone mode as
well as in co-operative mode. This paper shows that
the network load can already be reduced considerably
using small diskless caches, especially when using co-
operative caching. A brief overview of the functionality
of a prototype proxy implementation is presented as
well.

1. Introduction

The use of Content Distribution Networks (CDNs)
for the delivery of bandwidth-intensive streaming
multimedia has increased considerably over the last
few years. Companies such as Akamai [1] deploy their
CDNs by replicating the content to multiple surrogate
servers, generally at the edge of the network. This way,
the content only has to pass a few nodes in order to
reach the end users, resulting in a reduced latency and
increased throughput. By using geographically
distributed servers, scalability and reliability are

improved significantly, while the core network and
origin server load are reduced. However, for a large-
scale deployment of video services such as IPTV, the
installation of VoD servers at the edge of regional
networks is not sufficient anymore, due to growing
bandwidth requirements in the access network. To
meet the increasing user demand, streaming servers
would be required at each first aggregation point,
resulting in a very high equipment cost.

Start of live
broadcast

t1h 1 day 1 week

requests

Broadcast TV
broadcast

server

Video on
Demand

central server

Time-shifted
TV

access server

Video on
Demand

regional server

Figure 1. Delivery mechanisms for IPTV

Various approaches to offload the transport
networks have been proposed recently. A significant
number of these solutions use technologies that allow
time-shifted TV, a service that enables the end-user to
watch a broadcasted TV program with a time shift, i.e.
the end-user can start watching the TV program from
the beginning although the broadcasting of that
program has already started or is already finished.
Dedicated home equipment, such as a home Personal
Video Recorder (PVR), enables time-shifted TV
through a built-in memory that can be programmed to
record broadcasted TV programs. Limited throughput
capacity on the storage device and on the access link to
the end-user's home however are major disadvantages

Proceedings of the 32nd EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA'06)
0-7695-2594-6/06 $20.00 © 2006

Authorized licensed use limited to: University of Gent. Downloaded on June 09,2020 at 12:00:04 UTC from IEEE Xplore. Restrictions apply.

of home PVR solutions. Furthermore, home PVR
devices can be expensive.

A time-shifted TV service can also be offered
through PVR functionality in the network. In principle,
such network PVR solution enables the end-user to
watch at any time any program broadcasted on any
channel. The end-user experience is similar to a VoD
service, but the content is live TV with an arbitrary
time shift relative to the original broadcast time. As
shown in Fig. 1, the popularity of a television program
typically reaches its peak value within several minutes
after the initial broadcast of the program and
exponentially decreases afterwards. This means that
caching a segment with a sliding window of several
minutes for each current program can serve a
considerable part of all user requests for that program.
Therefore, a new network based time-shifted television
(tsTV) solution using low cost distributed streamers
with limited storage capacity will be presented. These
streamers can be located at the proxy caches and store
segments of the most popular content (TV programs),
so that all requests arriving within these intervals can
be served by the cache from start to finish.

In Fig. 2a and 2b, user 1 is the first to request a
certain television program and gets served from the
central server. Afterwards, other requesting users (e.g.
user 2) can be served by the proxy, as long as the
window of the requested program is still growing.
After several minutes, the window stops growing and
begins sliding, so that user 3 cannot be served anymore
and will be redirected to the (central or regional) server
or, in case of co-operative caching, to a neighbor proxy
with the appropriate segment, if present. Pausing
(parallel to the horizontal axis) can also be supported
within the segment window, as well as fast forward or
rewind (parallel to the vertical axis).

User 1: real-time

User 2: delayed t1

User 3: delayed t2

2

3

1

core network regional network access network

AM

AR

ERCS

CS: central server
ER: edge router
AR: access router
AM: access multiplexer

(a)

t_program

storage

t_storage

t_pause

t0 t1 tw t2 t_viewing

User 1 User 2 User 3

(b)

Figure 2. Time-shifted television: (a) typical
access network topology and (b) tsTV
streaming diagram

The remainder of this paper is structured as follows.
Research work related to this research is discussed in
section 2. Section 3 presents an analytical model of the
sliding-interval caching problem with fixed window
sizes, for comparison with our caching algorithms and
to have an initial estimate of the required storage
space. The next section introduces and evaluates our
sliding-interval caching algorithms, for both stand-
alone and co-operative caching. It determines the
location and the size of the different segments at the
proxy caches. Experimental results are obtained using
a discrete event simulator. In section 5, the RTSP
implementation is discussed briefly. Section 6
concludes this paper.

2. Background and related work

Previous studies on proxy caching techniques [2] or
distributed replica placement strategies for CDNs [6,7]
show that greedy algorithms that take distance metrics
and content popularity into account perform better than
more straightforward heuristics such as LRU (Least
Recently Used) or LFU (Least Frequently Used).

Segment-based caching techniques have been
studied extensively for streaming media, due to the
huge size of multimedia streams compared to
traditional web objects. A survey on different segment-
based strategies such as prefix caching, segment
caching, rate-split caching and sliding-interval caching
has been presented in [2]. The main goal of prefix
caching is to reduce the start-up delay by caching the
initial portion of the stream at the proxy. This
paradigm is generalized by segment caching, where
cache decisions are made for a series of segments of
the stream. In rate-split caching, the partitioning is
done along the rate axis, instead of along the time axis.
This way, the cache takes care of the peak rates in
VBR streaming, while the backbone only has to cope
with the lower constant rate. Of particular interest for

Proceedings of the 32nd EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA'06)
0-7695-2594-6/06 $20.00 © 2006

Authorized licensed use limited to: University of Gent. Downloaded on June 09,2020 at 12:00:04 UTC from IEEE Xplore. Restrictions apply.

this study is sliding-interval caching [3], where the
cached portion of the stream is initially a growing
prefix, but afterwards a dynamically updated sliding
interval. This way, consecutive requests can be served
from start to finish within this window. A more
advanced aspect is the use of co-operative proxy
caching [4], where a better performance than with
independent proxies can be achieved through load
balancing and improved system scalability. In this case
it is important to continuously keep track of cache
states. Note that contrary to standard co-operative
proxy caching, there is no need to switch to segments
on other proxies when using co-operative proxy
caching with sliding intervals. Similar peer-to-peer
caching techniques have also been introduced in
streaming CDNs, where whole files are stored instead
of segments [5]. Several studies such as [8] have been
investigating the implementation of segment-based
caching techniques on proxies using the RTP / RTCP /
RTSP protocol suite. A demonstrator of an IP aware
multi-service access network, including our prototype
tsTV setup, has been described in [9].

3. Analytical approach

Before presenting our sliding-interval caching
algorithm, we introduce an analytical model of a tsTV
solution based on sliding-interval caching with fixed
window sizes, offering a method to estimate the
required storage space in the network.

3.1. Model parameters

Consider a model where each TV program is
characterized by a start time i, a duration Ti and a
function i(t), representing the request arrival rate for
this program. N(t) denotes the total number of
programs with i t. The proxy cache I, placed
between the server and the clients, contains the first X
minutes of any currently streaming file with t – Ti i

t.

3.2. Cache hit rate

We derive an expression for the hit rate of cache I,
hI(t). Consider further the time period |t, t + t|, then
the total number of requests is given by

=

)(

1
)()(

tN

i
i tt Δλ .

To find the total number of successful requests (i.e.
requests that can be served by the cache) for the
currently broadcasted program j in a single channel
situation, we assume a uniform distribution for j and
make the following observations:

• these requests have to arrive at most X minutes
after j

• only a fraction X / Ti of the requests is served from
cache I

Therefore the total number of successful requests is
given by

j
i T

Xtt)()(Δλ .

Averaging over all programs j for which t – X i
t, multiplying by the total number of channels K and
supposing that popularity and duration are
uncorrelated, we obtain the following expression:

><
><

=

=

)(

1
)(

*)(
)(tN

i
i

i
I

t

X
T
t

Kth
λ

λ
,

with <>* denoting averaging, on the condition that t –
X i t. Supposing further that i is a separable
function of i and t, such that i(t) = i f(t - I), with f(t) a
normalized function such that f(t) = 0 for t < 0 and

1)(
0

=
∞

dttf ,

we can write:

dttf
X

tft

j

jjj

><
=

>−><=<><
∞

0
)(

)()(
λ

τλλ

as long as X < <T>. Hence,

()
()

()()><
><=

=

tN

i
i

X

I
t

dttf

T
Kth

1

0

λ

λ
.

Further consider a time period P, then the total
number of broadcasted programs is N(P) = KP/<T>.
Suppose a user group of size G, each requesting r
programs per second on average, then the total number
of requests is given by GrP. Therefore, the average
number of requests for a long enough period of time
will satisfy

() K
TGr

TKP
GrP

PN
GrP ><=

><
=>=<

/
λ .

On the other hand, the total number of requests per
time unit is given by

Grt
tN

i
i =

=

)(

1
)(λ ,

simplifying our expression for the cache I hit ratio to

()=
X

I dttfh
0

.

Taking for f(t) an exponentially decreasing function
bexp(-bt) (for t>0), we get

Proceedings of the 32nd EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA'06)
0-7695-2594-6/06 $20.00 © 2006

Authorized licensed use limited to: University of Gent. Downloaded on June 09,2020 at 12:00:04 UTC from IEEE Xplore. Restrictions apply.

bX
I eh −−=1

as long as X < <T>. The size of cache I is simply KX.

3.3. Example results

When the content popularity is halved after each
interval (b = -ln(0.5)/), the server load looks like
presented in Fig. 3. It is given by (X = a)

a

Ih =−
2
11 .

Similar results for the server load can be found
using the sliding-interval caching algorithm presented
in the following section (comparable to the “s -> c1”
curve in Fig. 9a, for stand-alone caches at level 2).

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8

X []

se
rv

er
 lo

ad

Figure 3. Analytical solution for the server
load, for different values of the segment size

We can conclude that in case of an exponentially
decreasing temporal content popularity, the server load
decreases proportionally, for increasing segment sizes.

4. Sliding-interval caching algorithm

Our caching algorithm for tsTV services is
presented in this section. Since we assume that in
general only segments of programs will be stored,
cache sizes can be limited to a few gigabyte
(corresponding to a few hours of streaming content).
This way smaller streaming servers can be deployed
closer to the users, without increasing the installation
cost excessively.

4.1. Basic principle

We propose that the cache is virtually split up in
two parts: a small part S and a main part L.

program
stored

locally?

request for program p

window
appropriate?

- stream from
other cache
- adapt An,p

- stream locally
- set to “occupied”
- adapt An,p

- stream from
other cache

- stream from
server
- cache in S

is it
new?

no

no no yesyes

yes

Figure 4. Basic principle of the tsTV caching
algorithm at each proxy

Part S will be used to cache the first few (e.g. 5)
minutes of every newly requested (or broadcasted)
program, mainly to determine its initial popularity. Its
size is generally smaller than 1 GB (typically 1 hour of
streaming content). Part L will be used to actually store
the appropriate segments (with growing or sliding
windows). This part is again virtually divided into two
separate storage spaces. Part L1 is used to store unique
segments only, shared among all co-operating cache
nodes. This way, all parts L1 on all cache nodes
represent one large cache, mainly to offload the central
server. The second part L2, if there is still storage space
left, is then used to store segments that are locally most
popular. The main goal of that part is to offload the
access network links, used by the co-operative caching
mechanism (requests served by L1 on a neighbor
cache). The actual size of each segment in part L2 will
be determined and, if necessary, adapted after each
interval (e.g. 5 minutes). After , one of the
following decisions has to be taken:
• let the segment grow (for very popular programs);
• let the segment slide (to finish the current requests,

for less popular programs);
• drop the segment (for unpopular programs, with

no current requests to be served).
Fig. 4 shows the basic principle of the tsTV caching

algorithm. During each interval , program requests
arrive at the different proxies. Each time, a parameter
An,p will be updated in proxy n, for program p. In
general, this parameter tries to determine the popularity
of the program, while taking distance metrics into
account. This means that a (segment of a) popular
program might not be cached, because a nearby proxy
already stores that (segment of the) program. An,p is
calculated as follows:

Each time a request for program p arrives at proxy
n, An,p is increased by 1 (only taking popularity into
account) or by the hopcount between proxy n and the
serving node (also taking distance into account).

Proceedings of the 32nd EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA'06)
0-7695-2594-6/06 $20.00 © 2006

Authorized licensed use limited to: University of Gent. Downloaded on June 09,2020 at 12:00:04 UTC from IEEE Xplore. Restrictions apply.

0

50

100

150

200

250

0 1 2 3 4 5
time [h]

re

qu
es

ts
server

0 1 2 3 4 5
time [h]

server
cache 1

cache 2

0 1 2 3 4 5
time [h]

server

cache 1
cache 2

(a) (b) (c)

Figure 5. Server and cache load. All requests are made within 30 minutes. The cache sizes are 0
GB (a), 0.5 GB (b) and 4 GB (c)

After each interval , first all segments (sliding or
growing) with status set to “occupied” are stored in L2.
Afterwards L2 is filled with segments with growing
windows for the most popular programs (i.e. with the
highest values of An,p). All other segments are dropped,
S is cleared and all values of An,p are reset to 0.

4.2. Numerical results for stand-alone caching

4.2.1. Input parameters. To illustrate the stand-alone
caching principle (with hierarchical caches), a first set
of simulations was performed on one branch of the
access network tree of Fig. 2a: a regional server with
two hierarchical caches (Fig. 6).

central
server

level 1
caches (c1)

level 2
caches (c2) clients

Figure 6. Basic access network topology

The regional server offers 20 channels: 5 very popular
channels (80% of all requests), 5 less popular channels
(10% of all requests) and 10 unpopular channels (10%
of all requests). The top 5 channels are served as a
tsTV service, the other channels through standard VoD
technology on the regional server. The popularity of
the programs per channel follows a Zipf-like
distribution with parameter = 0.7 (the popularity of

the i’th most popular program is proportional to i-).
This distribution is commonly used for content
distribution [10,11] and TV viewing measurements
like [12] confirm this trend. A total of 3000 requests
are made during one evening, of which 200 for the
most popular program on the most popular channel.
The popularity of a program reaches a peak during the
first interval (= 5 minutes) and decreases
exponentially afterwards (halved every interval)
(similar to Fig. 1). Each channel offers 6 programs of
45 minutes per evening, with a streaming bandwidth of
2.5 Mbps.

4.2.2. Server and cache load. In Fig. 5, the server and
cache load are presented. When both cache sizes are
limited to 0.5 GB (S only: the number of channels
times or 25 minutes, Fig. 5b), the server load is
much lower than without caches (Fig. 5a) and the
caches serve most of the tsTV requests. What happens
is that cache c1 (closest to the server) and cache c2 first
store all 5-minute prefixes of each new program, but
since only cache c2 receives new requests afterwards,
cache 1 will drop these segments after . Afterwards
cache 1 will store the next 5 minutes of each program,
while cache c2 is storing the sliding “occupied”
windows from the first interval. This means that the
caches serve all requests made during the first 10
minutes of each single program. For infinite cache
sizes (or 4 GB or higher in this example, Fig. 5c), the
regional server only serves the VoD requests for
channels 6 to 20. Cache c2 stores and serves all
currently broadcasted popular programs, thereby
effectively offloading the transport network.

More detail on the regional server and cache load is
given in Fig. 7 (tsTV only, top 5 channels). Note that
the server load never drops to 0, since at least the first
request for a certain program has to be served from the

Proceedings of the 32nd EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA'06)
0-7695-2594-6/06 $20.00 © 2006

Authorized licensed use limited to: University of Gent. Downloaded on June 09,2020 at 12:00:04 UTC from IEEE Xplore. Restrictions apply.

regional server. In Fig. 8 the server load is shown for
different values of the maximum request period per
program. Since no upstream links are used in these
simulations, the bandwidth on the links can easily be
determined from the server and cache load.

0

20

40

60

80

100

0 1 2 3 4
cache size [GB]

%
 re

qu
es

ts server
cache 1
cache 2

Figure 7. Server and cache load. All requests
are made within 30 minutes

0

20

40

60

80

100

0 1 2 3 4
cache size [GB]

%
 re

qu
es

ts

max 60 min
max 30 min
max 5 min

Figure 8. Server load for different values of the
maximum request period

4.3. Numerical results for co-operative caching

The same caching principles can be applied for a
co-operative caching mechanism, where caches on the
same level of the broadcast tree can collaborate, using
peer-to-peer protocols to exchange information on
stored content. Contrary to stand-alone caching, where
a request that cannot be served is forwarded to the next
cache on the path to the central server (hierarchical
caching), caches can now forward requests to caches
on the same level. However, the decision on when to
store a certain fragment not only depends on the value
of An,p, but also on the source node serving the request.
Two different approaches can be distinguished.

The first heuristic only takes the values of An,p into
account (“Cache from All sources”, CfA). This means

that the storage space L = L2, so that most caches store
the same fragments, since content popularity is similar
for most nodes. The numerical results will therefore be
comparable to the results for stand-alone caching.

The second heuristic also takes the values for An,p
into account, but never stores content that is already
stored on another cache (“Cache from Server only”,
CfS), so that L = L1. This way the central server will be
offloaded considerably, even with small caches, but
many requests will have to be served by other caches
over the access network links.

Both alternatives have their benefits (the first one is
optimal in case of larger caches, the second one in case
of small caches). The optimal heuristic however takes
the best of both worlds, storing unique content
segments in L1 and locally popular segments in L2.

This way the central server load is always
minimized first: the expected server load using the
storage space combining all parts L1 can then be
determined out of Fig. 3. The access network load can
be reduced afterwards, if the cache space is large
enough. This heuristic is called “Cache from Elected
sources” (CfE).

4.3.1. Input parameters. The input parameters for the
simulations are the same as in the previous section.
The network topology (similar to Fig. 6) now consists
of a central server, one node at level 1 (without storage
capabilities) and 6 proxy caches at level 2. The level 1
node is connected to the level 2 caches with
bidirectional links, so that cache co-operation is
possible.

Note that no storage space is available at the level
one node so that the results of the simulations for cache
co-operation are not influenced by hierarchical
caching.

The cost of using the link from the central server to
the node at level 1 has been set to a value higher than 1
(the cost of an access network link). This way the
central server will be avoided when the requested
segment can already be found on a neighbor level 2
cache (when calculating the shortest path using the
weighted Dijkstra algorithm).

4.3.2. Server, cache and network load. In case of
stand-alone caching, the network bandwidth can easily
be determined out of the cache and server load (Fig. 7),
since only downstream traffic is present on the access
network. With co-operative caching, the uplinks in the
access network are used as well.

Proceedings of the 32nd EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA'06)
0-7695-2594-6/06 $20.00 © 2006

Authorized licensed use limited to: University of Gent. Downloaded on June 09,2020 at 12:00:04 UTC from IEEE Xplore. Restrictions apply.

0

20

40

60

80

100

0 1 2 3 4
cache size [GB]

%
 re

qu
es

ts s -> c1
c1 -> c2
c2 -> c1

(a)

0

20

40

60

80

100

0 1 2 3 4
cache size [GB]

%
 re

qu
es

ts s -> c1

c1 -> c2
c2 -> c1

(b)

0

20

40

60

80

100

0 1 2 3 4
cache size [GB]

%
 re

qu
es

ts s -> c1
c1 -> c2
c2 -> c1

(c)

Figure 9. Fraction of the streams on the links
between the server and the level 1 node (s ->
c1) and between the level 1 and 2 nodes
(downlink c1 -> c2 and uplink c2 -> c1) for the
CfA (a), CfS (b) and CfE (c) heuristics

Using the CfA heuristic (Fig. 9a), the server load is
almost identical to the case where stand-alone caches
on level 2 are used. The only difference is that the
central server does not need to serve the first stream to
all of the 6 proxies, but only to one of them. Again the

central server load for the tsTV channels drops to
(almost) zero when 4 GB caches would be used. The
uplinks from the level 2 caches to node 1 are almost
never used, since all caches store the same fragments.
The results are therefore very similar as for stand-alone
caching (remember the analytical results of Fig. 3, with
1GB = 10 minutes per channel = 2).

When the CfS heuristic is used (Fig. 9b), each 5-
minute () fragment is only stored on one cache. This
way, the central server load is already almost zero for
the tsTV channels when only 0.5 GB caches are used.
The total storage space is then 3 GB, therefore one
could expect that the results for the central server load
would correspond to the situation with 3 GB caches in
stand-alone mode. This is not entirely the case, since it
is possible that the first requests for a new program
arrive at caches that have no storage place left in L1.
These first requests are then served by the central
server.

The “core network load” (represented by the link “s
-> c1”) is reduced considerably, while the “access
network load” (represented by the links “c1 <-> c2”) is
load balanced.

The CfE heuristic (Fig. 9c) offers the best of both
worlds. The server load is reduced effectively, while,
in case of larger caches, the access network is
offloaded as well. The server load (link “s -> c1”) is
even lower then for the CfS heuristic. This is due to the
RTSP request forwarding mechanism, allowing
requests that arrive at a cache that has no storage space
left in L1, to be forwarded automatically to another
cache with enough storage space. This way the virtual
cache consisting of all parts L1 is filled up in an
optimal way.

5. Proxy implementation

An RTSP proxy for time-shifted TV has been
implemented for evaluation purposes. This section
gives a brief overview of the most important
components and protocols used.

In order to implement the proxy, its functionality is
divided into logical parts. The communication with the
users and the central server includes messages
containing data about which program or channel has to
be streamed, or VCR like commands such as PAUSE
and STOP. A protocol commonly used for this
interaction is RTSP (Real-Time Streaming Protocol,
RFC 2326). The streams themselves are encapsulated
and delivered with RTP (Real-Time Protocol, RFC
1889), a standard protocol for live streamed media.

A first functional component of the proxy is the
RTSP Proxy, a component that communicates with the
tsTV clients and the server using RTSP, interprets their

Proceedings of the 32nd EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA'06)
0-7695-2594-6/06 $20.00 © 2006

Authorized licensed use limited to: University of Gent. Downloaded on June 09,2020 at 12:00:04 UTC from IEEE Xplore. Restrictions apply.

messages and commands the other components to
execute these requests. The RTSP Proxy component
delegates the caching algorithm decisions to another
component, the Cache Verdict Manager, a component
that uses information from the Cache State Manager,
which is updated through a centralized or distributed
Cache State Exchange (CSE) protocol. The task of the
Cacher component is to store popular streams, sent to
the proxy by the server (or another cache), in sliding
windows. The streams are sent to the clients from these
windows, a function that is handled by the Streamer
component. The proxy also keeps track of the streams
that are being sent to the proxy (which program,
channel, starting time, …), through the Stream Tracker
component, with help from the Program Guide
component, which communicates with the electronic
program guide (EPG) server. Fig. 10 gives an overview
of the different components.

Cache
Verdict

Manager

Stream
Tracker

RTSP
Proxy Streamer

Packet Handler

Program
GuideCacher

Cache
State

Manager

CSE RTSP RTP EPG

Figure 10. Overview of the different
components in the proxy cache

A demonstrator that includes this tsTV proxy
implementation has been presented and described in
more detail in [21].

Conclusions

In this paper a novel sliding-interval caching
algorithm for a time-shifted television service is
presented. Cache decisions (on segment size, stored
programs, …) at low cost distributed streamers are
made after each learning interval , based on
popularity and distance metrics. Experimental results
for a basic network topology showed promising results
in terms of server and network load, especially for co-
operative caching. An RTSP proxy implementation has
been introduced as well. The transparent RTSP request
forwarding principle for co-operative caching further
reduces the server load.

Acknowledgment

This work is partly funded by the IST FP6 MUSE
project. MUSE contributes to the strategic objective
“Broadband for All” of IST (Information Society
Technologies) and it is partially funded by the
European Commission.

References

[1] Akamai. http://www.akamai.com.

[2] J. Liu, J. Xu, “Proxy caching for media streaming over
the internet”, IEEE Communications Magazine, vol. 42, no.
8, August 2004, pp. 88-94.

[3] S. Chen et al., “SRB: Shared running buffers in proxy to
exploit memory locality of multiple streaming media
sessions”, 24th IEEE International Conference on Distributed
Computing Systems (ICDCS), 2004.

[4] Y. Chae et al., “Silo, rainbow, and caching token:
Schemes for scalable, fault tolerant stream caching”, IEEE
Journal on Selected Areas in Communications, vol. 20, no. 7,
September 2002, pp. 1328-1344.

[5] D. Turrini, F. Panzieri, “Using p2p techniques for content
distribution internetworking: a research proposal”, 2nd IEEE
International Conference on Peer-to-Peer Computing,
September 2002.

[6] M. Karlsson, C. Karamanolis, M. Mahalingam, “A
Framework for Evaluating Replica Placement Algorithms”,
Technical Report HPL-2002, HP Laboratories, July 2002.

[7] T. Wauters, J. Coppens, B. Dhoedt, P. Demeester, “Load
balancing through efficient distributed content placement”,
NGI 2005, April 2005, Rome, Italy.

[8] S. Gruber, J. Rexford, A. Basso, “Protocol Considerations
for a Prefix-Caching Proxy for Multimedia Streams”,
Computer Networks, vol. 33, no. 1-6, 2000, pp. 657-668.

[9] E. Gilon, W. Van de Meerssche et al., “Demonstration of
an IP Aware Multi-service Access Network”, BroadBand
Europe 2005, December 2005, Bordeaux, France.

[10] L. Breslau, P. Cao, L. Fan, G. Phillips, S. Shenker,
“Web Caching and Zipf-like Distributions: Evidence and
Implications”, IEEE Infocom, 1999.

[11] P. Backx, T. Wauters, B. Dhoedt, P. Demeester, "A
comparison of peer-to-peer architectures", Eurescom Summit,
2002.

[12] Broadcasters' audience research board,
http://www.barb.co.uk.

Proceedings of the 32nd EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA'06)
0-7695-2594-6/06 $20.00 © 2006

Authorized licensed use limited to: University of Gent. Downloaded on June 09,2020 at 12:00:04 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

